목차정보

목차정보
[목차정보]
서명 : (데이터 분석과 통계 프로그래밍을 위한) R 프로그래밍 기초 & 활용
Chapter 01 R 시작하기 
  1-1. R을 설치하고 사용하기 = 21
  1-2. R 입문 = 23
  1-3. R 파고들기 = 27
  1-4. R에서 데이터 처리하기 = 31
    벡터 = 31
    행렬 = 38
    목록 = 48
    데이터 프레임 = 49
  1-5. R에서 누락된 데이터 처리하기 = 56
  1-6. 결론 = 57

Chapter 02 R 프로그래밍 
  2-1. 프로그래밍이란 = 60
  2-2. 프로그램 작성 준비 = 63
  2-3. 프로그래밍을 배우기 위한 요구 조건 = 64
  2-4. 프로그램의 실행 흐름 제어 = 65
    반복 구문 = 66
    조건 비교문과 분기문 = 66
  2-5. R 프로그래밍의 핵심 = 67
    R 연산자들 = 68
    R에서의 입력과 출력 = 70
    R 환경 이해하기 = 73
    R에서 프로그램 실행 흐름 구현 = 76
    Apply 계열 함수를 사용하여 명시적인 반복 구문 사용 피하기 = 80
  2-6. 처음으로 작성하는 R 프로그램 = 83
    또 다른 예제 - 피타고라스 정리 = 85
    R을 사용해서 이차 방정식 풀기 = 87
  2-7. 왜 R이 객체 지향 언어인가? = 89
    S3와 S4 클래스 = 90
    제네릭 함수(Generic Functions) = 93
  2-8. 결론 = 95

Chapter 03 함수 만들기 
  3-1. 기본적인 R 함수 코드를 이용하여 R 함수 만들기 = 98
  3-2. 함수 만들기 = 99
  3-3. 평균에 대한 신뢰 구간 계산 = 101
  3-4. 벡터화 연산을 통한 반복 구문 사용 피하기 = 105
  3-5. ifelse() 함수를 사용하여 if-else 구문을 벡터화하기 = 108
  3-6. 좀 더 강력한 함수 만들기 = 110
  3-7. Any, All, Which = 114
  3-8. 좀 더 유용한 함수 만들기 = 116
  3-9. 신뢰 구간에 대한 고찰 = 119
  3-10. 결론 = 123

Chapter 04 요약 통계 
  4-1. 중심성향(Central tendency) 측정 = 126
    평균값 = 126
    중앙값과 다른 분위수들 = 128
    최빈값 = 129
    표준 점수를 이용한 데이터 위치 측정 = 131
  4-2. 변동 측정 = 132
    분산과 표준 편차 = 133
    범위 = 134
    중앙값과 표준 절대 편차 = 134
    사분위간 범위 = 135
    변동 계수 = 136
  4-3. 공분산과 상관 = 136
  4-4. 대칭도 측정(혹은 비대칭도 측정) = 139
  4-5. 결론 = 142

Chapter 05 표와 그래프 만들기 
  5-1. 도수 분포와 표 = 144
  5-2. 원형 도표와 막대 도표 = 147
    원형 도표 = 148
    막대 도표 = 151
  5-3. 박스 도표 = 153
  5-4. 히스토그램 = 156
  5-5. 선 그래프 = 157
  5-6. 산점도(혹은 산포도) = 158
  5-7. 그래프 저장하고 사용하기 = 161
  5-8. 결론 = 162

Chapter 06 이산 확률 분포 
  6-1. 이산 확률 분포 = 164
  6-2. 베르누이 프로세스 = 165
  6-3. 이항 분포 : 성공 횟수가 하나의 변수가 됨 = 166
  6-4. 포아송 분포 = 170
  6-5. 이산 확률을 정규 확률과 연결하기 = 172
  6-6. 결론 = 176

Chapter 07 정규 확률 계산 
  7-1. 정규 분포의 특성 = 178
    dnorm 함수를 사용해서 정규 밀도 구하기 = 178
  7-2. 정규 분포를 표준 정규 분포로 변환하기 = 180
  7-3. pnorm 함수를 통한 확률 계산 = 181
    왼쪽 꼬리 확률 계산 = 181
    두 개의 z 점수 사이의 면적 구하기 = 182
    오른쪽 꼬리 확률 구하기 = 182
  7-4. qnorm 함수를 사용한 기각값 찾기 = 183
  7-5. rnorm 함수를 사용하여 임의의 표본 구하기 = 184
  7-6. 표본 평균 분포 = 186
  7-7. 단일 표본 z 검증 = 187
  7-8. 결론 = 189

Chapter 08 신뢰 구간 만들기 
  8-1. 평균에 대한 신뢰 구간 = 192
    정규 분포를 사용한 평균의 신뢰 구간 선택 = 192
    t 표본을 사용하여 평균에 대한 신뢰 구간 구하기 = 194
  8-2. 비율에 대한 신뢰 구간 계산 = 198
  8-3. 카이-제곱 분포 이해하기 = 199
  8-4. 분산과 표준 편차에 대한 신뢰 구간 = 200
  8-5. 평균 간의 차이에 대한 신뢰 구간 = 203
  8-6. stats 패키지를 사용해서 신뢰 구간 구하기 = 205
  8-7. 결론 = 206

Chapter 09 t 검증 
  9-1. 가설 검증에 대한 간략한 소개 = 208
  9-2. t 분포 이해하기 = 210
  9-3. 단일 표본 t 검증 = 212
  9-4. 짝 표본 t 검증 = 213
  9-5. 두 표본 t 검증 = 217
    Welch t 검증 = 218
    나란히 구성된 데이터를 사용한 Welch t 검증 = 220
    쌓인 데이터와 인디케이터 코팅을 통한 Welch t 검증 = 221
    분산의 일치에 대한 가정에 기반한 t 검증 = 223
  9-6. t 검증에 있어서 효과 크기 = 226
  9-7. 결론 = 227

Chapter 10 일원 분산 분석 
  10-1. F 분포 이해하기 = 230
  10-2. F 분포를 사용해서 분산 검증하기 = 231
  10-3. Alpha와 사후 비교 조합 = 233
  10-4. 일원 분산 분석 = 234
    일원 분산 분석에서 분산의 구분 = 234
    일원 분산 분석 예제 = 235
    Turkey HSD 검증 = 239
    Bonferroni 사후 비교 기법 = 240
  10-5. anova 함수 사용하기 = 241
  10-6. 결론 = 241

Chapter 11 좀 더 복잡한 분산 분석 
  11-1. 이원 분산 분석 = 244
    이원 분산 분석에서 제곱의 합 = 245
    이원 분산 분석 예제 = 246
    상호 작용 검사 = 249
    유의한 상호 작용 도표 = 251
    이원 분산 분석에서 효과의 크기 = 252
  11-2. 반복 측정 분산 분석(Repeated-Measures ANOVA) = 253
    반복 측정 분산 분석에서 변동의 구분 = 254
    반복 측정 분산 분석 예제 = 254
    반복 측정 분산 분석에서 효과의 크기 = 258
  11-3. 혼합 요인 분산 분석 = 259
    혼합 요인 분산 분석 예제 = 259
  11-4. 결론 = 264

Chapter 12 상관과 회귀 
  12-1. 공분산과 상관 = 266
  12-2. 회귀 = 271
  12-3. 예제 : 휘발유 가격 예측 = 279
    선형 연관성 검증 = 81
    이차원 모델 = 281
  12-4. 신뢰와 예측 구간 결정 = 287
  12-5. 결론 = 290

Chapter 13 다중 회귀 
  13-1. 다중 회귀 방정식 = 292
  13-2. 다중 회귀 예제 : 직업 만족도 예측 = 293
  13-3. 행렬 대수를 사용해서 회귀 방정식 풀기 = 299
  13-4. 일반 선형 모델에 대한 간략한 소개 = 301
    상관의 특별한 경우로서의 t 검증 = 302
    분산 분석의 특별한 경우로서의 t 검증 = 304
    다중 회귀의 특별한 경우로서의 분산 분석 = 305
  13-5. 다중 회귀 분석에 대한 더 많은 것 = 307
    회귀 방정식에 변수 대입 = 308
    공선성(Collinearity) 처리 = 309
  13-6. 결론 = 310

Chapter 14 로지스틱 회귀 분석(Logistic regression) 
  14-1. 로지스틱 회귀 분석이란 무엇인가? = 312
  14-2. 양분된 하나의 독립 변수를 사용하는 로지스틱 회귀 분석 = 313
  14-3. 단일 연속 독립 변수를 사용하는 로지스틱 회귀 분석 = 317
  14-4. 여러 독립 변수를 사용한 로지스틱 회귀 분석 = 320
  14-5. 로지스틱 회귀와 다중 회귀의 차이 = 328
  14-6. 로지스틱 회귀 분석의 대안 = 330
  14-7. 결론 = 331

Chapter 15 카이-제곱(Chi-Square) 검증 
  15-1. 카이-제곱 검증을 통한 적합도 검사 = 334
    기대한 빈도와 동일한지 여부를 통한 적합도 검사 = 334
    빈도수가 다르다고 가정할 때의 적합도 검사 = 336
  15-2. 독립성에 대한 카이-제곱 검증 = 337
  15-3. 2×2 분할표(Contingency table) = 340
  15-4. 카이-제곱과 표준 정규 분포의 관계 = 342
  15-5. 카이-제곱 검증에서 효과 크기 = 344
  15-6. 파이 계수와 상관 계수 사이의 연관성 = 346
  15-7. 결론 = 351

Chapter 16 비모수적 검증(Nonparametric Tests) 
  16-1. t 검증의 대안으로 사용될 수 있는 비모수적 기법 = 354
    Mann-Whitney U 검증 = 354
    작은 크기 표본에서 Mann-Whitney 검증 = 355
    더 큰 크기의 표본에 대한 Mann-Whitney 검증 = 358
    Wilcoxon 부호 순위 검증 = 363
    작은 크기의 표본에 대한 Wilcoxon 부호 순위 검증 = 363
    더 큰 크기의 표본에 대한 Wilcoxon 부호 순위 검증 = 365
  16-2. 분산 분석의 대안으로 사용되는 비모수적 기법 = 366
    Kruskal-Wallis 검증 = 366
    반복 측정 혹은 임의화 블록에 대한 Friedman 검증 = 370
  16-3. 상관 대안으로 사용할 수 있는 비모수적 기법 = 373
    Spearman 순위 상관 = 373
    Kendall 타우 계수 = 377
  16-4. 결론 = 378

Chapter 17 R에서 시뮬레이션 해보기 
  17-1. 통계학적 시뮬레이션의 정의 = 380
  17-2. 임의의 수 = 381
  17-3. 샘플링과 리샘플링(Sampling and Resampling) = 383
  17-4. R에서 제공하는 수학적 기능 되짚어 보기 = 383
  17-5. R의 시뮬레이션 = 384
    신뢰 구간 시뮬레이션 = 384
    t 검증 시뮬레이션 = 387
    균등 분포 시뮬레이션 = 389
    이항 분포 시뮬레이션 = 391
  17-6. 결론 = 393

Chapter 18 새로운 통계 : 리샘플링과 부트스프래핑(Resampling and Bootstrapping) 
  18-1. 가설 검증의 위험성 = 396
  18-2. 부트스트랩(Bootstrap) = 397
    평균에 대한 부트스트래핑 = 398
    중앙값 부트스트래핑 = 400
  18-3. Jackknifing = 402
  18-4. 순열 검증(Permutation tests) = 406
  18-5. 최근 제시되고 있는 강력한 통계학 기법들 = 412
  18-6. 결론 = 413

Chapter 19 R 패키지 만들기 
  19-1. 패키지의 컨셉 = 416
  19-2. 윈도우 설정 = 417
  19-3. R 패키지의 골격 만들기 = 420
  19-4. R 문서 편집 = 425
  19-5. 패키지 만들고 검사하기 = 429
  19-6. 패키지 설치하기 = 430
  19-7. 패키지가 올바르게 동작하는지 검사하기 = 431
  19-8. R 패키지 유지 보수 = 435
    새 함수 추가하기 = 435
    패키지 다시 만들기 = 437
  19-9. 결론 = 439

Chapter 20 R Commander 패키지 
  20-1. R Commander 인터페이스 = 442
  20-2. 데이터 분석을 위한 R Commander 사용 예제 = 450
    R Commander에서 신뢰 구간 구하기 = 450
    가설 검증을 위한 R Commander 사용법 = 453
    R Commander를 통한 회귀 분석 = 455
  20-3. 결론 = 457

INDEX = 458