L293 え

최 종 연구보고서 GA0243 - 0106

축산물 신속 세균 검사법 개발 연구

The studies on the development of Rapid Microbiological Testing Method in Livestock product

연구기관 한국식품개발연구원

농 림 부

제 출 문

농림부 장관 귀하

본 보고서를 " 축산물 신속세균 검사법 개발 연구 "과제의 최종 보고서로 제출합니다.

2001, 10, 12,

주관연구기관명 : 한국식품개발연구원

총괄연구책임자 : 임 상 동(선임연구원)

연 구 원:김기성(책임연구원)

연 구 원 : 김 희 수(선임연구원)

연 구 원 : 김 영 붕(선임연구원)

연 구 원: 박윤경(위촉연구원)

여 백

요 약 문

I. 제 목

축산물 신속 세균 검사법 개발 연구

II. 연구개발의 목적 및 중요성

세균수에 의한 등급별 차등유가제도 시행에 따라 각 농가별 원유의 세균수를 표준방법인 plate count method(평판법)으로 측정하기에는 많은 노동력과 검사시간이 72시간 소요됨으로써 신속한 결과를 알 수 있는 통상법의 필요성이 대두되기에 이르렀다. 이에 따라 각 유업체에서는 신속 미생물 측정장비를 도입하여 농가에게 유대를 지불하고 있는 실정이다. 그러나 각 기종마다 측정원리가 달라 SPC법과의 상관계수가 차이가 있어 공정한 검사결과를 얻기는 그리 쉬운 일이 아니다.

국내에 도입된 신속 미생물 측정장비로는 Bactoscan, Bactometer, Malthus, Bactrac, Lumac 등이 대표적으로 이용되고 있는데 그 중 Bactoscan이 가장 많은 수를 차지하고 있으며, 일부 유업체에서 Bactometer와 Malthus를 유대지불하는데 이용되고 있고, Lumac은 공장의 품질관리용이나 목장의 수질관리 및 유질개선에 이용되고 있다.

그러나 Bactoscan은 시료당 처리시간이 5분으로 대규모 시료검사에 적합한 장점이 있으나 분석기기 및 분석비용이 비싸고 원유이외에 다른 시료에는 분석할 수없으며 원리가 죽은 균까지도 count 하기 때문에 SPC 법의 결과와 비교하여 보정값을 적용시켜야 하는 단점이 있다. Bactometer와 Malthus는 가공식품이나 화장품 등 시료적용이 광범위한 장점이 있고 다양한 세균검사가 가능하나 분석기기및 분석비용이 비싸고 시료의 오염상태에 따라 분석시간이 4~12시간 소요되어현장에서 즉시 결과를 예측할 수 없으며, 세균수와 균충에 따라 결과가 오차를 발생함으로 SPC 법의 결과와 비교하여 보정값을 적용시켜야 하는 단점이 있다. Lumac은 휴대할 수가 있어 현장에서 분석할 수 있고 분석시간이 5~6분 소요되는

장점이 있으나 다른 기종에 비해 상관관계가 떨어지고 분석비용이 비싼 단점이 있다. 이와같이 어느 기종이라도 완벽한 검사법은 아직 없는 것으로 보임에 따라 외국의 사례를 보면 각기 자기나라의 실정에 맞게 선택하여 사용하고 있다. 우리 나라에서는 분석할 시료에 비해 무분별하게 너무 많은 기기와 기종을 구입하고 있고, 또한 현실에 맞게 보정값을 적용하지 못하는 등 현재 가지고 있는 기기도 제대로 활용하지 못하고 있어 공정한 검사를 이루지 못하고 있는 실정이다. 따라서 분석이 간단하고 분석비용과 기기비용이 저렴한 신속세균검사법을 개발하는 것이 이 연구의 목적이다.

III. 연구개발 내용 및 범위

1. 연구개발사업 목표

- 가. 원유의 신속 세균검사를 위한 배양조건확립
- 나. 식육의 신속 세균검사를 위한 배양조건확립
- 다. RRT법을 응용한 신속 세균검사법 개발

2. 연구의 내용 및 범위

- 가. 원유의 신속 세균검사를 위한 배양조건 확립
- 1) 국내외 관련자료 조사
- 2) 원유의 배양온도별 세균수 분포조사
- 3) SPC법과 색차계에 의한 배양온도별 RRT 검사
- 4) SPC법과 환원시간에 의한 배양온도별 RRT 검사
- 5) 배양온도별 SPC와의 상관관계 및 회귀방정식 산출
- 나. 식육의 신속 세균검사를 위한 배양조건 확립
- 1) 국내외 관련자료조사
- 2) 식육의 배양온도별 세균수 분포조사
- 3) SPC법과 색차계에 의한 배양온도별 RRT 검사

- 4) SPC법과 환원시간에 의한 배양온도별 RRT 검사
- 5) 배양온도별 SPC와의 상관관계 및 회귀방정식 산출

다. RRT법을 응용한 신속 세균검사법 개발

- 1) 국내외 관련자료 조사
- 2) SPC법과 색차계에 의한 색촉진인자를 첨가한 RRT 검사
- 3) 신속세균검사법의 최적조건 확립
- 4) 실증실험을 통한 SPC와의 상관관계 및 회귀방정식 산출

IV. 연구개발결과 및 활용에 대한 건의

1. 연구개발결과

실험방법이 간단하고 분석비용이 저렴하며, 단시간내에 세균수를 측정할 수 있는 현장적용 가능한 방법을 확립함으로써 간편하게 원유 및 식육의 세균수검사를 실시하기 위하여 시도하였다.

1. 색차계에 의한 원유의 신속 세균 검사법

원유를 대상으로 한 색차계에 의한 신속 세균검사법은 원유에 레자주린을 첨가하고 30℃에서 3시간 배양한 다음 Color difference meter를 이용하여 색차계 a 값(X)과 SPC법(30℃에서 72시간 배양후 log 세균수 ; Y)과의 상관관계(r)는 0.57을 나타내었고, 회귀방정식은 Y = 0.1352X + 5.1811이었다.

2. 색소 환원시간에 의한 원유의 신속 세균검사법

원유에 레자주린을 첨가한 다음 배양온도별(15℃,30℃,35℃)로 배양하는 동안 청색이 청자색, 보라색 및 분홍색으로 환원되는 시간(X)과 SPC법(30℃에서 72시 간 배양후 log 세균수 : Y)과의 상관관계를 산출한 결과 30℃에서 청자색으로 환 원되는 시간은 r= -0.67이었고, 회귀방정식은 Y = -0.3412X + 6.5614이었으며, 검사소요시간은 1.6 ~ 7.5시간이었다. 30℃에서 보라색으로 환원되는 시간은 r= -0.85이었고, 회귀방정식은 Y = -0.3300X + 7.0406이었으며, 검사소요시간은 3.2 ~ 9.2시간이었다. 30℃에서 분홍색으로 환원되는 시간은 r= -0.88이었고, 회귀 방정식은 Y = -0.2956X + 7.2870이었으며, 검사소요시간은 4.4 ~ 11.1시간이었 다.

3. 색차계에 의한 식육의 신속 세균 검사법

시료액에 환원탈지분유와 레자주린을 첨가한 다음 배양온도별(25℃, 30℃와 35℃)로 각각 1hr, 2hr, 3hr 배양하여 Color difference meter를 이용하여 색차계 a 값(X)을 측정하여 SPC법(30℃에서 72시간 배양후 log 세균수; Y)과의 상관관계를 산출한 결과, 쇠고기는 30℃/72시간(SPC법)에서 30℃/3시간 배양했을 때 r= 0.66, 회귀방정식은 Y = 0.2285X + 3.3918이었다. 돼지고기는 30℃/72시간(SPC법)에서 30℃/3시간 배양했을 때 r= 0.69, 회귀방정식은 Y = 0.2685X + 3.2303이었다.

4. 색소 환원시간에 의한 식육의 신속 세균검사법

식육에서 채취한 시료액에 환원탈지분유와 레자주린을 첨가한 다음 배양온도 별(25℃, 30℃, 35℃)로 배양하는 동안 청색이 청자색, 보라색 및 분홍색으로 환원되는 시간(X)과 SPC법(30℃에서 72시간 배양후 log 세균수 ; Y)과의 상관관계를 산출한 결과 배양온도간에는 30℃가 가장 상관관계가 높았다. 쇠고기의 경우 30℃에서 청자색으로 환원되는 시간은 r= -0.43이었고, 회귀방정식은 Y = -0.2866X + 4.8830이었으며, 검사소요시간은 3.1 ~ 10.1시간이었다. 30℃에서 보라색으로 환원되는 시간은 r= -0.76이었고, 회귀방정식은 Y = -0.3420X + 6.0096이었으며, 검사소요시간은 5.9 ~ 11.7시간이었다. 30℃에서 분홍색으로 환원되는 시간은 r= -0.91이었고, 회귀방정식은 Y = -0.3508X + 6.9595이었으며, 검사소요시간은 8.4 ~ 14.1시간이었다.

돼지고기의 경우 30℃에서 청자색으로 환원되는 시간은 r= -0.42이었고, 회귀 방정식은 Y = -0.4068X + 5.2003이었으며, 검사소요시간은 3.0 ~ 7.9시간이었다. 30℃에서 보라색으로 환원되는 시간은 r= -0.74이었고, 회귀방정식은 Y = -0.4177X + 6.3333이었으며, 검사소요시간은 5.6 ~ 10.4시간이었다. 30℃에서 분홍색으로 환원되는 시간은 r= -0.91이었고, 회귀방정식은 Y = -0.3898X +

7.4550이었으며, 검사소요시간은 8.9 ~ 14.0시간이었다.

2. 활용에 대한 건의

3차년도에 걸친 축산물 신속세균검사법 개발 연구 결과 실험방법이 간단하고 검사비용이 저렴하며, 단시간내에 세균수를 측정할 수 있는 현장적용 가능한 방 법을 확립함으로써 원유 및 식육의 세균수를 판별하는 screening test에 이용하 여 목장에서의 원유취급단계별 오염원인을 추적하여 원유의 질을 향상할 수 있으 며, 도축장에서의 도살에서 식육으로 부분해체될 때까지 단계별 오염원인을 추적 가능하여 식육의 품질을 신속히 판별함으로써 위생관리에 이용될 수 있다. 이에 따라 HACCP 제도를 운영하고 도축장, 육가공공장에서 도축별 위생등급을 결정하 는데 크게 기여할 것이다. 여백

SUMMARY

I. Title

The studies on the development of Rapid microbiological testing method of livestock products

II. Abstract

In order to search for reliable rapid methods of estimating bacterial counts in raw milk and flesh meat, this study was tried to measure "a" value by color difference meter and resazurin reduction time which is simple in experimental method, low in analytical cost, able to estimate bacterial count within short time.

A. Rapid microbiological testing method of raw milk by Color Difference meter

Regression equation(RE) between "a" value(X) of Resazurin reduction test by color difference meter reading after 3hr incubation at 30° C and initial bacterial log count(Y) obtained after 72hr incubation at 30° C was Y= 0.1352X + 5.1811, with a correlation coefficient of 0.57.

B. Rapid microbiological testing method of raw milk by Color Reduction Time

Regression equation(RE) between resazurin reduction time(X) from blue color to bluish purple color during incubation at 30° C and initial bacterial log count(Y) was Y = -0.3412X + 6.5614, with a correlation coefficient of -0.67. The time required to obtain results was 1.6 to 7.5hr. RE between resazurin reduction time(X) from blue color to purple color during incubation at 30° C and initial bacterial log count(Y) was Y = -0.3300X + 7.0406, with a correlation coefficient of -0.85. The time

required to obtain results was 3.2 to 9.2hr.

RE between resazurin reduction time(X) from blue color to pink color during incubation at 30° C and initial bacterial log count(Y) was Y = -0.2956X + 7.2870, with a correlation coefficient of -0.88. The time required to obtain results was 4.4 to 11.1hr.

C. Rapid microbiological testing method of flesh meat by Color Difference meter

In beef, Regression equation(RE) between "a" value(X) of Resazurin reduction test by color difference meter reading after 3hr incubation at 30° C and initial bacterial log count(Y) obtained after 72hr incubation at 30° C was Y = 0.2285X + 3.3918, with a correlation coefficient of 0.66.

In pork, Regression equation(RE) between a value(X) of Resazurin reduction test by color difference meter reading after 3hr incubation at 30° C and initial bacterial log count(Y) obtained after 72hr incubation at 30° C was Y = 0.2685X + 3.2303, with a correlation coefficient of 0.69.

D. Rapid microbiological testing method of flesh meat by Color Reduction Time

In beef, regression equation(RE) between resazurin reduction time(X) from blue color to pink color during incubation at 30° C and initial bacterial log count(Y) was Y = -0.3508X + 6.9595, with a correlation coefficient of -0.91. The times required to obtain results were 8.4 to 14.1hr.

In pork, RE between resazurin reduction time(X) from blue color to pink color during incubation at 30° C and initial bacterial log count(Y) was Y = -0.3898X + 7.455, with a correlation coefficient of -0.91. The times required to obtain results were 8.9 to 14.0hr.

CONTENTS

Chapter I.	Introduction17
Section 1.	Objectives and the scope of the study17
1.	Objectives of the study17
2.	The scope of the study
Section 2.	The trend of domestic Rapid microbiological testing method of
	livestock products
Section 3.	The trend of foreign Rapid microbiological testing method of
	livestock products23
Chapter II.	Development of Rapid microbiological testing method
	of raw milk
Section 1.	Introduction
Section 2.	Materials and Methods
1.	Collection of raw milk
2.	Test of Total bacterial count
3.	Test of psychrotophic bacteria
4.	Test of thermophilic bacteria29
5.	Test of lactic acid bacteria30
6.	Resazurin reduction test by color difference meter30
7.	Resazurin reduction test by color reduction time30
8.	Analysis of data30
Section 3.	Results and Discussion31
1.	Distribution of total bacterial count in raw milk according
	to incubation temperature31
2.	SPC method and Resazurin reduction test by color difference
	meter63

time
and color value or color reduction time
Chapter III. Development of Rapid microbiological testing method of flesh meat
of flesh meat
of flesh meat
Section 1. Introduction
Section 2. Materials and Methods
1. Collection of flesh meat
1. Collection of flesh meat
3. Test of psychrotophic bacteria
4. Test of lactic acid bacteria
5. Resazurin reduction test by color difference meter
6. Resazurin reduction test by color reduction time 91 7. Analysis of data 91 Section 3. Results and Discussion 92 1. Distribution of total bacterial count in flesh meat according
7. Analysis of data
Section 3. Results and Discussion
1. Distribution of total bacterial count in flesh meat according
_
to incubation temperature92
2. SPC method and Resazurin reduction test by color difference
meter117
3. SPC method and Resazurin reduction test by color reduction
time124
4. Regression equation and Correlation coefficient between SPC
and color value or color reduction time132

Section	1.	Introduction
Section	2.	Materials and Methods150
	1.	Collection of raw milk and flesh meat150
	2.	Test of Total bacterial count150
	3.	Resazurin reduction test by color difference meter150
	4.	Resazurin reduction test by color reduction time151
	5.	Analysis of data151
Section	3.	Results and Discussion
	1.	SPC method and Resazurin reduction test adding to color
		enhancement factor by color difference meter152
	2.	Optimum condition of Rapid microbiological testing
		method165
	3.	Regression equation and Correlation coefficient between SPC
		and color value or color reduction time by Actual proof $\cdots\!\!-\!\!176$
Reference	e	195

여백

목 차

제 1 장	서 론	17
제 1 절	연구개발의 목적과 범위	17
1. 연구	¹ 목적	17
2. 연구	² 범위	18
제 2 절	국내 축산물 신속세균 검사법 현황	18
제 3 절	외국의 축산물 신속세균 검사법 현황	23
	•	
제 2 장	원유의 신속세균 검사법 개발	28
제 1 절	서설	28
제 2 절	재료 및 방법	. 29
1. 원유	우의 수집	29
2. 총	군수 검사	29
3. 저는	으성 균수 검사	- 29
4. 호	멸성균수 검사	. 29
5. 젖식	· · · · · · · · · · · · · · · · · · ·	. 30
6. 색기	사계에 의한 배양온도별 Resazurin reduction test	. 30
	원시간에 의한 배양온도별 Resazurin reduction test	
8. 자호	로분석	. 30
제 3 절	결과 및 고찰	. 31
1. 원수	유의 배양온도별 세균수 분포조사	. 31
	법과 색차계에 의한 배양온도별 RRT 검사	
	법과 환원시간에 의한 배양온도별 RRT 검사	
4. H	양온도별 SPC와의 상관관계 및 회귀방정식 산출	. 83
제3장	식육의 신속세구 건사번 개박	. 89

제 1 절 서설	89
제 2 절 재료 및 방법	90
1. 식육의 수집	90
2. 총균수 검사	90
3. 저온성균수 검사	90
4. 젖산균수 검사	90
5. 색차계에 의한 배양온도별 Resazurin reduction test	91
6. 환원시간에 의한 배양온도별 Resazurin reduction test	91
7. 자료분석	91
제 3 절 결과 및 고찰	92
1. 식육의 배양온도별 세균수 분포조사	92
2. SPC법과 색차계에 의한 배양온도별 RRT 검사	117
3. SPC법과 환원시간에 의한 배양온도별 RRT 검사	124
4. 배양온도별 SPC와의 상관관계 및 회귀방정식 산출	132
제 4 장 RRT법을 응용한 신속 세균검사법 개발	149
제 1 절 서설	149
제 2 절 재료 및 방법	150
1. 시료의 수집	150
2. 총균수 검사	150
3. 색차계에 의한 Resazurin reduction test	150
4. 환원시간에 의한 Resazurin reduction test	151
5. 자료분석	
제 3 절 결과 및 고찰	152
1. SPC법과 색차계에 의한 색촉진인자를 첨가한 RRT 검사	
2. 신속세균검사법의 최적조건 확립	
3. 실중실험을 통한 SPC와의 상관관계 및 회귀방정식 산출	
찬고무허	

제 1 장 서 론

제1절 연구개발의 목적과 범위

1. 연구목적

세균수에 의한 등급별 차등유가제도 시행에 따라 각 농가별 원유의 세균수를 표준방법인 plate count method(평판법)으로 측정하기에는 많은 노동력과 검사시간이 72시간 소요됨으로써 신속한 결과를 알 수 있는 통상법의 필요성이 대두되기에 이르렀다. 이에따라 각 유업체에서는 신속 미생물 측정장비를 도입하여 농가에게 유대를 지불하고 있는 실정이다. 그러나 각 기종마다 측정원리가 달라 SPC법과의 상관계수가 차이가 있어 공정한 검사결과를 얻기는 그리 쉬운 일이 아니다.

국내에 도입된 신속 미생물 측정장비로는 Bactoscan, Bactometer, Malthus, Bactrac, Lumac 등이 대표적으로 이용되고 있는데 그 중 Bactoscan이 가장 많은 수를 차지하고 있으며, 일부 유업체에서 Bactometer와 Malthus를 유대지불하는데 이용되고 있고, Lumac은 공장의 품질관리용이나 목장의 수질관리 및 유질개선에 이용되고 있다.

그러나 Bactoscan은 시료당 처리시간이 5분으로 대규모 시료검사에 적합한 장점이 있으나 분석기기 및 분석비용이 비싸고 원유이외에 다른 시료에는 분석할 수없으며 원리가 죽은 균까지도 count 하기 때문에 SPC 법의 결과와 비교하여 보정값을 적용시켜야 하는 단점이 있다. Bactometer와 Malthus는 가공식품이나 화장품 등 시료적용이 광범위한 장점이 있고 다양한 세균검사가 가능하나 분석기기및 분석비용이 비싸고 시료의 오염상태에 따라 분석시간이 4~12시간 소요되어현장에서 즉시 결과를 예측할 수 없으며, 세균수와 균충에 따라 결과가 오차를 발생함으로 SPC 법의 결과와 비교하여 보정값을 적용시켜야 하는 단점이 있다. Lumac은 휴대할 수가 있어 현장에서 분석할 수 있고 분석시간이 5~6분 소요되는 장점이 있으나 다른 기종에 비해 상관관계가 떨어지고 분석비용이 비싼 단점이

있다. 이와같이 어느 기종이라도 완벽한 검사법은 아직 없는 것으로 보임에 따라 외국의 사례를 보면 각기 자기나라의 실정에 맞게 선택하여 사용하고 있다. 우리 나라에서는 분석할 시료에 비해 무분별하게 너무 많은 기기와 기종을 구입하고 있고, 또한 현실에 맞게 보정값을 적용하지 못하는 등 현재 가지고 있는 기기도 제대로 활용하지 못하고 있어 공정한 검사를 이루지 못하고 있는 실정이다. 따라서 분석이 간단하고 분석비용과 기기비용이 저렴한 신속세균검사법을 개발하는 것이 이 연구의 목적이다.

2. 연구범위

이 연구의 최종 목표는 RRT법을 응용한 원유 및 식육의 신속 세균검사법 개발이다.

이 최종목표를 달성하기 위한 1차년도 연구개발 사업의 목적은 원유의 신속세균검사를 위한 배양조건 확립이며, 동연도 연구의 내용은 원유의 배양온도별세균수 분포조사, SPC법과 색차계에 의한 배양온도별 RRT검사, SPC법과 환원시간에 의한 배양온도별 RRT검사 및 배양온도별 SPC와의 상관관계 및 회귀방정식 산출이다. 2차년도의 연구목적은 식육의 신속 세균검사를 위한 배양조건 확립이며, 동연도 연구의 내용은 식육의 배양온도별 세균수 분포조사, SPC법과 색차계에 의한 배양온도별 RRT검사, SPC법과 환원시간에 의한 배양온도별 RRT검사 및 배양온도별 SPC와의 상관관계 및 회귀방정식 산출이다. 3차년도(최종년도)의 연구목적은 RRT법을 응용한 신속세균검사법 개발이며, 동연도 연구의 내용은 SPC법과 색차계에 의한 색촉진인자를 첨가한 RRT검사, 신속세균 검사법의 최적조건 확립, 실증실험을 통한 SPC와의 상관관계 및 회귀방정식 산출이다.

제2절 국내 축산물 신속세규검사법 현황

1. 원유의 신속세균검사 현황

세균수에 의한 등급별 차등유가제도 시행에 따라 각 농가별 원유의 세균수를

표준방법인 plate count method(평판법)으로 측정하기에는 많은 노동력과 검사시간이 72시간 소요됨으로써 신속한 결과를 알 수 있는 통상법의 필요성이 대두되기에 이르렀다. 이에따라 각 유업체에서는 신속 미생물 측정장비를 도입하여 농가에게 유대를 지불하고 있는 실정이다. 그러나 각 기종마다 측정원리가 달라 SPC법과의 상관계수가 차이가 있어 공정한 검사결과를 얻기는 그리 쉬운 일이 아니다.

국내에 도입된 신속 미생물 측정장비로는 Bactoscan, Bactometer, Malthus, Bactrac, Lumac 등이 대표적으로 이용되고 있는데 그 중 Bactoscan이 가장 많은 수를 차지하고 있으며, 일부 유업체에서 Bactometer와 Malthus를 유대지불하는데 이용되고 있고, Lumac은 공장의 품질관리용이나 목장의 수질관리 및 유질개선에 이용되고 있다.

표 1. 최신 세균검사장비 구입비용 및 운영비

	구 분	Bactoscan	Bactometer	Malthus
검	보유대수	38대	50대	30대
	환율변동 전 단가	1.5억원 (2기종평균)	8천만원	8천만원
사	환율변동 후 단가	2.7억원 (최신기종)	1.2억원	1.2억원
장	환율변동 전 총구입가	57억원	40억원	24억
	감가삼각비	57억/8년 = 7.1억원	40억/8년= 5억	24억/8년 = 3억
비	향후 2000년내 기기교체구입비	102.6억원	60억	36억
운	시료당	300원	200원	200원
영	년간 분석비 (개체별)	50만두 x 365일 /15일 = 36.5억원	24. 3억	24. 3억
) 	년간 분석비 (농가별)	2만호 x 365일 /15일 = 1.46억원	0.97억	0.97억

그러나 Bactoscan은 시료당 처리시간이 5분으로 대규모 시료검사에 적합한 장점 이 있으나 분석기기 및 분석비용이 비싸고 원유이외에 다른 시료에는 분석할 수 없으며 원리가 죽은 균까지도 count 하기 때문에 SPC 법의 결과와 비교하여 보정 값을 적용시켜야 하는 단점이 있다. Bactometer와 Malthus는 가공식품이나 화장 품 등 시료적용이 광범위한 장점이 있고 다양한 세균검사가 가능하나 분석기기 및 분석비용이 비싸고 시료의 오염상태에 따라 분석시간이 4~12시간 소요되어 현장에서 즉시 결과를 예측할 수 없으며, 세균수와 균충에 따라 결과가 오차를 발생함으로 SPC 법의 결과와 비교하여 보정값을 적용시켜야 하는 단점이 있다. Lumac은 휴대할 수가 있어 현장에서 분석할 수 있고 분석시간이 5~6분 소요되는 장점이 있으나 다른 기종에 비해 상관관계가 떨어지고 분석비용이 비싼 단점이 있다. 이와같이 어느 기종이라도 완벽한 검사법은 아직 없는 것으로 보임에 따라 외국의 사례를 보면 각기 자기나라의 실정에 맞게 선택하여 사용하고 있다. 우리 나라에서는 분석할 시료에 비해 무분별하게 너무 많은 기기와 기종을 구입하고 있고, 또한 현실에 맞게 보정값을 적용하지 못하는 등 현재 가지고 있는 기기도 제대로 활용하지 못하고 있어 공정한 검사를 이루지 못하고 있는 실정이다. 따라 서 분석이 간단하고 분석비용과 기기비용이 저렴한 신속세균검사법을 개발할 필 요성이 요구된다.

국내에서는 1992년 10월 2일에 축산물 위생처리법이 개정되어 원유중 세균수 및 체세포수의 허용기준을 설정하였고 1993년 4월 7일에는 세균수와 체세포수를 각각 5등급과 4등급으로 구분하였다. 또한 1993년 5월 3일에는 원유 위생등급별 차등가격제를 도입하여 기본 유대를 kg당 기존 383원에서 394원으로 11원 인상하였고 세균수는 등급에 따라 장려금을 반영하여 1등급인 경우는 kg당 433원으로 고시하였고 이러한 차등유가제도를 1993년 6월 1일 부터 시행하게 되었다.

표 2. 원유의 세균수 위생등급 변화

구	분	93. 4. 20(제정)	95. 10. 16(1차)	96. 7. 1(2차)
1 5	급 A	-	3만 미만	3만 미만
1 7	급 B	10만 미만	3 ~ 10만 미만	3 ~ 10만 미만
2	급	10 ~ 25만 미만	10 ~ 25만 미만	10 ~ 25만 미만
3	급	25 ~ 50만 미만	25 ~ 50만 미만	25 ~ 50만 이하
4	급	50 ~ 100만 이하	50 ~ 100만 이하	50만 초과
둥	외	100만 초과	100만 초과	삭제

그 결과 원유의 세균학적 품질은 급속히 달라져 1993년 6월에는 1등급이 약 20%, 등외가 약 25%였으나 1994년 3월에는 1등급이 약 65%, 등외가 약 5% 이내로 좋아졌고, 최근에는 1등급이 70~80%로 유질이 매우 향상되었다.

`원유중 미생물 함량을 검사하기 위한 신속하고 효과적인 방법은 원유의 질을 개선할 뿐만 아니라 원유생산의 위생기준이 되고 농가에서의 원유저장, 유가공공 장에서의 가공 적합성 판정 및 고품질의 유제품 생산을 유도한다는 점에서 매우 중요하다. 미생물의 함량을 측정하는 방법으로는 세계적으로 공인된 plate count method(평판법)이 표준방법으로서, 원유중 미생물수가 100,000/ml 수준에서 가장 적절한 것으로 알려져 있다(IDF, 1991; Maxcy와 Paul, 1987). 그러나 이 방법은 48~72시간 동안 배양하기 때문에 원유를 제품생산에 투입한 다음 결과를 알 수 있어 사후검사로 밖에 활용되지 못하고 있어 원유품질에 따라 필요한 제품에 즉 시 투입할 수 없는 제약이 따른다. 따라서 임 등(1994°)은 RRT법을 Colorimeter와 연계하여 1시간 만에 세균수 측정하는 검사법을 고안하여 상관계수를 구한 결과 r= 0.68이었으며, 임 등(1994^b)은 환원시간에 의한 세균검사법을 고안하여 상관계 수를 구한 결과 청색에서 청자색으로의 환원시간일 때에는 r= 0.75, 검출시간은 1.5~4시간, 청색에서 보라색까지의 환원시간일 때에는 r= 0.88, 검출시간은 2. 5~7시간, 청색에서 분홍색까지의 환원시간일 때에는 r= 0.85, 검출시간은 5~11 시간이었다고 하였다. 강(1993)의 보고에서 정과 차(1991)는 우유와 유제품의 세 균수 측정에 있어서 DEFT(Direct epifluorescent filter technique)와 SPC와의 상관계수 r= 0.98이었고, 분석시간은 약 25분이었으며, 5 x 10³ ~ 5 x 10⁵/ml의 시료에 적용할 수 있다고 하였다. 우유중의 세균성 ATP를 측정하여 간접적으로 균수를 측정하는 ATP assay법(Lumac)은 한 둥(1985)의 보고에 따르면 SPC와의 상 관계수가 r= 0.74라고 하였으며, 1시간내에 측정할 수 있고, 10⁴/ml 이상의 시료 에 대하여 적용이 가능하다고 하였다.

김 등(1994)은 Lumac Norm test의 경우 r= 0.46이었고, Lumac ATP-F test는 봄철에 r= 0.56, 여름철에 r= 0.69이었다고 하였다. 남 등(1994)은 Malthus를 이용하여 Conductance detection time을 (Y), Total bacterial log count를 (X)라고 할때 회귀방정식은 Y = 18.27651 - 2.07550X, 상관계수는 -0.95(n=201)라고 하였다. 임 등(1995)은 Bactoscan을 이용하여 SPC와의 상관계수를 구한 결과 전체시료(n=3092)를 대상으로 할때 표 3에서 보는 바와 같이 Standard plate count(X)와 Bactoscan count(Y)와의 회귀방정식은 Y = 0.796X + 1.240(log)이고, 상관계수는 0.83(p<0.0001)이었으며, 겨울철 시료(n=1240)의 회귀방정식은 Y = 0.730X

+ 1.548(log), 상관계수는 0.74(p<0.0001), 봄철시료(n=873)의 회귀방정식은 Y = 0.861X + 1.000(log), 상관계수는 0.89(p<0.0001), 여름철 시료(n=979)의 회귀방 정식은 Y = 0.864X + 0.795(log), 상관계수는 0.85(p<0.0001)로 각각 나타났다.

표 3. 계절별 원유에서 Standard plate count와 Bactoscan count 와의 관계

계절별	시료수	को नो भी उसे क्रो	상관계수	Standard	Probability
계실별	시포구	료수 회 귀 방 정 식 생관계수		deviation	level
전 체 ^a	3, 092	$Y = 0.796X+1.240(log)^b$	0.83	0. 435	P<0.0001
겨울철°	1,240	$Y = 0.730X+1.548(log)^{b}$	0.74	0.495	P<0.0001
봄 철*	873	$Y = 0.861X+1.000(log)^b$	0.89	0.367	P<0.0001
여름철 ^a	979	$Y = 0.864X+0.795(log)^b$	0.85	0.386	P<0.0001

주)^a전체: '93.11~'94.8; 겨울철: '93.11~'94.2; 봄철: '94.3~'94.5; 여름철: '94. 6~'94.8 b Y= Bactoscan count, X= Standard plate count

표 4에서 보는 바와 같이 보정계수(Bactoscan count/Standard plate count)를 보면, 전체시료에서는 1.65~2.09의 값을, 겨울철시료에서는 1.74~2.50의 값을, 봄철시료에서는 1.59~2.52의 값을, 여름철시료에서는 1.56~2.05의 값을 각각 나타내었다고 하였다.

표 4. Bactoscan 보정계수 표

	총균수	보정계수 (Bactoscan count	/Standard plate	count)
	(CFU/ml)	전체	겨울철	봄철	여름철
<	10,000	1.65	1.74	1.59	1.56
≥	10,000	1,67	1.76	1.62	1.57
2	50,000	1.72	1.78	1.64	1.58
≥	100,000	1,75	1.79	1.79	1.61
≥	200,000	1.77	1.90	1.85	1.63
2	300,000	1.80	1.93	2,09	1.73
2	400,000	1.81	1.93	2.09	1.80
≥	500,000	1.82	2.04	2.14	1.83
≥	600,000	1.84	2.26	2.19	1.85
2	700,000	1.90	2, 33	2.30	1.95
2	800,000	1.94	2.37	2, 37	2.05
≥	900,000	2,06	2.43	2, 42	1.96
≥	1,000,000	2.08	2.50	2, 51	2.04
\geq	2,000,000	2.09	2, 38	2.52	2.01

이와같이 원유검사 중 세균수 측정은 유대에 결정적인 영향을 미치므로 공정한 측정 결과가 나와야 하는데 원유중의 세균분포도에 따라서 보정계수가 변하게 되므로 일정기간 간격으로 보정계수의 확인시험을 실시하여 SPC 결과와 일정범위 이상의 오차를 나타낼 경우에는 곧 최근 우유를 활용한 보정계수를 재작성하여 세균검사를 실시하여야 정확하고 공정한 원유검사가 가능하다.

제3절 외국의 축산물 신속세균검사법 현황

낙농 선진국에서는 오래전 부터 양질의 우유생산을 위한 집유검사 및 유대지급제도를 운영해 오고 있다. 원유검사는 유성분검사, 세균수검사, 체세포수 검사, 잔류항균물질 검사로 이루어지고 이들 검사결과에 따라 집유여부와 유대를결정하고 있다. 대부분의 IDF 회원국의 세균수에 따른 원유등급(표 5)은 3등급또는 4등급으로 되어 있다. 특급에는 장려금을 주고 1급을 기본유대로 하며 2급이하는 범칙금을 주는 방식을 대부분 채택하고 있으나 뉴질랜드의 경우에는 특급을 기본유대로 적용하고 있다. 대부분의 국가에서 장려금을 지급하는 특급은 5만이하의 세균수를 기준으로 하고 있으며 기본유대를 적용하는 1급의 경우는 10만또는 20만 이하의 세균수를 적용하는데 이 수준 이상의 세균수에 대해서는 범칙금을 대부분의 국가에서 적용하고 있다. 또한 장려금은 기본유대의 1~5% 그리고범칙금은 기본유대의 1~30%를 대부분의 국가에서 적용하고 있는 실정이다.

표 5. 원유등급 및 유대지급을 위한 세균수 기준

(단위: cfu/ml)

국 가 별	특 급	1 급	2 급	3 급
호주	<50,000	<200,000	>200,000	-
독일	-	<100,000	<300,000	<800,000
덴마크	<30,000	<100,000	<300,000	<800,000
프랑스	-	<100,000	<500,000	>500,000
영국	<20,000	<100,000	>100,000	
네덜란드		<100,000	<250,000	>250,000
뉴질랜드	<100,000	<200,000	>200,000	-
미국		<100,000	>100,000	-

원유검사 중에서 세균수검사는 SPC법을 표준법으로 하고 신속 SPC법, 형광염색현 미경법, 전기저항측정법, ATP측정법 등 원리, 특징, 비용 등 조건이 다른 여러 가지 신속한 검사방법을 활용하여 다수의 시료를 검사하고 그 결과는 곧 장려금 또는 범칙금을 결정하게 된다. 대부분의 국가에서 세균수는 10만/ml를 허용한계로 설정하고 있으며, 그 이하는 장려금 그리고 그 이상은 범칙금을 적용하고 있는 실정이다.

표 6. 낙농선진국의 세균검사방법

일본	덴마크	영국	미국	캐나다	호주	뉴질랜드
Spiral count, Breed count, Bactoscan	Petri foss	Petri foss	직접현미경, SPC법, Petri film, Bactoscan	Petri foss	Bactoscan, SPC법	Bactoscan, SPC법

자료: 김 등(1994)

각 기종마다 측정원리를 보면, Bactoscan은 원유로 부터 분리된 미생물을 형광 염색물질로 염색하여 형광 현미경을 통하여 연속적으로 계수하는 방법(Nieuwnhof 와 Hoolwerf, 1988)이고, Bactometer, Malthus 및 Bactrac은 배지에 접종된 미생 물의 대사산물들로 인한 전기적 impedance 및 conductance의 변화량을 측정하는 방법(Cady 등, 1978; Firstenberg-Eden과 Tricarico, 1983; Gnau와 Luedecke, 1982; O'Conner, 1979)이며, Lumac은 모든 생균에 존재하는 ATP를 추출하여 형광 물질과 반응시켜 이로부터 발산되는 형광빛의 양을 측정하여 미생물수를 측정하는 방법(Bossuyt, 1981; Bossuyt, 1982; Britz 등, 1980)이다.

표 7. 신속 세균 검사방법별 비교표

기기명 특 성	SPC 법	Bactoscan	Bactometer	Malthus	Lumac
원 리	Colony count	Flourscence microscopic count		Electrical Conductance	Biolumine- scence count
특 징	30℃,72시간 배양, 생균 colony수	형 광염 색세 균 현 미 경 측 정, 보정계수 사용	· • · ·	측정, 세균활	세균성 ATP 측정, ATP 보정계수사용
검사방법				다목적 세균검 사 통상방법	신속한 검사 용 통상방법
분석시간	배양, count 에 많은시간 소요	시 료 검 사 에 5분소요	시 료 검 사 에 4~12시간 소 요	시료검사에 4 ~12시간 소요	시료검사에
기기의 특성			다양한 세균검 사 가능	다양한 세균검 사 가능	신속한 현장 검사 가능
시험결과		세균과 사균	세균수, 균총	세균수, 균총	세균수, 균충 에 따라 결과 변동
결과해석	통상법 세균 검사시 기준	SPC법 결과 와 상관계수 적용	SPC법 결과와 상관계수 적용	SPC법 결과와	

* 기타

- Spiral plate count법 : SPC법을 자동화한 세균검사법으로 신속한 시료처리 및 높은 상관계수가 특징
- Petri foss법 : SPC법을 자동화한 세균검사법으로 신속한 시료처리 및 높은 상 관계수가 특징
- Petri film법 : SPC법을 간소화한 세균검사법으로 신속한 시료처리가 특징

자료: 김 등(1994)

Bactoscan과 SPC법과의 상관계수를 보면 Suhren 등(1988)은 r= 0.84, 0'Conner와 0'Riopdan(1991)은 r= 0.71, 0'Conner(1984)는 r= 0.86 이라고 하였으며, 이 값은 원유내 균충의 분포, 생균과 사멸균의 비율, 세균의 오염정도 등에 따라 상관관계가 차이를 나타낼 수 있으며, 특히 계절 및 지역에 따라 그 차이는 클 수있다.

Impedance법과 SPC법과의 상관계수를 보면 Cady 등(1978)은 r= -0.80, 0'Conner (1979)는 r= -0.67, Firstenberg-Eden과 Tricarico(1983)는 r= -0.96, Gnau와 Luedecke(1982)는 r= -0.88, Bossuyt와 Waes(1984)는 r= -0.82라고 각각 보고하였다. ATP법과 SPC법과의 상관계수를 보면 Bossuyt(1981)는 r= 0.93, Bossuyt (1982)는 r= 0.83, Britz 등(1980)은 r= 0.63, Bossuyt와 Waes(1984)는 r= 0.95라고 보고하였다.

한편, 식육과 관련된 최신 검사장비의 적용실태 및 상관관계를 보면 다음 표 8과 같다.

표 8. 식육을 대상으로한 최신 검사장비의 적용실태 및 상관관계

시 료	상 관 계 수	검 사 법	저 자
돼지 도체	0.93	Dialinaaaaa H	W1-:-(100C)
소 도체	0, 95	Bioluminescence법	Werlein(1996)
우 육	0.71	Bioluminescence법	Steigert & Kirschner(1997)
닭	0.84(가슴부위) 0.76(다리부위) 0.95(피부부위)	Bioluminescence법	Werlein & Fricke(1975)
돼지 도체	0.93	D: 1	W1-1-(100C)
소 도체	0.95	Bioluminescence법	Werlein(1996)
육가공공장	0.79	Bioluminescence법	Orth & Steigert(1996)
육 도체	-0.83 ~ -0.87	Impedance법 (Bactrac 4100)	Pless & Reisinger(1995)
돼지 햄버거	-0.93	Impedance법 (Bactometer)	Chen 등(1993)

원유 및 식육제품을 대상으로한 색소환원법에 의한 세균검사를 보면 다음 표 9와 같다.

표 9. 원유 및 식육제품을 대상으로한 색소환원법에 의한 세균검사

시	豆	상 관 계 수	검 사 법	저 자
0,1	•	-0.79	RRT	D.11 F (1007)
원	유	-0.82	MBRT	Dabbah 등(1967)
원	유	0.742	RRT-1h	Dabbah 등(1967)
식육,	포장육	-0.93	RRT	0banu(1986)
분소	∄우 육	0.91(총균수) 0.97(저온성균)	Methylene blue Disk	Emswiler 등(1976)
우	육	0.85(2시간 후) 0.88(3시간 후) RRT		Baumgart 등(1975)
1	steak 상제품	0.94	RRT	Venkitanarayanan 등(1997)
식	육	-0. 85	Resazurin strip법	Baumgart & Niermann(1974)
우	육	보라색 -0.926 분홍색 -0.932 흰색 -0.911	i i	·
돈	육	보라색 -0.745 분홍색 -0.749 흰색 -0.842	RRT	Losonczy 와 Incze(1969)
Bologna sausage		보라색 -0.88 분홍색 -0.90 흰색 -0.96		

제 2 장 원유의 신속 세균 검사법 개발 연구 제1절 서 설

1992년 이후 유지방 외에 세균에 의한 원유의 차등유가정책에 따라 국내 유업체는 유대를 지급하는데 표준방법인 standard plate count method(표준평판법, SPC)이 많은 노동력과 검사시간이 72시간 소요됨에 따라 신속한 결과를 알수 있는 통상법의 필요성을 인식하게 되었다. 이에 따라 각 유업체에서는 신속미생물 검사장비인 Bactoscan, Bactometer, Malthus, Bactrac, Lumac 등을 도입하면서 약 120억원을 소비하였고, 또한 앞으로 노후한 기기를 대체하기 위하여약 200억원의 기기구입비가 추가발생할 것으로 보인다. 이외에도 시료당 많은 검사비용이 들어가는 문제점이 있다.

그러나 각 기종마다 측정원리가 달라 SPC법과의 상관계수가 차이가 있어 공정한 검사결과를 얻기는 그리 쉬운 일이 아니다. Bactoscan은 시료당 처리시간이 5분 으로 대규모 시료검사에 적합한 장점이 있으나 기기는 약 2억원이고 검사비용은 시료당 120원으로 비교적 비용이 많이 든다. 또한 원유이외에 다른 시료에는 분 석할 수 없으며 원리가 사멸 균까지도 측정하기 때문에 SPC법과의 결과와 비교하 여 보정값을 적용시켜야 하는 단점이 있다. Bactometer와 Malthus는 유제품외에 도 가공식품이나 화장품 등 시료적용이 광범위한 장점이 있고 다양한 세균검사가 가능하나 기기 및 검사비용이 각각 8천만원과 30원이 소요된다. 시료의 오염상태 에 따라 검사시간이 4~12시간 소요되어 현장에서 즉시 결과를 예측할 수 없으 며, 세균수와 균총에 따라 결과가 오차를 발생함으로 SPC법의 결과와 비교하여 보정값을 적용시켜야 하는 단점이 있다. Lumac은 휴대할 수가 있어 현장에서 검 사할 수 있고 기기비용이 3천만원이며, 검사시간이 5~6분 소요되는 장점이 있으 나 다른 기종에 비해 SPC와의 상관관계가 떨어지고 검사비용이 1,600원이 되는 단점이 있다. 이와같이 어느 기종이라도 완벽한 검사법은 아직 없는 것으로 보임 에 따라 외국의 사례를 보면 각기 자기나라의 실정에 맞게 선택하여 사용하고 있 다. 각 기종별로 SPC법과의 상관계수를 보면 형광현미경법인 Bactoscan은 r= 0.71~0.86(0'Conner, 1984; Suhren 등, 1988; 0'Conner와 0'Riordan, 1991)이었 고, Impedance법인 Bactometer와 Malthus는 r= -0.67~-0.96(Cady 등,1978;

0'Conner, 1979; Gnau와 Luedecke, 1982; Firstenberg-Eden과 Tricarico, 1983; Bossuyt와 Waes, 1984)이였으며, ATP법인 Lumac biocounter는 r= 0.63~0.95 (Britz 등, 1980; Bossuyt, 1981; Bossuyt, 1982; Bossuyt와 Waes, 1984)라고 보고하였다. 한편, resazurin reduction test(RRT)법은 산화환원전위에 의해 색소가 변하기 때문에 균의 활성에 따라 색의 변화가 좌우되므로 원유내 중온성균이 많을수록 기존의 RRT법(APHA, 1985)의 배양온도가 36±1℃이므로 정확도가 높았으나, 최근의 원유내의 세균분포가 저온성균이 많아지게 되어 이 배양온도로는 색의 환원시간이 늦어지고 정확도가 낮아지게 된다. 따라서 본 연구는 배양온도를 달리하여 실험방법이 간단하고 검사비용이 저렴하며, 단시간내에 세균수를 측정할 수 있는 현장적용 가능한 방법을 확립하기 위하여 시도하였다.

제2절 재료 및 방법

1. 원유의 수집

시료로 사용한 원유는 1998년 12월부터 1999년 10월까지 경기도 지역의 약 410개 목장에서 서울우유협동조합 신갈공장내 중부지도소에 납유되는 원유를 사용하였으며, 착유후 검사시료는 아이스젤이 내장된 아이스박스를 이용하여 2~4℃로 운반되었다. 실험실까지 걸리는 시간은 약 5시간 정도이며, 실험실에 도착한 즉시 미생물 검사를 실시하였다.

2. 총균수 검사

IDF법(1991)에 따라 원유를 무균적으로 1ml 채취하여 0.1% 펩톤용액에 10진법으로 희석하고 SPC agar 평판에 희석시료를 접종한 후 30℃에서 72시간 동안배양하여 산정하였다.

3. 저온성균수 검사

원유를 무균적으로 1ml 채취하여 0.1% 펩톤용액에 10진법으로 희석하고 SPC agar 평판에 희석시료를 접종한 후 7℃에서 10일 동안 배양하여 산정하였다.

4. 호열성균수 검사

IDF법(1991)에 따라 원유를 무균적으로 1ml 채취하여 0.1% 펩톤용액에 10진

법으로 희석하고 SPC agar 평판에 희석시료를 접종한 후 50℃에서 48시간 동안 배양하여 산정하였다.

5. 젖산균수 검사

원유를 무균적으로 1ml 채취하여 0.1% 펩톤용액에 10진법으로 희석하고 BCP agar 평판에 희석시료를 접종한 후 35℃에서 48시간 동안 배양한 다음 발생한 황색의 집락을 유산균의 집락으로 계측하였다.

6. 색차계에 의한 배양온도별 Resazurin reduction test

차광된 250ml 플라스크에 멸균 중류수 200ml와 resazurin 11mg을 넣어 완전히 용해시킨 후 냉각한 다음 원유 10ml에 1ml 씩 첨가하고 배양온도별로 30℃와 35℃는 각각 1hr, 2hr, 3hr, 15℃는 5hr, 10hr, 24hr 배양하여 Color difference meter(Model No. UC600-IV, 일본)를 이용하여 색차계 a 값을 측정하였다. 이때 표준배색판의 L, a, b값은 각각 89.2, 0.921, 0.78이었다.

7. 환원시간에 의한 배양온도별 Resazurin reduction test

차광된 250ml 플라스크에 멸균 증류수 200ml와 resazurin 11mg을 넣어 완전히 용해시킨 후 냉각한 다음 원유 10ml에 1ml 씩 첨가하고 15℃, 30℃, 35℃별로 배양하는 동안 색조판(한국공업협회)을 이용하여 청색(5PB 7/4), 청자색(10PB 7/5.5), 보라색(5P 7/4) 및 분홍색(10P 7/8)으로 각각 환원되는 시간을 측정하였다.

8. 자료 분석

실험에서 얻어진 색차계의 a 값과 SPC 값, 색소 환원시간과 SPC 값은 Microsoft Excel 97(Microsoft Corp., 1997)에 입력하여 상관계수 및 회귀방정식을 산출하였다.

제 3 절 결과 및 고찰

1. 원유의 배양온도별 세균수 분포조사

가. 계절별, 세균종류별 세균수 측정

겨울철 원유의 세균수 분포는 표 10과 같으며, 경기도 지역의 166농가를 대 상으로 총균수, 저온성균 및 호열성균에 대하여 측정하였다.

표 10. 겨울철 세균수 분포

(단위 : cfu/ml)

시료				시료	a >		
번호	총균수	저온성균	호열성균	번호	총균수	저온성균	호열성균
1	22000	6400	200	26	12000	3800	
2	11000	6400	100	27	6300	3800	
3	130000	110000	120	28	42000	18000	
4	8800	1800	490	29	190000	72000	
5	24000	880000	1100	30	14000	3100	
6	30000	17000	100	31	58000	13000	960
7	18000	6300	20	32	960000	690000	50
8	7400	3700	0	33	560000	610000	40
9	260000	240000	470	34	34000	36000	100
10	79000	68000	100	35	29000	27000	40
11	150000	130000	24000	36	120000	230000	20
12	30000	22000	6400	37	600000	510000	200
13	240000	79000	4400	38	250000	210000	30
14	54000	5200	540	39	710000	520000	
15	20000	4700	3900	40	460000	260000	
16	100000	16000	1000	41	30000	9000	2100
17	10000	500	90	42	130000	76000	17000
18	20000	1900	1200	43	2100	530	1000
19	67000	40000	2100	44	65000	83000	830
20	11000	3800	2800	45	68000	58000	1400
21	140000	43000	40	46	20000	12000	2300
22	14000	3100	10	47	7200	3000	910
23	160000	88000		48	12000	12000	2200
24	15000	4200		49	8200	1600	1000
25	39000	21000	60	50	22000	4900	4900

시료	L	-2027	٠.١٦	시료	2 >		
번호	총균수	저온성균	호열성균	번호	총균수	저온성균	호열성균
51	92000	74000	3400	91	220000	220000	1400
52	34000	17000	3500	92	46000	15000	2600
53	6500	1600	4200	93	20000	7100	8700
54	150000	140000	3200	94	34000	27000	540
55	25000	49000	7000	95	59000	22000	15000
56	4600	3600	1500	96	56000	29000	630
57	130000	120000	7200	97	21000	13000	900
58	17000	14000	930	98	5700	2900	2500
59	18000	4600	5800	99	32000	25000	1500
60	84000	31000	860	100	4600	1200	5600
61	34000	18000	1200	101	12000	5000	1400
62	17000	7600	2200	102	11000	3300	5100
63	7900	7100	1900	103	4400	1700	70
64	23000	5100	6300	104	25000	12000	590
65	52000	38000	30000	105	5900	2300	1400
66	7500	700	6500	106	20000	3800	12000
67	23000	6900	4000	107	35000	3800	15000
68	460000	92000	1400	108	9300	3800	1300
69	340000	19000	3400	109	20000	22000	1700
70	32000	29000	490	110	38000	450000	2100
71	3200	1100	480	111	15000	6700	7000
72	16000	5100	1900	112	120000	4700	200000
73	49000	22000	780	113	6700	3200	500
74	30000	19000	210	114	12000	7200	1700
75	20000	11000	1100	115	22000	7200	8300
76	7600	4200	310	116	10000	3800	3000
77	6900	5300	780	117	11000	5300	710
78	36000	9700	1100	118	39000	62000	650
79	24000	3500	2600	119	18000	2800	980
80	4100	2500	600	120	2400	2000	390
81	4800	2700	6700	121	6800	1700	980
82	5600	2800	1400	122	48000	12000	19000
83	6200	2000	480	123	5800	1500	390
84	16000	7500	2600	124	14000	3800	5400
85	3300	800	1800	125	32000	7300	760
86	170000	62000	25000	126	13000	5600	1700
87	4500	5000	490	127	84000	60000	900
88	170000	20000	3200	128	2300	0	250
89	13000	14000	1700	129	5400	700	370
90	15000	12000	740	130	5700	31000	300

시료	ラマム	-1017	A2 13 -7	시료	÷ ¬ ,	-) 0 ,) 7	
번호	총균수	저온성균	호열성균	번호	총균수	저온성균	호열성균
131	4700	100	50	149	2300	800	850
132	3400	0	1300	150	320000	510000	1300
133	45000	19000	4500	151	3600	1600	180
134	1600	1100	310	152	69000	24000	260
135	1900000	150000	1000	153	31000	7200	580
136	1600	1000	260	154	57000	36000	4700
137	60000	8500	1200	155	200000	1200000	3800
138	40000	14000	710	156	5800	4400	450
139	210000	7000	69000	157	11000	1100	400
140	17000	5200	7400	158	120000	110000	210
141	22000	4900	6700	159	360000	50000	1100
142	800000	630000	950	160	79000	160000	23000
143	3000	600	340	161	7100	67000	0
144	7200	2000	3700	162	3500	2600	120
145	91000	230000	190	163	61000	56000	100
146	2900	800	1100	164	150000	200000	540
147	9400	3200	2500	165	130000	580000	30
148	140000	56000	6100	166	4900	2100	210

봄철 원유의 세균수 분포는 표 11과 같으며, 경기도 지역의 70농가를 대상으로 총균수, 저온성균 및 호열성균에 대하여 측정하였다.

표 11. 봄철 세균수 분포

(단위 : cfu/ml)

시료	ネコム	-1027	*******	시료	ラ コよ	-1017	÷ ~ 11 ¬
번호	총균수	저온성균	호열성균	번호	총균수	저온성균	호열성균
167	25000	11000		178	1700000	2200000	
168	920000	47000		179	470000	400000	
169	12000	7200		180	1200000	1200000	
170	18000	12000		181	6300	900	
171	1100000	1100000		182	34000	24000	
172	44000	22000		183	4100	800	
173	8900	8600		184	7700	5400	
174	6100	3100		185	17000	7200	
175	11000	4200		186	9900	1500	
176	44000	7000		187	7700		
177	16000	15000		188	150000		

시료			~	시료			
번호	총균수	저온성균	호열성균	번호	총균수	저온성균	호열성균
189	19000			213	250000	190000	190
190	35000			214	62000	4900	750
191	36000			215	13000	1000	320
192	32000			216	95000	34000	9100
193	610000			217	36000	6900	40
194	700000			218	33000	11000	60
195	430000			219	15000	400	20
196	280000			220	28000	3500	320
197	340000]		221	57000	1200	1000
198	66000			222	150000	32000	4300
199	170000			223	1300000	280000	530
200	1800			224	97000	27000	6300
201	15000			225	97000	26000	1000
202	8500			226	3600000	3100000	880
203	64000			227	23000	300	1000
204	14000			228	1200000	1200000	130
205	16000			229	520000	320000	1600
206	14000			230	1300000	1600000	470
207	56000			231	2400000	1900000	630
208	12000			232	1700000	1700000	1800
209	1700			233	240000	160000	650
210	3400			234	1900000	730000	1700
211	9100			235	44000	4200	1600
212	94000	81000	150	236	7700	5200	940

여름철 원유의 세균수 분포는 표 12와 같으며, 경기도 지역의 104농가를 대상으로 총균수, 저온성균 및 호열성균에 대하여 측정하였다.

표 12. 여름철 세균수 분포

(단위 : cfu/ml)

시료	ネフム	7) 0 2) 7	중심거기	시료	ネフム	-10237	* 4 1 7
번호	총균수	저온성균	호열성균	번호	총균수	저온성균	호열성균
237	80000	11000	2400	243	180000	16000	1600
238	25000	8400	4700	244	41000	7300	380
239	45000	13000	760	245	210000	77000	48000
240	84000	38000	970	246	11000	3900	4300
241	13000	600	1900	247	56000	24000	130
242	15000	7300	1400	248	30000	14000	1200

시료				시료			
번호	총균수	저온성균	호열성균	번호	총균수	저온성균	호열성균
249	41000	24000	270	285	71000	60000	610
250	62000	5500	50	286	140000	160000	150
251	22000	13000	600	287	110000	70000	490
252	36000	11000	1700	288	67000	46000	2500
253	9700	5800	470	289	310000	250000	530
254	7200	4600	10	290	110000	97000	2600
255	8100	3300	3400	291	230000	190000	460
256	2000	900	10	292	97000	39000000	1700
257	590000	800000	0	293	310000	200000	1800
258	88000	66000	50	294	170000	150000	34000
259	240000	820000	2400	295	140000	100000	40
260	56000	28000	1500	296	180000	160000	51000
261	91000	2400	0	297	260000	140000	1500
262	170000	100000	5700	298	62000	56000	3100
263	290000	190000	3000	299	69000	640000	2700
264	1200000	2300000	680	300	180000	140000	10000
265	270000	310000	1100	301	210000	180000	240
266	510000	380000	16000	302	67000	3500	1200
267	58000	39000	3100	303	27000	49000	3800
268	150000	100000	120	304	21000	24000	2600
269	63000	59000	1100	305	120000	66000	2600
270	2300000	3500000	1300	306	110000	79000	3200
271	24010000	2900000	1200	307	48000	2000	150
272	95000	32000	950	308	430000	410000	20
273	19000	9700	1200	309	6300	5100	90
274	330000	230000	1300	310	220000	190000	1400
275	110000	93000	2200	311	290000	240000	5500
276	76000	18000	1100	312	640000	550000	960
277	89000	120000	2500	313	2400000	930000	22000
278	160000	170000	7300	314	120000	5300	3700
279	550000	200000	15000	315	110000	78000	1300
280	140000	41000	9000	316	470000	220000	9000
281	79000	9800	2100	317	140000	88000	7600
282	430000	170000	460	318	61000	140000	4100
283	220000	190000	680	319	250000	180000	660
284	32000	33000	160	320	410000	210000	12000

시료	ラコ人	-1017	テムルコ	시료	ラ ロエ	-1017	÷42.11=1
번호	총균수 저	저온성균	호열성균	번호	총균수	저온성균	호열성균
321	490000	320000	3700	331	570000	970000	1800
322	1200000	870000	990	332	300000	300000	9300
323	83000	52000	540	333	560000	32000	1700
324	80000	43000	1200	334	150000	140000	16000
325	110000	110000	4700	335	71000	70000	210
326	210000	130000	3300	336	350000	300000	2200
327	33000	36000	140	337	290000	260000	6900
328	52000	33000	820	338	110000	99000	40
329	26000	25000	2500	339	180000	150000	2200
330	270000	580000	17000	340	84000	110000	2200

가을철 원유의 세균수 분포는 표 13과 같으며, 경기도 지역의 70농가를 대상으로 충균수, 저온성균 및 호열성균에 대하여 측정하였다.

표 13. 가을철 세균수 분포

시료	ネユ人	저온성균	호열성균	시료	ネコム	710217	중선시기
번호	총균수	시는경반	不是公正	번호	총균수	저온성균	호열성균
341	160000	56000		354	330000	230000	
342	420000	110000		355	430000	160000	
343	190000	75000		356	63000	53000	
344	160000	26000		357	170000	84000	
345	230000	130000		358	200000	150000	
346	280000	7000		359	150000	100000	
347	400000	210000		360	200000	110000	
348	120000	24000		361	110000	33000	
349	880000	24000		362	14000	9000	
350	180000	100000		363	86000	16000	
351	580000	690000		364	59000	4200	
352	470000	610000		365	210000	77000	
353	460000	200000		366	64000	42000	2300

시료				시료			
번호	총균수	저온성균	호열성균	번호	총균수	저온성균	호열성균
367	100000	18000	1300	389	170000	160000	16000
368	23000	7100	1600	390	100000	36000	3100
369	46000	5400	400	391	290000	150000	810
370	25000	6500	18000	392	32000	200000	470
371	59000	52000	550	393	96000	80000	730
372	130000	74000	11000	394	340000	330000	5300
373	98000	14000	1100	395	83000	24000	1700
374	48000	31000	110	396	28000	3500	830
375	24000	5100	110	397	240000	130000	20
376	2300000	1600000	2000	398	1100000	210000	40
ľ							
377	180000	95000	2400	399	79000	6300	70
378	150000	95000	11000	400	120000	23000	20000
379	850000	120000	8000	401	330000	190000	330
380	79000	24000	3000	402	57000	14000	80
381	140000	47000	3500	403	160000	15000	90
382	58000	6400	6800	404	59000	28000	1700
383	250000	160000	16000	405	94000	74000	680
384	110000	33000	3100	406	82000	23000	3600
385	160000	67000	4800	407	200000	55000	23000
386	170000	78000	10000	408	120000	13000	19000
387	180000	62000	3700	409	130000	24000	4700
388	140000	72000	1400	410	72000	5500	1600

겨울철 원유의 세균수 위생등급 및 품질현황을 보면 표 14와 같으며, 1등급은 79.5%로서 많은 유질 향상을 보였다. 총균수 대비 저온성균수의 분포를 보면 유질이 좋을수록 저온성균의 비율이 낮고, 유질이 나쁠수록 저온성균의 비율이 높은 경향을 보였다.

표 14. 겨울철 원유의 세균수 위생등급 및 품질현황

구분	위 생 등 급	李章	총 균 수		총균수 대비 저온성균수	
		시료수	비율(%)	시료수	비율(%)	
1급 A	3만 미만	91	54.8	82	46.7	
1급 B	3 ~ 10만 미만	41	24.7	37	57.7	
2 급	10 ~ 25만 미만	21	12.7	17	70.2	
3 급	25 ~ 50만 이하	7	4.2	6	71.0	
4 급	50만 초과	6	3.6	5	83.6	
합 계		166	100	147	명균: 54.4	

봄철 원유의 세균수 위생등급 및 품질현황을 보면 표 15와 같으며, 1등급은 67.1%를 보였다. 총균수 대비 저온성균수의 분포를 보면 유질이 좋을수록 저온성균의 비율이 낮고, 유질이 나쁠수록 저온성균의 비율이 높은 경향을 보였으며, 특히 3급이상은 저온성균의 비율이 80%이상을 나타내었다.

표 15. 봄철 원유의 세균수 위생등급 및 품질현황

구분	위 생 등 급	총 균 수		총균수 대비 저온성균수	
		시료수	비율(%)	시료수	비율(%)
1급 A	3만 미만	29	41.4	14	49.4
1급 B	3 ~ 10만 미만	18	25.7	9	40.6
2 급	10 ~ 25만 미만	4	5.7	2	44.0
3 급	25 ~ 50만 이하	5	7.2	2	80.6
4 급	50만 초과	14	20.0	11	85.4
합계		70	100	38	평균: 59.1

여름철 원유의 세균수 위생등급 및 품질현황을 보면 표 16과 같으며, 1등급은 45.2%로서 온도상승에 따라 겨울철에 비해 유질이 많이 떨어졌다. 총균수 대비 저온성균수의 분포를 보면 유질이 좋을수록 저온성균의 비율이 낮고, 유질이 나 豊수록 저온성균의 비율이 높은 경향을 보였으며, 특히 4급은 저온성균의 비율이

103.2%를 나타냄으로써 총균수에 비해 저온성균이 더 많은 수를 보였다. 또한 다른 계절에 비해 전체적으로 저온성균이 평균 79.7%로서 가장 많은 비율을 나타내었다.

표 16. 여름철 원유의 세균수 위생등급 및 품질현황

구분	위 생 등 급	총 균 수		총균수 대비 저온성균수		
	.,	시료수	비율(%)	시료수	비율(%)	
1급 A	3만 미만	15	14.4	14	68.7	
1급 B	3 ~ 10만 미만	32	30.8	28	63.4	
2 급	10 ~ 25만 미만	29	27.9	27	88.5	
3 급	25 ~ 50만 이하	17	16.3	16	87.0	
4 급	50만 초과	11	10.6	11	103.2	
합계		104	100	96	명균: 79.7	

가을철 원유의 세균수 위생등급 및 품질현황을 보면 표 17과 같으며, 1등급은 34.3%로서 오히려 여름철보다 유질이 낮았다. 총균수 대비 저온성균수의 분포를 보면 유질이 좋을수록 저온성균의 비율이 낮고, 유질이 나쁠수록 저온성균의 비율이 높은 경향을 보였으며, 다른 계절에 비해 저온성균 평균 44.8%로서 가장 낮은 비율을 나타내었다.

표 17. 가을철 원유의 세균수 위생등급 및 품질현황

구분	위 생 등 급	총 균 수		총균수 대비 저온성균수	
		시료수	비율(%)	시료수	비율(%)
1급 A	3만 미만	5	7.1	5	31.0
1급 B	3 ~ 10만 미만	19	27.2	15	45.3
2 급	10 ~ 25만 미만	30	42.9	29	42.2
3 급	25 ~ 50만 이하	11	15.7	9	55.5
4 급	50만 초과	5	7.1	4	55.5
합계		70	100	62	명균: 44.8

나. 세균종류별 RRT검사후 색차계 a 값에 미치는 영향

표 18. 겨울철 원유의 저온성균 분포 및 RRT검사후 배양시간에 따른 색차계 a 값

시료	충균수	저온성균	저온성균분포	8	ı value(30℃	:)
번호	(cfu/ml)	(cfu/ml)	(%)	1hr	2hr	3hr
1	11000	1100	10.0	3.44	6.06	7.42
2	35000	3800	10.9	2.39	4.02	5,02
3	170000	20000	11.8	1.01	3, 23	3.74
4	360000	50000	13.9	1.08	3, 84	5.66
5	24000	3500	14.6	1.31	3,07	4.58
6	100000	16000	16.0	0.68		
7	20000	3800	19.0	1.75	3, 60	5, 31
8	8200	1600	19.5	1.23	2, 32	2.73
9	460000	92000	20.0	1.45	4,43	5.61
10	3000	600	20.0	1.35	2.49	3, 25
11	8800	1800	20.5	1.27		
12	14000	3100	22.1	1.09	2.26	
13	14000	3100	22.1	2.05	3, 23	
14	23000	5100	22.2	1.91	4.05	5.82
15	22000	4900	22.3	0, 91	1.64	1.58
16	58000	13000	22.4	3.16	4.13	
17	31000	7200	23. 2	1.48	2.89	3.17
18	20000	4700	23.5	1.78		
19	3300	800	24.2	1.00	3, 51	5.34
20	6500	1600	24.6	1.37	2.05	2, 93
21	2100	530	25. 2	0.85	2,93	2.78
22	18000	4600	25, 6	0.76	2, 53	3.00
23	4600	1200	26.1	2, 03	3, 68	4.90
24	36000	9700	26.9	1.73	3, 90	5.10
25	2900	800	27.6	1.81	2, 66	4.44
26	7200	2000	27.8	1.75	3, 64	4.31
27	15000	4200	28.0	1.14	1.41	
28	22000	6400	29.1	0.57		
29	30000	9000	30.0	1,36	3,52	3.64
30	23000	6900	30.0	1.45	2.08	3.74
31	11000	3300	30.0	2.32	3, 97	5. 61
32	140000	43000	30,7	1.09	2.11	
33	12000	3800	31.7	2.33	3, 30	Annual Control of the
34	16000	5100	31.9	1.47	2.15	3.38
35	6200	2000	32.3	1.39	2.36	3, 53

시료	총균수	저온성균	저온성균분포		a value(30℃	2)
번호	(cfu/ml)	(cfu/ml)	(%)	1hr	2hr	3hr
36	46000	15000	32.6	1.50	3.17	3. 58
37	22000	7200	32.7	2, 68	4.81	6. 23
38	240000	79000	32.9	1.27		
39	9400	3200	34.0	1,95	3, 87	4.42
40	3200	1100	34.4	2.28	2.90	3.94
41	11000	3800	34.5	1.63		
42	2300	800	34.8	1,54	2, 29	2.77
43	69000	24000	34.8	1.13	0.33	0.54
44	18000	6300	35.0	2.24		
45	20000	7100	35.5	3.34	4.83	6.84
46	170000	62000	36.5	1.12	1.39	3.05
47	84000	31000	36.9	1.44	5.04	4.37
48	59000	22000	37.3	2.68	4.81	4.81
49	190000	72000	37.9	1.66	2. 20	
50	10000	3800	38.0	2.96	4.39	6.33
51	4400	1700	38.6	2.68	4.10	4.60
52	5900	2300	39.0	3. 25	5.40	6. 33
53	140000	56000	40.0	2.32	3.43	5.11
54	9300	3800	40.9	3, 39	4.02	5. 52
55	7200	3000	41.7	0.70	0.03	0.64
56	12000	5000	41.7	1.53	3.46	4.90
57	42000	18000	42.9	1.25	1.66	
58	4900	2100	42.9	0.89	2. 20	3.40
59	3600	1600	44.4	1.01	1.28	2.22
60	15000	6700	44.7	2.39	4.02	5. 22
61	17000	7600	44.7	1.44	3.08	3.76
62	49000	22000	44.9	2.01	2.97	3.74
63	16000	7500	46.9	0.85	1.33	2.49
64	6700	3200	47.8	2.82	5.14	5.84
65	25000	12000	48.0	2, 39	4. 35	5. 28
66	7400	3700	50.0	1.42		
67	34000	17000	50.0	1.17	2.60	3. 20
68	5600	2800	50.0	2.01	3. 49	5.40
69	5700	2900	50.9	3.04	3. 25	4.60
70	56000	29000	51.8	1.81	3. 46	3.46
71	34000	18000	52.9	0.67	2. 26	2, 26
72	39000	21000	53.8	0.07	0.45	
73	160000	88000	55.0	0. 57	1.51	
74	20000	11000	55.0	0.85	3. 38	3, 86
75	7600	4200	55.3	2. 21	3.10	4.55

시료	총균수	저온성균	저온성균분포	a	value(30℃)
번호	(cfu/ml)	(cfu/ml)	(%)	1hr	2hr	3hr
76	4800	2700	56.3	2.08	3.78	4.99
77	460000	260000	56.5	0.31	0.99	
78	30000	17000	56.7	3.02		
79	11000	6400	58.2	2.11		
80	130000	76000	58.5	1.98	4.56	5.35
81	67000	40000	59.7	0.78		
82	20000	12000	60.0	0.60	0, 29	0.08
83	12000	7200	60.0	2.46	3.6	5.31
84	6300	3800	60.3	2.20	2.74	-
85	4100	2500	61.0	1.37	2.99	3. 28
86	21000	13000	61.9	2.39	4.13	5. 28
87	57000	36000	63.2	0.89	2.46	3. 59
88	30000	19000	63.3	2. 21	4.87	4.75
89	960000	690000	71.9	2.89	3.30	
90	52000	38000	73.1	3.48	6.60	9.01
91	710000	520000	73.2	0.78	1.25	
92	30000	22000	73.3	0. 78		
93	3500	2600	74.3	0.69	2.93	3. 78
94	5800	4400	75.9	0.69	2, 27	2.74
95	6900	5300	76.8	1.26	3, 51	3.98
96	32000	25000	78.1	3. 39	4.31	5.64
97	4600	3600	78.3	1.78	3.64	4.65
98	800000	630000	78.8	1.88	2.81	5.47
99	34000	27000	79.4	2.75	5, 31	6.74
100	15000	12000	80.0	1.53	3.17	3.17
101	92000	74000	80.4	1.58	2, 93	3.72
102	17000	14000	82.4	0, 82	2.47	3.64
103	250000	210000	84.0	2.08	3.03	
104	130000	110000	84.6	1.54		
105	600000	510000	85.0	2.74	4.41	
106	68000	58000	85.3	0.44	1.78	3.13
107	79000	68000	86.1	1.42		
108	150000	130000	86.7	2.39		
109	7900	7100	89.9	1.58	1.58	3. 33
110	32000	29000	90.6	1.80	3.38	4.55
111	120000	110000	91.7	1.41	3.28	4.03
112	61000	56000	91.8	1.79	3, 35	4.46
113	260000	240000	92.3	3. 15		
114	130000	120000	92.3	2. 25	3.96	4.96

시료	총균수	저온성균	저온성균분포	а	a value(30℃)		
번호	(cfu/ml)	(cfu/ml)	(%)	1hr	2hr	3hr	
115	29000	27000	93.1	1.25	2.14		
116	150000	140000	93.3	0.18	2.46	3.06	
117	12000	12000	100.0	1.58	3.2	3.89	
118	220000	220000	100.0	1.33	2.28	4.14	
119	34000	36000	105.9	2.60	3.15		
120	13000	14000	107.7	2.49	4.55	4.83	
121	560000	610000	108.9	1.19	2.62		
122	20000	22000	110.0	2.82	4.05	5.50	
123	4500	5000	111.1	1.94	2.71	2.99	
124	65000	83000	127.7	1.28	2.34	2.61	
125	150000	200000	133.3	0.69	1.54	2.20	
126	320000	510000	159.4	1.21	1.55	4.03	
127	120000	230000	191.7	1.10	1.53		
128	25000	49000	196.0	1.64	3. 48	4.37	

표 19. 봄철 원유의 저온성균 분포 및 RRT검사후 배양시간에 따른 색차계 a 값

시료	총균수	저온성균	저온성균분포	a	value(30℃)
번호	(cfu/ml)	(cfu/ml)	(%)	1hr	2hr	3hr
129	28000	3500	12.5	0.73	1.01	2, 30
130	6300	900	14.3	1.76	3.63	3. 91
131	9900	1500	15.2	2.39	4.98	6. 78
132	44000	7000	15.9	1.10	3. 23	4.69
133	36000	6900	19.2	0.41	2.10	2, 80
134	4100	800	19.5	0.94	3. 23	3. 91
135	150000	32000	21.3	1.43	2.11	2.30
136	1300000	280000	21.5	1.33	2.30	3. 48
137	97000	26000	26.8	0.82	2.20	2, 89
138	97000	27000	27.8	0.65	1.81	2, 60
139	33000	11000	33.3	0.82	1.31	1.80
140	95000	34000	35.8	2.80	0.90	2.10
141	11000	4200	38.2	1.31	2.95	3. 92
142	1900000	730000	38.4	1.01	4.09	6.87
143	17000	7200	42.4	1.15	3. 71	4.90
144	25000	11000	44.0	0.42	3. 79	5. 47
145	44000	22000	50.0	0.27	0.63	1.85
146	6100	3100	50.8	1.15	2.12	3. 71
147	12000	7200	60.0	1.46	3.02	4.46

시료	총균수	저온성균	저온성균분포		a value(30℃	.)
번호	(cfu/ml)	(cfu/ml)	(%)	1hr	2hr	3hr
148	520000	320000	61.5	0.16	1.22	2.70
149	18000	12000	66.7	1.90	4.28	5.47
150	240000	160000	66.7	0.08	1.10	1.80
151	7700	5200	67.5	0.82	1.80	2.80
152	7700	5400	70.1	0.79	1.25	3.30
153	34000	24000	70.6	0.48	2.55	3.02
154	250000	190000	76.0	1.50	2.89	3.89
155	2400000	1900000	79.2	0.82	3, 59	10.50
156	470000	400000	85.1	0.74	2.14	3.30
157	3600000	3100000	86.1	4.17	11.60	17.10
158	94000	81000	86.2	0.45	1.61	2, 99
159	16000	15000	93.8	0.68	2.76	3. 98
160	8900	8600	96.6	0.42	1.15	2.54
161	1100000	1100000	100.0	0.79	2.89	4.74
162	1200000	1200000	100.0	0.89	1.82	3.16
163	1200000	1200000	100.0	2.10	4, 67	10.00
164	1700000	1700000	100.0	0.90	2, 99	6.10
165	1300000	1600000	123.1	1.50	3, 39	5, 29
166	1700000	2200000	129.4	0.52	0.99	1.46

표 20. 여름철 원유의 저온성균 분포 및 RRT검사후 배양시간에 따른 색차계 a 값

시료	총균수	저온성균	저온성균분포	а	value(30°C	:)
번호	(cfu/ml)	(cfu/ml)	(%)	1hr	2hr	3hr
167	79000	9800	12.4	0, 56	1.41	2.08
168	80000	11000	13.8	3.08	5. 19	7.82
169	41000	7300	17.8	1.37	2.78	3. 98
170	76000	18000	23.7	0.14	0.71	1.23
171	45000	13000	28.9	4.10	7.12	9. 05
172	140000	41000	29.3	0.91	2.11	4.77
173	36000	11000	30.6	2.37	4.45	4.95
174	25000	8400	33.6	3.06	5. 45	6.34
175	95000	32000	33.7	0.60	1.63	2. 29
176	11000	3900	35.5	2.56	3. 75	4.95
177	550000	200000	36.4	0.77	3, 45	7.94
178	210000	77000	36.7	2.37	5.45	6.15
179	2400000	930000	38.8	1.45	2.79	3.46
180	430000	170000	39.5	0. 78	2.09	2.58

시료	총균수	저온성균	저온성균분포	8	value(30℃	:)
번호	(cfu/ml)	(cfu/ml)	(%)	1hr	2hr	3hr
181	8100	3300	40.7	3. 47	4.88	6.09
182	48000	20000	41.7	0.15	0. 51	1.48
183	56000	24000	42.9	2, 78	4.37	6.09
184	120000	53000	44.2	0.78	1.77	2.27
185	2000	900	45.0	2.97	3.98	5. 19
186	84000	38000	45.2	1.87	4.45	5.65
187	30000	14000	46.7	2.47	4.68	6.09
188	470000	220000	46.8	1.13	3, 13	4.81
189	15000	7300	48.7	1.77	2.17	3, 36
190	56000	28000	50.0	2, 57	4.88	5. 38
191	. 19000	9700	51.1	0.99	1.98	2.64
192	410000	210000	51.2	0.11	1.77	3.11
193	6700	3500	52.2	0, 51	0.34	1.13
194	80000	43000	53.8	0.87	0.11	0.07
195	260000	140000	53.8	0.60	1.92	2. 91
196	120000	66000	55.0	0.06	0.60	0.55
197	560000	320000	57.1	2.05	3, 37	5.86
198	41000	24000	58.5	2.47	4.56	5.77
199	170000	100000	58.8	0.95	1.27	
200	22000	13000	59.1	1.87	3. 75	4. 56
201	9700	5800	59.8	2.66	5. 21	6.40
202	210000	130000	61.9	0.40	0.89	1.55
203	83000	52000.	62.7	0.15	0.69	0.82
204	140000	88000	62.9	1.31	2.47	2.96
205	52000	33000	63.5	0.23	0.89	0, 55
206	110000	70000	63.6	0.40	1.41	1.73
207	7200	4600	63.9	2.36	4.52	6.77
208	310000	200000	64.5	0.63	0.40	1.04
209	490000	320000	65.3	0, 64	1.62	2.62
210	290000	190000	65.5	0.81	2.32	2.98
211	150000	100000	66.7	1.32	2.19	3.66
212	58000	39000	67.2	1.08	1.27	2.92
213	67000	46000	68.7	0. 26	2.07	2.57
214	330000	230000	69.7	0.81	2. 98	2.98
215	110000	78000	70.9	1.27	2.30	3. 46
216	140000	100000	71.4	0.41	0.60	1.58
217	110000	79000	71.8	0.34	0.02	0.82
218	250000	180000	72.0	0. 29	1.45	2.3
219	1200000	870000	72.5	0.15	0. 29	0.96
220	510000	380000	74.5	0.16	2, 32	2.64

시료	÷	3037	저온성균분포		value(30°C	2)
번호	총균수	저온성균	(%)	1hr	2hr	3hr
221	88000	66000	75.0	1.57	2.27	2.57
222	180000	140000	77.8	0.51	1.00	0.82
223	310000	250000	80.6	0.11	1.43	3.08
224	6300	5100	81.0	0.07	0.73	0.86
225	230000	190000	82.6	0.46	1.77	3.41
226	290000	240000	82.8	0.51	2.15	1.97
227	180000	150000	83.3	1.38	2.56	2.39
228	71000	60000	84.5	0.46	1.45	2.26
229	110000	93000	84.5	1.43	3, 30	3.10
230	210000	180000	85. 7	0.15	0.82	1.00
231	350000	300000	85. 7	0.89	1,55	2.55
232	640000	550000	85. 9	1.59	2.94	3. 27
233	220000	190000	86. 4	0.92	1.41	1.58
234	220000	190000	86.4	1.95	3, 96	3.78
235	110000	97000	88. 2	0.40	1.07	1.07
236	170000	150000	88.2	0.41	0. 26	1.58
237	180000	160000	88.9	0, 43	1.41	2. 91
238	290000	260000	89.7	0, 55	2.38	3.06
239	110000	99000	90.0	1.71	2. 22	2.38
240	62000	56000	90.3	0.08	0.75	1.91
241	69000	64000	92.8	0.11	1.09	1.75
242	150000	140000	93.3	0, 72	1.05	1.38
243	63000	59000	93. 7	0.38	2, 08	3.92
244	430000	410000	95.3	0. 78	2.12	2.62
245	26000	25000	96.2	0. 55	0.88	0.54
246	71000	70000	98.6	0, 55	0. 55	0.02
247	110000	110000	100.0	1.06	2.72	2.88
248	300000	300000	100.0	0.88	1.71	2.22
249	32000	33000	103.1	1.24	2.73	2.73
250	160000	170000	106.3	1.08	2.29	4.94
251	33000	36000	109.1	0. 55	1.38	0, 51
252	140000	160000	114.3	0.60	1.26	1.75
253	21000	24000	114.3	0.15	0. 51	1.00
254	270000	310000	114.8	0.64	1.31	2. 29
255	2400000	2900000	120.8	0.29	3. 47	8. 26
256	84000	110000	131.0	1.04	1.71	1.37
257	89000	120000	134.8	0.47	2.29	3.10
258	590000	800000	135, 6	4.10	6. 93	9. 58
259	2300000	3500000	152.2	2.76	8.08	17.40
260	570000	970000	170.2	2.05	3, 23	5.09

시료	총균수	저온성균	저온성균분포	a value(30℃)				
번호	(cfu/ml)	(cfu/ml)	(%)	1hr	2hr	3hr		
261	27000	49000	181.5	0.15	1.00	1.00		
262	1200000	2300000	191.7	2.40	7.44	12.50		

표 21. 가을철 원유의 저온성균 분포 및 RRT검사후 배양시간에 따른 색차계 a 값

시료	총균수	저온성균	저온성균분포	а	value(30°C	()
번호	(cfu/ml)	(cfu/ml)	(%)	1hr	2hr	3hr
263	120000	13000	10.8	0, 87	0.87	1.68
264	58000	6400	11.0	0.09	0. 68	1.85
265	46000	5400	11.7	0.87	1.46	3.04
266	28000	3500	12.5	0.08	0.89	1.49
267	850000	120000	14.1	0.87	3, 57	6.07
268	98000	14000	14.3	0.11	0.67	0.86
269	160000	26000	16.3	0, 56	1.82	3.27
270	100000	18000	18.0	0.87	1.44	2.96
271	130000	24000	18.5	0.14	1.28	2.09
272	86000	16000	18.6	0.35	0.02	2.22
273	1100000	210000	19.1	1.47	4.14	8.05
274	120000	23000	19.2	0.68	2. 50	5.59
275	120000	24000	20.0	1.47	2.02	3.48
276	24000	5100	21.3	0.10	0.48	1.24
277	57000	14000	24.6	0.85	1.67	3, 33
278	25000	6500	26.0	0.48	1.46	4.01
279	420000	110000	26.2	1.84	4. 21	7.86
280	200000	55000	27.5	0.47	1.28	2.71
281	82000	23000	28.0	0. 28	1.70	2.30
282	83000	24000	28.9	1.37	0.77	0.05
283	110000	33000	30.0	0.02	1.09	2.00
284	110000	33000	30.0	0.67	0.87	2.96
285	79000	24000	30.4	0.87	0.67	1.82
286	23000	7100	30.9	0.10	0. 29	0.29
287	140000	47000	33.6	0.10	0. 31	0.48
288	180000	62000	34.4	0. 35	0.47	1.68
289	160000	56000	35.0	2.37	4.42	6.80
290	100000	36000	36.0	0.05	1.68	2.50
291	210000	77000	36.7	0.53	1.30	1.66
292	430000	160000	37.2	1.10	2.75	4.60
293	190000	75000	39.5	0.16	2.40	2.58

시료	총균수	저온성균	저온성균분포	a	value(30°C	2)
번호	(cfu/ml)	(cfu/ml)	(%)	1hr	2hr	3hr
294	160000	67000	41.9	0.67	0.10	1.25
295	460000	200000	43.5	1.28	3, 66	7. 23
296	170000	78000	45.9	0.47	1.49	3, 53
297	59000	28000	47.5	1.26	2.09	3.74
298	170000	84000	49.4	0. 57	0.93	3.13
299	140000	72000	51.4	0.02	0.63	1.88
300	290000	150000	51.7	0.70	1.50	3, 11
301	400000	210000	52.5	0, 75	1.47	3.48
302	180000	95000	52.8	0.86	1.79	2.92
303	240000	130000	54.2	0.68	0.89	2.09
304	200000	110000	55.0	0, 89	0.71	0, 75
305	180000	100000	55.6	0. 75	1.84	3.48
306	230000	130000	56.5	1.06	0. 20	1.11
307	130000	74000	56.9	1.44	3. 54	7.96
308	330000	190000	57.6	1.49	3, 53	5.98
309	150000	95000	63.3	1.24	2, 01	5.07
310	250000	160000	64.0	0.47	1.44	3.57
311	14000	9000	64.3	0.57	1.11	1.84
312	48000	31000	64.6	0.47	0.47	0. 29
313	64000	42000	65.6	0.10	2. 21	5.12
314	150000	100000	66.7	0.16	1, 28	2.55
315	2300000	1600000	69.6	0.66	1.05	3, 36
316	330000	230000	69.7	0.16	1.66	5.50
317	200000	150000	75.0	1.11	3, 13	5.67
318	94000	74000	78.7	0.66	2. 30	3.54
319	96000	80000	83.3	1.16	0.73	0.47
320	63000	53000	84.1	0.75	1.48	1.66
321	59000	52000	88.1	1.61	2.36	3.87
322	170000	160000	94.1	1.07	2, 50	4.14
323	340000	330000	97.1	1.16	0.26	1.68
324	580000	690000	119.0	0. 20	1.47	2.93

원유의 총균수 대비 저온성균수의 분포에 따른 RRT 검사후의 배양시간별 색차계 a 값에 미치는 영향은 표 22와 같다.

표 22. 저온성균수의 분포에 따른 RRT 검사후의 배양시간별 색차계 a 값에 미치는 영향

저온성 균수	0-	20%¤	만''	20-	40%¤	만	40-	60%п	만	60	-80%¤	만	80	-100%1	미만	1	00%0]	상
세균수	lhr	2hr	3hr	lhr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
1만미만	1.58	3. 59	4.36	1.75	3. 22	4.12	2.02	3.06	4. 26	1.33	2. 85	3.91	0.69	1.15	2.24	1.61	3, 18	3, 56
1~2만미만	1, 57	3, 17	4.08	1.82	2, 99	4, 53	1, 53	2.82	3, 90	1.60	3, 00	4.27	1.01	2.80	3, 60	2.04	3. 88	4.36
2~3만미만	1.10	2.13	3. 26	1,49	2. 79	4, 01	1.38	3, 82	4. 79	1.50	2, 21	2.68	0, 90	1,51	0, 54	1.35	2. 26	2.97
3~10만미만	1.14	2.04	3.11	1,51	2.64	3, 14	1.50	2.65	3.75	1.23	2.73	3.65	0.90	1.81	2.67	1.37	2. 34	2.84
10~25만미만	1.21	2.81	4. 23	0.94	1.95	3. 08	0. 88	1.58	2, 96	0.71	1, 53	2.64	1.01	2.14	2.72	0.79	3.14	5.15
25~50만이하	1.55	3.68	6. 58	1.29	3, 37	5. 16	0. 80	2. 25	4.38	0.66	1.84	3.11	1.11	1.88	2.61	0.80	1.85	3. 18
50만 초과	1.95	6.01	11.58	1.14	3. 16	5. 44	2, 05	3. 37	5.86	0.94	1.98	4. 27	2.83	6. 32	10, 19	1,51	3. 85	7. 21

주) 1) : 총균수 대비 저온성균수가 0~20%일 때의 RRT 검사후의 배양시간별 색차계 a 값

총균수가 25만 cfu/ml 이상에서 총균수 대비 저온성균수의 분포가 많을 때 색차계 a 값이 감소하는 경향을 보였으나 전체적으로 유의한 경향이 보이지 않았다.

다. 항생물질이 RRT검사후 색차계 a 값에 미치는 영향 항생물질이 RRT검사후 색차계 a 값에 미치는 영향을 보면 표 23과 같다.

표 23. 항생물질 원유가 RRT검사후 색차계 a 값에 미치는 영향

기크비중	총균수	۰ -		a value				
시료번호	(cfu/ml)	온 도	1hr	2hr	3hr			
		15℃¹'	3.83	7.43	10.70			
A	3.8×10 ⁵	30℃	4.03	7. 20	9.11			
		35℃	5.97	9, 30	11.10			
	2.3×10°	15℃	3.70	6.73	9.75			
В		30℃	4.66	7.10	9, 99			
		35℃	6.81	10, 50	12.20			
		15℃	3.50	5. 80	10.40			
С	2.3×10 ⁵	30℃	1.41	4.05	5. 71			
		35℃	3. 81	7.12	8.09			

		15℃	1.48	0, 25	2.47
D	1.9×10 ⁴	30°C	1.48	0.25	0.09
Ъ	1,3×10	35°C	1.42	0.13	0.03
		15°C	1.53	4.01	10.40
E	3.8×10°	30℃	2.03		***************************************
£	3.0 ^ 10	35℃	2.98	3, 59 5, 88	4, 85
		15℃	0.35		6, 61 3, 77
F	1.2×10°	30°C		1,27	
r	1.2~10	35℃	0.08 0.13	0.19	0.19
		15°C	2.56	0, 08 3, 37	0.80
G	4.0×10 ⁶	30°C	2.05		19, 20 9, 48
U	4.0~10	35℃	4.96	6, 19	
		15℃	6.97	10.70 6.30	14.10
Н	2.2×10 ⁴	30°C	9.47	***************************************	14, 30
п	2.2~10	35℃	14.20	13.50 16.70	16.00
		15℃	3.94	4, 22	17.30
I	6.1×10 ⁴	30℃	6.56	***************************************	10,40
1	0.1 ~ 10	35℃	12.40	12.40 16.50	12,90
		15℃	0.68	0.19	17.10
J	9.9×10 ³	30°C	0.57	0.19	1.37 0.31
J	3.3~10	35℃	0.38	0.50	1.19
the state of the s		15℃	13.40		
1	9.5×10 ^b	30℃	14.60	6. 18 11. 20	15, 10 10, 70
1	3.3×10	35℃	15.10	15.30	14.80
		15℃	9.10	5, 55	11.80
2	3, 3×10°	30℃	8.46	18. 20	20.90
2	3,3×10	35℃	15.80	18, 80	20.50
		15℃	5.06	5.53	11.20
3	1.3×10^{3}	30℃	6.40	9.47	12.10
Ū	1.07.10	35℃	9.10	12.80	14.50
		15℃	9.02	11.30	15.10
4	7.5×10^{3}	30℃	11.10	14.70	17.40
•	1.0/.10	35°C	13.20	18.50	20, 80
		15°C		<u> </u>	20,00
5	8.1×10 ⁵	30℃	2.10	4.70	7. 58
J	0.1710	35℃			
**************************************		15℃	4.05	7,48	9, 42
c	9.0×10^{2}	30℃	6.88	9,38	13.40
6	3.0 ^ 10	35℃	5.90	9.10	9,84
**************************************		35 C	7.50	10.80	11.80
7	1.7×10^3	30℃	1 11	0.05	A 20
(1.7 ^ 10		1.11	0.05	0.39
		35℃	0.05	1.69	2.18

주) A ~ J : 양성, 1 ~ 7 : 의양성, 15℃¹⁾ : 5시간, 10시간, 24시간 배양

원유의 항균물질 존재 여부를 검사하기 위하여 Delvo test 양성반응과 의양성 반응을 일으킨 시료에 대해서 RRT검사후 색차계 a 값에 미치는 영향을 실험한 결과 시료에 따라서 F와 J시료는 배양시간이 길어져도 색차계 a 값이 상승하지 않았으며, 항균물질이 없는 SPC값에 비해 색차계 a 값이 변화가 심하였다.

라. 산생성균 : 비산생성균 세균수 측정

표 24. 겨울철 원유의 산생성균 : 비산생성균 분포 및 RRT검사 후 배양시간에 따른 색차계 a 값

시료	총균수	젖산균	권 사기 된 ㅠ / ㅠ /	a	value(30℃	:)
번호	(cfu/ml)	(cfu/ml)	젖산균분포(%)	1hr	2hr	3hr
1	190000	100	0.1	1.66	2.20	
2	460000	300	0.1	0.31	0.99	
3	250000	200	0.1	2.08	3.03	
4	34000	100	0.3	2.60	3.15	
5	42000	200	0.5	1.25	1.66	
6	460000	2600	0.6	1.45	4. 43	5. 61
7	960000	6500	0.7	2.89	3.30	
8	140000	1000	0.7	1.09	2.11	
9	710000	6900	1.0	0.78	1.25	
10	29000	300	1.0	1.25	2.14	
11	600000	6700	1.1	2.74	4.41	
12	100000	1200	1.2	0.68		
13	160000	2000	1.3	0.57	1.51	
14	560000	7300	1.3	1.19	2.62	
15	120000	2000	1.7	1.10	1.53	
16	260000	8000	3.1	3.15	•	
17	150000	6500	4.3	0.18	2.46	3.06
18	92000	4100	4.5	1,58	2.93	3.72
19	14000	800	5.7	2.05	3. 23	
20	6300	500	7.9	2.20	2.74	
21	91000	7600	8.4	1.95	2.42	3.03
22	130000	11000	8, 5	0.48	2. 29	3.44

시료	총균수	젖산균	3 1 3 H m (a)	a	value(30°C	2)
번호	(cfu/ml)	(cfu/ml)	젖산균분포(%)	1hr	2hr	3hr
23	34000	3300	9.7	2.75	5, 31	6.74
24	79000	9400	11.9	1.42		
25	15000	1900	12.7	1.53	3.17	3.17
26	34000	4400	12.9	0.67	2.26	2.26
27	8200	1200	14.6	1.23	2.32	2.73
28	3600	580	16.1	1.01	1.28	2.22
29	58000	· 9900	17.1	3.16	4.13	
30	14000	2600	18.6	1.09	2, 26	
31	12000	2300	19.2	2.33	3, 30	
32	130000	25000	19.2	1.54		
33	6200	1200	19.4	1.39	2, 36	3, 53
34	32000	7100	22.2	3.39	4.31	5.64
35	32000	7400	23.1	1.80	3. 38	4, 55
36	12000	2800	23.3	1.58	3. 20	3.89
37	34000	8000	23.5	1.17	2.60	3. 20
38	49000	12000	24.5	2.01	2.97	3.74
39	38000	9500	25.0	3, 68	5.10	7.04
40	4600	1200	26.1	2.03	3.68	4.90
41	320000	85000	26.6	1.21	1.55	4.03
42	16000	4500	28.1	0.85	1.33	2.49
43	18000	5100	28.3	2.24		
44	800000	230000	28.8	1.88	2. 81	5.47
45	23000	6900	30.0	1.45	2.08	3, 74
46	6900	2100	30.4	1.26	3, 51	3.98
47	39000	12000	30.8	0.07	0.45	
48	3200	1000	31.3	2.28	2. 90	3.94
49	30000	9400	31.3	1.36	3, 52	3.64
50	130000	41000	31.5	2. 25	3, 96	4.96
51	17000	5500	32.4	0.82	2.47	3.64
52	20000	6600	33.0	0.85	3. 38	3.86
53	3000	1000	33.3	1.35	2.49	3, 25
54	67000	23000	34.3	0. 78		
55	220000	77000	35.0	1.33	2.28	4.14
56	12000	4200	35.0	2.46	3.60	5. 31
57	15000	5300	35.3	1.14	1.41	
58	24000	8500	35.4	1.97		
59	69000	25000	36.2	1.13	0.33	0.54
60	7400	2700	36.5	1.42		
61	30000	11000	36.7	2.21	4.87	4.75

시료	총균수	젖산균		a	value(30℃	2)
번호	(cfu/ml)	(cfu/ml)	젖산균분포(%)	1hr	2hr	3hr
62	12000	4400	36.7	1.53	3. 46	4.90
63	10000	3800	38.0	2.96	4. 39	6.33
64	31000	12000	38.7	1.48	2.89	3.17
65	36000	14000	38.9	1.73	3, 90	5.10
66	130000	51000	39.2	1.98	4. 56	5.35
67	16000	6300	39.4	1.47	2.15	3.38
68	17000	6900	40.6	1.44	3.08	3.76
69	9300	3800	40.9	3, 39	4.02	5, 52
70	9400	3900	41.5	1.95	3.87	4.42
71	5800	2500	43.1	0, 69	2.27	2.74
72	2100	910	43.3	0.85	2, 93	2.78
73	23000	10000	43.5	1.91	4.05	5.82
74	4100	1800	43.9	1.37	2, 99	3.28
75	4500	2000	44.4	1.94	2.71	2,99
76	20000	8900	44.5	1.63		
77	5600	2500	44.6	2.01	3.49	5, 40
78	21000	9400	44.8	2.39	4.13	5.28
79	4600	2100	45.7	1.78	3.64	4.65
80	54000	27000	50.0	2.17	:	
81	7200	3600	50.0	0.70	0.03	0.64
82	5900	3000	50.8	3. 25	5, 40	6.33
83	120000	62000	51.7	1.41	3. 28	4.03
84	2900	1500	51.7	1.81	2.66	4.44
85	7600	4000	52.6	2.21	3.10	4.55
86	11000	5800	52.7	2.11		
87	30000	16000	53, 3	0, 78		
88	13000	7000	53.8	2.49	4, 55	4.83
89	4400	2400	54.5	2.68	4.10	4.60
90	8800	4900	55.7	1.27		
91	25000	14000	56.0	1.64	3.48	4.37
92	65000	37000	56.9	1.28	2.34	2.61
93	61000	35000	57.4	1.79	3, 35	4.46
94	22000	13000	59.1	0.57		
95	140000	84000	60.0	2.32	3.43	5, 11
96	11000	6700	60.9	1.63		
97	6700	4100	61.2	2.82	5.14	5, 84
98	7900	4900	62.0	1.58	1.58	3, 33
99	30000	19000	63.3	3.02		
100	57000	37000	64.9	0.89	2.46	3. 59
101	4900	3200	65.3	0, 89	2. 20	3.40

시료	총균수	젖산균	31247(1)	a	value(30°C	2)
번호	(cfu/ml)	(cfu/ml)	젖산균분포(%)	1hr	2hr	3hr
102	3300	2200	66.7	1.00	3. 51	5. 34
103	59000	41000	69.5	2.68	4.81	4.81
104	20000	14000	70.0	0.60	0.29	0.08
105	200000	140000	70.0	4.14	12.90	18.50
106	25000	18000	72.0	2.39	4.35	5. 28
107	68000	49000	72.1	0.44	1.78	3, 13
108	150000	110000	73.3	0.69	1.54	2.20
109	84000	62000	73.8	1.44	5.04	4.37
110	2300	1700	73.9	1.54	2.29	2.77
111	11000	8400	76.4	2.32	3.97	5. 61
112	22000	17000	77.3	0. 91	1.64	1.58
113	11000	8500	77.3	3.44	6, 06	7.42
114	360000	280000	77.8	1.08	3.84	5. 66
115	6500	5100	78. 5	1.37	2.05	2. 93
116	170000	140000	82.4	1.12	1.39	3. 05
117	52000	43000	82.7	3.48	6.60	9.01
118	18000	15000	83, 3	0.76	2.53	3. 00
119	150000	130000	86.7	2.39		
120	79000	69000	87.3	1.54	3. 78	5.94
121	5700	5000	87.7	3.04	3.25	4.60
122	3500	3100	88.6	0.69	2.93	3. 78
123	240000	220000	91.7	1.27		
124	24000	22000	91.7	1.31	3.07	4. 58
125	15000	14000	93.3	2.39	4.02	5. 22
126	7200	6800	94.4	1.75	3.64	4. 31
127	20000	19000	95.0	1.78		
128	22000	21000	95, 5	2.68	4.81	6. 23
129	340000	340000	100.0	2. 29	3.90	4.19
130	170000	170000	100.0	1.01	3, 23	3.74
131	20000	20000	100.0	1.75	3.60	5. 31
132	20000	20000	100.0	2.82	4.05	5, 50
133	20000	21000	105.0	3.34	4.83	6. 84
134	46000	49000	106.5	1.50	3.17	3. 58
135	35000	38000	108.6	2.39	4.02	5. 02
136	7500	8400	112.0	1.58	3, 80	4.48
137	56000	63000	112.5	1.81	3.46	3.46
138	4800	6700	139.6	2,08	3.78	4.99
139	10000	14000	140.0	1.21		
140	7100	10000	140.8	1.28	3, 64	4.12
141	120000	290000	241.7	4.10	7.15	9.07

표 25. 봄철 원유의 산생성균 : 비산생성균 분포 및 RRT검사 후 배양시간에 따른 색차계 a 값

시료	총균수	젖산균	경기부 및 (%)	а	value(30℃	:)
번호	(cfu/ml)	(cfu/ml)	젖산균분포(%)	1hr	2hr	3hr
142	1300000	62000	4.8	1.33	2.30	3.48
143	1900000	250000	13.2	1.01	4.09	6.87
144	1700000	240000	14.1	0.90	2.99	6.10
145	95000	17000	17.9	2.80	0.90	2.10
146	1200000	220000	18.3	2.10	4.67	10.00
147	2400000	440000	18.3	0.82	3, 59	10.50
148	250000	47000	18.8	1.50	2.89	3.89
149	3600000	690000	19.2	4.17	11.60	17.10
150	520000	110000	21.2	0.16	1.22	2.70
151	94000	21000	22.3	0.45	1.61	2.99
152	97000	23000	23.7	0.82	2.20	2.89
153	1300000	330000	25.4	1.50	3.39	5. 29
154	240000	79000	32.9	0.08	1.10	1.80
155	36000	12000	33.3	0.41	2.10	2.80
156	97000	34000	35.1	0.65	1.81	2.60
157	57000	22000	38.6	1.33	2.99	3.68
158	13000	5400	41.5	1.81	2.10	3. 59
159	33000	14000	42.4	0.82	1.31	1.80
160	62000	27000	43.5	1.01	1.71	3.19
161	23000	11000	47.8	1.10	2.10	2.60
162	150000	73000	48.7	1.43	2.11	2.30
163	44000	29000	65.9	0, 50	1.69	2.29
164	15000	10000	66.7	0.12	0.85	0.65
165	28000	20000	71.4	0, 73	1.01	2.30
166	7700	5500	71.4	0.82	1.80	2.80

표 26. 여름철 원유의 산생성균 : 비산생성균 분포 및 RRT검사 후 배양시간에 따른 색차계 a 값

시료	총균수	젖산균	젖산균분포(%)	a value(30℃)						
번호	(cfu/ml)	(cfu/ml)	久代世七二(%)	1hr	2hr	3hr				
167	2400000	22000	0.9	1.45	2.79	3.46				
168	290000	8000	2.8	0. 51	2.15	1.97				
169	220000	6400	2.9	1.95	3.96	3.78				
170	210000	6700	3.2	0.40	0.89	1.55				

시료	총균수	젖산균		a	value(30°	2)
번호	(cfu/ml)	(cfu/ml)	젖산균분포(%)	1hr	2hr	3hr
171	110000	4100	3.7	1.27	2, 30	3.46
172	91000	3600	4.0	2.17	2.68	4.10
173	640000	29000	4.5	1.59	2.94	3.27
174	61000	3200	5.2	0.82	1.80	1.66
175	1200000	63000	5.3	0.15	0. 29	0.96
176	52000	2800	5.4	0. 23	0.89	0.55
177	97000	5300	5, 5	0.06	1.09	2.07
178	430000	24000	5.6	0. 78	2.12	2.62
179	310000	18000	5.8	0.63	0.40	1.04
180	180000	11000	6.1	0. 51	1.00	0.82
181	48000	3400	7.1	0.15	0.51	1.48
182	140000	10000	7.1	1.31	2.47	2.96
183	560000	43000	7.7	2.05	3.37	5.86
184	26000	2000	7.7	0.55	0.88	0.54
185	270000	22000	8.1	0.89	1.38	1.71
186	300000	25000	8.3	0.88	1.71	2.22
187	33000	2900	8.8	0, 55	1.38	0.51
188	83000	8200	9.9	0.15	0.69	0.82
189	76000	8200	10.8	0.14	0.71	1.23
190	250000	27000	10.8	0.29	1.45	2.30
191	120000	13000	10.8	0.06	0.60	0.55
192	490000	55000	11.2	0.64	1.62	2.62
193	9700	1100	11.3	2.66	5. 21	6.40
194	220000	25000	11.4	0.92	1.41	1.58
195	120000	14000	11.7	0.78	1.77	2.27
196	330000	39000	11.8	0.81	2.98	2.98
197	110000	13000	11.8	0.40	1.41	1.73
198	210000	25000	11.9	0.15	0.82	1.00
199	570000	70000	12.3	2, 05	3, 23	5, 09
200	80000	10000	12.5	0.87	0.11	0.07
201	110000	14000	12.7	0.34	0.02	0.82
202	590000	78000	13.2	4.10	6.93	9.58
203	79000	11000	13.9	0. 56	1.41	2.08
204	180000	27000	15.0	1.38	2.56	2.39
205	350000	53000	15.1	0.89	1.55	2.55
206	430000	69000	16.0	0. 78	2.09	2.58
207	110000	19000	17.3	1.06	2.72	2.88
208	84000	15000	17.9	1.87	4.45	5.65
209	310000	57000	18.4	0.11	1.43	3.08
210	470000	88000	18.7	1.13	3, 13	4.81

시료	총균수	젖산균		a	value(30℃	:)
번호	(cfu/ml)	(cfu/ml)	젖산균분포(%)	1hr	2hr	3hr
211	260000	49000	18.8	0.60	1.92	2.91
212	290000	55000	19.0	0.55	2.38	3.06
213	21000	4100	19.5	0.15	0.51	1.00
214	510000	100000	19.6	0.16	2.32	2.64
215	80000	16000	20.0	3.08	5.19	7.82
216	56000	12000	21.4	2.57	4.88	5.38
217	84000	18000	21.4	1.04	1.71	1.37
218	110000	24000	21.8	0.40	1.07	1.07
219	6700	1500	22.4	0.51	0.34	1.13
220	41000	9200	22.4	1.37	2.78	3.98
221	62000	14000	22.6	0.08	0.75	1.91
222	110000	25000	22.7	1.43	3. 30	3.10
223	7200	1700	23.6	2.36	4.52	6.77
224	41000	9800	23.9	2.47	4.56	5.77
225	71000	17000	23.9	0.46	1.45	2.26
226	62000	15000	24.2	2.46	4.64	6.02
227	410000	100000	24.4	0.11	1.77	3.11
228	110000	27000	24.5	1.71	2.22	2.38
229	67000	17000	25.4	0. 26	2.07	2.57
230	27000	6900	25.6	0, 15	1.00	1.00
231	140000	36000	25.7	0. 91	2.11	4.77
232	25000	6600	26.4	3.06	5. 45	6.34
233	95000	26000	27.4	0.60	1.63	2.29
234	88000	25000	28.4	1.57	2.27	2.57
235	32000	9200	28.8	1.24	2.73	2.73
236	270000	81000	30.0	0.64	1.31	2.29
237	56000	17000	30.4	2.78	4. 37	6.09
238	2400000	730000	30.4	0. 29	3. 47	8. 26
239	36000	11000	30.6	2.37	4. 45	4.95
240	22000	7800	35. 5	1.87	3. 75	4.56
241	240000	87000	36.3	0.79	1.48	3.36
242	30000	11000	36.7	2.47	4.68	6.09
243	180000	68000	37.8	1.77	3.67	4.88
244	230000	87000	37.8	0.46	1.77	3.41
245	290000	120000	41.4	0.81	2.32	2.98
246	140000	58000	41.4	0.60	1.26	1.75
247	180000	78000	43.3	0.43	1.41	2.91
248	58000	26000	44.8	1.08	1.27	2.92
249	550000	250000	45.5	0.77	3. 45	7.94
250	170000	80000	47.1	0.41	0.26	1.58

시료	총균수	젖산균	젖산균분포(%)	a	value(30℃	:)
번호	(cfu/ml)	(cfu/ml)	突也更定的	1hr	2hr	3hr
251	63000	30000	47.6	0.38	2.08	3.92
252	6300	3000	47.6	0.07	0.73	0.86
253	89000	43000	48.3	0.47	2. 29	3.10
254	140000	76000	54.3	0.41	0.60	1.58
255	1200000	690000	57.5	2.40	7.44	12.50
256	150000	90000	60.0	0.72	1.05	1.38
257	45000	28000	62.2	4.10	7.12	9.05
258	19000	12000	63. 2	0.99	1.98	2.64
259	170000	110000	64.7	0.95	1.27	
260	150000	110000	73.3	1.32	2.19	3.66
261	2300000	1700000	73.9	2.76	8.08	17.40
262	69000	51000	73.9	0.11	1.09	1.75
263	160000	120000	75.0	1.08	2.29	4.94
264	210000	160000	76.2	2.37	5. 45	6.15
265	13000	10000	76.9	1.28	3.67	4.68
266	15000	12000	80.0	1.77	2.17	3.36
267	2000	1800	90.0	2.97	3. 98	5.19
268	11000	10000	90.9	2. 56	3.75	4.95
269	71000	71000	100.0	0.55	0.55	0.02
270	8100	9100	112.3	3. 47	4.88	6.09

표 27. 가을철 원유의 산생성균:비산생성균 분포 및 RRT검사 후 배양시간에 따른 색차계 a 값

시료	총균수	젖산균	젖산균분포(%)	a	value(30℃	:)
번호	(cfu/ml)	(cfu/ml)	父位世七年(%)	1hr	2hr	3hr
271	160000	380	0.2	0.56	1.82	3. 27
272	230000	5100	2.2	1.06	0.20	1.11
273	470000	27000	5.7	0.38	3, 31	5.67
274	430000	29000	6.7	1.10	2.75	4.60
275	130000	11000	8.5	0.14	1.28	2.09
276	190000	18000	9.5	0.16	2.40	2.58
277	1100000	120000	10.9	1.47	4.14	8.05
278	57000	6800	11.9	0.85	1.67	3.33
279	340000	42000	12.4	1.16	0. 26	1.68
280	240000	33000	13.8	0.68	0.89	2.09
281	100000	14000	14.0	0.87	1.44	2.96
282	23000	3700	16.1	0.10	0. 29	0. 29

시료	총균수	젖산균	-1 -1 (0 ()	a	value(30℃	:)			
번호	(cfu/ml)	(cfu/ml)	젖산균분포(%)	1hr	2hr	3hr			
283	2300000	370000	16.1	0.66	1.05	3. 36			
284	160000	26000	16.3	2.37	4.42	6.80			
285	880000	150000	17.0	1.28	6.01	14.80			
286	72000	13000	18.1	0.35	0.56	0.66			
287	59000	11000	18.6 1.26 2.09			3.74			
288	82000	17000	20.7	0.28	1.70	2.30			
289	330000	79000	23.9	1.49	3, 53	5.98			
290	79000	20000	25.3	0.05	0. 26	1.47			
291	200000	52000	26.0	0.47	1.28	2, 71			
292	64000	18000	28.1	0.10	2. 21	5.12			
293	850000	240000	28.2	0.87	3. 57	6.07			
294	98000	31000	31.6	0.11	0.67	0.86			
295	160000	51000	31.9	1.47	3. 32	4.77			
296	59000	19000	32.2	1.61	2.36	3.87			
297	150000	51000	34.0	0.16	1.28	2.55			
298	120000	42000	35.0	0.68	2.50	5. 59			
299	580000	210000	36.2	0.20	1.47	2.93			
300	46000	18000	39.1	0.87	1.46	3.04			
301	130000	52000	40.0	1.44	3. 54	7.96			
302	180000	73000	40.6	0.86	1.79	2.92			
303	120000	51000	42.5	1.47	2.02	3.48			
304	28000	12000	42.9	0.08	0.89	1.49			
305	110000	49000	44.5	0.67	0.87	2.96			
306	140000	63000	45.0	0.10	0. 31	0.48			
307	58000	27000	46.6	0.09	0.68	1.85			
308	120000	57000	47.5	0.87	0.87	1.68			
309	24000	12000	50.0	0.10	0.48	1.24			
310	330000	170000	51.5	0.16	1.66	5. 50			
311	150000	79000	52.7	1.24	2.01	5.07			
312	59000	32000	54.2	1.26	0.72	0.17			
313	200000	110000	55.0	1.11	3, 13	5.67			
314	79000	46000	58.2	0.87	0, 67	1.82			
315	290000	170000	58.6	0. 70	1.50	3.11			
316	170000	100000	58.8	0.57	0, 93	3.13			
317	140000	83000	59.3	0.02	0.63	1.88			
318	400000	240000	60.0	0.75	1.47	3.48			
319	250000	150000	60.0	0.47	1.44	3.57			
320	94000	58000	61.7	0.66	2.30	3. 54			
321	32000	20000	62.5	1.25	0. 23	1.23			

시료	총균수	젖산균	젖산균분포(<i>%</i>)	а	value(30℃	2)
번호	(cfu/ml)	(cfu/ml)	突包亚亚王(%) 	1hr	2hr	3hr
322	25000	16000	64.0	0.48	1.46	4.01
323	48000	32000	66.7	0.47	0.47	0.29
324	83000	57000	68.7	1.37	0.77	0.05
325	86000	61000	70.9	0.35	0.02	2.22
326	460000	330000	71.7	1.28	3.66	7.23
327	180000	130000	72.2	0.35	0.47	1.68
328	63000	48000	76.2	0.75	1.48	1.66
329	200000	160000	80.0	0.89	0. 71	0.75
330	110000	88000	80.0	0.02	1.09	2.00
331	100000	80000	80.0	0.05	1.68	2.50
332	170000	140000	82.4	0.47	1.49	3.53
333	14000	12000	85.7	0. 57	1,11	1.84
334	160000	140000	87.5	0.67	0.10	1.25
335	420000	420000	100.0	1.84	4, 21	7.86
336	170000	170000	100.0	1.07	2.50	4.14
337	180000	190000	105.6	0.75	1.84	3.48
338	96000	160000	166.7	1.16	0.73	0.47

마. 산생성균:비산생성이 RRT검사 후의 배양시간별 색차계 a 값에 미치는 영향원유의 총균수 대비 젖산균수의 분포에 따른 30℃ 배양 RRT검사 후의 배양시간별 색차계 a 값에 미치는 영향은 표 28과 같다.

표 28. 산생성균:비산생성의 분포에 따른 30℃ 배양 RRT 검사후의 배양시간별 색 차계 a 값에 미치는 영향

산생성 균수	0~20%미만''		20-40%미만		40-60%미만		60-80%미만		80-100%미만			100%이상						
세균수	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
1만미만	1.70	2. 78	3, 72	1.60	2. 91	3.40	1.73	3.00	3, 80	1.43	2, 65	3,77	2.11	3. 45	4.47	2.10	4.03	4.92
1 ~2만미만	1.75	2. 99	3. 17	1.67	2.75	4.28	1.96	3. 24	4.06	1.63	3, 31	4, 20	1.61	2.72	3.67	1.21	-	-
2~3만미만	0, 51	0.96	0.61	1,56	3. 13	3,90	1.18	2. 52	3, 47	1.02	1,75	2,65	1.92	3.94	5, 41	2.64	4, 16	5, 88
3~10만미만	1.23	1.95	2.42	1.38	2.75	3.74	1.00	1.64	2, 58	1.29	2.25	2.92	2, 51	5, 19	7.48	1.48	2.39	2.51
10~25만미만	0.84	1.79	2, 42	1,06	2. 39	3, 66	0, 81	1.56	3. 09	1, 55	3, 40	5.45	0.86	1.08	2.18	1.73	3, 68	5, 11
25~50만이하	0.94	2.09	3, 05	0, 86	2.04	3, 85	0.56	1.83	3.86	0, 90	2.60	4.99	-	-	-	2.07	4.06	6.03
50만 초과	1.64	3, 69	6. 95	0.82	2.66	5.12	1.59	5.45	10.22	2, 76	8.08	17.4	-	-	-	-	-	-

주) $^{1)}$: 총균수 대비 산생성균수가 $0\sim 20\%$ 일 때의 RRT 검사후의 배양시간별 색차계 a 값

총균수 대비 산생성균수의 비율이 높고 배양시간이 3시간일 때 색차계 a 값이 상 숭하는 경향이 있었지만 총균수 오염정도에 따라 일정하지 않아 색차계 a 값에 의한 영향이라고 보기가 어렵다.

원유의 총균수 대비 젖산균수의 분포에 따른 35℃ 배양 RRT 검사후의 배양시간별 색차계 a 값에 미치는 영향은 표 29와 같다.

표 29. 산생성균:비산생성의 분포에 따른 35℃ 배양 RRT 검사후의 배양시간별 색 차계 a 값에 미치는 영향

산생성 균수	0-20%미만''		20-40%미만		40-60%미만		60-80%미만		80-100%미만			100%이상						
세균수	1hr	2hr	3hr	lhr	2hr	3hr	lhr	2hr	3hr	1hr	2hr	3hr	lhr	2hr	3hr	lhr	2hr	3hr
1만미만	2.27	3.67	4.61	2, 28	3. 74	5. 08	2, 39	4.00	5. 12	2.02	3, 71	4.74	2. 60	4. 41	5. 52	3, 33	5.06	7.03
1~2만미만	2.35	3.71	4.83	2.51	3. 49	5. 20	2.63	3, 96	4. 89	2, 56	4. 32	5.48	1.99	3, 46	4.87	1.15	-	-
2~3만미만	0.80	0.89	1.39	2.67	3. 98	5.05	1.84	3, 38	4. 83	1.36	2.65	4.17	2. 72	4.86	7.70	3.13	4.65	6.94
3~10만미만	1.63	2.81	3, 46	1,95	3, 51	4.83	1.45	2. 55	3. 63	1.65	2.85	4.32	4. 73	7. 58	10.1	2.12	2.95	4.11
10~25만미만	1.32	2, 53	3.94	1.69	3.63	5.17	1.13	2.45	4. 58	2.37	4.64	6.40	1.45	1,86	3, 53	1.98	4.79	6.93
25~50만이하	1.56	3. 29	5.01	2.01	4. 18	5. 19	0.70	2.95	6. 42	1.31	3. 66	7.24	-	-	-	2.35	5.64	8.86
50만 초과	2, 45	5, 33	8.87	1.24	4.00	7.30	2.16	8.01	16.8	4. 23	17.1	9.71	-	-	-	-	-	_

주) 1) : 총균수 대비 산생성균수가 0~20%일 때의 RRT 검사후의 배양시간별 색차계 a 값

총균수 대비 산생성균수의 비율이 높고 배양시간이 3시간일 때 색차계 a 값이 상 승하는 경향이 있었지만 총균수 오염정도에 따라 일정하지 않아 색차계 a 값에 의한 영향이라고 보기가 어렵다. 다만, 총균수가 1만 cfu/ml 미만에서는 산생성 균의 분포가 중가할수록 색차계 a 값이 증가하는 경향을 보였다.

원유의 총균수 대비 젖산균수의 분포에 따른 15℃ 배양 RRT 검사후의 배양시간별 색차계 a 값에 미치는 영향은 표 30과 같다.

표 30. 산생성균:비산생성의 분포에 따른 15℃ 배양 RRT 검사후의 배양시간별 색 차계 a 값에 미치는 영향

산생성 균수	0-	20%¤	만''	20-	·40%¤]	민	40-	60%¤	만	60)-80%¤	미만	80-	-100%¤	이만		100%0	상
세균수	5hr	10hr	24hr	5hr	10hr	24hr	5hr	10hr	24hr	5hr	10hr	24hr	5hr	10hr	24hr	5hr	10hr	24hr
1만미만	1.99	3. 31	5. 17	1.92	3. 67	4.62	1.58	3. 08	4. 70	1.13	3. 23	5. 13	2, 22	3.83	5. 35	2. 59	4. 68	7.18
1~2만미만	1.80	2.90	5, 57	2.15	3.00	4.51	1.61	3. 48	5. 75	1,99	3.09	6.04	2.33	4.03	9. 38	-	-	-
2~3만미만	0.80	0.81	1.99	2.18	3. 87	5, 79	0, 80	2, 50	3, 89	1.47	2.82	4.54	2.45	3. 72	5. 94	2. 73	3, 15	6,60
3~10만미만	1.20	2.67	5. 41	1.90	3. 68	7. 99	0.97	2. 23	4. 55	1.19	2. 37	4.88	1.54	3. 48	9. 35	1.85	2. 41	5, 56
10~25만미만	0.81	2.11	5. 29	0.84	3,00	6.89	0.82	2. 42	5, 71	1.81	3, 53	8. 76	0.46	1.39	4. 18	1.71	3, 07	6.23
25~50만이하	1.02	3.07	6. 59	1.33	2.86	7.34	0.44	1.97	6. 26	1,58	2, 91	10.04	_	-	-	1.41	2.68	11.37
50만 초과	1.70	4.79	11.1	0.70	3. 47	9. 43	-	-	1	,	-	-	-	-	-	-	-	-

주) 1) : 충균수 대비 산생성균수가 0~20%일 때의 RRT 검사후의 배양시간별 색차계 a 값

30℃, 35℃ 배양과 마찬가지로 15℃에서도 일정한 경향을 나타내지 못하여 총균수 대비 젖산균의 분포에 따라 색차계 a 값에 미치는 영향이 없는 것으로 판단되었다.

2. SPC법과 색차계에 의한 배양온도별 RRT검사

표 31. 겨울철 원유의 SPC법과 색차계에 의한 배양온도별 RRT검사

1 22000 4.34 0.57 0.18 2 11000 4.04 0.94 2.11 2.81 3 130000 5.11 0.52 1.54 3.15 4 8800 3.94 0.04 1.27 1.90 5 24000 4.38 0.30 1.97 4.27 6 30000 4.48 0.20 3.02 2.95 7 18000 4.26 0.09 2.24 3.65 8 7400 3.87 0.01 1.42 2.11 9 260000 5.41 0.78 3.15 3.37 10 79000 4.90 0.25 1.42 1.84 11 150000 5.18 0.18 2.39 2.60 12 30000 4.48 0.61 0.78 1.42 13 240000 5.38 0.18 1.27 2.60 14 54000 4.73 0.52 2.17 2.60 15 20000 4.30 0.89 1.78 2.19			I >									
1 22000 4.34 0.57 0.18 2 11000 4.04 0.94 2.11 2.81 3 130000 5.11 0.52 1.54 3.15 4 8800 3.94 0.04 1.27 1.90 5 24000 4.38 0.30 1.97 4.27 6 30000 4.48 0.20 3.02 2.95 7 18000 4.26 0.09 2.24 3.65 8 7400 3.87 0.01 1.42 2.11 9 260000 5.41 0.78 3.15 3.37 10 79000 4.90 0.25 1.42 1.84 11 150000 5.18 0.18 2.39 2.60 12 30000 4.48 0.61 0.78 1.42 13 240000 5.38 0.18 1.27 2.17 14 54000 4.73 0.52 2.17 2.60 15 20000 4.30 0.89 1.78 2.19	1	l	중관수			5°C)	a va	alue(30)°C)	a va	lue(35	(3°
2 11000 4.04 0.94 2.11 2.81 3 130000 5.11 0.52 1.54 3.15 4 8800 3.94 0.04 1.27 1.90 5 24000 4.38 0.30 1.97 4.27 6 30000 4.48 0.20 3.02 2.95 7 18000 4.26 0.09 2.24 3.65 8 7400 3.87 0.01 1.42 2.11 9 260000 5.41 0.78 3.15 3.37 10 79000 4.90 0.25 1.42 1.84 11 150000 5.18 0.18 2.39 2.60 12 30000 4.48 0.61 0.78 1.42 13 240000 5.38 0.18 1.27 2.60 15 20000 4.73 0.52 2.17 2.60 15 20000 4.30 0.89 1.78 2.19 16 100000 5.00 0.44 0.68	번호		(log)	5hr	10hr	24hr	1hr	2hr	3hr	1hr	2hr	3hr
3 130000 5.11 0.52 1.54 3.15 1.90 4 8800 3.94 0.04 1.27 4.27 5 24000 4.38 0.30 1.97 4.27 6 30000 4.48 0.20 3.02 2.95 7 18000 4.26 0.09 2.24 3.65 8 7400 3.87 0.01 1.42 2.11 9 260000 5.41 0.78 3.15 3.37 10 79000 4.90 0.25 1.42 1.84 11 150000 5.18 0.18 2.39 2.60 12 30000 4.48 0.61 0.78 1.42 13 240000 5.38 0.18 1.27 2.17 14 54000 4.73 0.52 2.17 2.60 15 20000 4.30 0.89 1.78 2.19 16 10000 5.00 0.44 0.68 1.63 1.21 18 20000 4.83	1	22000	4.34				0.57			0.18		
4 8800 3.94 0.04 1.27 1.90 4.27 4.27 4.27 4.27 4.27 6.30000 4.48 0.20 3.02 2.95 3.65 2.95 3.65	1	11000	4.04	0.94			2.11			2.81		
5 24000 4.38 0.30 6 30000 4.48 0.20 7 18000 4.26 0.09 8 7400 3.87 0.01 9 260000 5.41 0.78 10 79000 4.90 0.25 11 150000 5.18 0.18 12 30000 4.48 0.61 12 30000 4.73 0.52 15 20000 4.30 0.89 16 100000 5.00 0.44 17 10000 4.00 0.04 18 20000 4.30 0.46 19 67000 4.83 0.13 20 11000 4.04 0.68 21 14000 5.15 22 14000 5.20	3	130000	5.11	0.52			1.54			3.15		
6 30000 4.48 0.20 3.02 2.95 7 18000 4.26 0.09 2.24 3.65 8 7400 3.87 0.01 1.42 2.11 9 260000 5.41 0.78 3.15 3.37 10 79000 4.90 0.25 1.42 1.84 11 150000 5.18 0.18 2.39 2.60 12 30000 4.48 0.61 0.78 1.42 13 240000 5.38 0.18 1.27 2.17 14 54000 4.73 0.52 2.17 2.60 15 20000 4.30 0.89 1.78 2.19 16 100000 5.00 0.44 0.68 1.36 17 10000 4.00 0.04 1.63 2.53 19 67000 4.83 0.13 0.78 1.21 20 11000 4.04 0.68 1.63 1.84 21 14000 5.15 1.09 2.26<	4	8800	3.94	0.04			1.27			1.90		
7 18000 4.26 0.09 2.24 3.65 8 7400 3.87 0.01 1.42 2.11 9 260000 5.41 0.78 3.15 3.37 10 79000 4.90 0.25 1.42 1.84 11 150000 5.18 0.18 2.39 2.60 12 30000 4.48 0.61 0.78 1.42 13 240000 5.38 0.18 1.27 2.17 14 54000 4.73 0.52 2.17 2.60 15 20000 4.30 0.89 1.78 2.19 16 100000 5.00 0.44 0.68 1.36 17 10000 4.00 0.04 1.21 1.15 18 20000 4.83 0.13 0.78 1.21 20 11000 4.04 0.68 1.63 1.84 21 14000 5.15 1.09 2.11 1.20 1.47 22 14000 5.15 0.57	5	24000	4.38	0.30			1.97			4.27		
8 7400 3.87 0.01 1.42 2.11 9 260000 5.41 0.78 3.15 3.37 10 79000 4.90 0.25 1.42 1.84 11 150000 5.18 0.18 2.39 2.60 12 30000 4.48 0.61 0.78 1.42 13 240000 5.38 0.18 1.27 2.17 14 54000 4.73 0.52 2.17 2.60 15 20000 4.30 0.89 1.78 2.19 16 100000 5.00 0.44 0.68 1.36 17 10000 4.00 0.04 1.21 1.15 18 20000 4.30 0.46 1.63 2.53 19 67000 4.83 0.13 0.78 1.21 20 11000 4.04 0.68 1.63 1.84 21 140000 5.15 1.09 2.11 1.20 1.47 22 14000 5.20 0.	6	30000	4.48	0.20			3.02			2.95	ĺ	
9 260000 5. 41 0. 78 3. 15 1. 84 10 79000 4. 90 0. 25 1. 42 1. 84 11 150000 5. 18 0. 18 2. 39 2. 60 12 30000 4. 48 0. 61 0. 78 1. 42 13 240000 5. 38 0. 18 1. 27 2. 17 14 54000 4. 73 0. 52 2. 17 2. 60 15 20000 4. 30 0. 89 1. 78 2. 19 16 100000 5. 00 0. 44 0. 68 1. 36 17 10000 4. 00 0. 46 1. 63 2. 53 19 67000 4. 83 0. 13 0. 78 1. 21 20 11000 4. 04 0. 68 1. 63 1. 84 21 14000 5. 15 1. 09 2. 21 1. 20 1. 47 22 14000 5. 20 0. 57 1. 51 0. 99 0. 40	7	18000	4.26	0.09			2.24			3, 65		
10 79000 4. 90 0. 25 1. 42 1. 84 11 150000 5. 18 0. 18 2. 39 2. 60 12 30000 4. 48 0. 61 0. 78 1. 42 13 240000 5. 38 0. 18 1. 27 2. 17 14 54000 4. 73 0. 52 2. 17 2. 60 15 20000 4. 30 0. 89 1. 78 2. 19 16 100000 5. 00 0. 44 0. 68 1. 36 17 10000 4. 00 0. 04 1. 63 2. 53 19 67000 4. 83 0. 13 0. 78 1. 21 20 11000 4. 04 0. 68 1. 63 1. 84 21 14000 5. 15 1. 09 2. 11 1. 20 1. 47 22 14000 5. 20 0. 57 1. 51 0. 99 0. 40	8	7400	3.87	0.01			1.42			2.11		
11 150000 5. 18 0. 18 12 30000 4. 48 0. 61 13 240000 5. 38 0. 18 14 54000 4. 73 0. 52 15 20000 4. 30 0. 89 16 100000 5. 00 0. 44 17 10000 4. 00 0. 04 18 20000 4. 30 0. 46 19 67000 4. 83 0. 13 20 11000 4. 04 0. 68 21 14000 5. 15 22 14000 4. 15 23 160000 5. 20	9	260000	5.41	0.78			3.15			3. 37		
12 30000 4.48 0.61 13 240000 5.38 0.18 14 54000 4.73 0.52 15 20000 4.30 0.89 16 100000 5.00 0.44 17 10000 4.00 0.04 18 20000 4.30 0.46 19 67000 4.83 0.13 20 11000 4.04 0.68 21 14000 5.15 22 14000 4.15 23 160000 5.20	10	79000	4.90	0.25			1.42			1.84	ļ I	
13 240000 5.38 0.18 14 54000 4.73 0.52 15 20000 4.30 0.89 16 100000 5.00 0.44 17 10000 4.00 0.04 18 20000 4.30 0.46 19 67000 4.83 0.13 20 11000 4.04 0.68 21 140000 5.15 22 14000 4.15 23 160000 5.20	11	150000	5.18	0.18			2.39			2.60		
14 54000 4.73 0.52 15 20000 4.30 0.89 16 100000 5.00 0.44 17 10000 4.00 0.04 18 20000 4.30 0.46 19 67000 4.83 0.13 20 11000 4.04 0.68 21 140000 5.15 22 14000 4.15 23 160000 5.20	12	30000	4.48	0.61			0.78			1.42		
15 20000 4.30 0.89 16 100000 5.00 0.44 17 10000 4.00 0.04 18 20000 4.30 0.46 19 67000 4.83 0.13 20 11000 4.04 0.68 21 14000 5.15 22 14000 4.15 23 160000 5.20	13	240000	5.38	0.18			1.27			2.17		
16 100000 5.00 0.44 17 10000 4.00 0.04 18 20000 4.30 0.46 19 67000 4.83 0.13 20 11000 4.04 0.68 21 14000 5.15 22 14000 4.15 23 160000 5.20	14	54000	4.73	0.52			2.17			2.60		
17 10000 4.00 0.04 18 20000 4.30 0.46 19 67000 4.83 0.13 20 11000 4.04 0.68 21 14000 5.15 22 14000 4.15 23 160000 5.20	15	20000	4.30	0.89			1.78			2.19		
18 20000 4.30 0.46 19 67000 4.83 0.13 20 11000 4.04 0.68 21 140000 5.15 22 14000 4.15 23 160000 5.20	16	100000	5.00	0.44			0.68			1.36		
19 67000 4.83 0.13 20 11000 4.04 0.68 21 140000 5.15 22 14000 4.15 23 160000 5.20 0.78 1.21 1.63 1.84 1.09 2.11 1.09 2.26 2.26 1.93 0.57 1.51 0.99 0.40	17	10000	4.00	0.04			1.21			1.15		
20 11000 4.04 0.68 21 140000 5.15 22 14000 4.15 23 160000 5.20	18	20000	4.30	0.46			1.63			2.53	,	
21 140000 5.15 22 14000 4.15 23 160000 5.20 1.09 2.11 1.09 2.26 2.26 1.93 0.57 1.51 0.99 0.40	19	67000	4.83	0.13			0.78			1.21		
22 14000 4.15 23 160000 5.20 1.09 2.26 0.57 1.51 2.26 1.93 0.99 0.40	20	11000	4.04	0.68			1.63			1.84	Ĭ	
23 160000 5.20 0.57 1.51 0.99 0.40	21	140000	5.15				1.09	2.11		1.20	1.47	
	22	14000	4.15				1.09	2.26		2.26	1.93	
24 15000 4 18 1 14 1 41 0.67 0.94	23	160000	5. 20				0.57	1.51		0.99	0.40	
22 10000 1.10 1.14 1.41 0.07 0.54	24	15000	4.18				1.14	1.41		0.67	0.94	
25 39000 4.59 0.07 0.45 1.09 1.78	25	39000	4.59				0.07	0.45		1.09	1.78	
26 12000 4.08	26	12000	4.08				2.33	3.30		2.39	4.70	
27 6300 3.80 2.20 2.74 1.30 4.67	27	6300	3.80				2.20	2.74		1.30	4.67	
28 42000 4.62 1.25 1.66 0.88 2.20	28	42000	4.62				1.25	1.66		0.88	2.20	
29 190000 5.28 1.66 2.20 1.45 3.03	29	190000	5. 28				1.66	2.20		1.45	3, 03	
30 14000 4.15	30	14000	4.15				2.05	3, 23		2.05	4.82	
31 58000 4.76 3.16 4.13 3.16 4.95	31	58000	4.76			:	3.16	4.13		3.16	4.95	
32 960000 5.98 2.89 3.30 2.68 3.78	32	960000	5.98				2.89	3.30		2.68	3. 78	
33 560000 5.75 1.19 2.62 2.08 3.44	33	560000	5.75				1.19	2.62		2.08	3.44	
	34	34000	4.53				2.60	3.15		2.81		

시료	충균수	총균수	a va	alue(15	5°C)	a va	alue(30)°C)	a v	alue(3	5°C)
번호	(35℃)	(log)	5hr	10hr	24hr	1hr	2hr	3hr	1hr	2hr	3hr
35	29000	4.46				1.25	2.14		2.20		
36	120000	5.08		White Barden		1.10	1.53		1.59		
37	600000	5.78				2.74	4.41		3.16		
38	250000	5.40				2.08	3.03		2.76		
39	710000	5, 85				0. 78	1.25		0.83		
40	460000	5, 66				0, 31	0.99		0.57		
41	30000	4, 48	0.83	0.83		1.36	3.52	3.64	2.26	4.33	4.82
42	130000	5.11	0.38	1.78	1.52	1.98	4.56	5.35	2.86	5.15	8, 23
43	2100	3, 32	0.85	0.12	0.32	0.85	2.93	2.78	1.92	3.80	5.07
44	65000	4.81	0.45	0.61	0.12	1.28	2.34	2.61	1.28	2.69	3.39
45	68000	4.83	1.21	0.55	0.06	0.44	1.78	3.13	1.78	2.65	3, 53
46	20000	4.30	1.33	1.12	1.84	0,60	0.29	0.08	0.08	1.03	2.12
47	7200	3.86	1.88	1.46	0.55	0.70	0.03	0.64	0.08	1.37	1.71
48	12000	4.08	0.75	0,38	0.59	1.58	3. 20	3.89	2, 25	3.41	4.96
49	8200	3.91	0.92	0.23	0.64	1.23	2.32	2.73	2.12	2.53	3.68
50	22000	4.34	0.45	0.23	0.29	0.91	1.64	1.58	1.03	2.87	3.28
51	92000	4.96	0.14	0.12	0.27	1.58	2.93	3.72	2.18	3, 60	4.67
52	34000	4. 53	0, 65	0.24	1.10	1.17	2.60	3.20	1.64	2.60	4.65
53	6500	3.81	0.70	0.50	0.32	1.37	2.05	2.93	1.78	3.13	3.60
54	150000	5.18	0.55	0,80	0.45	0.18	2.46	3.06	1.52	3.33	5.35
55	25000	4.40	0.65	0.91	0.85	1.64	3.48	4.37	2.93	5.04	6.60
56	4600	3.66	0.96	0.49	1.17	1.78	3.64	4.65	3.29	4.93	5, 62
57	130000	5, 11	0.45	0.70	0.79	2. 25	3.96	4.96	2.73	5.44	7.28
58	17000	4.23	0.55	0.14	1.44	0.82	2.47	3.64	2.95	3.64	4.73
59	18000	4.26	0.65	0.18	0.44	0.76	2, 53	3.00	2.12	3.89	4.37
60	84000	4.92	0.03	0.23	0.91	1.44	5.04	4.37	2.32	4.56	5. 92
61	34000	4.53	0.29	0.55	0.29	0.67	2.26	2.26	1.78	3.23	
62	17000	4.23	0.39	0.02	0.23	1.44	3.08	3.76	2.12	3.48	4.37
63	7900	3.90	0.29	0.08	0.12	1.58	1,58	3, 33	1.58	3. 53	4.48
64	23000	4.36	0.02	0.23	1.10	1.91	4.05	5.82	3.28	4.93	7.19
65	52000	4.72	0.02	1.10	2.46	3.48	6.60	9.01	6.21	9.50	12.00
66	7500	3.88	0, 50	0.12	0.79	1.58	3.80	4.48	4.08	5.54	6.99
67	23000	4.36	1.38	3.25	4.07	1.45	2.08	3.74	2.92	3.9	4.81
68	460000	5.66	1.87	4.23		1.45	4.43	5, 61	2.15	4.31	5.31
69	340000	5.53	1.52	2.92	5. 43	2.29	3, 90	4.19	3.41	5, 61	6.31
70	32000	4.51	1.53	3.30	4.68	1.80	3.38	4. 55	2.42	4.55	5, 53
71	3200	3, 51	1.60	3.17	3.78	2, 28	2.90	3.94	2.28	4.35	5. 32
72	16000	4.20	1.47	2,63	3. 71	1.47	2.15	3.38	1.94	3, 10	4.35

시료	총균수	총균수	a va	alue(1	5°C)	a va	alue(30)°C)	a va	alue(35	(C)
번호	(35℃)	(log)	5hr	10hr	24hr	1hr	2hr	3hr	1hr	2hr	3hr
73	49000	4.69	2.01	3.38	4.96	2.01	2.97	3.74	2.28	3.25	3.46
74	30000	4.48	1.88	3.98	6.37	2.21	4.87	4.75	2.42	5.15	6.12
75	20000	4.30	1.53	2.90	3.16	0.85	3.38	3.86	2.21	3.86	4.35
76	7600	3.88	1.74	3.10	5. 28	2. 21	3.10	4.55	3, 51	4.27	5, 15
77	6900	3.84	1.60	3.17	4.76	1.26	3. 51	3. 98	2.90	4.27	5. 23
78	36000	4.56	0.55	1.94	3.52	1.73	3.90	5.10	3.13	4.11	5. 51
79	24000	4.38	0.89	2.50	4.31	1.31	3.07	4.58	2.36	3.28	7.03
80	4100	3.61	1.16	2.78	4.90	1.37	2.99	3. 28	2.29	3.99	4.99
81	4800	3, 68	1.87	3.99	5.61	2.08	3, 78	4.99	3.07	5.19	6.61
82	5600	3. 75	1.31	2.42	4.72	2.01	3.49	5.40	2.50	4.49	6.81
83	6200	3. 79	1.12	2.01	3.37	1.39	2.36	3, 53	1.94	3.13	4.31
84	16000	4.20	0.59	1.94	2.61	0.85	1.33	2.49	0.854	2.28	3.46
85	3300	3.52	0.94	2.48	5.68	1.00	3, 51	5.34	2.35	4.66	6.51
86	170000	5. 23	0.38	1.53	3. 78	1.12	1.39	3.05	1.53	2.97	5.92
87	4500	3, 65	0.71	2.15	4.23	1.94	2.71	2.99	1.94	3.26	4.81
88	170000	5, 23	1.29	2.72	5.08	1.01	3. 23	3.74	1.51	3.94	5.69
89	13000	4.11	1.80	2.69	6.35	2.49	4.55	4.83	2.97	5.12	6.02
90	15000	4.18	1.80	2.90	5.57	1.53	3.17	3.17	2.69	3. 38	4.83
91	220000	5. 34	0.12	2.69	5.86	1.33	2.28	4.14	2.21	4.35	6.02
92	46000	4.66	1.47	2.21		1.50	3.17	3, 58	3.76	4.98	6.42
93	20000	4.30	2.06	2.75		3.34	4.83	6.84	3.54	5. 50	8.48
94	34000	4.53	2.21	4.72	8.73	2.75	5. 31	6.74	4.60	5.82	7.46
95	59000	4.77	2.61	4.52	5. 51	2.68	4.81	4.81	3.17	4.10	7.45
96	56000	4.75	2.25	2.96	4.97	1.81	3.46	3.46	2.39	4.05	4.77
97	21000	4.32	2.25	3.17	5.09	2.39	4.13	5. 28	3.11	4.56	6.01
98	5700	3.76	3.04	3.39	5.82	3.04	3. 25	4.60	2.75	4.18	5.61
99	32000	4.51	3.81	4.93	7.46	3.39	4.31	5.64	3.81	5.02	7.85
100	4600	3.66	3. 25	4.60	4.88	2.03	3.68	4.90	2.75	3.97	5.91
101	12000	4.08	2.68	3, 60	4.80	1.53	3.46	4.90	3.17	3.46	6.23
102	11000	4.04	2.75	3.39	6.85	2.32	3.97	5.61	3.25	4.69	6.64
103	4400	3.64	2.61	4.02	5.63	2.68	4.10	4.60	3.17	4.60	6.23
104	25000	4.40	2.90	3.76	6.43	2.39	4.35	5. 28	2.90	5. 59	7. 26
105	5900	3.77	3.68	5, 10	4.50	3. 25	5.40	6. 33	4.18	6.12	7.76
106	20000	4.30	2.68	3.45	6.14	1.75	3.60	5. 31	2.96	3.68	6.02
107	35000	4.54	2.75	3, 68	7.26	2.39	4.02	5.02	3, 25	4.48	6. 42
108	9300	3.97	2.46	3, 39	6.23	3.39	4.02	5. 52	3.39	5.82	6.74
109	20000	4.30	3.46	3.25	7.05	2.82	4.05	5. 50	2.90	4.77	6. 32
110	38000	4.58	3.60	5, 02	14.30	3.68	5.10	7.04	3.89	6.74	8, 16

시료	총균수	총균수	a va	alue(1	5°C)	a va	alue(30)°C)	a v	alue(3	5℃)
번호	(35℃)	(log)	5hr	10hr	24hr	1hr	2hr	3hr	1hr	2hr	3hr
111	15000	4.18	2.75	3.86	6.66	2.39	4.02	5. 22	2.82	4.43	6.14
112	120000	5.08	4.02	4.93	7.77	4.10	7.15	9.07	4.31	9.27	11.70
113	6700	3.83	3.45	4.56	5.95	2.82	5.14	5.84	3.52	5.34	6.54
114	12000	4.08	3.10	3.52	5, 93	2.46	3.60	5. 31	3.17	5. 31	5. 61
115	22000	4.34	4.02	4.93	7. 57	2.68	4.81	6. 23	3.60	6.44	8.36
116	10000	4.00	2.89	3.31	5. 51	2.96	4.39	6. 33	3.97	5.82	7.04
117	800000	5.90	1.75	3.44	9.83	1.88	2.81	5.47	2.61	5. 28	7.39
118	3000	3.48	1.14	3.53	3.55	1.35	2.49	3. 25	1.35	2.96	
119	7200	3.86	1.01	3.25	3.19	1.75	3.64	4.31	2.02	4.51	5.66
120	91000	4.96	1.68	4.60	6.26	1.95	2.42	3.03	2.89	3.75	4.62
121	2900	3.46	1.15	3.95	5. 50	1.81	2.66	4.44	3.12	4.91	5.10
122	9400	3. 97	1.15	4.03	5.12	1.95	3.87	4.42	2.34	3, 95	5.09
123	140000	5.15	1.47	3, 59	5. 31	2.32	3.43	5.11	3.24	4.54	6.97
124	2300	3. 36	0.30	2.77	3.39	1.54	2.29	2.77	1.68	3.09	3. 56
125	320000	5. 51	1.21	3.25	8.62	1.21	1.55	4.03	2.15	5.47	6.24
126	3600	3. 56	1.01	1.79	3.19	1.01	1.28	2.22	1.48	1.95	3. 36
127	69000	4.84	0.48	2.93	3.16	1.13	0.33	0.54	0.27	0.35	0.97
128	31000	4.49	0.62	2.09	4.14	1.48	2.89	3, 17	1.55	2.89	4.51
129	57000	4.76	0.10	2.96	3. 78	0.89	2.46	3. 59	2.20	3. 20	5.47
130	200000	5. 30	3.64	4.98	17.50	4.14	12.90	18, 50	8.06	16.40	19.00
131	5800	3. 76	0.49	2.42	3. 51	0.69	2.27	2.74	2.07	3. 56	4.70
132	11000	4.04	2.77	3, 69	7.49	3.44	6.06	7.42	4.89	8. 29	9.46
133	120000	5.08	1.28	3.25	5.68	1.41	3. 28	4.03	2.53	3. 20	
134	360000	5. 56	2.14	3, 33	9.71	1.08	3.84	5.66	1.82	4.99	6.34
135	79000	4.90	1.54	3.48	9.35	1.54	3. 78	5.94	3.24	5.66	8.10
136	7100	3.85	1.35	3.33	5.97	1.28	3.64	4.12	2.69	3.92	
137	3500	3.54	1.15	3.01	3.98	0.69	2.93	3. 78	2.66	3.87	4.72
138	61000	4. 79	0.77	3.70	5.41	1.79	3, 35	4.46	2.89	4.19	5.94
139	150000	5.18	0.69	2.34	4.56	0.69	1.54	2, 20	1.28	2.20	2.46
140	130000	5, 11	1.42	3.90	11.30	0.48	2. 29	3.44	1.82	3.44	3, 92
141	4900	3.69	0.37	2.34	3.16	0.89	2.20	3. 40	1.93	2.85	3. 59

표 32. 봄철 원유의 SPC법과 색차계에 의한 배양온도별 RRT검사

시료	총균수	총균수	a va	lue(1	5℃)	a va	alue(30)°C)		alue(35	5°C)
번호	(35℃)	(log)	5hr	10hr	24hr	1hr	2hr	3hr	1hr	2hr	3hr
142	25000	4.40	1.42	2.59	5.77	0.42	3.79	5.47	2.05	5. 59	8.08
143	920000	5, 96	3.98	6.53	13.00	4.18	10.30	17.40	7.48	17.30	18.90
144	12000	4.08	1.67	4.26	6.13	1.46	3.02	4.46	3.09	5.62	7.48
145	18000	4.26	1.69	3.36	6.48	1.90	4.28	5.47	3.79	6.87	8.67
146	1100000	6.04	1.73	2.68	9.96	0.79	2.89	4.74	2.41	5.62	7.87
147	44000	4.64	0.20	1.14	3.71	0.27	0.63	1.85	1.15	1.85	3.02
148	8900	3, 95	0.63	1.56	3.71	0.42	1.15	2.54	1.10	2.26	3.92
149	6100	3, 79	0.89	3.01	4.90	1.15	2.12	3.71	1.85	4.41	4.90
150	11000	4.04	2.26	2.95	5.80	1.31	2.95	3.92	2.20	5. 30	4.81
151	44000	4.64	1.73	2.80	4.82	1.10	3.23	4.69	2.81	4.90	6. 78
152	16000	4.20	1.73	4.26	7.31	0.68	2.76	3.98	2.35	4.86	5.93
153	1700000	6, 23	0.79	2.26	5.72	0.52	0.99	1.46	0.99	1.93	3.30
154	470000	5.67	1.73	3.92	5.03	0.74	2.14	3.30	2.35	3.98	5.14
155	1200000	6.08	0.74	3.30	5.07	0.89	1.82	3.16	1.82	4.78	4.51
156	6300	3.80	1.87	4.47	6.73	1.76	3.63	3.91	3.16	5. 46	6, 81
157	34000	4.53	1.46	3.51	4.87	0.48	2.55	3.02	1.81	3. 70	4.86
158	4100	3, 61	1.40	3, 57	5.64	0.94	3. 23	3.91	2.28	4.38	5. 34
159	7700	3.89	1.46	3.30	3.78	0.79	1.25	3.30	1.14	3.02	3.50
160	17000	4.23	2.05	3.92	5.80	1.15	3. 71	4.90	3.16	5. 79	7.18
161	9900	4.00	2.26	3.92	7.20	2.39	4.98	6. 78	5. 30	9.17	10.70
162	7700	3.89	1.21	1.79	2.75	1.48	2.17	3.42	1.00	2.66	4.33
163	150000	5.18	2.15	3.86	6.24	2.15	3.77	5, 20	3.09	5.40	6. 57
164	19000	4.28	2.12	2.96	5.30	1.75	3.35	4.82	1.96	3.84	5. 52
165	35000	4.54	1.64	2.22	4.05	0.74	1.90	2.59	1,21	2.39	3. 56
166	36000	4.56	2.06	3. 59	5, 62	1.43	2.81	3. 77	2.33	3. 29	4.46
167	32000	4.51	1.16	2.96	4.53	0.27	2.12	2.59	1.69	3.08	4.05
168	610000	5. 79	0.84	2, 88	4.69	0.36	1.75	2.23	1.53	1.80	2. 56
169	700000	5, 85	1.80	2.63	6.02	0.91	2.33	2.59	1.38	3. 22	3, 91
170	430000	5.63	1.69	2.96	6.88	1.00	2.17	3, 84	1.90	2. 81	3.63
171	280000	5, 45	1.43	2.27	6.88	0.74	1.69	2.66	1.48	2.81	4.05
172	340000	5.53	2.06	3.86	7.47	2.59	4.95	6.83	4.19	6.94	9.89
173	66000	4.82	2.39	4.42	6.28	2.39	5.03	6.92	4.05	7.82	8. 52
174	170000	5. 23	4.80	6.54	10.00	4.87	7.54	10.30	6.17	10.20	13.30
175	1800 15000	3, 26	2.48	5.16	6.30	2.54	5.16	6.05	3.70	6.65	7.14
176		4.18	2.72	5. 19	8.07	2.78	4.98	7.82	3.77	6.80	9.13
177	8500	3, 93	1.58	2.90	3.98	1.38	3.01	3. 70	2.33	3.49	4.67

시료	총균수	총균수	a va	lue(1	5℃)	a va	alue(30)°C)	a v	alue(35	5°C)
번호	(35℃)	(log)	5hr	10hr	24hr	1hr	2hr	3hr	1hr	2hr	3hr
178	64000	4.81	0.42	1.79	2.48	0.38	0.58	1.53	0.10	1.75	2.44
179	14000	4.15	2.27	3.59	4.94	1.43	3.08	3. 35	2.12	3. 29	4.46
180	16000	4.20	2.81	4.14	5.59	1.96	4.12	3.98	3.14	4.95	6.42
181	14000	4.15	2.89	4.20	6.02	2.74	3. 22	4.67	3.22	5.08	6. 25
182	56000	4.75	2.33	4.83	5.90	2.17	4.05	5.73	3.35	6.13	7.32
183	12000	4.08	2.48	4.48	6.79	2.59	4.05	5, 23	2.87	5.16	5. 93
184	1700	3, 23	2.93	5.40	6.08	2.29	4.68	5. 81	3.98	6.10	7.72
185	3400	3, 53	3.14	5. 28	7.77	3.70	6. 92	9.32	4.89	8.62	11.80
186	9100	3.96	1.74		3.71	1.58	2.74	3.01	1.58	3.43	4.60
187	94000	4.97	1.13	3.40	5.82	0.45	1.61	2.99	1.61	2.79	4.17
188	250000	5.40	1.50	4.57	11.90	1.50	2.89	3.89	2.40	3.39	4. 28
189	62000	4.79	1.01	3.39	8.89	1.01	1.71	3.19	1.71	3. 29	3.59
190	13000	4.11	1.42	4.26	5.14	1.81	2.10	3, 59	2.60	3. 29	4.28
191	95000	4.98	0.41	2.40	5.18	2.80	0.90	2.10	0.70	2.10	4.20
192	36000	4.56	1.50	3.49	6.07	0.41	2.10	2.80	1.60	2.99	4.39
193	33000	4.52	1.22	2.99	5.07	0.82	1.31	1.80	1.50	2.20	3.19
194	15000	4.18	0.16	1.14	2.60	0.12	0, 85	0, 65	0.65	1.61	2.10
195	28000	4.45	1.22	3, 19	4.08	0.73	1.01	2.30	1.71	1.71	3.39
196	57000	4.76	1.24	3, 96	5.33	1.33	2.99	3, 68	2.21	4.07	5. 55
197	150000	5.18	1.24	3, 27	4.72	1.43	2.11	2.30	2.40	3.28	3.77
198	1300000	6.11	1.42	4.95	7.88	1.33	2.30	3.48	1.81	2.99	4.86
199	97000	4.99	1.24	4.16	7.25	0.65	1.81	2.60	1.81	2.79	4.86
200	97000	4.99	0.82	2.99	6.45	0.82	2.20	2.89	2.00	2.70	3.89
201	3600000	6.56	4.17	7.70	15. 70	4.17	11.60	17.10	6.93	17.50	15.40
202	23000	4.36	0.41	2.50	4.29	1.10	2.10	2.60	1.69	2.60	4.82
203	1200000	6.08	2.79	6.82	16.80	2.10	4.67	10.00	3.98	6.24	9.87
204	520000	5.72	0.37	2.70	9.25	0.16	1.22	2.70	1.22	2.20	4.28
205	1300000	6.11	0.53	4.68	11.60	1.50	3, 39	5. 29	1.71	3. 59	6.17
206	2400000	6,38	0.82		15.50	0.82	3. 59	10.50	1.71	6.17	16, 50
207	1700000	6.23	1.10	5.18	15.50	0.90	2.99	6.10	1.80	4.20	7.38
208	240000	5.38	0.12	2.99	6.95	0.08	1.10	1.80	0.61	1.10	1.80
209	1900000	6.28	1.71	6.82	14.80	1.01	4.09	6.87	2.40	4.78	7.56
210	44000	4.64	0.41	3.40	5.11	0.50	1.69	2. 29	0.99	2.90	4.11
211	7700	3.89	0.61	3.99	7.46	0.82	1.80	2.80	1.31	3.39	4.90

표 33. 여름철 원유의 SPC법과 색차계에 의한 배양온도별 RRT검사

시료	총균수	충균수	a va	lue(1	5℃)	a va	alue(30	0°C)		alue(3	5°C)
번호	(35℃)	(log)	5hr	10hr	24hr	1hr	2hr	3hr	1hr	2hr	3hr
212	80000	4.90	3.59	4.59	9.6	3.08	5.19	7.82	3.78	7.12	9.42
213	25000	4.40	4.45	6.57	10.40	3.06	5. 45	6.34	3.75	6.53	9.30
214	45000	4.65	3, 98	5, 28	10, 10	4.10	7.12	9.05	5.32	8.72	11.50
215	84000	4.92	2.96	4.22	13.60	1.87	4.45	5.65	2, 56	4.83	7.04
216	13000	4.11	2.27	4.15	7, 22	1.28	3.67	4.68	2.97	4.37	6,09
217	15000	4.18	2.37	4.03	18, 10	1.77	2.17	3.36	1.67	2.67	4.37
218	180000	5, 26	3.06	5.34	10.30	1.77	3.67	4.88	2.47	4.88	6.09
219	41000	4.61	2.47	4.47	7.57	1.37	2.78	3, 98	2.27	3.98	4.49
220	210000	5.32	3.06	5.39	12.00	2.37	5.45	6.15	3.95	6.53	8.10
221	11000	4.04	3, 45	5.76	9.14	2.56	3.75	4.95	2.76	4.45	6.53
222	56000	4.75	3.47	5, 65	10.80	2.78	4.37	6, 09	3.17	5.07	6.98
223	30000	4.48	3.47	5.15	15, 60	2.47	4.68	6.09	3.47	5.58	6.98
224	41000	4.61	3.47	•	19.20	2.47	4.56	5.77	2.67	5.07	6.15
225	62000	4.79	3.26	6.25	9, 30	2.46	4.64	6.02	2.96	5, 52	6.72
226	22000	4.34	3.36	4.89	8.41	1.87	3.75	4.56	2.37	3, 95	4.45
227	36000	4.56	3.36	5.89	20.10	2.37	4.45	4.95	2.67	4.76	6.02
228	9700	3.99	3.84	6.12	8.96	2.66	5. 21	6, 40	4.52	6.09	7.09
229	7200	3.86	3.62	6.47	8.83	2.36	4.52	6.77	3, 54	5.59	6.96
230	8100	3.91	4.56	6.71	9.97	3.47	4.88	6.09	3.47	5.58	7.49
231	2000	3.30	3, 67	5.65	8. 41	2.97	3.98	5.19	2.97	5.07	6.09
232	590000	5.77	4.10	l	18.00	4.10	6.93	9.58	5, 84	8.53	12.70
233	88000	4.94	1.97	ì	10.80	1.57	2.27	2.57	1.57	2.07	2.68
234	240000	5.38	1.18		12.50	0.79	1.48	3, 36	0.79	2.47	2, 67
235	56000	4.75	3.98	1	15, 90	2, 57	4.88	5.38	2.97	4.88	6.09
236	91000	4.96	3, 59	4.59	7.32	2.17	2.68	4.10	2.48	4.41	5.12
237	170000	5. 23				0.95	1.27		1.25	2.92	3.59
238	290000	5.46				0.81	2.32	2.98	0.99	2.81	3.64
239	1200000	6.08				2.40	7.44	12.50	2.57	9.75	18.30
240	270000	5.43				0.64	1.31	2.29	1.46	2.11	3.45
241	510000	5.71				0.16	2.32	2.64	0.64	3.30	4.94
242	58000	4.76				1.08	1.27	2.92	1.25	2.43	3.10
243	150000	5.18				1.32	2.19	3.66	1.83	2.36	3.50
244	63000	4.80				0.38	2.08	3. 92	1.71	5, 60	5.77
245	2300000	6.36				2.76	8.08	17.40	4.23	17.10	9.71
246	2400000	6.38				0.29	3.47	8. 26	0. 29	5. 45	12.40
247	95000	4.98			<u> </u>	0.60	1.63	2.29	1.25	2.43	2.61

시료	총균수	총균수	a va	alue(1	5℃)	a va	alue(3	0°C)	a v	alue(3	5℃)
번호	(35℃)	(log)	5hr	10hr	24hr	1hr	2hr	3hr	1hr	2hr	3hr
248	19000	4.28				0.99	1.98	2.64	1.77	2.64	3.13
249	330000	5, 52				0.81	2.98	2.98	1.94	5.78	5.45
250	110000	5.04				1.43	3.30	3.1?	2.26	4.30	5.28
251	76000	4.88				0.14	0.71	1.23	0.85	1.53	2.01
252	89000	4.95				0.47	2.29	3, 10	1.43	3.13	4.77
253	160000	5. 20				1.08	2.29	4.94	1.08	4.28	9.25
254	550000	5.74				0.77	3. 45	7.94	1.74	6.27	15. 20
255	140000	5.15				0.91	2.11	4.77	1.08	3.94	8. 26
256	79000	4.90				0.56	1.41	2.08	0.56	2.25	2.57
257	430000	5.63	1.26		4.91	0.78	2.09	2, 58	1.43	3.08	3.74
258	220000	5.34	0.58	1.87	3.55	0.92	1.41	1.58	1.41	2.40	3.24
259	32000	4.51	1.24	2.54	4.06	1.24	2.73	2.73	1.73	3.57	4.91
260	71000	4.85	0.46	2.07	3.58	0.46	1.45	2.26	1.11	2.92	3.58
261	140000	5.15	0.92	2.39	3.57	0.60	1.26	1.75	1.26	2.42	3.08
262	110000	5.04	1.07	3.05	4.23	0.40	1.41	1.73	1.56	3.07	3.91
263	67000	4.83	1.24	2.87	3. 55	0.26	2.07	2, 57	0.92	2.91	3.24
264	310000	5. 49	0.78	2.73	4.74	0.11	1.43	3.08	1.43	2.92	4.91
265	110000	5.04	0.27	1.19	2.70	0.40	1.07	1.07	0, 26	1.91	2.90
266	230000	5.36	0.46	2.56	4.08	0.46	1.77	3. 41	1.11	2.92	4.57
267	97000	4.99	0.11	2.22	4.08	0.06	1.09	2.07	0.78	1.92	2.25
268	310000	5.49	0.55	1.15	3.72	0.63	0.40	1.04	0.22	1.56	2.39
269	170000	5. 23	0.11	1.51	3.05	0.41	0.26	1.58	0.43	1.41	3.07
270	140000	5.15	0.06	1.87	2. 72	0.41	0, 60	1.58	1.26	2.25	3.41
271	180000	5. 26	0.11	2.72	4.24	0.43	1.41	2.91	1.26	3.58	4.41
272	260000	5.41	0.03	3.06	3. 90	0.60	1.92	2.91	1.26	3.08	4.41
273	62000	4.79	0.60	2.39	3. 39	0.08	0.75	1.91	1.24	2.07	2.90
274	69000	4.84	1.43	2.22	4. 58	0.11	1.09	1.75	1.09	2.91	2.91
275	180000	5, 26	0.33	0.91	1.93	0.51	1.00	0.82	0.82	1.31	1.97
276	210000	5.32	0.15	1.57	2.92	0.15	0.82	1.00	0.34	1.48	2.81
277	6700	3.83	0.34	1.08	1.93	0.51	0.34	1.13	1.00	1.31	1.97
278	27000	4.43	0.20	1.75	2.92	0.15	1.00	1.00	0. 51	1.66	2.32
279	21000	4.32	0.15	1.26	2.25	0.15	0.51	1.00	0.34	0.69	2.15
280	120000	5.08		1.08		0.06	0.60	0.55	0.42	1.38	1.55
281	110000	5.04	0.63	1.26	2.92	0.34	0.02	0.82	0.02	0.86	1.35
282	48000	4.68	0.51	0.91	2.07	0.15	0.51	1.48	0.69	1.48	1.31
283	430000	5.63	0.11	2.03	4.40	0.78	2.12	2.62	1.45	3.29	3.62
284	6300	3.80	0.88	0.51	2.13	0.07	0.73	0.86	0.07	0.90	1.86
285	220000	5.34	1.62	4.58	6. 79	1.95	3.96	3. 78	3.62	6.15	6, 50

시료	총균수	총균수	a va	lue(15	°C)	a va	lue(30	C)	a va	alue(35	C)
번호	(35℃)	(log)	5hr	10hr	24hr	1hr	2hr	3hr	1hr	2hr	3hr
286	290000	5.46		3. 59	5, 77	0.51	2.15	1.97	2.15	3.48	5.48
287	640000	5.81	1.95	3.55	6.62	1.59	2.94	3. 27	2.79	4.97	5.90
288	2400000	6.38	1.45	3.15	5.94	1.45	2.79	3.46	2.62	4.64	4.63
289	120000	5.08	0.96	2.03	3.90	0.78	1.77	2.27	2.12	3.29	4.64
290	110000	5.04	1.13	3, 39	5.60	1.27	2.30	3.46	1.62	3.46	4.13
291	470000	5.67	1.97	4.08	7.61	1.13	3.13	4.81	2.64	5.31	8.32
292	140000	5.15	0.82	3.24	5. 25	1.31	2.47	2.96	1.80	3, 63	4.97
293	61000	4.79	0.69	2.57	4.26	0.82	1.8	1.66	1.17	2.32	3.81
294	250000	5.40	0.34	2.07	4.08	0.29	1.45	2.30	1.80	2.96	3.13
295	410000	5.61	1.09	2.54	5. 25	0.11	1.77	3.11	2.12	3.79	5.31
296	490000	5, 69	0.47	2.54	5. 26	0.64	1.62	2.62	1.62	3.29	3.96
297	1200000	6.08	0.33	1.22	3.57	0.15	0.29	0.96	0.64	1.62	2.96
298	83000	4.92	0.02	1.44	1.93	0.15	0.69	0.82	0.86	1.48	2.15
299	80000	4.90	0.69	0, 50	2.36	0.87	0.11	0.07	0.38	0.11	0.60
300	110000	5.04	1.55	3.04	5.51	1.06	2.72	2.88	1.39	3.38	3.38
301	210000	5.32	1.38	1.38	4.56	0.40	0.89	1.55	0.57	1.72	1.72
302	33000	4.52	0.88	1.71	3.40	0.55	1.38	0.51	1.55	2.39	3.06
303	52000	4.72	0.23	0.89	3.38	0.23	0.89	0.55	1.21	1.55	1.21
304	26000	4.41	0, 55	1.05	3.56	0.55	0.88	0.54	0.55	1.71	1.55
305	270000	5.43	1.38	1.88	5.38	0.89	1.38	1.71	1.21	1.88	3.40
306	570000	5.76	2.72	5.09	10.90	2.05	3.23	5.09	2.89	4.58	6.60
307	300000	5.48	1.21	2.39	7.95	0.88	1.71	2.22	0.71	3.06	3.41
308	560000	5.75	2, 55	4.03	17.00	2.05	3.37	5.86	2.05	4.53	7.18
309	150000	5.18	0.55	1.71	8.72	0.72	1.05	1.38	0.38	0.88	2.05
310	71000	4.85	0.72	1.55	11.00	0.55	0.55	0.02	1.05	0.88	1.88
311	350000	5.54	1.22	2.38	7.02	0.89	1.55	2, 55	0.57	2.22	5.54
312	290000	5.46	1.55	2.38	8.93	0.55	2.38	3.06	0.89	3.56	6.92
313	110000	5.04	2.22	2.89	5. 58	1.71	2.22	2.38	2.22	3.56	3.06
314	180000	5. 26	1.38	3.23	5.93	1.38	2.56	2.39	1.88	3.06	2.73
315	84000	4.92	1.38	2.39	4.91	1.04	1.71	1.37	1.71	2.9	3.41

표 34. 가을철 원유의 SPC법과 색차계에 의한 배양온도별 RRT검사

(단위 : cfu/ml)

시료	총균수	총균수	a va	lue(1	(36	a va	lue(30	(T)	a va	lue(35	(3°
번호	(35℃)	(log)	5hr	10hr	24hr	1hr	2hr	3hr	1hr	2hr	3hr
316	160000	5. 20	1.30	3.40	7.35	2.37	4.42	6.80	2.75	4.99	9.00
317	420000	5.62	1.30	2.44	17, 30	1.84	4.21	7.86	1.29	5.67	11.40
318	190000	5. 28	0.57	1.87	6.94	0.16	2.40	2.58	1.11	2.58	4.04
319	160000	5, 20	0.57	1.68	6.37	0.56	1.82	3.27	0.56	2.72	5.45
320	230000	5.36	0.35	0.38	5.04	1.06	0.20	1.11	0.02	0.02	4.21
321	280000	5.45	1.11	3.58	10.80	1.29	3.31	9.90	1.66	6.80	18.70
322	400000	5.60	1.11	2.44	17. 90	0.75	1.47	3.48	0.93	2.75	4.04
323	120000	5, 08	0.93	2.83	6.43	1.47	2.02	3.48	1.29	2.20	4.04
324	880000	5.94	1.47	4.47	9.75	1.28	6.01	14.80	1.46	7.62	18. 20
325	180000	5. 26	1.29	2.44	6.37	0.75	1.84	3.48	0.20	2.20	4.55
326	580000	5.76	0.38	2.62	7.86	0.20	1.47	2.93	0.38	2.55	3.82
327	470000	5, 67		1	10. 20		3.31	5.67	1.47	4.94	10.60
328	460000	5.66	2.20	3, 73	8.03	1.28	3.66	7, 23	1.82	5.45	12.10
329	330000	5.52	0.57	1.32	5. 27	0.16	1.66	5, 50	0.20	3.13	11.90
330	430000	5.63	1.11	2.83	6. 25	1.10	2.75	4.60	2.02	3.31	6.57
331	63000	4.80	0.75	1.32	4.56	0.75	1.48	1.66	0, 38	1.84	2.80
332	170000	5.23	0.93	1.89	5.32	0.57	0.93	3.13	0.02	2.58	4.64
333	200000	5.30	2, 22	2,83	8, 86	1,11	3, 13	5.67	0.75	3, 48	10.70
334	150000	5.18	0.75	2.06	5.09	0.16	1.28	2, 55	0.74	1.82	4.04
335	200000	5.30	0.35	0, 57	5.09	0.89	0.71	0.75	1.06	0.75	2.22
336	110000	5.04	0.02	0.94	3.16	0.02	1,09	2.00	0.34	0.92	3.10
337	14000	4.15	0.75	2,47	3.62	0.57	1.11	1.84	0.57	1.84	2.95
338	86000	4.93	0.02	0.76	3.22	0.35	0.02	2.22	0.35	0.93	2.60
339	59000	4.77	1.09	0.00	1.72	1.26	0.72	0.17	1.26	0.02	0.94
340	210000	5.32	0.17	1.70	3, 80	0.53	1.30	1.66	0.20	1.11	2.78
341	64000	4.81	0.66	1.95	4.70	0.10	2.21	5, 12	0.48	2.98	7.27
342	100000	5.00	0.47	0.79	3.12	0.87	1.44	2.96	0.30	2.20	5.07
343	23000	4.36	1.44	1	1.73	0.10	0.29	0.29	0.10	0.29	0.48
344	46000	4.66	0.09	1	3.92	0.87	1.46	3.04	1.46	2.85	4.01
345	25000	4.40	0.29	1,51	3.12	0.48	1.46	4.01	1.06	2.05	4.80
346	59000	4.77	0.30	3.13	5.44	1.61	2.36	3.87	1.61	3.12	5.38
347	130000	5.11	0.10	2.93	5.86	1.44	3, 54	7.96	1.62	4.12	9.83
348	98000	4.99	1.22	0.79	3.12	0.11	0.67	0.86	0.11	1.24	1.43
349	48000	4.68	0.67	0.23	2.93	0.47	0.47	0.29	0, 28	0.67	0.29
350	24000	4.38	0.28	1.95	1.95	0.10	0.48	1.24	0.09	0.87	1.82
351	2300000	6.36	0.10	2, 53	5.67	0.66	1.05	3.36	0.28	1.05	4.31
352	180000	5. 26	0.26	2.93	5.44	0.86	1.79	2.92	1.42	2.36	3.87

시료	총균수	총균수	a va	lue(1	5℃)	a va	lue(30)°C)	a va	lue(35	5°C)
번호	(35℃)	(log)	5hr	10hr	24hr	1hr	2hr	3hr	1hr	2hr	3hr
353	150000	5.18	0.47	3, 32	9.96	1.24	2.01	5.07	1.44	3.36	6.60
354	850000	5.93	0.49	3.92	8.63	0.87	3, 57	6.07	1.25	4.94	9.76
355	79000	4.90	0.66	1.56	3.71	0.87	0.67	1.82	0.30	1.24	2.78
356	140000	5.15	1.08	0.92	2.52	0.10	0.31	0.48	0.31	0.09	1.85
357	58000	4.76	1.08	1.71	2.52	0.09	0.68	1.85	0.10	0.68	2.82
358	250000	5.40	0.87	2.14	4.50	0.47	1.44	3.57	0.68	1.44	6.49
359	110000	5.04	0.09	1.56	3.71	0.67	0.87	2.96	0.87	1.44	3.54
360	160000	5. 20	1.44	1.34	2.72	0.67	0.10	1.25	0.10	0.68	1.44
361	170000	5, 23	0.26	1.77	5.48	0.47	1.49	3, 53	2.09	3.32	4.97
362	180000	5.26	0.17	1.35	4.45	0, 35	0.47	1.68	0.26	1.68	2.71
363	140000	5, 15	0.81	1.73	6.13	0.02	0.63	1.88	0, 60	1.46	2.71
364	170000	5.23	0.26	2.17	5, 68	1.07	2.50	4.14	1.89	3.73	5.78
365	100000	5,00	0.35	2.17	4.85	0.05	1.68	2.50	1.68	2.50	3, 53
366	290000	5.46	0.31	2.61	7.24	0.70	1.50	3.11	0.90	2.91	3.71
367	32000	4.51	1.07	0.86	3.62	1.25	0.23	1.23	0.01	0.83	2.08
368	96000	4.98	0.95	0.78	4.44	1.16	0.73	0.47	0.14	0.35	1.07
369	340000	5, 53	0.56	1.77	5.48	1.16	0.26	1.68	0.26	1.07	3.73
370	83000	4.92	1.59	1.14	2.37	1.37	0.77	0.05	0.56	0.05	1.26
371	28000	4.45	0.26	2.38	4.23	0.08	0.89	1.49	0.89	2.30	2.51
372	240000	5, 38	0.35	1.75	6.10	0.68	0.89	2.09	1.49	2.71	4.54
373	1100000	6.04	0.66	3, 83	8.97	1.47	4.14	8.05	2.50	5.98	13.0
374	79000	4.90	0.56	1.96	3.83	0.05	0.26	1.47	0.87	1.07	2.50
375	120000	5.08	1.37	3.20	4.03	0.68	2.50	5, 59	2, 50	4.77	7.81
376	330000	5.52	1.68	2.79	8.15	1.49	3.53	5.98	2.30	5.36	5.75
377	57000	4.76	0.02	2.77	4.04	0.85	1.67	3, 33	1.26	3.54	3.54
378	160000	5.20	0.05	2.16	5.90	1.47	3.32	4.77	2.50	5.16	5.98
379	59000	4.77	0.66	2.37	6.53	1.26	2.09	3.74	2.30	3.94	4.97
380	94000	4.97	0.66	3.20	7.56	0.66	2.30	3. 54	1.68	3.74	6.22
381	82000	4.91	0.95	0.96	4.23	0.28	1.70	2.30	0.89	1.70	2.51
382	200000	5.30	0.05	2.17	4.45	0.47	1.28	2.71	1.07	2.71	3.53
383	120000	5.08	0, 38	1.54	3, 83	0.87	0.87	1.68	0.66	1.89	3.12
384	130000	5.11	1.42	1.96	3.83	0.14	1.28	2.09	0.14	1.28	2.30
385	72000	4.86	0.95	0.92	2.59	0.35	0.56	0.66	0.05	1.68	1.68

주) 15℃의 경우 시료번호 1~66: 1, 2, 3시간 배양, 시료번호 67~257, 275~299: 5, 10, 24시간 배양, 시료번호 258~274: 5, 12, 24시간 배양, 시료번호 300~315: 5, 11, 24시간 배양, 시료번호 316~385: 5, 10, 24시간 배양

3. SPC법과 환원시간에 의한 배양온도별 RRT검사

표 35. 원유의 SPC법과 환원시간에 의한 배양온도별 RRT검사

(단위 : cfu/ml,분)

시료	총균수	총균수	···	15℃			30℃			35℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
1	22000	4.34				428	442	529	389	402	507
2	11000	4.04	1055	1275	1595	317	357	499	148	232	475
3	130000	5.11	1173	1273	1393	314	354	456	217	261	393
4	8800	3.94	1455	1710	1951	433	453	543	370	377	512
5	24000	4.38		1167	1272	190	322	425	130	256	452
6	30000	4.48	1164	1384	1389	275	398	487	206	364	419
7	18000	4.26	1266	1591	1846	208	396	579	147	361	461
8	7400	3, 87	2008		3043	421	576	711	358	453	598
9	260000	5. 41	1260	1380	1600	263	390	478	198	319	440
10	79000	4.90		1152	1257	377	415	505	267	352	437
11	150000	5. 18	1149	1254	1374	161	244	331	135	164	270
12	30000	4.48	1251	1371	1511	330	383	409	261	311	406
13	240000	5. 38	1228	1278	1388	301	343	394	217	308	343
14	54000	4.73	1250	1425	1680	346	378	463	317	340	425
15	20000	4.30	1272	1547	1717	377	427	705	314	357	647
16	100000	5.00	1269	1459	1674	397	424	487	311	334	419
17	10000	4.00	1266	1541	1671	394	421	484	331	386	416
18	20000	4.30	1266	1538	1778	369	418	481	296	328	383
19	67000	4.83	1263	1350	1410	366	388	415	293	325	427
20	11000	4.04	1260	1532	1662	385	412	540	290	322	424
21	140000	5, 15	1385	1475	1655	371	395	460	319	364	402
22	14000	4.15	1385	1620	1835	394	459	519	318	401	453
23	160000	5. 20	1185	1240	1385	298	318	369	262	282	307
24	15000	4.18	1475	1572	1655	392	422	457	336	386	426
25	39000	4. 59	1475	1572	1655	391	421	476	335	360	398
26	12000	4.08	1270	1385	1615	240	350	475	214	334	424
27	6300	3, 80	1185	1270	1495	209	261	309	213	233	303
28	42000	4.62	1355	1475	1655	348	368	418	312	395	447
29	190000	5. 28	1240	1270	1615	237	292	347	211	336	446
30	14000	4.15	1270	1385	1655	236	346	386	210	335	445
31	58000	4.76	1185	1240	1475	185	225	365	159	199	274
32	960000	5. 98		1185	1320	184	239	304	158	203	273

시료	총균수	총균수		15℃			30℃			35℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
33	560000	5.75		1185	1340	258	303	383	232	355	422
34	34000	4.53	1240	1340	1615	237	362	467	156	331	441
35	29000	4.46	1320	1425	1655	361	431	491	308	388	460
36	120000	5.08	1250	1310	1355	305	360	410	272	329	439
37	600000	5. 78		1185	1265	179	234	289	153	198	328
38	250000	5.40	1185	1240	1475	253	343	408	227	377	437
39	710000	5, 85	1265	1320	1495	287	327	394	299	376	436
40	460000	5, 66	1295	1340	1520	306	341	406	345	375	435
41	30000	4.48	2540			351	517	908	269	313	589
42	130000	5.11		1177	1449		285	432		236	423
43	2100	3.32	2633			431	515	715	262	343	485
44	65000	4.81	1125	1322	1942	350	431	614	278	395	526
45	68000	4.83	1499	1656	2691	326	430	613	278	399	525
46	20000	4.30	2150	2535	2750	512	555	651	442	483	584
47	7200	3.86		2534	2749	461	483	651	393	422	523
48	12000	4.08	1496	2533	2748	428	553	721	259	421	582
49	8200	3.91	1797	2537	2827	481	552	724	420	480	581
50	22000	4.34	1651	2536	2746	346	428	552	274	330	444
51	92000	4.96	1218	1440	1795	289	392	480	259	306	478
52	34000	4.53	1589	1934	2274	426	506	679	418	477	653
53	6500	3.81	1793	2533	2823	478	575	678	305	419	617
54	150000	5.18	1371	1587	2047	286	390	574	231	338	442
55	25000	4.40	1068	1234	1651	273	343	504	223	239	389
56	4600	3.66	1369	2310	2820	285	503	748	251	303	474
57	130000	5.11	1066	1209	1584		272	422		223	388
58	17000	4.23	1427	2043	2308	317	456	570	249	337	573
59	18000	4.26	1486	1827	2817	420	455	599	252	336	541
60	84000	4.92	1308	1583	2246	315	419	542	220	260	512
61	34000	4.53	1485	1645	2040	315	472	567	301	412	539
62	17000	4.23	1484	1787	2674	314	453	635	250	335	608
63	7900	3.90	2793			452	498	740	300	411	598
64	23000	4.36	1227	1642	2522	264	313	624	216	232	536
65	52000	4.72		1639	2036	121	239	416		90	382
66	7500	3.88	1430	1785			312	562		231	434
67	23000	4.36				360	480	590	270	390	465
68	460000	5, 66					309	387	269	449	534
69	340000	5, 53	<u> </u>			308	449	621	228	325	448

시료	총균수	총균수		15°C			30℃			35℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
70	32000	4, 51				307	477	552	267	422	492
71	3200	3, 51				384	666	729	266	521	591
72	16000	4.20				383	550	590	265	445	490
73	49000	4.69				382	522	554	264	519	559
74	30000	4.48				303	473	553	222	418	528
75	20000	4, 30				352	547	617	267	490	527
76	7600	3, 88	www.			381	551	616	266	441	516
77	6900	3.84	Carrier State Control			408	583	635	265	440	480
78	36000	4.56	İ			299	379	519	224	349	439
79	24000	4.38				298	348	581	220	318	378
80	4100	3, 61				377	542	612	262	413	485
81	4800	3, 68	and deliberation			296	516	611	216	346	436
82	5600	3, 75				295	580	718	215	485	580
83	6200	3.79				464	654	717	436	509	579
84	16000	4.20				373	463	648	313	410	508
85	3300	3.52		ودوا و المراجعة		292	577	755	212	342	577
86	170000	5, 23		*	ora de la constanta de la cons	291	311	401	216	259	311
87	4500	3.65		min		370	605	700	260	505	625
88	170000	5.23				309	432	536	259	311	431
89	13000	4.11				293	368	431	210	258	368
90	15000	4.18				340	534	649	310	542	650
91	220000	5.34				291	306	396	209	311	426
92	46000	4.66			-	289	375	569	224	270	449
93	20000	4.30				217	476	628	176	428	538
94	34000	4, 53				278	497	627	296	341	447
95	59000	4.77				266	373	441	197	271	406
96	56000	4.75				400	473	590	194	406	480
97	21000	4.32				373	509	589	254	405	479
98	5700	3, 76				398	508	593	287	404	478
99	32000	4, 51				262	402	471	191	337	442
100	4600	3, 66				506	661	796	402	466	531
101	12000	4.08				435	505	585	365	450	530
102	11000	4.04				329	469	534	299	400	474
103	4400	3.64	***			468	618	713	335	473	528
104	25000	4.40	Prince			271	432	617	237	402	527
105	5900	3,77	National Property Control of the Con			235	466	616	195	401	471
106	20000	4.30				288	365	465	245	332	400

시료	총균수	총균수		15℃			30℃			35℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
107	35000	4.54				287	464	554	233	332	399
108	9300	3.97				323	463	553	232	363	433
109	20000	4.30				392	500	612			
110	38000	4.58				220	361	499	193	396	466
111	15000	4.18				284	390	550	241	330	430
112	120000	5.08				144	245	649	103	200	329
113	6700	3, 83				427	553	648	328	452	498
114	12000	4.08				426	612	732	394	451	542
115	22000	4.34			:	245	319	425	180	271	356
116	10000	4.00				319	520	610	190	427	492
117	11000	4.04					728	820		594	651
118	39000	4.59				290	609	684	260	418	644
119	18000	4.26				358	609	684	285	418	594
120	2400	3. 38					734	878	418	595	636
121	6800	3.83					674	761	490	595	615
122	48000	4.68				290	321	610		260	418
123	5800	3.76				512	674	748	419	552	670
124	14000	4.15				359	639	729	260	552	626
125	32000	4.51				512	631	709		541	616
126	13000	4.11				359	610	665	318	420	598
127	84000	4.92				290	622	699		287	598
128	2300	3.36					699	782		616	702
129	5400	3, 73					631	717		515	599
130	5700	3.76				425	623	676		542	616
131	4700	3.67				425	699	880	460	574	644
132	3400	3, 53				425	649	750	355	510	616
133	45000	4.65				310	360	591		288	320
134	1600	3. 20			!		781	880	485	601	637
135	1900000	6. 28				270	469	623		260	601
136	1600	3, 20					612	694		460	564
137	60000	4.78					780	880		645	718
138	40000	4.60				428	540	658	355	531	618
139	210000	5. 32				270	470	634			320
140	17000	4.23				513	694	780	422	602	681
141	22000	4.34			:	295	641	796		485	535
142	800000	5.90				192	272	550	167	264	545
143	3000	3.48				488	718	979	364	615	680

시료	총균수	총균수		15℃		-	30℃			35℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
144	7200	3.86		· · · · · · ·		270	525	715	212	365	510
145	91000	4.96		:		330	550	1069	257	510	563
146	2900	3.46				291	634	792	221	510	·635
147	9400	3.97				295	609	735	232	398	515
148	140000	5.15				244	303	490	186	233	327
149	2300	3.36				495	716	973	326	565	660
150	320000	5. 51				257	387	550	194	296	545
151	3600	3. 56				495	610	716	395	600	660
152	69000	4.84				500	700	895	870	615	707
153	31000	4.49				309	520	611	229	480	545
154	57000	4.76				253	350	552	218	480	545
155	200000	5. 30				75	139	183	45	114	228
156	5800	3. 76				386	852	966	246	752	621
157	11000	4.04				140	423	792	122	483	635
158	120000	5. 08	•			318	530	611	254	519	617
159	.360000	5. 56				243	343	530	195	485	519
160	79000	4.90				179	293	377	158	225	350
161	7100	3.85				296	530	580	225	520	591
162	3500	3.54				295	570	620	225	348	520
163	61000	4. 79				239	343	530	154	314	547
164	150000	5.18				379	408	615	313	500	565
165	130000	5.11				292	427	615	253	510	592
166	4900	3.69				407	554	700	283	475	545
167	94000	4.97				355	420	530	344	512	550
168	250000	5. 40				248	355	458	230	444	535
169	62000	4.79				355	458	510	344	462	512
170	13000	4.11	:			281	700	805	372	535	628
171	95000	4.98				294	355	440	250	281	358
172	36000	4.56				281	510	605	328	406	462
173	33000	4. 52				403	458	530	328	462	512
174	15000	4.18				625	700	805	512	535	610
175	28000	4.45				530	645	773	323	535	650
176	57000	4.76				311	530	675	227	353	425
177	150000	5.18				325	550	660	282	480	610
178	1300000	6.11				315	382	458	282	406	445
179	97000	4. 99				265	325	421	230	281	344
180	97000	4.99				325	460	531	282	445	535

시료	총균수	총균수		15℃			30℃			35℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
181	3600000	6.56				109	149	248	100	154	228
182	23000	4.36				440	717	850	314	592	760
183	1200000	6.08				109	228	282	110	228	282
184	520000	5.72				295	325	403	284	345	373
185	1300000	6.11				255	295	342	250	300	330
186	2400000	6.38					185	282	180	210	248
187	1700000	6. 23				228	265	312	180	248	284
188	240000	5, 38				342	384	421	345	386	425
189	1900000	6. 28				176	266	312	180	268	315
190	44000	4.64				325	460	550	285	374	425
191	7700	3.89				295	370	421	232	285	330
192	170000	5. 23				285	368	430	250	315	335
193	290000	5.46				285	368	430	250	315	335
194	1200000	6.08					137	285		127	250
195	270000	5.43				350	375	445	250	335	365
196	510000	5. 71				250	285	397	225	250	335
197	58000	4.76				375	433	510	250	342	460
198	150000	5.18				350	397	510	250	342	415
199	63000	4.80					310	510		250	415
200	2300000	6.36					142	285			133
201	2400000	6.38				150	250	351	120	225	250
202	95000	4.98				370	445	585	317	343	445
203	19000	4.28				370	490	660	317	445	480
204	330000	5. 52				250	377	445	240	317	385
205	110000	5.04				286	351	475	240	319	385
206	76000	4.88				450	540	710	415	480	530
207	89000	4.95				286	351	433		252	385
208	160000	5. 20				150	287	370	120	226	250
209	550000	5.74				150	280	370		226	250
210	140000	5.15					287	417	120	240	320
211	79000	4.90				377	490	585	320	344	445
212	430000	5.63				315	405	482	235	351	403
213	220000	5.34				354	405	482	300	351	403
214	32000	4.51				376	535	600	300	421	442
215	71000	4.85				336	443	535	220	375	421
216	140000	5.15				336	424	482	261	351	403
217	110000	5.04				336	443	482	261	351	386

시료	총균수	총균수		15℃	## toget		30℃			35℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
218	67000	4.83				337	424	482	300	387	421
219	310000	5.49				251	337	390	194	261	334
220	110000	5.04				337	390	443	278	334	375
221	230000	5.36				265	355	405	237	300	334
222	97000	4.99				305	337	390	249	300	334
223	310000	5.49				337	390	443	302	352	386
224	170000	5. 23				337	390	424	249	302	334
225	140000	5.15				337	424	482	250	335	375
226	180000	5.26				265	337	424	195	261	315
227	260000	5. 41				265	337	405	213	302	352
228	62000	4.79				337	405	455	250	352	421
229	69000	4.84				280	355	455	264	352	403
230	180000	5. 26				430	482	690	283	387	455
231	210000	5.32				370	455	588	283	387	475
232	6700	3, 83				482	645	778	405	455	540
233	27000	4.43				350	390	420	283	345	367
234	21000	4.32				455	482	570	325	345	405
235	120000	5.08				350	430	520	228	260	305
236	110000	5.04				310	370	405	388	428	475
237	48000	4.68				405	482	588	145	260	368
238	430000	5, 63				265	352	455	283	405	515
239	6300	3, 80				370	475	595	283	345	405
240	220000	5.34				132	290	457	102	307	388
241	290000	5.46				290	353	430	210	260	307
242	640000	5.81				265	370	475	145	285	388
243	2400000	6.38				235	310	430	98	174	350
244	120000	5.08				265	430	522	174	350	430
245	110000	5.04				265	430	588	145	350	455
246	470000	5, 67				150	247	354	110	174	285
247	140000	5.15				248	354	390	230	275	350
248	61000	4.79				310	390	458	238	308	345
249	250000	5.40				290	370	430	230	308	370
250	410000	5.61				267	354	430	179	263	350
251	490000	5.69				310	370	430	230	270	308
252	1200000	6.08				310	354	420	263	290	340
253	83000	4.92				430	475	548	340	390	405
254	80000	4.90				430	475	548	350	390	405

시료	총균수	총균수		15℃			30℃			35℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
255	110000	5.04		•		320	405	475	230	335	405
256	210000	5.32				355	450	515	335	380	420
257	33000	4. 52				450	530	645	320	380	430
258	52000	4.72				450	515	645	353	447	473
259	26000	4.41				450	495	558	335	380	449
260	270000	5. 43				321	384	450	230	287	335
261	570000	5. 76				197	290	368	165	247	320
262	300000	5. 48				300	355	407	230	287	367
263	560000	5. 75				192	262	338	165	208	320
264	150000	5.18				322	407	475	275	335	405
265	71000	4.85				320	384	515	275	335	460
266	350000	5. 54				235	275	338	180	210	261
267	290000	5.46				235	275	338	170	210	261
268	110000	5.04				324	475	595	289	383	460
269	180000	5. 26				370	515	595	320	430	474
270	84000	4.92				340	450	595	289	368	450
271	160000	5. 20				125	170	365	105	165	363
272	420000	5. 62				125	185	246	105	155	302
273	190000	5. 28				215	290	390	177	245	302
274	160000	5. 20				185	265	325	165	235	302
275	230000	5. 36				235	265	325	190	225	269
276	280000	5. 45				130	170	210	100	135	185
277	400000	5. 60				181	260	370	172	265	400
278	120000	5.08				210	320	385	172	265	358
279	880000	5.94				95	132	210	100	110	185
280	180000	5. 26				195	260	365	162	242	358
281	580000	5.76				205	282	360	185	260	330
282	470000	5.67				165	205	257	95	170	237
283	460000	5.66				150	180	315	95	130	292
284	330000	5.52				170	205	282	132	170	209
285	430000	5.63				180	240	355	132	185	260
286	63000	4.80				277	375	419	232	325	365
287	170000	5.23		į		200	277	340	166	233	305
288	200000	5.30				123	201	310	128	166	233
289	150000	5.18				200	310	375	180	288	350
290	200000	5.30				235	310	355	210	255	315
291	110000	5.04				250	347	370	228	295	345

시료	총균수	총균수		15℃		-	30℃			35℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
292	14000	4.15	<u> </u>	•		370	414	534	283	360	436
293	86000	4.93				250	306	370	215	250	320
294	59000	4.77				349	395	414	283	345	390
295	210000	5.32				330	414	489	250	345	390
296	64000	4.81				185	210	278	160	180	273
297	100000	5.00				210	270	355	180	244	290
298	23000	4.36				350	370	426	330	366	405
299	46000	4.66				258	328	395	197	273	330
300	25000	4.40				210	257	347	181	234	330
301	59000	4.77				225	275	385	177	229	325
302	130000	5.11				140	184	252	135	178	240
303	98000	4.99				301	355	380	255	305	342
304	48000	4.68		;		342	368	433	289	342	400
305	24000	4. 38				368	443	588	289	361	405
306	2300000	6. 36				201	222	296	174	225	264
307	180000	5. 26				248	280	375	175	320	356
308	150000	5.18				179	222	322	153	191	322
309	850000	5, 93			:	163	248	298	130	176	286
310	79000	4.90				278	363	396	264	338	390
311	140000	5.15				333	381	424	259	318	351
312	58000	4.76				266	317	381	245	265	319
313	250000	5. 40				196	243	293	173	199	260
314	110000	5.04		'		266		333	221	319	347
315	160000	5. 20				285	320	381	260	310	347
316	170000	5. 23				209	295	376	165	235	302
317	180000	5. 26				275	339	443	252	320	364
318	140000	5.15				274	309	424	251	319	385
319	170000	5. 23				206	273	357	143	232	362
320	100000	5.00				254	307	479	161	281	383
321	290000	5. 46				221	290	390	132	299	355
322	32000	4.51				334	474	589	279	399	549
323	96000	4. 98		İ		288	333	407	261	316	359
324	340000	5. 53				218	271	304	162	228	277
325	83000	4.92				391	469	584	357	416	447
326	28000	4.45				353	403	515	295	380	415
327	240000	5. 38				231	301	366	191	274	329
328	1100000	6.04				118	198	268	98	138	242

시료	총균수	총균수		15℃			30℃			35℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
329	79000	4.90				299	387	415	257	327	377
330	120000	5.08				176	244	296	96	188	271
331	330000	5. 52				117	265	430	95	240	420
332	57000	4.76				244	347	494	186	308	354
333	160000	5. 20				97	279	373	93	238	288
334	59000	4.77				182	262	345	123	287	412
335	94000	4.97				224	344	426	151	218	371
336	82000	4.91				330	395	505	267	349	455
337	200000	5.30				259	343	407	217	284	348
338	120000	5.08				275	368	423	233	283	347
339	130000	5.11				291	377	422	264	317	387
340	72000	4.86				376	456	571	301	366	432

4. 배양온도별 SPC와의 상관관계 및 회귀방정식 산출

가. RRT법을 응용한 색차계에 의한 세균검사법

SPC법과 최적 상관관계가 높은 값을 얻기 위해서 RRT법을 배양온도별, 배양시간별로 색차계의 a값을 측정하고, SPC 배양온도는 15℃, 30℃, 35℃별로 하여측정한 값과 상관성이 있는지를 회귀분석하였다.

표 36은 원유를 대상으로 RRT법과 SPC법간의 회귀분석한 결과로서 RRT법은 15℃에서 24시간 배양했을 때 r= 0.43으로서 가장 높은 값을 나타내었으며, 배양시간이 증가할수록 상관성이 높은 경향을 보였다. 그러나 전반적으로 상관관계가 매우 낮게 나타나는 문제점이 있었다.

표 36. 원유에서의 SPC와 온도 및 배양시간별 색차계 a 값과의 관계

RR	RRT법		જે! નો મી જો રો	21-71-71-W/	
온도별	배양시간별	시료수	회귀방정식	상관관계(r)	
	5 시간	158	Y = 0.084X + 4.862	0.07	
15℃	10 시간	204	Y = -0.014X + 4.846	0.02	
	24 시간	212	Y = 0.130X + 4.054	0.43	
	1 시간	192	Y = 0.101X + 4.741	0.08	
30℃	2 시간	198	Y = 0.095X + 4.705	0.14	
	3 시간	202	Y = 0.118X + 4.407	0.31	
	1 시간	216	Y = -0.019X + 4.927	0.02	
35℃	2 시간	240	Y = 0.059X + 4.669	0.12	
	3 시간	224	Y = 0.083X + 4.397	0.29	

주) Y = Initial bacterial log count, X = "a" value of RRT by color difference meter reading 1 hour incubation

나. RRT법을 응용한 환원시간에 의한 세균검사법

레자주린이 첨가된 원유의 배양온도를 35℃, 30℃, 15℃별로 배양하여 원유의 총균수에 대해 SPC값과 색도별 레자주린 환원시간과의 상관관계를 조사함으로써 표준방법의 대체방법으로서 현장적용 가능성 여부를 판가름해 보았다.

SPC값과 색도별 레자주린 환원시간과의 상관관계를 표 37과 같으며, 분포도는 그림1~그림3과 같다. 표 37에서 보는 바와 같이 레자주린을 첨가한 우유의 배양온도를 15℃로 했을 때 청색에서 청자색으로 환원되는 시간의 상관계수(r)가 -0.49이었고, 청색에서 보라색으로 환원되는 시간의 상관계수(r)가 -0.64이였으며, 청색에서 분홍색으로 환원되는 시간의 상관계수(r)는 -0.64로서 김 등(1994)이 Lumac Norm test의 경우 r= 0.46이었고, Lumac ATP-F test는 봄철에 r= 0.56, 여름철에 r= 0.69이였다고 한 결과와 유사한 결과를 얻었다. 미생물수를 산출하는데 소요되는 시간은 원유의 미생물수가 10⁴, 10⁵, 10⁶cfu/ml일 경우 청색에서 청자색으로 환원되는 시간은 각각 29.3시간, 17.5시간, 5.8시간이었고, 청색에서 보라색으로 환원되는 시간은 각각 35.6시간, 20.0시간, 4.5시간이었으며, 청색에서

분홍색으로 환원되는 시간은 각각 43.0시간, 23.2시간, 3.4시간으로 나타났다. 그러나 세균수가 적을 경우에는 검사시간이 너무 오래 소요됨으로써 신속검사에는 부적합한 것으로 보였다.

표 37. 원유에서의 SPC(30℃)와 청색에서 환원색까지 도달하는 레자주린 환원시 간과의 관계

RRT	법	リコム	ו עבורור	>1→1→1→1→1/ \
온도별	환원색	시료수	회귀방정식	│ 상관관계(r)
	청자색	50	Y = -0.0852X + 6.495	-0.49
15℃	보라색	56	Y = -0.0643X + 6.289	-0.64
	분홍색	50	Y = -0.0505X + 6.171	-0.64
	청자색	289	Y = -0.3208X + 6.474	-0.65
30℃	보라색	276	Y = -0.2894X + 6.789	-0.80
	분홍색	263	Y = -0.2606X + 7.014	-0.83
	청자색	283	Y = -0.3101X + 6.102	-0.51
35℃	보라색	270	Y = -0.3343X + 6.732	-0.74
	분홍색	278	Y = -0.3148X + 7.044	-0.77

주) Y = Initial bacterial log count, X = Reduction time from blue color to reduction color

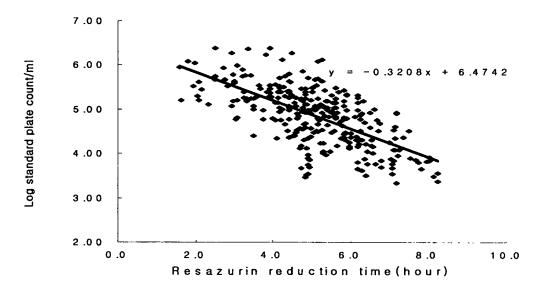


그림 1. 원유에서의 SPC(30℃/48h)와 30℃에서 배양했을 때 청색에서 청자색까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

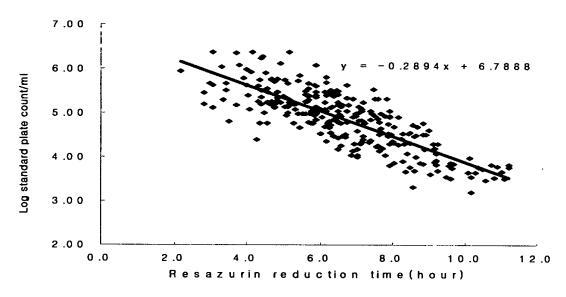


그림 2. 원유에서의 SPC(30℃/48h)와 30℃에서 배양했을 때 청색에서 보라색까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

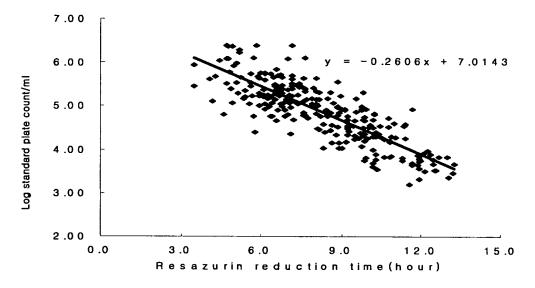


그림 3. 원유에서의 SPC(30℃/48h)와 30℃에서 배양했을 때 청색에서 분홍색까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

레자주린을 첨가한 우유의 배양온도를 30℃로 했을 때 청색에서 청자색으로 환원되는 시간의 상관계수(r)가 -0.65이었고, 청색에서 보라색으로 환원되는 시간의 상관계수(r)가 -0.80이었으며, 청색에서 분홍색으로 환원되는 시간의 상관계수(r)는 -0.83으로서 임 등(1994)이 환원시간에 의한 세균검샤법을 고안하여 상관계수를 구한 결과 청색에서 청자색으로의 환원시간일 때에는 r= 0.75, 검출시간은 1.5~4시간, 청색에서 보라색까지의 환원시간일 때에는 r= 0.88, 검출시간은 2.5~7시간, 청색에서 분홍색까지의 환원시간일 때에는 r= 0.85, 검출시간은 5~11시간이었다고 한 결과와 약간 상관관계는 낮았지만 그 당시 원유의 세균수가 많았고, 검사 시료수가 적었던 점을 감안 할 때 비교적 높은 결과를 얻었다. 또한 임 등(1995)은 Bactoscan을 이용하여 SPC와의 상관계수를 구한 결과 전체시료(n=3092)를 대상으로 할 때 Standard plate count(X)와 Bactoscan count(Y)와의회귀방정식은 Y = 0.796X + 1.240(log)이고, 상관계수는 0.83(p<0.0001)이었다고한 결과와 유사한 결과를 얻었다.

미생물수를 산출하는데 소요되는 시간은 원유의 미생물수가 10^4 , 10^5 , 10^6 cfu/ml일 경우 청색에서 청자색으로 환원되는 시간은 각각 7.7시간, 4.6시간, 1.5시간이었고, 청색에서 보라색으로 환원되는 시간은 각각 9.6시간, 6.2시간, 2.7시간이었으며, 청색에서 분홍색으로 환원되는 시간은 각각 11.6시간, 7.7시간, 3.9시간으로 나타남으로써 Bactometer의 분석시간인 $2\sim12$ 시간과 유사한 결과를 얻었다.

레자주린을 첨가한 우유의 배양온도를 35℃로 했을 때 청색에서 청자색으로 환원되는 시간의 상관계수(r)가 -0.51이었고, 청색에서 보라색으로 환원되는 시간의 상관계수(r)가 -0.74이었으며, 청색에서 분홍색으로 환원되는 시간의 상관계수(r)는 -0.77로서 임 등(1994)이 환원시간에 의한 세균검사법을 고안하여 상관계수를 구한 결과 청색에서 청자색으로의 환원시간일 때에는 r= 0.74, 검출시간은 1~5시간, 청색에서 보라색까지의 환원시간일 때에는 r= 0.75, 검출시간은 1~5시간, 청색에서 분홍색까지의 환원시간일 때에는 r= 0.86, 검출시간은 3~9시간이었다고 한 결과와 약간 상관관계가 낮은 결과를 얻었다.

미생물수를 산출하는데 소요되는 시간은 원유의 미생물수가 10^4 , 10^5 , 10^6 cfu/ml일 경우 청색에서 청자색으로 환원되는 시간은 각각 6.8시간, 3.6시간, 0.3시간이었고, 청색에서 보라색으로 환원되는 시간은 각각 8.2시간, 5.2시간, 2.2시간이었으며, 청색에서 분홍색으로 환원되는 시간은 각각 9.7시간, 6.5시간, 3.3시간으로 나타남으로써 Bactometer의 분석시간인 $2\sim12$ 시간보다 많은 시간단축을 얻었다.

이와같은 결과를 종합해 볼 때, 온도간에는 상관계수가 30℃, 35℃, 15℃ 순이 었고, 환원색간에는 분홍색, 보라색, 청자색 순으로 상관계수가 높았으며, 검사 시간은 35℃, 30℃, 15℃ 순으로 짧았다.

이와같이 30℃에서 보라색 또는 분홍색으로 환원되는 시간이 상관계수가 각각 r= -0.80과 r= -0.83, 검사시간은 원유의 미생물수가 $10^4 \sim 10^6 c f u/m l$ 일 경우 2.7~ 9.6시간과 3.9~11.6시간으로 가장 적합한 것으로 나타났다.

이는 외국의 경우 Bactoscan과 SPC법과의 상관계수가 r= 0.84(Suhren 등, 1988)

r= 0.71(0'Conner와 0'Riordan, 1991), r= 0.86(0'Conner, 1984) 이었고, Impedance법과 SPC법과의 상관계수를 보면 r= -0.80(Cady 등, 1978), r= -0.67 (0'Conner, 1979), r= -0.96(Firstenberg-Eden과 Tricarico, 1983), r= -0.88 (Gnau와 Luedecke, 1982), r= -0.82(Bossuyt와 Waes, 1984)라고 하였으며, ATP법과 SPC법과의 상관계수를 보면 r= 0.93(Bossuyt, 1981), r= 0.83(Bossuyt, 1982), r= 0.63(Britz 등, 1980), r= 0.95(Bossuyt와 Waes, 1984)라고 보고한 결과와 유사한 결과를 얻었다.

따라서 신속검사법으로는 30℃에서 보라색 또는 분홍색으로 환원되는 시간이 외국의 신속세균검사기기와의 상관계수 및 검사시간을 비교해 볼 때 대체가능한 것으로 나타났다.

제 3 장 식육의 신속 세균 검사법 개발 연구제1절 서설

최근, 벨기에산 고기에서 다이옥신이 문제가 되어 반품되는 사례 등으로 식품의 안전성과 건전성에 국민의 관심이 고조되고 있는 실정이다. 이와같이 식품의 안전성과 건전성을 확보하고 식중독을 방지하기 위하여 국제적으로 높이 평가를 받고 있고, FAO/WHO가 권장하는 위해요소 중점관리기준(HACCP)의 활용이 식품 위생관리의 국제적인 추세가 되고 있다.

현재, 우리나라 축산업에 HACCP 제도를 도입하기 위하여 농림부에서는 올해 유제품 및 육가공업체에서 시범적용하고 있으며, 추후 도축업에도 적용할 예정으로 있다. 그러나, 식육의 경우는 위생관리에 중요한 미생물을 검사하는데 표준방법인 standard plate count method(표준평판법, SPC)을 사용하고 있어 많은 노동력과 검사시간이 48시간 소요됨에 따라 사후관리 밖에 적용을 못하고 있는 실정이기 때문에 신속한 결과를 알 수 있는 통상법의 필요성을 인식하게 되었다.

본 기술을 통하여 식육의 세균수를 판별하는 screening test에 이용 가능하고, 도축장에서의 도살에서 부터 식육으로 해체될 때 까지 단계별 오염원인이 추적가 능하여 식육의 품질을 신속히 판별함으로써 위생적인 관리에 이용될 수 있다.

식육의 신속세균검사장비로는 Bactometer, Bactrac, Lumac 등이 있는데 각 기종별로 SPC법과의 상관계수를 보면 Impedance법인 Bactometer와 Bactrac은 r=-0.83~-0.93(Chen 등, 1993; Pless와 Reisinger, 1995)이었으며, ATP법인 Lumac biocounter는 r= 0.71~0.95(Orth와 Steigert, 1996; Steigert와 Kirschner, 1997; Werlein, 1996; Werlein 과 Fricke, 1975)라고 보고하였다. 한편, resazurin reduction test(RRT)법은 산화환원전위에 의해 색소가 변하기 때문에 균의 활성에 따라 색의 변화가 좌우되므로 식육내 중온성균이 많을수록 기존의 RRT법(APHA, 1985)의 배양온도가 36±1℃이므로 정확도가 높았으나, 최근의 원유내의 세균분포가 저온성균이 많아지게 되어 이 배양온도로는 색의 환원시간이 늦어지고 정확도가 낮아지게 된다. 따라서 본 연구는 배양온도를 달리하여 실험방법이 간단하고 검사비용이 저렴하며, 단시간내에 세균수를 측정할 수 있는 현장적용 가능한 방법을 확립하기 위하여 시도하였다.

제2절 재료 및 방법

1. 식육의 수집

시료로 사용한 식육은 1999년 11월부터 2000년 8월까지 경기도 지역의 백화점이나 대형 슈퍼에 비치되어 있는 냉장육을 사용하였으며, 검사시료는 아이스젤이 내장된 아이스박스를 이용하여 2~4℃로 운반되었다. 실험실까지 걸리는 시간은약 1시간 정도이며, 실험실에 도착한 즉시 미생물 검사를 실시하였다.

2. 총균수 검사

가. 축산물의 가공기준 및 성분규격(1998)

식육 표면의 일정면적(100cm²)을 일정량(5~10ml)의 희석액으로 습한 면봉으로 문질러 일정량(45~90ml)의 희석액이 있는 시료채취용기에 넣고 세게 진탕하여 부착균의 현탁액을 조제하여 시험용액으로 한 다음 채취한 시료액 10ml와 희석액 90ml를 혼합하여 10진 희석법으로 희석하여 희석액 1ml와 SPC agar를 분주하여 응고시킨 다음 35℃에서 48시간 배양하였다.

나. ISO 규격(1988)

상기와 동일하며, 배양온도는 30℃에서 72시간 배양하였다.

다. Ingram 과 Simonsen(1980)

상기와 동일하며, 배양온도는 25℃에서 72시간 배양하였다.

3. 저온성균수 검사

전처리 방법은 총균수와 동일하며, SPC agar 평판에 희석시료를 접종한 후 7℃에서 10일 동안 배양하여 산정하였다.

4. 젖산균수 검사

전처리 방법은 총균수와 동일하며, BCP agar 평판에 희석시료를 접종한 후 35℃에서 48시간 동안 배양한 다음 발생한 황색의 집락을 유산균의 집락으로 계측하였다.

5. 색차계에 의한 배양온도별 Resazurin reduction test

식육을 SPC법으로 35℃/48시간, 30℃/72시간, 25℃/72시간 별로 배양하여 총 균수를 측정하였고, RRT검사를 하기 위해 차광된 250ml 플라스크에 멸균증류수 200ml와 resazurin 11mg을 넣어 완전히 용해시킨 후 냉각하여 시험용액 10ml에 20% 탈지분유 10ml와 조제 resazurin액 1ml 비율로 넣어 25℃, 30℃, 35℃별로 각각 1h, 2h, 3h 배양하여 Colordifference meter(ColorQuest II, Hunter Lab. 미국)를 이용하여 색차계 a 값을 측정하였다.

6. 환원시간에 의한 배양온도별 Resazurin reduction test

차광된 250ml 플라스크에 멸균증류수 200ml와 resazurin 11mg을 넣어 완전히 용해시킨 후 냉각하여 시험용액 10ml에 20% 탈지분유 10ml와 조제 resazurin액 1ml 비율로 넣어 25℃, 30℃, 35℃별로 배양하는 동안 색조판(한국공업협회)을 이용하여 청색(5PB 7/4), 청자색(10PB 7/5.5), 보라색(5P 7/4) 및 분홍색(10P 7/8)으로 각각 환원되는 시간을 측정하였다.

7. 자료 분석

실험에서 얻어진 색차계의 a 값과 SPC 값, 색소 환원시간과 SPC 값은 Microsoft Excel 97(Microsoft Corp., 1997)에 입력하여 상관계수 및 회귀방정식을 산출하였다.

제 3 절 결과 및 고찰

1. 식육의 배양온도별 세균수 분포조사

가. 계절별, 세균종류별 세균수 측정

겨울철 쇠고기의 총균수는 배양온도와 상관없이 천 미만 cfu/ml이 가장 많은 비율을 보였다. 총균수 대비 저온성균수의 분포를 보면 배양온도가 높을수록 저온성균의 분포가 점차 증가하는 경향을 보였으며, 특히 총균수가 5만 ~ 50만 미만 cfu/ml에서는 저온성균의 비율이 매우 높게 나타났다.

표 38. 겨울철 쇠고기의 총균수 대비 저온성균수의 분포

カラム		총균수		총균수 대비	저온성균수
세균수	온도	시료수	비율(%)	시료수	비율(%)
	25℃	7	35, 0	7	74.6
천 미만	30℃	8	40.0	8	289.3
	35℃	12	44.5	11	700.1
	25℃	7	35.0	7	263. 2
천 ~ 1만 미만	30℃	6	30.0	6	203.4
	35℃	3	11.1	3	310.0
	25℃	_	-	-	-
1만 ~ 5만 미만	30℃	-	-	-	_
	35℃	4	14.8	4	776.6
	25℃	-	-		-
5만 ~ 10만 미만	30℃	1	5.0	1	2535.7
	35℃	5	18, 5	5	1651.0
	25℃	-		-	-
10만 ~ 50만 미만	30℃	5	25.0	5	1436.9
	35℃	3	11,1	3	1482.4
	25℃	1	5.0	1	151.1
50만 ~ 100만 미만	30℃	_	***	-	-
	35℃	·	3A4		-
	25℃	5	25.0	5	113.2
100만 이상	30℃	-	ARROY CO.	-	-
	35℃	_		_	~
	25℃	20	100	20	154, 1
합계	30℃	20	100	20	662.7
	35℃	27	100	26	940.0

겨울철 쇠고기의 총균수 대비 젖산균수의 분포를 보면 배양온도가 높을수록 젖산 균의 분포가 점차 증가하는 경향을 보였다.

표 39. 겨울철 쇠고기의 총균수 대비 젖산균수의 분포

417.4	총균수			총균수 대비 젖산균수	
세균수	온도	시료수	비율(%)	시료수	비율(%)
	25℃	7	35.0	7	45.4
천 미만	30℃	8	40.0	8	60.9
	35℃	12	44.4	11	93.7
	25℃	7	35.0	7	66.7
천 ~ 1만 미만	30℃	6	30.0	6	61.3
	35℃	3	11.1	3	146.7
	25℃	ı	-	-	
1만 ~ 5만 미만	30℃	-	-	-	-
	35℃	4	14.8	4	103.3
	25℃	_	-	_	-
5만 ~ 10만 미만	30℃	1	5.0	1	148.2
	35℃	5	18.5	5	118.5
	25℃	_	_	-	-
10만 ~ 50만 미만	30℃	5	25.0	5	89.5
	35℃	3	11.1	3	108.9
	25℃	1	5.0	1	8.8
50만 ~ 100만 미만	30℃	-	_	_	-
	35℃	-	-	_	~
	25℃	5	25.0	5	7.4
100만 이상	30℃	-	-	_	-
	35℃	-	_	-	-
	25℃	20	100	20	41.5
합계	30℃	20	100	20	72.5
	35℃	27	100	26	107.8

봄철 쇠고기의 총균수는 25℃와 30℃의 경우 1천 ~ 1만 미만 cfu/ml이 25.9%와 34.5%를, 35℃의 경우는 천 미만이 25.9%로서 가장 많은 비율을 보였다. 총균수

대비 저온성균수의 분포를 보면 배양온도가 높을수록 저온성균의 분포가 점차 증가하는 경향을 보였으며, 특히 35℃에서는 저온성균의 비율이 매우 높게 나타났다.

표 40. 봄철 쇠고기의 총균수 대비 저온성균수의 분포

세균수	총균수			총균수 대비 저온성균수	
11471	온도	시료수	비율(%)	시료수	비율(%)
	25℃	10	17.2	8	61.5
천 미만	30℃	9	15.5	9	105.5
	35℃	15	25. 9	11	6242.4
	25℃	15	25. 9	12	178.5
천 ~ 1만 미만	30℃	20	34.5	16	397.2
	35℃	14	24.1	13	979.3
	25℃	9	15.5	9	280.5
1만 ~ 5만 미만	30℃	5	8.6	4	520.1
	35℃	8	13.8	8	376.9
	25℃	4	6.9	4	246.6
5만 ~ 10만 미만	30℃	3	5. 2	3	192.3
	35℃	9	15.5	9	533.1
	25℃	8	13.8	8	144.4
10만 ~ 50만 미만	30℃	9	15.5	9	161.3
	35℃	6	10.3	6	458.3
	25℃	1	1.7	1	91.5
50만 ~ 100만 미만	30℃	3	5. 2	3	87.8
	35℃	-			_
	25℃	11	19.0	11	99.9
100만 이상	30℃	9	15.5	9	292.5
	35℃	6	10.3	6	462.2
	25℃	58	100	53	160.2
합계	30℃	58	100	53	270.0
	35℃	58	100	53	1787.4

봄철 쇠고기의 총균수 대비 젖산균수의 분포를 보면 배양온도가 높을수록 젖산균 의 분포가 점차 증가하는 경향을 보였으며, 특히 35℃의 경우 총균수가 천 미만 cfu/ml에서는 젖산균의 비율이 매우 높게 나타났다.

표 41. 봄철 쇠고기의 총균수 대비 젖산균수의 분포

세균수	총균수			총균수 대비 젖산균수	
भारा	온도	시료수	비율(%)	시료수	비율(%)
	25℃	10	17.3	10	77.5
천 미만	30℃	9	15.5	9	111.5
	35℃	15	25.9	15	1347.6
	25℃	15	25.9	15	52.6
천 ~ 1만 미만	30℃	20	34.5	20	137.3
	35℃	14	24.1	14	139.6
	25℃	9	15.5	9	98. 2
1만 ~ 5만 미만	30℃	5	8.6	5	65.7
	35℃	8	13.8	8	120.3
	25℃	4	6.9	4	97.5
5만 ~ 10만 미만	30 ℃	3	5. 2	3	57.3
	35℃	9	15. 5	9	129.8
	25℃	8	13.8	8	58.4
10만 ~ 50만 미만	30℃	9	15.5	9	78.0
	35℃	6	10.3	6	114.9
	25℃	1	1.7	1	45.1
50만 ~ 100만 미만	30℃	3	5. 2	3	25.0
	35℃	-		-	-
	25℃	11	19.0	11	23.3
100만 이상	30℃	9	15.5	9	64.9
	35℃	6	10.3	6	105.1
	25℃	58	100	58	62.2
합계	30℃	58	100	58	96.7
	35℃	58	100	58	441.7

여름철 쇠고기의 총균수는 배양온도와 상관없이 천 ~ 1만 미만 cfu/ml이 56.7% 로서 가장 많은 비율을 보였다. 총균수 대비 저온성균수의 분포를 보면 다른 배양온도에 비해 30℃가 총균수 대비 저온성균의 분포가 높은 것으로 나타났다.

표 42. 여름철 쇠고기의 총균수 대비 저온성균수의 분포

세균수		총균수		총균수 대비	저온성균수
게된ㅜ	온도	시료수	비율(%)	시료수	비율(%)
	25℃	1	3.3	1	28.4
천 미만	30℃	2	6.7	2	168.2
	35℃	1	3.3	1	37.5
	25℃	17	56.7	17	46.1
천 ~ 1만 미만	30℃	17	56.7	17	79.4
	35℃	17	56, 7	17	61.3
	25℃	7	23.3	7	87.7
1만 ~ 5만 미만	30℃	8	26.7	8	165.0
	35℃	9	30.0	9	115.5
	25℃	3	10.0	3	64.6
5만 ~ 10만 미만	30℃	2	6.7	2	186.2
	35℃	1	3.3	1	137.7
	25℃	2	6.7	2	83.0
10만 ~ 50만 미만	30℃	1	3.3	1	187.6
	35℃	2	6.7	2	124.5
합계	25℃	30	100	30	59.5
	30℃	30	100	30	118.9
	35℃	30	100	30	83.6

여름철 쇠고기의 총균수 대비 젖산균수의 분포를 보면 다른 배양온도에 비해 30℃가 총균수 대비 젖산균의 분포가 높은 것으로 나타났다.

표43. 여름철 쇠고기의 총균수 대비 젖산균수의 분포

세균수		총균수			총균수 대비 젖산균수	
세판구	온도	시료수	비율(%)	시료수	비율(%)	
	25℃	1	3.3	1	104.6	
천 미만	30℃	2	6.7	2	116.6	
	35℃	1	3.3	1	58.8	
	25℃	17	56.7	17	72.5	
천 ~ 1만 미만	30℃	17	56.7	17	103.7	
	35℃	17	56.7	17	94.8	
	25℃	7	23.3	7	92.3	
1만 ~ 5만 미만	30℃	8	26.7	8	136.2	
	35℃	9	30.0	9	103.2	
5만 ~ 10만 미만	25℃	3	10.0	3	54.3	
	30℃	2	6.7	2	80.3	
	.35℃	1	3, 3	1	93. 4	

10만 ~ 50만 미만	25℃	2	6.7	2	44.9
	30℃	1	3.3	1	125.6
	35℃	2	6.7	2	61.6
합계	25℃	30	100	30	74.5
	30℃	30	100	30	112.4
	35℃	30	100	30	93.8

가을철 쇠고기의 총균수는 25℃의 경우 1만 ~ 5만 미만 cfu/ml과 5만 ~ 10만 미만 cfu/ml이 각각 28.6%를 차지하였고, 30℃의 경우 1만 ~ 5만 미만 cfu/ml이 57.1%를, 35℃의 경우 1만 ~ 5만 미만 cfu/ml이 42.9%로서 가장 많은 비율을 보였다. 총균수 대비 저온성균수의 분포를 보면 총균수가 많고 배양온도가 높을수록 저온성균의 분포가 점차 증가하는 경향을 보였다.

표 44. 가을철 쇠고기의 총균수 대비 저온성균수의 분포

ガスス	· = · · · · · · · · · · · · · · · · · ·	충균수		총균수 대비	저온성균수
세균수	온도	시료수	비율(%)	시료수	비율(%)
	25℃	1	7.1	1	30, 6
천 미만	30℃	1	7.1	1	48.2
	35℃	1	7.1	1	72, 2
	25℃	1	7.1	1	42.8
천 ~ 1만 미만	30℃	2	14.3	2	80.1
	35℃	4	28.6	4	524.8
	25℃	4	28.6	4	116.8
1만 ~ 5만 미만	30℃	8	57.1	8	383.4
	35℃	6	42.9	6	513.3
	25℃	4	28.6	4	120.8
5만 ~ 10만 미만	30℃	3	21.4	3	150.9
	35℃	3	21.4	3	1206.9
	25℃	2	14.3	2	517.6
10만 ~ 50만 미만	30℃	ı	-	_	_
	35℃	_	-	_	_
	25℃	1	7.1	1	64.2
50만 ~ 100만 미만	30℃	•	-	-	-
	35℃	_	-	_	-
	25℃	1	7.1	1	66.1
100만 이상	30℃	-	_		
	35℃	_	_	_	
	25℃	14	100	14	156.4
합계	30℃	14	100	14	266.3
	35℃	14	100	14	633.7

가을철 쇠고기의 총균수 대비 젖산균수의 분포를 보면 배양온도가 높을수록 젖산 균의 분포가 점차 증가하는 경향을 보였다.

표 45. 가을철 쇠고기의 총균수 대비 젖산균수의 분포

세균수		총균수		총균수 대비	미 젖산균수
ास्य ।	온도	시료수	비율(%)	시료수	비율(%)
	25℃	1	7.1	1	38, 8
천 미만	30℃	1	7.1	1	61.1
	35℃	1	7.1	1	91.7
	25℃	1	7.1	1	78.4
천 ~ 1만 미만	30℃	2	14.3	2	149.0
	35℃	4	28.6	3	131.8
	25℃	4	28.6	4	37.2
1만 ~ 5만 미만	30℃	8	57.1	6	39.2
	35 ℃	6	42.9	5	57.4
	25℃	4	28.6	2	7.0
5만 ~ 10만 미만	30℃	3	21.4	2	15.3
	35℃	3	21.4	2	105.9
	25℃	2	14.3	1	8.3
10만 ~ 50만 미만	30℃	-	•••	***	_
	35℃	-	politics .	_	-
	25℃	1	7.1	1	10.8
50만 ~ 100만 미만	30℃	-		_	-
	35℃	-	-	-	-
	25℃	1	7.1	1	6.4
100만 이상	30℃	-			-
	35℃	-	•		-
	25℃	14	100	11	27.8
합계	30℃	14	100	11	56.8
	35℃	14	100	11	89.6

겨울철 돼지고기의 총균수는 배양온도와 상관없이 천 미만 cfu/ml이 가장 많은 비율을 보였다. 총균수 대비 저온성균수의 분포를 보면 배양온도가 높을수록 저온성균의 분포가 점차 증가하는 경향을 보였다.

표 46. 겨울철 돼지고기의 총균수 대비 저온성균수의 분포

세균수		총균수		총균수 대비	저온성균수
71142 1	온도	시료수	비율(%)	시료수	비율(%)
	25℃	6	30.0	6	49.1
천 미만	30℃	7	35.0	7	72.3
	35℃	11	45.8	11	220.4
	25℃	5	25.0	5	80.4
천 ~ 1만 미만	30℃	4	20.0	4	93.6
	35℃	4	16.7	3	96.4
	25℃	2	10.0	2	129.2
1만 ~ 5만 미만	30℃	2	10.0	2	113.7
	35℃	5	20.8	5	229.7
	25℃	3	15.0	3	116.8
5만 ~ 10만 미만	30℃	3	15.0	3	113.4
	35℃	-	-	_	-
	25℃	-	-	_	-
10만 ~ 50만 미만	30℃	_	-	-	-
	35℃	1	4.2	1	2854.2
	25℃	_	-		-
50만 ~ 100만 미만	30℃	_	-	-	-
	35℃	-	-	-	
	25℃	4	20.0	4	100.3
100만 이상	30℃	4	20.0	4	134.3
	35℃	3	12.5	3	1075.2
	25℃	20	100	20	85. 4
합계	30℃	20	100	20	99.3
	35℃	24	100	23	432.3

겨울철 돼지고기의 총균수 대비 젖산균수의 분포를 보면 배양온도가 높을수록 젖 산균의 분포가 점차 중가하는 경향을 보였다.

표 47. 겨울철 돼지고기의 총균수 대비 젖산균수의 분포

세균수		충균수		총균수 대비	이 젖산균수
시킨구	온도	시료수	비율(%)	시료수	비율(%)
	25℃	6	30.0	6	70.2
천 미만	30℃	7	35.0	7	86.9
	35℃	11	45.8	11	98, 1
	25℃	5	25.0	5	30.6
천 ~ 1만 미만	30℃	4	20.0	4	28. 4
	35℃	4	16.7	3	43.4
	25℃	2	10.0	2	55.6
1만 ~ 5만 미만	30℃	2	10.0	2	49.6
	35℃	5	20.8	5	108.3
	25℃	3	15.0	3	60.5
5만 ~ 10만 미만	30℃	3	15.0	3	57.5
	35℃	-	-	-	-
	25℃	-	-	-	-
10만 ~ 50만 미만	30℃	1	<u>-</u>	-	-
	35℃	1	4.2	1	141.7
	25℃	-	-	-	_
50만 ~ 100만 미만	30℃	-	ı	-	-
	35℃	-	-	_	-
	25℃	4	20.0	4	6.5
100만 이상	30℃	4	20.0	4	8.9
	35℃	3	12.5	3	73.1
	25℃	20	100	20	44.7
합계	30℃	20	100	20	51.5
	35℃	24	100	23	91.8

봄철 돼지고기의 총균수는 배양온도가 25℃와 30℃의 경우 100만 이상 cfu/ml이 가장 많은 비율을 보인 반면, 35℃는 천 ~ 1만 미만 cfu/ml로서 가장 많은 비율을 보였는데, 이는 배양온도가 낮은 것이 총균수가 많은 값을 나타냄을 알 수 있다. 총균수 대비 저온성균수의 분포를 보면 배양온도가 높을수록 저온성균의 분포가 점차 증가하는 경향을 보였다.

표 48. 봄철 돼지고기의 총균수 대비 저온성균수의 분포

ルコム		총균수		총균수 대비	저온성균수
세균수	온도	시료수	비율(%)	시료수	비율(%)
	25℃	5	8.5	5	72.6
천 미만	30℃	5	8.5	5	83.3
	35℃	9 -	15.3	9	4570.3
	25℃	17	28.8	14	1146.4
천 ~ 1만 미만	30℃	16	27.1	14	1125.0
	35℃	15	25. 4	11	137.8
	25℃	8	13.6	7	126.0
1만 ~ 5만 미만	30℃	7	11.9	7	122.3
	35℃	9	15.3	9	1148.9
	25℃	2	3.4	1	119.7
5만 ~ 10만 미만	30℃	5	8.5	2	107.4
	35℃	5	8.5	5	719.4
	25℃	5	8.5	5	114.4
10만 ~ 50만 미만	30℃	6	10.2	6	114.6
	35℃	9	15.3	8	2041.6
	25℃	2	3. 4	2	166.9
50만 ~ 100만 미만	30℃	2	3.4	2	145.0
	35℃	2	3. 4	2	295.3
	25℃	20	33. 9	20	106.2
100만 이상	30℃	18	30.5	18	188.1
	35℃	10	16.9	10	651.7
	25℃	59	100	54	378.6
합계	30℃	59	100	54	400.0
	35℃	59	100	54	1482.0

총균수 대비 젖산균수의 분포를 보면 배양온도가 높을수록 젖산균의 분포가 점 차 중가하였으며, 총균수가 5만 미만 cfu/ml일 때 젖산균의 분포가 많은 경향을 보였다.

표 49. 봄철 돼지고기의 총균수 대비 젖산균수의 분포

2117.4		충균수		총균수 대비	미 젖산균수
세균수	온도	시료수	비율(%)	시료수	비율(%)
	25℃	5	8. 5	5	83.0
천 미만	30℃	5	8. 5	5	95.2
	35℃	9	15.3	9	108.8
	25℃	17	28.8	17	57.2
천 ~ 1만 미만	30℃	16	27.1	16	70.2
	35℃	15	25, 4	15	109.1
	25℃	8	13.6	8	83.4
1만 ~ 5만 미만	30℃	7	11.9	4	92.6
	35℃	9	15.3	9	101.7
	25℃	2	3.4	2	47.1
5만 ~ 10만 미만	30℃	5	8, 5	5	55. 7
	35℃	5	8. 5	5	76.7
	25℃	5	8. 5	5	41.5
10만 ~ 50만 미만	30℃	6	10.2	6	30.5
	35℃	9	15, 3	9 .	60.0
	25℃	2	3.4	2	4.6
50만 ~ 100만 미만	30℃	2	3.4	2	8.7
	35℃	2	3.4	2	14.6
	25℃	20	33, 9	20	19.9
100만 이상	30℃	18	30. 5	18	30.3
	35℃	10	16.9	10	94.5
	25℃	59	100	59	46.8
합계	30℃	59	100	59	55. 5
	35℃	59	100	59	92.0

여름철 돼지고기의 총균수는 배양온도와 상관없이 천 ~ 1만 미만 cfu/ml이 가장 많은 비율을 보였다. 총균수 대비 저온성균수의 분포를 보면 배양온도가 높을수록 저온성균의 분포가 점차 증가하는 경향을 보였다.

표 50. 여름철 돼지고기의 총균수 대비 저온성균수의 분포

세균수		총균수		총균수 대비	저온성균수	
세판구	온도	시료수	비율(%)	시료수	비율(%)	
	25℃	1	3, 3	1	62.5	
천 미만	30℃	-				
	35℃	1	3.3	1	60, 2	
	25℃	15	50.0	15	51.8	
천 ~ 1만 미만	30℃	16	53, 3	16	55.3	
	35℃	15	50.0	15	64.0	
	25℃	4	13.3	4	18.1	
1만 ~ 5만 미만	30℃	5	16.7	5	136.4	
	35℃	9	30.0	9	436.0	
	25℃	1	3, 3	1	79.1	
5만 ~ 10만 미만	30℃	2	6.7	2	289.7	
	35℃	2	6.7	2	562, 9	
	25℃	6	20.0	6	81.0	
10만 ~ 50만 미만	30℃	7	23.3	7	98.1	
	35℃	3	10.0	3	67.1	
	25℃	2	6. 7	2	55.4	
50만 ~ 100만 미만	30℃		_	-	-	
	35℃	-		_	-	
	25℃	1	3.3	1	21.8	
100만 이상	30℃	****			_	
	35℃	-	-		-	
	25℃	30	100	30	53.7	
합계	30℃	30	100	30	94.4	
	35℃	30	100	30	232.9	

총균수 대비 젖산균수의 분포를 보면 배양온도가 높을수록 젖산균의 분포가 점 차 증가하는 경향을 보였으며, 특히 35℃의 경우 총균수가 1만 ~ 5만 미만 cfu/ml일 때 젖산균의 분포가 매우 높게 나타났다.

표 51. 여름철 돼지고기의 총균수 대비 젖산균수의 분포

1174	Markety A	충균수	The state of the s	총균수 대비	l 젖산균수
세균수	온도	시료수	비율(%)	시료수	비율(%)
	25℃	1	3.3	1	105.0
천 미만	30℃		-		_
	35℃	1	3.3	1	101.2
	25℃	15	50, 0	15	73. 7
천 ~ 1만 미만	30℃	16	53.3	16	97.3
	35℃	15	50.0	15	90, 9
	25℃	4	13.3	4	96.9
1만 ~ 5만 미만	30℃	5	16.7	5	95.3
	35℃	9	30.0	9	406.7
	25℃	1	3, 3	1	98. 9
5만 ~ 10만 미만	30℃	2	6.7	2	13.9
	35℃	2	6.7	2	72.8
	25℃	6	20.0	6	29.4
10만 ~ 50만 미만	30℃	7	23.3	7	115.0
	35℃	3	10.0	3	136.1
	25℃	2	6.7	2	30.5
50만 ~ 100만 미만	30℃			_	
	35℃	ances	-	_	
	25℃	1	3. 3	1	67.2
100만 이상	30℃		-		
	35℃		-	-	
	25℃	30	100	30	64.5
합계	30℃	30	100	30	95.5
	35 ℃	30	100	30	189.3

가을철 돼지고기의 총균수는 배양온도와 상관없이 천 ~ 1만 미만 cfu/ml이 가장 많은 비율을 보였다. 총균수 대비 저온성균수의 분포를 보면 배양온도가 높을수록 저온성균의 분포가 점차 증가하는 경향을 보였다.

표 52. 가을철 돼지고기의 총균수 대비 저온성균수의 분포

ガユム		충균수		총균수 대비	저온성균수
세균수	온도	시료수	비율(%)	시료수	비율(%)
	25℃	5	35.7	5	22, 1
천 미만	30℃	5	35. 7	5	23.0
	35℃	5	35.7	5	33.5
	25℃	8	57.1	8	55.6
천 ~ 1만 미만	30℃	8	57.1	8	60.7
	35℃	8	57.1	8	93.7
	25℃	1	7.1	1	48.9
1만 ~ 5만 미만	30℃	1	7.1	1	59.1
	35℃	1	7.1	1	53, 1
	25℃	14	100	14	43.2
합계	30℃	14	100	14	47.1
	35℃	14	100	14	69.3

총균수 대비 젖산균수의 분포를 보면 배양온도가 높고 총균수가 많을수록 젖산 균의 분포가 점차 중가하는 경향을 보였다.

표 53. 가을철 돼지고기의 총균수 대비 젖산균수의 분포

세균수		충균수		총균수 대비	저온성균수
시판구	온도	시료수	비율(%)	시료수	비율(%)
	25℃	5	35.7	5	64.0
천 미만 	30℃	5	35.7	5	65, 8
	35℃	5	35, 7	5	87.6
	25℃	8	57.1	8	87.8
천 ~ 1만 미만	30℃	8	57.1	8	86.0
	35℃	8	57.1	8	117.3
	25℃	1	7.1	1	89.2
1만 ~ 5만 미만	30℃	1	7.1	1	107.8
	35℃	1	7.1	1	96.9
	25℃	14	100	14	79.4
합계	30℃	14	100	14	80.3
	35℃	14	100	14	105.2

총균수 대비 저온성균수의 분포를 보면 35℃에서는 저온성균이 총균수보다 높은 비율을 나타내고 있는데 이는 식육의 저장 및 유통이 냉장상태로 보관됨에 따라 중온성균이 감소하고 대부분이 저온성균이 증식하기 때문으로 보인다. 이에 따라 현행 축산물의 가공기준 및 성분규격상의 총균수 의 배양온도가 35℃로 되어 있는 것은 매우 불합리한 것으로 보인다. 실제로 외국에서는 배양온도를 30℃ 나 25℃로 하고 있다.

계절간 저온성균의 분포는 쇠고기의 경우 여름철에는 낮고 봄과 겨울철이 높았으며, 돼지고기는 가을철이 낮고 봄철이 높았다. 젖산균의 분포는 쇠고기의 경우 가을철이 낮고, 여름철이 높았으며, 돼지고기는 겨울과 봄철이 낮고 여름철이 높았다.

나. 세균종류별 RRT검사 후 색차계 a 값에 미치는 영향

최고기의 총균수 대비 저온성균수의 분포에 따른 RRT 검사후의 배양시간별 색차계 a 값에 미치는 영향은 표 54와 같다.

표 54. 쇠고기의 총균수 대비 저온성균수의 분포에 따른 RRT 검사후의 배양시간 별 색차계 a 값에 미치는 영향

배양시간	0-20)% ¹ / u]	만	20-	40%¤]	만	40-6	50%¤]	만	60-	-80%¤] t	간	80	-100%	미만	10	00%0]	상
충균수	lhr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr	lhr	2hr	3hr	1hr	2hr	3hr
천 미만				-0.87	0.35	1, 27	-1.45		0.44	-1.87	-0, 45	0.04	-1.9		-0.02	-2, 36	-0.4	-0, 46
천~1만미만	-0.68	0. 39	1,25	0, 61	2.21	2.79	0.86	2.19	3.07	-1.32	1.56	0.88	0, 54	1.88	2.88	-0.80	-0.5	1.31
1~5만미만							0.33	1,55	2.63	-0,86	0.45	1.34	-1,2	0,16	1.00	-1.02	0.34	1.72
5~10만미만																-0.82	2. 38	4,43
10~50만미만																-0.51	2, 26	6.28
50~100만미만																		
100만 이상																3.67		10.54

주) 1) : 총균수 대비 저온성균수가 0~20%일 때의 RRT 검사후의 배양시간별 색차계 a 값

총균수가 천 미만 cfu/ml과 1 ~ 5만 미만 cfu/ml일 때 총균수 대비 저온성균수의 분포가 많을 때 색차계 a 값이 감소하는 경향을 보였으나 천 ~ 1만 미만 cfu/ml은 일정하지 않았다.

돼지고기의 총균수 대비 저온성균수의 분포에 따른 RRT 검사후의 배양시간별 색

차계 a 값에 미치는 영향은 표 55와 같다.

표 55. 돼지고기의 총균수 대비 저온성균수의 분포에 따른 RRT 검사후의 배양시 간 별 색차계 a 값에 미치는 영향

배양시간	0-2	:0% ^{1,} 1	만	20-4	10%¤]	만	40-	60%¤]	만	60-	80%¤	만	80-	[u%001	만	1	00%이 산	}
총균수	lhr	2hr	3hr	1hr	2hr	3hr	lhr	2hr	3hr	1hr	2hr	3hr	lhr	2hr	3hr	1hr	2hr	3hr
천 미만	0, 35	1.87	3.02	-0, 88	2.1	1,56	-1.82		0.3	-1.2 9	0.64	1,05	-1.81	-0.54	0, 61	-1.28	-0.07	0.99
천~1만 미만	-1.7		0.76	0.39	1.82	3.04	-0.07	1.66	2. 59	0.01	2.4	2.78	0.38	2.28	3. 29	-0.46	1.08	2.19
1~5만 미만	0.04	1.39	2, 58	0.89	2.52	3.7	0.49	2.12	3, 57							-0, 73	1.81	2,83
5~10만 미만													1.09	3, 11	4, 93	-0.19	1.68	5. 79
10~50만 미만										2.03	4.44	7.8	1.01	3.85	7, 66	0, 11	1.75	7, 19
50~100만 미만														1		3.95	7.42	12. 33
100만 이상																7.26	17.56	8,87

주) 1) : 총균수 대비 저온성균수가 0~20%일 때의 RRT 검사후의 배양시간별 색차계 a 값

총균수 대비 저온성균수의 분포가 많을 때 색차계 a 값이 감소하는 경향을 보였으나 분포간에는 일정하지 않았다.

다. 항생물질이 RRT검사후 색차계 a 값에 미치는 영향

식육의 항균물질 존재 여부를 검사하기 위하여 Delvo test 한 결과 음성반응을 나타냄으로써 본 과제를 수행하는데 문제가 될 수 있는 항생물질에 의한 색차계 a 값의 영향이 없었다.

라. 산생성균 : 비산생성균 세균수 측정

표 56. 겨울철 쇠고기의 산생성균:비산생성균 분포 및 RRT검사후 배양시간에 따른 색차계 a 값

(단위: cfu/cm²)

가르비중	ネフ人/25%)	젖산균	젖산균분포(%)	a value(30℃)			
[시 <u>도민</u> 오	총균수(35℃)	突인판	役也世世工(で)	1hr	3hr		
1	240	0	0.0	-1.59	0.00		
2	82000	75000	91.5	-1.66	1.94		
3	78000	90000	115.4	-1.42	1.72		
4	45000	45000	100.0	-1.66	1.32		

.1 → u1 →	₹ 7 ₹ (or %)	-1 -1 -1	7 1 7 1 7 (-)	a value	e(30°C)
시료번호	총균수(35℃)	젖산균	젖산균분포(%)	1hr	3hr
5	43000	44000	102.3	-1.53	1.35
6	41000	41000	100.0	-1.60	1.41
7	46000	51000	110, 9	-1.55	1.70
8	80	70	87.5	-1.44	0.44
9	160	110	68.8	-1.49	0, 49
10	100	70	70.0	-1.56	0.41
11	290	210	72.4	-1.77	0.19
12	110	140	127.3	-3.87	-2.84
13	480	550	114.6	-3.95	-2.80
14	910	880	96.7	-3.91	-2.80
15	150	120	80.0	-3.90	-2.85
16	390	460	117.9	-3.94	-2.83
17	60000	83000	138.3	-1.93	1.94
18	89000	96000	107.9	-1.78	2.82
19	133000	120000	90.2	-1.29	4.95
20	144000	140000	97.2	-1.00	6.15
21	156000	217000	139.1	-0.45	9.15
22	84000	117000	139.3	-1.29	4.60
23	8100	7300	90.1	-2, 59	-0.87
24	2800	4200	150.0	-2.65	-0.84
25	2800	5600	200.0	-2.68	-0.83
26	390	350	89.7	-2.82	-1.10
27	340	360	105.9	-2.90	-1.26

표 57. 겨울철 돼지고기의 산생성균:비산생성균 분포 및 RRT검사후 배양시간에 따른 색차계 a 값

시료	 총 균수(35℃)	젖산균	젖산균분포(%)	a value(30℃)		
번호	安亚十(30℃)	쏫인판	突心世世王(*)	1hr	2hr	3hr
1	2500	0	0.00	-0.11		2.90
2	3000	2000	66.7	-0.36		3.04
3	4000	1100	27.5	-0.26		3.80
4	2000	720	36.0	-0.59		2.77
5	430	380	88.4	-1.55		0.90
6	330	190	57.6	-1.93		0.50
7	330	290	87.9	-1.88		0.52
8	280	280	100.0	-1.86		0.47
9	920	740	80.4	-1.82		0.30

시료	ネフム/25%)	젖산균	정기 보고(%)	a value(30℃)		
번호	총균수(35℃)	(33년) 공년편	젗산균분포(%)	1hr	2hr	3hr
10	910	680	74.7	-1.46		0.86
11	19000	19000	100.0	-3.31		-1.57
12	36000	48000	133.3	-3. 26		-1.35
13	38000	33000	86.8	-3.17		-0.99
14	18000	23000	127.8	-3.07	' 	-0.99
15	15000	14000	93.3	-2.85		-0.90
16	2890000	1380000	47.8	18.00		9.85
17	480000	680000	141.7	8.57		13.68
18	1240000	1110000	89.5	6.72		9.56
19	1510000	1240000	82.1	8.10		8. 55
20	500	700	140.0	-2.16		0.24
21	790	1020	129.1	-1.64		0.53
22	490	660	134.7	-1.58		0.51
23	500	320	64.0	-1.62		0.43
24	550	670	121.8	-1.40		0.61

표 58. 봄철 쇠고기의 산생성균:비산생성균 분포 및 RRT검사후 배양시간에 따른 색차계 a 값

시료	ネフ.人(25%)	7년 21년 77	젖산균분포(%)	a	a value(30℃)		
번호	총균수(35℃)	젖산균	交征证证工(%)	1hr	2hr	3hr	
1	63000	72000	114.3	-2.18		0. 51	
2	104000	126000	121.2	-2.11		0.99	
3	98000	122000	124.5	-2.35		0.64	
4	17200000	16600000	96.5	8.83		8.46	
5	4200000	6400000	152.4	17.83		5. 61	
6	1900000	2470000	130.0	0.69		13.58	
7	14800	12400	83.8	-1.42		0.91	
8	24800	15400	62.1	-1.24		0.94	
9	1360	7000	514.7	-1.30		0.98	
10	1230	930	75.6	-1.47		1.00	
11	1990	1430	71.9	-1.07		1.06	
12	2130000	1320000	62.0	-2.05		12.33	
13	2210000	2000000	90.5	-1.12		15. 55	
14	1210000	1200000	99.2	-2.16		7.70	
15	270	320	118.5	-1.73		0.00	
16	320	300	93.8	-1.45		0.44	
17	190	190	100.0	-1.51		0.36	
18	370	270	73.0	-1.40		0.44	

시료	~ - 2 (0mm)	_> -> ->		а	value(30°	C)
번호	총균수(35℃)	젖산균	젖산균분포(%)	1hr	2hr	3hr
19	310	140	45, 2	-1.33		0, 45
20	58000	60000	103.4			2.89
21	49000	106000	216.3			3.02
22	28000	41000	146.4			2.03
23	159000	201000	126.4			5. 81
24	460000	370000	80.4			12.02
25	83000	54000	65.1			2.27
26	2100	2320	110.5	2.11	3.41	4.46
27	1670	1900	113.8	2.07	3.14	4.31
28	1320	1050	79.5	2.13	3, 39	4.34
29	1550	1620	104.5	1.78	3, 32	4.36
30	820	800	97.6	1.76	3.13	4.00
31	73000	91000	124.7	-1.16	-0.31	1.61
32	88000	109000	123.9	-1.45	0.19	2.28
33	66000	108000	163.6	-0.62	-0.11	1.86
34	34000	58000	170.6	-1.72	-0.44	0.93
35	81000	124000	153.1	-1.82	-0.07	2.32
36	6900	8300	120.3	-1.95	-1.07	-0.08
37	12400	8500	68.5	-1,90	-0.84	0.26
38	6200	8200	132.3	-0. 95	-0.93	0.14
39	80	80	100.0	-2.40	-1.35	-0. 51
40	80	60	75.0	-2.45	-1.44	-0.50
41	159000	201000	126.4	-0. 98	1.42	6.09
42	238000	244000	102.5	-0. 35	2, 59	8.65
43	1000	2000	200.0	-2.16	-1.26	-0.36
44	1000	1000	100.0	-2.33	-1.85	-0.42
45	1000	2000	200.0	-2.38	-1.36	-0.44
46	190	36000	18947.4	-2.44	-1.65	0.73
47	720	1230	170.8	-2.36	-1.49	1.02
48	11400	8700	76.3	-2.32	-1.46	1.43
49	410	280	68.3	-2.48	-1.60	1.05
50	7500	1530	20.4	-2.51	-1.28	1.04
51	71000	139000	195.8	1.10	3.48	7.97
52	44000	61000	138.6	0, 33	1.94	4.02
53	115000	152000	132.2	0.76	3.06	6.53
54	990	710	71.7	-0.39	0.87	1.67
55	990	700	70.7	-0.22	0.94	1.75
56	470	470	100.0	0.15	1.37	2.18
57	2170	2420	111.5	0.12	1.38	2.18
58	520	430	82.7	0.17	1.40	2.24

표 59. 봄철 돼지고기의 산생성균 : 비산생성균 분포 및 RRT검사 후 배양시간에 따른 색차계 a 값

		-	· · · ·	<u> </u>	(단)	
시료	총균수(35℃)	젖산균	젖산균분포(%)		value(30°	2)
번호			· ·	1hr	2hr	3hr
1	1820000	2180000	119.8	11.89		5.80
2	1970000	1360000	69.0	4.43		7.60
3	1730000	1640000	94.8	3. 31		9.40
4	2030000	2110000	103.9	5. 79		7.66
5	1460	2110	144.5	-0.54		2.11
6	3090	4300	139.2	-0.86		1.88
7	2790	3600	129.0	-1.61		0.87
8	1210	1950	161.2	-1.70		0.76
9	750	660	88.0	-1.70		0.70
10	1250000	680000	54.4	4.52		11.01
11	370000	92000	24.9	-1.66		7.88
12	285000	100000	35.1	-1.80		7.88
13	490000	190000	38.8	-1.79		9.86
14	320000	110000	34.4	-1.56		10.11
15	950	1250	131.6	-0.52		2.32
16	810	950	117.3	-0.74		1.74
17	1170	1680	143.6	-1.04		1.42
18	500	670	134.0	-1.05		1.34
19	810	790	97.5	-1.02		1.44
20	94000	6000	6.4			7.52
21	95000	30000	31.6			10.93
22 ·	2220000	1620000	73.0			5.86
23	2810000	2820000	100.4			4.69
24	9000	2900	32.2	3.40	5, 10	6. 55
25	6400	6700	104.7	2.91	4.17	5. 79
26	3800	2900	76.3	2.26	3, 89	5. 35
27	7200	4200	58.3	1.78	3. 20	4.41
28	3800	4300	113.2	2, 33	3, 91	5, 21
29	110000	87000	79.1	-0.62	1.36	4.09
30	102000	85000	83.3	-0.72	0.98	2.85
31	156000	170000	109.0	-0.27	1.85	4.36
32	80000	38000	47.5	-0.57	1.03	2.69
33	86000	121000	140.7	-0.38	1.48	3.40
34	340	470	138.2	-1.79	-0.72	0.27
35	340	250	73.5	-2.29	-1.35	-0.44
36	530	480	90.6	-2.15	-1.03	-0.04
37	1860	1490	80.1	-1.86	-0. 57	0.61

시료	총균수(35℃)	7 2Ì1}	권 11기 된 편 (e/)	a value(30℃)			
번호	各更十(30℃)	젖산균	젖산균분포(%)	1hr	2hr	3hr	
38	460	500	108.7	-1.74	-0,54	0.70	
39	39000	46000	117.9	-1.33	0.18	1.85	
40	30000	34000	113.3	-1.33	0.06	1.60	
41	5300000	6600000	124.5	6, 61	19.15	6.44	
42	3800000	3160000	83.2	4.92	16, 46	14.25	
43	3600000	4400000	122.2	5. 55	17.07	14.64	
44	15600	18000	115.4	-1.34	-0,05	3.27	
45	17700	19000	107.3	-1.48	-0.42	1.84	
46	11200	11500	102.7	-1.42	-0.34	1.84	
47	17300	16700	96.5	-0.55	-0.02		
48	17500	20100	114.9		0.16	2.18	
49	163000	208000	127.6	2, 03	4.44	7.80	
50	89000	140000	157.3	1.79	4.07	6.64	
51	43000	49000	114.0	2.02	4, 51	7, 53	
52	12000	4000	33.3	2.38	4.32	6.73	
53	565000	103000	18.2	3.99	7.86	13.59	
54	690000	75000	10.9	3, 90	6.98	11.07	
55	1020	670	65.7	0.71	2.22	3, 29	
56	1150	930	80.9	0.61	2.34	3.81	
57	200000	15400	7.7	0.33	1.98	3. 33	
58	5100	12000	235.3	0, 18	1.73	3.00	
59	4050	2950	72.8	0.15	1.62	2.83	

표 60. 여름철 쇠고기의 산생성균:비산생성균 분포 및 RRT검사 후 배양시간에 따른 색차계 a 값

(단위 : cfu/am²) 시료 a value(30℃) 총균수(35℃) 젖산균 젖산균분포(%) 번호 1hr 2hr 3hr 3010 2700 1 89.7 0.10 1.56 2.51 2 4100 3200 78.0 0.02 1.59 2.46 3 3300 3900 118.2 0.07 1.61 2.67 22400 31000 4 138.4 -0.470.89 1.74 5 21000 18700 -0.8289.0 0.58 1.51 6 2150 3900 181.4 2.30 3.79 4.73 7 1160 103.4 2.14 1200 3.74 4.67 8 1030 920 89.3 2.31 4,57 3.65 9 2400 3500 145.8 1.84 3.38 4.34 10 2070 1880 90.8 1,64 3, 20 4.20 21500 11 32000 148.8 -1.26-0.380.54 10700 12 12300 115.0 -1.37-0.270.57 13 24500 37000 -1.39151.0 -0.300.71

시료	ネフ소(25%)	7시 2 1 - 7	과 시크 별 교 (a.)	a value(30℃)			
번호	총균수(35℃)	젖산균	젖산균 젖산균분포(%)		2hr	3hr	
14	61000	57000	93.4	-1.32	0.10	2.47	
15	211000	172000	81.5	-0.26	1.11	2, 55	
16	2230	3300	148.0	-0.19	0.89	1.69	
17	5470	5100	93.2	-0.13	0.81	1.70	
18	44000	33000	75.0	-0, 22	0.88	1.98	
19	1630	650	39.9	-0.24	0.71	1.61	
20	4100	2480	60.5	-0.68	0.39	1,25	
21	4200	1960	46.7	-0.03	0.87	1.68	
22	4900	3100	63.3	0.12	1.05	1.91	
23	26200	16800	64.1	0. 25	1.32	2.36	
24	173000	72000	41.6	1.05	3, 10	6.17	
25	15700	11200	71.3	-0, 53	0.51	1.49	
26	1150	980	85.2	0.68	2.10	3.14	
27	800	470	58.8	0, 66	2.05	3.04	
28	41000	31200	76.1	0, 87	2.21	3. 27	
29	1070	850	79.4	0.42	1.56	2.36	
30	4800	4700	97.9	-0.10	1.06	1.94	

표 61. 여름철 돼지고기의 산생성균:비산생성균 분포 및 RRT검사 후 배양시간에 따른 색차계 a 값

시료	ネフス/25%)	ר ל ג לבי	젖산균분포(%)	а	value(30°	C)
번호	총균수(35℃)	젖산균	天包也七工(%)	1hr	2hr	3hr
1	135000	144000	106.7	0.86	2.80	3.98
2	85000	90000	105.9	0.38	2.14	3. 21
3	5500	5200	94.5	0.34	1.99	3.13
4	6200	5800	93.5	0.32	2.15	3.12
5	5900	7700	130.5	0.44	2, 13	3. 21
6	28000	16300	58.2	3.08	5.14	6.97
7	18000	11500	63, 9	0.41	1.99	3.33
8	22800	12700	55.7	0.37	2.14	3.59
9	51000	20200	39.6	0.37	2, 53	4.39
10	45000	12200	27.1	0.40	2.22	3.98
11	1580	1790	113.3	0.52	1.89	2.94
12	3200	5100	159.4	0.52	2.06	3.19
13	7900	7700	97.5	0, 59	2.13	3, 27
14	38000	25600	67.4	0.89	2.52	3.70
15	47000	46000	97.9	1.13	2, 67	3.93
16	22600	708000	3132.7	1.36	5, 44	11.94

시료	ネフ み(25%)	٦١, (ح	젖산균분포(%)	а	a value(30℃)		
번호	총균수(35℃)	[] 젖산균 젖산균분:	父산판군포(%)	1hr	2hr	3hr	
17	188300	371000	197.0	1.01	3, 85	7.66	
18	247000	258000	104.5	0.67	3.14	6.36	
19	14400	12300	85.4	-0.48	0.81	1.96	
20	22000	15800	71.8	-0, 53	0.70	1.86	
21	830	840	101.2	1.02	2.31	3.40	
22	1770	560	31.6	0.78	2.03	3. 22	
23	2190	680	31.1	0.36	1.56	2.62	
24	5400	4200	77.8	0.67	2.07	3, 31	
25	5400	4400	81.5	0.74	2.08	3. 31	
26	1900	1750	92.1	1.20	2.70	3, 86	
27	3900	3020	77.4	0.87	2.40	3.67	
28	2250	2260	100.4	-0.89	0.39	1.46	
29	1450	1400	96.6	-0.96	0.21	1, 21	
30	2840	2450	86.3	-0. 95	0, 20	1.17	

표 62. 가을철 쇠고기의 산생성균:비산생성균 분포 및 RRT검사 후 배양시간에 따른 색차계 a 값

시료	총균수(35℃)	7) 1 L 7	자 가 기 기 비 다 /e/\		a value(30℃)		
번호		=(35℃) 젖산균 젖산균분.	젖산균분포(%)	1hr	2hr	3hr	
1	8200	6900	84.2	0, 31	1.51	2.56	
2	13500	9900	73.3	0.33	1.67	2.85	
3	4900	4000	81.6	-0.35	0.64	1.37	
4	13700	13000	94.9	-0.29	1.17	2.36	
5	60000	66000	110.0	1.50	5, 83	13.44	
6	57000	58000	101.8	1,53	5.57	12.54	
7	4400	10100	229.6	-1.07	0.08	1.26	
8	15900	8300	52.2	-1.00	0.23	1.52	
9	10200	3100	30.4	-1.14	0.07	1.37	
10	14600	5300	36.3	-1,13	0.12	1.38	
11	360	330	91.7	-1.28	0, 55	0.57	

표 63. 가을철 돼지고기의 산생성균:비산생성균 분포 및 RRT검사 후 배양시간에 따른 색차계 a 값

시료	총균수(35℃)	24 2 L 7	정치기보고(%)	а	a value(30℃)		
번호	多亚子(30℃)	젖산균	젖산균 │젖산균분포(%) ├	1hr	2hr	3hr	
1	5800	5200	89.7	1.33	2.92	4.23	
2	4500	5600	124.4	0.87	2.50	3.70	
3	420	310	73.8	0.53	2.10	3.12	
4	670	220	32.8	0.31	1.69	2.66	
4	60	130	216.7	0.49	1.86	2.94	
5	100	20	20.0	0.43	2.08	3, 28	
6	540	510	94.4	0.31	1.85	3.11	
7	1820	2030	111.5	-0.08	1.29	2.30	
8	2860	4800	167.8	0.09	1.54	2.72	
9	4100	5300	129.3	-0.49	0.97	2.19	
10	12800	12400	96.9	0.49	2.12	3.57	
11	4800	3300	68.8	0.50	2.02	3, 49	
12	2510	3000	119.5	-0.10	1.40	2.54	
13	2440	3100	127.1	-0.09	1.37	2.66	

마. 산생성균:비산생성의 분포에 따른 RRT검사후의 배양시간별 색차계 a 값에 미치는 영향

쇠고기의 총균수 대비 젖산균수의 분포에 따른 RRT 검사후의 배양시간별 색 차계 a 값에 미치는 영향은 표 64와 같다.

표 64. 쇠고기의 산생성균:비산생성의 분포에 따른 RRT검사후의 배양시간별 색차 계 a 값에 미치는 영향

배양시간	0-2	0%1,1	l만	20-	40%미] 및	<u>.</u> }	40-0	50%¤]	만	60	-80%¤]	만	80-	100%	기만	1	00%이 선	ş
총균수	1hr	2ht	3hr	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr	lhr	2hr	3hr
천 미만							-0.34	2, 05	1.75	-1.47	-0.31	0.69	-1.61	1,69	0.12	-2, 50	-0. 78	-0.60
천~1만미만				-1.38	-0, 29	1, 33	-0.03	0, 87	1,68	-0.08	1.60	2,05	0.21	1.82	2.35	-0. 29	1.22	1.82
1~5만미만				-1.14	0.10	1.38	-1.0	0.23	1,52	-0.60	0.61	1.82	-0.84	0.88	1.59	-1.22	0.24	1.61
5~10만미만												2.27	-1.49	0.1	2.21	-0, 91	2.43	4.08
10~50만미만							1.05	3, 1	6, 17				-0,85	1.11	6.42	-0.63	2.36	6.20
50~100만미만																		
100만 이상					Ü					-2.05		12.33	1.85		10, 57	9, 26		9.60

주) 1) : 총균수 대비 젖산균수가 0~20%일 때의 RRT 검사후의 배양시간별 색차계 a 값

총균수가 천 미만 cfu/ml이고 총균수 대비 젖산균수의 분포가 많을 때 색차계 a

값이 감소하는 경향을 보였으나 천 이상 cfu/ml은 일정하지 않았다. 돼지고기의 총균수 대비 젖산균수의 분포에 따른 RRT 검사후의 배양시간별 색차계 a 값에 미치는 영향은 표 65와 같다.

표 65. 돼지고기의 산생성균:비산생성의 분포에 따른 RRT검사후의 배양시간별 색 차계 a 값에 미치는 영향

비양시간	0-	20%11	미만	20-	40%¤]	만	40-	60%¤	만	60-	30%¤]	만	80	-100%¤	만	10	10 %이싱	
충균수	lhr	2hr	3hr	1hr	2hr	3hr	lhr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
천 미만				0.37	1.89	2.97	-1,93		0,5	-1.21	0, 38	0. 99	-1.40	0,41	0,99	-1,08	0.73	1.26
천~1만미만				0, 74	2,90	3, 79	1.78	3.2	4.41	0.69	2.37	3, 57	0.14	1.62	2,77	0.03	1.95	2.66
1~5만미만				1.39	3.27	5, 36	1,73	3, 64	5. 28	0. 26	1.74	2, 96	-0.91	1,40	1.51	-1,32	1.19	2, 56
5~10만미만			7, 52	0.37	2, 53	7.66	-0.57	1.03	2.69							0.60	2,56	4.42
10~50만미만	0. 33	1.98	3. 33	-1.70		8.93				-0.62	1.36	4.09	-0.72	0.98	2,85	2.15	3, 22	7.31
50~100만미만	3, 95	7.42	12.33															
100만 이상							11.26		10.43	4.43		6. 73	5.76	16.46	10, 44	7.46	18, 11	7. 85

주) 1) : 총균수 대비 젖산균수가 0~20%일 때의 RRT 검사후의 배양시간별 색차계 a 값

총균수와 산생성균수의 분포간 RRT검사후의 배양시간별 색차계 a 값에 영향이 없었다.

2. SPC법과 색차계에 의한 배양온도별 RRT검사

표 66. 겨울철 쇠고기의 SPC법과 색차계에 의한 배양온도별 RRT검사

(단위 : cfu/am²)

시료	총균수	총균수	a va	lue(30)°C)	a va	lue(35	(3.		alue(25	57ta/ dill /
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
1	240	2.38	-1.59			-1.34		0.64			
2	82000	4.91	-1.66			-0.92		2.56			
3	78000	4.89	-1.42			-1.00		2.65			
4	45000	4.65	-1.66			-1.01	1	2, 18			
5	43000	4.63	-1.53		1.35	-1.13		2, 22			
6	41000	4.61	-1.60		1.41	-0.96		2.15			
7	46000	4.66	-1.55		1.70	-1.08		2. 25			
8	80	1.90	-1.44		0.44	-0.96		1.56			
9	160	2.20	-1.49		0.49	-1.04		1.53			
10	100	2.00	-1.56		0.41	-0.91		1.40			
11	290	2.46	-1.77		0.19	-1.17		1.43			
12	110	2.04	-3.87		-2.84	-3.62		-2.12			
13	480	2.68	-3.95	:	-2.80	-3.62		-2.03			
14	910	2.96	-3.91		-2.80	-3.64		-2.03			
15	150	2.18	-3.90		-2.85	-3.64		-2.11			
16	390	2.59	-3.94		-2.83	-3.66		-2.04			
17	60000	4.78	-1.93			-1.51	l	2.01			
18	89000	4.95	-1.78		E :	-1.18	l .	2.63			
19	133000	5.12	-1.29		4.95	-0, 61		4.15			
20	144000	5.16	-1.00		1	-0.48	ł	4.72			
21	156000	5.19	-0.45	ł	i	0.24	}	6, 30			
22	84000	4.92	-1.29		l	-0.70		3, 66			
23	8100	3, 91	-2.59		į.	-2.08	Į.	0.08			
24	2800	3.45	-2.65		I	-1.91	1	0.25			
25	2800	3, 45	-2.68		1	-1.96	i	0.37	i		
26	390	2.59	-2.82		-1.10	-2.08	-	0.08			
27	340	2.53	-2.90		-1.26	-2.27		-0.17			<u> </u>

표 67. 겨울철 돼지고기의 SPC법과 색차계에 의한 배양온도별 RRT검사

(단위 : cfu/cm)

시료	총균수	총균수	a va	alue(30)C)	a va	lue(3	5℃)	a va	alue(2	5℃)
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
1	2500	3.40	-0.11		2.90	0.42	****	1.08			
2	3000	3.48	-0.36		3.04	0, 59		4.88			
3	4000	3, 60	-0.26		3.80	0, 83		5, 58			i i i i i i i i i i i i i i i i i i i
4	2000	3.30	-0.59		2.77	0.25		4.63			
5	430	2.63	-1.55		0,90	-0.95	~	2.08	·		

시료	총균수	총균수	a va	lue(30	(3)	a va	alue(35	(C)	a va	lue(25	(C)
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
6	330	2.52	-1.93		0, 50	-1.37		1.65			
7	330	2, 52	-1.88		0.52	-1.22		1.73			
8	280	2, 45	-1.86		0.47	-1.19		1.82			
9	920	2.96	-1.82		0.30	-1.19		1.50			
10	910	2.96	-1.46		0.86	-0.78		2.45			
11	19000	4.28	-3.31		-1.57	-2.98		-0.65			
12	36000	4.56	-3.26		-1.35	-2.95		-0.48			
13	38000	4.58	-3.17		-0, 99	-2.80		-0.22			
14	18000	4.26	-3.07		-0.99	-2.59		-0.22			
15	15000	4.18	-2.85		-0.90	-2.47		0.02			
16	2890000		18.00		9.85	19.34		9,07			
17	480000	5.68	8.57		13.68	11.05		17.19			
18	1240000	6.09	6.72		9.56	8.82		8.48			
19	1510000	6.18	8.10		8, 55	10.33		9.06			
20	500	2.70	-2.16		0.24	-1.16		1.67			
21	790	2.90	-1.64		0.53	-0.80		1.94			
22	490	2.69	-1.58		0. 51	-0.78		1.90	:		
23	500	2.70	-1.62		0.43	-0.78		1.77			
24	550	2.74	-1.40		0.61	0.68		1.99			

표 68. 봄철 쇠고기의 SPC법과 색차계에 의한 배양온도별 RRT검사

시료	총균수	총균수	a va	lue(30	(3°	a va	lue(35	5℃)	a va	lue(2	5°C)
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
1	63000	4.80	-2.18		0.51	-1,68		0.95			
2	104000	5.02	-2.11		0.99	-1.54		1.54			
3	98000	4.99	-2.35		0.64	-1.87		1.15	:		
4	17200000	7.24	8, 83		8.46	6.27		8.20			
5	4200000	6.62	17.83		5.61	17.82		5.57			
6	1900000	6.28	0.69	•	13.58	2.74	:	16.25			
7	14800	4.17	-1.42		0.91	-0.73		1.87			
8	24800	4.39	-1.24		0.94	-0.67		1.96			
9	1360	3.13	-1.30		0.98	-0, 81		1.82			
10	1230	3.09	-1.47		1.00	-0.88		1.75			
11	1990	3, 30	-1.07		1.06	-0.66		1.88			
12	2130000	6.33	-2.05		12.33	-1.85		6.18			
13	2210000	6.34	-1.12		15.55	-1.09		17.48			
14	1210000	6.08	-2.16		7.70	-2.05		4.07			
15	270	2.43	-1.73		0.00	-1.22		1.01			
16	320	2.51	-1.45		0.44	-0.98		1.33			
17	190	2.28	-1,51		0.36	-0.99		1.32			

시료	총균수	총균수	a va	lue(30	℃)	a va	lue(35	C)	a va	lue(25	(3°
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
18	370	2.57	-1.40		0.44	-0.94		1.33			
19	310	2.49	-1.33		0.45	-0.98	Ī	1.46	i		
20	58000	4.76			2.89			3.78			1.65
21	49000	4.69			3.02			3.84			1.76
22	28000	4.45			2.03			3.34			0.94
23	159000	5. 20			5.81			5.23			4.19
24	460000	5.66			12.02			8.69			8.43
25	83000	4.92			2, 27			2.54			1.14
26	2100	3.32	2.11	3.41	4.46	2.84	4.30	5. 55	1.88	2.53	3.47
27	1670	3.22	2.07	3.14	4.31	2.63	4.10	6.10	1.68	2.88	3, 38
28	1320	3.12	2.13	3.39	4.34	2.66	4.34	5.50	1.51	2.41	3.27
29	1550	3.19	1.78	3.32	4.36	2, 56	4.08	5.54	1.26	2.19	3.06
30	820	2.91	1.76	3.13	4.00	2.45	4.03	5.26	1.40	2.43	3.06
31	73000	4.86	-1.16	-0.31	1.61	-0.90	0.60	2.39	-1.84	-0.54	1.40
32	88000	4.94	-1.45	0.19	2.28	-0.74	1.09	2.88	-1.64	-0.17	2.05
33	66000	4.82	-0.62	-0.11	1.86	-0.76	0.68	2.48	-1.92	-0.44	1.71
34	34000	4.53	-1.72	-0.44	0.93	-0.50	0.56	1.89	-1.76	-0.74	0.66
35	81000	4.91	-1.82	-0.07	2, 32	-0.10	0.75	2.71	-2.02	-0.49	1.99
36	6900	3.84	-1.95	-1.07	-0.08	-1.43	-0.27	0.98	-2.16	-1.26	-0.41
37	12400	4.09	-1.90	-0.84	0. 26	-1.32	0.05	1.34	-2.00	-1.21	-0.28
38	6200	3.79	-0.95	-0.93	0.14	-1.39	-0.03	1.21	-1.96	-1.12	-0.31
39	80	1.90	-2.40	-1.35	-0.51	-1.75	-0.44	0.66	-2.40	-1.65	-1.01
40	80	1.90	-2.45	-1.44	-0.50	-1.83	-0, 53	0,56	-2, 55	-1.87	-1.05
41	159000	5. 20	-0.98	1.42	6.09	-0.42	1.95	4.82	-0.92	2.36	9.39
42	238000	5.38	-0.35	2.59	8.65	0.26	3.29	7.02	-0, 26	3, 61	13.95
43	1000	3.00	-2.16	-1.26	-0.36	-1.63	-0.51	0.57	-2.27	-1.44	-0.73
44	1000	3.00	-2.33	-1.85	-0.42	-1.69	-0.46	0.58	-2.31	-1.53	-0.89
45	1000	3.00	-2.38	-1.36	-0.44	-1.82	-0.52	0.51	-2.44	-1.47	-0.76
46	190	2.28	-2.44					13.90			
47	720	2.86	-2.36	-1.49	1.02	-1.47	1.56	13.71	-2.56	-2.07	-1.11
48	11400	4.06	-2.32	-1.46			1		1	l .	-0.86
49	410	2.61	-2.48		1.05		4			1	-0.98
50	7500	3.88	-2.51						1	l	-1.19
51	71000	4.85	1.10				1		0.92	4.48	13.21
52	44000	4.64	0.33	1.94	i (7.08	0.19	1.88	4.50
53	115000	5.06	0.76	3.06					0.90	1	į.
54	990	3.00	-0.39	0.87	1				-0.98	1	i
55	990	3.00	-0.22		1				-0.88	1	
56	470	2.67	0.15						-0.35	1	
57	2170	3.34	0.12						-0.33	i	
58	520	2.72	0.17	1.40	2. 24	0.41	1.89	2.91	-0.37	1.04	1.51

표 69. 봄철 돼지고기의 SPC법과 색차계에 의한 배양온도별 RRT검사

시료	총균수	총균수	a va	lue(30	(2)	a va	lue(35	(2)		lue(25	10/01/ (C)
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
1	1820000	6.26	11.89		5. 80	19.57		7.04			
2	1970000	6.29	4.43		7.60	6.11		11.39			
3	1730000	6.24	3, 31		9.40	4.71		11.65			
4	2030000	6.31	5.79		7.66	11.44		7.80			
5	1460	3.16	-0.54		2.11	0.16		3.22			
6	3090	3.49	-0.86		1.88	i		2.91			
7	2790	3.45	-1.61		0.87	-1.14		1.83			
8	1210	3.08	-1.70		0.76			1.83			
9	750	2.88	-1.70		0.70			1.72			
10	1250000	6.10	4.52		11.01	2.21		17.14			
11	370000	5.57	-1.66		7.88	-1.44		3, 23			
12	285000	5.45	-1.80		7.88	-1.49		2.97			
13	490000	5, 69	-1.79		9.86	-1.41		6.08			
14	320000	5, 51	-1.56		10.11	-1.34		6.78			
15	950	2.98	-0.52		2.32	0.00		3.39			
16	810	2.91	-0.74		1.74	-0.09		2.87			***************************************
17	1170	3.07	-1.04		1.42	-0.55		2.64			
18	500	2.70	-1.05		1.34	-0.55		2.47			
19	810	2.91	-1.02		1.44	-0.46		2.66			
20	94000	4,97			7.52			6.97			5.74
21	95000	4.98			10, 93			7.47			8.37
22	2220000	6.35			5, 86			11.23			5.69
23	2810000	6.45			4.69			11.09			8.17
24	9000	3.95	3. 40		6, 55			7.48	2.66	3, 82	4.86
25	6400	3.81	2, 91	4.17	5. 79			7.10	2.20	2.93	4.31
26	3800	3.58	2, 26		i :						i
27	7200	3.86	1.78		Į.	1	1			1	L
28	3800	3, 58	2.33	i .	1		I.		ŧ .		\$
29	110000	5.04	-0.62						-0, 81		1
30	102000	5.01	-0.72	1	1	Î			-0.96		1
31	156000	5.19	-0.27	l	ì		ļ		-0.50		i i
32	80000	4.90	-0.57	I	1	l .	l		-0.80		1
33	86000	4.93	-0.38	l	l		1		-0.69		
34	340	2, 53	Į.	-0.72		l	Į.	!	į.	-0.82	1
35	340	2.53	i	-1.35		l	-0.40		ŧ	i	-0.23
36	530	2.72	1	-1.03	1	-0.78	l	1	i	1	-0.59
37	1860	3.27	-1.86	-0.57	0.61	-1.08	0.61	2.16	-1.75	-0.72	0.22

시료	총균수	총균수	a va	lue(30	℃)	a va	alue(35	ზ)	a va	lue(25	(3°
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
38	460	2.66	-1.74	-0.54	0.70	-1.45	-0.13	1.09	-1.74	-0.66	0.28
39	39000	4.59	-1.33	0.18	1.85	-0.40	1.46	3.21	-1.25	0.12	1.62
40	30000	4.48	-1.33	0.06	1.60	-0.73	1.10	2.50	-1.37	-0.10	1.20
41	5300000	6.72	6.61	19.15	6.44	8.83	18.69	8.26	9.57	18.19	7.29
42	3800000	6.58	4.92	16.46	14.25	6.54	17.05	16.46	7.01	18.61	13.97
43	3600000	6.56	5. 55	17.07	14.64	7.54	18.18	15.94	7.75	19.15	13.22
44	15600	4.19	-1.34	-0.05	3.27	-0.01	4.01	11.26	-1.63	-0.35	0.71
45	17700	4.25	-1.48	-0.42	1.84	-0.39	2.15	16.84	-1.57	-0.04	0.41
46	11200	4.05	-1.42	-0.34	1.84	-0.35	2.13	17.34	-1.60	-0.21	0.52
47	17300	4.24	-0.55	-0.02		-0.02	2.46	17.94	-1.29	-0.45	1.03
48	17500	4.24		0.16	2.18	0.24	2.89	17.37	-1.29	-0.44	1.04
49	163000	5. 21	2.03	4.44	7.80	3.56	6.39	9.94	2.22	5.07	11.37
50	89000	4.95	1.79	4.07	6.64	3, 23	5.81	8.75	1.85	4.24	7.37
51	43000	4.63	2.02	4.51	7.53	3.72	6.40	9.85	2.08	4.75	8.88
52	12000	4.08	2.38	4.32	6.73	3.70	6.15	8.22	2.22	4.52	7.80
53	565000	5.75	3.99	7.86	13.59	5.85	10.21	15.49	4.33	8, 68	16.19
54	690000	5.84	3, 90	6.98	11.07	5.62	9.11	12.84	3, 85	6.94	11.39
55	1020	3.01	0.71	2.22	3.29	1.05	2.83	4.09	0.08	1.63	2.34
56	1150	3.06	0.61	2.34	3.81	0.88	2.78	4.10	0.01	1.51	2.56
57	200000	5.30	0.33	1.98	3, 33	0.48	2.53	4.04	-0.40	1.16	2.41
58	5100	3.71	0.18	1.73	3.00	0.32	2.12	3.62	-0.53	0.99	
59	4050	3.61	0.15	1.62	2.83	0.31	2.07	3.42	-0.57	0.73	1.74

표 70. 여름철 쇠고기의 SPC법과 색차계에 의한 배양온도별 RRT검사

시료	총균수	총균수	a va	alue(30	ზ)	a va	alue(35	℃)	a va	lue(25	(C)
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
1	3010	3.48	0.10	1.56	2.51	0.73	2.43	3, 55	-0.1	1.27	2.06
2	4100	3.61	0.02	1.59	2.46	0.91	2.49	3.84	-0.07	1.33	1.96
3	3300	3.52	0.07	1.61	2.67	0.60	2.30	3.59	-0.31	1.46	2.11
4	22400	4.35	-0.47	0, 89	1.74	0.23	2.70	2.83	-0.55	0.57	1.45
5	21000	4.32	-0.82	0.58	1.51	-0.18	1.41	2.51	-0.92	0. 26	1.06
6	2150	3, 33	2.30	3.79	4.73	3.09	4.88	6.16	1.50	2.93	3.76
7	1160	3.06	2.14	3.74	4.67	2.92	4.80	6.02	1.36	2.77	3, 71
8	1030	3.01	2.31	3.65	4.57	2.81	4.59	5.73	1.44	2.86	3.69
9	2400	3.38	1.84	3,38	4.34	2.53	4.29	5.36	1.10	2.54	3.43
10	2070	3.32	1.64	3, 20	4.20	2. 29	4.11	5.25	0.83	2. 26	3.19
11	21500	4.33	-1.26	-0.38	0.54	-0.72	0.65	1.69	-1.87	-0.86	-0.09

시료	총균수	총균수	a va	alue(30	က္)	a va	ilue(35	ზ)	a va	lue(25	°C)
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
12	10700	4.03	-1.37	-0.27	0, 57	-0.65	0.76	1.72	-1.85	-0.86	-0.11
13	24500	4.39	-1.39	-0.30	0.71	-0.68	0.77	1.79	-1.78	-0.74	0.10
14	61000	4.79	-1.32	0.10	2.47	-0.71	0.89	2.09	-1.72	-0, 62	0.34
15	211000	5.32	-0.26	1.11	2.55	0.48	2.27	3, 65	-0.74	0.68	1.98
16	2230	3.35	-0.19	0.89	1.69	0.48	1.87	2.79	-0.31	0.55	1.22
17	5470	3.74	-0.13	0.81	1.70	0.45	1.71	2.74	-0.32	0. 50	1.25
18	44000	4.64	-0.22	0.88	1.98	0.43	1.79	2.95	-0.37	0.62	1.64
19	1630	3.21	-0.24	0.71	1.61	0.34	1.66	2.68	-0.41	0.43	1.13
20	4100	3.61	-0.68	0.39	1.25	0.07	1,39	2.44	-0.70	0. 21	1.04
21	4200	3, 62	-0.03	0.87	1.68	-0.03	1.38	2.38	-0.59	0.18	0.87
22	4900	3.69	0.12	1.05	1.91	0.07	1.50	2.59	-0.63	0.33	1.10
23	26200	4.42	0.25	1.32	2.36	0.33	1.74	2.95	-0.34	0.57	1.47
24	173000	5.24	1.05	3.10	6.17	0.69	2.61	4.55	0.27	1.90	4.69
25	15700	4.20	-0.53	0.51	1.49	-0.49	1.04	2.27	-1.21	-0.29	0,60
26	1150	3.06	0.68	2.10	3.14	1.55	3, 07	4.24	0.60	1.68	2, 53
27	800	2.90	0.66	2.05	3.04	1.65	3.07	4.16	0, 63	1.64	2.41
28	41000	4.61	0.87	2.21	3.27	1.80	3.28	4.39	0.83	1.75	2.57
29	1070	3, 03	0.42	1.56	2.36	1.20	2.51	3, 30	0.31	1.18	2.06
30	4800	3.68	-0.10	1.06	1.94	0.72	1.95	2.90	-0. 28	0.70	1.44

표 71. 여름철 돼지고기의 SPC법과 색차계에 의한 배양온도별 RRT검사

시료	총균수	총균수	a va	lue(30	(C)	a va	ılue(35	ిది)	a va	lue(25	(C)
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
1	135000	5.13	0.86	2.8	3, 98	1.51	3, 51	5.05	0.49	2.17	3.24
2	85000	4.93	0.38	2.14	3. 21	1.26	3.25	4,77	0.09	1.54	2.60
3	5500	3.74	0.34	1.99	3.13	1.16	2.95	4.46	-0.05	1.34	2.38
4	6200	3, 79	0.32	2.15	3.12	1.03	2.97	4.36	-0.04	1.35	2.29
5	5900	3.77	0.44	2.13	3, 21	1.12	3.01	4.51	0.08	1.41	2.41
6	28000	4.45	3.08	5.14	6.97	3.73	5.98	7.70	1.97	4.06	5.86
7	18000	4.26	0, 41	1.99	3.33	1.05	3.11	4.77	-0.23	1.30	2.63
8	22800	4.36	0.37	2.14	3, 59	0.86	2.88	4.46	-0.44	1.14	2.49
9	51000	4.71	0.37	2.53	4.39	0.92	3.07	4.87	-0.37	1.40	3. 28
10	45000	4.65	0.40	2.22	3.98	0.87	2.82	4.40	-0.47	1.12	2, 71
11	1580	3, 20	0.52	1.89	2.94	1.32	3.16	4.31	-0.02	1.19	2.00
12	3200	3.51	0.52	2.06	3.19	2.70			0.09	1.39	2.31
13	7900	3.90	0.59	2.13	3.27	1.76	3.57	4.88	0.09	1.45	2.28
14	38000	4.58	0.89	2, 52	3.70	1.90	3.81	5, 16	0.51	1.89	2.82

시료	총균수	총균수	a va	lue(30)C)	a va	alue(35	C)	a va	lue(25	(C)
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
15	47000	4.67	1.13	2.67	3.93	2.19	4.30	5.74	0.56	1.92	2.85
16	22600	4.35	1.36	5.44	11.94	2.35	5. 81	10, 36	1.90	6.97	14.81
17	188300	5, 27	1.01	3, 85	7.66	1.89	4.68	7.86	1.27	4.25	8.51
18	247000	5, 39	0.67	3, 14	6.36	1.50	3. 99	6.64	0.85	3. 31	6.75
19	14400	4.16	-0.48	0.81	1.96	0.25	1.85	3.18	-0.69	0.46	1.42
20	22000	4.34	-0. 53	0.70	1.86	0.18	1.77	3.14	-0.77	0.36	1.33
21	830	2.92	1.02	2.31	3.40	1.02	2.81	4.34	0.24	1.31	2.30
22	1770	3. 25	0. 78	2.03	3. 22	0.71	2. 56	4.07	-0.06	1.09	2.12
23	2190	3.34	0.36	1,56	2, 62	0.40	2.07	3.52	-0.35	0.66	1.55
24	5400	3.73	0, 67	2.07	3, 31	0.84	2, 71	4.26	0.04	1.35	2.32
25	5400	3.73	0.74	2.08	3.31	0.81	2.66	4.18	0.04	1.28	2.33
26	1900	3, 28	1.20	2.70	3.86	2.17	3, 89	5.22	1.51	2.11	3,06
27	3900	3, 59	0.87	2.40	3, 67	1.85	3, 56	4.97	0.47	1.71	2.86
28	2250	3.35	-0.89	0.39	1.46	-0.18	1.29	2.54	-1.05	-0.08	0.80
29	1450	3.16	-0.96	0.21	1.21	-0.30	1.14	2.34	-1.13	-0.21	0.59
30	2840	3. 45	-0.95	0. 20	1.17	-0.34	1.12	2.18	-1.24	-0.44	0.25

표 72. 가을철 쇠고기의 SPC법과 색차계에 의한 배양온도별 RRT검사

시료	총균수	총균수	a va	alue(30	(D)	a va	ılue(35	ზ)	a va	lue(25	(3°
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
1	. 8200	3, 91	0.31	1.51	2, 56	1.10	2.42	3.46	0.42	1.39	2.36
2	13500	4.13	0.33	1.67	2.85	1.18	2, 56	3.84	0, 55	1.63	2.88
3	4900	3.69	-0.35	0.64	1.37	0.29	1.34	2.15	-0.19	0.57	1.13
4	13700	4.14	-0.29	1.17	2.36	0.65	2.19	3.32	-0.21	0.97	2.24
5	60000	4.78	1.50	5.83	13, 44	1.35	4.36	8.49	1.68	6.20	14.29
6	57000	4.76	1.53	5. 57	12.54	1.32	4.10	7.68	1.66	5.85	13.56
7	70000	4.85	1.72	6.78	15.86	1.57	4.69	9.01	2.01	7.29	17.31
8	13900	4.14	-0.21	1.19	2.33	0.18	1.67	2.85	-0.22	0, 80	2.00
9	8800	3.94	-0.23	1.23	2.58	0.07	1.58	2.74	-0.27	0.97	2, 38
10	4400	3.64	-1.07	0.08	1.26	-0.67	0.61	1.81	-1.3	-0. 28	0.72
11	15900	4.20	-1.00	0.23	1.52	-0.52	0.86	2.07	-1.03	-0.15	0.98
12	10200	4.01	-1.14	0.07	1.37	-0.70	0.62	1.88	-1.3	-0.31	0.86
13	14600	4.16	-1.13	0.12	1.38	-0.70	0.65	1.85	-1.3	-0.36	0.70
14	360	2.56	-1.28	0.55	0.57	-0.80	0.36	1.44	-1.38	-0.68	-0.05

표 73. 가을철 돼지고기의 SPC법과 색차계에 의한 배양온도별 RRT검사

시료	총균수	총균수	a va	alue(30	(D)	a va	lue(35	ຽ)	a va	lue(25	(C)
번호	(35℃)	(log)	1hr	2hr	3hr	1hr	2hr	3hr	1hr	2hr	3hr
1	5800	3. 76	1.33	2.92	4.23	2.21	4.09	5.60	1.53	2.73	3.67
2	4500	3.65	0.87	2, 50	3.70	2.02	3.67	4.99	1.13	2. 31	3.20
3	420	2.62	0.53	2.10	3.12	1.56	3.21	5.32	0.64	1.75	2.58
5	670	2.83	0.31	1.69	2.66	1.13	2, 68	3.86	0.36	1.47	2. 21
6	60	1.78	0.49	1.86	2.94	0.90	2.72	4.03	0.33	1.39	2.27
7	100	2.00	0.43	2.08	3.28	0.92	2.93	4.82	0.25	1.53	2.44
8	540	2.73	0.31	1.85	3.11	0, 81	2.80	4.38	0.13	1.30	2.22
9	1820	3. 26	-0.08	1.29	2.30	0.39	2.11	3.49	-0.39	0.66	1.53
10	2860	3.46	0.09	1.54	2.72	0, 55	2.38	3.86	-0.3	0.86	1.74
11	4100	3.61	-0.49	0.97	2.19	0.15	1.96	3.42	-0.19	0.98	2.14
12	12800	4.11	0.49	2.12	3.57	1.04	3.13	4.76	0.19	1.48	2.66
13	4800	3.68	0.50	2.02	3.49	1.17	2.80	4.35	0.12	1.27	2.18
14	2510	3.40	-0.10	1.40	2.54	0.51	2.30	3.71	-0.34	0.71	1.62
15	2440	3, 39	-0.09	1.37	2.66	0.58	2.45	4.12	-0. 43	0.76	1.70

3. SPC법과 환원시간에 의한 배양온도별 RRT검사

표 74. 겨울철 쇠고기의 SPC법과 환원시간에 의한 배양온도별 RRT검사

(단위 : cfu/am²,분)

시료	총균수	총균수		30℃			35℃			25℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
1	240	2.38	337	392	647	202	309	336			
2	82000	4.91	206	243	293	203	256	351			
3	78000	4.89	209	256	306	203	256	323			
4	45000	4.65	216	293	333	203	291	351			
5	43000	4.63	216	281	326	214	281	328			
6	41000	4.61	216	293	333	214	291	328			
7	46000	4.66	216	256	309						
8	80	1.90	155	568	807	140	487	639			
9	160	2.20	155	642	742	140	487	619			
10	100	2.00	209	742	817	140	487	585			
11	290	2.46	223	619	685	140	487	619			
12	110	2.04	623	724	774	513	639	664			
13	480	2.68	524	623	708	499	552	612			
14	910	2.96	484	573	657	311	327	342			
15	150	2.18	599	672	724	414	548	622			

16	390	2.59	573	672	739	481	614	656			
17	60000	4.78	164	238	327	147	258	296			
18	89000	4.95	145	223	315	147	258	296			
19	133000	5.12	135	205	279	135	207	296			
20	144000	5.16	135	195	259	135	200	290			
21	156000	5.19	125	165	238	92	163	280			
22	84000	4.92	145	210	297	147	237	305			
23	8100	3.91	340	364	557	262	284	337			
24	2800	3.45	344	378	587	262	284	337			
25	2800	3, 45	340	378	587		272	327			
26	390	2.59	360	378	694		262	322	T-C-STREET	Personal	
27	340	2,53	365	401	694	<u> </u>	262	322			

표 75. 겨울철 돼지고기의 SPC법과 환원시간에 의한 배양온도별 RRT검사

(단위 : cfu/cm², 분)

시료	총균수	충균수		30℃)		35℃			25°	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
1	2500	3.40	100	355	622	85	257	317			
2	3000	3.48	216	376	601	151	291	366			
3	4000	3, 60	206	376	621	139	214	366			
4	2000	3, 30	216	401	651	176	306	481			
5	430	2.63	223	599	742	140	462	585			
6	330	2.52	184	599	765	140	462	567			
7	330		272	599	765	140	462	562			
8	280	2.45	272	599	777	140	462	585			
9	920	2.96	234	599	702	183	462	567			
10	910		184	507	685	155	387	552			
11	19000	4.28	327	374	484	311	404	509			
12	36000	4.56	337	372	437	257	327	357			
13	38000	4.58	312	360	414	292	374	471			
14	18000	4.26	312	372	460	292	342	367			
15	15000	4.18	327	404	524	282	357	414			
16	2890000	6.46		42	82		35	80			1
17	480000	5.68	54	82	146	47	70	135			
18	1240000	6.09	54	94	146	47	92	148			
19	1510000	6.18	54	94	146	47	92	148			
20	500	2.70	327	365	617	180	263	332			
21	790	2.90	283	419	653	180	286	342			
22	490	2.69	337	419	687	180	286	342			
23	500	2.70	342	474	677	180	286	332			
24	550	2.74	337	456	687	180	286	342			

표 76. 봄철 쇠고기의 SPC법과 환원시간에 의한 배양온도별 RRT검사

3E 10	. 급결 의		21 C B	-1 T	G~1~	~1 — t	: "11" 6"	こエヨ	(단)	: : cfu	/래 분)
시료	총균수	총균수		30℃	WEEK.		35℃		<u>}</u>	25℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
1	63000	4,80	188	245	318	188	342	440			
2	104000	5.02	188	245	360	188	273	405			
3	98000	4.99	188	245	374	188	288	418			
4	17200000	7.24			15			17			
5	4200000	6.62	15	33	64	17	32	55			
6	1900000	6.28	72	105	133	62	106	145			
7	14800	4.17	208	338	475	167	270	515			
8	24800	4.39	208	338	475	167	292	515			
9	1360	3.13	208	338	545	167	318	605			
10	1230	3.09	208	450	643	167	318	575			
11	1990		208	450	713	167	318	668			
12	2130000		125	155	210	118	155	210			
13	2210000	6, 34	80	116	145	80	118	155			
14	1210000	6.08	118	175	225	119	205	248			
15	270	1	255	572	702	167	357	615			
16	320		237	572	757	167	357	547			
17	190		237	572	757	135	357	615			
18	370	2.57	255	572	702	135	357	547			
19	310		237	572	757	167	357	512			
20	58000	4.76	20	222	345	35	260	405	205	260	385
21	49000	4.69	20	202	315	35	205	345	165	245	365
22	28000	4.45	50	222	385	35	260	385	225	295	405
23	159000	5.20	50	165	280	35	165	295	105	165	280
24	460000	5, 66	20	105	222	20	140	243	35	145	225
25	83000	4.92	70	222	345	35	260	385	205	260	365
26	2100	3, 32	70	140	625	70	142	640	120	235	680
27	1670	3.22	70	140	600	70	162	640	120	235	670
28	1320	1	70	140	542	70	162	640	120	235	680
29	1550	3	70	140	600	70	162	640	120	235	680
30	820	2, 91	70	178	625	70	178	640	120	235	680
31	73000		150	270	420	150	235	400	150	320	440
32	88000		150	235	335	150	235	380	150	320	425
33	66000		150	285	420	150	235	400	150	320	440
34	34000		175	270	500	150	235	420	190	350	475
35	81000		150	235	335	150	255	380	150	320	425
36	6900		215	430	525	215	430	495	260	445	540
37	12400		215	430	490	215	430	445	260	445	525
38	6200	1	215	430	525	215	430	495	260	445	560
39	80	•	215	660	765	215	430	495	445	945	1120
40	80	1	215	660	845	215	445	510	445	945	1120
41	159000	5, 20	135	175	255	135	215	315	135	195	285

시료	총균수	총균수		30℃			35℃			25℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
42	238000	5.38	115	155	220	120	175	285	120	175	235
43	1000	3.00	255	505	645	235	485	540	385	600	675
44	1000	3.00	255	505	645	235	435	480	385	600	675
45	1000	3.00	255	470	645	235	470	480	385	550	665
46	190	2.28	190	245	450	145		190	440	565	630
47	720	2.86	190	245	450	145		190	440	580	630
48	11400	4.06	190	245	450	145		190	405	460	565
49	410	2.61	190	255	495	145		190	530	590	645
50	7500	3.88	190	290	495	145		190	510	530	580
51	71000	4.85	50	145	205	50	145	205	125	145	205
52	44000	4.64	75	190	310	75	190	375	125	185	310
53	115000	5.06	75	165		75		260	125	170	235
54	990	3.00	150	410	550	95	410	590	150	480	595
55	990	3.00	150	410	550	95	410	630	150	480	595
56	470	2.67	150	410	570	55	410	525	150	595	685
57	2170	3.34	150	410	550	55	410	525	150	480	595
58	520	2.72	150	410	590	105	410	590	195	595	685

표 77. 봄철 돼지고기의 SPC법과 환원시간에 의한 배양온도별 RRT검사

(단위:cfu/cm², 분)

시료	총균수	총균수				35℃			25℃		
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
1	1820000	6. 26	27	50	80	26	48	92			
2	1970000	6. 29	40	80	120	40	85	155		i	
3	1730000	6.24	50	95	145	49	92	175			
4	2030000	6.31	34	70	105	33	70	120			
5	1460	3.16	178	270	612	162	250	610			
6	3090	3.49	178	270	612	162	250	610		ı	
7	2790	3, 45	208	475	595	175	338	545			
8	1210	3.08	208	515	643	175	338	545			
9	750	2.88	208	515	668	195	338	575			
10	1250000	6.10	46	63	97	46	80	135			
11	370000	5.57	135	175	241	119	210	270			
12	285000	5.45	135	175	241	135	210	270			!
13	490000	5. 69	135	165	241	135	175	223			
14	320000	5, 51	135	165	241	135	175	223			
15	950	2.98	120	272	592	90	227	572			
16	810	2.91	183	337	592	107	257	532			
17	1170	3.07	215	357	592	120	272	532			
18	500	2.70	215	357	647	120	272	592			
19	810	2.91	215	357	647	135	272	592			
20	94000	4.97	5	88	280	6	89	315	20	165	280

시료	총균수	총균수		30℃			35℃			25℃	······
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
21	95000	4.98	5	88	243	5	89	295	20	145	245
22	2220000	6.35			20			5			70
23	2810000	6.45			34			55			70
24	9000	3, 95	10	145	465	30	127	565	50	142	602
25	6400	3, 81	10	145	465	30	127	600	50	142	602
26	3800	3, 58	30	140	525	30	142	600	95	195	602
27	7200	3.86	50	160	525	30	142	600	95	195	602
28	3800	3, 58	50	160	525	30	142	600	95	163	602
29	110000	5, 04	150	210	335	150	225	380	150	270	400
30	102000	5.01	150	270	420	150	225	380	150	320	472
31	156000	5.19	120	210	335	150	210	350	150	270	420
32	80000	4.90	120	235	420	150	210	400	150	305	440
33	86000	4.93	120	210	400	95	210	380	150	305	475
34	340	2, 53	210	580	725	210	445	510	260	765	878
35	340		210	615	795	210	370	465	260	765	915
36	530	.	210	580	660	210	370	475	260	725	878
37	1860		170	540	635	170	310	475	243	660	825
38	460	•	170	560	660	170	310	465	243	695	845
39	39000		175	285	365	135	255	385	210	345	435
40	30000	l	195	315	405	155	255	450	210	365	450
41	5300000	1	35	70	120	35	70	120	50	85	135
42	3800000	i	35	70	135	35	70	155	50	85	160
43	3600000		35	70	135	35	70	155	50	85	160
44	15600	1	145	190	450	110	145	165	220	520	580
45	17700	1	175	255	450	130	165	180	280	520	580
46	11200	ţ	175	345	450	120	165	180	280	520	580
47	17300	ł	175	245	450	110	165	180	280	440	565
48		4. 24	175	245	450	110	165	190	280	460	590
49	163000	l	38	145	205	35	145	310	75	190	235
50	89000		38	165	280	35	145	370	75	190	295
51	43000		38	165	260	35	115	330	75	145	220
52	12000		38	145	280	35	115	375	75	190	310
53	565000	i .	20	90	190	20	85	205	35	115	210
54	690000	1	20	90	240	20	85	235	35	115	260
55	1020		55	345	600	35	245	630	105	410	685
56	1150	l	55	345	550	35	245	570	105	410	630
57	200000		55	280	365	35	245	385	105	280	480
58	5100	j	105	280	365	95	260	385	150	300	480
59	4050	3.61	105	345	475	55	260	480	150	410	570

표 78. 여름철 쇠고기의 SPC법과 환원시간에 의한 배양온도별 RRT검사

시료	총균수	총균수		30℃			35℃		(단위 : cfu/am, 분 25℃			
1	(35℃)		청자	보라	분홍	청자	보라	분홍	청자	보라	분홍	
번호	3010	(log) 3.48	125	315	<u> </u>	100	295	<u> </u>	140	<u> </u>	工る	
2		1										
	4100	3.61	125	375	635	100	295	525	140	415	705	
3	3300	3. 52	100	375	585	100	295	510	140	415	735	
4	22400	4.35	125	375	455	100	295	405	160	415	545	
5	21000	4.32	125	375	455	100	375	455	180			
6	2150	3, 33	47	195	455	47	180	405	65	295	585	
7	1160	3.06	47	195	455	47	180	370	65	295	585	
8	1030	3.01	47	195	510	47	180	405	65	295	645	
9	2400	3.38	47	195	540	47	180	475	65	295	645	
10	2070	3. 32	65	215	540	65	180	475	85	295	645	
11	21500	4.33	205	300	400	200	300	380	225	300	415	
12	10700	4.03	205	345	470	200	400	435	225	400	505	
13	24500	4.39	205	280	360	200	300	415	205	280	380	
14	61000	4.79	205	225	315	200	240	360	205	225	315	
15	211000	5.32	145		255	125	225	315	175]	230	
16	2230	3.35	240	425	590	240	425	550	255	535	730	
17	5470	3.74	240	425	535	240	425	510	255	535	730	
18	44000	4.64	240	290	395	240	360	455	255	360	600	
19	1630	3. 21	255	455	590	240	455	550	255	565	730	
20	4100	3.61	255	455	610	240		530	255	590	730	
21	4200	3.62	145	385	495	95	265	405	150	475	635	
22	4900	3.69	145	385	495	95	265	430	150	430	545	
23	26200	4.42	145	295	405	95	265	340	150	385	460	
24	173000	5. 24	80	160	230	80	160	295	80	160	215	
25	15700	4.20	160	325	430	145	325	405	215	235	385	
26	1150	3.06	80	370	615	50	235	515	125	445	720	
27	800	2.90	80	370	615	50	235	550	125	445	750	
28	41000	4.61	80	285	440	50	235	400	125	310	515	
29	1070	3.03	140	400	540	80	370	445	175	550	690	
30	4800	3.68	140	440	540	80	370	445	175	570	660	

표 79. 여름철 돼지고기의 SPC법과 환원시간에 의한 배양온도별 RRT검사

시료	총균수	총균수		30℃			35℃			25℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
1	135000	5.13	70	235	415	70	200	385	105	275	505
2	85000	4.93	70	255	455	70	200	495	105	295	545
3	5500	3.74	70	275	548	70	200	495	105	275	635
4	6200	3. 79	85	255	548	70	235	470	140		
5	5900	3.77	85			70	235	495	140	325	600
6	28000	4.45	30	120	315	30	120	315	47	155	313
7	18000	4.26	105	215	370	85	195	370	120	265	390
8	22800	4.36	105	215	370	85	195	370	120	265	355
9	51000	4.71	105	195	345	65	195	335	120	195	295
10	45000	4.65	105	195	345	65	195	370	120	265	355
11	1580	3. 20	125	315	465	95	240	535	175	465	680
12	3200	3, 51	110	225	520	80	225	465	160	450	615
13	7900	3.90	110	225	470	80	225	450	160	415	550
14	38000	4.58	95	225	470	75	220	385	125	300	535
15	47000	4.67	95	225	470	75	220	450	125	210	535
16	22600	4.35	30	80	210	25	80	255	30	100	240
17	188300	5. 27	30	100	240	25	80	275	60	150	275
18	247000	5.39	30	100	240	30	80	275	75	150	275
19	14400	4.16	155	360	535	135	290	470	240	455	690
20	22000	4.34	155	340	455	135	290	470	240	425	645
21	830	2.92	80	250	565	80	250	475	150	325	650
22	1770	3. 25	80	250	565	80	250	475	150	325	650
23	2190	3.34	80	250	565	80	250	475	150	445	650
24	5400	3.73	80	230	565	80	250	475	150	325	620
25	5400	3, 73	80	250	510	80	250	475	150	325	545
26	1900	3. 28	80	255	550	50	215	480	80	310	655
27	. 3900	3. 59	80	255	515	50	215	445	80	310	655
28	2250	3.35	175	480	550	140	400	515	195	615	660
29 .	1450	3.16	175	515	580	140	435	550	195	615	750
30	2840	3. 45	175	515	580	140	435	515	195	615	750

표 80. 가을철 쇠고기의 SPC법과 환원시간에 의한 배양온도별 RRT검사

(단위 : cfu/때,분)

시료	총균수	총균수		30℃			35℃			25℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
1	8200	3, 91	130	260	405	75	260	430	130	265	440
2	13500	4.13	130	245	340	75	220	405	130	245	405
3	4900	3.69	130	405	530	130	405	430	130	530	640
4	13700	4.14	130	245	370	130	220	405	130	245	405
5	60000	4.78	45	90	195	45	90	195	45	90	195
6	57000	4.76	45	90	195	45	90	195	45	90	195
7	70000	4.85	35	60	135	45	60	195	45	60	135
8	13900	4.14	135	290	390	105	290	420	105	290	420
9	8800	3, 94	135	290	390	105	290	420	105	290	420
10	4400	3, 64	190	385	470	170	360	555	215	410	650
11	15900	4.20	190	360	470	170	385	555	215	385	600
12	10200	4.01	190	385	470	170	360	490	215	410	650
13	14600	4.16	190	385	470	190	450	650	215	410	600
14	360	2.56	210	450	730	110	360	555	410	750	990

표 81. 가을철 돼지고기의 SPC법과 환원시간에 의한 배양온도별 RRT검사

(단위 : cfu/cm²,분)

시료	총균수	충균수		30℃			35℃			25℃	
번호	(35℃)	(log)	청자	보라	분홍	청자	보라	분홍	청자	보라	분홍
1	5800	3.76	60	245	485	60	175	440	90	245	640
2	4500	3.65	60	245	485	60	175	440	130	245	640
3	420	2.62	130	315	670	60	220	530	130	315	780
4	670	2.83	130	405	605	60	220	570	130	405	780
5	60	1.78	85	350	665	85	290	420	105	470	850
6	100	2.00	85	290	460	70	255	350	105	470	850
7	540	2.73	85	290	460	85	255	340	115	470	820
8	1820	3.26	95	350	420	85	290	340	105	470	590
9	2860	3.46	85	350	420	85	290	350	105	470	590
10	4100	3.61	130	385	600	110	360	555	170	450	750
11	12800	4.11	85	235	470	85	215	380	150	360	665
12	4800	3.68	85	360	600	85	235	555	150	450	750
13	2510	3.40	85	360	600	85	360	555	170	450	750
14	2440	3.39	85	360	600	85	320	555	170	450	750

4. 배양온도별 SPC와의 상관관계 및 회귀방정식 산출

가. RRT법을 응용한 색차계에 의한 세균검사법

SPC법과 최적 상관관계가 높은 값을 얻기 위해서 RRT법을 배양온도별, 배양시간별로 색차계의 a값을 측정하고, SPC 배양온도는 25℃, 30℃, 35℃별로 하여측정한 값과 상관성이 있는지를 회귀분석하였다.

표 82는 쇠고기를 대상으로 RRT법과 SPC법(25℃/72h)간의 회귀분석한 결과로서 RRT법은 30℃에서 3시간 배양했을 때 r= 0.64로서 가장 높은 값을 나타내었다.

	_ , , , ,	-,	or i com a notice i in	- KY 1-1 C-1
RRT 법		시료수	회귀방정식	│
온도별	배양시간별	八五十	প্রনাত্ত্র	(プセセハ(r)
	1 시간	77	Y = 0.0513X + 4.1953	0.07
25℃	2 시간	77	Y = 0.1655X + 4.0419	0, 32
	3 시간	83	Y = 0.1482X + 3.8875	0.55
	1 시간	116	Y = 0.1695X + 4.3318	0.32
30℃	2 시간	77	Y = 0.1103X + 4.0431	0.20
	3 시간	122	Y = 0.2256X + 3.6845	0.64
	1 시간	116	Y = 0.1651X + 4.2417	0, 30
35℃	2 시간	77	Y = 0.1128X + 3.9413	0.18
	3 시간	122	Y = 0.1548X + 3.7259	0.43

표 82. 쇠고기에서의 SPC(25℃/72h)와 온도 및 배양시간별 색차계 a 값과의 관계

 $[\]stackrel{>}{\Rightarrow}$) Y = Initial bacterial log count, X = "a" value of RRT by color difference meter reading 1, 2, 3 hour incubation respectively

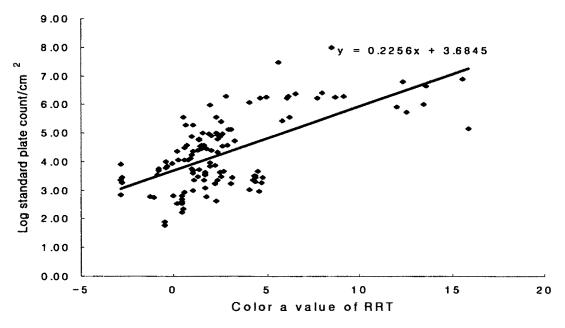


그림 4. 쇠고기에서의 총균수(25℃/72hr)와 30℃에서 3시간 배양 후 색차계 a 값 간의 회귀직선 및 분포도

표 83은 쇠고기를 대상으로 RRT법과 SPC법(30℃/72h)간의 회귀분석한 결과로서 RRT법은 30℃에서 3시간 배양했을 때 r= 0.68로서 가장 높은 값을 나타내었다. 표 83. 쇠고기에서의 SPC(30℃/72hr)와 온도 및 배양시간별 색차계 a 값과의 관계

RRT 법		パコム	કે ો વો મો ⊅ો	2 L ¬ L ¬ L ¬ L ¬ L ¬ L ¬ L ¬ L ¬ L ¬ L
온도별	배양시간별	시료수	회귀방정식	상관관계(r)
	1 시간	77	Y = 0.0569X + 4.0667	0.08
25℃	2 시간	77	Y = 0.1791X + 3.9000	0.37
	3 시간	83	Y = 0.1551X + 3.7406	0, 60
	1 시간	116	Y = 0.1580X + 4.1170	0.33
30℃	2 시간	77	Y = 0.123X + 3.8972	0. 24
	3 시간	122	Y = 0.2238X + 3.4858	0. 68
	1 시간	116	Y = 0.1568X + 4.0322	0. 31
35℃	2 시간	77	Y = 0.1246X + 3.7862	0.21
	3 시간	122	Y = 0.1591X + 3.5067	0.48

 \rightarrow) Y = Initial bacterial log count, X = "a" value of RRT by color difference meter reading 1,2, 3 hour incubation respectively

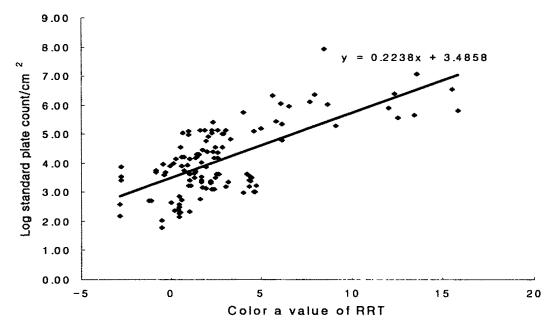


그림 5. 쇠고기에서의 총균수(30℃/72hr)와 30℃에서 3시간 배양 후 색차계 a 값 간의 회귀직선 및 분포도

표 84는 쇠고기를 대상으로 RRT법과 SPC법(35℃/48hr)간의 회귀분석한 결과로서 RRT법은 30℃에서 3시간 배양했을 때 r= 0.63으로 가장 높은 값을 나타내었다.

표 84. 쇠고기에서의 SPC(35℃/48hr)와 온도 및 배양시간별 색차계 a 값과의 관계

RRT 법		カラス	ਲੇ ਹੀ ਸਹਿਕੀ ਨੀ	* ようとっと・**)/ \
온도별	배양시간별	시료수	회귀방정식	상관관계(r)
	1 시간	77	Y = 0.0577X + 3.8242	0.09
25℃	2 시간	77	Y = 0.133X + 3.6921	0.31
	3 시간	83	Y = 0.1106X + 3.6042	0.48
	1 시간	123	Y = 0.1621X + 3.9553	0.35
30℃	2 시간	77	Y = 0.1009X + 3.6792	0.22
	3 시간	129	Y = 0.199X + 3.3849	0.63
	1 시간	123	Y = 0.1591X + 3.8692	0.33
35℃	2 시간	77	Y = 0.0756X + 3.6415	0.14
	3 시간	129	Y = 0.1194X + 3.4794	0.37

주) Y = Initial bacterial log count, X = "a" value of RRT by color difference meter reading 1, 2, 3 hour incubation respectively

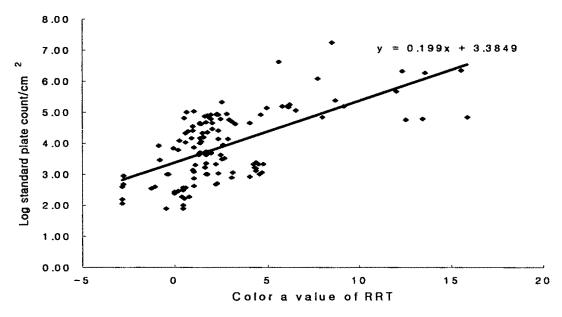


그림 6. 쇠고기에서의 총균수(35℃/48hr)와 30℃에서 3시간 배양 후 색차계 a 값 간의 회귀직선 및 분포도

쇠고기의 경우 SPC의 배양온도보다는 RRT법의 배양온도 및 시간에 크게 영향을 받는 것으로 나타났으며, 특히 30℃에서 3시간 배양했을때 상관관계가 가장 높게 나타났다.

표 85는 돼지고기를 대상으로 RRT법과 SPC법(25℃/72hr)간의 회귀분석한 결과로서 RRT법은 30℃에서 3시간 배양했을 때 r= 0.75로서 가장 높은 값을 나타내었다.

표 85. 돼지고기에서의 SPC(25℃/72hr)와 온도 및 배양시간별 색차계 a 값과의 관계

RR	RRT 법		રું] નો માં ત્રાં ⊥ો	* [-] -] ()
온도별	배양시간별	시료수	회귀방정식	│ 상관관계(r) │
	1 시간	80	Y = 0.306X + 4.165	0.54
25℃	2 시간	80	Y = 0.1865X + 3.8749	0.61
	3 시간	83	Y = 0.2547X + 3.4703	0.72
	1 시간	118	Y = 0.2782X + 4.2628	0.59
30℃	2 시간	80	Y = 0.1954X + 3.7749	0. 59
	3 시간	122	Y = 0.3142X + 3.2572	0.75
	1 시간	119	Y = 0.2326X + 4.0891	0.60
35℃	2 시간	79	Y = 0.2089X + 3.517	0.62
	3 시간	122	Y = 0.1861X + 3.4704	0.55

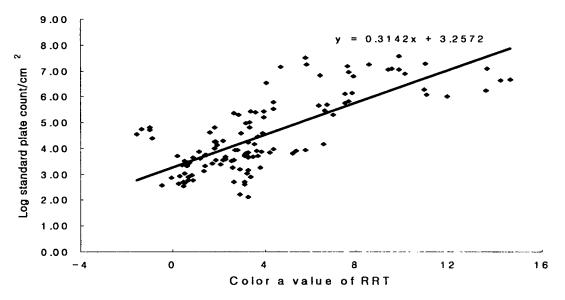


표 86은 돼지고기를 대상으로 RRT법과 SPC법(30℃/72hr)간의 회귀분석한 결과로서 RRT법은 30℃에서 3시간 배양했을 때 r= 0.74로서 가장 높은 값을 나타내었다.

표 86. 돼지고기에서의 SPC(30℃/72hr)와 온도 및 배양시간별 색차계 a 값과의 관계

RRT 법		カラム	के। नो भी जो 11	* [기 [교기 (교기
온도별	배양시간별	시료수	회귀방정식	│ 상관관계(r) │
	1 시간	80	Y = 0.2859X + 4.1275	0. 52
25℃	2 시간	80	Y = 0.1769X + 3.8504	0.60
	3 시간	83	Y = 0.2313X + 3.4998	0.68
	1 시간	118	Y = 0.2657X + 4.2019	0.59
30℃	2 시간	80	Y = 0.1858X + 3.7544	0.58
	3 시간	122	Y = 0.2958X + 3.2577	0.74
	1 시간	119	Y = 0.2201X + 4.0392	0, 59
35℃	2 시간	79	Y = 0.1987X + 3.5152	0.61
	3 시간	122	Y = 0.1779X + 3.4485	0. 55

주) Y = Initial bacterial log count, X = "a" value of RRT by color difference meter reading 1, 2, 3 hour incubation respectively

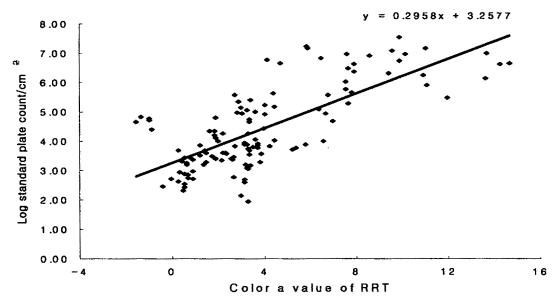
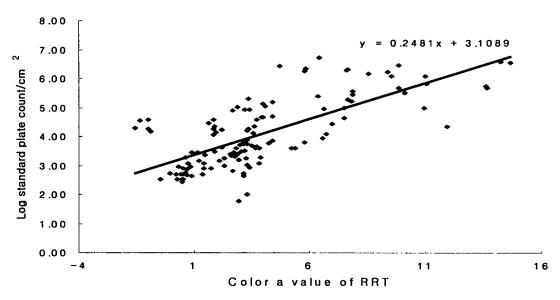



표 87은 돼지고기를 대상으로 RRT법과 SPC법(35℃/48hr)간의 회귀분석한 결과로서 RRT법은 30℃에서 3시간 배양했을 때 r= 0.72로서 가장 높은 값을 나타내었다.

표 87. 돼지고기에서의 SPC(35℃/48hr)와 온도 및 배양시간별 색차계 a 값과의 관계

RR	RRT 법		જે! નો પ્રીઝો કો	* [-1] -1] (. \
온도별	배양시간별	시료수	회귀방정식	상관관계(r)
	1 시간	80	Y = 0.2825X + 3.9120	0.57
25℃	2 시간	80	Y = 0.1724X + 3.6437	0.65
	3 시간	83	Y = 0.1964X + 3.3921	0.65
	1 시간	122	Y = 0.2326X + 3.9027	0.59
30℃	2 시간	80	Y = 0.1828X + 3.5455	0.63
	3 시간	126	Y = 0.2481X + 3.1089	0.72
	1 시간	123	Y = 0.1944X + 3.7592	0.60
35℃	2 시간	79	Y = 0.1966X + 3.2999	0.67
	3 시간	126	Y = 0.1631X + 3.1918	0. 59

주) Y = Initial bacterial log count, X = "a" value of RRT by color difference meter reading 1, 2, 3 hour incubation respectively

돼지고기의 경우 총균수(SPC)와 RRT법간의 상관관계를 보면, 쇠고기보다 상관관계가 매우 높게 나타났으며, SPC의 배양온도, RRT법의 배양온도 및 시간간에는 크게 영향을 받지 않은 것으로 나타났다. 특히 쇠고기와 마찬가지로 RRT법의 배양온도 및 시간을 30℃에서 3시간 배양했을때 상관관계가 가장 높게 나타났다.

나. RRT법을 응용한 환원시간에 의한 세균검사법

총균수 배양온도를 35℃, 30℃, 25℃별로 구분하였고, 레자주린이 첨가된 쇠고기액의 배양온도 역시 35℃, 30℃, 25℃별로 배양하여 쇠고기의 총균수에 대해 SPC값과 색도별 레자주린 환원시간과의 상관관계를 조사함으로써 표준방법의 대체방법으로서 현장적용 가능성 여부를 판가름해 보았다.

25℃에서 72시간 배양한 SPC값과 색도별 레자주린 환원시간과의 상관관계는 표 88과 같다.

표 88. 쇠고기에서의 SPC(25℃/72hr)와 청색에서 환원색까지 도달하는 레자주린 환원 시간과의 관계

RRT 법		カラム	회귀방정식	21-31-31(-)
온도별	환원색	시료수	প্ৰসংগ্ৰ	상관관계(r)
	청자색	83	Y = -0.1704X + 4.7975	-0.32
25℃	보라색	79	Y = -0.2461X + 5.8083	-0.72
	분홍색	80	Y = -0.2740X + 6.7251	-0.89
	청자색	121	Y = -0.2653X + 5.0204	-0.40
30℃	보라색	120	Y = -0.3383X + 6.1216	-0.72
	분홍색	121	Y = -0.3930X + 7.4152	-0, 93
	청자색	118	Y = -0.2246X + 4.8152	-0.27
35℃	보라색	114	Y = -0.3648X + 6.0640	-0.58
	분홍색	122	Y = -0.3813X + 7.0095	-0.73

주) Y = Initial bacterial log count, X = Reduction time from blue color to reduction color

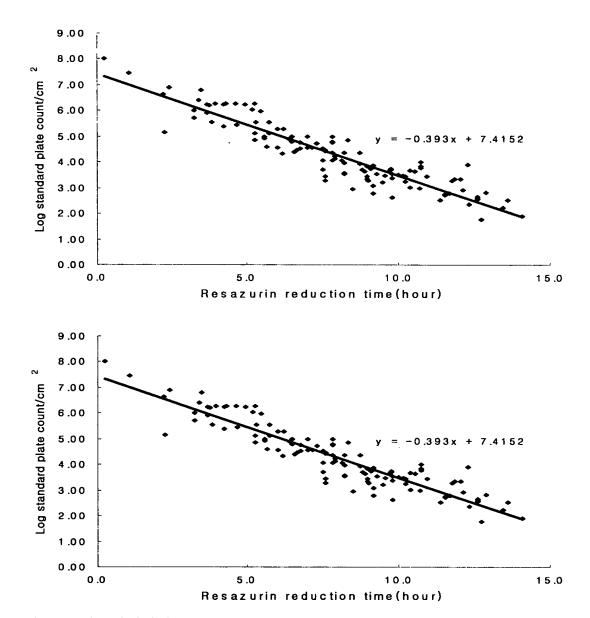


그림 10. 쇠고기에서의 SPC(25℃/72hr)와 30℃에서 배양했을 때 청색에서 분홍색 까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

표 88에서 보는 바와 같이 총균수(25℃/72hr)와 청색에서 환원색으로 환원되는 시간의 상관계수(r)는 레자주린을 첨가한 우유액의 배양온도 및 환원색간에는 30℃에서 분홍색으로 변할 때가 가장 상관관계가 높았다. 청색에서 청자색으로 환원되는 시간의 상관관계는 30℃로 배양할 때가 r= -0.40으로 가장 높았고, 청색에서 보라색으로 환원되는 시간의 상관계수(r)는 25℃와 30℃가 공히 -0.72였

으며, 청색에서 분홍색으로 환원되는 시간의 상관계수(r)는 30℃에서 -0.93을 나타내었다. 이때 충균수를 산출하는데 소요되는 시간은 쇠고기의 총균수가 10^2 , 10^3 , 10^4 cfu/cm²일 경우 청색에서 청자색으로 환원되는 시간은 각각 11.4시간, 7.6시간, 3.8시간이었고, 청색에서 보라색으로 환원되는 시간은 각각 12.2시간, 9.2시간, 6.3시간이었으며, 청색에서 분홍색으로 환원되는 시간은 각각 13.8시간, 11.2시간, 8.7시간이었다. 이는 Venki tanarayanan 등(1997)이 RRT법의 배양온도를 25℃로 하고 분홍색으로 도달하는 시간과 총균수를 spread plate법으로 25℃에서 48시간 배양한 값과의 상관계수가 0.94였다고 한 결과와 유사하였고, 레자주린 환원시간은 $10^2 \sim 10^8$ /cm²일 때 1시간 미만 ~ 22 시간 소요되었다고 한 결과보다 많은 시간 단축이 있었다.

30℃에서 72시간 배양한 SPC값과 색도별 레자주린 환원시간과의 상관관계는 표 89와 같다.

표 89. 쇠고기에서의 SPC(30℃/72h)와 청색에서 환원색까지 도달하는 레자주린 환원 시간과의 관계

RRT 법		1) = 4	ار العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم العالم ا	21 =1 =1 -2()
온도별	환원색	시료수	회귀방정식	상관관계(r)
	청자색	83	Y = -0.1824X + 4.7056	-0.36
25℃	보라색	79	Y = -0.2379X + 5.6243	-0.72
	분홍색	80	Y = -0.2652X + 6.5124	-0.90
	청자색	121	Y = -0.2726X + 4.8371	-0.45
30℃	보라색	120	Y = -0.3227X + 5.8308	-0.75
	분홍색	121	Y = -0.3634X + 6.9772	-0.92
	청자색	118	Y = -0.243X + 4.6496	-0.32
35℃	보라색	114	Y = -0.3583X + 5.8272	-0.62
	분홍색	122	Y = -0.3601X + 6.6548	-0.74

주) Y = Initial bacterial log count, X = Reduction time from blue color to reduction color

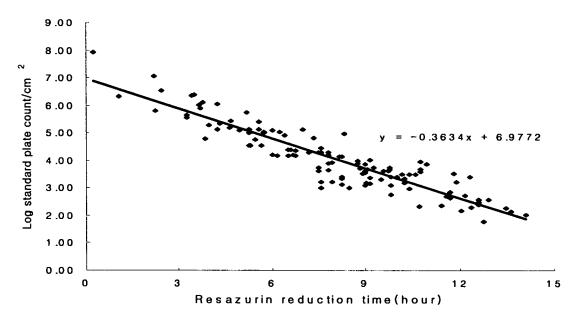


그림 11. 쇠고기에서의 SPC(30℃/72hr)와 30℃에서 배양했을 때 청색에서 분홍색 까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

표 89에서 보는 바와 같이 총균수(30℃/72hr)와 청색에서 환원색으로 환원되는 시간의 상관계수(r)는 레자주린을 첨가한 우유액의 배양온도 및 환원색 간에는 30℃에서 분홍색으로 변할 때가 가장 상관관계가 높았다. 30℃로 배양할 때 청색에서 청자색으로 환원되는 시간의 상관관계는 -0.45이였고, 청색에서 보라색으로 환원되는 시간의 상관계수(r)는 -0.75였으며, 청색에서 분홍색으로 환원되는 시간의 상관계수(r)는 -0.92를 나타내었다. 이때 총균수를 산출하는데 소요되는 시간의 상관계수(r)는 -0.92를 나타내었다. 이때 총균수를 산출하는데 소요되는 시간은 쇠고기의 총균수가 10², 10³, 10⁴cfu/cm²일 경우 청색에서 청자색으로 환원되는 시간은 각각 10.4시간, 6.7시간, 3.1시간이었고, 청색에서 보라색으로 환원되는 시간은 각각 11.9시간, 8.8시간, 5.7시간이었으며, 청색에서 분홍색으로 환원되는 시간은 각각 13.7시간, 10.9시간, 8.2시간이었다.

35℃에서 48시간 배양한 SPC값과 색도별 레자주린 환원시간과의 상관관계는 표 90과 같다.

표 90. 쇠고기에서의 SPC(35℃/48hr)와 청색에서 환원색까지 도달하는 레자주린 환원시간과의 관계

RRT 법		パコム	≈1 a1u1 a1 x1	21-2-1-27
온도별	환원색	시료수	회귀방정식	상관관계(r)
	청자색	83	Y = -0.2032X + 4.5264	-0.44
25℃	보라색	79	Y = -0.2166X + 5.2294	-0.74
	분홍색	80	Y = -0.2322X + 5.9611	-0.87
	청자색	128	Y = -0.2709X + 4.6705	-0.46
30℃	보라색	127	Y = -0.3125X + 5.5836	-0.75
	분홍색	128	Y = -0.3491X + 6.6504	-0.93
	청자색	124	Y = -0.2248X + 4.4353	-0.31
35℃	보라색	120	Y = -0.356X + 5.6545	-0.64
	분홍색	128	Y = -0.3195X + 6.1543	-0.68

 $\stackrel{ op}{ op}$) Y = Initial bacterial log count, X = Reduction time from blue color to reduction color

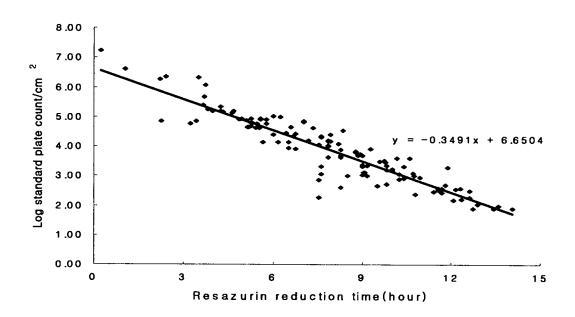


그림 12. 쇠고기에서의 SPC(35℃/48hr)와 30℃에서 배양했을 때 청색에서 분홍색 까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

표 90에서 보는 바와 같이 총균수(35℃/48hr)와 청색에서 환원색으로 환원되는 시간의 상관계수(r)는 레자주린을 첨가한 우유액의 배양온도 및 환원색 간에는 30℃에서 분홍색으로 변할 때가 가장 상관관계가 높았다.

30℃로 배양할 때 청색에서 청자색으로 환원되는 시간의 상관관계는 -0.46이였고, 청색에서 보라색으로 환원되는 시간의 상관계수(r)는 -0.75였으며, 청색에서 분홍색으로 환원되는 시간의 상관계수(r)는 -0.93을 나타내었다. 이때 총균수를 산출하는데 소요되는 시간은 쇠고기의 총균수가 10², 10³, 10⁴cfu/cm²일 경우 청색에서 청자색으로 환원되는 시간은 각각 9.9시간, 6.2시간, 2.5시간이었고, 청색에서 보라색으로 환원되는 시간은 각각 11.5시간, 8.3시간, 5.1시간이었으며, 청색에서 분홍색으로 환원되는 시간은 각각 13.3시간, 10.5시간, 7.6시간이었다.

돼지고기의 총균수를 검사하기 위해 25℃에서 72시간 배양한 SPC값과 색도별 레자주린 환원시간과의 상관관계는 표 91와 같다.

표 91. 돼지고기에서의 SPC(25℃/72hr)와 청색에서 환원색까지 도달하는 레자주 린 환원시간과의 관계

RRT 법		11 = 4	÷] ¬[u[¬])	* [-] [-]] / _)
온도별	환원색	시료수	회귀방정식	상관관계(r)
	청자색	82	Y = -0.5070X + 5.4834	-0.49
25℃	보라색	81	Y = -0.3046X + 6.0807	-0.72
	분홍색	83	Y = -0.3421X + 7.4762	-0.95
	청자색	120	Y = -0.4176X + 5.3081	-0.43
30℃	보라색	120	Y = -0.4422X + 6.5404	-0.78
	분홍색	122	Y = -0.4386X + 7.7870	-0.94
	청자색	120	Y = -0.4481X + 5.1844	-0.35
35℃	보라색	121	Y = -0.5813X + 6.6835	-0.72
	분홍색	123	Y = -0.4495X + 7.4695	-0.78

주) Y = Initial bacterial log count, X = Reduction time from blue color to reduction color

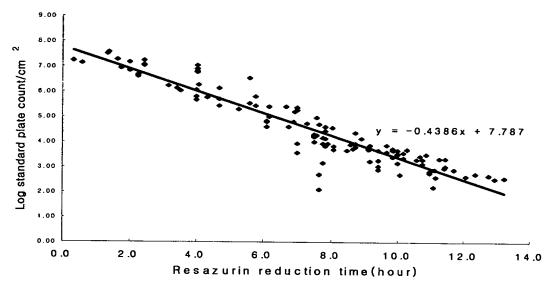


그림 13. 돼지고기에서의 SPC(25℃/72hr)와 30℃에서 배양했을 때 청색에서 분홍 색까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

표 91에서 보는 바와 같이 충균수(25℃/72hr)와 청색에서 환원색으로 환원되는 시간의 상관계수(r)는 레자주린을 첨가한 돼지고기액의 배양온도 및 환원색간에는 25℃와 30℃에서 분홍색으로 변할 때가 가장 상관관계가 높았다. 청색에서 청자색으로 환원되는 시간의 상관관계는 25℃로 배양할 때 -0.49로서 가장 높았고, 청색에서 보라색으로 환원되는 시간의 상관계수(r)는 30℃로 배양할 때 -0.78로서 가장 높았으며, 청색에서 분홍색으로 환원되는 시간의 상관계수(r)는 25℃로 배양할 때 -0.95를 나타내었다. 이때 충균수를 산출하는데 소요되는 시간은 돼지고기의 충균수가 10², 10³, 10⁴cfu/cm²일 경우 25℃로 배양할 때 청색에서 청자색으로 환원되는 시간은 각각 6.9시간, 4.9시간, 2.9시간이었고, 30℃로 배양할 때 청색에서 보라색으로 환원되는 시간은 각각 10.3시간, 8.0시간, 5.7시간이었으며, 청색에서 분홍색으로 환원되는 시간은 각각 10.3시간, 8.0시간, 5.7시간이었으며, 청색에서 분홍색으로 환원되는 시간은 25℃로 배양할 때 각각 16.0시간, 13.1시간, 10.2시간이었다. 그러나 상관계수가 거의 비슷한 30℃로 배양할 때 각 각 13.2시간, 10.9시간, 8.6시간으로서 많은 시간 단축이 있는 것을 감안하면 30℃로 배양할 때가 적합한 것으로 판단된다.

돼지고기의 총균수를 검사하기 위해 30℃에서 72시간 배양한 SPC값과 색도별 레 자주린 환원시간과의 상관관계는 표 92와 같다.

표 92. 돼지고기에서의 SPC(30℃/72hr)와 청색에서 환원색까지 도달하는 레자주 린 환원시간과의 관계

RR	[법	N=4	ار اسال اسال	3-3-3-4
온도별	환원색	시료수	회귀방정식	│ 상관관계(r)
	청자색	82	Y = -0.4368X + 5.2785	-0.43
25℃	보라색	81	Y = -0.2770X + 5.8742	-0.68
	분홍색	83	Y = -0.3147X + 7.1766	-0.91
	청자색	120	Y = -0.3898X + 5.1814	-0.42
30℃	보라색	120	Y = -0.4185X + 6.3603	-0.76
	분홍색	122	Y = -0.4171X + 7.5540	-0.93
	청자색	120	Y = -0.4072X + 5.0472	-0.33
35℃	보라색	121	Y = -0.5517X + 6.5026	-0.71
	분홍색	123	Y = -0.4228X + 7.2222	-0.77

주) Y = Initial bacterial log count, X = Reduction time from blue color to reduction color

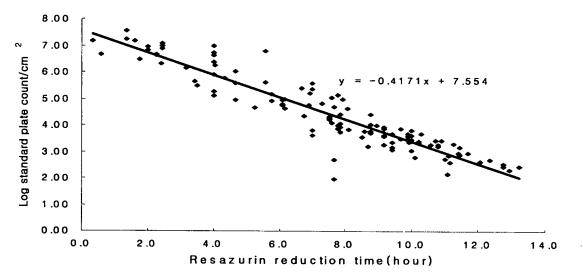


그림 14. 돼지고기에서의 SPC(30℃/72hr)와 30℃에서 배양했을 때 청색에서 분홍 색까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

표 92에서 보는 바와 같이 총균수(30℃/72hr)와 청색에서 환원색으로 환원되는 시간의 상관계수(r)는 레자주린을 첨가한 돼지고기액의 배양온도 및 환원색 간에 는 25℃와 30℃에서 분홍색으로 변할 때가 가장 상관관계가 높았다. 청색에서 청자색으로 환원되는 시간의 상관관계는 25℃로 배양할 때 -0.43으로서 가장 높았고, 청색에서 보라색으로 환원되는 시간의 상관계수(r)는 30℃로 배양할 때 -0.76으로 가장 높았으며, 청색에서 분홍색으로 환원되는 시간의 상관계수(r)는 30℃로 배양할 때 -0.93을 나타내었다. 이때 충균수를 산출하는데 소요되는 시간은 돼지고기의 충균수가 10², 10³, 10⁴cfu/cm²일 경우 25℃로 배양할 때 청색에서 청자색으로 환원되는 시간은 각각 7.5시간, 5.2시간, 2.9시간이었고, 30℃로 배양할 때 청색에서 보라색으로 환원되는 시간은 각각 10.4시간, 8.0시간, 5.6시간이었으며, 청색에서 분홍색으로 환원되는 시간은 30℃로 배양할 때 각각 13.3시간, 10.9시간, 8.5시간이었다.

돼지고기의 총균수를 검사하기 위해 35℃에서 48시간 배양한 SPC값과 색도별 레 자주린 환원시간과의 상관관계는 표 93과 같다.

표 93. 돼지고기에서의 SPC(35℃/48hr)와 청색에서 환원색까지 도달하는 레자주 린 환원시간과의 관계

RR7	Г 법	1) = 4	≱] m] u] m]) }	
온도별	환원색	시료수	회귀방정식	상관관계(r)
	청자색	82	Y = -0.3501X + 4.8414	-0.39
25℃	보라색	81	Y = -0.2467X + 5.4597	-0.68
	분홍색	84	Y = -0.2484X + 6.3039	-0, 85
	청자색	124	Y = -0.3688X + 4.8183	-0.47
30℃	보라색	124	Y = -0.3618X + 5.7722	-0.77
	분홍색	126	Y = -0.3514X + 6.7513	-0.93
	청자색	124	Y = -0.3799X + 4.6782	-0.36
35℃	보라색	125	Y = -0.4741X + 5.8763	-0.71
	분홍색	127	Y = -0.3583X + 6.4509	-0.76

주) Y = Initial bacterial log count, X = Reduction time from blue color to reduction color

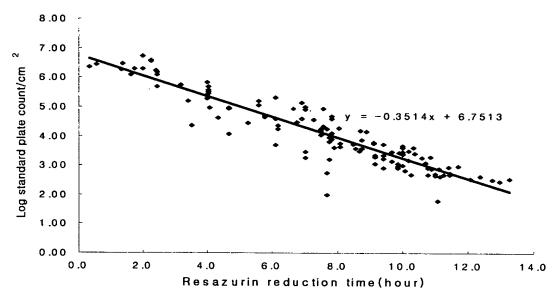


그림 15. 돼지고기에서의 SPC(35℃/48hr)와 30℃에서 배양했을 때 청색에서 분홍 색까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

표 93에서 보는 바와 같이 총균수(35℃/48hr)와 청색에서 환원색으로 환원되는 시간의 상관계수(r)는 레자주린을 첨가한 돼지고기액의 배양온도 및 환원색간에 는 30℃에서 분홍색으로 변할 때가 가장 상관관계가 높았다. 30℃로 배양할 때 청색에서 청자색으로 환원되는 시간의 상관관계는 -0.47이었고, 청색에서 보라색 으로 환원되는 시간의 상관계수(r)는 -0.77이었으며, 청색에서 분홍색으로 환원 되는 시간의 상관계수(r)는 -0.93을 나타내었다. 이때 총균수를 산출하는데 소요 되는 시간은 돼지고기의 총균수가 10^2 , 10^3 , 10^4 cfu/cm²일 경우 청색에서 청자색으 로 환원되는 시간은 각각 7.6시간, 4.9시간, 2.2시간이었고, 청색에서 보라색으 로 환원되는 시간은 각각 10.4시간, 7.7시간, 4.9시간이었으며, 청색에서 분홍색 으로 환원되는 시간은 각각 13.5시간, 10.7시간, 7.8시간이었다. 이와 같은 결과 는 표 88 ~ 표 93을 종합해 볼 때 Werlein(1996)이 bioluminescence법으로 우도 체의 표면 미생물수를 측정했을 때 SPC법과의 상관계수(r)가 0.95이었다는 보고 와 유사한 반면 Steigert와 Kirschner(1997)는 0.71이었다는 보고보다는 상관관 계가 높게 나왔다. 또한 Pless와 Reisinger(1995)는 Bactrac 4100 impedance 법 으로 260개 시료에 대해 SPC법과의 상관계수(r)가 -0.83 ~ -0.87이었다는 보고 보다 높은 상관성을 보였으며, 검사시간은 10⁴cfu/cm²일 경우 9.6시간. 10⁶cfu/cm² 일 경우 4.2시간 소요되었다고 한 결과보다 검사시간이 단축되었다.

이와 같은 결과를 종합해 볼 때, 온도간에는 상관계수가 30℃, 25℃, 35℃ 순이었고, 환원색간에는 분홍색, 보라색, 청자색 순으로 상관계수가 높았으며, 검사시간은 35℃, 30℃, 25℃ 순으로 짧았다. 이를 토대로 상관계수와 검사시간을 감안할 때 30℃에서 분홍색으로 환원되는 시간이 가장 적합한 것으로 나타났다.

따라서 신속검사법으로는 30℃에서 분홍색으로 환원되는 시간이 외국의 신속세 균검사기기와 비교해볼 때 자동방법은 아니지만 상관계수가 비슷하거나 높고, 검 사시간이 단축되었으며, 검사비용이 시료 당 거의 들지 않는 장점이 있어 대체 가능한 것으로 나타났다.

제 4 장 RRT법을 응용한 신속 세균 검사법 개발 제1절 서설

1차년도에서의 원유를 대상으로 한 색차계에 의한 RRT검사법은 15℃에서 24시간 배양했을 때 r= 0.43, 30℃에서 3시간 배양했을 때 r= 0.31로서 상관계수가 너무 낮아 현장에서 시행하기에는 부족합한 면이 있다. 반면, 환원시간에 의한 RRT검사법은 30℃에서 청색에서 보라색으로 환원되는 시간의 상관계수(r)가 -0.80이었으며, 청색에서 분홍색으로 환원되는 시간의 상관계수(r)는 -0.83으로서 상관성이 높았다. 미생물수를 산출하는데 소요되는 시간은 원유의 미생물수가 10⁴, 10⁵, 10⁶cfu/ml일 경우 청색에서 보라색으로 환원되는 시간은 각각 9.6시간, 6.2시간, 2.7시간이었으며, 청색에서 분홍색으로 환원되는 시간은 각각 11.6시간, 7.7시간, 3.9시간으로 나타남으로써 Bactometer의 분석시간인 2~12시간과유사한 결과를 얻었다.

2차년도에서의 식육을 대상으로 한 색차계에 의한 RRT검사법은 30℃에서 3시간 배양했을 때 쇠고기의 경우는 r= 0.68, 돼지고기는 r= 0.74로서 원유에 비해 상 관계수가 높은 결과를 얻었다. 환원시간에 의한 RRT검사법은 30℃에서 청색에서 분홍색으로 환원되는 시간의 상관계수(r)는 쇠고기의 경우 -0.92, 돼지고기는 -0.93으로서 상관성이 매우 높았다. 미생물수를 산출하는데 소요되는 시간은 원유의 미생물수가 10⁴, 10⁵, 10⁶cfu/ml일 경우 청색에서 분홍색으로 환원되는 시간은 원유의 미생물수가 10⁴, 10⁵, 10⁶cfu/ml일 경우 청색에서 분홍색으로 환원되는 시간은 쇠고기의 경우 13.8시간, 11.2시간, 8.7시간, 돼지고기의 경우 13.3시간, 10.9시간, 8.5시간으로 나타났다.

따라서 분석시간이 짧은 장점은 있으나 상관계수가 낮은 색차계에 의한 RRT검사 법과, 상관계수는 높으나 분석시간이 긴 환원시간에 의한 RRT검사법을 개선 확립 하기 위하여 시도하였다.

제 2 절 재료 및 방법

1. 시료의 수집

가. 원유

시료로 사용한 원유는 2000년 11월부터 2001년 9월까지 경기도 지역의 약 129개 목장에서 서울우유협동조합 신갈공장내 중부지도소에 납유되는 원유를 사용하였으며, 착유후 검사시료는 아이스젤이 내장된 아이스박스를 이용하여 2~4℃로 운반되었다. 실험실까지 걸리는 시간은 약 5시간 정도이며, 실험실에 도착한 즉시 총균수 검사를 실시하였다.

나. 식육

시료로 사용한 식육은 2000년 11월부터 2001년 9월까지 경기도 지역의 백화점이나 대형 슈퍼에 비치되어 있는 냉장육을 사용하였으며, 검사시료는 아이스젤이 내장된 아이스박스를 이용하여 2~4℃로 운반되었다. 실험실까지 걸리는 시간은 약 1시간 정도이며, 실험실에 도착한 즉시 총균수 검사를 실시하였다.

2. 총균수 검사

가. 원유

IDF법(1991)에 따라 원유를 무균적으로 1ml 채취하여 0.1% 펩톤용액에 10진법으로 희석하고 SPC agar 평판에 희석시료를 접종한 후 30℃에서 72시간 동안배양하여 산정하였다.

나. 식육

식육 표면의 일정면적(100cm²)을 일정량(5~10ml)의 희석액으로 습한 면봉으로 문질러 일정량(45~90ml)의 희석액이 있는 시료채취용기에 넣고 세게 진탕하여 부착균의 현탁액을 조제하여 시험용액으로 한 다음 채취한 시료액 10ml와 희석액 90ml를 혼합하여 10진법으로 희석하여 희석액 1ml와 SPC agar를 분주하여 응고시킨 다음 30℃에서 72시간 배양하였다.

3. 색차계에 의한 Resazurin reduction test

가. 원유

차광된 250ml 플라스크에 멸균 중류수 200ml와 resazurin 11mg을 넣어 완전히 용해시킨 후 냉각한 다음 원유 10ml에 1ml 씩 첨가하고 30℃에서 3h 배양하여 Color difference meter(ColorQuest II, Hunter Lab, 미국)를 이용하여 색차계 a

값을 측정하였으며, 표준배색판의 L, a, b값은 각각 92.68, -0.81, 0.86이었다. 이때 색촉진인자를 첨가한 RRT 검사를 하기 위하여 원유에 레자주린을 첨가한 다음 lactase, 당(glucose, galactose, lactose) 배지(peptone, spc혼합조성물) 및 젖산을 첨가하였다.

나. 식육

식육을 SPC법으로 30℃/72시간 배양하여 총균수를 측정하였고, RRT검사를 하기 위해 차광된 250ml 플라스크에 멸균종류수 200ml와 resazurin 11mg을 넣어 완전히 용해시킨 후 냉각하여 시험용액 10ml에 20% 탈지분유 10ml와 조제 resazurin액 1ml 비율로 넣어 30℃로 3h 배양하여 Colordifference meter (ColorQuest II, Hunter Lab. 미국)를 이용하여 색차계 a 값을 측정하였다. 이때 색촉진인자를 첨가한 RRT 검사를 하기 위하여 식육 시험용액, 탈지분유 및 레자 주린을 첨가한 다음 lactase, 당(glucose, galactose, lactose) 배지(peptone, spc 혼합조성물, 탈지분유) 및 젖산을 첨가하였다.

4. 환원시간에 의한 Resazurin reduction test

가. 원유

차광된 250ml 플라스크에 멸균 중류수 200ml와 resazurin 11mg을 넣어 완전히 용해시킨 후 냉각한 다음 원유 10ml에 1ml 씩 첨가하고 30℃에서 배양하는 동안 색조판(한국공업협회)을 이용하여 청색(5PB 7/4), 청자색(10PB 7/5.5), 보라색(5P 7/4) 및 분홍색(10P 7/8)으로 각각 환원되는 시간을 측정하였다.

나. 식육

차광된 250ml 플라스크에 멸균증류수 200ml와 resazurin 11mg을 넣어 완전히 용해시킨 후 냉각하여 시험용액 10ml에 20% 탈지분유 10ml와 조제 resazurin 액 1ml 비율로 넣어 30℃에서 배양하는 동안 색조판(한국공업협회)을 이용하여 청색(5PB 7/4), 청자색(10PB 7/5.5), 보라색(5P 7/4) 및 분홍색(10P 7/8)으로 각각 환원되는 시간을 측정하였다.

5. 자료 분석

실험에서 얻어진 색차계의 a 값과 SPC 값, 색소 환원시간과 SPC 값은 Microsoft Excel 97(Microsoft Corp., 1997)에 입력하여 상관계수 및 회귀방정식을 산출하였다.

제 3 절 결과 및 고찰

1. SPC법과 색차계에 의한 색촉진인자를 첨가한 RRT 검사

가. 효소 첨가

1) 원유

원유의 SPC법과 lactase 첨가에 따른 RRT검사는 표 94에서 보는 바와 같이 30℃/3시간 배양했을 때 a 값이 효소 무첨가구 평균 1.88보다 효소첨가구가 2.25를 나타냄으로써 색의 변화가 빨리 일어났으며, 색의 변화에 따른 환원시간 역시청자색은 평균 14분, 보라색은 23분, 분홍색은 33분이 단축됨으로써 배양시간이 경과할수록 효소첨가에 의한 색의 변화가 빠르게 진행되는 것을 알 수 있다.

표 94. 원유의 SPC법과 lactase 첨가에 따른 RRT검사

(단위: cfu/ml,분)

시료	lactase	총균수	총균수	a value		30℃ 배양	
번호	첨가량	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
1	standard	22000	4 50	0.47	360	455	520
1	lactase 0.015%	33000	4.52	0. 55	340	420	500
2	standard	125000	5.10	7, 99	22	52	122
	lactase 0.015%	125000	5.10	9, 58	12	42	107
3	standard	490000	E 60	4. 56	124	204	314
3	lactase 0.015%	480000	5.68	4.97	134	194	294
4	standard	42000	4 62	1.60	201	291	331
4	lactase 0.015%	43000	4.63	1.98	191	271	311
5	standard	<i>4</i> 1,000	1000 4.61	-0.04	308	368	458
3	lactase 0.015%	41000		0, 10	288	348	408
6	standard	85000	4, 93	1,59	195	325	445
	lactase 0.015%	63000	4.55	1.77	185	305	385
4	standard	11400	4.06	0.34	389	464	574
4	lactase 0.015%	11400	4.06	0, 56	359	464	559
7	standard	32000	4.51	-0.14	396	496	586
	lactase 0.015%	32000	4. 31	0.11	386	426	506
8	standard	104000	5.00	0, 55	373	433	513
0	lactase 0.015%	104000	5, 02	0.64	343	413	493

주) standard : 원유 , lactase 0.015% : standard + lactase 0.015%

2) 쇠고기

쇠고기의 SPC법과 lactase 첨가에 따른 RRT검사는 표 95에서 보는 바와 같이 30℃/3시간 배양했을 때 a 값이 효소 무첨가구 보다 증가하였고, 효소첨가량이 증가할수록 증가하였다. 색의 변화에 따른 환원시간 역시 시간단축이 있었으며 배양시간이 경과할수록 효소첨가에 의한 색의 변화가 빠르게 진행되었고 효소첨가량이 0.05% 일때가 시간단축 효과가 있었다. 그러나 청자 및 보라색으로의환원시간은 효소 첨가구가 무첨가구에 비해 시간이 많이 단축된 반면 분홍색으로의 환원시간은 효소 무첨가구에 비해 더 늦게 환원됨으로써 전체적으로 시간단축이 크지 않았다.

표 95. 쇠고기의 SPC법과 lactase 첨가에 따른 RRT검사

(단위 : cfu/am², 분)

								
시료	lact	ase	총균수	총균수	a value		30℃ 배양	
번호	첨기	량	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
	stand	dard	•		2.44	215	420	565
,		0.015%	3100	3.49	2.82	195	325	560
1	lactase	0.03%	3100	3.49	3.14	195	265	555
		0.05%			3. 45	195	255	550
	stan	dard			-0.32	335	615	795
2		0.015%	90	1 05	-0.03	320	615	795
2	lactase	0.03%	90	1.95	0.00	320	615	780
		0.05%			0, 11	320	540	780
	stan	dard			0. 79		540	780
3		0.015%	560	2.75	1.09		540	735
3	lactase	0.03%	360	2.73	1.39		415	780
Ī		0.05%			1.26		545	760
	stan	dard			0. 53		540	780
		0.015%	210	2 22	0. 90		415	780
4	lactase	0.03%	210	2.32	0.99		415	780
		0.05%			1.09		415	705

주) standard : 20% skim milk powder, lactase 0.015% : standard + lactase 0.015%

3) 돼지고기

돼지고기의 SPC법과 lactase 첨가에 따른 RRT검사는 표 96에서 보는 바와 같이 30℃/3시간 배양했을 때 a 값이 효소 무첨가구 보다 중가하였고, 효소첨가 량이 중가할수록 중가하였다. 그러나 색의 변화에 따른 환원시간은 효소첨가에 의한 영향이 거의 없었다.

표 97. 돼지고기의 SPC법과 lactase 첨가에 따른 RRT검사

(단위: cfu/am²,분)

시료	lact	ase	총균수	총균수	a value		30℃ 배양	j e
번호	첨기	ት 량	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
	stand	dard			19.06	15	65	165
1		0.015%	1260000	6.10	19.13	15	65	165
*	lactase	0.03%	1200000	0.10	19.16	15	65	165
		0.05%			19.02	15	65	165
	stan	dard			0.83		375	540
2		0. 015%	2400	2 20	0. 91		375	540
4	lactase	0.03%	2400	3.38	1.04		375	540
		0.05%			1.08		375	540
	stan	dard			1.31		375	540
3		0.015%	3500	3, 54	1,28		375	540
3	lactase	0.03%	3300	3, 34	1.43		375	540
		0.05%			1,54		375	540
	stand	dard			2.32		305	520
4		0.015%	6400	2 01	2. 33		305	520
4	lactase	0.03%		3.81	2. 21		305	520
		0.05%			2.73		290	520

주) standard : 20% skim milk powder, lactase 0.015% : standard + lactase 0.015%

나. 당 첨가

1) 원유

원유의 SPC법과 당 첨가에 따른 RRT검사는 표 98에서 보는 바와 같이 glucose, galactose, lactose별, 0.1%, 0.5%, 1.0% 수준별로 각각 첨가하여 30℃/3시간 배양했을 때 a 값이 당 무첨가구에 비해 색의 변화가 없었으며, 색의 변화에 따른 환원시간 역시 영향이 없는 것으로 나타났다.

표 98. 원유의 SPC법과 당 첨가에 따른 RRT검사

(단위 : cfu/ml,분)

시료	r-l -31 -	,) =}-	총균수	총균수	a value		30℃ 배양	:
번호	당 첨기	75	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
	standa	ard			-0. 91	270	305	375
		0.1%			-0.84	270	305	375
	glucose	0.5%			-0. 99	270	305	375
		1.0%			-1.05	270	305	375
1		0.1%	122000	5. 09	-0.96	295	315	375
1	galactose	0.5%	122000	5.09	-0.95	295	315	375
		1.0%			-1.00	295	315	375
		0.1%			-0.83	295	315	385
	lactose	0.5%			-0.91	295	315	385
		1.0%			-0. 98	295	315	385
	standa	ard			8.42	45	80	135
		0.1%			7. 83	45	80	135
	glucose	0.5%			11.43	45	80	135
		1.0%			7.80	45	80	135
.2		0.1%	5600000	6.75	7.87	45	80	135
٠.۷	galactose	0.5%	3000000	6.75	7.60	45	80	135
		1.0%			9.67	45	80	135
		0.1%			8. 30	45	80	135
	lactose	0.5%			10. 99	45	80	135
		1.0%			9, 33	45	80	135

주) standard : 원유, glucose(galactose, lactose)0.1% : standard + glucose(galactose, lactose) 0.1%

2) 쇠고기

쇠고기의 SPC법과 당 첨가에 따른 RRT검사는 표 99에서 보는 바와 같이 glucose, galactose, lactose별, 0.1%, 0.5%, 1.0%수준별로 각각 첨가하여 30℃/3시간 배양했을 때 a 값이 당 무첨가구에 비해 낮음에 따라 색의 변화가 늦게 일어났다. 색의 변화에 따른 환원시간은 영향이 없는 것으로 나타났다.

표 99. 쇠고기의 SPC법과 당 첨가에 따른 RRT검사

(단위 : cfu/am², 분)

		총균수	총균수	a value		30℃ 배양											
당 첨가량		(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색										
standa	ırd			1.05	270	510	720										
	0.1%			1.00	270	510	720										
glucose	0.5%			0.77	270	510	720										
***	1.0%			0.76	270	510	720										
	0.1%	700	0.05	0.93	270	510	720										
galactose	0.5%	700	2.85	0, 81	270	510	720										
	1.0%			0.66	270	510	720										
	0.1%													0.99	270	510	720
lactose	0.5%			0. 91	270	510	720										
	1.0%			0.81	270	510	720										

주) standard : 20% skim milk powder, glucose(galactose, lactose)0.1% : standard +glucose (galactose, lactose)0.1%

3) 돼지고기

돼지고기의 SPC법과 당 첨가에 따른 RRT검사는 표 100에서 보는 바와 같으며, 쇠고기와 마찬가지로 a 값이 당 무첨가구에 비해 색의 변화가 없었으며, 색의 변화에 따른 환원시간 역시 영향이 없는 것으로 나타났다.

표 100. 돼지고기의 SPC법과 당 첨가에 따른 RRT검사

(단위: cfu/am², 분)

)}	총균수	총균수	a value		30℃ 배양	
당 점기	당 첨가량		(log)	(30℃/3hr)	청자색	보라색	분홍색
standa	ard			2. 26	165	360	480
	0.1%			2. 29	165	360	480
glucose	0.5%			1.46	165	360	480
	1.0%		2.07	165	360	480	
	0.1%	23000	4.36	2. 25	165	360	480
galactose	0.5%	23000	4.30	2. 09	165	360	480
	1.0%			1.99	165	360	480
	0.1% lactose 0.5%		2. 20	165	360	480	
lactose			2.11	165	360	480	
	1.0%			1.97	165	360	480

주) standard : 20% skim milk powder, glucose(galactose, lactose)0.1% : standard + glucose (galactose, lactose)0.1%

다. 배지첨가

1) 원유

원유의 SPC법과 배지첨가에 따른 RRT검사는 표 101에서 보는 바와 같이 peptone과 spc 배지(peptone 5.0g, yeast extract 2.5g, dextrose 1.0g/1L)별로 각각 첨가하여 30℃/3시간 배양했을 때 a 값이 배지 무첨가구에 비해 색의 변화가 매우 크게 일어났다. 또한 색의 변화에 따른 환원시간 역시 크게 영향을 받는 것으로 나타났다. 그러나 너무 빠른 색의 변화로 인해 처음부터 청자색 및 보라색으로 변하는 문제점이 있다.

표 101. 원유의 SPC법과 배지첨가에 따른 RRT검사

(단위 : cfu/ml,분)

시료		총균수	총균수	a value		30℃ 배양	
번호	배지 첨가량	(30℃)	(log)	(30℃/20분)	청자색	보라색	분홍색
	standard			0.47	360	455	520
1	peptone 0.5%	33000	4.52	8.22		AND STREET OF STREET OF STREET	485
	spc 1.0%			11.07		· · · · · · · · · · · · · · · · · · ·	320
	standard			7.99	22	52	122
2	peptone 0.5%	125000	5.10	18.36			17
	spc 1.0%			16.95			7
	standard			4.56	124	204	314
3	peptone 0.5%	480000	5.68	8.98			254
	spc 1.0%			11.83			204
	standard			1.60	201	291	331
4	peptone 0.5%	43000	4.63	8,75			291
	spc 1.0%			12,11			241
	standard			-0.04	308	368	458
5	peptone 0.5%	41000	4.61	8.80			408
	spc 1.0%			11.63			248
	standard			1.59	195	325	445
6	peptone 0.5%	85000	4.93	7, 88			405
	spc 1.0%			11.53			225
	standard			2.69	182	242	282
7	peptone 0.5%	320000	5. 51	8.64			262
	spc 1.0%			11.86			192
	standard		-	0.34	389	464	574
8	peptone 0.5%	11400	4.06	8.69			519
	spc 1.0%			11.03			279
	standard			-0.14	396	496	586
9	peptone 0.5%	32000	4.51	8, 33			461
	spc 1.0%			11.13			256
	standard			0.55	373	433	513
10	peptone 0.5%	104000	5.02	8.37			458
***	spc 1.0%			11.70			273

주) standard : 원유, peptone 0.5% : standard + peptone 0.5%, spc 1.0%: standard + spc(peptone 5.0g, yeast extract 2.5g, dextrose 1.0g/1L) 1.0%

2) 쇠고기

쇠고기의 SPC법과 배지첨가에 따른 RRT검사는 표 102에서 보는 바와 같이 peptone, spc 배지(peptone 5.0g, yeast extract 2.5g, dextrose 1.0g/1L) 및 23% skim milk powder별로 각각 첨가하여 30℃/3시간 배양했을 때 a 값이 배지 무첨가구에 비해 spc 배지, peptone, 23% skim milk powder 순으로 색의 변화가 빨리 일어났다. 또한 색의 변화에 따른 환원시간 역시 배지 무첨가구보다 spc 배지나 peptone을 첨가했을 때 많이 단축되었다. 그러나 너무 빠른 색의 변화로 인해 처음부터 청자색으로 변하여 환원시간을 측정하기가 어려운 문제점이 있다.

표 102. 쇠고기의 SPC법과 배지첨가에 따른 RRT검사

(단위 : cfu/㎡,분)

시료 번호	배지 첨가량	총균수	총균수	a value		30℃ 배양			
번호	베기 묘기장	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색		
١,	standard	2180000	6.34	16.10		140	225		
1	peptone 0.5%	2100000	0.34	18. 42		120	170		
2	standard	2010000	C 20	13.89		137	222		
	spc 1.0%	2010000	6.30	18.15		117	167		
3	standard	1570000	6 20	11.94	114	164	219		
3	23% SMP	1370000	6. 20	12.44	99	154	204		

子) standard : 20% skim milk powder, peptone 0.5% : standard + peptone 0.5%, spc 1.0%:standard + spc(peptone 5.0g, yeast extract 2.5g, dextrose 1.0g/1L)1.0%, 23% SMP :standard + 3% skim milk powder

다) 돼지고기

돼지고기의 SPC법과 배지첨가에 따른 RRT검사는 표 103에서 보는 바와 같이 배지별로 각각 첨가하여 30℃/3시간 배양했을 때 a 값이 배지 무첨가구에 비해 spc 배지, peptone, 23% skim milk powder 순으로 색의 변화가 빨리 일어났으며. 색의 변화에 따른 환원시간 역시 동일한 결과를 얻었다. 그러나 peptone, 23% skim milk powder은 보라색에서 분홍색으로 변할 때 무첨가구에 비해 오히려환원시간이 늦었다.

표 104. 돼지고기의 SPC법과 배지첨가에 따른 RRT검사

(단위: cfu/am², 분)

시료		총균수	총균수	a value	30℃ 배양			
번호	배지 첨가량	(30℃)	(log)	(30°C/3hr)	청자색	보라색	분홍색	
1	standard	1240000	C 12	3, 86	161	276	396	
<u> </u>	peptone 0.5%	1340000	6.13	5, 73	111	216	366	
2	standard	640000	F 01	3, 85	158	273	363	
4	spc 1.0%	640000	5, 81	6.75	108	213	298	
3	standard	1040000	6.00	8. 73	105	185	270	
3	23% SMP	1040000	6, 02	9. 64	90	155	250	

주) standard : 20% skim milk powder, peptone 0.5% : standard + peptone 0.5%, spc 1.0%: standard + spc(peptone 5.0g, yeast extract 2.5g, dextrose 1.0g/1L)1.0%, 23% SMP : standard + 3% skim milk powder

라. 젖산첨가

1) 원유

원유의 SPC법과 젖산첨가에 따른 RRT검사는 표 105에서 보는 바와 같이 젖산 0.2%와 젖산 0.25%별로 각각 첨가하여 30℃/3시간 배양했을 때 a 값이 젖산 무첨가구에 비해 증가하였고, 젖산 첨가량이 클수록 증가하였다. 또한 색의 변화에 따른 환원시간 역시 크게 영향을 받는 것으로 나타났으나 분홍색으로 갈수록 환원시간 간격이 많이 줄어들었다. 이는 젖산에 의해 pH가 낮아져 청색에서 청자색으로 시간단축이 빠르게 일어났으나 미생물 성장조건이 표준에 비해 좋지 않음에 따라 점차 분홍색으로 갈수록 표준에 비해 느리게 변하기 때문으로 보인다.

표 105. 원유의 SPC법과 lactic acid의 첨가수준별 RRT검사

(단위: cfu/ml,분)

시료	원유	총균수	총균수	a value	30℃ 배양			
번호	खग	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색	
1	standard			-0.16	240	270	315	
	0.2% lactic acid	360000	5.56	4.62	105	170	295	
	0.25% lactic acid			7.48	60	140	240	
2	standard			-0, 89	290	360	395	
	0.2% lactic acid	61000	4.79	4, 11	105	180	375	
	0.25% lactic acid			7.75	60	140	320	
3	standard			-0.34	290	335	395	
(despite de la constitución de l	0.2% lactic acid	186000	5.27	5. 71	95	170	360	
	0.25% lactic acid			9,18	60	140	320	

시료		총균수	총균수	a value		30℃ 배양 최지새 ㅂ리새 브호		
번호	원유	(30℃)	(log)	(30℃/3hr)	청자색		분홍색	
4	standard	(00 0 /	(108)	-0.23	290	360	395	
•	0.2% lactic acid	68000	4.83	5. 79	90	180	375	
	0.25% lactic acid	00000	1.00	9.58	40	105	320	
5	standard			-0.49	275	315	395	
	0.2% lactic acid	132000	5.12	5. 39	105	180	360	
	0.25% lactic acid	102000	0.12	9.36	60	105	240	
6	standard			0.53	295	335	395	
	0.2% lactic acid	56000	4.75	7.04	60	140	360	
	0.25% lactic acid	00000	1	10. 77	35	60	240	
7	standard			-0.03	275	315	395	
'	0.2% lactic acid	131000	5.12	6.19	90	170	315	
	0.25% lactic acid	101000	0.12	9.30	45	105	240	
8	standard			0.34	240	270	315	
	0.2% lactic acid	760000	5.88	5, 58	90	170	295	
	0.25% lactic acid	100000	0.00	8. 75	45	105	240	
9	standard		 	0.09	295	345	395	
"	0.2% lactic acid	188000	5.27	6.94	90	170	360	
	0.25% lactic acid	100000	0.27	10.03	40	90	240	
10	standard			0.37	295	315	395	
	0.2% lactic acid	210000	5.32	5. 78	90	170	315	
	0.25% lactic acid	210000	0.02	8.88	60	140	240	
11	standard			0.77	220	285	370	
**	0.2% lactic acid	300000	5, 48	6.64	70	110	355	
	0.25% lactic acid	50000	0, 10	10.07	35	80	290	
12	standard			0.24	265	305	370	
1.0	0.2% lactic acid	139000	5.14	6.68	130	230	360	
	0.25% lactic acid	103000	0.11	8. 69	50	100	290	
13	standard			1.57	190	265	305	
	0.2% lactic acid	380000	5, 58	7. 65	90	190	305	
	0.25% lactic acid	00000	0.00	10. 78	35	80	280	
14	standard		-	1.00	190	305	370	
	0.2% lactic acid	129000	5.11	7, 05	70	110	350	
	0.25% lactic acid			9.31	45	105	305	
15	standard			0.42	265	330	370	
	0.2% lactic acid	106000	5.03	7. 09	70	110	350	
	0.25% lactic acid	1 I I		9, 79	35	100	305	
16	standard			-0.08	265	355	400	
	0.2% lactic acid	110000	5.04	5. 61	70	130	400	
	0.25% lactic acid			8. 98	35	100	305	

시료	원유	총균수	총균수	a value	3	30℃ 배양	ŧ
번호	च्म	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
17	standard			-0.60	265	305	415
	0.2% lactic acid	140000	5.15	5.32	90	130	370
	0.25% lactic acid			8, 01	75	110	355
18	standard			2, 31	110		220
	0.2% lactic acid	1060000	6.03	8.58	60	105	220
	0.25% lactic acid			10, 49	25	75	170
19	standard			1.84	140		265
	0.2% lactic acid	860000	5, 93	7, 11	75	110	230
	0.25% lactic acid			10.01	35	95	180
20	standard			-0.12	265	305	400
	0.2% lactic acid	98000	4.99	5. 78	75	140	370
	0.25% lactic acid			9,16	35	95	355

주) standard : 원유, 0.2% lactic acid : standard + 0.2% lactic acid

2) 쇠고기

최고기의 SPC법과 젖산첨가에 따른 RRT검사는 표 106에서 보는 바와 같이 젖산 0.2%와 젖산 0.25%별로 각각 첨가하여 30℃/3시간 배양했을 때 a 값이 원유와 마찬가지로 젖산 무첨가구에 비해 증가하였고, 젖산첨가량이 클수록 증가하였다. 또한 색의 변화에 따른 환원시간 역시 크게 영향을 받는 것으로 나타났으며, 청자와 보라색까지는 젖산첨가가 많은 시간 단축이 있었으나 분홍색으로 갈수록 환원시간 간격이 많이 줄어들었다.

표 107. 쇠고기의 SPC법과 lactic acid의 첨가수준별 RRT검사

(단위: cfu/cm, 분)

시료	- (ب	7 -7]	총균수	총균수	a value	3	30℃ 배성	ŧ
번호	71	최고기		(log)	(30℃/3hr)	청자색	보라색	분홍색
1	stan	dard		3, 87	2.22	240	390	630
	lactic	0, 2%	7400		6.44	35	155	450
		0. 25%	7400	3,07	7.24	25	135	420
	acid	0.5%	:		9.98			
2	stan	dard		3. 63	2.42	240	390	630
	lactic	0.2%	4300		6.32	35	155	450
		0.25%	4300		6, 89	25	135	420
	acid	0.5%			9.99			
3	stan	dard			2,12	240	390	630
	lactic	0.2%	3700	2 57	6.03	35	155	450
		0.25%	3700	3.57	6.77	25	135	420
	acid	0.5%	manus and the first of the second		9, 83			

4	stan	dard			2.32	240	390	420
	lactic	0.2%	53000	4.72	6. 25	35	155	390
		0. 25%			6.93	25	135	390
	acid	0.5%			10.23			

주) standard : 20% skim milk powder, 0.2% lactic acid : standard + 0.2% lactic acid

3) 돼지고기

돼지고기의 SPC법과 젖산첨가에 따른 RRT검사는 표 108에서 보는 바와 같이 젖산 0.2%, 젖산 0.25% 및 젖산 0.5%별로 각각 첨가하여 30℃/3시간 배양했을 때 a 값이 원유와 마찬가지로 젖산 무첨가구에 비해 증가하였고, 젖산 첨가량이 클수록 증가하였다. 또한 색의 변화에 따른 환원시간 역시 크게 영향을 받는 것으로 나타났으며, 쇠고기와는 달리 보라색에서 분홍색으로의 환원시간도 젖산첨가가 더 단축되었으나 젖산을 첨가하자마자 청자색으로 환원됨에 따라 청자색의 환원시간을 측정할 수가 없었다.

표 108. 돼지고기의 SPC법과 lactic acid의 첨가수준별 RRT검사

(단위: cfu/cm, 분)

		- 						
시료	돼지	 7]	총균수	총균수	a value	:	30℃ 배양	ŧ
번호	41(1	1-7	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
1	stan	dard			5.56	135	240	630
	lactic	0.2%	5300	3.72	9.19		50	240
		0.25%	3300		9.85		45	240
	acid	0.5%			11.97			
2	stan	dard	7000 2 00		5.89	135	240	630
	lactic	0.2%		3.88	9.42		50	240
		0.25%	7600		10.44		45	240
	acid	0.5%			11.81			
3	stan	dard			5. 29	135	275	630
	lactic	0.2%	5700	3.76	9.13		50	240
		0.25%	3700	3.70	10.19		45	240
	acid	0.5%			12.47			
4	stan	dard			4. 25	155	295	660
	lactic	0.2%	4700	2 67	8. 70		50	275
		0.25%	4700	3.67	9, 50		45	240
	acid	0.5%	1	11.75				

5	stan	standard			3, 61	155	330	660
		0.2%			8.27		50	275
	lactic acid	0.25%	4300	3.63	9.40		45	240
		0.5%			11.86			
6	stan	standard			3.91	155	330	660
	lactic	0.2%	4000	2 60	8, 89		50	275
	1	0.25%	4900	3.69	9.86		45	240
	acid	0.5%			12.46			

주) standard : 20% skim milk powder, 0.2% lactic acid : standard + 0.2% lactic acid

따라서 비교적 안정적인 색 촉진인자로는 효소인 lactase, 배지에서는 peptone, spc(peptone + yeast extract + dextrose 혼합제) 및 23% Skim milk powder(식육의 경우)가 색촉진인자로 적당한 것으로 판단되었다.

2. 신속세균검사법의 최적조건 확립

가. 배양온도, 색촉진인자 최적조건 설정

1) 원유

원유의 SPC법과 배지의 첨가수준별 RRT검사는 표 109와 같으며, peptone 및 spc(peptone + yeast extract + dextrose 혼합제)첨가량이 증가할수록 색차계 a 값이 증가하였고, 환원시간 역시 단축되었다. 특히 1.5%를 첨가할 경우 무첨가 구에 비해 2배이상의 시간단축을 보였다. 다만, 원유의 세균수가 적을 경우에는 적용가능하지만 세균수가 많을 경우에는 환원색이 분홍색을 벗어나 흰색으로 변하는 문제점이 있었다.

표 109. 원유의 SPC법과 배지의 첨가수준별 RRT검사

(단위 : cfu/ml,분)

시료	배지	원 기구 1	총균수	총균수	a value	3	80℃ 배성)±
번호		当 /「6	(30℃)	(log)	(30°C/3hr)	청자색	보라색	분홍색
	stan	dard			18.71			
		0.5%			흰 색			
	peptone	1.0%	6760000		흰 색			
1		1.5%		6.83	흰 색			
		0.5%			흰 색			
	spc	1.0%			흰 색			
		1.5%			흰 색			
	stan	dard			15.65		50	135
	peptone	0.5%			9.85		10	105
		1.0%	6250000		14.14			45
2		1.5%		6, 80	14.88			45
		0.5%			10.23		10	45
	spc	1.0%			16.78			45
		1.5%			16.94			45
	stan	dard			0.91	205	225	295
		0.5%			7.74		50	225
	peptone	1.0%			12.23			173
3		1.5%	710000	5, 85	14.43			135
		0.5%			6. 24		50	165
	spc	1.0%			11.13			165
		1.5%			13. 56			135

	stan	dard			0.81	205	240	295
		0.5%			7.32		50	225
	peptone	1.0%			11.81			205
4		1.5%	770000	5.89	14. 25			135
		0.5%			6.63		50	175
1	spc	1.0%]	ļ	10.90			155
		1.5%	,		13. 24			135
	stan	dard]		0.42	225	270	330
	peptone	0.5%	[7.77		50	295
		1.0%	510000	5.71	11.82			205
5		1.5%			14.38			135
		0.5%			6.48		50	240
	spc	1.0%			11.28			175
	<u> </u>	1.5%			13.78			120
	stan	dard			2.02	50	175	240
		0.5%			7.93		50	205
	peptone	1.0%	j		11.05			175
6		1.5%	580000	5.76	15, 99			90
		0.5%			7. 23		50	150
	spc	1.0%]		12.27			135
		1.5%			15, 53			90

주) standard : 원유, peptone 0.5% : standard + peptone 0.5% 1번은 모두 1시간 배양(standard, 배지) 2-6번은 standard 3시간 배양, 배지는 1시간 배양

원유의 SPC법과 배지와 lactase의 첨가수준별 RRT검사는 표 110에서와 같이 색차계 a 값은 spc혼합제 보다 peptone 0.25% + lactase 0.15% 혼합제를 첨가한 것이 가장 빠른 색변화를 보였다. 환원시간은 청자색까지는 peptone 0.25%와 peptone 0.25% + lactase 0.15% 혼합제가 spc 0.25%와 spc 0.25% + lactase 0.15% 혼합제 보다 빠른 시간 단축이 있었으나 보라색 및 분홍색에서는 반대 양상을 띄었으며, spc 0.25%와 spc 0.25% + lactase 0.15% 혼합제 간에 거의 차이가 없음에 따라 lactase는 거의 영향이 없는 것으로 판단되어 spc 혼합제가 적합한 것으로 판단되었다.

표 110. 원유의 SPC법과 배지와 lactase의 첨가수준별 RRT검사

(단위: cfu/ml,분)

	· · ·	÷ ¬ 1	1			0.00	
시료	배지, lactase 첨가량	총균수	총균수	a value		0℃ 배성	
번호		(30℃)	(log)	(30℃/90분)	청자색		
]]	standard			-1.56	250	300	370
	pep0. 25%+1actase0. 15%			4.67	5	215	340
1	pep0. 25%	61000	4.79	4.80	5	215	340
	spc0.25%+1actase0.15%			3, 99	35	135	320
	spc0, 25%			3.84	35	135	320
	standard			-1.37	250	340	380
	pep0. 25%+1actase0. 15%		į	4.64	5	215	380
2	pep0.25%	112000	5.05	4.61	5	215	380
	spc0. 25%+1actase0. 15%			4.16	35	135	340
	spc0.25%			4.23	35	135	355
	standard			-1.53	250	275	355
3	pep0. 25%+lactase0. 15%			4.86	5	215	300
3	pep0. 25%	780000	5.89	4.57	5	215	300
	spc0.25%+lactase0.15%			4.43	35	135	275
	spc0, 25%			4.53	35	135	275
	standard			-1.62	250	320	380
	pep0. 25%+lactase0. 15%			5. 22	5	215	355
4	pep0. 25%	79000	4.90	4.79	5	215	380
	spc0.25%+lactase0.15%			4.54	25	135	340
	spc0.25%			4.32	35	135	340
	standard			-1.68	220	250	300
5	pep0. 25%+lactase0. 15%			4.89	5	135	275
Э	pep0. 25%	320000	5. 51	4.52	5	215	275
	spc0.25%+lactase0.15%			4.41	35	135	275
	spc0, 25%			4.57	35	135	275
	standard			-1.80	275	340	400
	pep0. 25%+lactase0. 15%			4.82	5	215	370
6	pep0. 25%	86000	4.93	4.78	5	215	380
	spc0.25%+lactase0.15%	86000	4. 93	4.52	35	135	340
	spc0.25%			4.49	35	215	340

주) standard : 원유, pep 0.25% + lactase 0.15%; standard + peptone 0.25% + lactase 0.15%, spc 0.25% + lactase 0.15%; standard + spc(peptone 5.0g, yeast extract 2.5g, dextrose 1.0g/1L)0.25% + lactase 0.15%

상기의 표 110에서의 spc 혼합배지가 시간단축에 영향을 미치는 것으로 판단 됨에 따라 spc 혼합배지 0.25%와 0.5%간의 시간단축 여부를 시험한 결과(표 111) 색차계의 a 값은 첨가량이 많을수록 중가하였으며, 환원시간은 원유의 색이 청자색으로 변화할 경우 spc 0.25%에서는 검사할 수 있으나 spc 0.5%에서는 청자색이 보라색 쪽으로 지나가 버려 검사할 수 없었다. 보라색에서는 첨가량이 증가할수록 빠른 시간단축이 있었으나 분홍색으로 갈수록 무첨가구와 비교할 때 35분~140분 시간단축이 있었으며, 원유의 오염 세균수가 많은 것보다는 적은 것이 많은 시간단축을 하는 경향을 보였다. 그러나 보라색으로 변하는데 소요되는 시간은 원유의 오염 세균수와 상관없이 동일함에 따라 적합한 세균검사라고 하기 어렵다. 따라서 SPC법과의 상관관계를 고려할 때 무첨가구가 시간단축은 없지만 가장 신뢰할 만하다고 판단되었다.

표 111. 원유의 SPC법과 배지(spc)의 첨가수준별 RRT검사

(단위 : cfu/ml,분)

			·				
시료	· · · · · -	총균수	총균수	a value		30℃ 배양	:
번호	첨가량	(30℃)	(log)	(30℃/1hr)	청자색	보라색	분홍색
1	standard			-1.24	270	330	375
	spc 0.25%	97000	4.99	4.78	20	150	330
	spc 0.5%			6.92		60	310
2	standard			-1.77	270	330	390
	spc 0.25%	47000	4.67	4.30	20	150	330
	spc 0.5%			6.83		60	330
3	standard			-1.53	270	330	390
	spc 0.25%	55000	4.74	4.66	20	150	345
	spc 0.5%			6.94		60	310
4	standard			-1.39	345	480	525
	spc 0.25%	55000	4.74	5.12	20	150	440
	spc 0.5%			7.75		60	420
5	standard			-1.21	395	505	555
	spc 0.25%	38000	4.58	4.82	20	150	440
	spc 0.5%			7.54		60	420
6	standard			-1.00	295	375	490
	spc 0.25%	50000	4.70	5, 53	20	150	435
	spc 0.5%		<u> </u>	8.02		60	420
7	standard			-1.36	345	420	505
	spc 0.25%	72000	4.86	5.18	20	150	400
	spc 0.5%			7.50		60	400

8	standard			-0.48	260	295	345
	spc 0.25%	370000	5.57	5.40	20	150	330
	spc 0.5%			8.32		60	310
9	standard			-0.91	295	345	400
	spc 0.25%	160000	5. 20	5. 59	20	150	375
	spc 0.5%			8.00		60	345
10	standard			-0.91	345	505	585
	spc 0.25%	13600	4.13	5.68	20	150	525
	spc 0.5%			8.00		60	445
11	standard			-0.82	260	330	375
	spc 0.25%	370000	5.57	5, 63	20	150	340
	spc 0.5%			8, 25		60	330

주) standard : 원유, spc 0.25% : standard + spc(peptone 5.0g, yeast extract 2.5g, dextrose 1.0g/1L)0.25%

2) 쇠고기

쇠고기의 SPC법과 lactase 첨가수준별 RRT검사는 표 112와 같이 색차계 a 값은 lactase 첨가량이 중가할수록 증가하였다. 청자색 및 보라색으로 환원되는데 소요시간은 lactase 첨가량이 증가할수록 단축된 반면 분홍색으로 환원되는데 소요되는 시간은 무첨가구 와 lactase 첨가량과는 크게 영향이 없는 것으로 나타났다.

표 112. 쇠고기의 SPC법과 lactase 첨가수준별 RRT검사

(단위: cfu/cm, 분)

시료	lacta	ase	총균수	총균수	a value		30℃ 배양	
번호	첨가	량	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
	stand	ard			0.12	295	705	915
1		0.05%	80	1.90	0. 52	295	705	945
1	lactase 0	0.10%	80	1.90	0.62	270	705	835
		0.15%			0.67	270	705	945
	stand	ard			0.11	295	705	780
2	[0	0.05%	210	2.32	0. 51	295	705	780
2	lactase	0.10%			0.74	295	705	780
		0.15%			0.90	270	705	780
	stand	ard			1.04	240	425	570
3		0. 05%	9900	2.04	1.41	240	410	605
3	lactase	0.10%	8800	3.94	1.47	215	390	605
	1 1	0.15%			1.54	215	370	605

	stand	ard			2.42	180	470	785
		0.05%	100	0.00	2.66	172	442	782
4	lactase	0.10%	100	2.00	2.80	164	419	699
		0.15%			2.94	156	381	771
	stand	ard			2.40	186	458	768
5		0.05%	100	2.00	2.86	180	430	765
3	lactase	0.10%	100	2.00	2.89	174	407	712
		0.15%			3.00	164	369	759
	stand	ard			2.04	196	496	666
6		0.05%	100	2.00	2.39	188	443	753
0	lactase	0.10%			2.84	180	430	750
		0.15%			2.90	172	412	747
	standard				0.03	355	650	750
7	lactase	0.05%	250	2.40	0.39	352	577	727
(0.10%			0.44	289	554	724
		0.15%			0.64	286	551	721
	stand	ard			0.52	313	638	718
8		0. 05%	190	2, 28	0.96	295	565	775
0	lactase	0.10%	150	2.20	1.04	277	562	772
		0.15%			1.38	274	559	769
	stand	ard			-0.27	351	706	756
9		0.05%	180	2, 26	0.30	348	553	818
9	lactase	0.10%	100	2.20	0.45	295	550	880
		0.15%			0.58	292	537	877

주) standard : 20% skim milk powder, lactase 0.05%: standard + lactase 0.05%

표 113은 쇠고기의 SPC법과 배지(spc)의 첨가수준별 RRT검사 결과로서 spc 0.25% 첨가구는 무첨가구인 standard와 비교할 때 색차계 a 값이 오히려 감소한 반면 spc 0.5% 첨가구는 증가하였다. 청자색, 보라색 및 분홍색으로 환원되는데 소요 시간은 무첨가구에 비해 시간단축이 있었으나 쇠고기의 오염세균정도가 많을수록 무첨가구는 환원시간이 짧아지는 양상을 보였으나 배지첨가구는 일정하지 않는 문제점이 있다.

표 113. 쇠고기의 SPC법과 배지(spc)의 첨가수준별 RRT검사

(단위 : cfu/㎡,분)

시료	배지(spc)	총균수	총균수	a value		30℃	;
번호	첨가량	(30℃)	(log)	(30°C/3hr)	청자색	보라색	분홍색
1 1	standard			3.19	155	400	670
1	spc 0.25%	5000	3.70	2.43	150	400	620
	spc 0.5%			3. 26	130	380	620
2	standard			2.82	155	400	910
	spc 0.25%	370	2.57	2.11	150	400	590
	spc 0.5%			3.12	130	380	830
3	standard			3.63	155	400	1070
	spc 0.25%	100	2.00	2.81	140	400	880
	spc 0.5%			3.82	115	380	590

주) standard : 20% skim milk powder, spc 0.25%: standard + spc(peptone 5.0g, yeast extract 2.5g, dextrose 1.0g/1L)0.25%

3) 돼지고기

돼지고기의 SPC법과 lactase 첨가수준별 RRT검사는 표 114와 같이 색차계 a 값은 lactase 첨가량이 중가할수록 중가하였다. 또한 색의 변화에 따른 환원시간 역시 lactase 첨가량이 중가할수록 단축되었으나 크게 영향을 미치지는 못하였다.

표 114. 돼지고기의 SPC법과 lactase 첨가수준별 RRT검사

(단위: cfu/cm², 분)

시료	lacta	ase	총균수	총균수	a value		30℃ 배양	
번호	첨가	량	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
	stand	ard			2,18	190	410	755
1		0.05%	260	2 41	2.36	190	410	780
1	lactase	0.10%	200	2.41	2.54	190	390	780
		0.15%			2.70	190	370	800
	standard				2.23	190	425	780
2	lactase	0.05%	320	2.51	2. 51	190	410	705
2		0.10%			2.89	190	390	780
		0.15%			2.89	165	370	780
	stand	ard			2.09	190	425	705
3		0.05%	1500	3, 20	2.26	190	410	705
3	lactase	0.10%	1590	3.20	2, 38	165	370	705
		0.15%	····		2, 36	165	370	705

	stand	lard			3.81	164	309	559
		0.05%	7000	0.05	4.02	156	286	546
4	lactase	0.10%	7000	3.85	4.17	148	268	538
		0.15%			4.22	140	265	535
	stand	lard			4.00	150	297	472
5		0.05%	12400	4.09	4.21	147	274	419
	lactase	0.10%	12400	4.09	4.47	144	256	391
		0.15%	_		4.49	133	253	388
6 s	stand	lard			3.56	165	305	560
		0.05%	2600	3.41	3.83	157	302	522
	lactase	0.10%			3.95	149	299	519
		0.15%			4.10	141	276	491
	standard				2.07	179	409	794
7	lactase	0.05%	660	2.82	2.34	171	406	791
•		0.10%			2.34	163	403	788
		0.15%			2.51	160	400	785
	stand	ard			2.58	182	387	822
8		0.05%	320	2.51	2.76	179	384	699
	lactase	0.10%	<i>320</i>	2.01	3, 03	176	321	736
		0.15%			3.18	173	318	788
	stand	ard			2.48	170	375	810
9		0.05%	300	2.48	2.89	167	372	807
	lactase	0.10%	300	2, 40	2.90	164	369	804
		0.15%			2.94	161	366	801

주) standard : 20% skim milk powder, lactase 0.05%: standard + lactase 0.05%

표 115는 돼지고기의 SPC법과 배지(spc)의 첨가수준별 RRT검사로서 색차계 a 값은 무첨가구가 배지첨가구에 비해 색의 변화가 빠른 반면 청자색으로 변화된 환원시간은 무첨가구가 spc 0.25%첨가구와 비슷하였으나 spc 0.5%첨가구에 비해 30~40분 더 소요되었고 분홍색으로 변화된 환원시간은 35~90분 더 소요되었다. 그러나 이 시간은 주로 청자색으로 변화된 환원시간에 의해 주로 영향을 받고 분홍색으로 갈수록 크게 영향이 없는 것으로 보인다.

표 115. 돼지고기의 SPC법과 배지(spc)의 첨가수준별 RRT검사

(단위: cfu/cm², 분)

시료	배지(spc)	충균수	총균수	a value		30℃	
번호	첨가량	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
1	standard			5, 31	145	245	590
	spc 0.25%	7800	3.89	4.31	140	245	500
	spc 0.5%			4.97	110	245	500
2	standard			4.43	145	335	590
	spc 0.25%	5000	3.70	3, 68	150	335	500
	spc 0.5%			4.36	110	295	500
3	standard			4.52	145	335	590
	spc 0.25%	5000	3.70	3.89	150	335	555
	spc 0.5%			4.27	110	295	555
4	standard	and the second		4.09	145	335	590
	spc 0.25%	5700	3.76	4.45	150	335	555
	spc 0.5%	_		4.58	110	295	555
5	standard			5, 76	140	245	590
	spc 0.25%	36000	4.56	4.85	140	245	555
	spc 0.5%			5, 69	100	245	555
6	standard			5. 28	140	280	590
	spc 0.25%	14500	4, 16	4.83	150	280	555
	spc 0.5%			5.02	110	280	555
7	standard			6.02	140	245	590
	spc 0.25%	34000	4.53	5, 04	150	245	555
	spc 0.5%			4, 91	110	245	555

주) standard : 20% skim milk powder, spc 0.25%: standard + spc(peptone 5.0g, yeast extract 2.5g, dextrose 1.0g/1L)0.25%

이와같은 결과를 종합해 볼 때 색촉진인자를 첨가한 RRT검사는 약간의 시간 단축을 보였으나 SPC법과의 상관관계를 고려할 때 무첨가구가 시간단축은 없지만 가장 신뢰할 만하다고 판단되어 색차계에 의한 신속검사법은 배양온도 30℃에서 3시간 배양, 환원시간에 의한 신속검사법은 원유의 경우 30℃에서 보라색 또는 분홍색으로 환원되는 시간, 식육의 경우 30℃에서 분홍색으로 환원되는 시간으로 정하는 것이 적합한 것으로 나타났다.

나. 반복성 및 재현성 실험을 위한 세균수 측정

동일한 원유를 5회 반복하여 8차에 거쳐 실험한 결과는 표 116과 같으며, 총 균수에 대해 SPC법에 의한 log값, 색차계의 a 값, 색 환원에 의한 환원시간별로 평균값 과 표준편차를 한 결과 SPC법에 의한 log값은 실험오차가 1.125%, 색차계의 a 값은 3시간 배양했을 때 74.82%(이중 4차에 있는 결과를 제외하면 28.4%),

6시간 배양했을 때 20.67%, 청색에서 청자색으로의 환원시간은 3.44%, 청색에서 보라색으로의 환원시간은 2.74%, 청색에서 분홍색으로의 환원시간은 1.39%를 나타냄으로써, 색차계에 의한 신속세균법을 제외하고는 95% 이상의 신뢰를 나타내었다.

표 116. 원유에 대한 총균수 검사법간의 반복실험

(단위 : cfu/ml,분)

	·				(단위 : CIU/ml,문)				
시료	총균수	충균수	a value	a value		30℃			
번호	(30℃)	(log)	(30℃/3hr)	(30℃/6hr)	청자색	보라색	분홍색		
1a	726000	5.86	-0.13	6.18	4.3	4.9	5.8		
1b	670000	5.83	-0.35	5.73	4.3	4.9	5.8		
1c	618000	5. 79	-0.35	4.07	4.3	5.2	5.8		
1d	450000	5. 65	-0. 26	6.20	4.3	5.2	5.8		
le	752000	5. 88	-0.33	5. 78	4.8	5.3	5.8		
	average	5. 80	-0, 28	5. 59	4.4	5.1	5.8		
<u></u>	std	0.09	0.09	0.88	0.22	0.18	0,00		
		5.80 ± 0.09	-0.28 ± 0.09	5.59 ± 0.88	4.4 ± 0.22	5.1 ± 0.18	5.8 ± 0.00		
2a	283000	5, 45	0.89	12.94	3.2	3.8	4.8		
2b	264000	5. 42	0.94	4.04	3.2	3.8	4.8		
2c	300000	5. 48	0.96	4.08	3.2	3.8	4.8		
2d	281000	5, 45	1.21	4.19	3.4	3.9	4.8		
2e	259000	5. 41	1.34	4.62	3.4	3.9	4.8		
	average	5.44	1.07	5.97	3.3	3.8	4.8		
	std	0, 03	0. 20	3.90	0.14	0.09	0.00		
		5.44 ± 0.03	1.07 ± 0.20	5.97 ± 3.90	3.3 ± 0.14	3.8 ± 0.09	4.8±0.00		
_3a	604000	5, 78	0.07	2.62	3.6	4.1	5.2		
3b	514000	5. 71	0.01	5.49	3.6	4.3	5.2		
3c	417000	5. 62	0. 25	5, 81	3.6	4.3	5.2		
3d	606000	5. 78	0. 29	5. 71	4.3	5.0	5.8		
3e	606000	5. 78	0. 23	1.94	4.3	5.2	5, 8		
	average	5. 74	0.17	4. 31	3.9	4.6	5.4		
	std	0.07	0.12	1.88	0.37	0.50	0.37		
		5.74 ± 0.07	0.17 ± 0.12	4.31 ± 1.88	3.9 ± 0.37	4.6 ± 0.50	5.4±0.37		
4a	173000	5. 24	-0.09	2.46	4.1	5.2	5.8		
4b	189000	5. 28	-0.06	2.26	4.1	5.2	5.8		
4c	169000	5, 23	-0.09	2, 62	4.1	5.2	5.8		
4d	215000	5, 33	0.04	3, 15	4.6	5.2	5.8		
4e	194000	5. 29	0.09	3, 05	4.6	5.2	5.8		
	average	5, 27	-0.02	2.71	4.3	5.2	5.8		
	std	0.04	0.08	0.38	0.27	0.00	0.00		
		5.27 ± 0.04	-0.02 ± 0.08	2.71 ± 0.38	4.3 ± 0.27	5.2±0.00	5.8 ± 0.00		

시료	총균수	총균수	a value	a value		20%	,,
					- 1 - N	30℃	1 1 2 . n
번호	(30℃)	(log)	(30°C/3hr)	(30°C/6hr)	청자색	보라색	분홍색
5a	156000	5.19	-0.24	10.18	3.8	4.7	5.7
5b	125000	5. 10	-0.40	9.76	3.8	4.7	5.7
5c	160000	5, 20	-0.35	9.31	3.8	4.7	5.7
5d	149000	5. 17	-0.46	9.71	3.8	4.7	5.7
5e	151000	5. 18	-0.45	10.18	3.8	4.7	5.7
	average	5.17	-0.38	9.83	3.8	4.7	5.7
	std	0.04	0.09	0.37	0.00	0.00	0.00
<u> </u>		5.17 ± 0.04	-0.38 ± 0.09	9.83 ± 0.37	3.8 ± 0.00	4.7 ± 0.00	5.7 ± 0.00
		 	···				
6a	121000	5.08	0.40	4.83	3.8	5.2	5.8
6b	141000	5.15	0.43	4.67	3.8	5.2	5.8
6c	120000	5.08	0.46	4. 59	3.8	5.2	5.8
6d	126000	5. 10	0.40	4. 54	3.8	5.2	6.0
6e	135000	5, 13	0.37	4.80	3.8	5.2	6.2
	average	5, 11	0.41	4.69	3.8	5.2	5.9
	std	0.03	0.03	0.13	0.00	0.00	0.15
		5.11 ± 0.03	0.41 ± 0.03	4.69 ± 0.13	3.8 ± 0.00	5.2±0.00	5.9±0.15
7a	83000	4.92	1.32	12.25	3.5	4.2	5.0
7b	67000	4.83	0.88	13.45	3, 5	4.2	5.0
7c	65000	4. 81	0.68	10.03	3.5	4.3	5.2
7d	92000	4.96	0.74	9.79	3.7	4.5	5.2
7e	93000	4.97	0.66	10.36	3.7	4.5	5.2
	average	4.90	0.86	11.18	3.6	4.3	5.1
	std	0.07	0.27	1.60	0.09	0.17	0.09
		4.90 ± 0.07	0.86±0.27	11.18±1.60	3.6 ± 0.09	4.3±0.17	5.1±0.09
8a	61000	4.79	-0.72	3.18	5. 2	5.9	7.0
8b	50000	4.70	-0.70	3.02	5.2	5:9	7.0
8 c	53000	4.72	-0.57	3, 35	5.2	5.9	7.0
8d	34000	4.53	-0.57	3, 39	5.2	5.9	7.0
8e	52000	4.72	-0.50	3, 52	5.2	6.1	7.0
	average	4.69	-0.61	3. 29	5.2	6.0	7.0
	std	0.10	0.09	0.19	0.00	0.07	0.00
		4.69±0.10	-0.61 ± 0.09				

3. 실중실험을 통한 SPC와의 상관관계 및 회귀방정식 산출

가. 원유 표 117. 원유의 SPC법과 색차계 및 환원시간에 의한 RRT 검사

(단위: cfu/ml,분)

시료	총균수	총균수	a value	A SAN MARKANIA A SAN AND A SAN AND A SAN AND A SAN AND A SAN AND A SAN AND A SAN AND A SAN AND A SAN AND A SAN	30℃	
번호	(30℃)	(log)	(30°C/3hr)	청자색	보라색	분홍색
1	33000	4.52	0.47	360	455	520
2	125000	5.10	7.99	22	52	122
3	480000	5, 68	4.56	124	204	314
4	43000	4, 63	1.60	201	291	331
5	41000	4.61	-0.04	308	368	458
6	85000	4.93	1,59	195	325	445
7	320000	5, 51	2, 69	182	242	282
8	11400	4.06	0.34	389	464	574
9	32000	4.51	-0.14	396	496	586
10	104000	5.02	0.55	373	433	513
11	33000	4, 52		260	390	550
12	20000	4.30		360	445	550
13	95000	4.98		215	235	295
14	860000	5, 93		210	235	310
15	122000	5.09	-0.91	270	305	375
16	5600000	6, 75	8.42	45	80	135
17	6250000	6.80	15, 65		50	135
18	710000	5.85	0.91	205	225	295
19	770000	5.89	0.81	205	240	295
20	510000	5.71	0.42	225	270	330
21	580000	5, 76	2.02	50	175	240
22	360000	5.56	-0.16	240	270	315
23	61000	4, 79	-0.89	290	360	395
24	186000	5, 27	-0.34	290	335	395
25	68000	4.83	-0.23	290	360	395
26	132000	5.12	-0.49	275	315	395
27	56000	4.75	0.53	295	335	395
28	131000	5.12	-0.03	275	315	395
29	760000	5, 88	0.34	240	270	315
30	188000	5.27	0.09	295	345	395
31	210000	5.32	0.37	295	315	395
32	300000	5.48	0.77	220	285	370
33	139000	5.14	0.24	265	305	370

시료	총균수	총균수	a value		30℃	
번호	(30℃)	(log)	(30°C/3hr)	청자색	보라색	분홍색
34	380000	5. 58	1.57	190	265	305
35	129000	5.11	1.00	190	305	370
36	106000	5.03	0.42	265	330	370
37	110000	5.04	-0.08	265	355	400
38	140000	5, 15	-0.60	265	305	415
39	1060000	6.03	2.31	110		220
40	860000	5. 93	1.84	140		265
41	98000	4.99	-0.12	265	305	400
42	66000000	7.82			15	25
43	95000000	7.98			10	20
44	569000	5.76	1.22	165	200	265
45	1288000	6.11	2,99	150	180	245
46	635000	5.80	0.59	180	230	275
47	1188000	6.07	-0.09	195	245	305
48	1140000	6.06	0.57	200	245	305
49	92000000	7.96			10	20
50	1600000	6.20	1.34	180	200	265
51	1284000	6.11	6.17	165	185	235
52	836000	5.92	3.95	100	125	195
53	174000	5.24	-0.42	275	340	385
54	50000000	7.70		15	25	35
55	11300000	7.05	13.74	80	90	115
56	360000000	8.56				
57	1512000	6.18	2.89	165	190	235
58	147000000	8.17				15
59	1074000	6.03	6.84	155	180	225
60	159000000	8. 20				15
61	1344000	6.13	2.53	180	200	255
62	8600000	6.93	13.28	65	85	120
63	163000000	8. 21	14, 93	55	80	110
64	17200000	7.24		30	45	70
65	5300000	6.72	2.34	80	110	150
66	9000000	6.95	2.85	85	· 115	180
67	3700000	6.57	3.02	150	180	220
68	2200000	6.34	0.49	155	180	220
69	640000	5.81	-0.95	255	280	300
70	2400000	6.38	9.41	80	110	150
71	770000	5.89	-0.20	265	300	330
72	31000000	7.49	4.25	70	100	150

시료	총균수	총균수	a value		30℃	
번호	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
73	9800000	6.99	10.54	55	80	120
74	590000	5.77	-0.17	245	280	350
75	7900000	6. 90	11.66	85	115	150
76	530000	5. 72	-0.78	310	375	400
77	2160000	6.33	1.38	150	180	220
78	910000	5. 96	-0.16	265	300	335
79	530000	5. 72	0.47	2,45	265	310
80	850000	5. 93	0.76	245	265	300
81	560000	5. 75	0.95	235	255	300
82	314000000	8. 50		12	31	62
83	5000	3. 70	3. 56	242	488	607
84	24000	4.38	3. 28	221	451	554
85	195000	5. 29	11.38	78	112	199
86	30000	4.48	1.97	380	555	648
87	13000	4.11	2.15	334	472	519
88	97000	4.99	14.37	203	276	321
89	92000	4.96	1.68	336	478	585
90	28000	4.45	4.04	208	386	566
91 92	8000	3.90	16.02	208	294	355
93	88000	4.94	5.01	210	355	438
94	22000 2000	4.34 3.30	2.07	280	527	591
95	17000	3. 30 4. 23	3.22	214	572	660
96	29000	4. 23 4. 46	1.82 4.47	345 218	574 390	684
97	3000	3. 48	3.43	220	514	597 711
98	127000	5. 40 5. 10	5, 03	222	349	565
99	4000	3.60	2.91	273	637	850
100	30000	4. 48	3.60	117	229	544
101	18000	4. 26	2, 66	149	317	486
102	68000	4.83	2.04	156	404	495
103	157000	5. 20	3.51	141	236	452
104	10000	4.00	3.23	143	238	729
105	139000	5.14	2.28	161	341	495
106	3000	3. 48	3.73	213	600	600
107	124000	5.09	2.51	165	292	495
108	30000	4.48	3.59	217	501	652
109	25000	4.40	2.22	169	373	739

시료	총균수	총균수	a value		30℃	
번호	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
110	14000	4.15	4.04	221	421	565
111	3000	3.48	-0.25	508	632	697
112	33000	4.52	3.68	212	428	571
113	135000	5, 13	7.71	214	357	430
114	3000	3.48	2.06	163	451	676
115	197000	5, 29	1.47	165	311	384
116	4000	3.60	2.24	310	440	676
117	701000	5, 85	5.72	116	191	268
118	97000	4.99	-0.93	446	562	562
119	26000	4.41	-0.09	337	564	716
120	23600	4.37	-0.76	339	444	529
121	1500	3.18	-2.97	505	568	634
122	160000	5. 20	-0.11	227	257	302
123	72000	4.86	-0. 55	325	451	536
124	347000	5. 54	-1.79	327	404	460
125	900	2, 95	-0.32	408	642	693
126	840000	5.92	0.56	408	258	310
127	6100	3.79	-2.01	460	518	612
128	496000	5. 70	2.61	180	241	314
129	75000	4.88	1.38	190	317	412

원유에서의 SPC(30℃/72hr)와 색차계 및 환원시간과의 관계는 표 188 ~ 표 189와 같다. 1차년도에서의 색차계에 의한 세균검사법은 15℃에서 24시간 배양했을 때 상관계수(r)가 0.43을 나타내었는데 비해 3차년도에서는 30℃에서 3시간 배양했을 때는 0.57을 나타내어 높은 값을 나타냈으나 비교적 상관성이 낮아 현장적용하기에는 신뢰성이 떨어진다. 다만, 원유의 오염여부를 3시간만에 검사가능함으로 목장의 개체유 관리나 유업체에서 품질관리에 적용 가능할 것으로 보인다.

환원시간에 의한 세균검사법은 청색에서 청자색으로의 환원시간이 3차년도에서 상관계수가 -0.64를, 2,3년도를 취합한 결과 -0.67을 나타내어 상관성이 약간 낮았다. 청색에서 보라색으로의 환원시간은 3차년도에서 상관계수가 -0.87을, 2,3년도를 취합한 결과 -0.85를 나타내어 상관성이 높았다. 청색에서 분홍색으로의

환원시간은 3차년도에서 상관계수가 -0.91을, 2,3년도를 취합한 결과도 -0.88을 나타냄으로써 매우 높은 상관성을 보였다. 이때 총균수를 산출하는데 소요되는 시간은 원유의 총균수가 10⁴, 10⁵, 10⁶cfu/ml일 경우 청색에서 청자색으로 환원되는 시간은 각각 7.5시간, 4.6시간, 1.6시간이었고, 청색에서 보라색으로 환원되는 시간은 각각 9.2시간, 6.2시간, 3.2시간이었으며, 청색에서 분홍색으로 환원되는 시간은 각각 11.1시간, 7.7시간, 4.4시간으로 나타났다. 이에따라 보라색이나 분홍색으로의 환원시간은 상관성이 높기 때문에 외국의 신속세균검사기기와비교해 볼 때 SPC법의 대체방법으로 유대적용하는데 이용가능할 것으로 보인다

표 118. 원유에서의 SPC(30℃/72hr)와 색차계 및 환원시간과의 관계(3차년도)

RRT 법		パコム	ક્રો <u>નો પ</u> ્રાંત્રો કો	2 Î → Î → Î → Î /	
배양온도	환원색	시료수	회귀방정식	상관관계(r)	
	a(3hr)	93	¹Y= 0.1352X + 5.1811	0.57	
30℃	청자색	122	² Y= -0.3902X + 6.7026	-0.64	
30 C	보라색	124	² Y= -0.3886X + 7.2973	-0.87	
	분홍색	128	² Y= -0.3370X + 7.5177	-0.91	

주) 1 Y = Initial bacterial log count, X = "a" value of RRT by color difference meter reading 3 hour incubation

표 119. 원유에서의 SPC(30℃/72hr)와 색차계 및 환원시간과의 관계(1,3차년도)

RRT 법		リコム	કે ને પ્રત્યો તો)	
배양온도	환원색	시료수	회귀방정식	상관관계(r)	
	a(3hr)	93	¹ Y= 0.1352X + 5.1811	0.57	
30℃	청자색	411	² Y= -0.3412X + 6.5614	-0.67	
30 C	보라색	400	² Y= -0.3300X + 7.0406	-0.85	
	분홍색	391	² Y= -0.2956X + 7.2870	-0.88	

주) 1 Y = Initial bacterial log count, X = "a" value of RRT by color difference meter reading 3 hour incubation

주) 2 Y = Initial bacterial log count, X = Reduction time from blue color to reduction color

주) 2 Y = Initial bacterial log count, X = Reduction time from blue color to reduction color

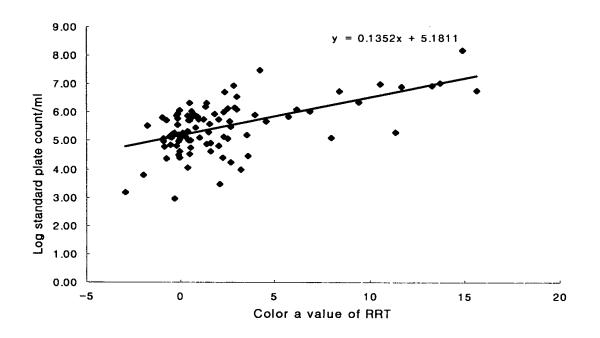


그림 16. 원유에서의 SPC(30℃/72hr)와 30℃에서 3시간 배양 후 색차계 a 값 간의 회귀직선 및 분포도

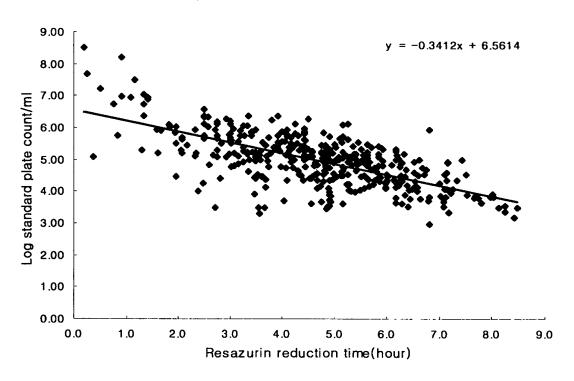


그림 17. 원유에서의 SPC(30℃/72hr)와 30℃에서 배양했을 때 청색에서 청자색까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

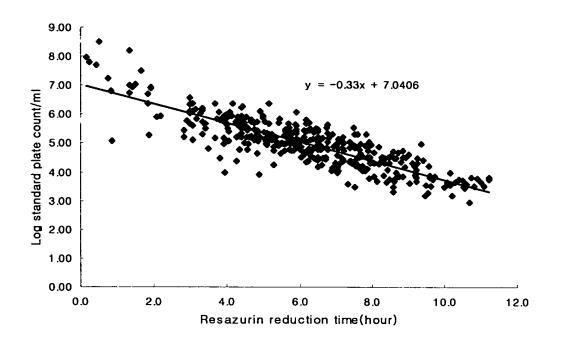


그림 18. 원유에서의 SPC(30℃/72hr)와 30℃에서 배양했을 때 청색에서 보라색까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

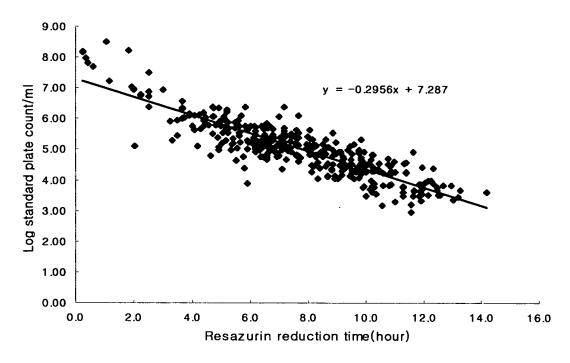


그림 19. 원유에서의 SPC(30℃/72hr)와 30℃에서 배양했을 때 청색에서 분홍색까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

나. 쇠고기 표 120. 쇠고기의 SPC법과 색차계 및 환원시간에 의한 RRT 검사

(단위 : cfu/am²,분)

시료	총균수	총균수	a value		30℃	Club cia, (L)
번호	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
1	3100	3.49	2.44	215	420	565
2	90	1.95	-0.32	335	615	795
3	560	2.75	0.79		540	780
4	210	2.32	0.53		540	780
5	80	1.90	0.12	295	705	915
6	210	2, 32	0.11	295	705	780
7	8800	3.94	1.04	240	425	570
8	100	2.00	2.42	180	470	785
9	100	2.00	2.40	186	458	768
10	100	2.00	2.04	196	496	666
11	250	2.40	0.03	355	650	750
12	190	2, 28	0. 52	313	638	718
13	180	2, 26	-0.27	351	706	756
14	2180000	6.34	16.10		140	225
15	2010000	6.30	13.89		137	222
16	1570000	6.20	11.94	114	164	219
17	700	2.85	1.05	270	510	720
18	5000	3.70	3.19	155	400	670
19	370	2.57	2.82	155	400	910
20	100	2.00	3, 63	155	400	1070
21	7400	3.87	2.22	240	390	630
22	4300	3.63	2.42	240	390	630
23	3700	3, 57	2.12	240	390	630
24	53000	4.72	2.32	240	390	420
25	23300	4.37	2.19	250	350	445
26	31000	4.49	2.31	250	350	415
27	49000	4.69	2.56	250	345	415
28.	66000	4.82	2.61	220	310	415
29	140000	5.15	3.58	185	270	360
30	225000	5.35	2.73	210	360	465

시료	총균수	총균수	a value		30℃	
번호	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
31	36000	4, 56	2, 65	210	360	465
32	71000	4.85	2.82	210	330	420
33	69000	4.84	2.81	210	330	420
34	28000	4.45	2.82	215	360	465
35	94000	4.97	2.17	225	465	670
36	14500	4.16	5. 38	120	255	
37	11800	4.07	3.60	155	360	
38	10600	4.03	5.05	120	280	
39	4100	3, 61	5, 22	120	255	
40	7100	3, 85	3.72	185	390	
41	8000	3.90	3, 69	185	390	
42	20000	4.30	3, 65	185	390	
43	88000	4.94	2.69	220	335	390
44	83000	4.92	3, 78	170	275	350
45	120000	5.08	2.71	220	295	380
46	147000	5.17	3.96	170	275	345
47	37000	4.57	3, 21	170	295	360
48	11400	4.06	1.67	260	445	565
49	17000	4.23	1.57	260	445	565
50	12900	4.11	2.74	220	335	380
51	12300	4.09	1.86	275	445	590

최고기에서의 SPC(30℃/72hr)와 RRT법의 관계는 표 121 ~ 표 122와 같다. 최고기를 대상으로한 색차계에 의한 세균검사법은 30℃에서 3시간 배양했을 때 3차년도에서는 0.64를 나타내었으며, 2,3차년도의 최고기를 취합한 결과 0.66을 나타내어 원유 보다 값이 높았으나 비교적 상관성이 낮아 현장적용하기에는 신뢰성이 약간 떨어진다. 다만, 최고기의 오염 미생물을 3시간만에 검사가능함으로 도축장의 도축단계별 오염원인을 추적하기 용이하여 HACCP에 적용 가능할 것으로보인다.

환원시간에 의한 세균검사법은 청색에서 청자색으로의 환원시간이 3차년도에서 상관계수가 -0.38을, 2,3년도를 취합한 결과 -0.43을 나타내어 상관성이 낮았다. 청색에서 보라색으로의 환원시간은 3차년도에서 상관계수가 -0.82를, 2,3년도를 취합한 결과 -0.76을 나타내었다. 청색에서 분홍색으로의 환원시간은 3차년도에서 상관계수가 -0.91을, 2,3년도를 취합한 결과도 -0.91을 나타냄으로써 매우 높은 상관성을 보였다. 이때 총균수를 산출하는데 소요되는 시간은 쇠고기의 총균수가 10², 10³, 10⁴cfu/ml일 경우 청색에서 청자색으로 환원되는 시간은 각각 10.1시간, 6.6시간, 3.1시간이었고, 청색에서 보라색으로 환원되는 시간은 각각 11.7시간, 8.8시간, 5.9시간이었으며, 청색에서 분홍색으로 환원되는 시간은 각각 14.1시간, 11.3시간, 8.4시간으로 나타남으로써 외국의 신속세균검사기기와 비교해 볼 때 SPC법의 대체방법으로 가능할 것으로 보인다.

표 121. 쇠고기에서의 SPC(30℃/72hr)와 RRT법의 관계(3차년도)

RRT 법		カコス	કે) ગો મી જો ઢો	2 L⊐L⊐L⊐ii (\
배양온도	환원색	시료수	회귀방정식	상관관계(r)
	a(3hr)	51	¹ Y= 0.2523X + 3.123	0.64
20%	청자색	47	² Y= -0.4314X + 5.423	-0.38
30℃	보라색	51	² Y= -0.4455X + 6.868	-0.82
	분홍색	44	² Y= -0.3528X + 7.209	-0. 91

주) 1 Y = Initial bacterial log count, X = "a" value of RRT by color difference meter reading 3 hour incubation

표 122. 쇠고기에서의 SPC(30℃/72hr)와 RRT법의 관계(2,3차년도)

RRT 법		기교소	સેંગો મી જો ટો)
배양온도	환원색	시료수	회귀방정식	상관관계(r)
	a(3hr)	173	¹ Y= 0. 2285X + 3. 3918	0.66
20%	청자색	168	² Y= -0. 2866X + 4. 8830	-0. 43
30℃	보라색	171	² Y= -0.3420X + 6.0096	-0.76
:	분홍색	165	² Y= -0.3508X + 6.9595	-0.91

주) 1 Y = Initial bacterial log count, X = "a" value of RRT by color difference meter reading 3 hour incubation

주)² Y = Initial bacterial log count, X = Reduction time from blue color to reduction color

 $[\]vec{r}$ Y = Initial bacterial log count, X = Reduction time from blue color to reduction color

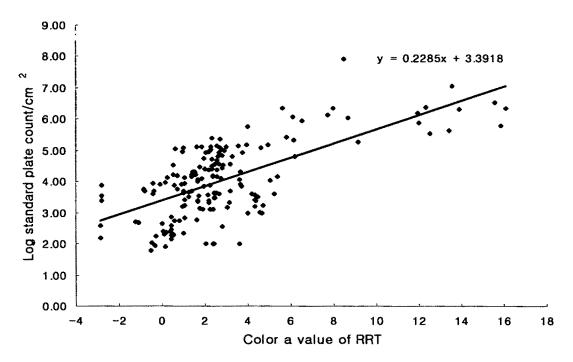


그림 20. 쇠고기에서의 SPC(30℃/72hr)와 30℃에서 3시간 배양 후 색차계 a 값 간의 회귀직선 및 분포도

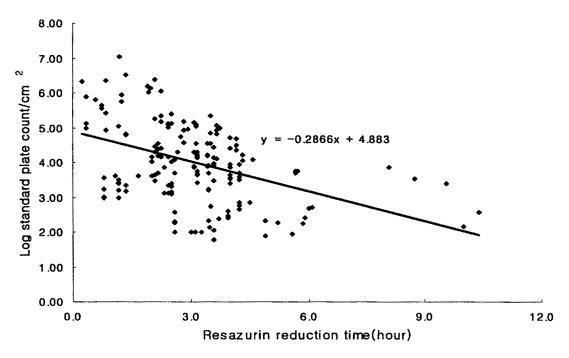


그림 21. 쇠고기에서의 SPC(30℃/72hr)와 30℃에서 배양했을 때 청색에서 청자색 까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

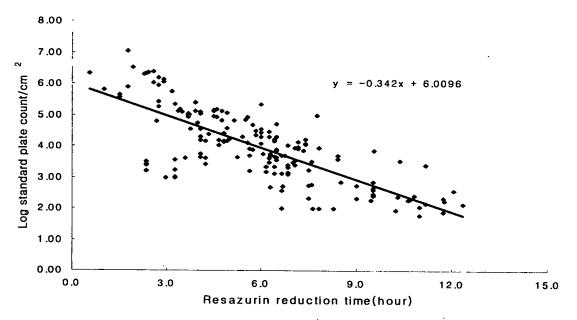


그림 22. 쇠고기에서의 SPC(30℃/72hr)와 30℃에서 배양했을 때 청색에서 보라색 까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

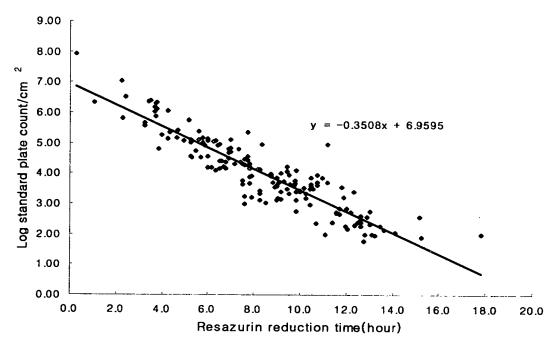


그림 23. 쇠고기에서의 SPC(30℃/72hr)와 30℃에서 배양했을 때 청색에서 분홍색 까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

다. 돼지고기 표 123. 돼지고기의 SPC법과 색차계 및 환원시간에 의한 RRT 검사

(단위: cfu/and, 분) 시료 총균수 총균수 a value 30℃

'	0 5 1	0 5	a varac	 _	30 C	
번호	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
1	1260000	6.10	19.06	15	65	165
2	2400	3.38	0.83		375	540
3	3500	3.54	1.31		375	540
4	6400	3.81	2.32		305	520
5	260	2.41	2.18	190	410	755
6	320	2.51	2.23	190	425	780
7	1590	3, 20	2.09	190	425	705
8	7000	3, 85	3.81	164	309	559
9	12400	4.09	4,00	150	297	472
10	2600	3.41	3.56	165	305	560
11	660	2.82	2.07	179	409	794
12	320	2.51	2.58	182	387	822
13	300	2.48	2.48	170	375	810
14	1340000	6.13	3.86	161	276	396
15	640000	5. 81	3.85	158	273	363
16	1040000	6.02	8.73	105	185	270
17	23000	4.36	2.26	165	360	480
18	7800	3.89	5. 31	145	245	590
19	5000	3.70	4.43	145	335	590
20	5000	3.70	4.52	145	335	590
21	5700	3.76	4.09	145	335	590
22	36000	4.56	5. 76	140	245	590
23	14500	4.16	5. 28	140	280	590
24	34000	4.53	6.02	140	245	590
25	5300	3.72	5, 56	135	240	630
26	7600	3.88	5. 89	135	240	630
27	5700	3, 76	5. 29	135	275	630
28	4700	3.67	4. 25	155	295	660
29	4300	3.63	3.61	155	330	660
30	4900	3, 69	3. 91	155	330	660

시료	총균수	총균수	a value		30℃	
번호	(30℃)	(log)	(30℃/3hr)	청자색	보라색	분홍색
31	49000	4.69	3.94	140	290	430
32	62000	4.79	4, 99	120	250	460
33	42000	4.62	5. 34	120	220	600
34	20600	4.31	3.13	185	460	640
35	64000	4.81	3.81	175	360	565
36	30000	4.48	3.98	185	350	610
37	37000	4.57	3.42	150	390	465
38	102000	5.01	3.88	140	330	420
39	54000	4.73	3.95	140	330	465
40	4200	3.62	3. 51	150	- 390	610
41	8700	3.94	3.75	150	360	555
42	15000	4.18	3.70	150	360	485
43	14000	4.15	4.58	120	255	
44	7200	3.86	4.24	120	360	
45	6200	3.79	4.84	120	330	
46	6500	3.81	6.46	105	225	
47	4200	3.62	6. 48	105	225	
48	6400	3.81	6.83	105	225	
49	8700	3.94	4.44	185	330	
50	45000	4.65	4.68	140	235	420
51	40000	4.60	4.01	170	295	445
52	48000	4.68	3.95	170	295	440
53	50000	4.70	4.80	140	260	360
54	40000	4.60	4.92	140	260	455
55	48000	4.68	4.18	170	295	445
56	30000	4.48	3.63	170	335	475
57	36000	4.56	3.82	170	335	475
58	36000	4.56	3, 90	170	335	475
59	13100	4.12	3.87	170	335	515

돼지고기에서의 SPC(30℃/72hr)와 RRT법과의 관계는 표 124 ~ 표 125와 같다. 돼지고기를 대상으로 한 색차계에 의한 세균검사법은 30℃에서 3시간 배양했을 때 2차년도에서 상관계수가 0.74를 나타내었는데 비해 2,3차년도에서는 0.50을 나타내어 상관성이 낮아 현장적용하기에는 신뢰성이 떨어진다. 다만, 돼지고기의 오염 미생물을 3시간만에 검사가능함으로 도축장의 도축단계별 오염원인을 추적하기 용이하여 HACCP에 적용 가능할 것으로 보인다.

환원시간에 의한 세균검사법은 청색에서 청자색으로의 환원시간이 3차년도에서

상관계수가 -0.40을, 2,3년도를 취합한 결과 -0.42를 나타내어 상관성이 낮았다. 청색에서 보라색으로의 환원시간은 3차년도에서 상관계수가 -0.56을, 2,3년도를 취합한 결과 -0.74를 나타내었다. 청색에서 분홍색으로의 환원시간은 3차년도에서 상관계수가 -0.88을, 2,3년도를 취합한 결과 -0.91을 나타냄으로써 매우 높은 상관성을 보였다. 이때 총균수를 산출하는데 소요되는 시간은 돼지고기의 총균수가 10², 10³, 10⁴cfu/ml일 경우 청색에서 청자색으로 환원되는 시간은 각각 7.9시간, 5.4시간, 3.0시간이었고, 청색에서 보라색으로 환원되는 시간은 각각 10.4시간, 8.0시간, 5.6시간이었으며, 청색에서 분홍색으로 환원되는 시간은 각각 14.0시간, 11.4시간, 8.9시간으로 나타남으로써 외국의 신속세균검사기기와 비교해볼 때 SPC법의 대체방법으로 가능할 것으로 보인다.

표 124. 돼지고기에서의 SPC(30℃/72hr)와 RRT법과의 관계(3차년도)

RRT 법		기교수 취기바과지		2 L 그 L 그 L 1) / \
배양온도	환원색	시료수	회귀방정식	상관관계(r)
	a(3hr)	59	¹ Y= 0.1691X + 3.386	0, 50
30℃	청자색	56	² Y= -0.6681X + 5.812	-0.40
30 0	보라색	59	² Y= -0.3931X + 6.159	-0.56
	분홍색	52	² Y= -0.3428X + 7.277	-0.88

 [?] Y = Initial bacterial log count, X = "a" value of RRT by color difference meter reading 3 hour incubation

표 125. 돼지고기에서의 SPC(30℃/72hr)와 RRT법과의 관계(2,3차년도)

RRT 법		7] 日人	જે! ગો માં જો ઢો	2 L ¬ L ¬ L ¬ d) / _ \
배양온도	환원색	시료수	회귀방정식	상관관계(r)
	a(3hr)	181	¹ Y= 0, 2685X + 3, 2303	0.69
20.50	청자색	176	² Y= -0, 4068X + 5, 2003	-0.42
30℃	보라색	179	² Y= -0.4177X + 6.3333	-0.74
	분홍색	174	² Y= -0.3898X + 7.4550	-0.91

주) 1 Y = Initial bacterial log count, X = "a" value of RRT by color difference meter reading 3 hour incubation

 $^{^{2}}$ Y = Initial bacterial log count, X = Reduction time from blue color to reduction color

 $[\]vec{r} = \vec{r} \cdot \vec{r}$ = Initial bacterial log count, X = Reduction time from blue color to reduction color

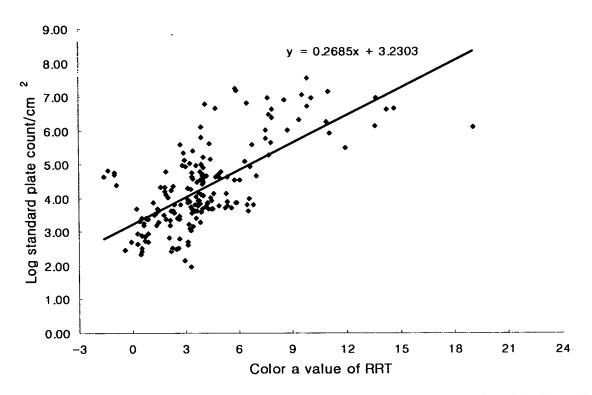


그림 24. 돼지고기에서의 SPC(30℃/72hr)와 30℃에서 3시간 배양 후 색차계 a 값 간의 회귀직선 및 분포도

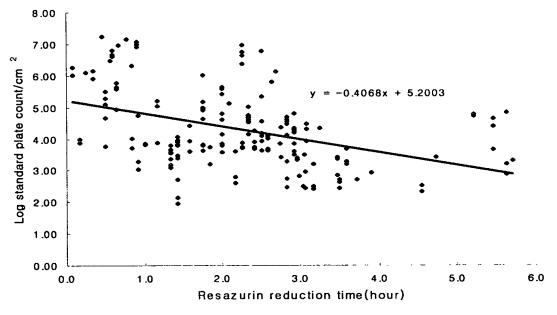


그림 25. 돼지고기에서의 SPC(30℃/72hr)와 30℃에서 배양했을 때 청색에서 청자 색까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

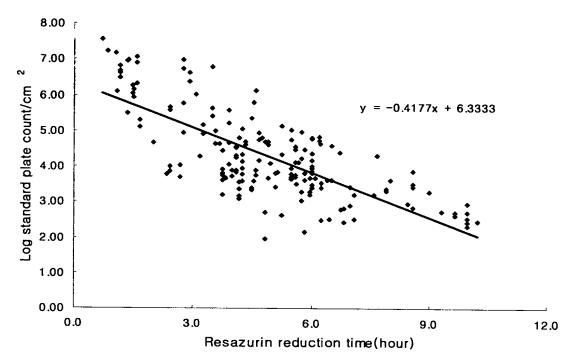


그림 26. 돼지고기에서의 SPC(30℃/72hr)와 30℃에서 배양했을 때 청색에서 보라 색까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

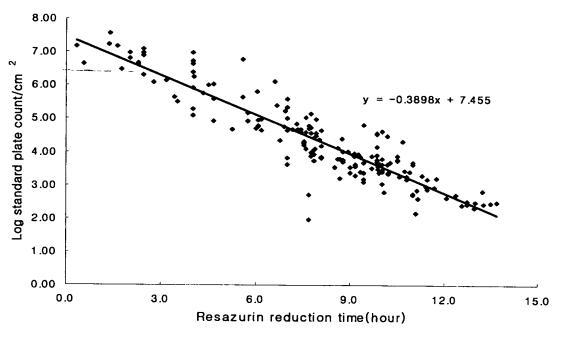


그림 27. 돼지고기에서의 SPC(30℃/72hr)와 30℃에서 배양했을 때 청색에서 분홍 색까지 도달하는 레자주린 환원시간과의 회귀직선 및 분포도

표 126은 환원색과 색차계 a 값과의 관계를 나타낸 것으로 육안으로 색조판을 이용하여 청색에서 청자색, 보라색 및 분홍색의 값이 색차계에 적용시켰을 때 청자색의 경우 색차계 a 값은 평균값이 3.30을 나타내었고, 표준편차는 0.12였으며, 95%의 신뢰한계는 3.30±0.07을 나타내었다. 보라색일 때 색차계 a 값은 평균값이 6.45을 나타내었고, 표준편차는 0.32였으며, 95%의 신뢰한계는 6.45±0.20을 나타내었다. 분홍색일 때 색차계 a 값은 평균값이 16.53을 나타내었고, 표준편차는 0.21이였으며, 95%의 신뢰한계는 16.53±0.13을 나타내었다.

표 126. 환원색과 색차계 a 값과의 관계

시료번호	청자색의 a 값	보라색의 a 값	분홍색의 a 값
1	3. 25	6, 80	16.56
2	3.32	6.13	16.59
3	3, 35	6. 25	16.33
4	3, 39	6.34	16.17
5	3, 20	6.76	16.57
6	3.13	6,06	16.57
7	3. 46	6, 75	16.30
8	3.32	6. 34	16.92
9	3.46	6.89	16.66
10	3.11	6.14	16.66
average	3. 30	6.45	16. 53
std	0.12	0.32	0. 21
	3.30±0.12	6.45±0.32	16.53±0.21

여 반

참고문헌

- A.P.H.A. 1985. Standard methods for the examination of dairy products.
 15th Ed, American Public Health Association, Washington, D. C.
- Baumgart, J., A. Poertner, and G. Lassak. 1975. A quick method of determining the total aerobic count(viable organisms) on fresh meat by means of photometrically measureable extinction changes during the resazurin test. Fleischwirtschaft. 55(7):969-973.
- 3. Baumgart J., and H. Niermann. 1974. Rapid method for microbiological control of fresh meat. Fleischwirtschaft. 54(9):1497-1500.
- Bossuyt, R. 1981. Determination of bacteriological quality of raw milk by an ATP assay technique. Milchwissenschaft. 36:237-260.
- Bossuyt, R. 1982. A 5-minute ATP platform test for judging the bacteriological quality of raw milk. Netherlands Milk and Dairy J. 36:355-364.
- 6. Bossuyt, R., and G. Waes. 1984. Enkele toepassingen van de ATP-bepaling en de impedantie meting bij het bacteriologish onderzoek van zuivelprodukten. Voedingsmiddelentechnologie. 17(24):24-29.
- 7. Britz, T. J., J. Bezuidenhout, J. M. Dreyer, and P. L. Steyn. 1980. Use of adenosine triphosphate as an indicator of the microbial counts in milk. South African J. Dairy Tech. 12:89-91.
- Cady, P., D. Hardy, S. Martins, S. W. Dufour, and S. J. Kraeger. 1978.
 Automated Impedance Measurements for Rapid Screening of Milk Microbial Content. J. Food Prot. 41(4):277-283.
- Chen, H. C., H. C. Ding, and T. C. Chang. 1993. Impedance based method for the rapid enumeration of total aerobic bacterial load of pork hamburger and its raw materials. J. the Chinese Agricultural Chemical Society 31(3):351-356.
- Dabbah, R., S. R. Tatini, and J. C. Jr. Olson. 1967. Comparison of methods for grading milk intended for manufacturing purposes. J. Milk Food Technol. 30:71-76.

- 11. Emswiler., B. S., A. W. Kotula, C. M. Chesnut, and E. P. Young. 1976.

 Dye reduction method for estimating bacterial counts in ground beef.

 Applied and Environmental Microbiology. 31(4):618-620.
- Firstenberg-Eden, R., and M. K. Tricarico. 1983. Impedimetric Determination of Total, Mesophilic and Psychrotrophic Count in Raw Milk. J. Food Sci. 48(6):1750-1754.
- 13. Gnau, S., and L. O. Luedecke. 1982. Impedance Measurements in Raw Milk as an Alternative to the Standard Plate Count. J. Food Prot. 45(1):4-7.
- 14. Ingram, M. and B. Simonsen. 1980. Meat and meat products. *In:* Microbial Ecology of Foods, Vol 2. Food commodities, pp. 333-409, Academic Press, New York.
- 15. International Dairy Federation. 1991. Methods for assessing the bacteriological quality of raw milk from the farm. Bulletin No. 256.
- 16. ISO. 1988. Meat and meat products-enumeration of microorganism-colony count technique at 30°C (reference method). ISO 2293, 2nd edition. International Organization for Standardization, Geneva, Swizerland.
- Losonczy, M., and K. Incze. 1969. Rapid method for estimation of microbiological quality of meat and meat products. Proceedings of the European Meeting of meat - research - workers; 15:118-123:(summ III) 31-32.
- 18. Maxcy, R. B., and R. J. Paul. 1987. Evaluation of the microbial quality of raw milk. J. Food Prot. 50:47-50.
- 19. Nieuwhof, F. F. J., and J. D. Hoolwerf. 1988. Suitability of Bactoscan for the estimation of the bacteriological quality of raw milk. Milchwissenschaft. 43(9):577-586.
- 20. Obanu. Z. A. 1986. Evaluation of dye reduction as a quality index for raw meat under tropical conditions. J. Food Science and Technology India. 23(1):46-48.
- 21. O'Connor, F. 1984. Rapid test methods for assessing microbiological quality of milk. The Australian J. Dairy Tech. 6:61-65.
- 22. O'Connor, F. 1979. An Impedance Method for the determination of

- Bacteriological Quality of Raw Milk. Irish J. Food Sci. Tech. 3:93-100.
- 23. O'Connor, F., and C. O'Riordan. 1991. Use of the Bactoscan 8000 in quality grading of supplier milks. Scandinavian Dairy Information. 3:57-60.
- 24. Orth. R., and M. Steigert. 1996. Practical experience in the ATP-bioluminescence measuring technique to control hygiene afteer cleaning of a meat plant. Fleischwirtschaft. 76(1) 40-41.
- 25. Pless. P., and T. Reisinger. 1995. Using the impedance splitting method for quick determination of the surface bacterial count on carcasses. Fleischwirtschaft. 75(9):1149-1153.
- 26. Steigert. M., and T. Kirschner. 1997. Practical application of the bioluminescence method. Acceptance checking, using a meat cutting factory as an example. Fleischwirtschaft. 77(5):412-413.
- 27. Suhren, G., J. Reichmuth, and W. Heeschen. 1988. Zur Messung der bakteriologischen Beschaffenheit der Rohmilch mit dem Bactoscan-Gerat; Erste Erfahrungen und Ergebnisse mit dem Bactoscan III System. Deutsche Molkerei-Zeitung. 109:1436-1446, 1551-1555.
- 28. Venkitanarayanan, K. S., C. Faustman, T. Hoagland, and B. W. Berry. 1997. Estimation of spoilage bacteria load on meat by fluorescein diacetate hydrolysis or resazurin reduction. J. Food Science. 62(3): 601-604.
- 29. Werlein, H. D. 1996. Determination of the microbial load on pork and beef carcasses by means of the bioluminescence method. Fleischwirtschaft. 76(2):179-183.
- 30. Werlein, H. D., and R. Fricke. 1996. ATP bioluminescence for rapid determination of the microbiological quality of poultry meat. Archiv fuer Gefluegelkunde. 60(5):212-217.
- 31. 강국희. 1993. 신속한 세균수 측정법 : Reflectance Colorimetery에 의한 우유의 세균수 측정. 한국유가공연구회 제 36회 춘계 유가공세미나. pl-10.
- 32. 김기성, 이찬, 김희수, 임상동, 정순희, 박민홍, 이남형, 정건섭. 1994. Lumac을 이용한 원유의 세균검사 시험. 한국식품개발연구원 보고서.

- 33. 김기성, 임상동, 김희수, 이찬, 정순희, 박민홍. 1994. 원유품질 개선 방향. 한국유가공연구회 제 38회 춘계 유가공세미나. p14-25.
- 34. 남은숙, 정충일, 강국희, 정동관. 1994. Malthus를 이용한 원유내의 충균수, 대장균군수, 저온성균수 측정. 26(6):764-769.
- 35. 임상동, 김기성, 김희수, 정순희, 강통삼. 1994°. RRT법을 응용한 원유의 신속 미생물검사법에 관한 연구. I. 색차계에 의한 세균 검사법. 한국낙농학회지,16(1):92-98.
- 36. 임상동, 김기성, 김희수, 정순희, 강통삼. 1994^b. RRT법을 응용한 원유의 신속 미생물검사법에 관한 연구. II. 환원시간에 의한 세균 검사법. 한국낙농학회지. 16(1):99-104.
- 37. 임상동, 김기성, 김희수, 정순희, 서정환, 최준표. 1995. Bactoscan을 이용한 원유의 신속세균검사법에 관한 연구. 한국낙농학회지. 17(2):123-128.
- 38. 축산물의 가공기준 및 성분규격. 1998. 농림부.
- 39. 한석현, 김창한, 김종배, 신현길, 이병배. 1985. 생물학적 발광법에 의한 우유의 세균 측정법에 관한 연구. 한국축산학회지. 27(12):782-784.