최 종 연구보고서

# 전국 농업기상 감시 및 실시간

### 작황진단체계 구축

Development of an Agrometeorological Crop Forecasting System

> 주관연구기관 경 회 대 학 교 협동연구기관 연 세 대 학 교

농림 부행정자료실 0005477 림 부 농

| 1999. | 12. | 15. |
|-------|-----|-----|
| 1///. | 14. | 1   |

.

"

"

Ι.

II.

, (A grometeorological Crop Forecasting System)

System) . / , ,

가.가,,

.

III.

1,500

,

- 2 -

, , , ,

# (real-time) , 7

, , .

, , , , .

IV.

1. 가.

, , ,

· 가 ( /

. ( , , , )

- 3 -

.

,

, 가 .

, ,

.

.

•

. Penman-Monteith ,

2.

( ) ("AFFIS 1500 ").

. ( , , ,

т

) ( , , ), ( , , ), ( , , , , ), , , , , , . .

•

•



#### SUMMARY

#### 1. Title:

Development of an Agrometeorological Crop Forecasting System Based on the Atmospheric Environment Monitoring

#### 2. Purpose and Importance:

As the realm of human activities expands and their impacts on earth environment increase, it becomes more urgent to further our understanding the changing biosphere-atmosphere interactions. In particular, it is very important to monitor and be able to predict the response of agricultural ecosystems to environmental changes because of their direct linkage with food production.

The purpose of this research is to understand and monitor the atmospheric environment of agricultural ecosystem such as rice canopy. Establishment of crop evaluation and yield forecasting system based on this understanding is the ultimate goal at the completion of this project.

#### 3. Contents and the scope of the study:

Southern part of the Korean Peninsula was divided into about 1,500 cultivation zone units(CZU) with the similar soil and climatic characteristics. Transient (weather) as well as stationary (soils, management, cultivars,..) attributes for each CZU were prepared for crop growth and development simulation. Crop models were tuned by parameterization with domestic cultivars of major food crops in Korea.

Near-real time atmospheric condition and its implication to crop status were monitored and interpreted by combining these technical components.

Its scope covers :

- Database preparation and utilization experiments for spatially interpolating the point observation data of major weather elements
- (2) Field experiments for validating crop model performance
- (3) Design and testing of the greenhouse gas flux measurement system applicable to rice paddy
- (4) Preparation of attribute data for each CZU necessary to run the crop models
- (5) Implementation of an operational crop forecasting system

#### 4. Results and suggestions:

To accomplish our goal, we have (1) digitized 1,455 CZU's in the nation and established corresponding map database, (2) developed a spatial interpolation scheme to obtain near-real time meteorological fields from the standard weather station observations, (3) optimized model parameters for simulating the growth of major cultivars of rice, winter barley, soybean, and potato crops, (4) developed a micrometeorological flux measurement system using the eddy covariance technique, (5) evaluated the developed system by participating in domestic and international collaborative field experiments, (6) combined this technology with the state of the art laser spectroscopy to monitor fluxes of greenhouse gases such as methane, carbon dioxide and nitrous oxide, (7) successfully measured the fluxes of methane, water vapor and sensible heat over various rice canopies at different stages of plant growth, (8) employed the chamber technique combined with infrared gas analyzer to measure leaf

- 7 -

photosynthesis and stomatal conductance by controlling leaf environment, (9) developed and tested empirical formulas from the field measurements to evaluate actual evapotranspiration using automated weather station data based on the Penman-Monteith combination equation, and (10) implemented an operational system for high resolution, nation-wide crop evaluation and yield forecasting.

Some products from the spatial interpolation scheme have been provided to the general public since May 1999 via AFFIS (Agricultural, Forestry and Fisheries Information Service) network. Whole system for crop evaluation and the related techniques were implemented at and transferred to Agricultural Meteorology Laboratory of National Institute of Agricultural Science and Technology. Staffs of the laboratory will continue the crop evaluation jobs as their routine task even after termination of this project.

Micrometeorological flux measurement (i.e. eddy covariance technique) has been strongly recommended by the scientific community to deal with the above problems. We have successfully developed a state of the art monitoring system for atmospheric environment of agricultural ecosystem. The system can provide information on surface energy fluxes (net radiation, soil heat flux, sensible and latent heat flux), fluxes of greenhouse gases (such as methane, carbon dioxide, nitrous oxide), plant (photosynthesis, respiration transpiration, physiology and stomatal conductance), and general meteorological variables (temperature, humidity, wind speed and direction, atmospheric stability, surface roughness, etc). Our preliminary attempts in predicting actual evapotranspiration using the information derived from this system suggest that it effectively provide information and tools for developing biospheric models to investigate changing biosphere - atmosphere interactions in the future. Establishment

- 8 -

of long-term flux monitoring programs and persistent support by the government is essential to deal with our changing environment and our concerns on its impact on agricultural ecosystems.

#### **CONTENTS**

#### Chapter 1 INTRODUCTION

- Section 1 Background
- Section 2 Objectives and Its Scope

#### Chapter 2 NEAR-REAL TIME WEATHER DATA

#### Section 1 Introduction

#### Section 2 Data and Methods

- 1. Monthly pattern of daily max/min temperature
- 2. Estimation of daily max/min temperature for grid cell
- 3. Validation of temperature estimates
- 4. Estimation of solar irradiance
- 5. Estimation of precipitation

#### Section 3 Results and Discussion

- 1. Climatological normals of daily max/min temperature
- 2. Estimates of daily max/min temperature
- 3. Validity of estimates
  - 가. Validation by AWS observations
    - . Pattern comparison by satellite remote sensing data
- 4. Estimates of solar irradiance
- 5. Validity of precipitation estimates

#### Section 4 Conclusion

#### References

#### Chapter 3 CROP EVALUATION AND YI ELD FORECAST

Section 1 Introduction

#### Section 2 Crop Models

- 1. Characteristics of major crop models
- 2. Tuning models by cultivar specific parameters
  - 가. Rice(ORYZA1)
    - . Pot at o( SI MPOT)
    - . Upl and crops
    - . Rice(CERES-Rice)

#### Section 3 Input Data

- 1. Map units for crop evaluation
- 2. Weather data
- 3. Soil data

#### Section 4 Case Study

- 1. Potato crops of Kangwon Province in 1997
- 2. Writer barley crops in 1998/1999 season
- 3. Rice crops in Korea during 1997-1999
  - 가. Growth simulation for each CZU
    - . Results from crop evaluation

#### Section 5 Concluding Remarks

References

#### Chapter 4 Monitoring of Atmospheric Environment

Section 1 Introduction

#### Section 2 Materials and Methods

1. Theoretical background

- 가. Eddy covariance technique
  - . Measurement criteria
  - 1) Instrument's frequency range
  - 2) Instrument's response time
  - 3) Sampling rate
  - 4) Averaging time
  - 5) Measurement height
  - 6) Separation distance between sensors
  - 7) Sensor alignment
  - . Three-dimensional ultrasonic anenometer
  - . Dra corrections
  - 1) Frequency response correction
  - 2) Density variation correction
  - 3) Coordinate rotation correction
  - 4) Temperature correction of sonic anemometer
  - 5) Trnasducer shadow effect correction of sonic anemometer
  - 6) Cross sensitivity correction for absorption lines of scalar sensor
- 2. Field Experiments
  - 가. International field experiment
    - . National field experiment
    - 1) Micrometeorological technique
    - 2) Chamber technique

#### Section 3 Results and Discussion

- 1. Quality control of flux data and measurement optimization
  - 가. Quality control of flux data
    - 1) Energy budget closure
    - 2) Spectrum analysis

- . Measurement optimization
- 2. At mospheric environment of rice canopy
  - 7. International collaborative experiment in Okayama, Japan
    - . Field observation in Byung-jum, Kyunggi-Do
    - . Field observation in Hari, Kangwha-Do
- 3. Coupling experiment of closed-path laser spectrometer
  - 7. Coupling of laser spectrometer and eddy covariance system
    - . Field experiments
    - . Field coupling of laser spectrometer and eddy covariance system
    - . Continuous operation of the measurement system
    - . Modification and validation of the measurement theory
- 4. Measurement and modeling of photosynthesis and stomatal conductance using chamber technique
- 5. Evaluation of evapotranspiration using P-Mcombination equation
  - 가. P-M combination equation
    - . Empirical equations for different leaf area index (LAI)
    - . Conputation of evapotranspiration from meteorological data
    - . Comparison between measured and modeled values

#### Chapter 5 TECHNOLOGY TRANSFER

#### Section 1 Introduction

#### Section 2 Technology Features

- 1. Summary of technology transfer
- 2. Procedures and specification
  - 가. Weather data manipulation step
    - . Growth simulation step based on DSSAT 3.5
    - . Interpretation and display by ArcView 3.1

#### Section 3 Operational System

- 1. Needs of stand-alone system
- 2. System design
- 3. Application to nation-wide rice crop evaluation
  - 7. Digital map features and their spatial attributes
    - . Programinstall
    - . System operation

Section 4 Results

References

#### Chapter 6 CONCLUSION

# 1 1 2 2 1 2 1. / 2. / 3. 4. 5. 3 1. / 2. / 3. 가. AWS .

- 4. 5.
- 4

```
3
1
2
1.
2.
   7├. (ORYZA1)
    . (SIMPOT)
    .
    . (CERES-Rice)
3
1.
2.
3.
4
1. 1997
2. 1998/99
3. 1997 - 1999
  가.
  .
5
4
  1
  2
   1.
      가.
```

• 1) 2) 3) 4) 5) 6) 7) . 1) 2) 3) 4) 5) 6) 2. 가. 1'. . 1' 2) 3 1. 가. 1) 2) .

2.

## 가. . .

### 3.

### 가.

- .
- . -
- .
- .

# 4.

### 5. P-M

### 가. P-M

- . (LAI) . .
- .

# 5

- 1
- 2
- 2
- 1.

# 2.

### 가.

- . DSSAT 3.5
- . ArcView 3.1



### (agrometeorological forecasting)

,



.

.

가 , , ,







가

•

,



가 . 가

| , | 가 | (NGIS) |       |   |   | 73        |
|---|---|--------|-------|---|---|-----------|
|   |   | 1: 1   | ,000, | 7 |   | 1: 5,000  |
|   |   |        | ,     | 3 |   | 1: 25,000 |
|   |   |        |       |   |   |           |
|   |   | layer  | 가     | , |   |           |
|   |   |        | (     | , | , | ,         |
| ) |   |        |       |   |   | /         |

'250m ', , 7⊦ . NGIS

GIS



, , , , , 1996).

.

,

.

(AMeDAS) 1 km (SIMRIW)

(Yajima,

가

•

.

(Agrometeorological Crop Forecasting

,

.

.

System)

|         | -     | / |      |      |       |    |   |        |
|---------|-------|---|------|------|-------|----|---|--------|
| 1       | -     |   |      | , co | mpone | nt |   | ,      |
|         |       |   |      |      |       |    |   |        |
| (1996)  | -     |   | /    |      |       |    |   |        |
|         | -     |   | (    |      | ,     |    | ) |        |
| 2       | -     |   |      |      |       |    |   |        |
|         | -     |   |      |      |       |    |   |        |
| (1997)  | -     |   |      |      |       |    |   |        |
| (1))))) | - GIS |   | ~~~~ |      | ,     | ,  |   |        |
|         | -     |   | GIS  | -    | -     |    |   |        |
| 3       | -     |   |      |      | (     | )  |   |        |
|         | -     |   |      | (    | )     |    |   |        |
| (1998)  | - 3   |   |      |      |       |    |   |        |
|         | -     |   |      |      |       | (  | , |        |
|         |       | ) |      |      |       |    |   |        |
|         | -     |   |      |      |       |    |   |        |
| 4       | -     |   |      |      | 고ト    |    |   |        |
|         | _     |   |      |      | ~1    |    |   |        |
| (1999)  | -     |   | (    |      | ,     |    |   | ,<br>) |
|         |       |   | (    | ,    |       |    |   | )      |
|         | -     |   |      |      |       |    |   |        |

GIS

2

2 1 가 . 가 가 . 가 . 가 가 • . , 가 • (Automated , Weather Station : AWS) , 가 가 (Nakai, 1990) . ( , 1989; , 1992; , 1992; , 1996; , 1997).

70











GTOPO30 DEM (Digital Elevation States Geological Service) Model) 34 39 ° 126 130° 30 arc second( 900m) . 600 , 480 288,000 2´30″( 58 4.5km) . (grid cell) -. 24 / . 가 30 . 5 (2 30 ) 590 , 470 277,300 162 . / . 2. 1 12 (淸野, 1993) . 가 1/6 1 6 12 365 , .

3 7 :  

$$T_{j} = B_{0} + \sum_{k=1}^{6} [B_{k} \cos 2\pi k(j+16)/365] + \sum_{k=1}^{6} [C_{k} \sin 2\pi k(j+16)/365]$$
8 2 :  

$$T_{j} = B_{0} + \sum_{k=1}^{6} [B_{k} \cos 2\pi k(j+15)/365] + \sum_{k=1}^{6} [C_{k} \sin 2\pi k(j+15)/365]$$
,  

$$B_{0} = (\frac{1}{12}) \sum_{i=1}^{12} (T_{m,i}), \ T_{m,i} = i ,$$

$$B_{k} = (\frac{1}{12}) \sum_{i=1}^{12} (T_{m,1}) \cos (2\pi i k/12) ,$$

$$C_{k} = (\frac{1}{12}) \sum_{i=1}^{12} (T_{m,1}) \sin (2\pi i k/12) .$$
277,300  
/ .

1997

,

277,300

66

7: (Inverse Distance Weighting)

/

$$(1).$$

$$d_{0} = \sum_{j=1}^{n} \left[ (T_{j} - A_{j})(1/R_{j}) \right] / \sum_{j=1}^{n} (1/R_{j})$$

$$(1)$$

$$d_{0} =$$

$$(1)$$

|         | , $A_j$       | = j   |      |     |         | ,   |
|---------|---------------|-------|------|-----|---------|-----|
| $R_j =$ |               | j     |      |     |         | (1) |
|         |               |       | /    |     | ( 2).   |     |
|         | $T_0 = d_0 +$ | $A_0$ |      |     |         | (2) |
| ,       | $T_0 =$       |       |      | ,   | $A_0 =$ |     |
|         |               |       |      | /   |         | 365 |
| (1 1    | 12 31         | )     |      |     |         |     |
| 3.      |               |       |      |     |         |     |
| 가. AWS  | 3             |       |      |     |         |     |
|         |               |       | 1997 | 380 | AWS     |     |
|         |               |       |      |     |         | AWS |
| AWS     | 가             |       |      |     |         |     |
|         | 1             | l : 1 |      |     |         | AWS |
|         |               |       |      | 300 |         | /   |

(3) RMSE(Root Mean

Squared Error)

.

RMSE = 
$$\left[\sum (Y_e - Y_o)^2 / N\right]^{0.5}$$
 (3)

.

$$, \quad Y_e = \qquad \qquad Y_o = \quad AWS$$

-- / - , ,

.

(NOAA/AVHRR) ,

, 가 .

(i, j)  $(\theta, \phi)$  AVHRR

. (C) G I (N) . (N) T (K) Planck

, Price(1983) . default polar sterographic map projection .

. 1997 3 24 , 7 22 , 7 23

. .

### , 98

### NOAA/AVHRR

t -

.

$$(4).$$

$$Z = \frac{x_i - \overline{x}}{s}$$
(4)

, 
$$Z=$$
 ,  $x_i=i$  ,  $\overline{x}=$  ,  
s= .

$$\overline{D}$$
 (5) .

$$t = \frac{1}{s_{\overline{D}}}$$
(5)  
,  $\overline{D} =$ 

$$s_{\overline{D}} =$$
 .

4.



(1987-1996), 7F

(geographical), (topographical), (orographical)

.

1km × 1km

•



.

가

3

1. /

/ 1 . 8 , 2 3 . (R<sup>2</sup>) 0.68 0.86

. (ELEV) . フト ,

(OPNP11)7 4 6 10

(LDR) (CODI) 6 3

· ア・ ア・ (LDR) 9 , (OPNP11)ア・6 2 4 ア・ 0.66 0.90 ア・

. 1 3

0.8 . / 30 ( 900m) 590 , 470

.

.

277,300

.

2. /

12 12 365 . (河野 , 1984)

30 0.2 0.3 / 730

· 3 ( 2.7km), 9

, 197 , 157

)

1.

| Month     | Monthly Regression Equations of Maximum Temperature                     | $\mathbf{R}^2$ |
|-----------|-------------------------------------------------------------------------|----------------|
| January   | T max 1 = 10.3316 - 0.0081 * ELEV - 0.0187 * CODI - 0.0529 * OPNP 11    | 0.71           |
| February  | T m ax 2 = 11.9416-0.0086*ELEV-0.0521*OPNP11-0.0058*CODI                | 0.71           |
| March     | T max 3 = 16.1665 - 0.0076 * ELEV - 0.0443 * OPNP 11                    | 0.67           |
| April     | T max4 = 17.8189 - 0.0057 * ELEV + 0.0472 * LDR4                        | 0.80           |
| May       | T max 5 = 21.6286-0.0054*ELEV+0.0544*LDR5-0.0319*OPNP11                 | 0.86           |
| June      | $T \max 6 = 22.4424 - 0.0060 * ELEV + 0.0675 * LDR5 - 0.0200 * OPEP 12$ | 0.73           |
| July      | T amx7 = 27.6326-0.0063*ELEV+0.0511*LDR3-0.0307*OPNP11                  | 0.79           |
| August    | T max 8 = 30.5850-0.0078*ELEV+0.0418*LDR3-0.0419*OPNP11                 | 0.78           |
| September | Tmax9 = 29.7881-0.0038*ELEV-0.0864*OPNM15-0.0392*OPNP11                 | 0.74           |
| October   | T max 10 = 26.2322 - 0.0078 * ELEV - 0.0519 * OPNP 11                   | 0.76           |
| November  | T max 11 = 19.3978-0.0080*ELEV-0.0126*CODI-0.0527*OPNP11                | 0.70           |
| December  | T amx 12 = 13.1341 - 0.0101 * ELEV - 0.0579 * OPNP 11                   | 0.68           |
| Month     | Monthly Regression Equations of Minimum Temperature                     | $\mathbf{R}^2$ |
| January   | $T \min 1 = 1.8797 - 0.0103 * ELEV - 0.0800 * LDR5$                     | 0.66           |
| February  | Tmin2 = 9.6402-0.0126*AVAL5-0.0527*LDR5-0.0569*OPNP11                   | 0.82           |
|           | - 0.0260*OPWP 13                                                        |                |
| March     | Tmin3 = 4.7387-0.0074*ELEV-0.0399*LDR5-0.0120*CODI                      | 0.79           |
| April     | Tmin4 = 15.6395-0.0085*AVAL5-0.0365*LDR5-0.0567*OPNP11                  | 0.85           |
| May       | Tmin5 = 16.0119-0.0089*AVAL5-0.0226*LDR5-0.0361*OPP15                   | 0.82           |
|           | +0.0146*OPSP15                                                          |                |
| June      | Tmin6 = 20.0629-0.0077*ELEV-0.0356*OPNP11+0.0108*OPWM05                 | 0.89           |
| July      | T min7 = 24.9643-0.0072*ELEV-0.0385*OPNP11+0.0105*OPWM05                | 0.90           |
| August    | T min8 = 27.6238-0.0087*AVAL5-0.0568*OPNP11+0.0051*OPWM05               | 0.88           |
| September | Tmin9 = 25.6709-0.0100*AVAL5-0.0317*LDR5-0.0634*OPNP11                  | 0.86           |
| October   | T min 10 = 16.6362-0.0108*AVAL5-0.0671*LDR5-0.0108*OPNP15               | 0.80           |
| November  | T min11 = 9.5503-0.0094*AVAL5-0.0700*LDR5                               | 0.85           |
| December  | $T \min 12 = 4.0516 - 0.0101 * AVAL5 - 0.0717 * LDR5$                   | 0.82           |

/

<sup>\*</sup>Independelnt variables used in regression equations : ELEV : Elevation of a grid cell (m). CODI : Linear distance to the nearest coast from a grid cell (km). AVAL5 : Average elevation of the 11x11 grid cells with the base cell at the center. LDR3, LDR4, LDR5 : Ratio of the grid cells falling on land (above 0 elevation) to the total cells of (2R+1) square grid; R is 3, 4, and 5 cell radius. OPXPhR : Ratio of the X-directional (2R+1) cells whose elevations are not higher than the center cell by h x 100m; X is N(north), S(south), E(east) and W(west), respectively. OPXMhR : Ratio of the X-directional (2R+1) cells whose elevations are lower than the center cell by h x 100 m. OPP15 : Ratio of (2R+1)<sup>2</sup>-1 cells constituting (2R+1) grids on one side except the center cell, whose elevations are not higher than the center cell by 100m. In this case, R is 5 so total 120 cells except the center one are used for calculation.

(

|                | /        | (1) (2)           |
|----------------|----------|-------------------|
|                | . 2      | 10                |
| 1997 9         | 8        |                   |
| ,              | 10       | 가 가 4             |
|                |          | 9 8               |
|                |          |                   |
| 가              |          |                   |
| 30km           | 4 6      | 가                 |
| (淸野,           | 1993). 2 | 10                |
|                | 4        | $(R_i)$ 1         |
| (X=141, Y=176) | 30km     | 가                 |
|                |          | フト 70             |
|                |          |                   |
| 4              |          | 가 .               |
| 1997 9 8       | (T i)    | (A <sub>i</sub> ) |

 10
 -1.

 3
 1.5

 10
 1997
 9
 8
 13.9
 20.1
 .
(September 8)

| Coor | din at |            |       |                       |                    |            |            | ١       | /ariab     | les <sup>*</sup> |                |                       |                |      |       |      |
|------|--------|------------|-------|-----------------------|--------------------|------------|------------|---------|------------|------------------|----------------|-----------------------|----------------|------|-------|------|
|      |        | Ai ( )     |       |                       | T <sub>i</sub> ( ) |            |            | Ri (km) |            |                  | A <sub>0</sub> | D <sub>0</sub>        | Τ.             |      |       |      |
| х    | Ŷ      | <b>A</b> 1 | $A_2$ | <b>A</b> <sub>3</sub> | $A_4$              | <b>T</b> 1 | <b>T</b> 2 | Т 3     | <b>T</b> 4 | <b>R</b> 1       | $\mathbb{R}_2$ | <b>R</b> <sub>3</sub> | $\mathbb{R}_4$ | ( )  | ()    | ()   |
|      |        |            |       |                       |                    |            |            |         |            |                  |                |                       |                |      |       |      |
| 134  | 122    | 18.4       | 17.9  | 18.9                  | 17.8               | 18.3       | 17.0       | 14.6    | 15.5       | 3.0              | 16.0           | 23.2                  | 30.6           | 16.1 | - 0.7 | 15.4 |
| 37   | 112    | 17.7       | 17.6  | 18.1                  | 18.0               | 15.3       | 19.4       | 18.5    | 16.8       | 3.0              | 12.7           | 17.5                  | 21.0           | 18.6 | - 1.3 | 17.3 |
| 26   | 36     | 17.4       | 17.2  | 18.3                  | 13.9               | 18.2       | 19.6       | 20.7    | 14.2       | 17.9             | 24.7           | 25.0                  | 27.1           | 18.7 | 1.4   | 20.1 |
| 14   | 82     | 17.7       | 18.3  | 16.9                  | 17.7               | 16.3       | 20.7       | 16.3    | 18.0       | 8.6              | 23.7           | 26.0                  | 28.2           | 18.0 | - 0.3 | 17.7 |
| 73   | 34     | 16.8       | 13.9  | 18.3                  | 16.8               | 15.8       | 14.2       | 16.6    | 14.7       | 10.8             | 20.0           | 28.3                  | 30.0           | 14.9 | - 1.0 | 13.9 |
| 25   | 45     | 17.4       | 18.3  | 17.2                  | 17.7               | 18.2       | 20.7       | 19.6    | 18.0       | 9.9              | 16.0           | 18.4                  | 27.8           | 18.4 | 1.5   | 19.9 |
| 20   | 115    | 17.6       | 18.0  | 17.7                  | 17.7               | 19.4       | 16.8       | 15.3    | 16.3       | 10.0             | 17.9           | 18.0                  | 26.0           | 19.0 | - 0.3 | 19.6 |
| 57   | 50     | 16.8       | 16.8  | 13.9                  | 17.2               | 14.7       | 15.8       | 14.2    | 19.6       | 11.4             | 13.4           | 16.5                  | 19.3           | 16.9 | - 0.4 | 16.5 |
| 141  | 176    | 19.9       | 17.9  | 20.7                  | 17.8               | 19.9       | 17.0       | 20.4    | 15.5       | 38.3             | 38.8           | 44.4                  | 46.8           | 14.7 | - 0.8 | 13.9 |
| 22   | 156    | 17.9       | 17.3  | 17.2                  | 18.0               | 20.8       | 19.2       | 16.6    | 16.8       | 13.0             | 13.3           | 22.0                  | 25.7           | 13.9 | 1.2   | 15.1 |
|      |        |            |       |                       |                    |            |            |         |            |                  |                |                       |                |      |       |      |

 ${}^{*}\!A_{i}$  : Calculated minimum temperature of station i on September 8 in normal year.

T: : Observed minimum temperature of station i on September 8 in 1997.

 $R_{i}$  : Distance to the station  $i \mbox{ from grid cell}(x, \mbox{ }y).$ 

10

A<sub>0</sub> : Calculated minimum temperature of grid cell on September 8 in normal year.

 $\mathsf{D}_{0}$  : Deviation between the normal estimate and the observed minimum temperature of grid cell.

 $T_{\,\scriptscriptstyle 0}$  : Estimated minimum temperature of grid cell on September 8 in 1997.





가. AWS



,

3. /

| Date        | Variables  | Number of AWS | RMSE() |
|-------------|------------|---------------|--------|
| March 24    | Max. Temp. | 309           | 1.9    |
| March 24    | Min. Temp. | 305           | 1.8    |
| July 22     | Max. Temp. | 301           | 2.2    |
| July 23     | Min. Temp. | 300           | 1.5    |
| September 8 | Max. Temp. | 292           | 2.5    |
| September 8 | Min. Temp. | 298           | 1.7    |

AWS 가 . 가 가 1.5 2.5 가 가 . 가 가 . 가 가 가 . 4 20 AWS 1997 3 24 AWS • - 3.0 AWS +2.5- 1.8 ° +2.2 ° • RMSE(3) 1.9 , 3 24 1.8 20 7 22 . , 7 23 , 9 8 3 24 淸 • 野(1993) 가

.

가

#### 4. 1997 3 24 /

| 20 |
|----|
|----|

| AWS  | Latitude | Longitude | Max. 7    | Гemp.( | )      | Min. T    | emp.( | )     |
|------|----------|-----------|-----------|--------|--------|-----------|-------|-------|
| Num. | (degree) | (degree)  | Estimates | AWS    | Diff.* | Estimates | AWS   | Diff  |
| 505  | 37.82    | 127.35    | 11.5      | 12.1   | - 0.6  | - 6.7     | - 8.4 | +1.7  |
| 531  | 37.87    | 127.55    | 11.7      | 13.7   | - 2.0  | - 7.6     | -7.6  | +0.0  |
| 538  | 38.15    | 127.10    | 12.7      | 13.2   | - 0.5  | - 6.0     | - 7.9 | +1.9  |
| 539  | 37.90    | 127.07    | 11.3      | 12.3   | - 1.0  | -7.2      | -6.1  | - 1.2 |
| 545  | 37.30    | 126.80    | 9.4       | 10.2   | - 0.8  | - 5.0     | - 5.0 | +0.0  |
| 548  | 37.30    | 127.62    | 12.1      | 14.4   | - 2.3  | - 6.0     | -8.2  | +2.2  |
| 554  | 38.22    | 128.43    | 6.1       | 5.7    | +0.4   | - 7.8     | - 6.7 | - 1.1 |
| 569  | 37.60    | 127.13    | 11.5      | 12.1   | - 0.6  | - 3.1     | - 3.4 | +0.3  |
| 602  | 36.85    | 127.45    | 12.7      | 12.4   | +0.3   | - 5.3     | -4.2  | - 1.1 |
| 614  | 36.05    | 126.70    | 11.5      | 10.0   | +1.5   | - 2.4     | - 3.8 | +1.4  |
| 619  | 36.93    | 127.68    | 11.9      | 12.2   | - 0.3  | -7.2      | -7.0  | - 0.2 |
| 623  | 36.78    | 127.58    | 13.2      | 13.3   | -0.1   | - 5.3     | - 5.4 | +0.1  |
| 728  | 35.48    | 126.70    | 12.7      | 12.9   | - 0.2  | - 4.3     | - 3.3 | - 1.0 |
| 732  | 34.77    | 127.08    | 15.0      | 13.0   | +2.0   | - 4.6     | -5.1  | +0.5  |
| 741  | 35.05    | 126.98    | 10.8      | 13.8   | - 3.0  | - 5.0     | -4.2  | - 0.8 |
| 788  | 35.13    | 127.00    | 13.0      | 12.1   | +0.9   | - 5.0     | - 3.7 | - 1.3 |
| 802  | 36.42    | 128.17    | 11.5      | 14.1   | - 2.6  | - 5.3     | - 3.5 | - 1.8 |
| 811  | 35.56    | 129.11    | 16.5      | 14.0   | +2.5   | - 6.9     | -7.3  | +0.4  |
| 920  | 35.30    | 128.40    | 17.0      | 17.0   | +0.0   | - 5.0     | -4.4  | - 0.6 |
| 916  | 35.33    | 129.93    | 15.3      | 13.8   | +1.5   | - 4.6     | -4.5  | - 0.1 |

 $^{\ast} \text{Difference}$  between topoclimatological estimates and observations from AWS.

19,060

5 . 3 24

.

,

NOAA

3 24



# NOAA

|             |                | Topoclim | atological | NOAA Remote Sensing |      |  |
|-------------|----------------|----------|------------|---------------------|------|--|
| Date        | Classification | Estin    | nates      | Da                  | ta   |  |
|             |                | Mean     | S.D.       | Mean                | S.D. |  |
| March 24    | Max. Temp.     | 11.7     | 2.1        | 14.0                | 4.2  |  |
| March 24    | Min. Temp.     | - 5.1    | 3.2        | - 5.8               | 4.7  |  |
| July 22     | Max. Temp.     | 32.4     | 2.2        | 25.7                | 7.2  |  |
| July 23     | Min. Temp.     | 22.5     | 1.6        | 20.0                | 5.2  |  |
| September 8 | Max. Temp.     | 29.0     | 3.1        | 22.7                | 2.8  |  |
| September 8 | Min. Temp.     | 15.4     | 2.7        | 8.0                 | 2.6  |  |

2

1997 9 8

.

3



| 6 |   |  |
|---|---|--|
| υ | ٠ |  |

t-test

| Date        | Classification | $\overline{D}$ | S <sub>D</sub> | t                     |
|-------------|----------------|----------------|----------------|-----------------------|
| March 24    | Max. Temp.     | 0.0136         | 1.17           | 1.60 <sup>N S</sup>   |
| March 24    | Min. Temp.     | 0.0097         | 0.90           | 1.48 <sup>N S</sup>   |
| July 22     | Max. Temp.     | - 0.0036       | 1.08           | - 0.46 <sup>N S</sup> |
| July 23     | Min. Temp.     | - 0.0125       | 1.30           | - 1.32 <sup>N S</sup> |
| September 8 | Max. Temp.     | 0.0032         | 1.10           | 0.39 <sup>N S</sup>   |
| September 8 | Min. Temp.     | - 0.0035       | 0.93           | - 0.51 <sup>N S</sup> |

<sup>NS</sup> Non-significant.

16

,

7 · . . (AVG)가 6

 (ELDI)
 (OPEP25)가
 4
 (7).

 0.55
 0.82
 ,

 가
 .

7.

|    |                                                            | $\mathbf{R}^2$ |
|----|------------------------------------------------------------|----------------|
| 1  | Sol1 = 276.4625+0.1986*OPEM03-0.5548*OPNP11+0.3785*OPSP11  | 0.64           |
| 2  | Sol2 = 281.9248+0.0703*ELDI5+0.1894*OPEM03+0.1276*OPNM02   | 0.66           |
| 3  | Sol3 = 488.6771+0.8006*AVG15-0.6787*OPEP25                 | 0.60           |
| 4  | Sol4 = 555.4643+0.9501*AVG25-0.6198*OPEP25                 | 0.56           |
| 5  | Sol5 = 666.6390 - 0.9152 * OPEP 25 + 0.3320 * AVG21        | 0.55           |
| 6  | Sol6 = 586.4387+0.1073*ELDI5-0.9614*OPEP25+0.4770*OPNM02   | 0.73           |
| 7  | Sol7 = 472.4694+0.1052*ELDI5-0.3711*OPEP15+0.4132*OPNM02   | 0.68           |
| 8  | Sol8 = 512.6497+0.8805*AVG15+0.0618*ELDI5+0.3890*OPNM02    | 0.66           |
|    | - 0.6360*OPSP23                                            |                |
| 9  | Sol9 = 468.4474+1.0141*AVG15-0.5148*OPEP24-0.2013*OPWP15   | 0.61           |
| 10 | Sol10 = 354.8081+0.9913*AVG15+0.2284*OPNM02+0.2001*OPSM02  | 0.65           |
| 11 | Sol11 = 282.0326+0.8668*AVG15-0.4889*LDR5-0.1933*OPSM02    | 0.80           |
| 12 | Sol12 = 212.0413+0.2193*OPSM02+0.5794*OPSP11-0.5010*OPWP15 | 0.82           |

AWS 가

가

.

.

(Diak et al., 1998),

.

가

GMS

| AW | / S |
|----|-----|
|----|-----|

| T M (T elemetry ) | 가 | . 1998 3 | 27  |     |     |      |
|-------------------|---|----------|-----|-----|-----|------|
|                   |   | 가        |     |     |     |      |
|                   |   |          |     | AWS |     |      |
| 3                 |   | 10m r    | n   |     |     |      |
|                   |   |          |     |     | 342 | AWS  |
|                   |   |          |     | 1:1 | ,   | RMSE |
| 1.09              |   | 1        | 10% |     |     |      |















AWS



가 가 • 가 가 AWS RMSE가 10% . . , . . 1992. (3). . 379pp. . 1993. . 306 p. . 1992. -, 81(1):40-52. . 1996. 가 , 85(3):462-471. . . 1999. / , 15(1):9-20. . 1989. . I. , 34(3):261-269. , . 1997. , , 가 33(3):409-427. 河野富香,森康明,房尾一宏,上原由子. 1984. 廣島縣農試報告 48:113-122.

清野 豁. 1993. AMeDAS 資料の Mesh化. 農業氣象 48(4):379-383.

Daly, C., R. P. Neilson, and D. L. Phillips. 1994. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. *Journal of Applied Meteorology* 33(2):140-158.

Nakai, K. 1990. Japanese system of the meteorological information service to user communities including the education and training. In: A. Price-Budgen (ed.), Using Meteorological Information and Products. Ellis Horwood Ltd., U.K., 259-274.

Price, J. C. 1983. Estimating surface temperatures from satellite thermal infrared data: A simple formation for the atmospheric effect, Remote Sens. Environ., 13:353-361.



30

•

,

(Loomis and Williams, 1963;

de Wit, 1965; Duncan et al., 1967).

가 가

(Sinclair and Seligman, 1996).

•

(genetic coefficients)7

,



Carter, 1988). Yoshino(1988) SIMRIW (SImulation Model for RIce-Weather relations)

GISS (Goddard Institute for Space Studies)GCM (generalcirculation model)9%71. Oh (1992)RICEMOD-30019511985

Arkansas Texas

,

MACROS (Modules of an Annual CROp . Simulation) , 1966 1985 20 4 , (收量變異) ( , 1990), (1991) 37% . 4 , (1990) MACROS

16%

7CERES (Crop-Environment REsource Synthesis)-rice<br/>IBSNAT (International Benchmark Site Network for<br/>Agrotechnology Transfer)..(growth)...

7(Singh, 1995;Godwin et al., 1992). Lal et al.(1998)CERES-riceCERES-wheat

 가
 28%, 15%
 가

 ,
 가
 .

 가
 .
 (1995)

,

. 가

. 1 , 5 9 , , ,

,

### ARC/INFO, MGE GIS .

. 2

(Cultivation Zone Unit; CZU) , , , 가 가 1 ORYZA1

#### CERES - Rice

가 SIMPOT . . 1,455 3 (CZU) ( , ) , . 가 가 /

CZU

. , ,

, ) ,

3 , . 7<del>1</del> , 1,455

, . 2

### 1.

-

,

CERES (Crop - Environment REsource Synthesis) , , , grain cereals ( ) , , . , , , , ,

. CERES-rice

7} (Singh, 1995; Godwin et al., 1992).

| CROPGRO           |   | ( ,       | , | ) |     |
|-------------------|---|-----------|---|---|-----|
| ,                 |   | CERES     |   |   |     |
|                   |   | CERES     |   |   | 가 . |
|                   | , | ,         | - | , | - , |
|                   | , |           | , | , | ,   |
| , .               |   | ,         |   |   |     |
|                   | ( | 10 group) |   |   | , , |
|                   |   |           |   |   |     |
| SUBST OR - potato |   | CERES     |   |   |     |

IBSNAT (International Benchmark Site Network for

.

Agrotechnology Transfer; ) 10 DSSAT (Decision Support System for Agrotechnology Transfer)

가

Microsoft DOS 5/6 Microsoft Fortran Compiler 5.1 , FORTRAN77 PC VAX SUN

. ,

.

. DSSAT v. 3.1 shell

, ,

ORYZA1 SARP(Simulation and Systems Analysis for Production) IRRI (International Rice Research Institute)

1993

WageningenmodelINTERCOM (Kropff & Van Laar, 1993),SUCROS (Pitters et al., 1989; Van Laar et al., 1992),MACROS moduleL1D (Penning de vries et al., 1989). FORTRAN

, subroutine Gaussian integration

2.

가. (ORYZA1)

.

.

 가
 가

 parameter()
 .
 가
 ORYZA1

.

가

• 0 1 2 가 가 가 • 가 (base temperature, Tb) (maximum available 가 가 temperature, Tma) . (effective temperature, Te) . Te, ,  $Te = {(Tmax - Tb) + (Tmin - Tb)}/2$ . Tmax , Tmin Tmax가 Tma Tmax Tma, Tmin - Tb가 0 0 . 가 1. Drc 가 (Dr) Dr = Te \* Drc

.

),,,,,

, 5 25 35 5 26 , 6 5 , 6 15 , 6 25 4 . - - 7 11-7-8 kg/10a .

, , , , ,

#### FORTRAN

(kg/ha) 1.

.

1. ORYZA1 3 3

(Unit: kg/ha)

| Drovince                        | 19                         | 995                        | 19                         | 96                         | 1997                       |                            |  |
|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|
| riovince                        | Si mul at ed               | Reported                   | Si mul at ed               | Reported                   | Si mıl at ed               | Reported                   |  |
| Kyonggi<br>Chungnam<br>Chungbuk | 7, 860<br>8, 397<br>8, 066 | 6, 500<br>7, 360<br>6, 012 | 8, 447<br>8, 830<br>8, 579 | 6, 750<br>7, 650<br>6, 316 | 8, 241<br>8, 772<br>8, 759 | 6, 700<br>7, 500<br>6, 820 |  |

( , , , ) . ORYZAI .

가 가. 가 . 가 .

フト フト

.

, 2 . ブ

. 가

.

가 가

| 5 | 26 | 25 | 8 | 5      | 96  |
|---|----|----|---|--------|-----|
|   |    | 35 | 8 | 4      | 105 |
| 6 | 5  | 25 | 8 | 8      | 89  |
|   |    | 35 | 8 | 7      | 98  |
| 6 | 15 | 25 | 8 | 20     | 91  |
|   |    | 35 | 8 | 20     | 101 |
| 6 | 25 | 25 | 8 | 27     | 88  |
|   |    | 35 | 8 | 27     | 98  |
| 5 | 26 | 25 |   | 13     | 104 |
|   |    | 35 | 8 | 13     | 114 |
| 6 | 5  | 25 | 8 | 21     | 102 |
|   |    | 35 | 8 | 20     | 111 |
| 6 | 15 | 25 | 8 | 29     | 100 |
|   |    | 35 | 8 | 28     | 109 |
| 6 | 25 | 25 | 9 | 1      | 93  |
|   |    | 35 | 9 | 1      | 103 |
| 5 | 26 | 25 |   | 12     | 103 |
|   |    | 35 | 8 | 12     | 113 |
| 6 | 5  | 25 | 8 | 19     | 100 |
|   |    | 35 | 8 | 19     | 110 |
| 6 | 15 | 25 | 8 | 28     | 99  |
|   |    | 35 | 8 | 27     | 108 |
| 6 | 25 | 25 | 8 | 30     | 91  |
|   |    | 35 | 8 | 30     | 101 |
|   | 26 |    |   | 23     |     |
| 5 | 20 | 35 | 8 | 23     | 124 |
| 6 | 5  | 25 | 8 | 28     | 109 |
| Ŭ | U  | 35 | 8 | 27     | 118 |
| 6 | 15 | 25 | 9 | 3      | 105 |
| Ŭ |    | 35 | 9 | 3      | 115 |
| 6 | 25 | 25 | 9 | 4      | 96  |
|   |    | 35 | 9 | 4      | 106 |
|   | 26 |    |   | <br>25 |     |
| - |    | 35 | 8 | 24     | 125 |
| 6 | 5  | 25 | 8 | 29     | 110 |
| - | -  | 35 | 8 | 28     | 119 |
| 6 | 15 | 25 | 9 | 4      | 106 |
|   |    | 35 | 9 | 4      | 116 |
| 6 | 25 | 25 | 9 | 7      | 99  |
| 0 | -  | 35 | 9 | 6      | 108 |
|   |    |    |   |        |     |

| (SIMPOT) | ) |
|----------|---|
|----------|---|

•

| 高嶺地農業試驗場    | 1973 - 1996 | 生産力 | 生産力豫備試驗        | 地    |
|-------------|-------------|-----|----------------|------|
| 域適應試驗    大  | 關嶺          |     | SIMPOT         |      |
|             |             |     | 男爵, 秀美         | [, 早 |
| 豊           | ,           |     | 가              |      |
| 2           | 取扱          | ,   | 가              |      |
| 가 枯死        |             |     |                |      |
| フト          |             |     | 出芽所            | 要日   |
| (Dn) 10cm   |             |     | 出芽期 豫測         | 式    |
| 推定          | •           |     |                |      |
| Dn Tsab - T | san O       |     |                |      |
| T sab 出芽    |             | ( ) | ), Tsan        | n    |
| (           | ) . 氣象資料    | 實調  | <b>漁圃場</b> 1km |      |
|             |             |     | , , ,          |      |
| ,           |             |     |                |      |
|             |             |     |                |      |

 $5 \qquad 6 \qquad 3$ (3).  $75 \text{ cm}, \qquad 25 \text{ cm} \qquad , \qquad \text{N} - P_2 O_5 - P$ 

, 3

100

.

2-3 80

3.

,

| Locat ion     | Plant ing da      | te cult ivars          |                  |
|---------------|-------------------|------------------------|------------------|
| Kangneung     | Matr.20, Matr.31, | Apr.10 Superior, Jopun | g                |
| Taegwallyeong | Apr.30, May 6,    | May 16 Superior, Jopun | g, Irish Cobbler |
|               | SIMPOT            |                        | 6                |
| G2            |                   | 가 , G3                 | , PD             |
|               |                   | , P2                   | ,                |
| TC            | 가                 |                        |                  |
|               | (simulation)      |                        |                  |
| ,             | ,                 | . ,                    | ,                |
|               | 가                 | 가                      | 28-35 ,          |
| 25-32         |                   |                        |                  |
| 가             | 가                 | ( 4).                  |                  |
|               | 가                 | 15-25                  |                  |
| 15 - 17       |                   |                        |                  |

(1997 )

| Locatio          | on Cultiva       | ar Planti<br>date           | ng Date of<br>emer.        | f % of<br>emer.      | Period<br>of emer | Date of<br>.formatio             | t uber<br>on (days   | Harvest<br>) date             |
|------------------|------------------|-----------------------------|----------------------------|----------------------|-------------------|----------------------------------|----------------------|-------------------------------|
| Kang-<br>neung   | Superior         | Mar.20<br>Mar.31<br>Apr.10  | Apr.25<br>May 2<br>May 8   | 98.8<br>96.8<br>96.8 | 35<br>32<br>28    | May 16<br>May 20<br>May 23       | (21)<br>(18)<br>(15) | JUL. 18<br>JUL. 18<br>JUL. 18 |
|                  | Jopung           | Mar.20<br>Mar.31<br>Apr.10  | Apr.23<br>May 1<br>May 8   | 97.2<br>95.8<br>98.8 | 33<br>31<br>28    | May 18<br>May 21<br>May 23       | (25)<br>(20)<br>(15) | JUL. 18<br>JUL. 18<br>JUL. 18 |
| Taegwa<br>lyeong | Irish<br>Cobbler | Apr.30<br>May 6<br>May 16   | Jun. 2<br>Jun. 7<br>Jun.11 | 95.0<br>97.5<br>98.8 | 32<br>31<br>25    | Jun . 17<br>Jun . 23<br>Jun . 26 | (15)<br>(16)<br>(15) | Sep.3<br>Sep.3<br>Sep.3       |
|                  | Super i or       | Apr.30<br>Maty 6<br>Maty 16 | May 30<br>Jun. 5<br>Jun.11 | 98.8<br>97.5<br>98.8 | 30<br>29<br>25    | Jun . 14<br>Jun . 22<br>Jun . 28 | (15)<br>(17)<br>(17) | Sep.3<br>Sep.3<br>Sep.3       |
|                  | Jopung           | Apr.30<br>Maty 6<br>Maty 16 | Jun. 1<br>Jun. 6<br>Jun.11 | 97.5<br>95.2<br>96.8 | 31<br>30<br>25    | Jun . 16<br>Jun . 20<br>Jun . 26 | (15)<br>(16)<br>(15) | Sep.3<br>Sep.3<br>Sep.3       |

가

.

,

10%

가

가

( 5).

( 6).

4. ,

(unit: g/plant)

| <u> </u>          | Dland                       | •                                                                    | Date of investigation |                   |                         |                      |                         |                      |
|-------------------|-----------------------------|----------------------------------------------------------------------|-----------------------|-------------------|-------------------------|----------------------|-------------------------|----------------------|
| Cult ivar         | dat e                       | June 13                                                              | June 27               |                   | July                    | July 9               |                         | 3                    |
|                   | F                           | resh Dry                                                             | Fresh                 | Dry               | Fresh                   | Dry                  | Fresh                   | Dry                  |
| Ir ish<br>Cobbler | Apr.30<br>Maty 6<br>Maty 16 | 30.4 3.7<br>21.3 2.3<br>7.6 1.0                                      | 82.7<br>59.8<br>68.8  | 9.4<br>5.3<br>6.7 | 145.1<br>137.3<br>119.5 | 12.0<br>10.8<br>10.6 | 236.3<br>179.3<br>130.8 | 25.4<br>18.7<br>15.1 |
| Superior          | Apr.30<br>Maty 6<br>Maty 16 | 26.5 3.4<br>20.5 2.4<br>13.9 0.6                                     | 72.6<br>72.3<br>34.0  | 7.6<br>6.6<br>3.0 | 154.7<br>138.1<br>126.5 | 14.7<br>12.1<br>14.2 | 253.5<br>187.5<br>184.3 | 26.1<br>19.2<br>17.1 |
| Jopung            | Apr.30<br>Maty 6<br>Maty 16 | $\begin{array}{c} 40.4 & 5.0 \\ 26.4 & 3.1 \\ 9.9 & 1.3 \end{array}$ | 82.7<br>59.8<br>67.3  | 9.0<br>5.9<br>6.6 | 151.7<br>159.0<br>120.2 | 13.4<br>14.9<br>11.0 | 177.3<br>169.5<br>153.0 | 17.8<br>15.9<br>16.1 |

6.

(unit: g/plant)

|                   |                             |                     |                     |                      | t igat i          | gat ion                 |                      |                                        |
|-------------------|-----------------------------|---------------------|---------------------|----------------------|-------------------|-------------------------|----------------------|----------------------------------------|
| Cult ivar         | Plant<br>dat e              | June 13             |                     | June                 | June 27           |                         | , 9                  | July 23                                |
|                   |                             | Fresh               | Dry                 | Fresh                | Dry               | Fresh                   | Dry                  | Fresh Dry                              |
| Ir ish<br>Cobbler | Apr.30<br>Maty 6<br>Maty 16 | 25.3<br>15.5<br>5.6 | 1.9<br>1.0<br>0.4   | 82.7<br>63.7<br>85.3 | 5.3<br>3.8<br>4.2 | 210.4<br>190.2<br>215.1 | 9.0<br>7.8<br>8.8    | 288.8 24.1<br>252.2 22.8<br>241.7 22.0 |
| Superior          | Apr.30<br>Maty 6<br>Maty 16 | 23.4<br>10.7<br>8.1 | 5.4<br>0.9<br>0.2   | 89.8<br>68.1<br>40.3 | 4.5<br>3.0<br>2.1 | 273.7<br>185.6<br>180.1 | 15.1<br>10.5<br>11.8 | 276.2 20.8<br>288.2 23.0<br>287.7 24.4 |
| Jopung            | Apr.30<br>Maty 6<br>Maty 16 | 30.2<br>15.0<br>5.4 | $2.4 \\ 1.2 \\ 0.4$ | 97.9<br>59.8<br>67.3 | 5.0<br>3.2<br>3.5 | 211.9<br>197.3<br>174.1 | 8.7<br>6.5<br>6.7    | 223.4 15.9<br>221.5 16.1<br>222.3 18.0 |

7.

(unit: g/plant).

,

|                   | Dland                       | Date of investigation |                      |                        |                         |                         |                          |  |  |
|-------------------|-----------------------------|-----------------------|----------------------|------------------------|-------------------------|-------------------------|--------------------------|--|--|
| Cult ivar         | dat e                       | June 13               | June 27              | July 9                 | July 23                 | Aug. 5                  | Sep.3                    |  |  |
| Ir ish<br>Cobbler | Apr.30<br>Maty 6<br>Maty 16 | -<br>-<br>-           | 67.2<br>13.9<br>5.3  | 141.0<br>190.2<br>42.7 | 445.2<br>407.5<br>355.5 | 510.2<br>488.8<br>490.9 | 618.2<br>583.3<br>595.0  |  |  |
| Superior          | Apr.30<br>Maty 6<br>Maty 16 | 9.2                   | 25.2<br>13.9         | 197.8<br>190.0<br>45.2 | 459.2<br>401.3<br>264.2 | 700.3<br>563.3<br>482.7 | 911.0<br>651.3<br>722.5  |  |  |
| Jopung            | Apr.30<br>Maty 6<br>Maty 16 | -<br>-                | 31.3<br>26.6<br>16.9 | 173.5<br>197.8<br>50.3 | 508.8<br>544.8<br>303.8 | 880.3<br>566.8<br>468.2 | 1035.9<br>766.4<br>600.3 |  |  |

8

,

.

.

•

40-80%

•

가

•

가

가

| Loca-<br>t ion | Cult ivar           | Plant ing<br>date                    | Harvest ing<br>date                            | Tuber<br>Weight<br>Obs           | Fresh<br>(kg/ 10a)<br>Pred           | Marketable<br>Yield<br>(kg/10a)  | RM¥ <sup>8</sup><br>(%)      |
|----------------|---------------------|--------------------------------------|------------------------------------------------|----------------------------------|--------------------------------------|----------------------------------|------------------------------|
| Kang-<br>neung | Super ior           | Mar.20<br>Mar.31<br>Apr.10<br>Mar.20 | JUL. 18<br>JUL. 18<br>JUL. 18<br>JUL. 18       | 4,883<br>5,570<br>4,200<br>6,250 | 4,760<br>4,120<br>3,540<br>5,100     | 4,812<br>5,358<br>4,070<br>6,058 | 98.5<br>96.2<br>96.9<br>96.9 |
| Taegwa         | - Ir ish            | Mar. 31<br>Apr. 10<br>Apr. 30        | JUL. 18<br>JUL. 18<br>Sep. 3                   | 5,162<br>4,741<br>3,264          | 4,220<br>3,540<br>4,040              | 5,082<br>4,683<br>2,745          | 98.5<br>98.8<br>84.1         |
| lyeong         | Cobbler<br>Superior | May 6<br>May 16<br>Apr.30            | Sep. 3<br>Sep. 3<br>Sep. 3                     | 3,080<br>3,141<br>4,810<br>3,430 | 3,640<br>3,110<br>4,570<br>3,750     | 2,527<br>2,135<br>4,218<br>3,029 | 82.1<br>68.0<br>87.7<br>84.7 |
|                | Jopung              | May 16<br>Apr.30<br>May 6<br>May 16  | Sep. 3<br>Sep. 3<br>Sep. 3<br>Sep. 3<br>Sep. 3 | 3,815<br>5,469<br>4,046<br>3,169 | 3, 110<br>4, 120<br>3, 700<br>3, 110 | 3,013<br>4,909<br>3,528<br>2,607 | 79.0<br>89.8<br>87.2<br>82.3 |

\* RMY : Rate of marketable yield



,

.

8.

# GENCALC

9.

.

.

IBSNAT

6

9.

# CROPGRO-Soybean

| VARI ETY<br>WIPSD SF | VRNAME ECO# CSDL PPSEN EM FL FL-SH FL-SD SD-PM FL-LF LFMAX SLAVR SIZLF XFRT<br>DLR SDPDV PODLR                                                                      |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KH0006 I             | DANKYUNG         SB0501         13.19         .3030         19.80         8.000         15.50         43.43         18.00         1.030         318.0         180.0 |
| 1.000.1              | 864 19.79 1.841 15.29                                                                                                                                               |
| KH0007 I             | XMMECP         SB0501         12.61         .3030         19.80         8.000         15.50         38.76         18.00         1.030         318.0         180.0   |
| 1.000 . I            | 4// 10.05 1.89/ 1.785<br>XANWON SP0501 13 02 3030 19 80 8 000 15 50 36 50 18 00 1 030 318 0 180 0                                                                   |
| 1.000.1              | 931 9.638 1.821 10.23                                                                                                                                               |
| KH0013 E             | EUNHA SB0501 12.96 .3030 19.80 8.000 15.50 35.00 18.00 1.030 318.0 180.0                                                                                            |
| 1.000 .1             | 261 16.54 2.129 11.18                                                                                                                                               |
| KH0015 J             | ANGYEOP SE0501 12.74 .3030 19.80 8.000 15.50 33.98 18.00 1.030 318.0 180.0                                                                                          |
| 1.000.2              | 555 14.98 1.780 11.18                                                                                                                                               |
| KH001/ F             | TWANCHEUM SEUSUI 12.75 .3030 19.80 8.000 13.50 34.61 18.00 1.030 318.0 180.0                                                                                        |
| 1.000 .2             | 7/1 14.32 1.720 10.01                                                                                                                                               |
| FCO#                 | Code for the ecotype to which this cultivar belongs                                                                                                                 |
| CSDL                 | Critical Short Day Length below which reproductive development                                                                                                      |
|                      | progresses with no daylength effect (for shortday plants) (hour)                                                                                                    |
| PPSFN                | Slope of the relative response of development to photoperiod with time                                                                                              |
| 1102                 | (nositive for shortday plants) (1/hour)                                                                                                                             |
| EM FL                | Time between plant emergence and flower appearance (photothermal days)                                                                                              |
| Fl - SH              | Time between first flower and first pod (photothermal days)                                                                                                         |
| Fl - SD              | Time between first flower and first seed (photothermal days)                                                                                                        |
| SD-PM                | Time between first seed ( $\mathbb{R}^5$ ) and physiological maturity ( $\mathbb{R}^7$ )                                                                            |
|                      | (phot ot her mal days)                                                                                                                                              |
| Fl - LF              | Time between first flower (R1) and end of leaf expansion (photothermal                                                                                              |
|                      | days)                                                                                                                                                               |
| LFMAX                | Maximum leaf photosynthesis rate at 30 C, 350 vpm CO, and high light                                                                                                |
|                      | $(\text{ng } \Omega \text{ m}^2 \text{s}^{-1})$                                                                                                                     |
| SLAVR                | Specific leaf area of cultivar under standard growth conditions $(cm^2/g)$                                                                                          |
| SIZLF                | Maximum size of full leaf (three leaflets) (cm <sup>2</sup> )                                                                                                       |
| XFRT                 | Maximum fraction of daily growth that is partitioned to seed + shell                                                                                                |
| WIPSD                | Maximum weight per seed (g)                                                                                                                                         |
| SFDLR                | Seed filling duration for pod cohort at standard growth conditions                                                                                                  |
|                      | (phot ot her mal days)                                                                                                                                              |
| SDPDV                | Average seed per pod under standard growing conditions (#/pod)                                                                                                      |
| PODUR                | Time required for cultivar to reach final pod load under optimal                                                                                                    |
|                      | conditions (phot other mal days)                                                                                                                                    |

1

2

10

10.

CERES

| VARIETY VAR-NAME      | ECO#   | P1V   | P1D   | P5    | Gl    | G2    | G3 PHINT    |
|-----------------------|--------|-------|-------|-------|-------|-------|-------------|
| KH0001 Albori         | IB0001 | 3.856 | 2.032 | 3.521 | 10.00 | 3.538 | 1.280 95.00 |
| KH0002 Cl bor i       | IB0001 | 4.000 | 1.628 | 3.856 | 10.00 | 3.538 | 1.280 95.00 |
| KH0003 Nul sal bor i  | IB0001 | 4.000 | 2.333 | 4.111 | 10.00 | 4.367 | 1.500 95.00 |
| KH0004 Songhakbor i   | IB0001 | 3.800 | 1.893 | 3.387 | 10.00 | 3.542 | 1.367 95.00 |
| KH0001 JOKWANG(wheat) | IB0001 | 3.000 | 2.300 | 6.900 | 9.9   | 12.2  | 3.5 95.00   |

- PIV Relative amount that development is slowed for each day of unfulfilled vernalization, assuming that 50 days of vernalization is sufficient for all cultivars.
- P1D Relative amount that development is slowed when plants are grown in a photoperiod 1 hour shorter than the optimum (which is considered to be 20 hours)
- P5 Relative grain filling duration based on thermal time (degree days above a base temperature of 1C), where each unit increase above zero adds 20 degree days to an initial value of 430 degree days.
- Gl Kernel number per unit weight of stem (less leaf blades and sheaths) plus spike at anthesis (1/g)
- G2 Kernel filling rate under optimum conditions (md/dy)
- **G** No-stressed dry weight of a single stem (excluding leaf blades and sheaths) and spike when elongation ceases (g)

PHINT Phylochron interval; the interval in thermal time (degree days) between successive leaf tip appearances.

CERES-Wheat, CERES-Barley,

CROPGRO-Soybean , , , , ( ) ), ( ), ( )



•

,



가

•

## . (CERES - Rice)

CERES-Rice , ,

(simulation model) . , , (cultivar-specific coefficients) . , 1993 1997 , 4

1989 1997 1990 . 1997 ,

> Hunt et al.(1993) , ,

, / •

, ,

,

.

/

.

•

.

가

P 1

P2R

- (11). / P1 アト P2R フト.
- 11. CERES Rice

|                          | P1  | P2R | P5  | P20  | G1   | G2   | G3  | G4  |
|--------------------------|-----|-----|-----|------|------|------|-----|-----|
| Early season<br>cultivar | 200 | 35  | 480 | 11.5 | 60.0 | .023 | 1.0 | 1.0 |
| Mid- season<br>cultivar  | 110 | 130 | 530 | 12.0 | 45.0 | .021 | .59 | 1.0 |
| Late-season<br>cultivar  | 90  | 220 | 580 | 12.0 | 35.0 | .022 | .50 | 1.0 |

P1 : Degree days above 9 during vegetative period.

P2O: Critical photoperiod or the longest day length in hours.

P2R : Extent to which phasic development leading to panicle initiation is delayed for each hour increase in photoperiod above P2O.

P5 : Degree days above 9 from beginning of grain filling to physiological maturity.

GI: The number of spikelets per g of main culmdry weight.

 ${\bf G}$ : Single grain weight (g) under ideal growing conditions.

.

G: Tillering coefficient relative to IR64.

G4: Temperature tolerance coefficient.

/ /



(葉面積) 가



•

2. ( ), ( ), (

CERES-Rice



CERES-Rice
# 3

# 1,455 CZU

( / , , ), ( , , , , , , , , , , , , pH ), ( , , , , , , , , , ) IBSNAT .

# 1.

,

.

(CZU),,,,

가 . 가 , , , pH, , CEC가 , 가 .

(CZU) (kg/ha ) CZU . CZU 7

. 1995 ( )

> , 가 . 4 , , , CZU 가 (thematic map)





| 1,455 | CZU | 30    | ,    | 10 |   |      | IBSNAT |
|-------|-----|-------|------|----|---|------|--------|
|       |     | (     | 12). |    |   | CZ   | ΣU     |
|       | 가   | 4,4   | 94   |    |   | 60   | 가      |
|       |     |       |      |    |   |      | 가      |
| ,     |     |       |      |    |   |      |        |
|       |     | (     |      | )  |   |      |        |
|       |     |       |      | 30 | , | 10 , |        |
|       |     |       |      |    |   |      |        |
|       |     | (60 가 | )    |    |   |      |        |
|       | "   |       | 가    | (  |   | 10 , | )      |

" ~ 、 ア " 、 ア " 、

12.

\*WEATHER DATA : CZU183114.WIH @ INSI LAT LONG ELEV TAV AMP REFHT WADHT KH183114 37.270 126.980 10.2 1.5 10.0 37 13.2 @DATE SRAD TMAX TMIN RAIN 97001 2.3 -8.2 6.3 0.0 97002 4.4 7.5 -0.5 0.097003 8.2 -0.5 6.4 0.0• 97364 3.6 7.6 -4.8 0.2 97365 0.6 4.8 -2.7 2.7 INSI , 31: (KH: , 18: , 14: ) LAT (decimal degree) LONG (decimal degree) ELEV (m) TAV ( ) AMP ( ) REFHI (m) WADHT (m) DATE (Julian day)  $(M/m^2)$ SRAD TMAX ( ) ( ) TMN RAIN (mm)

3.

•

1,455 CZU (thematic map) 5



5. 1,498

,

,

가

,

|           | (soil texture) (soil dept | h )    |
|-----------|---------------------------|--------|
| USDA      | (Ritchie, 1986)           | . bulk |
| den sity, |                           | IBSNAT |
|           | , CZU                     |        |
| . 13      | CZU 181300                |        |

|    | 13         | 13.   |                      |         |         | (              |        |        |       |        |       |         |      |            |      |      |
|----|------------|-------|----------------------|---------|---------|----------------|--------|--------|-------|--------|-------|---------|------|------------|------|------|
| *K | HPD18      | 1300  | NASTI                |         | aro     | 130            | CLAY 1 | LOAM   |       |        |       |         |      |            |      |      |
| ¢  | ITE        |       | COUNTR               | Y       | L       | AT             | LONG   | SCS FA | MLY   |        |       |         |      |            |      |      |
| S  | UWONS      | I     | KOREA                |         | 36.     | 33 1           | 128.43 | JISAN  |       |        |       |         |      |            |      |      |
| @  | SCOM       | SALB  | SLU1                 | SLDR    | SLRO    | SLNF           | SLPF   | SMHB   | SMPX  | SMKE   |       |         |      |            |      |      |
|    | - 99       | 0.15  | 2.0                  | 0.65    | - 99    | 1.00           | 1.00   | SA009  | - 99  | - 99   |       |         |      |            |      |      |
| @  | SLB        | SLMH  | SLLL                 | SDUL    | SSAT    | SRGF           | SSKS   | SBDM   | SLOC  | SLCL   | SLSI  | SLCF    | SLNI | SLHW       | SLHB | SCEC |
|    | 30         | - 99  | .21                  | . 33    | . 38    | 1.000          | 1.0    | 1.3    | 2.00  | 35.0   | 30.0  | 0.0     | 0.13 | 6.1        | - 99 | 10.5 |
|    | 50<br>70   | - 99  | .21                  | . 33    | . 38    | 1.000          | 1.0    | 1.3    | 2.00  | 35.0   | 30.0  | 0.0     | 0.13 | 6.1        | - 99 | 10.5 |
|    | 20         | - 99  | .21                  | . 33    | . 38    | 1.000          | 1.0    | 1.3    | 2.00  | 35.0   | 30.0  | 0.0     | 0.13 | 0.1<br>6.1 | - 99 | 10.5 |
|    | 110        | - 99  | 21                   | 33      | 38      | 1 000          | 1.0    | 1.3    | 2.00  | 35.0   | 30.0  | 0.0     | 0.13 | 6 1        | - 99 | 10.5 |
|    | 130        | - 99  | .21                  | .33     | .38     | 1.000          | 1.0    | 1.3    | 2.00  | 35.0   | 30.0  | 0.0     | 0.13 | 6.1        | - 99 | 10.5 |
| K  | :<br>PD18  | 31300 | )                    |         | フ       | 'ŀ             | CZL    | Л8130  | 0     |        |       | (       | KH   | UP)        |      |      |
| N  | <b>STI</b> |       |                      |         | (       |                |        |        | )     |        |       |         |      |            |      |      |
| α  | IJ         |       |                      | (C      | lay L   | oam)           |        |        |       |        |       |         |      |            |      |      |
| 13 | 80         | S     | Soil d               | lept h  | (cm)    |                |        |        |       |        |       |         |      |            |      |      |
| L  | ΥT         | Ι     | atitu                | ide, d  | de gr e | es (d          | deci n | als;+  | nor t | h)     |       |         |      |            |      |      |
| L  | NG         | Ι     | .ongi t              | ude,    | degr    | ees            | (deci  | mals;  | + eas | st)    |       |         |      |            |      |      |
| SC | S FA       | AM LY | ſ                    |         |         |                |        |        |       |        |       |         |      |            |      |      |
| SI | DR         | Ι     | <b>r</b> ai na       | ige ra  | ate,    | fract          | t i on | per    | day   |        |       |         |      |            |      |      |
| SC | ΟM         | (     | òl or ,              | mois    | st, N   | <b>(</b> insel | l hu   | e      |       |        |       |         |      |            |      |      |
| SI | RO         | F     | <b>R</b> unof f      | curv    | ve no   | . (USI         | DA So  | il Co  | nserv | at i o | n Ser | vi ce ) | )    |            |      |      |
| SA | ¥ЪВ        | A     | 1 beda               | , fra   | actio   | n              |        |        |       |        |       |         |      |            |      |      |
| SI | NF         | N     | <b>M</b> ner a       | l i zat | t i on  | facto          | or, O  | to 1   | scal  | e      |       |         |      |            |      |      |
| SI | II         | F     | Evanoration limit mm |         |         |                |        |        |       |        |       |         |      |            |      |      |

### 가

## CZU

).

SLUI Evaporation limit, mm

SLPF Photosynthesis factor, 0 to 1 scale

| SSKS | Saturated hydraulic conductivity, macropore, cmh               |  |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------|--|--|--|--|--|--|--|--|
| SMHB | pHin buffer determination method, code                         |  |  |  |  |  |  |  |  |
| SBDM | Bulk density, moist, g cm <sup>3</sup>                         |  |  |  |  |  |  |  |  |
| SMPX | Phosphorus determination code                                  |  |  |  |  |  |  |  |  |
| SLCC | Organic carbon, g kg <sup>-1</sup>                             |  |  |  |  |  |  |  |  |
| SMKE | Potassium determination method, code                           |  |  |  |  |  |  |  |  |
| SLCL | Clay ( $<0.002$ mm) content, %                                 |  |  |  |  |  |  |  |  |
| SLB  | Depth, base of layer, cm                                       |  |  |  |  |  |  |  |  |
| SLSI | Silt ( 0.05 to 0.002 mm), %                                    |  |  |  |  |  |  |  |  |
| SLMH | Master horizon                                                 |  |  |  |  |  |  |  |  |
| SLCF | Coarse fraction ( $>2$ mm), %                                  |  |  |  |  |  |  |  |  |
| SLLL | Lower limit of soil water, cm <sup>3</sup> cm <sup>3</sup>     |  |  |  |  |  |  |  |  |
| SLN  | Total nitrogen g kg <sup>-1</sup>                              |  |  |  |  |  |  |  |  |
| SDLL | Upper limit of drained soil, cm <sup>3</sup> cm <sup>3</sup>   |  |  |  |  |  |  |  |  |
| SLHW | pH in water                                                    |  |  |  |  |  |  |  |  |
| SSAT | Upper limit of saturated soil, cm <sup>3</sup> cm <sup>3</sup> |  |  |  |  |  |  |  |  |
| SLHB | pHin buffer                                                    |  |  |  |  |  |  |  |  |
| SRCF | Root growth factor, soil only, 0.0 to 1.0                      |  |  |  |  |  |  |  |  |
| SŒC  | Cation exchange capacity, cmol kg <sup>-1</sup>                |  |  |  |  |  |  |  |  |
|      |                                                                |  |  |  |  |  |  |  |  |

4

# 1. 1997

.

CZU 500m "" 1997 "" ・ 6 가 ・ . . . . . . .

( , , )



(95), (), ( ),

# 2. 1998/99



1999 . 1999 , 1999

· , 가 . 가

. 1997 1998 . , , ,

 1994
 1998

 3
 .
 1999

 .
 .
 .

 7
 .





3. 1997 - 1999

.

가.

3 (1997, 1998, 1999 ) 5 • 3 . 가 1,500 . (CZU; , Cultivation Zone Unit) , . 35 20, 5 25 5 5 30 5 30 × 14cm . ,  $N - P_2O_5 - K_2O = 11 - 7 - 8 kg/ha$ , , 0 1 0.05 • 1997 , 1998 1999 9 15 1999 9 . 15 1999 1 1 15 9 1999 9 16 . 1993 1998 : center.affis.org.kr) "AFFIS1500" (pc

(kg/ha) ( )

|   | CZU    | 가 (加重) |
|---|--------|--------|
|   |        |        |
| • | . 1988 | 1996   |

. 가

| • |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |

|         |   | 1993  | 1998 |       |        |        |   |
|---------|---|-------|------|-------|--------|--------|---|
| (kg/ha) |   | 5,000 | 8,00 | 0     | (      | 8).    |   |
|         |   |       |      |       | 5,000  | 10,000 |   |
|         | 3 |       |      |       |        |        |   |
|         |   |       | 3    | (1997 | , 1998 | 1999   | 9 |

15 )

.

-3 +3 . . . . 1997 7t

. ( 9). 1998 1997 7t

가

·



그림 8. 과거 6년간 읍면별 벼 수량성의 분포

- 89 -





山 吉 一

- 90 -







- 92 -





5 7ŀ

21 . .

( ) フŀ

. 65

가 CZU , ,

· 가 .

가



**36**(2), 112-126.

De Wit, C. T., 1958: Transpiration and crop yields. A gric. Res. Rep. Pudoc, Wageningen, Netherlands, 646pp.

Duncan, W. G., R. S. Loomis, W. A. Williams, and R. Hanau, 1967: A model for simulating photosynthesis in plant communities. *Hilgardia*, **38**, 181-205.

Godwin, D., U. Singh, J. T. Ritchie, and E. C. Alocilja, 1992: A users guide to CERES-Rice, International Fertilizer Development Center, Muscle Shoals, AL.

Hunt, L. A., S. Pararajasingham, J. W. Jones, G. Hoogenboom, D. T. Imamura, and R. M. Ogoshi. 1993. GENCALC: Software to facilitate the use of crop models for analyzing field experiments. *A gronomy Journal*, **85**, 1090-1094.

Jones, C. A., and J. R. Kiniry (eds), 1986: CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A&M University Press, College Station, Texas.

Loomis, R. S., and W. A. Williams, 1963: Maximum crop productivity: An estimate. *Crop Sci.* **3**, 67-71.

Lal, M., K. K. Singh, L. S. Rathore, G. Srinivasan, and S. A. Saseendran, 1998: Vulnerability of rice and wheat yields in NW India to future changes in climate. *A gricultural and Forest M eteorology*, **89**, 101-114.

Oh, S. N., 1992: Meteorological simulation of rice growth and yield in US rice area using a crop physiological model: RICEMOD-300. Journal of K orean M eteorological Society, 28(1), 41-60.

Parry, M. L., and T. R. Carter, 1988: The assessment of effects of climatic variations on agriculture: aims, methods and summary of results. In: M. L. Parry, T. R. Carter, and N. T. Konijn (eds.). *The Impact of Climatic Variations on Agriculture*, Vol. 1, Kluwer Academic, p11-96.

Singh, U., and J. L. Padilla, 1995: Simulating rice response to climate change. In: *Climate Change and Agriculture: Analysis of Potential International Impacts*. American Society of Agronomy, Madison, Wisconsin, USA, p99-121.

Sinclair, R. T., and N. G. Seligman, 1996: Crop modeling: From infancy to maturity. A gronomy Journal, 88, 698-704.

Yoshino, M., 1988: Development of climatic scenarios. In: M. L. Parry, T. R. Carter and N. T. Konijn (eds). *The Impact of Cimatic Variations on A griculture*. vol. 1, Kluwer Academic, p751-772.

4

1 , 가....

, .

# . **7**<del>1</del> 3 4

, , . .

,

.

, フト

,

( , , CSIRO) , ( , , , , ) 7

(NICEM), , G-7

( , ) ( ) .



가 가 (gradient) (eddy correlation) (eddy covariance) . - (, ,

) . , , ,

,

,

### (, Businger, 1986; Kaimal Finnigan, 1994; Kim , 1999).

, , , . , (IGBP, 1998).

( , 1999).

,

가.

,

.

· () ( 0 가) , ( ) 가 ( ).

가 가 (F<sub>g</sub>,

 $gm^{-2}s^{-1}$ ) ( , Baldocchi , 1988).  $F_g \ (\equiv w\chi\rho_a) = \overline{\rho_a w \chi} + \overline{\rho_a w'\chi'}$  (1)

, w  $(ms^{-1}), \chi (gm^{-3}/kgm^{-3})$ 

 $\overline{w} \approx 0$  (1)

.

,

$$F_{g} = \overline{\rho_{a}} \overline{w'\chi'}$$
(2)

(2) •

$$\frac{\partial \chi}{\partial t} + \frac{\partial (u_j \chi)}{\partial x_j} = D + S_c$$
(3)

$$\chi \frac{\partial u_j}{\partial x_j} = 0$$

$$\frac{\partial \chi}{\partial t} + u_j \frac{\partial \chi}{\partial x_j} = D + S_c \qquad (4)$$

$$D$$
 ,  $S_c$  ( ), j dummy .

$$\frac{\overline{\partial(\overline{\chi}+\chi')}}{\partial t} + (\overline{u_j}+u_j')\frac{\overline{\partial(\overline{\chi}+\chi')}}{\partial x_j} = \overline{D}+D' + \overline{S_c}+S_c'$$
(5)

$$\frac{\partial \overline{\chi}}{\partial t} + \overline{u_j} \frac{\partial \overline{\chi}}{\partial x_j} = \overline{D} + \overline{S_c} - \frac{\partial (\overline{u_j'\chi'})}{\partial x_j}$$
(6)

$$(u_j'\frac{\partial \chi'}{\partial x_j} = \frac{\partial (u_j'\chi')}{\partial x_j} - \chi'\frac{\partial u_j'}{\partial x_j} \text{ since } \frac{\partial u_j'}{\partial x_j} = 0)$$

(6)

(6) ,  

$$\partial \overline{\chi} / \partial t = -\overline{u} \partial \overline{\chi} / \partial x - \overline{v} \partial \overline{\chi} / \partial y - \overline{w} \partial \overline{\chi} / \partial z$$
  
() () (7)  
 $-\partial \overline{u'\chi'} / \partial x - \partial \overline{v'\chi'} / \partial y - \partial \overline{w'\chi'} / \partial z + \overline{D} + \overline{S_c}$   
() () ()

$$\partial \overline{w'\chi'} / \partial z = \overline{D} = -\nu \partial^2 \overline{\chi}(z) / \partial z^2$$
 (8)

ν., z,

$$w'\chi'(z) = -\nu \partial \chi(0) / \partial z.$$

$$(F, gm^{-2}s^{-1})$$

$$F = \overline{\rho_a} w'\chi'$$
(10)



(, Lenchow, 1998). 1

.

•

, 7 
$$!$$
 $(f = nz/U, n)$ 
 , z

 , U
 )
 .
 (0)

 7  $!$ 
 .

. , 95%

0.001 f 3 (, Businger, 1986; Lenchow, 1998).



Fig. 1 Schematic diagram of a typical normalized cospectrum of vertical velocity and a scalar in a convective surface layer.

2) \_\_\_\_\_:

f = 3

$$n = \frac{3U}{z} \tag{12}$$

, 
$$z = 2m$$
,  $U = 3ms^{-1}$ 
 ,  $n = 4.5 Hz$ 
 ,  $7^{+}$ 

 5
  $7^{+}$ 
 .
  $7^{+}$ 

.

3) \_\_\_\_: Shannon (sampling) ,  
2  
7 (Kaimal Finnigan, 1994). , 7 1/24 
$$hr^{-1}$$
  
12 , 1/12  $hr^{-1}$   
. ,  $f = 3$  ,  
5  $Hz$  2

.

가 (Aliasing)

.

10 *Hz* 



,

"ergodicity" 가 . 가 ,

$$(T_{w'\rho_s'}) \qquad (,$$

Businger, 1986).

가

$$T_{w'\rho_s'} \simeq \frac{200 (z-d)}{\varepsilon^2 U}$$
(13)

, d

•

. ,  $7^{\dagger}$  0.72m , z = 2.2m, d = 0.5 m,  $U = 3 m s^{-1}$  , =0.2 T 2500  $\approx 42$ . , 20% . ,  $T \approx 1$ 

(1997) , 가, 가

5) \_\_\_\_\_: (roughness sublayer) . (3) , , , 7} . 1

,





7 · . Schuepp (1990)

,

•

•

(Leclerc Thurtell, 1990)

$$(\mathbf{C}_{\mathrm{f}} = \frac{F_{a}(x,z)}{O_{s}})$$

$$\frac{F_a(x,z)}{Q_s} = \exp\left[-\frac{U_z(z-d)}{u_* \times kx}\right]$$
(14)

Cumulative flux vs Fetch



Fig. 2 Example of Footprint under neutral condition at two heights ( $C_{\rm f}$  is the contributions of the cumulative flux).

| F         | a(x,z)      | ,            | $Q_s$ |                | ( 가      | ), U | I <sub>z</sub> |
|-----------|-------------|--------------|-------|----------------|----------|------|----------------|
| $d + z_0$ |             |              | ,     | d              | , U *    |      | ,              |
| k von     | Karman ,    | x            |       |                | (14)     |      |                |
|           |             |              | 가     |                |          |      |                |
|           | ,           | ,            |       |                |          | 가    |                |
|           | ,           |              |       | 1:10           | 0        |      |                |
| (Munro    | Oke, 1971). | 2            |       | (IREX)         |          | 가    |                |
|           |             |              |       |                | ,        | Z-   | d =            |
| 29.5m     |             | z - d = 1.71 | n     | ,              | (z=2.2m) | 100  | 가              |
| 220n      | n           |              | 가     |                | 87%      |      |                |
|           | 가           | 220m         | ,     |                | 13       | 3% 가 |                |
|           |             |              |       | z - d = 29.5 m | ı ,      | 3k m |                |





, 가 가.



:

가

$$\begin{array}{rcl} t_1 &= L/\left(c\!+\!v\right) &; & t_2 &= L/\left(c\!-\!v\right) \\ &, & v \\ &v &= 0.5L\left(1/t_1\!-\!1/t_2\right) \\ c & & 7 \uparrow &, \\ . & c & (= 0.5L(1/t_1\!+\!1/t_2)) \\ &t_1 & t_2 & , \end{array}$$

t<sub>1</sub> t<sub>2</sub> , v

(serial) 7 . , transit count , RS422

. (u, v, w, c)

K3+22

(transducer delay) . , 1 , transit . 2 3 counts가 .  $6ms (1ms \times 3 \times 2)$ ) , 6 transit counts 3 7 . transit counts 가 21 . 48m s 기 . . , . 1 , 2 , 3 . 가 45 , 1 1 u 45 . 1 2 . 2 120 3

1m s (1/1000)

,

. 6 transit 1 , , 2 , , , 3 , , , .

: uvw 1 u , 2 v , 3 w ,
4 2.5V reference 7 ├ . 0-5V . 0-5V

11bits , 2.5mV . low path filter

10

filtering 5 7ŀ .

> .(, 가 가 5Hz ).

.

,

11bits 0-5volts . , .

. m s<sup>-1</sup> 100 1.0 m s<sup>-1</sup> . 17,000  $340.0 \text{ m} \text{ s}^{-1}$ 

가 ), - 10,000 . HEX 8282가 .

: 2 , 가 • 가 50m s

, . 가 .  $7 \mathrm{m\,s}$  $8 \mathrm{m\,s}$ 

가 . 가 가 가 , .

가 8m s .

.

. , 100  $m s^{-1}$ 50 . (

> 가 ,

가 . 10

10m s

•

, 가



(, Smith Anderson, 1984;

,

Ohtaki, 1985).

.

, 가 (Kaimal , 1968). , 가가 (Moore,

1986).

$$\frac{\Delta F}{F} = 1 - \frac{\int_{0}^{\infty} T_{wq}(n) S_{wq}(n) dn}{\int_{0}^{\infty} S_{wq}(n) dn}$$
(16)

$$\Delta F$$
 q F ,  $T_{wq}$ 

 $(S_{wq})$  .  $T_{wq} = 1$  ,

$$T_{wq}$$
 1

,  $\Delta F 7$  by Silverman (1968) Kaimal

,

,

(1968)



. Moore(1986)

Fig. 3 Scalar nux ross rate with neight due to sensor separation, s(in m)



가

가

가

가

.  $(\rho_a)$ 0 .  $\overline{w\rho_a} = \overline{w'\rho_a'} + \overline{w}\overline{\rho_a} = 0$ (17) , w' > 0,  $\rho_a' < 0$  ,  $w' \rho_a'$ 0 .  $\overline{w}$ w < 0 . Webb (1980) w 0  $F = \overline{w'\rho_c'} + \mu(\overline{\rho_c}/\overline{\rho_a}) \overline{w'\rho_v'} + (1 + \mu\sigma)(\overline{\rho_c}/\overline{T}) \overline{w'T'}$ (18) , μ  $\rho_{c}$ ,  $\rho_a$ , *O* , *C*<sub>p</sub> Т , p  $\overline{w}$  0 . . 가 , ,  $\lambda E = 400 \ Wm^{-2}$  , H =60  $Wm^{-2}$ , ,  $\overline{T} = 300 K$ , ,  $\overline{e} = 30 m b$ , 5 % .

,

가

.

.

7 350ppm , 1



$$\cos \Sigma = \overline{u} / (\overline{u^2} + \overline{v^2})^{1/2}, \qquad \sin \Sigma = \overline{v} / (\overline{u^2} + \overline{v^2})^{1/2}.$$

가, Wyngaard



, Wyngarrd (1988)

.

.

.

.

(, Kaimal Finnigan, 1994) (c)

, (*T*<sub>s</sub>)

$$T_{s} = T(1+0.51q) - V_{n}^{2} \gamma R$$
(21)

T , q ,  $V_n$ 

, 
$$rR$$
 ,  $403 m^2 s^{-2} K^{-1}$  .  $T_s$ 

· , . (11)

$$T_s$$
  $T$   $w'T_{s'}$   $w'T'$ 

(Hignett, 1992)

$$\overline{w'T_s'} = \overline{w'T'} + 0.51\overline{T} \overline{w'q'} - 2\overline{u} \overline{u'w'}/\gamma R \qquad (22)$$





.

,

가

(Leuning Moncrieff, 1990). 7,  $CO_2/H_2O$ 

(Advanet, Inc) ,

13% **7**<sup>†</sup> ( , 1998).

.

. ., , , , , ,

,

.

. / / ( , 1998).

2.

가.

,

, CSIRO 1996 (岡山縣, 34.5。, 134。)

300m × 300m 1996 8 2 8 5 , 8 6 16

13 15 • 0.72m, 0.27m . (leaf area index) 3.1 . 가 5 가 • 가 . Leading edge 200m . 3 (Solent Research Ultrasonic Anemometer, Model 1012R) Open-path CO<sub>2</sub> /H<sub>2</sub>O 가 (Infrared CO<sub>2</sub> & H<sub>2</sub>O Fluctuation Meter, Model E009A) 0.17m (obstruction) . (frequency response) canopy 1.5m . ( 2.2m) . (Portable photosynthesis system, Model LI-6400) , . (plant canopy analyzer, Model LI-2000, LICOR) canopy profile •  $CO_2/H_2O$ 가 , (path length) 0.20m 10 .





,



, ,

, A (Farquhar , 1980; Leuning , 1995).

$$A = \min \left[A_{\nu}, A_{j}\right] - R_{d}$$
(23)

min[a,b] a, b

.

$$A_{\nu} = V_{cmax} \frac{C_{i} - \Gamma_{*}}{C_{i} + K_{c}(1 + O_{i}/K_{o})}$$
(24)

$$V_{cm\,ax} = \frac{V_{cm\,ax0} \exp\left[\left(\frac{H_{V}/R_{I}}{1 + \exp\left[\left(\frac{S_{V}}{R_{I}} + \frac{T_{0}}{1 - H_{d}}\right)/(R_{I} + T_{l}\right)\right]}\right]}{(25)$$

V<sub>cm ax</sub> Rubisco \*  $CO_2$ ,  $O_i$ ,  $C_i$ . K c  $K_{o}$  CO<sub>2</sub> O<sub>2</sub> Michaelis . (25)  $T_{o}$ (293.2 K)  $T_{l}$ , *H* , , H a  $S_{v}$ . V<sub>cmax0</sub> T<sub>0</sub> V<sub>cmax</sub> R (8314.3 J km ol<sup>-1</sup> K<sup>-1</sup>). , Vcmax (Farquhar , 1980, Harley , 1992).

, A j

•

$$A_{j} = \frac{J}{4} \quad \frac{C_{i} - \Gamma_{*}}{C_{i} + 2\Gamma_{*}}$$

$$(26)$$

J

. J Smith (1937)

.

$$J = \frac{\alpha PAR}{(1 + \frac{\alpha^2 PAR^2}{J_{\text{max}}^2})^{1/2}}$$
(27)

$$J_{\max} = \frac{J_{\max 0} \exp \left[ (H_V / R T_0) (1 - T_0 / T_l) \right]}{1 + \exp \left[ (S_V T_l - H_d) / (R T_l) \right]}$$
(28)

.

$$, PAR \qquad . J_{max}$$

$$J_{max0} \quad T_0 \qquad J_{max} \qquad . \quad (25)$$

$$(28) \qquad J_{max} \qquad . \qquad .$$

(Ball , 1987; Collatz , 1992).  $g_{sw}$ 

$$g_{sw} = m \frac{A h_s P}{C_s} + b \tag{29}$$

, 
$$h_s = C_s$$
 , P

9,  $C_4$  4 , b  $C_3$ *m* C<sub>3</sub>  $0.01 \ mol \ m^{-2}s^{-1} \qquad C_4 \qquad 0.04 \ mol \ m^{-2}s^{-1} \qquad (Ball, \ 1988).$ C

$$C_i$$
  $C_s$   $g_{sw}$  . A

 $g_{sw}$ 

$$C_i = C_s - \frac{1.6AP}{g_{sw}}$$
(30)

 $(23), (24), (26), (29) \tag{30}$ 

 $7^{1}_{1}$  $C_{i}$ (iterative solutionmethod) $C_{i}$ (30) $C_{i}$  $7^{1}_{1}$  $\mu$  mol mol<sup>-1</sup> $A, g_{sw}$  $C_{i}$ 

1997 1998 8 . 8 ( ) 1.0m , LAI 5.0 .

(LICOR, Model LI-6400) .

. (LED) , CO<sub>2</sub> CO<sub>2</sub> .

(25, 30, 35)

,

•

12

.

1.

가.

가 (Goulden , 1996; Vickers Mahrt, 1997; , 1999), 가 . , , , , , (raw) . , , 가 , ,

. ( , , 1999).

, *S* 

3



가 5%



Fig. 4 Energy budget closure in a rice canopy under flooded condition where  $\eta = (H + \lambda E + G + S)/R_n$ 

가

(Lee, 1998).

$$R_{n} = \lambda E + H + G + S + \overline{w_{r}} \delta . \qquad (32)$$

$$\overline{w_{r}} , \delta = \rho c_{p} (\overline{T_{r}} - \langle \overline{T} \rangle) + \lambda (\overline{\rho_{vr}} - \langle \overline{\rho_{v}} \rangle) .$$

$$(32) , \overline{w_{r}} , , , ,$$

$$\overline{w_{r}} , , , ,$$

$$\overline{w_{r}} ,$$

$$\overline{w_{r}} , \qquad (Paw U , 1998). 7! , \overline{w_{r}} ,$$

$$(Co_{2} , \delta^{7}! , \overline{w_{r}} ,$$

$$\overline{w_{r}} \delta( = \overline{w_{r}} (\overline{\rho_{co2}}_{r} - \langle \rho_{co2} \rangle), \rho_{co2} ))$$

$$. , \qquad (Kim , 1999).$$

$$2) _____: , 7! ,$$

$$7! ,$$

. . ( 5)

## (Fourier Transformation)

· ·

,

가



(FFT) , . 7 - 1 7 - 2 . - 4/ 3 가 5-1 , 가 . 5-1 1.45 가 ( 5-2). , 가 •

가 • , , ,

Finnigan, 1994). (Kaimal

•

,

, • 1) 2 1/100 . , 2)

6). (



Fig. 7-

ensity



Fig. 7-1

nds to w















: 1996 8 6 8 3

.

.

.

8

가 가

.

,

0.21 0.26  $Wm^{-1}K^{-1}$ 

$$\frac{G_c}{G} \equiv f = \frac{1}{1 - 1.7 \frac{T}{L} (1 - 1/\varepsilon)}$$
(33)

•

•

•

$$G_c$$
 ,  $G$ 

, Τ , L , ε



8. ( , 1996 )



W m<sup>-2</sup>, . ( 0.01m



Gc G Wm<sup>-2</sup> -50 -100 Hour

•



10 11



1.0

9. G

,



10. G

10

0.88 12% 7  
. 7  
. 7  
. (11).  
. 1996 8 10 13 4  
. 12  
. 7  
. 7  
. 7  
. 
$$2^{1}$$
 .  $2^{1}$  .  $7^{1}$  .  $7^{1}$   
.  $2^{1}$  .  $2^{1}$  .  $3^{1}$  .  $3^{1}$   
. (34)



12.













13.

,



.





.



•

.

가

가 가

•

1.

,

.

,

## Moore(1986)

( ) path length: sonic anemometer (0.15m) infrared gas analyzer(0.20m); sensor separation (0.17m) height above zero plane displacement (1.7m)

|     | /  |
|-----|----|
| 13% | 7% |
| 3%  | 2% |
| 16% | 9% |

. 1 가

•

가







,

,



· 가.,가



•

Webb (1980)

. 16



16.





가

.



.



•

가

가



가 .













•

11.





Fig. 12.1 Radiation components (18 Oct. 1998)



Fig. 12.2 Radiation components (1 Nov. 1998)



Fig. 13. Energy budget closure

)



가

•




가

•

가 가



Fig. 14. Variation of Bowen ratio(= $H_s/\lambda E$ )

|   |        |            | Solent         |   |   | , CSAT3 |      |  |
|---|--------|------------|----------------|---|---|---------|------|--|
|   | ,      | (fine-wire | thermocouple), |   |   | (KH     | H2O) |  |
|   | CR9000 |            |                |   | , |         |      |  |
| w |        | u          |                |   |   | 가       | ,    |  |
| Т | q      |            |                | 가 |   |         |      |  |
|   |        | ,          |                |   |   |         | 가    |  |
|   |        |            | , ,            |   |   |         |      |  |

, 15 14 0 W . 30 W 0.6 0.7  $m s^{-1}$ 가 0 가 W .

solent W , offset . CSAT 9 ( Campbell ) ( 16).

. 10m 가 0.2m 가. 가 가 1m가 , 가 . .

0.6 0.7

.

ms<sup>-1</sup> 7 0

가

•

,

,

offset







16. (CSAT3 )





17.





6 20 . 19-1 19-2 (6 12 ) (6 18 ) .

9

 $-500 \text{ W m}^{-2}$  .  $700 \text{ W m}^{-2}$  .

 $R_n, R_s, R_L$  , , ,



Fig. 19-1. Radiation components (12 June)



Fig. 19.2 Radiation components (18 June)



Fig. 20. Variation of air temperatures





11% 가

19%





Fig. 22-1. Energy balance components (12 June)



Fig. 22-2. Energy balance components (18 June)



23



Fig. 23. Energy budget closure

가



. 1999 6 14 6 21











Fig. 24-3. Comparison of  $\,H_{\!_{\rm I\!N\!V}}$  and  $\,H_{\!_{\rm f\!f}}$ 

- ■Hf: Sensible heat flux from fine wire thermometer
- ■Hs: Sensible heat flux from CSAT3
- Hh: Sensible heat flux from CSAT3 with moisture correction
- Hhw: Sensible heat flux from CSAT3 with moisture and wind correction

.

.

가.

(T GA - 100) , . 10Hz 가, , , ppb 가

| 가 | (Billesback | Kim | , 1998). |
|---|-------------|-----|----------|
|   | 가           |     | 가        |

.





.

가가

,

가

•

,

.

.

,

0.9 (25). 0.002 ppm · m/s



25.

)

(



,

가

.

inertial subrange - 2/3

)

.

/ CZU 가 .

,

.

1999 5 . , , 100

가 3-5 km . 가

100 KW (27).



.

(NICEM)

, (averaging volume)'



( 28).



8

28.



( 29).

, 가

( 30).



30. , ,





.

1-100 km<sup>2</sup> フト , , ( 10 ). (>10 Hz) , ( 30) . 가 . , 가 가 , 가 가 가 . ,

가.

oltksghkxksth

,

(Lee, 1998, 1999).

. (35) ,

· , , ,

( 28 29 ). NICEM

1 2 ,

,

LI-6262

: (1) `````orifice`

, (2) , (3) .

2 7 / / , CR-9000 / . 7 /, , 2 7

, CR - 23X / , 1 CR - 9000

. 1.35 . 10 , フト 7ト

· `orifice` フト フト フト 45% 400-450mb

, / . Perma-pure 3 ,

. /



32. 8 -

( , 6 11 , 1999)

23)

•

(

)

Time evolution of CH<sub>4</sub> concentration

(

3m , 0.1-0.2 cm s-1 7 32 2-4% 7ト . 7ト , , , 10% 7ト .

, (35) 7 , 5% , 10% 7 , 6 10 mg m<sup>-2</sup> h<sup>r-1</sup>

| 33         | 7 320                       | 0(±10) ppm, | 2 kPa |
|------------|-----------------------------|-------------|-------|
| 7 25 , 30  | , 35 , PAR                  | 가 A         |       |
| . PAR 가    | A 가                         | 가 .         | 34    |
| ,          | , $C_i$                     | Α           |       |
| . <i>A</i> |                             | 33          | ,     |
| Α          | <i>C</i> <sub>i</sub> フト フト | A 가         | 가.    |
|            | A 가                         | (A 7        |       |
| )          | A 가                         | (A 7        | 가     |
| )          |                             |             |       |
| 35         | ,                           | 7 7         | 12    |
| PAR, ,     | ,                           |             |       |

| , 15 | . PAR | , |
|------|-------|---|
|      |       |   |
|      |       | , |

: 34 V<sub>cmax</sub>  $oldsymbol{J}_{m\,ax}$ . , (24) (23) 가  $V_{cm\,ax}$ , (26) (27) (23) 34  $oldsymbol{J}_{m\,ax}$ 

.

(Wullschleger, 1993). PAR  $1500 \,\mu \, m \, ol \, m^{-2} s^{-1}$ 

,



Fig. 33. Photosynthesis(A) and photosynthetically active radiation(PAR) at 25, 30 and 35 measured from 8 to 15 August 1997



Fig. 34. Photosynthesis(A) and  $CO_2$  concentration(C<sub>i</sub>) at 25 , 30 and 3 5 measured from 7 to 12 August 1997.



 Fig. 35. Diurnal patterns of photosynthetically active radiation(PAR), photosynthesis(A), stomatal conductance(g<sub>sw</sub>) and leaf temperature(T<sub>1</sub>) (23 August 1997).

(25, 30, 35) A  $C_i$  $35 \,\mu \,\text{mol}\,\,\text{m}^{-2}\,\,\text{s}^{-1},\,77 \,\mu \,\text{mol}\,\,\text{m}^{-2}\,\,\text{s}^{-1},\,100 \,\mu$ V<sub>cmax</sub> J<sub>max</sub>  $mol m^{-2} s^{-1} = 42 \mu mol m^{-2} s^{-1}, 113 \mu mol m^{-2} s^{-1}, 141 \mu mol m^{-2} s^{-1} \qquad .$ Wullschleger (1993) 34 , PAR 1800  $\mu$  mol m<sup>-2</sup> s<sup>-1</sup>  $V_{cmax}(91\pm 5, 83\pm 13, 108\pm 15 \ \mu \,\mathrm{mol} \,\mathrm{m^{-2} \, s^{-1}}) = J_{max}(190\pm 3,$  $184 \pm 6, 229 \pm 12 \ \mu \text{ mol } \text{m}^{-2} \text{ s}^{-1}$ : Ball & Berry m b (31)  $(r^2 = 0.83)$ 36).  $g_{sw} = A h_s P / C_s$ ( . *m* PAR 50  $\mu$  mol m<sup>-2</sup> s<sup>-1</sup> b ,  $C_s$ ?  $\uparrow$  100  $\mu$  mol mol<sup>-1</sup> A?  $\uparrow$  0  $\mu$  mol m<sup>-2</sup> s<sup>-1</sup> (Ball and Berry, 1992). *m b* 9.7  $(m = 9, b = 0.01 \text{ mol m}^{-2})$  $0.06 \text{ mol } \text{m}^{-2} \text{ s}^{-1}$ **C**<sub>3</sub>  $s^{-1}$ ) . : . 37 , 가 , 가 . Vcamx  $A \quad g_{sw}$  $J_{max}$ ( (25) (28)) J<sub>max</sub> V<sub>camx</sub> (Table) , V<sub>cmax</sub> J<sub>max</sub> (25) (28)  $V_{cmax}$   $J_{max}$  **7**  $A_j$ 가  $A_{\nu}$ , Α .  $C_i$ 24) ( V<sub>cm ax</sub>  $J_{max}$ 



Fig. 36. Relationship between stomatal conductance(g<sub>sw</sub>) and the empirical function of photosynthesis(A), leaf surface relative humidity(h<sub>s</sub>), atmospheric pressure(P) and leaf surface CO<sub>2</sub> partial pressure(C<sub>s</sub>).



. (28) J<sub>max</sub> 35 , J<sub>max</sub> 7; 35 . J<sub>max</sub> . V<sub>cmax</sub> J<sub>max</sub> , g<sub>sw</sub> . 7;

Table 2. Values of  $J_{m\,ax},\,V_{cm\,ax}$  and the ratios of  $J_{m\,ax}$  to  $V_{cm\,ax}$ 

가

•

at 25 , 30  $\,$  and 35 .

| Temperature | $J_{max}$ (µmol m <sup>-2</sup> s <sup>-1</sup> ) | $V_{cmax}$<br>(µmol m <sup>-2</sup> s <sup>-1</sup> ) | $J_{\rm max}/V_{\rm cmax}$ |
|-------------|---------------------------------------------------|-------------------------------------------------------|----------------------------|
| 25          | 42                                                | 35                                                    | 1.2                        |
| 30          | 113                                               | 77                                                    | 1.5                        |
| 35          | 141                                               | 100                                                   | 1.4                        |

 $A \quad g_{sw}$ ,  $J_{max}$ 

.

 $V_{cm\,ax}$ 

A

.

(1999)

,

.



Fig. 37. Comparison of modeled diurnal variations with those of measured photosynthesis(A) and stomatal conductance( $g_{sw}$ )

















Penman - Monteith (P - M)

(Kim Verma, 1991; , 1997).

| AIR<br>Temp | RH<br>% | Ground<br>Temp | RAD<br>MJm <sup>-2</sup> hr | RAIN<br>⁻ mm/hr | WET<br>1     | WET<br>2   | Wind<br>Speed<br>m/s | WDIR<br>& SD<br>degree |
|-------------|---------|----------------|-----------------------------|-----------------|--------------|------------|----------------------|------------------------|
|             |         |                |                             |                 | 0: I<br>1: ` | Dry<br>Wet |                      |                        |

가. P-M

P - M

$$\lambda E = A \left(\varepsilon + \frac{g_a}{g_i}\right) / \left(\varepsilon + 1 + \frac{g_a}{g_c}\right)$$
(36)

.

| $\lambda E$                                            | , A 가            | ( = Rn - (G + S), R) | n |
|--------------------------------------------------------|------------------|----------------------|---|
| , $G$                                                  | , <i>S</i>       | 가                    |   |
| ), $\varepsilon$ (= $	riangle / \gamma$ , $	riangle$ : |                  | , γ                  |   |
| $0.66), g_a$                                           | , g <sub>c</sub> | , g <sub>i</sub>     |   |
|                                                        |                  |                      |   |
|                                                        |                  | 가 (, 1997).          |   |
|                                                        |                  |                      |   |

- 가
   LAI < 1</th>
   ,
   LAI
- 가 ,

3.

, 7<sup>1</sup> (potential evapotranspiration)

P - M

$$\lambda E = A \left(\varepsilon + \frac{g_a}{g_i}\right) / (\varepsilon + 1)$$
(37)

· ,

.



4.

.

|                         | R   | n = a | aRAD + | <i>b u</i> <sub>*</sub> = | a U | $g_c = al$ | R n/D + | bG(+S) | = aRn + |
|-------------------------|-----|-------|--------|---------------------------|-----|------------|---------|--------|---------|
|                         |     | a     | b      | а                         | b   | a          | b       | a      | b       |
| No canopy<br>or LAI < 1 | (   | ).85  | - 50   | 0.08                      |     |            |         | 0.44   | -86     |
| 1 LAI <                 | 4 ( | ).77  | -67    | 0.11                      |     | 0.25       | 6.12    | 0.42   | -67     |
| 4 LAI                   | (   | ).73  | -36    | 0.10                      |     | 0.16       | 2.95    | 0.20   |         |
| After<br>harvest        | (   | ).63  | -36    | 0.07                      |     |            |         | 0.10   |         |

3 P - M 4  $MJm^{-2}hr^{-1}$   $Jm^{-2}s^{-1} = Wm^{-2}$ . 1) ) 3  $MJm^{-2}hr^{-1} = 3 \times 1000000/3600 Wm^{-2}$  $(Wm^{-2})$   $(Wm^{-2})$  . 2)  $Rn = a RAD + b, \quad a \quad b \qquad (4)$ 3) .  $(e_s) = 6.11 \exp [17.269 T/(237.3 + T)],$ *T* ( ) 4) (vapor pressure deficit) . (D) =  $e_s - e_s$ , e (mb) 5)  $(\Delta)$ .  $\triangle = 5827 \ e_s / (T + 273)^2$ 6)  $(g_{c})$  .  $g_{c} = a R_{n}/D + b, \quad a = b$  (4) ( *U*) 7) .  $u_* = a U, a$ (4) 8) 7)  $(g_a = 1/r_a) \qquad .$
$$r_{a} = (U/u_{*}^{2}) + 4.62/u_{*}$$
9) (+ )  
. ( , )  
G (+ S) = a R n + b, a b ( 4 )  
10) (g\_{i}) .  
g\_{i} = \frac{\gamma A}{\rho C\_{p} D}, r , A = R\_{n} - G (+ S)

11) (36), (37) 
$$P-M$$
  
( $\lambda E$  in  $W$  m<sup>-2</sup>) .

$$(\lambda E \text{ in W m}^{-1}) \qquad .$$
12) 24 mm d<sup>-1</sup>

. 8 11





(slope = 1.18) (11 Aug. 1996,

)



(slope = 1.1) (9 Aug. 1996 , )



.



(slope = 0.57), (2) 20 Jun. 1999 (slope = 0.62),

,





41. , (1) 9 Oct. 19 (slope = 0.51), (2) 28 Oct. 1998 (slope = 0.22),

42-1

,



,





(1) 9 Oct. 1998,

•



.

.





Baldocchi, D. D., B. B. Hicks and T. P. Myers, 1988: Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. <u>Ecology</u>, **69**: 1331-1340.

Ball J. T., 1988 : An analysis of stomatal conductance. Ph.D. thesis, Stanford University, 89pp.

Ball J. T., I. E. Woodrow, J. A. Berry, 1987 : A model prediction stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In <u>Progress in Photosynthesis</u> <u>Research</u> (ed. I. Biggins), pp. 221-224. Martinus Nijhoff, Publishers, The Netherlands.

Billesbach, D. P., J. Kim, R. J. Clement, S. B. Verma, and F. G. Ullman, 1998: An Intercomparison of Two Tunable Diode Laser Spectrometers Used for Eddy Correlation Measurements of Methane Flux in a Prairie Wetland, J. Atmos. and Oceanic Technol, 15: 197-206.

Brooks A. and G. D. Farquhar, 1985 : Effect of temperature on the CO2/O2 specificity of ribulose-1, 5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas-exchange measurements on spinach. <u>Planta</u>, 165: 397-406.

Businger, J. A., 1986: Evaluation of the Accuracy with Which Dry Deposition can Measured with current Micrometeorological Techniques. J. <u>clim. Appl. Meteorol.</u>, **25**: 1100-1124.

Collatz, G. James, Miquel Ribas-Carbo and Joseph A. Berry, 1992 : Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C<sub>4</sub> Plants. <u>Aust. J. Plant Physiol.</u>, 19: 519-38.

Dyer, A. J., 1981: Flow distortion by supporting structures, <u>Boundary</u> <u>Layer Meteorol.</u>, **20**: 206-212.

Farquhar G. D., Caemmerer S. von, and Berry J. A., 1980 : A biochmical model of photosynthetic CO2 assimilation in leaves of C3 plants. <u>Planta</u>, 149: 78-90.

Goulden, M. L., J. W. Munger, S. M. Fan, B. C. Daube and S. C. Wofsy, 1996: Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability, <u>Science</u>, **271**: 1576-1578.

Harely P. C., R. B. Thomas, J. F. Reynolds and B. R. Strain, 1992 : Modelling photosynthesis of cotton grown in elevated CO2. <u>Plant, Cell</u> and environment, 15: 271-282.

Hignett, P., 1992: Corrections to temperature measurements with sonic anemometer, <u>Boundary-Layer Meteorol</u>. **61**: 175-187.

IGBP Terrestrial Carbon Working Group., 1998: The terrestrial carbon cycle: Implications for the the Kyoto Protocol, <u>Science</u>, **280**: 1393-1394.

Kaimal, J. C. and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, 289pp.

Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J.

Cauhgey, and C. J. Readings, 1976: Turbulence Structure in the Convective Boundary Layer, <u>J. Atmos. Sci.</u>, **33**: 2152-2169.

Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, Y. Izumi, and O. R. Cote, 1972: Spectral Characteristics of Surface Layer Turbulence, <u>Quart. J. R.</u> <u>Meteorol. Soc.</u>, **98**: 563-589.

Kaimal, J. C., J. C. Wyngaard, and D. A. Haugen, 1968: Deriving Power Spectra from a Three-Component Sonic Anemometer, <u>J. Appl. Meteorol.</u> 7: 827-834.

Kim, J., J. Yun, B. Tanner, J. Hong, and T. Choi, 1999: On measuring the storage and a mass flow component in the net ecosystem exchange of CO<sub>2</sub> and CH<sub>4</sub>, <u>Proceeding of Fifth International Joint Seminar on Regional</u> <u>Deposition Processes in the Atmosphere</u>, 12-16 October, Seoul National University, Seoul, Korea, 235-240.

Kim, J., and S. B. Verma, 1991: Modeling canopy photosynthesis: scaling up from a leaf to canopy in a temperate grassland ecosystem, <u>Agri. For.</u> <u>Meteorol.</u> 57, 187-208.

Kristensen, L., and D. R. Fitzjarrald, 1984: The effect of line averaging on scalar flux measurements with a sonic anemometer near the surface, <u>J.</u> <u>Atmos. and Oceanic Technol</u>, 1: 138- 146.

Leclerc M. Y. and Thurtell G. W.,1990: Footprint prediction of scalar flux using a markovian analysis. <u>Boundary Layer Meteorol.</u> 53: 247-258.

Lee, X., 1998: On micrometeorological observations of surface-air exchange over tall vegetation, <u>Agri. For. Meteorol.</u> 91, 39-41.

Lee, X., 1999: Reply to comment by Finnigan on "On micrometeorological observations of surface-air exchange over tall vegetation, <u>Agri. For.</u> <u>Meteorol.</u> **97**, 65-67.

Lenchow, D. H., 1995: Micrometeorological techniques for measuring biosphere-atmosphere trace gas exchange. In: P. A. Matson and R. C. Marriss (eds). Biogenic Trace Gases: Measuring Emissions from Soil and Water. Blackwell Science, Oxford. 394pp. Leuning R., F. M. Kelliher, D. G. G. De Pury and E. D. Schulze, 1995 : Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. <u>Plant, Cell and Environment</u>, 18: 1183-1200.

Leuning, R., and J. Moncrieff, 1990: Eddy-Covariance CO<sub>2</sub> Flux Measurements using Open-path and Closed-path CO<sub>2</sub> Analysers: Corrections for Analyser Water Vapor Sensitivity and Damping of Fluctuations in Air Sampling Tubes, <u>Boundary-Layer Meteorol.</u> 53: 63-76.

Moore, C. J., 1984: Frequency ressponse corrections for eddy correlation systems, <u>Boundary-Layer Meteorol.</u>, **37**: 17-35.

Munro, D. S., and T. R. Oke, 1975: Aerodynamic boundary-layer adjustment over a crop in neutral stability, <u>Boundary Layer Meteorol.</u>, 9: 53-61.

Ohtaki, E., 1985: Application of an infrared carbon dioxide and humidity instrument to studies of turbulent transport, <u>Boundary Layer Meteorol.</u> 29: 85-107.

Schuepp P. H., Leclerc M. Y., MacPherson J. I. and Desjardins R. L. (1990): Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. <u>Boundary Layer Meteorol.</u> 50: 335-376.

Sellers P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A. Dazlich, C.Zhang, G. D. Collelo, and Bounoua, 1996 : A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMs. Part1: Model Formulation. J. Climate, 9: 676-705.

Silverman, B. A., 1968: The effect of spatial averaging on spectrum estimation, <u>J. Appl. Meteorol.</u> 7: 168-172.

Smith E., 1937: The influence of light and carbon dioxide on photosynthesis, <u>General Physiology</u>, 20, 53-59.

Smith, S. D., and R. J. Anderson, 1984: Spectra of humidity, temperature, and wind over the sea at Stable Island, Nova Scotia, <u>J. Geophys. Res</u>. **89**: 2029-2040.

Vickers, D. and L. Mahrt, 1997: Quality control and flux sampling

problems for tower and aircraft data, J. Atmos. Ocean. Tech., 14: 512-526.

Webb, E. K., G. I. Perman, and R. Leuning, 1980: correction of flux measurements for density effects due to heat and water transfer. <u>Quart.</u> J. R. Met. Soc. **106**: 85-100.

Wesely, M. L. 1970: Eddy correlation measurements in the atmospheric surface layer over agricultural crops. Dissertation. University of Wisconsin, Madison, Wisconsin, USA.

Wullschleger S.D. 1993 : Biochemical limitations to carbon assimilation in C3 plants - A retrospective analysis of the A/ci curve from 109 species. Journal of Experimental Botany 44: 907-920.

Wyngarrd, J. C., and S-F. Zhang, 1985: Transducer-shadow effects on turbulence spectra measured by sonic anemometers. <u>J. Atmos. Oceanic</u> <u>Tech.</u>, **2**: 548-558.

Wyngaard, J. C., 1988: Flow-distortion effects on scalar flux measurements in the surface layer: Implication for sensor design. Boundary-Layer Meteorol. **42**: 19-26.

, 3 ,

.

"

,

,

가 , , , , ·

, " 가 .

195



.

### 가.

#### 196



77. 73 raw data



| ×N                      | 4icrosoft Ex | <cel -="" 9월지<="" th=""><th>H료,xls</th><th></th><th></th><th></th><th>- 🗆 ×</th></cel> | H료,xls     |               |                 |             | - 🗆 ×      |
|-------------------------|--------------|----------------------------------------------------------------------------------------|------------|---------------|-----------------|-------------|------------|
| 1                       | 파일(F)        | 편집( <u>E</u> ) 보                                                                       | 기(⊻) 삽입    | 1① 서식((       | 2) 도구(I)        | GIOLEI (D   | ) 창(₩)     |
| 1 I<br>I<br>I<br>I<br>I |              | /a 🖪 💥                                                                                 | X Ba       | n 🛷 🔍         | <b>0 +</b> C4 + | a. 🖝 1      | - PLA      |
|                         |              |                                                                                        | 11 00 121  |               |                 | · · · · ·   |            |
| 川言                      | <b>T</b>     | *                                                                                      | 11 - 71    | 27 <u>2</u> E |                 | _ • 🧐 • .   | <u>7</u> - |
|                         | A1           | <u> </u>                                                                               | = 지        | 섬             |                 |             |            |
|                         | A            | В                                                                                      | C          | D             | E               | F           | G 🔽        |
| 1                       | 시점           | DATE                                                                                   | SRAD       | TMAX          | TMIN            | RAIN        |            |
| -2-                     | 90           | 242                                                                                    | 1,8        | 27,8          | 21,8            | U           |            |
|                         | 95           | 242                                                                                    | 48         | 27,6          | 19,9            | 0           |            |
| 4                       | 98           | 242                                                                                    | 48         | 28,1          | 246             | 0           |            |
| 5                       | 100          | 242                                                                                    | 10         | 21            | 17              | 45          |            |
| 2                       | 101          | 242                                                                                    | 1,8        | 28,8          | 20,6            | 0           |            |
| 6                       | 105          | 242                                                                                    | 0          | 20,9          | 220             | 0           |            |
|                         | 106          | 242                                                                                    | 9          | 200           | 20,0            | 0,0<br>C1 2 |            |
| 10                      | 110          | 242                                                                                    |            | 20,9          | 240             | 10.3        |            |
| 11                      | 112          | 242                                                                                    | 17         | 231           | 21,7            | 10,4        |            |
| 10                      | 114          | 242                                                                                    |            | 20.3          | 20.3            | 128         |            |
| 13                      | 110          | 242                                                                                    | 38         | 200           | 20,5            | 251         |            |
| 14                      | 121          | 242                                                                                    | 40         | 23,3          | 105             | 231         |            |
| 15                      | 120          | 242                                                                                    | 23         | 20            | 20.8            |             |            |
| TE                      | 120          | 242                                                                                    |            | 04.9          | 240             | 12          |            |
| 17                      | 130          | 242                                                                                    | 0          | 29,2          | 21.0            | 0.4         |            |
| 18                      | 133          | 242                                                                                    | 0          | 264           | 21.0            | 19          |            |
| 19                      | 135          | 242                                                                                    | ő          | 204           | 20.1            | 13          |            |
| 20                      | 136          | 242                                                                                    | 0          | 24.8          | 21.2            | 41          |            |
| 21                      | 138          | 242                                                                                    | ŏ          | 24,0          | 21.2            | 171         |            |
| 22                      | 140          | 242                                                                                    | 0          | 26.4          | 21,3            | 06          |            |
| 23                      | 143          | 242                                                                                    | 0          | 249           | 20.8            | 243         |            |
| 24                      | 146          | 242                                                                                    | ň          | 26.8          | 223             | 72          |            |
| 25                      | 152          | 242                                                                                    | ŏ          | 235           | 21.4            | 34.6        |            |
| 26                      | 155          | 242                                                                                    | ň          | 24.4          | 22              | 58.2        |            |
| 27                      | 156          | 242                                                                                    | ň          | 25.5          | 21.8            | 34.8        |            |
| 28                      | 159          | 242                                                                                    | Ő          | 242           | 22.3            | 95.2        |            |
| 29                      | 162          | 242                                                                                    | ň          | 24.6          | 21.6            | 862         |            |
| 30                      | 164          | 242                                                                                    | Ő          | 26            | 22.2            | 186         |            |
| 31                      | 165          | 242                                                                                    | õ          | 25.4          | 22.2            | 9           |            |
| 32                      | 168          | 242                                                                                    | Ő          | 23.9          | 21.8            | 29.8        |            |
| 33                      | 169          | 242                                                                                    | 0          | 235           | 20.8            | 196         |            |
| 34                      | 170          | 242                                                                                    | Ō          | 24.4          | 22.8            | 22.3        |            |
| 35                      | 184          | 242                                                                                    | Ō          | 24.7          | 22.1            | 81.6        |            |
| 36                      | 185          | 242                                                                                    | 0          | 24.6          | 21.7            | 145.5       |            |
| 37                      | 189          | 242                                                                                    | 0          | 25,5          | 23              | 107.5       |            |
| 38                      | 192          | 242                                                                                    | 0          | 23,6          | 21,1            | 51,7        | 100        |
| 4                       | N N 24       | 2-273\Sh                                                                               | eet4 / sol | /tmax 71      | < I 100         | <u> </u>    | - FIC      |
| 주머                      | 1            |                                                                                        | A = 21,    |               | INDM            |             |            |
| 22                      | 25           | 1                                                                                      |            |               | Traction        | 1.00        | -1         |

78. TXT file

1.

| XN   | /licrosoft E>  | <cel -="" 9월⊼<="" th=""><th>료,xls</th><th></th><th></th><th></th><th></th></cel>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 료,xls               |          |          |                    |          |
|------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|----------|--------------------|----------|
| 15   | ] 파일(E) 된      | 편집( <u>E</u> ) 보                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 기(⊻) 삽입             | 1① 서식((  | 2) 도구(I) | ) CHOIEI( <u>C</u> | ) 창(₩)   |
| 토    | 움말( <u>H</u> ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |          |          |                    | - @ ×    |
|      | i 😂 🖬 🛛        | i 🖓 🖓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * B                 | 🔁 🝼 🕒    | 🔿 🝝 C 🖛  | جه چه              | <b>2</b> |
| E    | 움              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 - 21             | 21 21    |          | - 3-               | 가 -      |
| [    | A1             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = SC                | ode      |          |                    |          |
| -    | A              | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                   | D        | E        | F                  | G        |
| 1    | scode          | T242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T243                | T244     | T245     | T246               | T247 —   |
| 2    | 90             | 1,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2                 | 9,9      | 10,4     | 10,7               |          |
| 3    | 95             | 0,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8,6                 | 9,1      | 9,6      | 11                 |          |
| 4    | 98             | 0,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,1                 | 10,5     | 7,3      | 9,9                |          |
| 5    | 100            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                   | 6,4      | 10,5     | 11.7               |          |
| 6    | 101            | 1,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                  | 11,8     | 7,9      | 8,5                |          |
| 7    | 105            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                   | 8,9      | 10,9     | 11,5               |          |
| l o  | 106            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                   | 98       | 83       | 11,8               |          |
| 10   | 108            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23                  | 1,2      | 67       | 1,2                |          |
| 10   | 112            | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,4                 | 3,5      | 0,0      | 102                |          |
| 1 10 | 114            | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,3                 |          | 10       | 140                |          |
| 12   | 110            | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                  | 103      | 10       | 95                 |          |
| 14   | 173            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25                  | 84       | 574      | 94                 |          |
| 15   | 129            | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72                  | 89       | 99       | 103                |          |
| 16   | 130            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                   | 107      | 97       | 11.4               |          |
| 17   | 131            | ő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58                  | 96       | 10.9     | 11.7               |          |
| 18   | 133            | Ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69                  | 83       | 102      | 11.5               |          |
| 19   | 135            | Ó                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                   | 5        | 85       | 8.4                |          |
| 20   | 136            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,4                 | 6,2      | 7,1      | 4,7                |          |
| 21   | 138            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                   | 5,3      | 7,9      | 5,8                |          |
| 22   | 140            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,2                 | 7,9      | 8,4      | 10,9               |          |
| 23   | 143            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                   | 4,9      | 7,4      | 3,7                |          |
| 24   | 146            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6,7                 | 5,9      | 9,1      | 11.7               |          |
| 25   | 152            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                   | 6,4      | 8,5      | 2,6                |          |
| 26   | 155            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                   | 5,6      | 9,9      | 1,8                |          |
| 27   | 156            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                   | 4,1      | 6,2      | 6,7                |          |
| 28   | 159            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                   | 10,2     | 9,3      | Q.4                |          |
| 29   | 162            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                   | 9,2      | 7,2      | 0                  |          |
| 30   | 164            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,8                 | 8,8      | 88       | 9                  |          |
| 31   | 165            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | 91       | 3.9      | 8,2                |          |
| 32   | 168            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                   | 9,4      | 8,2      | 1,4                |          |
| 33   | 159            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,8                 |          | 1,8      | 43                 |          |
| 34   | 170            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,6                 | 9,5      | 1,7      | 07                 |          |
| 36   | 104            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33                  | 0,0      | 21       | 0.7                |          |
| 37   | 105            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                  | 97       | 44       | 4.5                |          |
| 38   | 192            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,0<br>D.6          | 92       | 03       | 99                 |          |
| 00   |                | , in the second s |                     |          |          |                    |          |
|      |                | 2-2/3/Sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eet4 <u>) sol</u> , | (tmax/1) | •        |                    |          |
| 준비   |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |          | NUM      |                    |          |

79. TXT file 2

|            |        |          |    | (sol),   |             | (T m ax ), |       |
|------------|--------|----------|----|----------|-------------|------------|-------|
| (T m in ), |        | (rain)   |    | dBA      | SE file(.db | f)         |       |
|            | .dbf   |          | 2  |          |             |            | 1,445 |
|            | inte   | erpolati | on |          |             |            |       |
|            | Arc    | View 3   | .1 |          | interpolati | on         |       |
| -          | ArcVie | w 3.1    |    | 1999.apr | file        | kma_stn_s  | hp    |

.dbf •

- .dbf table , .dbf table scode .apr

.apr scode field join .



80. 73

.

Interpolation

Analysis properties

| Analysis Extent    | Same As Tempadjust3 |          |
|--------------------|---------------------|----------|
|                    | Union Of Inputs     |          |
| Left 126.05        | As Specified Below  | r-       |
| Left 1 120.05      | Current Value       |          |
| attom 34.033333    | Same As Tempadjust3 |          |
| 10110111104.000000 | Same As Rainadjust  |          |
| Analysis Cell Size | Same As Nodatagrid  | <u> </u> |
| Cell Size          | 0.025               | dg       |
| Number of Rows     | 197                 |          |
| Number of Columns  | [157                |          |
| Analysis Mask      | No Mask Set         |          |

81. Analysis properties 1.

| Analysis Properties: V | iew1                                     |   |
|------------------------|------------------------------------------|---|
| Analysis Extent        | Same As Tempadjust3                      | J |
| Left 126.05            | Top 38.958333                            |   |
| Bottom 34.033333       | Right 129.975                            |   |
| Analysis Cell Size     | Same As Tempadjust3                      | 3 |
| Cell Size              | Same As Tempadjust3                      |   |
| Number of Rows         | Same As Rainadjust<br>Same As Nodatagrid |   |
| Number of Columns      |                                          | - |
| Analysis Mask          | No Mask Set                              | J |
|                        | OK Cancel                                |   |

82. Analysis properties 2.

| Analysis Extent I  | Same As Rainadjust 📃 💌 |
|--------------------|------------------------|
| Left 126.05        | Top 38.95833           |
| Bottom 34.03333    | Right 129.975          |
| Analysis Cell Size | Same As Rainadjust     |
| Cell Size          | Same As Tempadjust3    |
| Number of Rows     | Same As Rainadjust     |
| Number of Columns  |                        |
| Analysis Mask      | No Mask Set 💌          |

83. Analysis properties 3.

Analysis Extent Analysis Cell size

inte rpolation

. (sol) Same as Nodatagrid, (Tmax) (Tmin) Same as Temp adjust3, (rain) Same as Rain adjust OK ⊡.

interpolation - Tmax Analysis properties , Same as Temp adjust3 Surface Interpolate Grid , , "T242" Z value field No. of Neighborhood 3 OK ∉. View Surface from KMA the me

| Method [          | IDW          | • |
|-------------------|--------------|---|
|                   |              |   |
| Z Value Field 🛛 🗍 | T242         | • |
| Nearest Neighbors | Fixed Radius |   |
| No: of Neighbors  |              |   |
| Power 2           | 2            |   |
| Barriers 🗖        | Vo Barriers  | J |

84. Interpolate surface.

.

| Ap Calculation 1                                                                                      |              |                                   |                                           | Logarithms           | <u>_</u> _×          |
|-------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|-------------------------------------------|----------------------|----------------------|
| Layers<br>[Surface from Kma A<br>[Tempadjust3]<br>[Rainadjust]<br>[Nodatagrid]<br>[Nodatagrid]. Count | * - +        | 789<br>456<br>123<br>0.<br>AsGrid | = <> and<br>> >= or<br>< <= xor<br>() not | Exp<br>Exp2<br>Exp10 | Log<br>Log2<br>Log10 |
| ([Surface from Kma_stn.s                                                                              | shp] - (Terr | npadjust3])                       |                                           |                      | *                    |
|                                                                                                       |              | Eva                               | iluate                                    |                      |                      |

85. Map calculator

| -        | Ana lys is | Map Cakulato   | or Su        | rface from | Kma     | double cl | lick   |
|----------|------------|----------------|--------------|------------|---------|-----------|--------|
| "-       | " ←        | Tempadjust     | (Tmax        | Tmin       |         | ) double  | click  |
| Evaluate | € ←        |                |              |            |         |           |        |
|          | Map Cak    | ulator         | Tmax         | Tmin       | ,       |           |        |
| (Surfac  | e from kma | ) - (Tempadjı  | ust)         |            |         |           |        |
| Rain     | ,          |                |              |            |         |           |        |
| (Sunfac  | e from kma | ı) * (Rainadju | ıst)         |            |         |           |        |
| Sol      | ,          |                |              |            |         |           |        |
| (Sunfac  | e from kma | a) * (Nodatag  | rid)         |            |         |           |        |
|          | Evaluate   | e ←            |              | Map Ca     | alculat | ion 1     | the me |
|          |            |                |              |            |         |           |        |
| - View   | czu 14     | 55.shp theme   | $\leftarrow$ | Ana lys is | Sı      | ummarize  | Zones  |
| No_myu   | in         |                |              |            |         |           |        |
|          |            |                |              |            |         |           |        |

| Summarize Zones               |        |
|-------------------------------|--------|
| ick field that defines zones: | ОК     |
| No_myun                       | Cancel |
| Cnt                           |        |
| Area_m2_                      |        |
| Peri_m_                       |        |
| Do                            |        |
| Kun                           |        |
| Myun                          |        |
| Bice                          | -      |

86. Summarized zones 1.

| k theme containing variable to summarize:                                                       | Summarize Zones                            |        |
|-------------------------------------------------------------------------------------------------|--------------------------------------------|--------|
| tap Calculation 1     Cance       surface from Kma_stn.shp     cance       empadjust3     cance | ck theme containing variable to summarize: | ок     |
| empadjust3                                                                                      | Map Calculation 1                          | Cancel |
| empadjust3<br>Jainadjust                                                                        | Surface from Kma_stn.shp                   |        |
| lainadjust                                                                                      | Tempadjust3                                |        |
|                                                                                                 | Rainadjust                                 |        |
| lodatagrid                                                                                      | Nodatagrid                                 |        |
|                                                                                                 |                                            |        |

87. Summarized zones 2.

OK I table table File

| export | Export table |      |       | Delimited Text | $\leftarrow$ | file |
|--------|--------------|------|-------|----------------|--------------|------|
| name   | "T m ax 1"   | OK 🖃 | table | Surface f      | from         | kma  |

Map Calculation 1 theme T max 365

- Tmin, Rain Sol

•

-



88. Interpolation txt file .

1455 365 text file

•

| 📋 tmax242,txt - 워드패드                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _0×                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 파일(E) 편집(E) 보기(Y) 삽입(I) /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1식( <u>0</u> ) 도움말( <u>H</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                            |
| "No_myun", "Count", "Area", "Min", "Ma<br>120101,80,0050,23,6789,25,2571,1           120102,10,0,0063,23,6003,25,2278,1           120103,3,0,0019,23,6125,24,7095,1           120104,10,0,0063,24,4998,25,3571,0           120105,5,0,0031,24,4094,25,0804,0           120107,12,0,0075,23,7614,25,1324,1           120108,80,0050,23,2548,24,9508,1           120109,5,0,0031,24,0094,24,9508,1           120109,5,0,0031,24,0348,24,7272,0           120109,5,0,0037,23,2548,24,9508,1           120201,40,0025,21,7151,23,3564,1           120203,10,0,0063,22,0536,24,0627,2           120203,10,0,0063,22,0536,24,0627,2           120204,60,0037,23,5219,23,9882,0           120205,3,0,0019,23,9101,24,1004,0           120206,6,0,0037,23,5219,23,9882,0           120207,2,0,0012,23,6451,23,6837,0           120207,2,0,0012,23,974,23,1745,0           120207,2,0,0012,22,9774,23,1745,0           120210,2,0,0012,22,9774,23,1745,0           120210,2,0,0012,22,9774,23,1745,0           120211,9,0,0056,22,3967,23,3697,0           120211,9,0,0056,22,3967,23,3769,1           120212,4,0,0056,22,3967,23,3769,1           120213,5,0,0037,23,5843,25,7485,2           120213,5,0,0037,23,5843,25,7485,2           120213,6,0,0037,23,5843,25,7485,2           120302,7,0,0044,23,3952,25,2550,1           120302,7,0,0044,23,395 | x", "Range", "Mean", "Std", "S<br>7781, 24, 7883, 0, 4759, 198, 31<br>6275, 24, 7058, 0, 6064, 247, 0<br>1969, 24, 2526, 0, 4662, 72, 75<br>8573, 24, 9035, 0, 2433, 249, 0<br>1651, 24, 3778, 0, 5811, 121, 81<br>1709, 24, 7984, 0, 2587, 123, 92<br>1959, 24, 4659, 0, 4463, 295, 4<br>1959, 24, 4659, 0, 4757, 195, 7<br>1924, 24, 3657, 0, 2498, 121, 82<br>1733, 24, 8764, 0, 2906, 149, 22<br>1440, 24, 7358, 0, 3583, 222, 65<br>1414, 22, 6876, 0, 6006, 90, 751<br>1861, 23, 5073, 0, 1117, 141, 0<br>1091, 23, 1205, 0, 7339, 231, 1<br>1663, 23, 7458, 0, 1587, 142, 4<br>1903, 24, 0339, 0, 0876, 72, 10<br>1323, 23, 4577, 0, 2000, 140, 74<br>133, 23, 7945, 0, 3141, 142, 74<br>1971, 23, 0759, 0, 0985, 46, 15<br>152, 23, 0512, 0, 3859, 207, 44<br>1050, 23, 1736, 0, 2422, 92, 69<br>1730, 22, 6710, 0, 5649, 113, 32<br>7848, 22, 9251, 0, 7893, 229, 2<br>188, 22, 8512, 0, 6190, 434, 821, 23, 0539, 0, 3761, 184, 42<br>1263, 24, 0800, 0, 9621, 216, 77<br>1352, 23, 9431, 0, 8341, 143, 64<br>1365, 24, 4019, 0, 7525, 170, 8<br>0462, 24, 0265, 0, 9555, 288, 3<br>1348, 24, 5939, 0, 4967, 196, 72<br>1234, 24, 5228, 10, 7995, 10, 8<br>1348, 24, 5939, 0, 4967, 196, 72<br>1348, 24, 5939, 0, 4967, 196, 7 | Sum" I 1<br>2576<br>78<br>2350<br>393<br>3920<br>4867<br>272<br>285<br>583<br>224<br>255<br>224<br>255<br>204<br>760<br>571<br>16<br>441<br>2047<br>747<br>16<br>441<br>2047<br>747<br>16<br>455<br>203<br>552<br>2509<br>1728<br>310<br>332<br>507<br>335<br>203<br>5589<br>130<br>3180<br>389<br>297<br>345<br>4325<br>716<br>017<br>NUM |
| 89. 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n 1,455                                                                                                                                                                                                                                                                                                                                    |

5

interpolation

file

txt file.

DSSAT 3.5

( 16)

가

Quick

BASIC

•

| 📲 Module1                                                                                                                           |                   |        |              |                                 | - 🗆 X |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|--------------|---------------------------------|-------|
| Object: (General)                                                                                                                   |                   | •      | Proc:        | (declarations)                  |       |
| Dpen "INPUT.INF" For Input As #1<br>Open "OUTPUT.INF" For Input As #2                                                               |                   |        |              |                                 | *     |
| For I = 1 To 365<br>Line Input #1, TT\$<br>Line Input #2, TTT\$                                                                     |                   |        |              |                                 |       |
| Open TT\$ For Input As #3<br>Open TTT\$ For Output As #4                                                                            |                   |        |              |                                 |       |
| Do While Not EOF(3)<br>Line Input #3, SS\$<br>XX\$ = Mid\$(SS\$, 1, 6)<br>If XX\$ ⇔ "121804" And XX\$ ⇔<br>Print #4, SS\$<br>End If | "141700" <i>k</i> | and XX | } <b>○</b> " | 21407" And XX\$ 🗢 "121211" Ther | n     |
| LOOP                                                                                                                                |                   |        |              |                                 |       |
| Close #4, #3<br>Next I                                                                                                              | I                 |        |              |                                 |       |
| Close #2, #1                                                                                                                        |                   |        |              |                                 | -     |
|                                                                                                                                     |                   |        |              |                                 | ►//   |

•

14. ArcView 3.1sol, tmax, tminrainDSSATwth fileczumatchQuick Basic

#### czu match text file

.wth file join



.

C++

C ++

| Khon0         | 100, wth | - 메모깅 | 갈               |               |      | - D × |       |       |          |
|---------------|----------|-------|-----------------|---------------|------|-------|-------|-------|----------|
| 파일(E)         | 편집(물     | ) 찾기  | ( <u>S</u> ) 도움 | 말( <u>H</u> ) |      |       | Ъ,    |       |          |
| <b>WEATHI</b> | ER DAT   | A:s   | uwon            |               |      |       |       |       | <b>^</b> |
| @ INSI        |          | LAT   | LONG            | ELEV          | TAV  | AMP   | REFHT | WNDHT |          |
| KHSW          | 37.      | 270   | 126.980         | 37            | 11.9 | 9.6   | 1.5   | 10.0  |          |
| <b>@DATE</b>  | SRAD     | TMAX  | TMIN            | RAIN          |      |       |       |       |          |
| 93001         | 8.9      | 5.9   | -7.9            | 0.0           |      |       |       |       |          |
| 93002         | 7.1      | 9.3   | -4.4            | 0.0           |      |       |       |       |          |
| 93003         | 5.8      | 7.2   | -3.3            | 0.0           |      |       |       |       |          |
| 93004         | 8.1      | 2.7   | -6.3            | 0.0           |      |       |       |       |          |
| 93005         | 8.7      | 4.0   | -9.1            | 0.0           |      |       |       |       |          |
| 93006         | 3.8      | 6.0   | -5.3            | 0.0           |      |       |       |       |          |
| 93007         | 2.0      | 3.6   | -1.9            | 0.0           |      |       |       |       |          |
| 93008         | 5.4      | 5.5   | -4.2            | 0.0           |      |       |       |       |          |
| 93009         | 2.4      | 5.3   | -0.0            | 3.7           |      |       |       |       |          |
| 93010         | 6.0      | 5.7   | -3.0            | 0.0           |      |       |       |       |          |
| 93011         | 7.8      | 3.3   | -6.0            | 0.0           |      |       |       |       |          |
| 93012         | 8.4      | 3.3   | -8.2            | 0.0           |      |       |       |       |          |
| 93013         | 3.2      | 2.0   | -5.1            | 0.0           |      |       |       |       |          |
| 93014         | 1.5      | 0.5   | -2.6            | 1.3           |      |       |       |       |          |
| 93015         | 1.7      | -0.3  | -5.1            | 0.0           |      |       |       |       |          |
| 93016         | 8.3      | -0.1  | -7.2            | 0.0           |      |       |       |       |          |
| 93017         | 6.6      | 1.5   | -7.8            | 0.4           |      |       |       |       |          |
| 93018         | 5.4      | -2.7  | -6.9            | 0.8           |      |       |       |       |          |
| 93019         | 9.0      | -1.2  | -11.2           | 0.1           |      |       |       |       |          |
| 93020         | 10.2     | -0.5  | -10.4           | 0.0           |      |       |       |       |          |
| 93021         | 11.2     | 1.1   | -12.6           | 0.0           |      |       |       |       |          |
| 93022         | 10.7     | 3.5   | -11.4           | 0.0           |      |       |       |       | -        |
| Ŧ             |          |       |                 |               |      |       |       |       |          |

simulation

wth file

#### . **DSSAT 3.5**

#### DSSAT 3.5

| R            | RICER980    |     | simulation |            |
|--------------|-------------|-----|------------|------------|
| simulation   | Windowsフト   | DOS |            | DSSAT      |
| 3.5          | silmulation |     |            | simulation |
| run.bat file |             |     |            |            |

한글 MS-DOS - MINPTSB ■ □ □ □ @ ₩ ₩ # **A** 59 94 150 21052 7950 7950 8161  $\frac{513}{533}$ 303 325 0 21861 0 21847 221 221 0 1336 1421 1300 1409 52 353 PESH TNUP THLC THLF FLO MAT TOPWT SEEDW TRAIN TIRR TSON UN TRI TSOC 94 98 082 93. DSSAT 3.5 RICER980 simulation

| simulation  | summary | file(*.ris) | , | ris file |
|-------------|---------|-------------|---|----------|
| ArcView 3.1 | mapping | MS Excel    |   | database |
| file(*.dbf) |         | .dbf file   |   |          |

| <mark>고</mark> K<br>파일 | hob9<br>(E) | 1903, ri<br>폐지 | s - 메모장<br>(F) : 찾기(S) | 도운막(비)     |            |                |       |       |       |       |      |         |      |    |
|------------------------|-------------|----------------|------------------------|------------|------------|----------------|-------|-------|-------|-------|------|---------|------|----|
| *SU                    | MMAI        | RY :           | KHCB9903R)             | CHUNGBUK   | _          | -              | -     | -     | -     | -     | _    | -       | _    | _  |
| ! I D                  | ENT         | IFIE           | łs                     |            |            | DATES          |       |       |       |       | DRY  | WEIGHTS |      |    |
| aRP                    | TN          | ROC            | CR TNAM                |            | FNAM       | SDAT           | PDAT  | ADAT  | MDAT  | HDAT  | DWAP | CWAM    | HWAM | ٦. |
| 1                      | 1           | 110            | RI                     | KHCB 01 01 | KHCB0101   | 99150          | 99150 | 99248 | 99315 | 99315 | 17   | 22609   | 8095 | ł. |
| 2                      | 2           | 110            | RI                     | KHCB 01 02 | KHCB 01 02 | 99150          | 99150 | 99246 | 99305 | 99305 | 17   | 22109   | 8081 | ł. |
| 3                      | 3           | 110            | RI                     | KHCB 01 03 | KHCB 01 03 | 99150          | 99150 | 99242 | 99295 | 99295 | 17   | 21751   | 7674 | •  |
| 4                      | 4           | 110            | RI                     | KHCB 01 04 | KHCB0104   | 99150          | 99150 | 99247 | 99311 | 99311 | 17   | 22387   | 8180 | ł  |
| 5                      | 5           | 110            | RI                     | KHCB 01 05 | KHCB 01 05 | 99150          | 99150 | 99249 | 99318 | 99318 | 17   | 23905   | 8437 | ł  |
| 6                      | 6           | 110            | RI                     | KHCB 01 06 | KHCB 01 06 | 99150          | 99150 | 99243 | 99298 | 99298 | 17   | 20511   | 7701 |    |
| 7                      | 7           | 110            | RI                     | KHCB 01 07 | KHCB0107   | 99150          | 99150 | 99250 | 99336 | 99336 | 17   | 22549   | 8211 |    |
| 8                      | 8           | 110            | RI                     | KHCB 01 08 | KHCB 01 08 | 99150          | 99150 | 99250 | 99328 | 99328 | 17   | 23496   | 7835 |    |
| 9                      | 9           | 110            | RI                     | KHCB 01 09 | KHCB0109   | 99 <u>]</u> 50 | 99150 | 99250 | 99329 | 99329 | 17   | 23971   | 8053 | 1  |
| 10                     | 10          | 110            | RI                     | KHCB0110   | KHCB0110   | 99150          | 99150 | 99241 | 99292 | 99292 | 17   | 19763   | 7742 |    |
| 11                     | 11          | 110            | RI                     | KHCB0111   | KHCB0111   | 99150          | 99150 | 99242 | 99294 | 99294 | 17   | 20288   | 7796 |    |
| 12                     | 12          | 110            | RI                     | KHCB0112   | KHCB0112   | 99150          | 99150 | 99247 | 99307 | 99307 | 17   | 20476   | 7667 |    |
| 13                     | 13          | 110            | RI                     | KHCB0113   | KHCB0113   | 99150          | 99150 | 99248 | 99314 | 99314 | 17   | 22380   | 8171 |    |
| 14                     | 14          | 110            | RI                     | KHCB 02 01 | KHCB0201   | 99150          | 99150 | 99246 | 99305 | 99305 | 17   | 21946   | 7619 |    |
| 15                     | 15          | 110            | RI                     | KHCB 02 02 | KHCB 02 02 | 99150          | 99150 | 99246 | 99304 | 99304 | 17   | 21545   | 8053 | 1  |
| 16                     | 16          | 110            | RI                     | KHCB 02 03 | KHCB 02 03 | 99150          | 99150 | 99248 | 99310 | 99310 | 17   | 22212   | 8164 | 1  |
| 17                     | 17          | 110            | RI                     | KHCB 02 04 | KHCB0204   | 99150          | 99150 | 99248 | 99313 | 99313 | 17   | 23285   | 7851 |    |
| 18                     | 18          | 110            | RI                     | KHCB 02 05 | KHCB 02 05 | 99150          | 99150 | 99249 | 99321 | 99321 | 17   | 22721   | 7902 |    |
| 19                     | 19          | 110            | RI                     | KHCB 02 06 | KHCB 02 06 | 99150          | 99150 | 99244 | 99300 | 99300 | 17   | 21709   | 7897 |    |
| 20                     | 20          | 110            | RI                     | KHCB 02 07 | KHCB0207   | 99150          | 99150 | 99246 | 99304 | 99304 | 17   | 22852   | 8028 |    |
| 21                     | 21          | 110            | RI                     | KHCB 03 01 | KHCB0301   | 99150          | 99150 | 99248 | 99316 | 99316 | 17   | 22167   | 7812 |    |
| 22                     | 22          | 110            | RI                     | KHCB 03 02 | KHCB 03 02 | 99150          | 99150 | 99250 | 99332 | 99332 | 17   | 21457   | 7568 |    |
| 23                     | 23          | 110            | RI                     | KHCB 03 03 | KHCB 03 03 | 99150          | 99150 | 99243 | 99295 | 99295 | 17   | 19319   | 6822 | I. |
| 24                     | 24          | 110            | RI                     | KHCB 03 04 | KHCB0304   | 99150          | 99150 | 99244 | 99300 | 99300 | 17   | 20758   | 7580 |    |
| 25                     | 25          | 110            | RI                     | KHCB 03 05 | KHCB 03 05 | 99150          | 99150 | 99248 | 99313 | 99313 | 17   | 22322   | 7608 |    |
| 26                     | 26          | 110            | RI                     | KHCB 03 06 | KHCB 03 06 | 99150          | 99150 | 99244 | 99298 | 99298 | 17   | 20766   | 7317 |    |
| •                      |             |                |                        |            | 1          |                |       |       |       |       |      |         |      | 1  |

94. RICER980

summary file

| XN     | /licrosoft Ex | cel - 전국읍         | 읍면99_yld,d | bf                |          |                    |                  |            |           | _ 🗆 X    |
|--------|---------------|-------------------|------------|-------------------|----------|--------------------|------------------|------------|-----------|----------|
| 8      | 파일(F) 핀       | 편집( <u>E</u> ) 보: | 게(⊻) 삽입(   | J) 서식( <u>0</u> ) | 도구(T) 데( | ) 터( <u>D</u> ) 창( | <u>#</u> ) 도움말([ | <u>H</u> ) |           | _ 8 ×    |
| D      | i 🖉 🔒 🤅       | 🗐 🗋 🖤             | ¥ 🖻 🖬      | 1 🗸 ท             | • Ci + 🔌 | 🔮 Σ f*             | 강학(              | û 🌒 🐉      | 75% 🖌 🤇   | )        |
| 토      |               |                   | 1 - 7-     | 7/ 71 =           | 三三品      | # 9/               | +.0 .00          |            | - A - 71  | <u>.</u> |
|        |               |                   |            | ~ ⊥ ⇒             |          | W /o j             | .00 +.0          |            | • • • •   | ×        |
|        | Al            | <u> </u>          | = NO       |                   |          |                    |                  |            |           |          |
| - 1011 | A             | В                 | C          | D                 | E        | F                  | G                | H          | In Langer | J 🔽      |
| 1      | NO MYUN       | DO                | KUN        | MYUN              | C_AREA   | E_C_RATE           | M_C_RATE         | L_C_RATE   | E_C_AREA  | /LC_ARE/ |
| 2      | 120101        | 전라남도              | 강진군        | 강진읍               | 1467     | 1,2                | 31,3             | 67,4       | 18        | 45       |
| 3      | 120102        | 전라남도              | 강진군        | 군동면               | 1469     | 1,2                | 31,3             | 67,4       | 18        | 46       |
| 4      | 120103        | ) 전라남도            | 강진군        | 대구면               | 394      | 1,2                | 31,3             | 67,4       | 5         | 12       |
| 5      | 120104        | 전라남도              | 강진군        | 도암면               | 1334     | 1,2                | 31,3             | 67,4       | 17        | 41       |
| 6      | 120105        | 전라남도              | 강진군        | 마량면               | 298      | 1,2                | 31,3             | 67,4       | 4         | 9        |
| 7      | 120106        | ; 전라남도            | 강진군        | 병영면               | 627      | 1,2                | 31,3             | 67,4       | 8         | 19       |
| 8      | 120107        | 전라남도              | 강진군        | 성전면               | 1279     | 1,2                | 31,3             | 67,4       | 16        | 40       |
| 9      | 120108        | 전라남도              | 강진군        | 신전면               | 1025     | 1,2                | 31,3             | 67,4       | 13        | 32       |
| 10     | 120109        | 전라남도              | 강진군        | <b>음</b> 천면       | 415      | 1,2                | 31,3             | 67,4       | 5         | 13       |
| 11     | 120110        | ) 전라남도            | 강진군        | 작천면               | 1115     | 1,2                | 31,3             | 67,4       | 14        | 34       |
| 12     | 120111        | 전라남도              | 강진군        | 칠량면               | 1019     | 1,2                | 31,3             | 67,4       | 13        | 31       |
| 13     | 120201        | 전라남도              | 고홍군        | 고총읍               | 499      | 0,1                | 18,4             | 81,5       | 0         | 9        |
| 14     | 120202        | 전라남도              | 고홍군        | 자역면               | 689      | 0,1                | 18,4             | 81,5       | 1         | 12       |
| 15     | 120203        | 전라남도              | 고홍군        | 금산면               | 380      | 0,1                | 18,4             | 81,5       | 0         | 7        |
| 16     | 120204        | 전라남도              | 고홍군        | 남양면               | 894      | Q,1                | 18,4             | 81,5       | 1         | 16       |
| 17     | 120205        | 전라남도              | 고홍군        | 대서면               | 1058     | 0,1                | 18,4             | 81,5       | 1         | 19       |
| 18     | 120206        | 전라남도              | 고홍군        | 도덕면               | 1023     | Q1                 | 18,4             | 81,5       | 1         | 18       |
| 19     | 120207        | 전라남도              | 고홍군        | 도양읍               | 472      | 0,1                | 18,4             | 81,5       | 0         | 8        |
| 20     | 120208        | 전라남도              | 고총군        | 도화면               | 710      | Q1                 | 18,4             | 81,5       | 1         | 13       |
| 21     | 120209        | 전라남도              | 고홍군        | 동강면               | 1270     | Q1                 | 18,4             | 81,5       | 1         | 23       |
| 22     | 120210        | 전라남도              | 고홍군        | 동일면               | 195      | 0,1                | 18.4             | 81.5       | 0         | 3        |
| 23     | 120211        | 전라남도              | 고홍군        | 두원면               | 925      | 0,1                | 18,4             | 81,5       | 1         | 17       |
| 24     | 120212        | 전라남도              | 고홍군        | 봉래면               | 87       | 0.1                | 18.4             | 81.5       | 0         | 1        |
| 25     | 120213        | 전라남도              | 고홍군        | 영남면               | 368      | 0.1                | 18.4             | 81.5       | 0         | 6        |
| 26     | 120214        | 전라남도              | 고홍군        | 점암면               | 988      | 0,1                | 18.4             | 81.5       | 1         | 18 🔻     |
| 4      | ▶ N\전=        | 국읍면99_v           | ld/        | 1.4.6.5           |          |                    |                  |            |           | •        |
| 준비     | ľ,            |                   |            |                   | 1        | J                  | 1                | j          | NUM       |          |

95. Summary file dbf

#### . ArcView 3.1

| .dbf file   |   | A             | ArcView 3.1 | . View |
|-------------|---|---------------|-------------|--------|
| CZU1455.shp |   | , theme table |             | dbf 가  |
| table       | 가 | No_myun       | join        |        |

•



96. Attributes of CZU1455.shp table dbf table join

#### CZU1455.shp table

-

apply



97. Join dbf table









(spread sheet)

## 가

.

,

216

. GIS , , • DOS (Disk Operating System) GIS , GUI (Graphic User Interface) • GIS 가 가 . 가 GIS GIS 가 (decision - making support system) 가 GIS database 가 가 가 (expert system) database , GIS . JAMaica Geographic Information System (JAMGIS ; Batjes, 1989), the Dominican Republic Expert Agricultural Geographic Information System (DREAGIS ; Mendez and Grabski, 1992)

가

.

(Calixte et al., 1992) AEGIS-2 (Papajorgji et al., 1993) GIS , IBSNAT (International Benchmark Sites Network for Agrotechnology Transfer) GIS ARC/INFO 가 . 가 GIS -(Wei et al., 1994). UNIX GIS GIS • . ArcView (ESRI, 1996) Engel et al.(1997) GIS IBSNAT AEGIS/WIN . (1997A) 가 ARC/INFO ( , 1997B). Yun and Taylor(1998) ARC/INFO . GIS ,

GIS

.

.

218
DSSAT

(Decision Support Systems for Agrotechnology Transfer; Tsuji et al., 1996), GIS ArcView GIS (ESRI, 1996) , , . DSSAT Version 3.5 CERES CROPGRO 16 • , (Jones and Tsuji, 1996). ArcView GIS ESRI (Environmental Systems Research Institute) GIS (Windows 95/98/NT, UNIX) 가 , Version 3.0a MS-Windows . ARC/INFO coverage , Shape file format (Object -Oriented Programming Language) ArcView Avenue(ArcView scripts macro language) . (attribute table), GIS ,

219

2.





.







, 가 . , , , , , 가 (,, ) 가 .

3.

가.

가 (CZU) 1,455 polygon shape . , , 가 . 3 (1999) , • 3 ( , 1997) CZU . , , 가 가

ArcView GIS 3.1 DSSAT v3.5

. DSSAT v3.5

.

| 가 590 kilo bytes       | ,               | 25 mega bytes |         |          |          |  |
|------------------------|-----------------|---------------|---------|----------|----------|--|
| . ArcVie               | ew GIS 3.1      | Windows       | 95/98(  | NT 4     | 4.0)     |  |
|                        |                 |               | 84 meg  | a bytes  |          |  |
|                        |                 |               | , CFS.a | pr (Crop | Forecast |  |
| System, ArcView Projec | t file), Rice_* | .shp (        |         |          | ),       |  |
| Rice_*.shx (           | ), Rice_*.db    | f (           | )       | GIS      |          |  |
| kh??990?.rix (         | ), kh??*.w      | vth (         | ),      | kh.sol   | ( ),     |  |
| exp.lst ( ), output    | t.lst (         | )             |         |          |          |  |
| . CFS.apr A            | rcView          |               |         |          |          |  |
|                        |                 |               |         |          |          |  |

CZUshape(Rice\_??.shp).CZU71,(Fig.

•

23). CZU 7, , . CZU (polygon)

 71
 .
 1995
 ( , 1996; CD-ROM

 )
 .



Fig. 23 Start of the rice crop evaluation program.





,

•

Fig. 25



Fig. 24 A sample screen showing the rice yield variation in Kyungnam Province and the estimated crop size of each CZU based on the 1995 acreage survey.



Fig. 25 A sample screen for comparing the simulated (left) and the M AF reported rice production (right) of each County.



가 가

가

| `98   | `97          |                     | ,                        | , |
|-------|--------------|---------------------|--------------------------|---|
|       |              | sin                 | ulation                  |   |
|       | . `98        | 3,48                | 88 7,730 <b>kg</b> /ha   |   |
|       | , `97        | , 6,765             | 9,008 <b>kg</b> /ha      |   |
|       | . `97        | 4,620               | 7,970 <b>kg</b> /ha, `98 |   |
| 4,500 | 7,500 kg/ha  |                     |                          |   |
| 1999  | 9            | ,                   | 1                        |   |
| 7,331 | kg/ha        | 가                   |                          |   |
| 7,906 | kg/ha        |                     | 6,676 <b>kg</b> /ha      | 가 |
|       |              |                     | 6,687 <b>kg</b> /ha,     |   |
|       | 7,331 kg/ha, |                     | 7,014 kg/ha              |   |
|       | ,            | 7,467 <b>kg</b> /ha | 가                        |   |

1. `99

(kg/ha)

| 7,467 | 7,597 | 8,665  | 7,906 |
|-------|-------|--------|-------|
| 6,667 | 7,226 | 8,283  | 7,392 |
| 6,480 | 7,283 | 8,299  | 7,354 |
| 6,322 | 7,377 | 8,205  | 7,301 |
| 6,660 | 6,955 | 6,4 13 | 6,676 |
| 5,990 | 6,957 | 7,813  | 6,915 |
| 6,523 | 7,521 | 8,522  | 7,518 |
| 7,465 | 7,733 | 7,561  | 7,586 |
| 6,697 | 7,331 | 7,014  | 7,331 |
|       |       |        |       |

5,990 kg/ha 기 • , 7,733 **kg**/ha 가 6,955 가 . 가 8,665 kg/ha 6,413 kg/ha 기 . 1998 , 2 , 5,547 **kg**/ha 가 6,218 kg/ha 기 5,046 **kg**/ha . 4,799 kg/ha 5,475 **kg**/ha 가 4,034 kg/ha 7 . 5,391 **kg**/ha 6,395 **kg**/ha 가 4,033 kg/ha 기 •

2. `98 (kg/ha)

| 4,799     | 5,391 | 6,112 | 5,547  | 6,324 |
|-----------|-------|-------|--------|-------|
| <br>5,273 | 5,872 | 6,908 | 6,018  | 6,328 |
| 5,232     | 5,641 | 6,821 | 5,898  | 6,796 |
| 4,448     | 5,334 | 5,882 | 5,221  | 6,745 |
| 4,648     | 5,409 | 5,951 | 5,336  | 6,588 |
| 4,533     | 5,037 | 5,568 | 5,046  | 5,957 |
| 4,034     | 4,033 | 4,648 | 5,138  | 6,063 |
| 4,751     | 5,409 | 6,337 | 5,499  | 6,227 |
| 5,475     | 6,395 | 6,784 | 6,2 18 | 5,890 |

|                     |                     | 6,112               | 2 <b>kg</b> /ha | 6,908                  |
|---------------------|---------------------|---------------------|-----------------|------------------------|
| <b>kg</b> ∕ha       | 가                   |                     |                 | 4,648 <b>kg</b> /ha    |
|                     | 가                   |                     | 1998            |                        |
|                     | 6,324 <b>kg</b> /ha |                     |                 | 6,796 <b>kg</b> /ha    |
| 가                   |                     | 5,890               | <b>kg</b> ∕ha   | 가                      |
|                     |                     |                     |                 |                        |
| 1997                |                     |                     |                 | 3,                     |
|                     | 7,145 <b>kg</b> /ha |                     | :               | フト 7,584 <b>kg</b> /ha |
| 가                   |                     | 6,788 <b>kg</b> /ha |                 | 가 가                    |
|                     |                     |                     |                 | 6,371 kg/ha            |
|                     | 가 6,736 kg/         | ha                  | 가               |                        |
| 5,922 <b>kg</b> /ha |                     | 가 가                 |                 |                        |
|                     |                     |                     |                 |                        |

3. `97 (kg/ha)

| -     | 7,161 | 7,388 | 7,275 | 6,373 |
|-------|-------|-------|-------|-------|
| 6,048 | 6,763 | 7,992 | 6,934 | 6,465 |
| 5,922 | 6,681 | 7,776 | 6,793 | 6,497 |
| 6,448 | 7,096 | 8,082 | 7,208 | 6,727 |
| 6,308 | 7,088 | 6,968 | 6,788 | 7,120 |
| 6,736 | 6,865 | 7,702 | 7,101 | 7,019 |
| 6,474 | 7,372 | 8,589 | 7,478 | 7,450 |
| 6,658 | 7,462 | 8,632 | 7,584 | 6,757 |
| 6,371 | 7,061 | 7,891 | 7,145 | 6,807 |

7,061 kg/ha

,

|       | 7,462         | <b>kg</b> ∕ha | 가                 | 6,681 | kg∕ha               |
|-------|---------------|---------------|-------------------|-------|---------------------|
|       | :             | 가 가           |                   |       |                     |
| 7,891 | <b>kg</b> ∕ha |               | 가                 |       |                     |
| 8,632 | <b>kg</b> ∕ha |               | 가                 |       | 6,968 <b>kg</b> /ha |
|       |               |               | 1997              |       | 6,807 kg            |
| /ha   |               | 가             |                   |       | 7,450 <b>kg</b> /ha |
|       |               | 6,            | 373 <b>kg</b> /ha | 가     |                     |
|       |               |               | GIS               |       |                     |

. 29

| , 19            | 92:        |                    |              | (III). 379pp. |
|-----------------|------------|--------------------|--------------|---------------|
| , 1988          | 1997:      |                    | , .          |               |
|                 |            | , 1995: '95        |              |               |
| , 19            | 89-1997:   |                    |              |               |
| ,               | , ,        | 1999:              | 15(1), 9-20. | /             |
| ,               | , ,        | ,<br>가             | , , 1997B:   |               |
| 33(3), 409-427. |            |                    |              |               |
| ,               | <b>, ,</b> | 1997A:<br>, 42(5), | 579-596.     |               |
| ,               | , 1999:    | , 1(1), 12-19      |              |               |

Batjes, N. H., 1989: Matching of land use requirements with land qualities using the Jamaica physical land evaluation system. Tech. Bull. 15. Soil Survey Project (RRPD), Kingston, Jamaica.

Calixte. J. P., J. W. Jones, and H. Lal, 1992: Developer's guide for AEGIS v1.00, Agric. Eng. Dep., Univ. of Florida, Gainsville, FL.

Engel, T., G. Hoogenboom, J. W. Jones, and P. W. Wilkens, 1997: A computer program for the application of crop simulation models across geographic areas. *A gronomy Journal*, 89, 919-928.

Engel, T., and J. W. Jones, 1995: *AEGIS/WIN User's Manual*, Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL.

Engel, T., J. W. Jones, G. Hoogenboom, 1995: Visualization and comparison of crop simulation results using AEGIS/WIN. In: *Proceedings* of 25th annual workshop on crop simulation.

ESRI, 1996: A rcView, The Geographic Information System for Everyone, Environmental Systems Research Institute, Inc., Redlands, CA.

ESRI, 1996: Using Avenue: Customization and Application Development for ArcView. Environmental Systems Research Institute, Redlands, CA.

Lal, H., G. Hoogenboom, J. P. Calixte, J. W. Jones, and F. H. Beinroth, 1993: Using crop simulation models and GIS for regional productivity analysis. *Trans. A SA E*, 36, 175-184.

Mendez, D., and S. V. Grabski, 1992: A knowledge-based agricultural geographic information system for the Dominican Republic. In: C. K. Mann and S. R. Ruth(eds.) *Expert system in developing countries: Practice and promise*. Westview Press, Boulder, CO, p127-145.

Papajorgji, P., J. W. Jones, J. P. Calixte, F. H. Beinroth, and G. Hoogenboom, 1993: A generic geographic decision support system for estimating crop performance. In: Proceedings "Integrated Resource Management and Landscape Modifications for Environmental Protection". ASAE. St. Joseph, MI, p 340-348.

Thornton, P. K., G. Hoogenboom, P. W. Wilkens, and W. T. Bowen, 1995: A computer program to analyze multiple-season crop model outputs. *A gronomy Journal*, 87, 131-136.

Thornton, P. K., H. W. G. Booltink, and J. J. Stoorvogel, 1997: A computer program for geostatistical and spatial analysis of crop model outputs. *A gronomy Journal*, 89, 620-627.

Tsuji, G. Y., G. Uehara, and S. Balas (Eds.), 1996: DSSAT version 3. IBSNAT, University of Hawaii, Honolulu, HI.

Wei, Y., G. Hoogenboom, R. W. McClendon, and D. D. Gresham, 1994: Impact of climate change on crop production at a farm level. *A SA E*. *P ap er* 94-3523.

Yajima, M., 1996: Monitoring and forecasting of rice growth and development using crop-weather model. In: R. Ishii and T. Horie(eds.), Crop Research in Asia: A chievements and Perspective. Asian Crop Science Association, p280-285.

Yun. J. I., and S. E. Taylor, 1998: Modeling soil temperature of sloped surfaces by using a GIS technology. *Korean J. Crop Sci.*, 43(2): 113-119.

6 4 - - -1,455 , . . (70 ) () (http://weather.affis.or.kr) (AFFIS 1500). 7 (Growing Degree Days) , (Agroclimatic Index)

AFFIS 1500

.

,

(http://aegis.kyunghee.ac.kr)

.

.

,

| 가 | , | map | image |
|---|---|-----|-------|
|   |   |     |       |

가 가 가 . 가 가 가 가 가 가

・ アト . " , " 21 アト フト



## Penman - Monteith

.

· , (,, ) (,, , ), (,, , ), (,, , , , )

.

,

.

, .

, 가 -

234

.