

Development of Portable Analytical Instrument for Trace Hazardous Heavy Metals in Agricultural Product

1999. 10. 25.

: : : :

:

•

"

"

I.

II.

가,,,, . 가 가,,가 . .

, . ICP() . ICP

가 (Ar) 가 . ICP 가 . ,

- 2 -

,

ICP		,		
71				
71				
		,	UR	₩ГО
	·			
-1				
71				가
	Hol l ow	Cathode Glow	Di scharge-At	comic Emission
Spectrometry	(HCCD_AFS)			1991
speccerometery	(IICOD-ALS)			
1993			Ames L	ab.
1993	, 1994 7 1	3	Ames L	ab.
1993	, 1994 7 1	3	Ames L	ab.
	, 1994 7 1	3	Ames L	ab.
	, 1994 7 1	3	Ames L	ab.
	, 1994 7 1	3 ,	Ames L	ab.
	, 1994 7 1	3 ,	Ames L	ab.
	, 1994 7 1: 2000K가	3 , ,	Ames L	ab.
가가,	(IICUI - ALLS) , 1994 7 1: 2000K가 기	3 , ,	Ames L 7 . H	ab. CGD- AES

- 3 -

• 가 가 , • , 가 ,

HCGD- AES

•

III.

가 • , , I CP-AES , .

I CP- AES

,

• , " "

> 가 I CP

•

- 4 -

•

,

,

•

,

Del phi 3.0

•

,

,

- 5 -

		6	for GDS-P1
version 1'	Del phi 3.0		98
I CP-AES			
			•
	,	1 , 2	
•			
	•		

,

•

가 가

IV.

,

,

가 7000K 가 I CP-AES • I CP- AES • 가 가 , 가 • 가 가 50 mA (), 40 mA (), 60 mA () . 가 가 가 가 . , 가 가

가 가, , (RSD)가 1

•

가

,

•

가 가 . **PM**

10 가 , 10 . . 가 . -ICP -ICP

가 . 가

, DC

. NI ST Na RF DC .

•

•

- 7 -

•

•

가

2

가 1

•

•

•

RF

- 8 -

.

.

. " " 1

SUMARY

This research focuses on development of portable atomic emission spectrometry(AES) for the trace analysis of heavy elements founded in agricultural products. For this purpose, glow discharge was used and the developed GD-AES showed several advantages, which were small volume, low power consumption, low maintenance cost, etc. We developed new glow discharge cell that showed similar excitation temperature, 7,000 K, as inductively coupled plasma(ICP). This cell will be patented. The glow discharge(GD) cell is a see-through type and continuous gas flow is required under low pressure(about 2-5 torr). But low gas consumption and low electric power are needed. Two sample introduction units were developed. One was direct sample insertion type and the other was developed based on electro-thermal vaporization(EIV). Two models of GD-AES were designed and both systems were examined. ETV-GD-AES is currently developed as a commercial product. That is an inexpensive system with comparable quality of analytical performance. Mostly direct current glow discharge(DCGD) was used for our new system but radio frequency glow discharge(RFGD) was also investigated. DCGD and RFGD show similar detection limit as well as excitation temperature but cathode materials for two techniques are quite different due to their different plasma forming mecanism DCCD uses conducting material such as stainless steel tubes and RFCD uses non-conducting materials such as a quarts tube. Both cases are tested for different samples. We developed two type of RFGD systems that were capacity type RFGD and induction type RFGD, so called low pressure-ICP(LP-ICP). Both techniques were examined and their analytical performances showed similar results except excitation temperature and sample introduction. However, we prefer DCCD because of quite simple to make plasma and easy to use as well as high excitation temperature(7,000 K).

- 9 -

To make portable GD-AES, we try to use line filters as a wavelength selector and PMT as a light detector. But the line filter is still not enough for emission spectroscopy so as to select emission line of each element. We try to use a 30 cm focal length monochromator with a PMT or a CCD(charge coupled device) as a detector. A CCD detector is a bit expensive but its high sensitivity and many wavelength detection are considered as merits. Commercial version will use a 30 cm f.l. nonochromator and PMT. Program for operation is designed with Dephi 3.0 and also analytical program, so called Hanbit GDS-P1, is developed. All the programs are designed to use under Window 98 environment. In addition, a database software is developed with LabDB. The database program is inserted into a main program to get easy comparison of analytical data as well as information. We introduced an artificial neural network in order to improve the precision and accuracy when atomic emission spectrometer is used. The results showed better precision as well as accuracy for the ICP-AES and the technique may apply to GD-AES. These techniques are published and get modified for better modeling.

Our goal is in-intu monitoring of trace elements contained in agricultural products such as rice powder, vegetable, and fruit. It means that this technique can be used for fast inspection of imported agricultural products and even domestic products. Our GD-AES is still needed to approve its analytical procedure and method. But its analytical performance is similar with ICP-AES yet, which means the performance being good for trace analysis of agricultural products. Several elements of standard rice sample purchased from KRISS were examined for analysis with GD-AES and the results were compared with ICP-AES and mass spectrometric data. We found that the results showed somewhat close the given values of the standard rice sample. However, some elements were not quite close the given values since sample preparation and storage were not quite good to reserve the spiked elements. Trace amount of mercury found in imported kiwi fruits when we used GD-AES with direct sample insertion. But it is hard to get same value from ICP-AES due to sample preparation as well as small amount of mercury in the kiwi fruit. For we need to develop standard analytical method with justification, DI-GD-AES(direct insertion glow discharge-atomic emission spectrometry). Our system is still modified for better detection limit and more element detection ability. Currently, mercury, lead and cadnium were major elements to be

- 10 -

tested. These elements may be useful to analyze with GD-AES and the calibration curve shows good linearity and dynamic range.

New glow discharge-atomic emission spectrometry is a step ahead for in-situ analysis of trace analysis of agricultural products, which can not be done with ICP-AES. This work shows new analytical instrument as well as new technique but we need to be careful to verify the analytical instrument, see-through hollow cathode GD-AES. Even though its analytical techniques are similar as ICP-AES, the new system should be included in standard methode of food analysis before we need to use GD-AES. The more effort should be done on development of better instrument as a commercial model and we will see the GD-AES for agricultural product analysis in a market near future.

CONTENTS

Chapter 1. Introduction	19
A. Background and requirement of the study	19
B. Scope and object of the study	23
Chapter 2. Part of database on analytical information	24
A. Introduction	24
B. Insetting into the analytical program of database	
programs	24
1. LabDB program	24
Chapter 3. Part of development and characterization study	
on portable analytical instrument	31
A. Development of high temperature glow discharge (GD)	
call making use of nortable atomic anission spectrometer	r
cert liaking use of portable atomic emission spectronete	
	01
1 1 Interduction	31
1-1. Introduction	31 31))
1-1. Introduction 1-2. Structure of See through hollow cathode glow discharge (st-HCG cell	31 31)) 32
 1-1. Introduction 1-2. Structure of See-through hollow cathode glow discharge (st-HCGI cell 1-3. Study on optimized condition of high temperature GD cell 	31 31)) 32 34
 1-1. Introduction 1-2. Structure of See-through hollow cathode glow discharge (st-HCGI cell 1-3. Study on optimized condition of high temperature GD cell a. Array of instruments for the purse of investigation to 	31 31)) 32 34
 1-1. Introduction 1-2. Structure of See-through hollow cathode glow discharge (st-HCGI cell 1-3. Study on optimized condition of high temperature GD cell a. Array of instruments for the purse of investigation to characteristics of GD cell 	31 31)) 32 34 34
 1-1. Introduction 1-2. Structure of See-through hollow cathode glow discharge (st-HCGI cell 1-3. Study on optimized condition of high temperature GD cell a. Array of instruments for the purse of investigation to characteristics of GD cell b. Measurement of Breakdown Voltage 	31 31)) 32 34 34 36
 1-1. Introduction 1-2. Structure of See-through hollow cathode glow discharge (st-HCGI cell 1-3. Study on optimized condition of high temperature GD cell a. Array of instruments for the purse of investigation to characteristics of GD cell b. Measurement of Breakdown Voltage c. Measurement of 1/f noise 	 31 31 32 34 34 36 37
 1-1. Introduction 1-2. Structure of See-through hollow cathode glow discharge (st-HCGI cell 1-3. Study on optimized condition of high temperature GD cell a. Array of instruments for the purse of investigation to characteristics of GD cell b. Measurement of Breakdown Voltage c. Measurement of 1/f noise	 31 31 32 34 34 36 37 37
 1-1. Introduction 1-2. Structure of See-through hollow cathode glow discharge (st-HCGI cell 1-3. Study on optimized condition of high temperature GD cell a. Array of instruments for the purse of investigation to characteristics of GD cell b. Measurement of Breakdown Voltage c. Measurement of 1/f noise d. Measurement of excitation temperature e. Observation of corrosion and variation of inside the cathode 	 31 31 32 34 34 36 37 37
 1-1. Introduction 1-2. Structure of See-through hollow cathode glow discharge (st-HCGI cell 1-3. Study on optimized condition of high temperature GD cell a. Array of instruments for the purse of investigation to characteristics of GD cell b. Measurement of Breakdown Voltage c. Measurement of 1/f noise d. Measurement of excitation temperature e. Observation of corrosion and variation of inside the cathode surface	 31 31 32 34 34 36 37 37 38
 1-1. Introduction 1-2. Structure of See-through hollow cathode glow discharge (st-HCG cell 1-3. Study on optimized condition of high temperature GD cell a. Array of instruments for the purse of investigation to characteristics of GD cell b. Measurement of Breakdown Voltage	 31 31 32 34 34 36 37 37 38 38
 1-1. Introduction 1-2. Structure of See-through hollow cathode glow discharge (st-HCGI cell 1-3. Study on optimized condition of high temperature GD cell a. Array of instruments for the purse of investigation to characteristics of GD cell b. Measurement of Breakdown Voltage c. Measurement of 1/f noise d. Measurement of excitation temperature e. Observation of corrosion and variation of inside the cathode surface	 31 31 32 34 34 36 37 37 38 38 38 38
 1-1. Introduction 1-2. Structure of See-through hollow cathode glow discharge (st-HCGI cell 1-3. Study on optimized condition of high temperature GD cell a. Array of instruments for the purse of investigation to characteristics of GD cell b. Measurement of Breakdown Voltage	 31 31 32 34 36 37 37 38 38 38 40

B. Study on sample introduction for agricultural	
products analysis	- 44
2-1. Analysis of fruit by using DI-DC-HCGD	- 44
a. Background signal of argon (Ar)	- 44
b. Spectrum of Pb, Hg and Cd	- 44
c. Observation of plasma and sample introduction	- 45
d. Calibration curve on Pb, Hg and Cd	- 45
e. Spectrum of Hg and Pb in real samples	- 45
2-2. Analysis of fruit by using ETV-DC-HCGD	- 47
a. Instruments	- 47
b. Experiment	- 49
C. Study on characteristics of DC and RF glow	
discharge	- 50
3-1 Development of DC-HCCD (Direct Current-Hollow Cathode	00
Glow Discharge) cell	- 50
a Instruments and reagents	- 52
b Experiments	- 53
c. Result and discussion	- 54
3-2. Development of RF-HCGD (Radio Frequency-Hollow Cathode	-
Glow Discharge) cell	- 62
a. Instruments and reagents	- 62
b. Experiments	- 63
c. Result and discussion	- 70
Chapter 4. Manufacturing of prototype product and	
development of operating program	- 72
A. Development of operating program	72
1-1. Theoretical background for construction of calibration	
curve	72
a. regression analysis	72
b. Method of least squares	73
1-2. Program development for use of improving the control and	
analytical power	75
a. Development of HanBit program for use of portable spectrometer	
equipped with A/D amplifier	75

(1) construction of calibration curve in the program	76
(2) Experiments in the program	77
(3) Searching in the program	78
(4) Output of report in the program	79
b. Control and analysis programs for a prototype product	81
(1) Experimental set-up	81
(2) Experimental condition	82
(3) Experiment of calibration curve	85
(4) construction of calibration curve	86
(5) Quantitative analysis	87
c. Development of spectrum analysis method by using artificial	
neural network for heavy metal analysis	90
(1) Artificial neural network	90
(2) Structure of artificial neural network	91
(3) Training process of artificial neural network	92
	92
(4) Process of artificial neural network	
(4) Process of artificial neural networkB. Study on design of prototype product	98
(4) Process of artificial neural networkB. Study on design of prototype product2-1. Portable prototype product	98 98
 (4) Process of artificial neural network B. Study on design of prototype product 2-1. Portable prototype product 2-2. Design for the products	98 98 99
 (4) Process of artificial neural network B. Study on design of prototype product 2-1. Portable prototype product 2-2. Design for the products 	98 98 99
 (4) Process of artificial neural network B. Study on design of prototype product 2-1. Portable prototype product 2-2. Design for the products Chapter 5. Part of comparison with HCGD and mass 	98 98 99
 (4) Process of artificial neural network B. Study on design of prototype product 2-1. Portable prototype product 2-2. Design for the products Chapter 5. Part of comparison with HCGD and mass spectrometer in agricultural products 	98 98 99
 (4) Process of artificial neural network B. Study on design of prototype product 2-1. Portable prototype product 2-2. Design for the products Chapter 5. Part of comparison with HCGD and mass spectrometer in agricultural products analysis 	98 98 99 100
 (4) Process of artificial neural network	98 98 99 100
 (4) Process of artificial neural network	98 98 99 100
 (4) Process of artificial neural network	98 98 99 100 100
 (4) Process of artificial neural network	98 98 99 100 100
 (4) Process of artificial neural network	98 98 99 100 100 100
 (4) Process of artificial neural network	98 98 99 100 100 100 100 103
 (4) Process of artificial neural network	98 98 99 100 100 100 100 103 105
 (4) Process of artificial neural network	98 98 99 100 100 100 103 105
 (4) Process of artificial neural network	98 98 99 100 100 100 100 103 105
 (4) Process of artificial neural network	98 98 99 100 100 100 100 103 105 110 110
 (4) Process of artificial neural network	98 98 99 100 100 100 100 103 105 110 110 111
 (4) Process of artificial neural network	98 98 99 100 100 100 100 103 105 110 110 111 111

C. Analysis of heavy metal in fruit sample	113
3-1. Analysis of mercury (Hg) in fruit sample	113
3-2. Caution	113
Reference	114

1		 19
1		 - 19
2		 23
9		94
~		 · 24
I		 24
2		
		 - 24
1. L	abDB	 - 24
3		 31
1		
-		91
1 1		 • 31
l-l.		 31
1-2.		 32 24
1-3. 7ŀ		 34 24
-1.	Broakdown Voltage	 36
•	1/f	 37
		 37
		 38
1-4.		 38
가.		 38
		 40
		 42
2		 44
2-1.	DI - DC- HCGD	 44
가.		 44
	, ,	 44
		 45

- 16 -

•	,	,		- 4	1 5
•				- 4	1 5
2-2.	EIV-DC-H	ICGD		- 4	17
가.				- 4	17
•				- 4	19
3	DC	RF		- 5	50
3-1.	DC-HCGD	(Direct	: Current-Hollow Cathode Glow Discharge)		
				- 5	50
가.				- 5	52
•				- 5	53
•				- 5	54
3-2.	RF-HCGD	(Radi o	Frequency-Hollow Cathode Glow Discharge)		
				- 6	32
가.				- 6	32
•				- 6	33
•				- 7	70
4				· _	72
1					72
1-1.					72
가.		(regres	sion analysis)		72
					73
1-2.					75
가.	A/D Ampl	ifier	-		75
(1))				76
(2))				77
(3))				78
(4))				79
•					81
(1))				81
(2))				82
(3))	-			85
(4))	-			86
(5))				87
•					
					90

(1)	90
(2)	91
(3)	92
(4)	92
2	98
2-1.	98
2-2.	99

5 HCGD

				100
1	HCGD-	AES		100
1. H	CGD-AES			100
가.				100
•	(P)			103
•	(Pb)			105
2				110
2-1.				110
2-2.	ICP-AES	HCGD		111
2-3.	ICP-AES	HCGD		111
3				113
3-1.			(Hg)	113
3-2.				113

----- 114

1

1

가,,,, , 가 가 . 가 가 (1-1), 가

. 1-2 .

,

. 1991 ICP() . ICP

, 가 (Ar) 가 . ICP 가

. , ICP ,

- 19 -

•

(Pb)	, ,	
(As)	, , , ,	
(Cu)	, ,	()
(Hg)	,	
(Zn)	, ,	
(Sn)	, , ,	
(Cd)	, ,	

1-2.

() ('95,) (: mg/kg,)

			(:	mg/kg,)
(Cd)	(Cu)	(Pb)	(Zn)	(Cr)
0. 10	4.0	1.0	30.0	-
0. 10	6. 0	1.0	30.0	0.5
0. 10	10. 0	1.5	45.0	1.0
0. 10	20. 0	2.0	30.0	0.3
0. 10	7.0	3.0	20.0	4.5
0. 25	5.0	0.5	15.0	1.0
0. 80	9. 0	5.0	130	3.0
0. 01	8.0	7.0	30	0. 01
1.00	3. 5	3.0	50	6.5
0. 50	5.0	5.0	35	4.5
0. 05	3.0	0.3	20	3.5
0. 30	6. 0	0.8	70	2.5
0. 10	3.0	1.0	20	7.5
0. 10	2.0	0.5	25	2.0

HCGD-AES

, 가

•

•

,

•

	Hol l ow	Cathode	Gl ow	Di scharge-Atomi c	Emi ssi on
Spectrometry	(HCGD-AES)			1	991
1993				Ames Lab.	

, 1994 7 13

•

. HCGD-AES 가가, 가 , 가 .

,

I CP , 가 . ICP HCGD-AES , ICP HCGD-AES 가 가 , , ,

. , Fal k7FANES (Furnace Atomic Nonthermal Excitation Spectrometry)가,

가 , 가 . FANES 가 가

가 , 가 . 가 ,

•

,

HCGD-AES

가

•

•

I CP- AES

) HCGD-AES DC Rf

)

) ICP-AES

I CP-AES

HCGD-AES

HCGD-AES

HCGD-AES

, DB

2

DB

. 가 가

•

1. LabDB

•

가 . ,

- 24 -

2-1

- 25 -

화밀 열기 지	일 열기 자료 입력 자료 검색		지료 분석 🔰 20년 고려는 🗍 전		羽柱引金	帮任用适应 Gen 利息 得到 D	
상업원 경 대					. 1 6	ne era (
은 명 원· 사료 명	공기시료	-	알림파일 원소명	Po		지료 제장	
실현지	이장수			실험메모		자랑 검색	
방전전	# 50		실험적으 공기반응 기체의 모유이어	!로 -기는 분석에 매우		보고서 작성	
방전설 입	tel [2.5]		공기를 유지 관 뛰어난	성화할 수 있다. 리가 용이하며 안정성과 재현성을			
배질 가	≜ [Ar		실험적으 혼탁한 공장에서	!로 증명하였다. 공기가 비산되는 의 사용에 유용하			
가스 뮤	8 1.0		F1.				
가스 뮤	양 [1.0		공장에서 다.	의 사용에 유용하			

2-2

바일 열기 🗌 지	료 입력	자료 경색 📗 저료 분석	-948 JP(E	/ 제문이	·스토 on 지원 관리 p
김색필드 실험	মণ্ড 💌	김색어 이장수	김색세약	2.2.8	석제(0)
실현일자	실험자명	사료명 원소명 방전전류	방전전압	PHT전압	챔버기압 🔺
▶ <mark>980903</mark> 98년6월 20일	이 잘수 nf	ormsion 클라는이장수입니다.계 대 _국 e	[속 찾겠습니까?, <u>No</u>	×	2.5
1					ت ب

2-3

2-4

2-5

2-6

2-7

2-8 2 (2I)

2-9 3 (3D)

2-10

1

3

1-1.

가 , 1902 Paschen • , , • , , 가 , . 가 , 가 Breakdown Voltage 가 가 •

1555056)

. Breakdown Voltage

2000K

(

,

,

. 6500K . 가 가 . 1-2. 3-1 • 가 가 가 , 0- ri ng 가 . • Quartz view Window가 304 •

71.7%, Cr 18.2%, Ni 8.2% . 15.2nn , 2nn, 가 20nn . 가 . 2nn, 4nn . , 3.33 가 . , , 20nn, 2nn, 5nn

가 가 machinable alumina . machinable alumina

, . , 가 가 . 가 가 가

quartz

. .

feedthrough

.

,

- 32 -

•

3-1

(unit: mm)

그림 3-2 see-through Hollow Cathode Glow Discharge Cell 상세 도면 1-3. 고온의 글로우 방전 셸의 최적 특성 연구

가. 셸의 특성 관찰을 위한 기기의 구성

- 34 -

	(KSC)		
(DC power supply	y) .	가	
0 - 200 nA	400- 500 V	•	
			Al catel
2002BB ,		가	
Swagel ok $^{\mathbb{B}}$	Needle Valve		
	가	가	
99. 999% (Ar) 7	•		
	(Fe 385.99nm)		
Jobin Yvon Optical	systems Instruments SA	. Inc SPEX 270	
,	Hananatsu	R636	
	1/f		
	, 1 /1	f LeCroy	9310A
	. 3-3		

,

•
. Breakdown Voltage

Paschen curve pd

3-4.

breakdown voltage

2, 4nm

•

- 36 -

Paschen curve

1/f

1/f

(LeCroy 9310A)

.

350nm	400nm			
Jobi n	Yvon Instruments	SA.	Inc	SPEX 270
	3-5		Pase	chen curve
			2nn	
			,	1

8

Bol tznann-Einstein

- 37 -

, Paschen curve , 140 mA . agi ng 1500 .

,

•

1-4.

.

٠

가.

breakdown voltage breakdown voltage 3-4 Breakdown Voltage(VI) pd 3-5 , Paschen • • 가 Paschen Paschen , 3-5 . 가 pd 가 3-5 . Willians (pd) 가 가 , 가 , breakdown voltage 가 가 , 가 . ,

- 38 -

가

•

가

pd

,

가

pd 5.3 torr·cm 가

.

.

가

Bol tznann-Einstein

•

2nn

- 40 -

가

357.010, 360.668, 360.886, 362.146, 364.039, , 368. 746, 375. 361, 378. 788 nm ga , 18, 65, 10, 50, 45, 2.5, 3.9, 1.7 . 35379, 49434 35856, 49604, 49461, 34040, 44184, 34547 cm-1 가 . 3-1 , 3-8 . , Yb , . **391. 2nm** 2ng, 1ng, 0.5ng 6500 7000K . 1000 2000K가 가 ,

3-1

•

Wavel ength (nm)	Excitation State Energy(cn-1)	ga	Excitation Tenp.	
357.01	35379	18	7110. 26709	± 444. 9222
360. 668	49434	65	6939. 96516	± 329. 56357
360. 886	35856	10	6829.62513	± 432. 54408
362. 146	49604	50	6826. 13713	± 454. 50016
364. 039	49461	45	6921.8567	± 419. 44062
368. 746	34040	2.5	7455.07138	± 418. 38528
375. 361	44184	3.9	6959.96634	± 592. 04781
378. 788	34547	1.7	7307. 37705	± 341. 5597

8 Einstein-Boltznann

(Ln ration of intensity \times $\;$ to gA-value for nultiplets Fe(I) versus excitation energies)

- 42 -

3-9

2-1. DI-DC-HCGD

가.

• NIST Table of spectral -line intensities, part 1' 200 300nm • (98%) 가 . • • • • 'Table of St-HCGD-AES spectral-line intensities, part 1, arranged by elements' spectral line 가 0 - 43692 cm-1 . 가 15000 line 가 가 31827 cm-1 - 59516 cm-1 가 3600 spectral line . 가 10650 cm-1- 35287 cm-1 가 34000 405. 78nm , 가 0 - 39412 cm-1 가 15000 253. 65nm 가 •

- 44 -

SEM(Scanning Electrode Microscope)

•

•

•

,

window 1 cm

가

•

•

•

,

•

,

•

•

가

RSD 5%

.

- 45 -

•

•

•

•

•

•

,

•

 YONA
 3252čK

 63nA
 7

 2023cK
 35nn

 el ectode)
 (anoed)

 ਨਾ
 7

. 3-1 .

- 46 -

3-1. St-HCGD-AES

2-2. ETV-DC-HCGD

가.

			ETV(Electrothermal vapo	orization)
	,	4 cm		
ETV	GD Cel	1	Vapori zi ng	가
		1/8		
		Hollow Cathode G	Glow Discharge(HCGD) cell	
	•			
	3-3	ETV	, 3-4 Hol	low Cathode Glow
Di scł	arge ce	11		
	N	ormal Glow discha	arge, Abnormal Glow discha	arge
		Abnormal Gl	ow discharge Glow	Discharge
C	urrent	50 - 70 mA		KOREA
SWITC	CHING CO	DC Power Sup	ply(Nax 2 kV, 0.2 A)	. ETV
		(Ta, 0.025 nm)	hol der	
		KOREA SWITCHING (CO. DC Power Supply(Max	30 V, 50 A)
		Drying	g 1-3 A	
	GD-cell		Var	oori zi ng
20) - 50 A			

GD-cell	가 9	99. 99%		가	,
2 1	torr 5 tor	r		•	
	(1000))- SUNG VA	CUUM CO., LT	D V-180 OI	L ROTARY
VACUUM PUNP)	, Fl	low Rate		Key In	struments
Flow Gauge	е	Fl ow			Needl e
Val ve	F	low Rate	15 - 30 c	c/mi n	
			, GD- c	cell	
Granv	ille-phillips	Vacu	um Gauge		
Monochromator	ORIEL INSTR	RUMENTS In	c(125 nn, 1	200 l/nm grat	ing)
	Detector	PDA(Photo	Diode Array	<i>i</i>)	
	NI ST	Sta	ndard Refe	rence Materi	als(Serum
Materials 909b,	Toxic Substa	nces in Ui	rine (Powder	r Form) 2670)	

Electrothermal Vaporization

3-3 Electrothernal Vaporization(ETV)

ETV-HCGD

99. 999%

가

•

7 . NIST Standard Reference Materials Serum Materials 909b, Toxic Substances in Urine (Powder Form) 2670

> , 가

- 49 -

 ۲
 Window

 ETV
 . Serum Naterials 909b,
 Toxic Substances in
 Urine

 (Powder Forn) 2670
 .
 .
 .
 .

 7
 .
 .
 .
 .
 .

 7
 .
 .
 .
 .
 .

 1-3 A
 2-3 torr
 7
 .

 .
 .
 .
 .
 .

 .
 .
 .
 .
 .

 .
 .
 .
 .
 .

 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .
 <th

3 DC RF

3-1. DC-HCGD(Direct Current-Hollow Cathode Glow Discharge)

. 가

•

.

Electrothernal vaporization

3-5

•

•

•

.

,

,

ETV

가

- 50 -

,

가 50 nA (), 40 mA), 60 mA () . 가 가 가 (가 , 가 . 가 . 가 가 가 • 가 1 , 가 가 가 1 가 . , 가 2 . PMT 10 가 , 10 •

•

grounding shi el di ng

가.

1) Enission line Detection System

Software: INSTARSPEC. (Kinetics Mode, exposure time(sec) 0.8, stores cycle time(sec) 30) Nonochrometor - Nodel 207 High Performance Nonochromator-Spectrometor (NcPHERSONIN) - 125mm spectgrograph (ORIEL, MODEL 77400, entrance slit 25um, 1200groove grating) - filter (JANOS Technology inc.) Detector:

```
- PDA
 (Photo Diode Array. Oriel Co.)
- PMT
 (Hananatsu H957-08 No. VP0337)
```

2) Glow Discharge System

Flow gas : Ultra high purity Ar gas Power supply :

KSC (model No. PV050CCUMD SAR s/n2028 1A, 2KV D.C)

Vacuum Punp

: Rotary vane Vacuum Pump(N. V. ELNOR MOTORS))

Flow Meter

(Dwyer CAT. No. RNA-151-SSV 50cc/min)

3) ETV (Electrothernal Vaporization)

ETV-Power Supply

KSC(Max: 30V 50A)

,

Tantal um Foil

•

Goodfellow LS15239 JV (Thickness: 0.025nm, Purity: 99.9%)

. ORIEL 125mm spectgrograph, MODEL 77400, entrance slit 25um, 1200groove grating , •

ORIEL PDA(Photo Diode Array. Oriel Co.)

- 53 -

	NCPHERSONIN	Model	207	Hi gh	Performance
Monochromator-Spectro	ometor	,		PMT	(Hananatsu
H957-08 No. VP0337)		,	,		
			,	ETV(el	ectrothernal
vapori zati on)					

•

•

•

,

•

•

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・

 ・
 <

1.6 , 70nA 가 . 1 , 70nA

가 , , , 3-2, 3-3, 3-6, 3-7

- 54 -

3-2

	10	20	30	40	50	60	70	80	90	100	110
Rel. intensity	21905.8	37554.5	51584.3	47551.9	535683	6156.8	63672.4	10248.6	7915.4	6825.3	4095.8
RSD	0.404488	1.450019	0.984933	0.3167	1.610609	0.537871	1.684654	5.149648	4.420148	3.466499	12.267
	42 comin,	l.6tom									
Cathode: Tanta	dum.										
	10	20	30	5	40	50	60	70	8	0	90
Rel. intensity	20240.5	33405	92 3	6276.5	411.27.7	16461.1	1748	9 20	499.2	23925.3	15565.3
RSD	0.893924	0.6838	906 0.	330597	0.38135	4.633999	11.54	41 8.0	96639	11.6999	2.08643
	43 comin,	1.2 tour									
Cathode: Stain	less.										
	10	20		30		40	50		60	70	8
Rel. intensity	4860.4	í.	\$836.6	1	4698,8	22427.4	s	24800.3	21012	2	23518.1
RSD	0.8490	4	0.809962	0.	932944	2.894004	3	166325	2.5739	28	3.478616
	50 comin.	1.03 torr									

3-3 Current 가 RSD Intensity

		10	20	30	40	50	60
10 cc/min	Rel. intensity		4038.65	4251.25	4528.55		
1 torr	RSD		2.650798	2.610863	2.2492		
30 cc/min	Rel. intensity	2856.7	3546.15	4176.25	4421.25	4998.55	
1.5 torr	RSD	4.965867	3.65169	2.309393	2.427739	2.304495	
49.5 cc/m in	Rel. intensity	2795.25	3 2 7 4 . 2 5	3724	3985.7	4334	4560.15
2 torr	RSD	5.441177	3.323884	3.206195	2.73683	2.054182	2.48383
Cathode: Tant *Cathode	alum. フト	, Curre	nt		RSD	Inter	nsi ty

3-6

3-7

1. 0 1. 6torr

, (Pyrex) , . 가 가

• 가 가 가 . 가 • , , 가 • 가 μl

가 . 가 가 ,

가 • 가 가 torr •

가 • ,

• , 가 ,

(3-7).

- 57 -

•

,

,

)가

- 58 -

3-9

- 59 -

며, 그 첫 번째로 글로우 방전원의 세기가 강함으로 인해 필터를 통과한 빛 이 PMT에 도달하게 되면 PMT가 쉽게 포화됨으로 인해 정상적으로 작동하지 않는다는 것이다. 그래서 이러한 문제를 보완하기 위해 외부의 빛을 완전히 막는 것과 동시에 PMT셀을 글로우 방전셀에서 발산되는 빛의 방향에 직각방 향으로 놓았으며, 빛의 방향을 바꾸기위해서 거울을 사용하였으나, 빛의 감 소가 적어 글로우 방전셀과 검출기를 직선으로 놓았을 때와 같은 현상이 나 타나, 미러를 사용하지 않고 빔 분리기를 사용하여 빛을 갈라서 검출기로 빛 을 집어넣었다. 하지만 이러한 과정과는 상관없이 필터의 파장 선택성에 의 해 필터를 사용하여 특정원소를 검출하는데는 무리가 있음을 확인할 수 있었 다(그림 3-10). 이러한 것 때문에 검출기 쪽은 다른 방법을 모색하여야 하였 다.

3~10 수은 필터를 지난 빛을 분광기를 사용하여 얻은 파장

- 60 -

10ppm

- 61 -

3-2. RF-HCGD (Radio Frequency-Hollow Cathod Glow Discharge)

가

,

()	

RF

RFGD-AES

•

RFGD-AES

•

•

가.

· Detector: PDA(PhotoDiode Array, Oriel Co.)

•

.

- · Rotary Vane Pump(Woosung Vacuum Co.)
- · RF-Power Generator(300 Watt, Young Sin Engineering)
- ETV-Power Supply(Korea Switching, KSC)
- · Electrodes(Cu Plate)-10 x 30 mm
- Quartz Tube(I.D.: 4.0nn, 0.D.:6.0nn)
- · Flow gas(Ar, He): Ultra High Purity(99.99%)
- \cdot Aluminum(Al) foil
- · Computer(Pentium, Goldstar Co.)
- TC Vacuum Gauge(Varian Co.)
- Hg(Mercury) Atomic Absorption Standard Solution 1010ppm (Aldrich Chemical Co.)
- Cd(Cadmium) Atomic Absorption Standard Solution 1005ppm (Aldrich Chemical Co.)

\cdot Pb(Lead) Ato	mic Absorption S	tandard Solution	1010ppm	
(Aldrich Che	emical Co.)			
	(As, Cu, Pb,	Hg, Cr, Cd		1. 0µg∕g
	가)	
•				
Radio Freque	ency			Ar He
gas	, Flow rate	20~40cc/min(7	′ŀ 5cc∕m	in),
RF-Power	20~100Watt(가	10Watt)		
	, RSD(%)	. Radio Fre	equency	
		Adri ch		Pb, Cd,
Hg			100nL	
	± 0.05 .		(Sanpl e	Introduction
System) ET	V(ElectroThermal	Vapori zati on)	System	,
ETV-RFGD Cell	Local Pressu	re 2. 78~3. 10tor	r	, ETV
Tantal um	foil			syringe
20µl		40A		
Ashing drying	g vaporizati on	atomi zati or	n()	
E				
	Radio Freque	ncy		,
	RFGD-AES	Cel l	•	RFGD-AES cell
	(e-)7	ŀ	가	
	가			가
	RSD(%)	. 30		

ETV cell Alumium(Al) foil He gas Ar gas flow local pressure ETV power . PDA(PhotoDiode Array)

.

3-4

Flow	He	Ar	
Flow rate	30cc/min	30cc/min	
RF-Power	100Watt	90~100Watt	
Local Pressure	1.0~2.0 torr		

3-12 RF-GD Ar

RSD

Ar plasma stability-Flow rate(30 cc/min)

RF-Power(90 100 Watt)

Local Pressure(1.0 2.0 torr)

- 64 -

3-14 Tine Plasna

3-15 Radio frequency Ar He Pb, Cd, Hg

3-16 Ar 가 Pb

3-20 Ar 가 Hg

3-22 ETV- RF- GD System

- 69 -

•

3-24 (Radio Frequency)

	가		,		
가	가 ,		가		
	가			가	
•					
	RSD(%)	He Discharge	Ar Discharge		1%
	가	,	30	Tine	가
		가			•
	ETV-RFGD-AES cell		(Pb,	Cd, Hg)	
	ETV- RFGD- AES	cell		가	

가

Al uni um foi l

.

.

Tantalum foil

•
4

1

1-1.

(PPN)

•

(regression analysis) , 가 (Nethod of least squares)

.

•

,

가. (regression analysis)

, (expl anatory variable) (independent variable) ,

(response variable) . (regression analysis)

 (simple linear regression model)
 .

 X
 Xi
 Y

 Yi
 7├
 Y

 X
 .
 Y

- 72 -

)
•

•

(x, y) 가	,	Xi
Yi 가	,	(method of least squares)

.

$$y = mx + b \qquad (4 - 1)$$

$$m = \frac{N \sum x_{i} y_{i} \cdot (\sum x_{i}) (\sum y_{i})}{N \sum x^{2_{i}} \cdot (\sum x_{i})^{2}} = \frac{\overline{xy} \cdot \overline{x} \cdot \overline{y}}{s_{x}^{2} (N - 1)/N} \qquad (4 - 2)$$

$$(s_{x} = \frac{\sqrt{\sum x_{i}^{2} - N \overline{x}^{2}}}{N - 1} = \sqrt{\sum \frac{x_{i}^{2}}{N - 1} - \frac{(\sum x_{i})}{N (N - 1)}}, \quad \overline{x_{i}} = \frac{\sum x_{i}}{N})$$

$$b = \overline{y} \cdot m \overline{x} \qquad (4 - 3)$$

$$m \quad b \qquad .$$

sense		У	
yi			У
	•		

- 73 -

$$S_m = \frac{S_d}{S_x \sqrt{\sum N - 1}}$$
 (4 - 4)

$$S_d = S_m \sqrt{\frac{\sum x_i^2}{N}} \qquad (4 - 5)$$

$$S_{d} = \sqrt{\frac{\sum y_{i}^{2} - b \sum y_{i} - m \sum x_{i} y_{i}}{N - 2}}$$
 (4 - 6)

x = ppm Zn2+	0.5	1.0	1.50	2.00	2.50
y = absorbance	0.130	0.200	0.350	0.430	0.490

.

$$\sum x_{i} = 5\overline{x} \qquad \sum y_{i} = 5\overline{y} = 1.600 \sum x_{i}^{2}$$

$$\sum x_{i}^{2} = 13.750 \sum y_{i}^{2} = 0.6444 \sum x_{i}y_{i} = 5\overline{xy} = 2.875$$

$$m = -\frac{5(2.875) - (7.50)(1.600)}{5(13.750) - (7.50)^{2}} = 0.190$$

$$b = -\frac{1.600}{5} - (1.190) - \frac{7.50}{5} = 0.0350$$

y= 0. 190x + 0. 0350

•

가

•

,

1-2.

가. A/D Anplifier

			A/D
Ampl i fi cati on	Anal og	gue	
	Intensity()	
	,		
		,	

GDS V2.0						Bic
실험환경	초기화	검량선	실 험	자료검색	보고서	종료
🙆 키르비스.		A 14-1		ରା 📱	255	
시리얼 포	트 설정					
@ co	m1				이번 자리 조금	
C co	m2	초기회	중입니다.		TH BU PH	eeuu.
R R	취소	and the second second				

4-1

•

		4-1	l			[], [[]],	[],	[],	[
],	[]			가						[]	
A/D	Anj	pl i f	fi ca	ation	Conp	uter				R	S- 232	SC (COM	port	t	
		•	[]	[]										

•

•

[], [], [], []

(1)

4-2

(2)

- 77 -

•

•

,

검색 선택	◎ 실험지명	 A 	료명	○ 원소명	c	전류값	김색	0124			김석시작
상황남희	실왕지아동	Aas	100 A 20	사용가스랑 함력		엄력관류	Flowrate	Intensity a S	리분농도		
98-08-05 오후 4:15:2	5 5 5	55	00	5.5		2	3	60,794	64,328	100	
90-08-05 2 4 5:00.4	전 태 당	NB	CC.	기습	4	2		5,882	288,405	£	丙烯司
98-08-05 모루 5:17:2	2.02	NE	00	기스	3	3	3	118,827	536,464	£	- Statesta
98-08-05 9 4 7:28 9	5 00	00	00	00	2	2	2	5,832	131,315	1	<u></u>
9-08-08 9.4 3:27:1	圣维勒	ALE.	cc	가스	4	4	4	60,784	131,315	1	
90-00-08 9.4 3:38:0	203	ALE	00	가스	4	4	4	60.794	131.315	¢.	세색 입액
06-08-11 Ω ≑ 4/89/1	01200	시르	3	기스	8	8	3	55,215	33,408		
对-08-11 모루 4:48:0	8수리	N	려순	가스		2	2	191,244	227,751		International Construction
90-00-12 9.4 4:10:2	ee		원순	ee	2	2	2	140,553	0	r	보고서 출력
										-	홍료

실험자명:	미장수	시 간:	98-08-11 오章
사료명:	시료	원 소:	원
호름 양:	3	직분 농도:	33,498
안 맥:	3	IN 농도:	55,215
경 밖:	3	배질(가스):	가스
적 분 값:	3095.5	intensity:	1977
IN경당신: 실험화일명:	hhg.txt hhh.txt	적분검량선:	bsn.txt

DB

,

4-4

(4)

[]

,

4- **5**

Spectrometer		S2000BT
\$2000/PC2000	•	Pixel
A/D Converter		950
ADC500/PC1000	•	
Base Address (I/O Range)	IRQ (Interrup	t Request)
768 (0x0300) 🔹	7	-
Serial Port		
1		
SAD500 Pixel Resolution		
[<u>C</u> ancel	J

4-6 GDSA2000Y

				(GDS2000Y)	
OCEAN OPTIC		S2000		,	1 44 11 4
4	•		(GDSA2000Y)	3. 5	1.44 Nbyte

•

1)

🕹 시료명 입력	×
시료명몰 입력하세요(<u>S</u>)I	✓ 확인(<u>O</u>)
농림부쌀표준시료-1	🗙 취소(<u>C</u>)

.

.

4-7 GDS2000Y

2)

() 방전 매질물 선택하세요.	(4) 방전셸의	전압값을 인	력하세요.
Ar 💌	538	(V)	÷
2) 방전셀의 압력을 입력하세요.	(5) 밤전셓의	전류값을 입	역하세요.
2.15 (Torr) 🔹	140	(mA)	-
3) 방전셀의 유속을 입력하세요.	(6) 시료 주입	장치의 전망	값을 입력하세요.
25 (cc/min)	7	(V)	÷
	(7) 시료 주입	장치의 전류	값을 입력하세요.
	7000	(mA)	-

4-8 GDS2000Y

, - - - , .

-

4-9 GDS2000Y

,

,

220,353
220,353
20.353
216.999
261.418
283.306
224,688
283

4-10 GDS2000Y

5)

원소 및	밑 파장 설정	· 천소의 곱:	노열감					
185	E 입력						_	
원소	실험1	실험길	실험3	실험4	실험들	실험5	실험 <u>7</u>	
Ca	1	5	10				-	1
Cr	1	5	10					
Cu	1	5	10					
Fe	1	5	10					
Mg	1	5	10					
Мп	1	5	10					
Mo	1	5	10					
Na	1	5	10					
P	t.	5	10					
Pb	1	5	10			1		1.1

4-11 GDS2000Y

검량선을 작성하고자하는 원소로 만들어진 표준 시료로 최대 7 개 까지 검 량농도를 입력할 수 있도록 하였다.

열의 처음을 선택하면 일괄적인 값으로 입력되어, 개별적인 입력의 불편을 해소하였고, 각 시료내의 개별적인 함량이 들어 있을 경우에도 원하는 농도 값으로 개별입력이 가능하도록 디자인 되어 있다.

3

(3) 검량선 실험

1)바탕선 측정

시료가 표준쌀일 경우 표준쌀을 녹인 질산과 황산용액으로 바탕선 측정을 한 다

2)표준시료 측정

특성할 실험 신택		
	Gdsa2000y	· **
	측정 준비가 되었으면, 확인버튼을 누르십시	8

그림 4-12 GDS2000Y 중 표준시료 측정

바탕선 시료를 측정한 후 표준시료를 측정한다. 콤보박스에서 수행하는 실험의 순번에 맞추어 측정하도록 한다.

۰.

4-13 GDS2000Y

•

7

2)

,

,

,

4-14 GDS2000Y

,

•

1)

가

()

,

•

- 87 -

	11 Ka	- 19	2 ⁸ 9 2.5	ni.	÷1.	5	5 \$2.5	÷.			
실험	해교		ST. Leve					Parala de la com			
실험	일자	50	人品	매질	[안력] 두	Pia d	생전안	셀전류	etvZ	昆む	파장
1999	-09-01.	13:07:24	[2n_0]장수	Ar	3.5	0	500	140	1		1217.1.1.7
1999	-09-01,	13:07:20	zn_이장수	Ar	3.51	0.	500 i	140		Zn	334,502
1999	-09-01,	13:07:15	zn_미장수	Ar	3.5	Ó	500	140	2	Zn	330,259
1999	-09-01,	13:07:10	zn_이장수	Ar	3.5	0	500	140	44	Zn	213.656
1999	-09-01,	13:07:06	zn_미장수	Ar	3.5	0	500	140		Zn	206.2
1999	-09-01,	13:06:24	zn_이장수	Ar	3.5	0	500	140	1	Zn	202,548
1999	-09-01,	13:05:55	zn_이장수	Ar	3.5	0	500	140		1	
1999	-09-01,	10:34:31	Zn	Ar	3.	0	534	140			
1999	-09-01,	10:34:27	Zn	Ar	3	0	534	140			
1999	-09-01,	10:34:23	Zn	Ar	3	0	534	140			
1999	-09-01,	10:34:18	Zn	Ar	3	0	534	140	175		
1999	-09-01,	10:34:14	Zn	Ar	3	0	534	140			
1999	-09-01,	10:34:11	Zn	Ar	3	0	534	140			
d1-1.		100000			NOLANON	41-162	Ween's	2010.11	200		
di la		Alex Ace		Stand and	1. 1. 1. P. P.	14.43	1 2 2 1 2				

그림 4-15 GDS2000Y 중 참조 검량선 불러오기

2)참조 검량선 보기

선택된 검량선의 농도범위와 세기, 기울기, 절편등을 볼수 있다.

3)원소 및 파장선택

.

작편은 선택할 수 있는 원소와 파장에서 정량분석을 원하는 원소와 원하는 검량선을 가지는 파장을 선택하면, 우편에 선택된 원소와 파장에서 볼 수 있 다.

100

- 88 -

선택된 원.	소와 파장			2		백활 수 있	는 원소와	1112	113
원소:	파짐	4.45		Sec.	1 2	\$ jo	파장	1	
a		315,887			Ca			317.933	
	21 225	324,734			La	200		315.887	
		285,213	窗目.	1		et : e	3×10	205.55	
	12	213.618	1.164	\$21(1)	Cr			260 158	
2		283, 306		77.10	Cu			327.396	
		541 St - 35	國軍	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Cu	¥.		324.754	
			5	-	Cu			224.7	
			-41	삭제(日)	Cu			222.778	
			-	Sector Sector	Cu	2	а а	221.458	
			ü 🎆	*	Cu			213.598	
			1 ³	고두 상제(D	1 10	9 (2)2222	NO NATRO	339.562	
			5	1. Lasternes .	118	0.001 8	а к а	259.94	

그림 4-16 GDS2000Y 중 원소 및 파장 선택

4)정량분석

그림 4-17 GDS2000Y 중 정량분석

- 89 -

, , A/D ,

,

,

•

(1)

•

•

,

, 가 . . 4-18 . 가 Spectrum QCNN ,

Intensity , CANN DB

.

4-18

Prototype

(2)

QCNN(QualityControlNeuralNetwork)CANN(Component Analysis Neural Network)7ANN(ArtificialNeural Network)HNN(Hybrid Neural Network).

- 91 -

4-20 Conponent Analysis Neural Network

(3)

가

		. QCNN			Accept
	•	Accept		CANN	
CANN		가	ANN	Weight가	

,

(4)

.

•

	. QCNN	Accept	Trai ni ng
DB	CANN		

,

,

- 92 -

Vapori zati	ion - Glow Discharge)		
Cd, Fe,	, Cu, P		
	. ETV	가	
	,	가	
			가
		A/D Amplifier	가
Di gi tal	РС		
	,		
		4-1	

4-1 Quality Coefficient

0.0		
0.1	+0.5 nm	
0.2	-0.5 nm	CANN
0.3	+1 nm	
0.4	-1 nm	
0.5		
0.6		
0.7		CANN
0.8		()
0.9		
1.0		

	가	0.4		CAN				,	0.5
CANN				,				•	QCNN
		4-2			QCNN			14	,
10,			1		,	0	1		
			•						

4-2 Learning Data of QCNN

14 10 1 (<		,		,)			
11 ()								
				(:	nm * 0	.01)		-	
2.553262	2.553	2.554	2.544	2.562	2.543	2.542	2.541	2.54	2.539	2.538
2.713508	2.714	2.713	2.705	2.723	2.724	2.704	2.725	2.703	2.726	2.702
2.82552	2.826	2.825	2.82	2.832	2.819	2.833	2.818	2.834	2.817	2.835
2.90247	2.902	2.901	2.895	2.911	2.894	2.912	2.893	2.913	2.892	2.914
2.96689	2.967	2.969	2.965	2.973	2.964	2.974	2.963	2.975	2.962	2.976
3.28272	3.282	3.283	3.276	3.287	3.275	3.288	3.274	3.289	3.273	3.29
3.374952	3.374	3.373	3.366	3.38	3.365	3.381	3.364	3.382	3.363	3.383
3.46586	3.465	3.464	3.459	3.469	3.458	3.47	3.457	3.471	3.456	3.472
3.536556	3.537	3.538	3.53	3.544	3.529	3.545	3.528	3.546	3.527	3.547
3.57869	3.578	3.577	3.573	3.583	3.572	3.584	3.571	3.585	3.57	3.586
3.671491	3.671	3.672	3.667	3.674	3.666	3.675	3.665	3.676	3.664	3.677
3.75717	3.757	3.756	3.753	3.759	3.752	3.76	3.751	3.761	3.75	3.762
3.8048	3.805	3.806	3.801	3.809	3.80	3.81	3.799	3.811	3.798	3.812
3.91584	3.915	3.915	3.91	3.921	3.909	3.92	3.908	3.919	3.907	3.918
0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0

3

QCNN

4-3

.

	3				
	(: nm * 0.01)				
2.553262	2.544	2.541			
2.713508	2.705	2.725			
2.82552	2.82	2.818			
2.90247	2.895	2.893			
2.96689	2.965	2.963			
3.28272	3.276	3.274			
3.374952	3.366	3.364			
3.46586	3.459	3.457			
3.536556	3.53	3.528			
3.57869	3.573	3.571			
3.671491	3.667	3.665			
3.75717	3.753	3.751			
3.8048	3.801 3.799				
3.91584	3.91	3.908			
0.0	0.3	0.7			

4-3 Result that QCNN Excute

CANN		Table 4-4	
14 ,	15,	4	Cd, Fe, Cu, P
가		, 가	가
14	14 가		

4-4 Learning Data of CANN

,) 14 15 4 (,) 14 ((: nm * 0.01) 2.82552 2.553262 2.713508 3.57869 2.553262 2.713508 2.82552 2.553262 2.553262 2.713508 2.553262 2.553262 2.553262 2.553262 2.713508 2.713508 2.90247 3.671491 3.28272 3.8048 2.82552 2.82552 2.90247 2.713508 3.57869 3.28272 2.713508 2.82552 2.96689 0.01 3.374952 3.91584 2.90247 2.90247 2.96689 3.28272 3.67149 3.374952 2.82552 2.90247 3.28272 2.82552 3.46586 0.01 0.01 0.01 2.96689 2.96689 3.46586 3.374952 3.8048 3.57869 2.90247 2.96689 3.374952 2.90247 3.53655 0.01 0.01 0.01 3.46586 3.28272 3.53655 3.671491 3.91584 3.8048 2.96689 3.46586 3.57869 2.96689 3.75717 0.01 0.01 0.01 3.536556 3.374952 3.57869 0.01 0.01 3.91584 3.28272 3.536556 3.671491 3.28272 0.01 3 374952 3 374952 0.01 0.01 0.01 3.671491 3.46586 3.75717 0.01 0.01 0.01 3.671491 3.8048 0.01 0.01 0.01 0.01 3.75717 3.536556 3.8048 0.01 0.01 0.01 3.46586 3.8048 3.91584 3.46586 0.01 0.01 0.01 0.01 0.01 3.75717 3.91584 0.01 0.01 0.01 3.536556 3.91584 0.01 3.536556 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 3.671491 0.01 0.01 3.57869 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 3.75717 0.01 0.01 3.671491 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 3.75717 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 3.8048 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 3.91584 00010 00011 00111 01000 01001 01010 00001 00100 00101 00110 01011 01100 01101 01110 Fe Р Cu Cr P, Fe Cu, Fe Cr, Fe P, Cu Cr,Fe,P Fe,Cr,Cu P,Cu,Fe P,Fe,Cr P,Cu,Cr P,Fe,Cu,Cr

QCNN

CANN

.

Table 4-5

- 96 -

4-5	Result	that	CANN	Excute

	4 ()	
2.553	2.544	2.544	2.544
2.714	2.705	2.705	3.667
2.826	2.82	3.276	0.001
2.902	2.895	3.366	0.001
2.967	2.965	3.667	0.001
3.282	3.276	0.001	0.001
3.374	3.366	0.001	0.001
3.465	3.459	0.001	0.001
3.537	3.53	0.001	0.001
3.578	3.667	0.001	0.001
3.671	3.753	0.001	0.001
3.757	0.001	0.001	0.001
3.805	0.001	0.001	0.001
3.915	0.001	0.001	0.001
P, Cu, Fe, Cr	P, Cu, Fe	P, Cu	Р

2)

 Cd
 Perkin
 Elner

 Optina
 3000 DV ICP
 HNN
 Cd

 .
 Na, K, Ca, Fe
 4 7\ .

 0.1 ng/L, 1 ng/L, 10 ng/L
 ,
 .
 .

 Cd
 .
 .
 .
 .

,

.

•

가 가

- 97 -

2-1

.

•

- 98 -

4-22

가

•

•

•

•

2-2

5 HCGD

1 HCGD-AES

1. HCGD-AES

GDS2000

•

.

GDSA2000

.

,

.

•

가 .

•

1ppm , 5 ppm , 10 ppm

가.

5-1 Ng-279.553 nm

5-1	1ррп,	5ррп,	10ррп,	50ppm	4	:	
Ng- 279.	553 nm		•				

가

5-2 279.482 (Nn)

•

4-2 1ppn, 5ppn, 10ppn, 50ppn 4 Ng-279.482 nm . Nn 7├ 7├ , 2-3 (8 40)

•

,

5-3 P-213. 618nn- 1ppm

5-4 P-213. 618nn-5ppm

5-5 213.618 10 ppm

. (Pb)

I CP- AES	Pb
-----------	----

•

HCGD

Pb

•

I CP

5-6 Pb 283. 306 2. 38ppm

5-7 Pb 283. 306 6ppm

	HCGD	1-5-10ррт		
6ррп	Pb			
		5. 57	6.16	

•

5-8 Na 330. 237 114ppm

5-9 Mn- 279. 482- 33ppm

5-10 Ca 315.887 7.8ppm

5-11 Ng 285.213 1.3ppm

5-12 Mg 285.213 2.2ppm

5-13 Ng 285. 213 7. 5ppm

2

2-1.

7ት) 85 Vaccum dry oven 6 .) 0.5g 0.1ng Microwave TFN-liner .) 70% HNO: 30% H2O2 가 .) Microwave 5 , 600W 15 0W() 15

- 35
-) 가

2-2. ICP-AES HCGD

가) ICP-AES

I CP-AES

Model : Optima 3000 DV, Perkin-Elmer, U.S.A Frequency : 40 MHz, free-running Power : 1000, 1300 W Plasma gas flows : 15 L/min Auxiliary gas flows : 0.5 L/min Nebulizer gas flows : 0.8 L/min Sample uptake rate : 1 mL/min Microwave Sample Digestion System Model : Anton Paar GmbH, Austria

•

가

.

Standard Solution : Aldrich co. AAS Reagent : Electronic Grade

:

CRM 0705-001 CRM 0705-002

) HCGD(Hollow Cathode Glow Discharge)

1)

- * : Ar
- * : 2.15 torr
- * : 538V
- * : 140nA
- * : 7V
- * : 7A

2)

- * : 40
- * : 50nsec
- * : 2

3)

*		Tube	
*	. (30)
*ETV		•	
* ON			
*Funp	•		
*1. 50 torr			
*Ar Gas			
* 1.75 torr			
*GD	•		
*2. 15 torr		FIV	
*FTV		GD	
*1 Ar Gas			
*Punp .			

•

•

•

.

•

2-3

가 5% Cu 4% 3

•

•

3-1. Hg

HCGD • Hg가 ppb 3 2 •

3-2.

.

가 • 가 • 가

.

- 113 -

- 1. J. E. Crooks, The Spectrum in Chenistry, Academic, New york, 1978
- 2. D.A. SKoog Frinciples of Insrumental Analysis third efition, CBS College, 1985
- 3. R. Kenneth Marcus, *Glow Discharge. Spectropies*, Plenum Press, Now York, 1993.
- 4. F. Paschen, Anal. Phys., 50(1916), 901
- 5. Sturat. G. Schroeder and Gary. Horlick, 25. July. 1994. Pergamon, 1759 1773
- 6. Jianzharg You, James C. Fanning and R. Kenneth Marcus, Anal. Chen., **66**(22), 1994, 3916–3924
- 7. Akbar Neytaser and D. W. Golightly, Indyctinoly Coupled Flasnas in Analtical
- 8. R. W. Fonseca & N. T. Miller-ihli, Appl. Spec., 49(10), 1995, 1403-1410
- 9. Lori Mccaig, Zhan Shi, Teresa Holbrook, Woodrum, Stephen Brewer and Richard Sacks, *Appl. Spec.*, **46**(12), 1992, 1762 1768
- Tinothy K. Starn, Rosario Pereiro, and Gary N. Hieftje, *Appl. Spec.*, **47**(10), 1993, 1555-1561
- 11. Stephen Brewer, Teresa Holbrook, Zhan Shi, Ketan Trivedi, and Richard Sacks, *Appl. Spec.*, **45**(8), 1991, 1327-1332
- D. Serxner, R. L. Smith, and K. R. Hess, Appl. Spec., 45(10), 1991, 1656-1664
- Mark Glick and Gary N. Hieftje, Appl. Spec., 45(10), 1991, 1706-1716
- R. Kenneth Marcus, Paula R. Cable, Douglas C. Duckworth, Nichelle V. Buchanan, Joseph N. Pochkowski, and Robert R. Weller, Appl. Spec., 46(9), 1992, 1327-1330
- 15. Zhan Shi, Teresa Holbrook Woodrum, Khodayar Dehghan,

Stephen Brewer, and Richard Sacks, *Appl. Spec.*, **46**(5), 1992, 749-757

- Wim Schelles, Stefan De Gendt, Victor Nuller, and Rene Van Grieken Appl. Spec., 49(7), 1995, 939-944
- Mark J. Heintz, David P. Myers, Patrick P. Nahoney, Gangqiang Li, and Gary N. Hieftje, Appl. Spec., 49(7), 1995, 945-954
- Jeffrey J. Giglio and Joseph A. Caruso, *Appl. Spec.*, **49**(7), 1995, 900-906
- Cheryl L. Davis, Benjamin W. Smith, Mikhail A, Bolshov, and James D. Winefordner, Appl. Spec., 49(7), 1995, 907-916
- 20. Paula R. Cable and R. Kenneth Narcus, *Appl. Spec.*, **49**(7), 1995, 917-926
- 21. Victor Pavski and Chuni L. Chakrabarti, *Appl. Spec.*, **49**(7), 1995, 927-938
- 22. P. H. Ratliff and W. W. Harrison, *Appl. Spec.*, **49**(7), 1995, 863-871
- Christel Nolle, Sabine Springael, Michel Wautelet, Jean-Pierre Dauchot, and Michel Hecq, Appl. Spec., 49(7), 1995, 872-879
- 24. Zhubi ao Zhu and Edward H. Piepmeier, *Appl. Spec.*, **49**(7), 1995, 880-804
- 25. C. M. Barshick, D. H. Smith, E. Johnson, F. L. King, T. Bastug, and B, Fricke, *Appl. Spec.*, **49**(7), 1995, 885-889
- 26. Xi angjun Cal and J. C. Williams, Appl. Spec., 49(7), 1995, 890-899
- Jose A. C. Broekaert, Glow Discharge Atomic Spectroscopy, Appl. Spec., 49(7), 1995, 12A-19A
- 28. Zhan Shi, Stephen Brewer, and Richard Sacks, *Appl. Spec.*, **49**(9), 1995, 1232-1238
- 29. Yixin Chen and J. C. Williams, Appl. Spec., 50(2), 1996, 234-240

- 30. Robert D. Govier and Edward H. Piepneier, Appl. Spec., 48(4), 1994, 426-435
- Rosario Pereiro, Timothy K. Starn, and Gary M. Hieftje, Appl. Spec., 49(5), 1995, 616-622
- 32. K. R. Hess, C. M. Barshick, D. C. Duckworth, and D. H. Smith Appl. Spec., **48**(11), 1994, 1307-1315
- 33. Charles R. Shick, Jr., and R. Kenneth Marcus, Appl. Spec., 50(4), 1996, 454-466
- 34. Nark Parker and R. Kenneth Marcus, Appl. Spec., 50(3), 1996, 366-376
- 35. Lori Mccaig and Richard Sacks, Appl. Spec., 46(1), 1992, 18-24
- Khodayar Dehghan, Zhan Shi, Teresa Holbrook Woodrum, Stephen Brewer, and Richard Sacks, Appl. Spec., 48(5), 1994, 553-560
- 37. Lee, S. C. ; Edelson, M. C.; USDOE Arres Lab. Press: Iowa,U. S. A., 1992.
- 38. Lee, S. C ; Weeks, S. ; Edelson, N. C. ; FACSS XI Conference; St. Louise, U. S. A. , 1994.
- 39. Lee, S. C., Sin, J. S., Kang, N. R., J. Kor. Chem. Soc. 39, 1995.
- 40. Brian Chapman, *Glow Discharge Processes*, Wiley-Interscience, New York, 1980.
- H. S. W. Nassey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Vol. 1, Oxford Univ. Press, London and New York, 1969.
- 42. (I) (II), , 1997.
- 43.

,

, 1995.

44. H. Haraguchi, Inductively Coupled Plasma Atomic Emission Spectrometry - Fundamentals and Applications, 179, (1989).

- 45. J. Throck Watson, Introduction to Mass Spectrometry, Raven Press, N.Y., 222, (1985).
- 46. Greville Holland, Scott D. Tanner(Ed), Plasma Source Nass Spectrometry Developments and Applications, 15, (1997).
- 47. R. J. Lipert, S. C. Lee, Applied Physics B, (1993).
- 48. Michael R. Winchester, JAAS, Vol. 13, 235-242, (1998).
- 49. Ketan Trivedi, Stephen Brewer. Spectrochim. acta, Vol. 46B, 229-242(1991).
- 50. N. J. Heintz, G. M. Hieftje, Spectrochim. Acta part B 50, 1109-1124(1995).
- 51. K. Hoppstock and W. W. Harrison. Anal. Chem. 67. 3167-3171(1995).
- 52. S. K. Ohorodnik. Anal. Chem. 65. 2542-2544(1993).
- 53. W. R. L. Masamba, A.H. Ali and J. D. Winefordner, Spectrochim. acta, Vol. 47B, 481-491. (1992)
- 54. P.A.Fleitz and C.J.Seliskar. Appl. Spectrosc.Vol.41. No. 4 679-682(1997)
- 55. Peter G. Brown, Timothy J. Brotherton, John M. Workman. Appl. Spectrosc. Vol. 41. No. 5 774-779(1987)
- 56. Sang Chun Lee, Jung-Sook Shin, and Mi-Ra Kang, "A Study on Air Emission Spectra Observed by Using Electrothernal-Hollow Cathode Glow Discharge Spectrometry (ET-HCGDS)", J. Kor. Chem. Soc., 39(5), 390-407, 1995
- 57. Sang Chun Lee, Kyung-Soo Choi, and Un-Ho Son, J. Kor. Chen. Soc., 42(3), pp. 323-327, 1998
- 58. Taiwei Lu and Jereny Lerner, "Spectroscopy and Hybrid Neural Network Analysis." Proceedings of the IEEE. Vol. 84, No. 6, June 1996
- 59. Nuhammand A. Sharaf, Deborah L. Illman, Bruce R. Kowalski, "Chemometrics" John Wiley & Sons, New York, U.S.A., 1986
- 60. James D. Ingle and Stanley R. Crouch, "Spectrochemical Analysis", Prentice-Hall, Inc., New jersey, U.S.A., 1988

- 61. ", , , , , 1992
- Bouglas C. Baxter, Wolfgang Frech, "Electrothermal atomic emission spectrometry", Spectrochimica Acta, Vol. 50B, No. 8, pp. 655-706, 1995
- 63. Sang Chun Lee, Jang-Soo Lee, Min Soo Jung, and Dong-Hang Ryu, , 11(1), 1998
- 64. Ted Blue et al., , "Delphi Database Development", , , 1997
- 65. "Borland Delphi 3.0 User's Guide", Borland Inc. U.S.A., 1997
- 66. "Borl and Delphi 3.0 Developer's Guide", Borl and Inc. U.S.A., 1997
- 67. "Borland Delphi 3.0 Visual Component Library Reference", Borland Inc. U. S. A., 1997
- **68 155056**,
- 69. F. Paschen, Ann. Phys., 1916, 901, 50
- 70. S. Caroli; O. Senofonte, Analyst, 1983, 108, 196
- 71. S. Caroli; A. Alimonti, Anal. Chin. Acta, 1982, 136, 269
- 72. S. Lee, Food Eng. Prog., 1998, 2, 17
- 73. P. J. Slevin; W. W. Harrison, Appl. Spectrosc. Rev., 1975, 10, 201
- 74. A. D. White, J. Appl. Phys., 1959, 30, 711
- 75. D. J. Sturges; H. J. Oskan, J. Appl. Phys., 1964, 35, 2887
- 76. P. D. Nixon; S. T. Griffin, Appl. Spectrosc. 1993, 47, 1567
- 77. J. C. Williams; J. Y. Kung, Appl. Spectrosc., 1995, 49, 1705
- 78. N. E. Pillow, Spectrochin. Acta, 1981, 36B, 821
- 79. , , , , ; , **1999**, 43, 357