632.1 L2934

밤바구미 유인제 개발

Development of Attractant(s) for the Chestnut Weevils, *Curculio* spp.

산림청 임업연구원

농 림 부

199	95					
	· : 1. 2.	8 .	1			
					1998.	12
				:		()
				:		

L

и п

.

1998. 12. .

:

: :

; ;

1960 20 ha 82, 000ha가 10 2, 500 13 1

20-30%,

60% 가 . 가

. 가

가

3 . 3 11 ha 1998

- i -

가

가

가

.

.

1. 가 가 가

•

- ii -

•

2.

issue

. 가

. 3

가

•

•

1.

· 가 , , ,

Curculio robustus 3 .

C. robustus 2 1 , 1 1

- iii -

4. 3 , 1 가 1 10 sensilla trichodea sensilla chati ca가 . 5가 가 (GC) · Green volatile 2. 8 9 8 9 10 가

가

- iv -

Summary

The present study was conducted to investigate biological characteristics, and searching and identification of attractants for Chestnut weevils, *Curculio* spp. Chestnut weevils in the fields were identified three species, *Curculio sikkimensis*, *C. robustus* and *C. camelliae*.

Among three species, C. sikkimensis and C. robustus, are bivoltine, but the other species, C. camelliae, is univoltine in the fields. The peak of seasonal occurrences showed late August in C. camelliae and early-middle September in C. robustus and C. sikkimensis, respectively. The period of embryogenesis was 9.92 days under 25 ± 1 , 15L/9D and $RH=60\pm10\%$ regimes. The longevities of their female and male adults were 19.25- and 9.13-day for C. robustus, 7.16- and 6.18-day for C. sikkimensis and 5.83- and 3.70-day for C. camelliae, respectively. The C. sikkimensis females almost laid their eggs inside chestnut fruit, 0.4-0.8mm depth from the surface.

Copulation of *C. sikkimensis* male adults with their females occurs through a sequential mating behaviors followed: antennal movements, extension of genitalia and clasping female thorax and abdomen by the male legs. Otherwise, mating behavior of female adults is a simple comparing with that of the male. Female adults showed the highest rate of mating in 4-day-old of *C. robustus*, 3.21-day-old of *C. sikkimensis* and 2.71-day-old of *C. camelliae*, respectively. Mating time indicates a peak in the

middle part of photophase, from PM 2 to PM 4, among three species.

The late maturing chestnut varieties were most heavily damaged by the chestnut weevils. We had tried development of an artificial diet for the insect mass rearing, but came to a failure because the larvae survived for 4.3 days on the artificial diet. With scanning electromicroscopy structures of sensillia, odor receptors, showed the sensilla trichodea for pheromone and sensilla chatica for attractants in *C. sikki mensi s.*

Gas chromatography (GC), electroantennogram(EAG), olfactometry were employed in identification of active compounds in attracting chestnut weevil adults, Curculio robustus, C. sikkimensis, C. camelliae, from their own body and their host plant, chestnut, var. Choopa. Attraction of male and female adults was also investigated with sex pheromone lure indoors and outdoors. The retention time of detected compounds on GC gram from their own body were quite different from those of sex pheronone from the boll weevil, Anthonomus grandis, even though the two species belong to the same family. The sex pheromone of the boll weevil did not attract either sex of the chestnut weevil in the field. But chestnut weevil adults were significantly attracted to extract of chestnut burs damaged earlier by the yellow peach moth, Dichocrosis punctiperalis, another pest insect species on chestnut fruits. Their positive

behavioral response to the extract may be due to secondary metabolites of damaged burs, since both virgin and mated chestnut weevil adults of both sexes showed the same response. Hence more works were done on chemical composition of healthy and damaged chestnut fruits.

Methanol extracts of the chestnut burs, undamaged or damaged by the boll weevil, were analyzed to identify attractive green volatiles by GC, EAG and olfactometer. Attraction and EAG response of the adults were higher to chloroform fraction than any other fractions in the case of methanol extracts from burs undamaged. However, ethylacetate fraction showed the highest level in attracting and eliciting behavioral response in the adults in the case of methanol extracts from burs damaged. From these two fractions originated from methanol extracts of burs undamaged and damaged, eight compounds, (+) - - pi nene, E-2-hexanal, benzal dehyde, n-decyl al dehyde, nonyl acetate, 2-phenylethanol, terpi neol. gerani ol, were temporarily identified when compared their GC retention times with those of standard chemicals. Among these chemicals (+)- - pinene showed highest attractivity to chestnut weevil adults when the bioassayed indoors.

With the present results, it may be suggested that chestnut weevil adults probably use, as their sex pheromone, compounds different from those of *A. grandis*. The weevil adults may use green volatiles, including (+)- -pinene, from their host

plant, especially burs damaged by *D. punctiferalis*. However, further studies are required to identify their sex pheromone components and their composition, and green volatile compounds, from their host plant including burs, active in attracting adult weevils.

Contents

SUMMARY IN KOREAN	
SUMMARY	
Section 1: Biological characteristics of the	estnut
SUMMARY	1
. Introduction	2
. Materials and Methods	- 4
1. Physiological and ecological characteristics	- 4
2. Reproductive behavior	- 5
3. Artificial diet	- 5
4. Structure of antennae	- 6
. Results and Discussion	- 6
1. Physiological and ecological characteristics	- 6
2. Reproductive behavior	- 24
3. Artificial diet	- 29
4. Structure of antennae	- 34
. Literatures Cited	- 37

Section 2: Searching and Identification of attraction	tant
for Chestnut weevil	
SUMARY	39
. Introduction	42
. Materials and Methods	44
1. Identification of sex pheronone and	
attraction test	44
2. Attractive effect with green volatiles	47
3. Attractive effect with extracts of chestnut bur-	48
. Results and Discussion	53
1. Identification of sex pheronone and	
attraction test	53
2. Attractive effect with green volatiles	59
3. Attractive effect with extracts of chestnut bur-	62
. Abstract	75
. Literatures Cited	77

1	•	
		 1
1	•	 2
2	•	 4
1.		 4
2.		 Ę
3.		 5
4.		 6
3	•	 6
1.		 6
2.		 24
3.		 29
4.		 34

2	•	
		 39
1	•	 42
2	•	 44
	1.	 44
	2.	 47
	3.	 48
3		 53
	1.	 53
	2.	 59
	3.	 62
4	•	 75
5		 77

1 .

Section 1: Biological characteristics of the chestnut weevils, *Curculio* spp.

SUMMARY: The present studies were conducted to investigate biological characteristics of three *Curculio* spp. and their seasonal occurrences in the chestnut orchards of three provinces. Chestnut weevils in the fields were identified three species, *Curculio sikkimensis*, *C. robustus* and *C. camelliae*.

Among three species, C. sikkimensis and C. robustus, are bivoltine, but the other species, C. camelliae, is univoltine in the fields. The peak of seasonal occurrences showed late August in C. camelliae and early-middle September in C. robustus and C. sikkimensis, respectively. The period of embryogenesis was 9.92 days under 25 ± 1 , 15L/9D and $RH=60\pm10\%$ regimes. The longevities of their female and male adults were 19.25- and 9.13-day for C. robustus, 7.16- and 6.18-day for C. sikkimensis and 5.83- and 3.70-day for C. camelliae, respectively. The C. sikkimensis females almost laid their eggs inside chestnut fruit, 0.4-0.8mm depth from the surface.

Copulation of *C. sikkimensis* male adults with their females occurs through a sequential mating behaviors followed: antennal movements, extension of genitalia and clasping female thorax

and abdomen by the male legs. Otherwise, mating behavior of female adults is a simple comparing with that of the male. Female adults showed the highest rate of mating in 4-day-old of *C. robustus*, 3.21-day-old of *C. sikkimensis* and 2.71-day-old of *C. camelliae*, respectively. Mating time indicates a peak in the middle part of photophase, from PM 2 to PM 4, among three species.

The late maturing chestnut varieties were most heavily damaged by the chestnut weevils. We had tried development of an artificial diet for the insect mass rearing, but came to a failure because the larvae survived for 4.3 days on the artificial diet. With scanning electromicroscopy structures of sensillia, odor receptors, showed the sensilla trichodea for pheromone and sensilla chatica for attractants in *C. sikki mensi s.*

1 .

1960

•

 71
 .
 20

 30%
 \$98
 60%

.

•

가 6 -9 3

. 1 2 3 1998 114, 360ha 가

. 3

가 .

· , 가

- 3 -

,

•

2 .

1.

가.

1996 1998 3 , ,

, 1997 , 1998

·

1995 10 17 468 : 25 ± 1 , : L/15: D/9, RH=60 ± 10% 20

- 4 -

hole ...
(Voltinism)

(voltinism)

1995 10 , 1996 10 , 1997 10

,

(Ø 70cm, H: 50cm)

2.

1997 9 10 10 19 (*C. si kki mensi s*) (100 × 60 × 60) 1995 1996

.

3.

1996 1998 10 1 2

- 5 -

3 .

4.

1998 (C. sikkimensis)
hair sensor
sensilla trichodea sensilla chatica

.

3 .

1.

1).

가.

1 10% .

20% (, 1996 , 1997, 19

98) 가 .

- 6 -

			(0)
	40		(%)
()	48	4	8. 3
()	54	6	11. 1
()	25	3	12. 0
()	58	3	5. 2
()	38	4	10. 5
()	47	5	10. 6
()	50	4	8. 0
()	39	1	2. 6
()	47	4	8. 5
()	50	3	6. 0
	456	37	-
	-	-	8. 28 ± 2. 97a
()	23	2	8. 7
()	14	0	0. 0
()	16	1	6. 3
()	15	1	6. 7
()	18	2	11. 1
()	20	1	5. 0
()	15	1	6. 7
()	40	3	7. 5
()	38	4	10. 5
()	29	2	6. 9
	228	17	-
	-	-	6.94 ± 3.09ab

			(%)
()	15	0	0. 0
()	20	1	5. 0
()	20	1	5. 0
()	37	3	8. 1
()	19	1	5. 3
()	24	1	4. 2
()	26	1	3.8
()	27	2	7. 4
()	26	1	3. 8
()	25	2	8. 0
	239	13	-
	_	-	$5.06 \pm 2.43b$
()	45	3	6. 7
()	50	3	6. 0
()	35	1	2. 9
()	40	2	5. 0
()	51	4	7.8
()	24	0	0. 0
()	21	1	4. 8
()	32	1	3. 1
()	22	3	13. 6
()	38	2	5. 3
	358	20	_
	-	_	5. 52 ± 3. 59ab

2 1 1 43.6% 1 1.95 .

2.

		(%)
1	51	43. 6
2	39	33. 3
3	16	13. 7
4	6	5. 1
5	3	2. 6
6	2	1. 7
	117	100
	1. 95	-

1 56. 1%7 t 1 1

41. 2% (3).

3. Hole

	Hol e	(%)
0	94	41. 2
1	128	56. 1
2	6	2. 6
	228	100
Hol e	0. 61	-

2).

 1996
 10%

 1997
 4
 .

 9
 C. camelliae
 C.

robustus . 20-

30% 500

.

4.

			(%)
()	136	40	29. 4
()	144	43	29. 9
()	161	51	31. 7
()	154	42	27. 3
()	158	37	23. 4
()	146	39	26. 7
()	142	45	31. 7
()	141	29	20. 6
()	170	54	31. 8
()	163	49	30. 1
	-	-	28. 3

			(%)
()	143	31	21. 7
()	139	33	23. 7
()	164	45	27. 4
()	172	38	22. 1
()	136	36	26. 5
()	141	37	26. 2
()	128	30	23. 4
	114	32	28. 1
()	176	50	28. 4
	143	38	26. 6
		-	-
	-	ı	25. 4
()	173	51	29. 5
()	161	44	27. 3
()	154	40	26. 0
()	136	41	30. 1
()	119	28	23. 5
()	124	30	24. 2
()	154	43	27. 9
()	134	31	23. 1
()	142	15	10. 6
()	150	42	28. 0
. ,	-	-	-
	-	-	25. 0

3).

5 1998

58. 9% 1996 1997

. 70%

5.

		(%)
146. 7	91. 8	62. 6
158. 8	70. 0	44. 0
185. 3	131. 2	70. 0
163. 6	97. 6	58. 9

6 11

48. 5%가 . 가

(dornancy)

가

가

가

6.

		(%)
10	168	5. 01
11	302	9. 01
11	1, 625	48. 49
11	516	15. 40
12	465	13. 88
12	199	5. 94
12	76	2. 27
	3, 351	100

.

1).

1995 1 79.

8% 2 6. 2%

1996 1995

36. 2%

1997

(7).

7.

		1	2	3
		(%)	(%)	(%)
1995	4, 200	3, 220(80)	260(6.2)	-
1996	2, 650	960(36. 2)	-	-
1997	2, 600	-	-	-

8 10

8. '95

	si kki mensi s	camelliae	robustus	
1996	2	13	4	19
1997	29	-	18	47

9. '95

		()
1996	980	19(1. 94%)
1997	2, 960	47(1. 58%)
	3, 940	66(1.68%)

10. '96

	si kki mensi s	camelliae	robustus	
1997	3	18	3	24
1998	-	-	-	-

11. '96

		()
1997	1, 690	24(1. 42%)
1998	-	-
	-	-

3 12 1

46.5% , 2 5.4% .

•

, ,

1

12.

		1	2	3
		(%)	(%)	(%)
1995	4, 200	3, 220(79. 8)	260 (6. 2)	0(0.0)
1996	2, 650	960(36. 2%)	121 (4.6)	-
1997	2, 600	608(23. 4%)	-	-

13 14

(C. sikkimensis) C. robustus() 2 1 Bivo ltine (C. camelliae) 1 1 Univoltine . (1984) 7 2 1

13. '96

	si kki mensi s	camelliae	robustus	
1997	3	18	3	24
1998	19	-	10	29

14. '97

	si kki mensi s	camelliae	robustus	
1998	6	31	4	41

2).

' 96

97 4 21

George C. McGavin Mark Robinson

3가 가 (

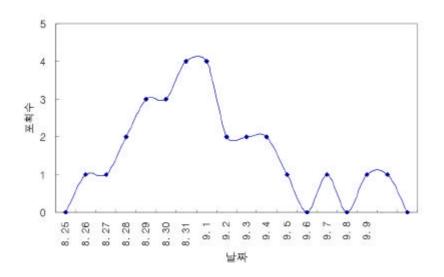
15).

15.

_				(%)
Curculio spp.	' 96	· 97	· 96	· 97
si kki mensi s	56	164	39. 4	66. 4
camelliae	58	51	40. 8	20. 6
robustus	28	32	19. 7	13. 0
Total	142	247	100	100

'97

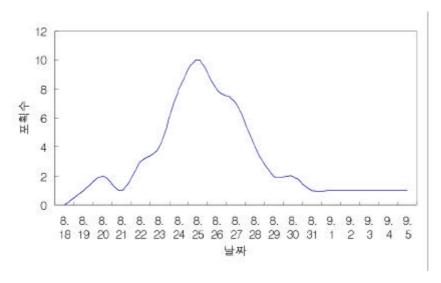
1, 2, 3

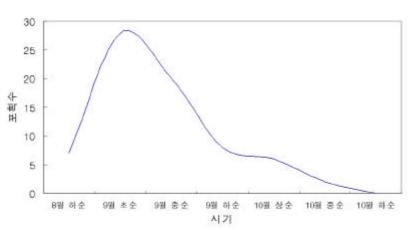

Curculio camelliae가 가 8 25

Curculio robustus 8 29 9 5

, Curculio sikkimensis() 8 10

•

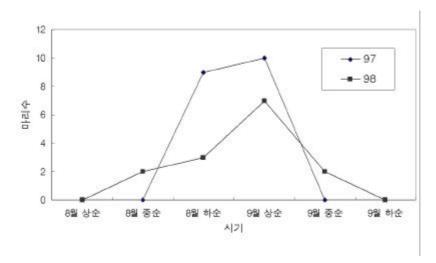

.


1. Curculio robustus

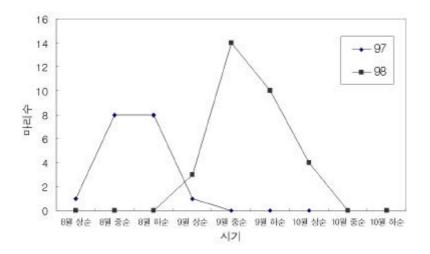
Curcul i o	8	9	
			С.
camelliae7⊦ 8	25		<i>C</i> .
robustus 8 9			
	, 9 5		С.
si kki mensi s⊅¦	가		
10			
가		10	

- 19 -

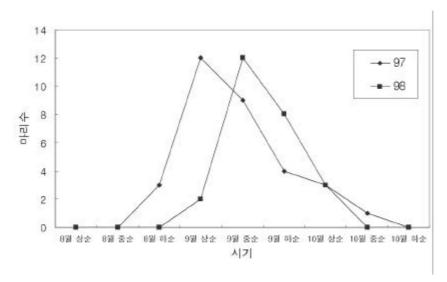
2. Curculio canelliae


3. Curculio sikkinensis

16


16 가가 . ' 96 가 가 8 4, 5, 6 *C. robustus* 8 9 가 C. canellia∈ '97 '98 ' 98 . C. sikkinensis 9

16.


Curculio spp.					(%)		
	'96	' 97	'98	· 96	' 97	· 98	
sikkinensis	56	164	77	39. 4	66. 4	41. 4	
canelliae	58	51	48	40.8	20.6	25. 8	
robustus	28	32	61	19. 7	13.0	32.8	
	142	247	186	100	100	100	

4. C. robustus

5. C. canelliae

6. C. sikkinensis

25 , L: D=15: 9, 60% 17 10 40% (1984) 5. 9

가 .

3

17. (: 25 , L: D=15: 9, : 60%)

8	3
9	9
10	12
11	6
	30
	9. 92

2.

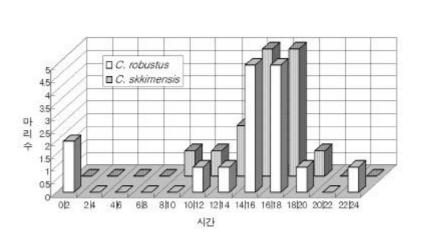
가.

Upper: Lower = 2.4:2.9

가 Upper:

Lower = 3.9 : 2.1

(18).


18.

		(nn)	Uppe	r(nn)	Lowe	r(nn)
SID	5. 00	5. 30	2. 36	3. 90	2. 88	2. 12
	0. 45	0. 68	0. 24	0. 50	0. 17	0. 15

(C. sikkimensis)

1).

C. sikkinensis 64.3%, C. rcbustus
66.7%7\dagger 14:00-16:00 ,
7\dagger 4 (photophase)
(scotophase) C. sikkim
ensis C. rcbustus
(7).

7.

pheronone gland , , ,

3).

가 Food source feeding . 가 1

· 가

feeding

. 1-2

4).

19

가 C. robustus 가 4.

00 , C. canelliae 2.71 .

가

•

19.

C. robustus	12	4. 00
C. sikkinensis	14	3. 21
C. canelliae	11	2. 71

5).

20 C. robustus

가 , 가 19.25 . (1984)

가 .

1 ,

•

C. robustus ()	16	19. 25
()	9	9. 13
C. sikkinensis()	19	7. 16
()	16	6. 18
C. canelliae ()	16	5. 83
()	10	3. 70

.

1 3-5 (:) 7\ 0.4 - 0.8nn 78.0% (21).

21.

(nn)	()	(%)
0.4	2	4.0
0.4 - 0.6	21	42. 0
0.6 - 0.8	18	36. 0
0.8	9	18. 0
	50	100

```
가
                     , 2
   , 1
                    22).
                       . 2
 1
2
  가 (
가 2-3
                   ).
  가
' 96
        Corn powder Chestnut powder 가
                  가 가 가
( 23)
              Sweet potato powder 가
                가
             1 1
                      가 1
           2
  10
```

- 29 -

	1	2
Wheat germ	70g	30g
Cellulose	60g	-
Corn powder	55g	-
Casein	-	35g
Yeast	55g	
Fructose	5g	
Sucrose	-	35g
Wessen's salt mix.	0. 6g	-
Agar	20g	25g
Cholesterol	-	0. 5g
Corn oil	2. 3mg	-
Choline chloride	-	1g
Inositol	-	0. 4g
Ascorbic_acid	6g	4g
Vitanine nix.	4g	5g
Distilled water	1, 000Me	850M€
Nethyl	2g	2g
p-hydroxynebzoate		
Sorbic acid	-	1g
Corn tee powder	2g	-
Malic acid	2g	-

	1	2	3
Wheat germ	70g	30g	40g
Cellulose	60g	-	60g
Chestnut powder	55g	-	55g
Sweet Potato powder	-	45g	45g
Casein	-	35g	35g
Yeast	55g	-	55g
Fructose	5g	-	5g
Sucrose	-	35g	35g
Vessen's salt mix.	0. 6g	-	0. 6g
Agar	20g	25g	20g
Cholesterol	-	0. 5g	0. 5g
Corn oil	2. 3mg	-	2. 3ng
Choline chloride	-	1g	1g
Inositol	-	0. 4g	0. 4g
Ascorbic acid	6g	4g	5g
Vitanine nix.	4g	5g	4g
Distilled water	1, 000Mℓ	850M€	850M€
Nethyl	2g	2g	2g
p-hydroxynebzoate			
Sorbic acid	-	1g	<u>1g</u>
Corn tee powder	2g	-	2g
Nalic acid	2g	-	2g

25

5 1 4.3 (24). 3

, ,

•

(feeding deterrent), (feeding repellent)

가 , 1997 2 1 가 1 10 가

.

24. ()

	4	5
1	3. 1 ± 1. 3	4. 2 ± 1. 7
2	3.6±1.2	4. 3 ± 2. 2

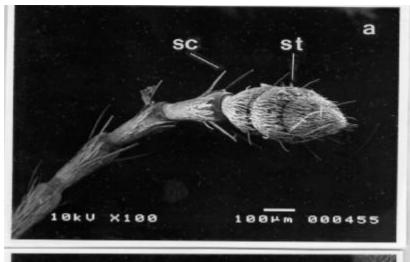
	1	2	3	4	5
 Wheat germ	70g	30g	40g	40g	40g
Cellulose	60g	<u>-</u> -	60g	60g	60g
Chestnut powder	55g	40g	55g	65g	65g
Sweet potato powder		35g	45g	35g	35g
 Casei n	-	35g	35g	35g	35g
Yeast	55g		55g	55g	55g
Fructose	5g	45g	5g	5g	5g
Sucrose	-	35g	35g	35g	35g
Vessen's salt mix.	0. 6g	_	0. 6g	0. 6g	0. 6g
Agar	20g	25g	20g	20g	20g
Cholesterol	-	0. 5g	0. 5g	0. 5g	0. 5g
Corn oil	2. 3Me		2. 3M <i>l</i>	2. 3M <i>l</i>	2. 3Mℓ
Choline chloride	-	1g	1g	1g	1g
Inositol	-	0. 4g	0. 4g	0. 4g	0. 4g
Ascorbic acid	6g	4g	5g_	5g_	5g_
Vitanine nix.	4g	5g	4g	4 g	4 g
Distilled water	1, 000Mℓ	850Mℓ	850Mℓ	850Mℓ	800M <i>ℓ</i>
Nethyl p-hydroxynebzoate	2g	2g	2g	2g	2g
Sorbic acid	-	1g	1g	1g	1g
Corntee powder	2g	-	2g	2g	2g
Malic acid	2g		2g	2g	2g
Ni aci n	-		-	7ng	7ng
Fe	-	-	-	-	0. 3g
Ca	-		-	-	0. 3g
P	-	-	-	-	0. 5g

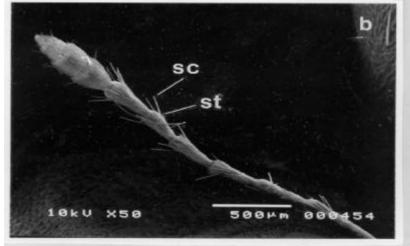
8 9

sensilla trichodea(ST) sensilla chatica(SC)가 sensilla chatica(SC) flagellomone

. sensilla trichodea(ST)

sensilla basiconica


, single cell recording


9(a)

sensilla chatica(SC), sensilla trichodea(SI)

(9b)

modified scale

a: , b:

. a:

, b:

, , , 1978. .

. 25:99 - 110.

, . 1984.

. 23; 132-136.

. 1996. . 1 . 57 pp.

. 1993. . 15 pp. 57-65.

. 1997. . 19 pp. 111-124.

. 1998.

. 102pp.

Honda, H., Kaneko, J., Konno, Y., and Y. Natsunoto. 1979. A simple method for mass-rearing of the yellow peach noth, *Lichocrocis punctiferalis* Guenee (Lepidoptera: Pyralidae), on an artificial diet. Appl. Entonol. Zool. 14: 464-468.

Shinkaji, N. and S. Ito. 1969. Studies on the peach noth, *Lichocrocis punctiferalis* Guenee (Lepidoptera: Pyralidae). . On the measurement of width of head capsule of larvae, with special reference to the difference between the fruit tree type and the conifer type. Hiratsuka Agr. Eng. Res. Sta. Bull. 8: 209-230.

Sikorowski, -P.P. 1984. Boll weevil mass rearing technology. 172 pp. University Press of Mississippi, USA.

Section 2: Searching and Identification of attractant for Chestnut weevil

SUMMARY

Gas chronatography (GC), electroantennogran(EAG), olfactometry were employed in identification of active compounds in attracting chestnut weevil adults, Curculio robustus, sikkinensis, C. canelliae, from their own body and their host plant, chestnut, var. Choopa. Attraction of male and female adults was also investigated with sex pheronone lure indoors and outdoors. The retention time of detected compounds on GC gram from their own body were quite different from those of sex pheronone from the boll weevil, Anthononus grandis, even though the two species belong to the same family. The sex pheronone of the boll weevil did not attract either sex of the chestnut weevil in the field. But chestnut weevil adults were significantly attracted to extract of chestnut burs damaged earlier by the yellow peach noth, Lichocrosis punctiperalis, another pest insect species on chestnut fruits. Their positive behavioral response to the extract may be due to secondary netabolites of damaged burs, since both virgin and nated chestnut weevil adults of both sexes showed the same response. Hence more works were done on chemical composition of healthy and damaged chestnut fruits.

Nethanol extracts of the chestnut burs, undanaged or danaged by the boll weevil, were analyzed to identify attractive green volatiles by GC, EAG and olfactometer. Attraction and EAG response of the adults were higher to chloroform fraction than any other fractions in the case of methanol extracts from burs undamaged. However, ethylacetate fraction showed the highest level in attracting and eliciting behavioral response in the adults in the case of nethanol extracts from burs danaged. From these two fractions originated from nethanol extracts of burs undanaged and danaged, ei ght conpounds, (+) - - pi nene, E-2-hexanal, benzal dehyde, n-decyl al dehyde, nonyl acetate, terpineol, gerani ol, 2-phenylethanol, temporarily were identified when compared their GC retention times with those of standard chemicals. Among these chemicals (+)- -pinene showed highest attractivity to chestnut weevil adults when bioassayed indoors.

With the present results, it may be suggested that chestnut weevil adults probably use, as their sex pheronone, compounds different from those of A. grandis. The weevil adults may use green volatiles, including (+)--pinene, from their host plant, especially burs damaged by L. punctiferalis. However, further studies are required to identify their sex pheronone

components and their composition, and green volatile compounds, from their host plant including burs, active in attracting adult weevils.

가 가 가

· , 가 ,

, 가 가

(, **1990**), 가 .

가 .

가 가 ·

가 .

,

, 가 . 가 (Sorenson , 1992; Toht , 1992),

, . 가

. (green

volatiles)

가 (Schoonhoven , 1988).

, 가 ,

EAG single-cell recording .

가 , , (Humnel, 1984).

,

2 .

1. 가.

(30L) 20 porapack Q(Signa Co.) .

, 2500cc

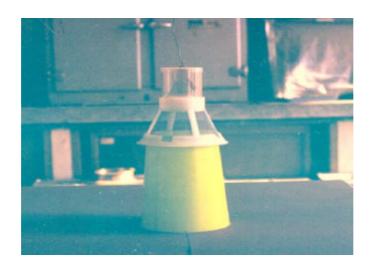
・ hexane, ether 10μl 가

GC(Shi nazu Co., HP 6890) .

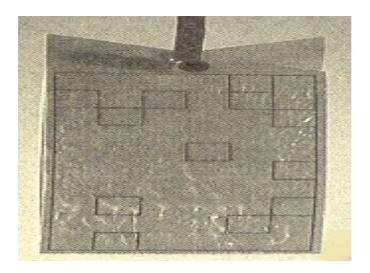
(Pherocon cap) hexane GC

Pherocon cap(Ncki bben , 1971)

. wing trap(1), boll wevil trap(2), flat trap(3) (Leggett, 1979; Leggett Taft, 1979),


1996 8 24 1996 10 9 . Pherocon cap boll trap

Pherocon cap wing trap


1997

1. Wing trap

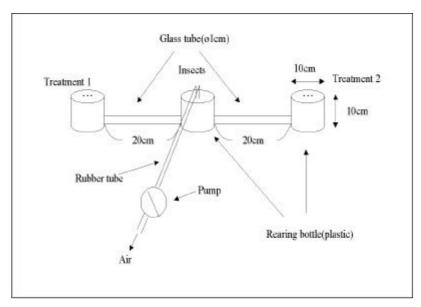
2. Boll weevil trap

3. Flat trap

2.

.

가


•

•

(4).

(Hardee ,

1967).

4.

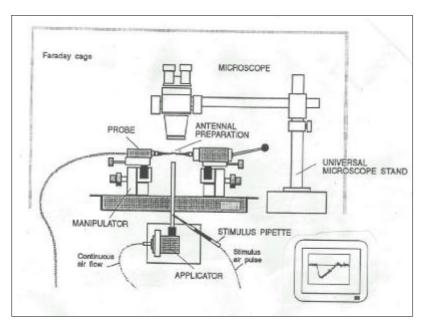
3.

가.

(:)

hexane, chloroforn, ethylacetate

2500cc/nin


.

Box olfactometer

box (35cn × 25cn) 50Me

box *C. rebustus* 10

15L/9D, 25 ± 1 10

5. El ectroantennogram

El ectroantennogram(EAG)

(Ag)

(Syntech. Co)

(:)

hexane, chloroform, ethylacetate, water

Box ol factometer
box

50M2

- 50 -

50Mℓ

가

Y-tube olfactometer

5cn)

Y-tube(

가

. Y-tube 가

가 5 가

•

. 2500cc/nin

 $15L/9D, 25 \pm 1$.

Electroantennogram(EAG)

CO2

(Ag) EAG

(Syntech. Co)

. Green volatiles

Green volatiles

Green volatiles butyric acid ethyl ester, hexanal, -nyrcene, (+)-linonene, 2-heptanone, E-2-hexanal, citral, eugenol, -humulene, (+)- -pinene, (-)-E-caryophyllene, geraniol, 1-nonanol Signa

.

Electroantennogram(EAG)

green volatiles hexane

20ng hexane

. CO2 (Ag)

EAG (Syntech. Co)

•

Box olfactometer

box 50Ml green volatile

box C. robustus 10

•

Glass tube olfactometer

Glass tube(7cm, 15cm) 50
Me cornical 50Me cornical

green volatile , glass

tube . tube

10 tube Y

. GC

가

GC(HP 6890)

가

penta

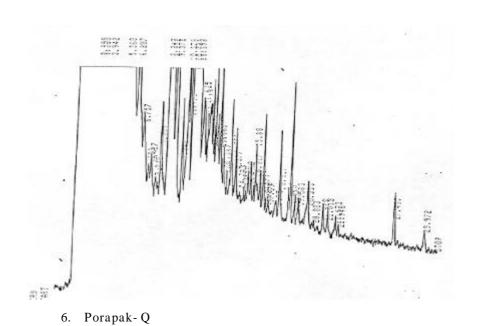
DB 225(Alltech Co.) 40 2 $5 / ni \, n$. 190 190 20 . 200 , (FID) 200

.

3 .

1.

가.

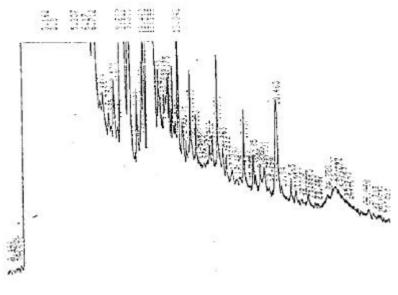

(6), (7) 5가

•

weevil, (ylas fornicarius

(Boll weevil, Anthonom us granais)

Z-3, 3-dinethyl- 1 -cyclohexa aneactal ehyde, E-3, 3-dinethyl- 1 -cyclohexa aneactal ehyde, (1R, 2S)-(+)-cis-2-i sopropenyl-1-nethyl cyclobutaneethanol, Z-3, 3-dim ethyl- 1 -cyclohexaaneethanol (Hardee , 197 1; 1972; 1977; Tunlinson , 1971; Hedin , 1974), Sweetpotato


decanal, hexadecanal, octadecanal, nyrtenol, hexadecanyl acetate, octadecanyl acetate, Z9-octadecenyl acetate, F9-octadecenyl acetate, eicosanyl acetate (Kalo, 1979; Kalo Neders tron, 1983)

가

4

Old house beetle, *Lylotrupes Layalus* Higgs, 1975).

(Evans

7. Porapak- Q

.

Pherocon cap hexane GC

(8).

 $(1R,2S) - (+) - ci\,s - 2 - i\,sopropenyl - 1 - nethyl\,cycl\,obutaneethanol\,(grandi$

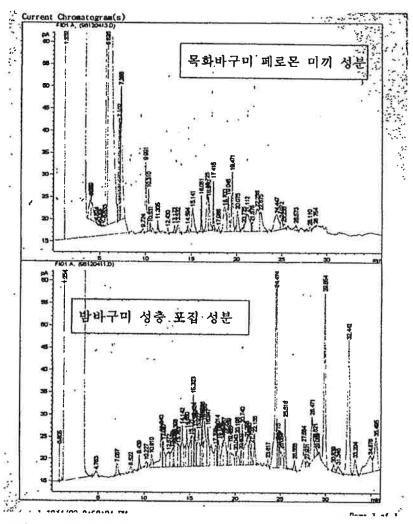


그림 8. 목화바구미(boll weevil) 페로몬 미끼성분 추출물과 밤바구미 발산 성분 비교 GC 그램

ol), Z-3, 3-dinethyl- 1 -cyclohexaneethanol

GC

GC

가 .

.

Pherocon cap

가 .

가 (1),

.

1. Trap

Trap	
Wing trap	0
Boll trap	0
Flat trap	0

-. : ,

-. : 1996 8 24 - 1996 10 9

97. 8. 25	3	0
97. 8. 26	3	0

* : boll weevil trap

3.

97. 8. 25	10	1
97. 8. 26	10	3

* : wing trap

3

가 .

가

가 ·

2.

, 가 이 dfactometer ,

가 , , ,

•

(4), (5), (7) .

가

, 가 .

Bait pair(1st/2nd)	1st bait	2nd bait	No response
CBU: UCF	21	1	5
CTL : CBU : UCF	1	21 14	8 15
CBD : CTL	11	7	12
: CBU	16	2	12
: UCF	10	13	7

CBU:

UCF:

CTL:

CBD:

Bait pair(1st/2nd)	1st bait	2nd bait	No response
CBU: UCF	5	4	21
CTL : CBU	1	8	21
: UCF	2	6	22
CBD : CTL	20	5	5
: CBU	23	2	5
: UCF	22	4	4

4

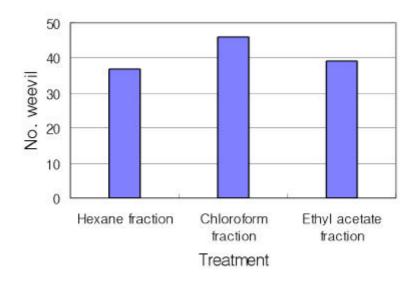
6.

Bait pair(1st/2nd)	1st bait	2nd bait	No response
CBU : UCF	4	2	24
CTL : CBU	3	9	18
: UCF	2	3	25
CBD : CTL	27	1	2
: CBU	28	0	2
: UCF	25	4	1

Bait pair(1st/2nd)	1st bait	2nd bait	No response
CBU: UCF	6	3	21
CTL : CBU	3	5	22
: UCF	1	4	25
CBD : CTL	26	2	2
: CBU	24	1	5
: UCF	25	4	1

4

3.


가.

Box olfactoneter

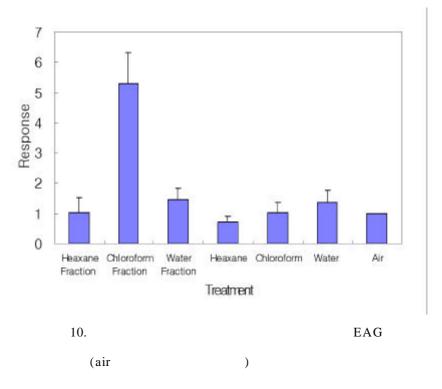
, 가 가 (9), EAG 가

(10),

.

9. Box olfactoreter

•

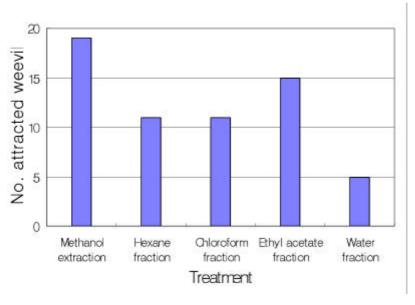

Box olfactometer

11).

(11).

가 .

가

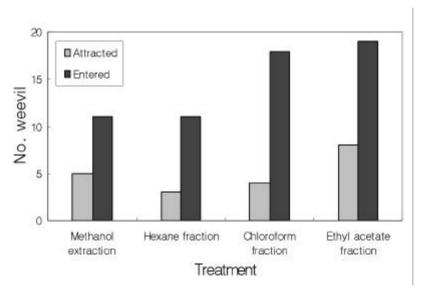

(Barnay Chapnan,

1994; Turings , 1990; Turings Tumlinson, 1992) 7

Y-tube

가 (12). 가

(entered)



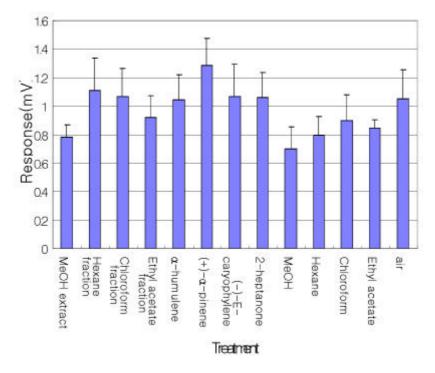
11. Box olfactormeter

가 , 가 (attracted)
box olfactometer

가

가 .

12. Y tube olfactormeter


EAG

EAG

-pinene 가 (

13).

-hunul ene caryophyl l ene

13. green volatile EAG

가 . Pecan weevil, *Curculio cayae*, -humulene

```
caryophyllene
Z-3, 3-dinethyl - 1 -cycl ohexaneethanol
             1979; Roseland , 1992).
   (Hedi n
   . Green volatiles
   green volatile
                         box olfactorneter
       가
                          hexanal, 2-heptanone, E-2-hexanal,
(+)- -pinene, geraniol
                           (8).
   가
                                          가 ,
                                                 . Glass tube
ol factorneter
                 green volatile
   (+) - - pi nene (-) - E- caryophyl l ene
        (+) - - pi nene EAG
                                                  가
                                                    가
```

- 68 -

pi nene

nyrcene

8. Box olfactormeter green volatile

Green volatile

dreen volueire	
butyric acid ethyl ester	34
hexanal *	54
-nyrcene	37
(+)-linonene	35
2-heptanone*	49
E-2-hexanal *	52
citral	34
eugenol	19
- hurul ene	34
(+) pi nene*	48
(-)-E-caryophyllene	32
gerani ol *	45
1-nonanol	14
control	22

*: 가 green volatile

nyrcene

caryophyllene

가

9. Glass-tube olfactormeter green volatile

(/)

Green volatile	
butyric acid ethyl ester	0. 92
-nyrcene	0. 80
(+)-limonene	0. 50
2-heptanone	1. 20
- humul ene	1. 31
(+)pi nene*	2. 25
(-)-E-caryophyllene*	2. 43
gerani ol	0.80
1-nonanol	1. 10
*: 가 greer	ı volatile

. Red sunflower seed weevil

-pi nene -pi nene

GC

```
GC
                                                              (+)-
                                              benzal dehyde (13.966),
-pinene (5. 209),
                    F-2-hexenal (9. 271),
n-decyl
              aldehyde(16.700),
                                       nonyl
                                                   acetate(17.971),
terpineol (18.259), geraniol (20.390)
                                                       (
                                                             14),
                                                                 (+)-
  -pi nene (5. 167), benzal dehyde (13. 907), gerani ol (20. 338)
        (
               15),
                          (+) - -pinene(5.503) terpineol(18.377),
2-phenyl ethanol (20. 274)
  (
        16).
```

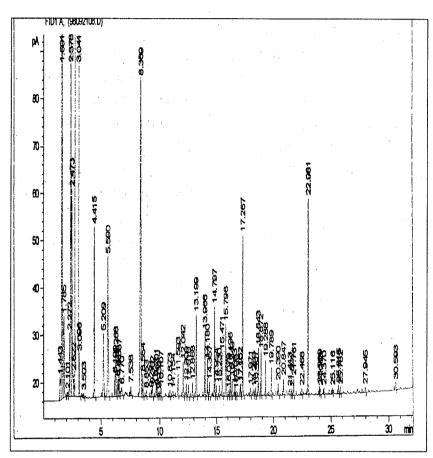


그림 14. 건전한 밤송이 메탄올추출물의 클로로포름 분획의 GC gram. 컬럼: DB225, 오븐온도: 40℃에서 2분 지체후 분당 5℃씩 190℃까지 상승, 주입기온도: 200℃, 검출기온도: 200℃, 이동기체: He 2.0ml/min

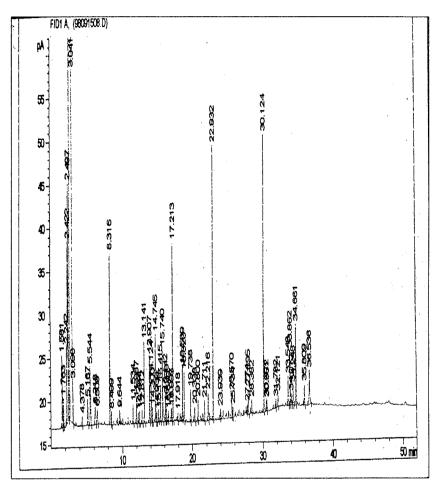


그림 15. 복숭아명나방피해 밤송이 메탄올추출물의 클로로포름 분획의 GC gram.(분석조건은 그림 14와 동일함)

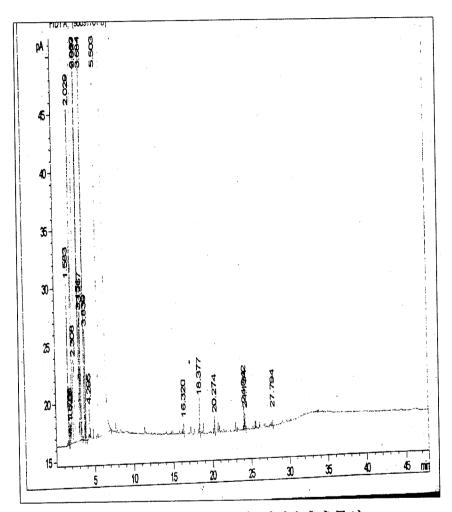


그림 16. 복숭아명나방 피해밤송이 메탄올추출물의 에틸아세테이트 분획의 GC gram (분석조건은 그림 14와 동일)

제 4 절. 적 요

- 1. 밤바구미에서 발산되는 화합물은 다수의 화합물이 검출되었고 근연종인 목화바구미(Boll weevil)의 성페로몬 조성과는 다른 성페 로몬 체계를 갖고 있었으며 야외유인에서도 목화바구미의 성페로몬 성분으로는 전혀 유인되지 않았다.
- 2. 기주식물에 대해 밤바구미는 복숭아명나방 피해를 입은 밤송이에서 높은 유인력을 나타내었으며, 성별과 교미여부에 관계없이 같은 경향을 보여 복숭아명나방의 가해가 기주식물인 밤나무 특히 밤송이에서 이차대사산물의 변화를 야기하는 것으로 보이며 그 결과 밤바구미의 집합반응이 나타나는 것으로 여겨진다.
- 3. 기주식물의 방향성물질(green volatile) 중 유인성분을 탐색하기 위해 건전한 밤송이와 복숭아명나방 피해밤송이 추출물에 대한 olfactometer, EAG분석 결과 건전한 밤송이에서는 메탄올추출물의 클로로포름 분획에서 가장 높은 유인활성을 나타내었으며 EAG 반응도 가장 높았다.
- 4. 복숭아명나방피해 밤송이의 메탄올 추출물 중에서는 에틸아세테 이트 분획에서 가장 높은 유인활성을 나타내었다.
- 5. 건전한 밤송이 메탄올추출물의 클로로포름 분획, 복숭아명나방피해 밤송이 메탄올 추출물의 클로로포름 분획과 복숭아명나방피해 밤송이 메탄올 추출물의 에틸아세테이트 분획에 대한 GC 분석 결과,

- (+)-α-pinene, E-2-hexenal, benzaldehyde, n-decyl aldehyde, nonyl acetate, terpineol, geraniol, 2-phenylethanol 유지시간 비교를 통해 성분을 추정되었다.
- 6. 실내 생물검정으로 식물 유래 방향성화합물의 유인활성을 조사한 결과 (+)-α-pinene이 가장 높은 유인활성을 보여 유인제 성분으로 이용할 가능성이 있았다.

제 5 절. 인 용 문 헌

백운하. 1990. 신고해충학. 00. 305-364. 향문사. 서울.

Barnays, E. A. and R. F. Chapman. 1994. Host-plant selection by phytophagous insects. 312pp. Chapman & Hall. New York.

Cross, W. H., D. D. Hardee, F. Nichols, H. C. Mitchell, E. B. Mitchell, P. M. Huddleston and J. H. Tumlinson . 1969. Attraction of female boll weevils to traps baited with males or extracts of males. J. Econ. Entomol. 62: 154-161.

Evans, D. A. and M. D. Higgs. 1975. Monooxygenated monoterpenes from the frass of the wood boring beetle, Hylotrupes bajalus(L.). Tetrahedron Lett. 41: 3585-3598.

Hardee, D. D., E. B. Mitchell and P. M. Huddleston. 1967. Procedure for bioassaying the sex attractant of the boll weevil. J. Econ. Entomol. 60: 169-175.

Hardee, D. D., N. M. Wilson, E. B. Mitchell and P. M. Huddleston. 1971. Factors affecting activity of grandlure, the pheromone of the boll weevil, in laboratory bioassays. J. Econ. Entomol. 64: 1454-1456.

Hardee. D. D., G. H. McKibben, R. C. Gueldner, E. B. Mitchell, J. H. Tumlinson and W. H. Cross. 1972. Boll weevils in nature respond to grandlure, a synthetic pheromone. J. Econ. Entomol. 65: 97-100.

Hedin, P. A., J. A. Payne and R. J. Jones. 1977. Attraction of the pecan weevil to its natural pheromone and grandlure. Pecan South. 4: 26-34.

Hedin, P. A., J. A. Payne, T. L. Carpenter and W. Neel. 1979. Sex pheromones of the male and female pecan weevil, Curculio caryae: Behavioral and chemical studies. Environ. Entomol. 8: 521-523.

Hedin, P. A., R. C. Gueldner, R. D. Henson and A. C. Thompson. 1974. Volatile constituents of male and female boll weevils and their frass. J. Insect Physiol. 20: 2135-2142.

Hummel, H.E. and T.A. Miller. (Ed.) 1984. Techniques in pheromone research, p.464. Springer-Verlag, New York.

Kalo, P. 1979. Identification of potential sex pheromones in Large pine weevil, *Hylobius abietis*.(L.). Finn. Chem. Lett. 189

Kalo, P. and A. Nederstran. 1983. Identification of methyl and

ethyl esyer of fatty acids in the Large pine weevil, *Hylobius abietis.*(L.). Am. Entomol. Fenn. 49: 32-40

Leggett, J. E. 1979. Boll weevil: Some new concepts in trap design and evaluation of trap efficiency. Environ. Entomol. 8: 70-72.

Leggett, J. E. and H. M. Taft. 1979. Boll weevil: Capture in pheromone traps baited with natural male lure and several concentrations of grandlure. Environ. Entomol. 8: 62-68.

Mckibben, G. H., D. D. Hardee, T. B. Davich, R. C. Gueldner and P. A. Hedin. 1971. Slow-release formulations of grandlure, the synthetic pheromone of the boll weevil. J. Econ. Entomol. 64: 317-319.

Roseland, C. R., M. B. Bates, R. B. Carlson and C. Y. Oseto. 1992. Discrimination of sunflower volatiles by the red sunflower weevil. Entomologia Exp. Appl. 62: 99-106.

Schoonhoven, L. M., T. Jermy and J. J. A. van Loon. 1998. Insect-plant biology. 409pp. Chapman & Hall. London.

Sorenson, C.E., G.G. Kennedy, W. Van-Duyn, J.R. Bradley Jr. and J.F. Walgenbach. 1992. Geographical variation in pheromone response of the European corn borer, *Ostrinia nubilalis* in

North Carolina. Environ. Entomol. 64:177-185.

Toth, M., C. Lofstedt, B.W. Blair, T. Carbello, A.I. Farag, B.S. Hansson, B.G. Kovalev, S. Maini, E.A. Nesterov and I. Pajor. 1992. Attraction of male turnip moths *Agrotis segetum* (Lepidoptera: Noctuidae) to sex pheromone components and their mixtures at 11 sites in Europe, Asia, and Africa. J. Chem. Ecol. 18:1337-1347.

Tumlinson, J. H., D. D. Hardee, J. P. Minyard, A. C. Tompson, R. T. Gast and P. A. Hedin. 1968. Boll weevil sex attractant isolation studies. J. Ecol. Entomol. 61: 470-476.

Tumlinson, J. H., D. D. Hardee, R. C. Gueldner, A. C. Thompson, P. A. Hedin and J. P. Minyard. 1969. Sex pheromones produced by male boll weevil: Isolaton, identification and synthesis. Science, 166: 1010-1012.

Tumlinson, J. H., R. C. Gueldner, D. D. Hardee, A. C. Tompson, P. A. Hedin and J. P. Minyard. 1971. Identification and synthesis of the four compounds comprising the boll weevil sex attractant. J. Org. Chem. 36: 2616-2624.

Turings, T. C. J. and J. H. Tumlinson. 1992. Systemic release of chemical signals by herbivore-injured corn. Proc. Natl.

Acad. Sci. USA. 89: 8399-8402.

Turings, T. C. J., J. H. Tumlinson and W. J. Lewis. 1990. Exploitation of herbivore- induced plant odors by host seeking parasitic wasps. Science 250: 1251-1253.