가

가

Studies on the Production System of Recycling Feed by Single Screw Extruder as a Mean of Animal Feces Processing

1997	7 가			가
	: 1. 2.	8	1	
			1998. 12. 15.	
			:	
			:	()
			:	()

" 가 가

1998. 12. 15.

: : :

가

I. 가 가

II.

가 가 1975 225 가 . 20 1985 593 2.5 가 1994 1,147 가 (1975 1994) 9.0% 가 가 가 가 가 1980

, 1975 1,247 , 29.9

1980 1,784 , 40.1 가 1994

5,955 ,80.6 가 .

가 가 가

가 . 가 ,

가

. 1993 가 (,) 170

(,)

9% . 가 가 가

가 가

•

- 3 -

1997 7 56.3% 가

.

5 9% 1991 KIST 26,637 , 10,425

37,062 (82,284) 45% 가

. 1993 가 2% 가

가 가

52% フト

. 가

. 가

60 70%가 , 가

,

.

가 가

. 가

가 가 .

 $(25 \quad 28\%), \qquad (0.5 \quad 3\%),$

- 4 -

가 가 가 가 가 가 가 가 (Extrusion) 가 가 가 가 가 가 가 가 가 가 가 (Extruding) 1940 가 . 1970 Guy Fere (FEDIAF) 10 30% 1992 70 가 80%

1970

(10 15%), NFE(25 30%) (20 30%)

- 5 -

15 20% 3 1988 7 5 30 10 , 가 가 가 가 가가 가 가 가가 가 가 가 가 Miller(1984) , Huge Blake (1990) 가 (1987) 가 Extruding Recycle Feed (ERF) System 가 가 가 가

1970

1989

- 6 -

. 가 가

가 , 가

·

•

가 . 가

가 .

가

. フト 50-80% フト ,

20- 40%

20 10%

가 1 4.0,

12.0, 146.0, 880.0 657.0kg
7

가 (extrusion cooker) (extruder)

가 . ,

, , , 가 , (starch gelatinization),

(protein denaturation) ,

· 가 ,

가 가 가 . 가 가 가 가

가 가 (Extruded

Recycling Feed: ERF)

ERF 가, .

1. I:가

가

가 Ca P

가

가 가

· 가 가

2. : 가 Extrusion

가 가

- 8 -

		1)	;	가									•
				가			single	screw	ext	ruder(()
,)	die		3.9- 5.	3 mm,	screw	rpm	200	300,	barrel	temp	ratur	e
100	150)oC								2)			
								ERF					
			ERF	7						I	ERF		
3.		:	I	ERF			가						
					가					가		가	
					ERF								2
								1) 1		ERF			
						2)	가						
			7	가			3) 가						
						가				4)	I		
		E	RF								가		
					5)			가		ERF			
4.		:	F	ERF			가						
	가											1)	

- 9 -

가 2)
3) 가
가
4) 가 5) ERF

.

•

가.

가 가

가 가 가

가 (Extruded Recycle Feed : ERF)
ERF 가가,

·

. 가

1. 가 가

.

가 가 가 , 가 가 3. Total amino acid가 13.50%, 9.86% (EAA/TAA)33.4% 1/3 31.7%, 4. 19 23%, 18 25% 가 12.11%, 10.51% 5. 68.61%, 61.57% 24, 48 72 6. 가 15 72 2 6 25 7. 6, 7, 8 11.3 13.3% 5 9 21 26%

30.12 37.98%, 22.33 28.51%

- 11 -

2.

가 Coliform, E.coli, Salmonella 가 가 . . 가 Extrusion Barrel Temperature(BT) 1. Extruder 100, 110, 120, 130, . Extruder 140 150 Screw Sped(SS) 200 rpm Die Diameter(DD) 5.4 . Extruding WSI WAI 30% BT130 2. 30 70% 40 60% Extrusion 2 DD 3.9mm가 Screw speed 250-300rpm Barrel Temperature 130 3. Extrusion 가 가 30% 40% ST가 5%

8.

3

가 .

4. Extrusion 30% 40%

110 Coliform, E. Coli, Salmonella

. Extrusion 가

5. ERF 26-32% ER WSI 가

26-32% 가가

6. () ERF

가 40-70% 가 FD ER

·

Extrusion 가

. Extrusion 가

·

7. ERF

Extrusion BT 130 200- 250 rpm

가 10-20% 가 10%

8. 가 ERF

9. Extrusion Extruder Die diameter (DD) 3.9 5.4mm, Screw Speed(SS) 200, 250, 300 350 rpm

Barrel Temperature(BT) 90, 110, 130, 150 70 +

30 60 + 40 Extrusion

DD 5.3mm SS 250-300rpm BT 130 71

. 13.5% 7\

3.5% 5%

. Extrusion 가

10. ERF FD 420-730 g/1 7 7 FDプト プト ER 1.267-1.824 130 ER

가 .

11. (Extruding Recycling Feed:ERF)

(FD) 1.16-1.30Kg/1 (ER) 0.90-1.09

ER . ER NFE 55%

Extrusion

ER WSI GR 가 . ER WAI WSI (가 Extrusion 가 13. ERF () ER WAI WSI GR Extruding 20% 가 BT 130 40:40:20 14.57 4193Kcal/Kg 가 가 . 110 Coliform, E.Coli, Salmonella . ERF 가 ERF 가 Broiler , 1. 6 가 ERF20-40% ERF10% 가 . 1.97

ERF

12.

ERF 20%

2.06

ERF10%

가

•

% 72.85% ERF 가 70.46% 68.58% .

18- 20%

11.17% ERF 10% 가 12.89%

ERF 가 .

.

2. , , ERF 가

ERF

60.57% ERF 20% 59.71% 59.74%

가 .

108.9g 가 ERF 가 가 가

가 .

ERF 가 20 40%

가 Haugh unit

.

3. , , ERF 가

가 119.8g

フト , ERF10,20 30%

ERF40%

. ERF 10,20,30%

가 ERF 40%

. 가 가

ERF 가 67.3, 66.5, 66.7, 64.0% 가 가 ERF 40% 가 49.68% ERF 10- 30% ERF40% 44.53% 가 . ERF 1. ERF 가 SWERF 10-50% SWERF 40% SWERF 가 가 . SWERF 가 가 65.86-68.48%, 19.26-20.56%, 11.47- 12.82% (), , 가 3.5 가 SWERF

2. SWERF

SWERF 10% 20%

SWERF 40%

. FW 20% 40% 가

•

SWERF 40%, . SWERF FW 20% 40% FWHaugh Unit 가 3. SWERF 가 SWERF 0, 10, 20, 30 40% 40 85 (24-55kg)7ト (P>0.05), (56-88kg) SWERF 가 SWERF 40% 가 SWERF 10% 가 (P < 0.05)가 SWERF 10% 가 가 (P < 0.05). (P > 0.05). 4. SWERF 40% 가 가 (P<0.05) , SWERF 20% 가 (P < 0.05). SWERF 30% 가 가 가 SWERF 40% 가

. ,

SWERF 40% 가 가

20% 가 가

(P < 0.05) .

SWERF 10%

(P < 0.05)

(P < 0.05) .

(P < 0.05)SMFW 가 . SMFW (P<0.05)

가 5. SWERF 40% SWERF 10 20% (muscle, trapezius cevicalis) (P < 0.05). , ,) 가 (가

(P < 0.05)4 TBARS가 POV가

SWERF 가 가 가

가 , SWERF 40% 가 (P < 0.05)

SWERF 30% 가

가

. 가

가가 . 가

- 19 -

 1.
 가
 가

 가
 가

2.

IMF

3. 가 가 가 가

.

4. 가가

5. フト

6.

SUMMARY

In order to find out the efficient use of livestock farm and food wastes, a series of experiments were conducted with poultry, swine and sheep. Poultry and swine manure and dried food waste were used as extruding recycling feeds (ERF). The specific purposes of this study were to 1) analyze the chemical compositions and microbial population, 2) determine the efficient production conditions in the extruder, and 3) evaluate feeding values of poultry and swine manure and food waste. The results were summarized as follows;

- . Chemical compositions and microbial populations of animal manure and food waste.
- 1. In poultry manure, crude protein contents of broiler and layer manure were 30.12-37.98% and 22.33-28.51%, respectively. Wide range was shown in protein contents from poutry manure, which might be originated from collection farms and different diets. Total amino acids in broiler and layer manure were 13.50% and 9.86%, respectively. And the essential amino acid ratios to total amino acids (EAA/TAA) were 31.7% and 33.4% for broiler and layer manure, respectively, which accounted for 1/3 of total amino acids.
- 2. In swine manure, protein contents of grower and breeder manure

were 19-23% and 18-25%, respectively, showing wide ranges among collection farms. Total amino acids in grower and breeder manure were 12.11% and 10.51%, respectively. The total amino acids were over 60% of crude protein contents for both grower and breeder manure.

- 3. The changes in nutrient contents during storage for 24, 48, and 72 hours were checked. When stored below 15, crude protein contents in poultry and swine manure were slightly decreased up to 72 h storage time. However, it was significantly reduced at 2-6 hours after storage at 25.
- 4. Crude protein contents of food wastes were different from collection seasons, showing that those were lower in summer (11.3-13.3%) than in spring or fall season (21-26%).
- 5. At d 3 after storage of poultry and swine manure, microorganisms (i.g. coliform, E. coli and salmonella) were found all samples from broiler, layer, growing and breeding pigs. And as storage time passed, the microbial populations were greatly increased.
- . The efficient extruding conditions for livestock manure and food waste.
- 1. Poultry manure was mixed with corn and extruded. When poultry manure was mixed with corn more than 30%, the optimal barrel

temperature (BT) was above 130 under 200 rpm of screw speed (SS) with 5.4 mm die in diameter (DD) in dry-type extruders.

- 2. When poultry manure mixing ratio with corn was 30:70 or 40:60, the optimal DD, SS and BT in the extruder were 3.9 mm, 250-300rpm and over 130, respectively.
- 3. Generally, the chemical compositions of animal manure were not significantly affected by extrusion. But the moisture contents of extrudates were reduced by 5% as BT was increased by 10 from 100 to 150. Crude fat contents of the extrudates were also reduced as BT was increased in the extruders.
- 4. Microorganisms (coliform, E. coli and salmonella) were not found when animal manure was extruded above 110 BT, regardless of mixing ratio of manure (30 or 40%).
- 5. The optimal moisture content of extrudate (manure and corn mixture) was 26-32% in terms of expansion ratio (ER) and water solubility index (WSI).
- 6. As the corn inclusion level was increased from 40 to 70% in the extrudates, the bulk density (BD) and ER were also improved.
- 7. The optimal extruding conditions for poultry manure mixture containing soybean meal were 130 BT and 200-250 rpm SS in the

extruders. And the ideal inclusion level of soybean meal was about 10% (10-20%) in the manure and soybean meal mixture.

- 8. When corn was substituted with tapioca to reduce cost in the mixture of manure and corn (50:50), the optimal substitution level of corn was 20% (manure 50 + corn 30 + tapioca 20).
- 9. For extrusion of the mixture with corn and swine manure (70:30 or 60:40), the optimal extruding condition was 3.5 mm DD, 250-300 rpm SS and 130 BT. During extrusion, crude protein content in the extrudates was not changed (13.5%), but crude fat content was reduced by 5% as BT was increased. No microbials were detected.
- 10. BD was 420-730g/l in the mixture of swine manure, corn and soybean meal, and it was increased as the addition level of corn was increased. ER was 1.267-1.824 and best at 130 BT.
- 11. In the extruding recycling feed (ERF) using food waste, BD was 1.16 kg/l, and ER was 0.90-1.09. So, in order to improve quality, starch addition was needed.
- 12. As the corn addition level was increased in the food waste, ER, WSI and GR were improved, which were related to expansion characteristics. There was no changes in chemical compositions and no microorganisms in the extrudates.

13. In the ERF using swine manure, the addition of corn improved ER, WAI, WSI and GR. At least 20% of corn addition was desired to produce quality ERF feeds. The optimal BT and mixing ratio of swine manure, food waste and corn were 130 and 40:40:20, respectively. There was also no microorganisms (coliform, E. coli and salmonella) in the extrudates.

- . Feeding values of poultry manure ERF in poultry.
- 1. In the broiler experiment (6 weeks) using ERF diets containing poultry manure, corn and tapioca, there was no significant difference in growth rate of chicks fed between control and ERF 10% diets. But feeding ERF 10% diet reduced (P<0.05) growth rate of chicks as compared with control. There was no difference in feed conversion ratio (FCR) between control (1.97) and ERF 10% (2.06), but as the addition level of ERF diets was increased (above 20%), FCR was poor (P<0.05). Carcass % was lower in chicks fed ERF diets than control. As ERF was increased in the diets, carcass % was decreased from 70.46 to 68.58. In carcass, there was no difference in protein content (18-20%), but fat content was higher in chicks fed ERF 10% (12.89%) than control (11.17%). There was a trend to increase fat content in chicks as ERF increased. No difference was found in panel test of chicken among dietary treatments.

- 2. In the layer experiment using ERF diets containing poultry manure, corn and tapioca, there was no significant difference in egg production rate among treatments; control, ERF 10% and 20%. Feed intake was the lowest in control group, and slightly increased as ERF addition level was increased, resulting in poor FCR in ERF fed groups. Conversely, egg weight was heavier in ERF fed groups (20 and 40%) than control.
- 3. In the sheep experiment using ERF diets containing poultry manure, corn and tapioca, average daily gain (ADG) was higher in sheep fed control diet than others, but not significant difference among experimental groups except the ERF 40% group. The intakes of roughage and concentrate feeds were increased in sheep fed diets containing ERF 10, 20 or 30%, but those were reduced in sheep fed ERF 40%. So FCR was best in the control group and was improved as the inclusion level of ERF was increased. Fecal digestibility of DM was lower in ERF groups than in control, and decreased as the addition level of ERF was increased in the diet. The digestibilities of crude protein, fiber and ash were improved as ERF level was increased from 10 to 30%, but not 40%. Carcass % was also decreased as ERF was increased in the diets.
- . Feeding values of swine waste and food waste mixture extuding recycle formula(SWERF) in poultry and swine.

- 1. In the broiler experiment using SWERF diets containing swine manure, food waste and corn, there was no difference in weight gain in chicks fed between control and diets containing SWERF up to 40%. However, as the addition level of SWERF in the diet was increased, feed intake was also increased, resulting in poor FCR. Carcass % was not affected by dietary treatments. Moisture, crude protein and crude fat contents in the carcass were 65.86-68.48%, 19.26-20.56%, and 11.47-12.825, respectively. Taste, juiciness and meat color in the chicken were higher in the conrol group than SWERF fed groups, but no difference was found among SWERF fed groups.
- 2. In the layer experiment using SWERF diets, egg production rate was significantly reduced (P<0.05) in layers fed SWERF 40%, but not 10 or 20%, as compared to control group. Egg production rate was also reduced when hens fed diets containing food waste (FW) 20 or 40%. Feed intake was not affected by dietary treatments. F/G was low (P<0.05) in layers fed diets containing SWERF 20, 40% and FW 40% as compared to control. Generally, egg weight was low in layers fed SWERF or FW, egg shell thickness (Haugh Unit) was increased.
- 3. In the swine experiment using SWERF diets, there was no difference (P>0.05) in growth performance (ADG, ADFI and F/G) among treatments during growing period, but ADG was lower (P<0.05) in pigs fed diets containing SWERF 40% than 10% during finishing period. F/G was improved (P<0.05) in pigs fed 10% SWERF diet as compared to

others. During the overall period, there was no significant difference in ADG, ADFI and F/G among treatments. DM digestibility of SWERF 40% was lower (P<0.05) than others. Energy digestibility of SWERF 20% diet was higher (P<0.05) than control and CP digestibility of SWERF 30% diet was higher (P<0.05) than control and SWERF 40% diets.Fat digestibilities of SWERF 10 and 20% diets were higher (P<0.05) than others. Digestibilities of Ca and P was lower (P<0.05) in SWERF 40% diet than others. Digestibilities of DM, crude protein and P were lower (P<0.05) in pigs fed swine manure than in pigs fed grower diet. The digestibility of energy was improved (P<0.05) when SMFW was extruded. Even though there was no difference in backfat thickness among dietary treatments, dressing % was lower (P<0.05) in pigs fed SWERF 40% than in pigs fed SWERF 10 or 20%. Chemical compositions of pork was not affected by dietary treatments, but during storage, TBARS and POV values in pork from SWERF fed groups, especially 40%, were rapidly increased (P<0.05) as compared to control group.

CONTENTS

Title: Studies on the Production System of Recycling
Feed by Single Screw Extruder as a Mean of Animal
Feces Processing

Chapter 1. General introduction	44
Chapter 2. Chemical composition and microbiological evaluation and food waste	
Part 1. Introduction	47
Part 2. Material and Methods	48
1. Analysis of nutritional content in animal waste	48
2. pH and VFA in animal waste	50
3. Biological value	50
4. Digestibility	50
Part 3. Results and discussion	51
1. Nutritional composition of poultry waste	51
2. Nutritional composition of swain waste	57
3. Changes of chemical composition of animal waste	63
4. Nutritional composition of food waste	67

5. Microbiological evaluation of animal waste and food waste	71
Chapter 3. The efficient extruding conditions for animal w	aste
and food waste	75
Part 1. Introduction	75
Part 2. Meterial and methods	76
1. Extruder instrumentation	76
2. Extruding process	78
3. Physical and chemical measurement of sample extrudate	78
Part 3. Results and discussion	82
1. Optimum production conditions of extruding recycling feed	with
poultry waste	82
가. Effect of barrel temperature on physical property of po	oultry
waste ERF products	82
. Effect of die diameter, screw speed and barrel temperatu	re on
poultry waste ERF products	86
1) Physical property of ERF products	86
2) Nutrient composition of ERF products	90
3) Microbiological evaluation of ERF products	93
. Effect of materials moisture content on physical property	ERF
products	95
. Effect of adding corn on poultry waste ERF products	98
1) Physical property of ERF products	98

2) Nutrient composition of ERF products 101
. Effect of adding soybean meal on poultry waste ERF products
1) Physical property of ERF products
2) Nutrient composition of ERF products
. Effect of substituting tapioca for corn on poultry waste ERF
products
1) Physical property of ERF products
2) Nutrient composition of ERF products
3) Microbiological evaluation of ERF products
2. Optimum production conditions of extruding recycling feed with
swine waste
가. Effect of die diameter, screw speed and barrel temperature on
swine waste ERF products
1) Physical property of ERF products
2) Nutrient composition of ERF products118
3) Microbiological evaluation of ERF products119
. Physical property of swine waste, corn and soybean meal
mixture ERF products120
. Physical property adding food waste on swine waste ERF
products122
. Effect of adding food waste and corn on ERF products
1) Physical property of ERF products123
2) Nutrient composition of ERF products124
3) Microbiological evaluation of ERF products126
. Effect of adding food waste and corn on swine waste ERF

	products
1) Physical property of ERF products
2	Nutrient composition of ERF products
3) Microbiological evaluation of ERF products

Chapter 4. Biological evaluation of poultry waste extruding $\mathbf{recycling} \ \ \mathbf{feed}(\mathbf{ERF})$

Part 1. Effect of feeding poultry waste ERF on broiler performence

- 1. Introduction
- 2. Meterial and methods
- 3. Results and discussion

Part 2. Effect of feeding poultry waste ERF on laying performence

- 1. Introduction
- 2. Meterial and methods
- 3. Results and discussion

Part 3. Feeding values of poultry waste ERF in Korea Native Goat

- 1. Introduction
- 2. Meterial and methods
- 3. Results and discussion

Chapter 5. Feeding values of swine waste and food waste extruding recycle formula in poultly and swine

Part 1. Feeding values of swine waste and food waste ERF in broiler

- 1. Introduction
- 2. Meterial and methods
- 3. Results and discussion

Part 2. Feeding values of swine waste and food waste ERF in layer

- 1. Introduction
- 2. Meterial and methods
- 3. Results and discussion

Part 3. Feeding values of swine waste and food waste ERF in swine

- 1. Introduction
- 2. Meterial and methods
- 3. Results and discussion

Chapter 6. Reference

1.

2 . 가

1.

2 .

1 .

2 . pH

3 . 가

3.

1 .

2 .

3 .

4 .

5 . 가

3 . 가 Extrusion

1 .	
2 .	
1 . Extruder	
2 . Extrusion	
3 .	
3 .	
1 . Extruding recycling feed(ERF)	
가. Barrel temperature가 ERF	
. Die diameter, screw speed barrel temperature가 ERF	•
1) ERF	
2) ERF	
3) ERF	
ERF	
. () ERF	
1) ERF	
2) ERF	
. ERF	
1) ERF	
2) ERF	
. 가 ERF	

	1) ERF		
	2) ERF		
	3) ERF		
2	2 .	Extruding recycling feed(EI	RF)
フ	l. Die d	iameter, screw speed barr	el temperature가 ERF
	1)	ERF	
	2)	ERF	
	3)	ERF	
	. ,	ERF	
		ERF	
		ERF	
	1) ERF		
	2)	ERF	
	3)	ERF	
		El	RF
	1) ERF		
	2) ERF		
	3) ERF		
4	•	ERF	가
1		, , ERF	가

, 1 .

2 .3 .

2 . , , ERF 가

1 .2 .3 .

3 . , , ERF 가

1 .

2 .3 .

5 . ERF 가

1 . ERF(SWERF) 가 , ,

1 .

2 .

3 .

2 . ERF(SWERF) 가

1 .

2 .

3 .

3 . ERF(SWERF) 가 ,

1 .

2 .

3 .

6.

Table Content

T able	2-1	Nutrients composition of poultry waste
T able	2- 2	Nutrient composition of animal waste by collected locations
T able	2-3	Energy value of poultry waste
T able	2-4	Structural carbohydrate of poultry waste
T able	2- 5	Amino acid composition of poultry waste
T able	2-6	Mineral composition of poultry waste
T able	2-7	Nutrient composition of swine waste
T able	2-8	Nutrient composition of swine waste by collected locations
T able	2-9	Digestible energy value of swine waste
T able	2- 10	Structural carbohydrate of swine waste
T able	2- 11	Amino acid composition of swine waste
T able	2- 12	Mineral composition of swine waste
T able	2- 13	Chemical composition of poultry and swine waste by
		collected date
T able	2- 14	Chemical composition of poultry waste by storage hours
T able	2- 15	Ammonia and volitable fatty acids density by storage hours
		of poultry waste
T able	2- 16	Chemical composition of food waste in chuncheon area by
		month
Table	2- 17	Amino acid composition of food waste

Table 2-18 Mineral composition of food waste

- Table 2-19 Microbiological evaluation of swine and poultry waste
- Table 2-20 Microbiological evaluation of animal waste by collected locations
- Table 2-21 Microbiological evaluation of food and poultry waste mixture
- Table 3-1 Effect of extrusion temporature on some physical characteristics of extruded producs from poultry waste
- Table 3-2 Nutrient content of mineral and its extruded products from poultry waste
- Table 3-3 Microbilogical evaluation of poultry waste
- Table 3-4 Microbiological evaluation of extruded products from poultry waste and corn mixture
- Table 3-5 Effect of initial moisture content before extrusion on some physical characteristic of extruded products from poultry waste
- Table 3-6 Effect of corn levels on physical characteristic of extruded products from poultry waste
- Table 3-7 Effect of extruding condition on physical characteristic of extrudates from poultry waste and corn mixture
- Table 3-8 Nutrient content of mineral and its extrudates from poultry waste and corn
- Table 3-9 Effect of adding soybean meal on physical characteristic of extrudates from poultry waste
- Table 3-10 Nutrient content of extrudates from poultry waste, corn and soybean meal
- Table 3-11 Effect of corn and tapioca ratio on physical characteristic of

- extrudates from poultry waste
- Table 3-12 Effect of extruding condition on physical characteristic of extrudates from poultry waste, corn and tapioca
- Table 3-13 Nutrient content of mineral and its extrudates from poultry waste, corn and tapioca
- Table 3-14 Microbiological evaluation of mineral and its extrudates from poultry waste, corn and tapioca
- Table 3-15 Nutrient content of mineral and its extrudates from swine waste and corn
- Table 3-16 Microbiological evaluation of swine waste
- Table 3-17 Microbiological evaluation of extrudates from swine waste and corn
- Table 3-18 Effect of extrusion temperature on physical characteristic of extrudates from swine waste, corn and soybean meal
- Table 3-19 Effect of swine waste and food waste ratio on physical charateristic of extrudate
- Table 3-20 Effect of food waste and corn ratio on physical characteristic of extrudate
- Table 3-21 Nutrient content of materials from food waste and corn
- Table 3-22 Microbiological evaluation of material and product from food waste and corn
- Table 3-23 Effect of extrusion temperature on physical characteristic of extrudates from different level of swine waste, food waste and corn
- Table 3-24 Nutrient content of material and extrudate from swine

- waste, food waste and corn
- Table 3-25 Microbiological evaluation of extrudates from swine waste, food waste and corn
- Table 4-1 Composition of starter diets for broiler fed ERF
- Table 4-2 Composition of Finisher diets for broiler fed ERF
- Table 4-3 Effects of feeding ERF starter diets on body weight gain, feed intake and feed conversion ratio of broiler
- Table 4-4 Effects of feeding ERF finisher diets on body weight gain, feed intake and feed conversion ratio of broiler
- Table 4-5 Effects of feeding ERF on body weight gain, feed intake and feed conversion ratio of broiler
- Table 4-6 Carcass rate and organ weight of broiler fed different levels of ERF diet
- Table 4-7 Body composition of broiler fed different levels of ERF diets
- Table 4-8 Sensory evaluation of broiler meat fed different levels of ERF diet
- Table 4-9 Economical analysis of ERF diets
- Table 4-10 Composition of layer experimental diets
- Table 4-11 Effect of poultry waste ERF feeding on egg production and feed efficiency of laying hen
- Table 4-12 Effect of poultry waste ERF feeding on egg weight and egg quality of laying hen
- Table 4-13 Composition of experimental diets for korea native goat
- Table 4-14 Body weight gain, feed intake and feed conversion ratio of korea native goat fed different levels of ERF diets

- Table 4-15 Digestion coefficients of the experimental diets
- Table 4-16 Carcass quality of korea native goat fed ERF diets
- Table 5-1 Composition of starter diets for broiler fed SWERF
- Table 5-2 Composition of Finisher diets for broiler fed SWERF
- Table 5-3 Body weight gain, feed intake and feed conversion ratio of broiler fed SWERF
- Table 5-4 Carcass quality and body composition of broiler fed SWERF
- Table 5-5 Organ weight of broiler fed SWERF
- Table 5-6 Sensory evaluation of broiler meat fed SWERF
- Table 5-7 Gross income of broiler fed SWERF
- Table 5-8 Composition of experimental diets for laying hen
- Table 5-9 Egg production, feed intake and feed conversion ratio of laying hen fed SWERF
- Table 5-10 Egg quality of laying hen fed SWERF
- Table 5-11 Formular and chemical composition of experimental diets in growing pigs(20-50kg)
- Table 5-12 Formular and chemical composition of experimental diets in growing pigs(50-80kg)
- Table 5-13 Effects of feeding SWERF on growth performance in growing-finishing pigs
- Table 5-14 Nutrient digestibility of experimental diets in growing pigs
- Table 5-15 Apparent fecal digestibilities of nutrients in swine waste and food waste mixture for growing pigs
- Table 5-16 Carcass and pork quality as affected by feeding SWERF

1 .

가 가 가 가

, , ,

· 가 가

. 가 . 가

가 .

가 . 가 50-80%

기 , 기 , 50- 80%

20-40% . 가

가 가 가 가

가 .

가 .

가 . 가 가

가

- 44 -

FAO 1000 460 9320 1090 11870 25% 가 가 3000 가 가 . 가 N (NPN) N 33%, 가 가 50%, 60%, 25% 가 P 가 가 Ca P 가 가 가 1) , 2) , 3) , 4) , 5) (compost), 가 가 가 6) 가 extrusion 가 가 extrusion (Blake et al., 1990; Hauge et al., 1987; Tadtiyant et al., 1993), (Blake et al., 1990; Haque et al., 1991; Tadtiyant et al., 1993 Vandepopuliere, 1990), (Miller, 1984; Tadtiyant et al., 1993), (Haque et al., 1991) 가 (Fronning & Berquist, 1990)

가

(1:3

ME

10%

Yoong et al.(1993)

extrudion

w/w)

가

3624Kcal/Kg

(Ferket et al., 1995). extrusion

(Reynolds, 1990), extrusion

.

가 가

가

가 가 (Extruded

가

2 . 가

1 . 가 . , , 카

25- 50% 가 (FAO,

1980; Charles, 1974).

30- 50%, 10- 20% (Anthony, 1977). 가 , ,

, , , 가 .

가 가 가 가

(, , ,) 가 . 가

가 .

가 가

가 가 , 가

Ca P P 가 가

가

- 47 -

가 .

가 가

.

2 .

1 .

가.

AOAC(1990) 12% TCA

•

1g 6N HCl 가

PIT C(Phenylis othiocyanate)

HPLC(Waters P/N 07370)

(A, A. Handbook, 1987).

1g 6N HCl 가 Reaction Vial 150 1 가 가 가 ,

10ml volumetric flask 10ml .

 $0.45\,\mu\,m$ Millex-HV filter . Standard Sample $50\,\mu\,l$ Sample Tube Workstation

. Standard Amino Acid카 2.5μmol/ml Standard

cystine $1.25 \,\mu \, \text{mol/ml}$.

Methanol: H2O: TEA = 2:2:1(v/v)

Redrying 10 µ1 가

Reaction vial Workstation .

PIT C (MEOH: $H2O: TEA: PIT C = 7:1:1:1(v/v) 20 \mu 1$

20

. Standard Sample Diluent 250 µ1

HPLC Injection

Convertion Factor .

.

(IPC; Inductively Coupled Plasma., Model J Y 38 plus., Jobin Yvon Co., France)

(Osborne Voogt, 1980). 2g 100ml Kjeldahl flask 100ml 7 フト

5ml 가 가

가 . 가 가

ICP .

2 . pH

pH (wet) 10g 100ml

5 pH meter(Accumet pH

meter 915, Fisher Scientific Co.,) pH .

(T-VFA) 5g+ 20m1

200ml 0.1N NaOH mol

mM .

3 . 가(Biological Value)

% 가

가 .

4 .

1

Cr2O3 0.3% 가 4 5-6 4

(4) 60 24

1 2

 $(\%) = \frac{(- (\times 0.7))}{0.3} - \cdots (2)$

3 .

1 .

가 가 가 가

. 가

•

(NPN) 9-14% 가

4K g 12K g 3

.가. 가

2-1, 2-2

.

2-1 1996 2 1997 가

. 2-1

32%, 21% 가

9.5%, 9.72%

.

(NPN)

62-65% . NPN

Table 2-1. Nutrients Composition of Poultry Waste

Chemical	Poultry	y Waste
Composition %	Broiler	Layer
Moisture	68.98	76.52
Crude Protein	32.39	21.27
Ether Extract	4.81	2.32
Crude Fiber	9.50	9.72
Crude Ash	18.07	33.67
NFE	35.23	33.02
N.P.N.	14.20	9.64
G.E.(Kcal/Kg)	2735	2548

(urea) 가

ornithine N

. 가 NPN purines, uric acid allantoin

71.8% 가 ,

가 가

Table 2-2 Nutrient Composition of Animal Waste by Collected Locations.

Composition	Moisture in Fresh	Moisure after Drying	Protein	Fat	Ash	Fiber	NFE	Ca	P
				Layer E	xcreta				
Farmer A	69.61	10.24	22.33	0.92	17.57	12.89	46.29	1.42	1.10
В	64.19	9.74	26.19	0.85	19.58	11.61	41.77	1.75	1.08
C	72.03	10.91	28.51	1.69	15.14	11.25	43.40	1.69	0.95
Average	68.61	10.30	25.68	1.15	17.43	11.92	43.82	1.62	0.96
			-	Broiler I	Excreta				
Farmer A	30.04	9.43	30.21	1.32	19.51	16.70	32.26	0.71	0.70
В	60.39	9.72	30.12	3.02	14.94	17.64	34.28	0.62	0.54
С	49.97	10.20	37.98	1.95	20.81	17.01	22.25	0.62	0.38
Average	46.80	9.78	32.77	2.10	18.42	17.12	29.60	0.65	0.46

6

2-2 30.12 37.98%, 22.33

28.51% 가

가 가 가

.

가 Sheppard(1971) Flegal et al.(1971) Blair(1974)

.

Table 2-3. Energy Value of Poultry Waste.

	GE	AME	AME/GE	TME	TME/ME
Broiler Exc.	2766	953	34.82	725	75.28
Layer	2548	908	35.65	680	74.88

가

2-4 . 가

(NDS) 62 69%

30 33%

가 .

(ME) 2-3 . ME

953 KCal/Kg 908 Kcal/Kg TME 754 Kcal, 680

Kcal 가가 . Shannon et al.(1973)

970 Kcal Yong & Nesheim(1972) 660 Kcal

. ME가 480 1350 Kcal

1000 Kcal/Kg . Yong & Nesheim(1972)

, Ca, P

Table 2-4. Structural Carbohydrate of Poultry Waste(%DM)

	NDF	NDS	Hemi- cellu	Cellulose	Lignin
Broiler Waste	30.24	68.72	15.80	10.88	3.10
Layer Waste	32.61	62.38	17.56	15.38	4.46

,

2-5 .

가

Total amino acid가

13.50, 9.86%

(EAA/TAA)

31.7%, 33.4%

1/3

EAA

EAA

Methionine Lysine

Table 2-5. Amino Acid Composition of Poultry Waste.

A	Poultry	Poultry waste			
Amino acids	Broiler waste	Layer waste			
Protein	32.39	25.27			
EAA					
Arginine	0.785	0.624			
Histidine	0.065	0.068			
Isoleucine	0.238	0.266			
Leucine	0.478	0.500			
Lysine	0.062	0.073			
Methionine	0.156	0.189			
Phenylalanine	0.604	0.573			
Threonine	0.253	0.242			
Tryptophan	-	-			
Valnine	0.404	0.443			
Sub total	3.025	2.978			
NEAA					
Alanine	0.396	0.416			
Aspartic acid	0.113	0.118			
Cystine	0.049	0.055			
Glutamic acid	0.256	0.277			
Glycine	0.486	0.377			
Proline	1.181	0.978			
Serine	0.301	0.285			
T yrosine	0.218	0.294			
Sub total	2.999	2.800			
TAA	6.024	5.778			

^{*}TAA(Total Amino Acids) = EAA(Essential Amino Acids) +
NEAA(Non-essential Amino Acids)

2-6

2- 6 . Ca

P 0.06%, 1.86% 2.81%, 1.87%

P P

Ca

2.81%

Ca P 가

Fe Zn Mn Cu

Table 2-6. Mineral Composition of Poulry Waste.

Minerals -	Poultry Waste		
winerals –	Broiler	Layer	
Calcium %	0.06	2.81	
Phosphorus %	1.86	1.87	
Magnasium %	0.37	0.77	
Iron %	0.05	0.18	
Zinc %	0.03	0.02	
Manganese %	0.04	0.03	
Copper ppm	128	146	

2 .

가

0.6 1.0% 23%

77%,

15 20%

가

2-7 .

17.65% 17.07%

12.66, 11.47% .

가 Cellulose, Hemicellulose, Lignin 가

(2-10).

가 12Kg 136Kg

Table 2-7. Nutrient Composition of Swine Waste.(%DM)

	Swine Waste		
	Growing Pig	Sow	
Moisture	70.91	68.10	
Crude Protein	17.65	17.07	
Ether Extract	10.12	5.13	
Crude Fiber	12.66	11.47	
Crude Ash	15.62	23.19	
N.F.E.	43.95	43.14	
N.P.N.	4.91	4.82	
GE(Kcal/Kg)	4409	4268	

9.17 .

Extrusion 가

2-8 가

19% 23%, 18 25% 가

•

5.03%, 4.96% 7\;
43.11%, 45.43% .

Table 2-8. Nutrient Composition of Swine Waste by Collected Locations.

	Moisture in Fresh	Moisture after Drying	Protein	Fat	Ashes	Fiber	NFE	Ca	P
			Growin	ng Pig	Excreta	L			
Farmer A	69.29	11.73	20.22	2.83	19.35	12.23	45.37	3.06	1.88
В	63.89	7.72	19.51	5.56	20.25	12.08	42.59	278	1.66
С	67.99	11.95	22.81	6.69	17.91	11.21	41.38	2.56	1.48
Average	67.06	10.47	20.85	5.03	19.17	11.84	43.11	2.80	1.71
			Sc	ow Exc	ereta	-			
Farmer A	68.67	15.98	24.68	6.90	14.73	11.63	42.08	2.73	1.62
В	73.56	10.19	17.66	1.94	18.91	11.53	50.74	2.10	1.95
C	70.30	15.07	20.01	6.03	17.84	11.65	43.48	2.72	1.80
Average	70.84	13.75	20.78	4.96	17.16	11.60	45.43	2.85	1.79

11.84%, 11.6%

. Ca, P 2.80%, 1.71%

2.85%, 1.79%

가 .

Table 2-9. Digestible Energy Value of Swine Waste.

	Gross Energy	Digestible Energy	DE/GE(%)
	Kcal/Kg	Kcal/Kg	DE/GE(%)
Swine Waste	4220	2244.20	53.18
40% SW Mix	4690	2952.82	62.96
Extruded SW Mix	4740	3334.59	70.35

*SW Mix: Swine Waste 40%, Food Waste 40%, Corn 20%

가 2-9 .

7} (DE) 2244 Kcal/Kg 53.18%

. 40%

DE 2952 Kcal Extrusion DE 3334Kcal

. Extrusion DE 382 Kcal/Kg

가 가 Extrusion .

가

2-10 . 가

(NDS) 54-58%

40-43%

가 .

Table 2-10. Structural Carbohydrate of Swine Wste.

	NDF	NDS	Hemi- cellu	Cellulose	Lignin
Pig Waste	45.84	58.47	22.48	17.87	5.21
Sow Wste	47.28	54.56	23.62	18.53	5.62

.

2-11 .

12.11%, 10.51% 68.61%, 61.57%

. 6.77%,

6.34% 55.9% 60.3%

. lysine methionine

.

가 가 .

.

2- 12 . Ca

3.34%, 2.66% P 2.25%,

2.23% Ca P Ca:P 1:1

1.5:1 . Ca P

.

Fe, Zn, Cu .

Table 2-11. Amino Acids Composition of Swine Waste.

	Swine Waste		
	Growing Pig	Saw	
Protein	17.65	17.07	
EAA			
Arginine	1.398	1.240	
Histidine	0.166	0.091	
Isoleucine	0.659	0.531	
Leucine	1.333	1.228	
Lysine	0.441	0.432	
Methionine	0.281	0.405	
Phenylalanine	1.037	1.096	
Threonine	0.463	0.425	
Tryptophan	-	-	
Valnine	0.979	0.894	
Sub total	6.757	6.342	
NEAA			
Alanine	1.208	0.841	
Aspatic acid	0.330	0.210	
Cystine	0.039	0.027	
Glutamic acid	0.995	0.716	
Glycine	0.665	0.503	
Proline	0.956	0.778	
Serine	0.628	0.525	
Tyrosine	0.529	0.572	
Sub total	5.352	4.172	
TAA	12.109	10.514	

^{*} TAA(Total Amino Acids) = EAA(Essential Amino Acids)
+NEAA(Non-essential Amino

Table 2-12. Mineral Composition of Swine Waste.(% DM)

Minerals	Swine waste		
Millerais	Grower	Sow	
Calcium %	0.34	0.66	
Phosphorus %	2.25	5.46	
Magnasium %	2.91	3.23	
Iron %	0.29	0.32	
Zinc %	0.05	0.04	
Manganese %	0.04	0.04	
Copper ppm	516	157	

3 .

가 가

가

가 . 가가

2-13 . 2-13 17.07-18.59%

21.27- 24.88% 가 가

가

가

Table 2-13. Chemical Composition of Poultry and Swine Waste by

Collected Date.

C h e m i c a l	Growing Pig Waste]	Layer Hen	Waste
Composition	April 7	July 7	October 7	April 7	July 7	October 7
Moisture	72.99	70.91	70.33	77.89	75.42	77.15
Crude Protein	18.59	16.07	17.25	23.38	21.27	24.88
Ether Extract	12.31	11.24	14.33	2.63	2.18	2.80
Crude Fiber	11.89	12.07	11.51	9.43	9.61	8.17
Crude Ash	12.71	11.13	13.69	14.66	13.67	11.41
NFE	44.50	49.49	43.22	50.90	53.27	52.74
N.P.N	5.23	4.89	4.95	16.42	15.78	16.85

^{*}Date express the day samples were collected.

. 15℃
72 25℃
2-6
NH3 2-15
3 NH3 6 가
가 가 가

Table 2-14. Chemical Composition of Poultry Waste by Storage Hours

	Stored 24 Hrs	Stored 48 hrs	Stored 72 hrs
Mosture %	4.94	4.90	4.52
N X 6.25	31.02	16.60	16.43
Pure Protein	15.16	10.66	8.08
NPN	15.86	5.94	8.35
Ether Extract	5.20	5.87	5.45
Fiber	10.51	-	-
Ash	29.44	32.42	32.91

Table 2-15. Ammonia and Volitable Fatty Acids Density by Storage

Hours of Poultry Waste

Exposure Hrs	pН	Ammonia	T.VFA
0	7.00	0.031	0.19
1	6.97	0.068	0.10
2	6.94	0.042	0.07
3	6.87	0.205	0.05
4	6.75	0.164	0.04
5	6.50	0.184	0.03

^{*}TVFA: Total Volitable Fatty Acid.

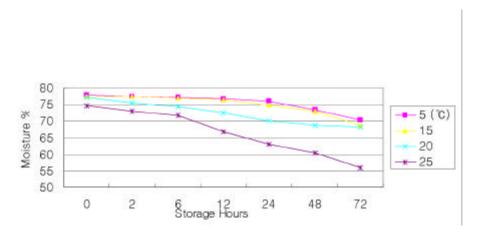


Fig. 2-1. Effect of Storage Temperature on Moisture Content of Poultry waste

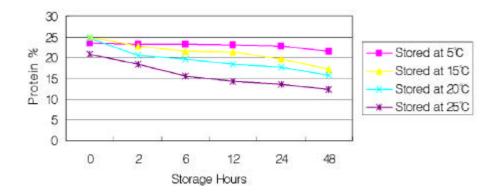


Fig. 2-2. Effect of Storage Temperature on Protein Content of Poultry Waste

4 .

가가 .

가 .

•

가).

(GE) 2-16 . 2-16 5 9 90 95%

13 26% 15% .

6, 7, 8 11.3% 13..3% 5 9 21

26% .

. 8.92 12.32%

가 (NFE) 30.55 46.99%

(GE) 4528 4624 Kcal/Kg

. 8.32

19.34%

.

.

•

2- 17

Table 2-16. Chemical Composition of Food Waste in Chunchon Area by

Month

	5	6	7	8	9
Moisture	6.41	7.32	9.39	6.73	7.12
Crude Protein	26.46	13.32	11.58	11.32	21.13
Ether Extract	12.32	11.27	10.93	8.92	10.32
Crude Fiber	5.53	6.27	7.82	8.93	6.12
NFE	30.55	44.28	46.94	46.98	46.99
Crude Ash	18.73	17.56	19.34	17.12	8.32
Gross Energy (Cal/g)	4624	4570	4581	4616	4628

Table 2-17. Amino Acid composition of Food Waste (%DM)

	A	В	С	Mean
C.Protein	24.33	25.08	25.41	25.51
Arginine	1.04	1.53	1.25	1.27
Cystine	0.59	0.31	0.47	0.46
Histidine	0.67	1.39	1.13	1.06
Isoleucine	0.57	0.64	0.43	0.56
Leucine	1.06	1.22	0.72	1.00
Lysine	1.05	1.02	0.64	0.90
Methionine	0.38	0.31	0.19	0.29
Phenylalanine	0.56	0.52	0.48	0.52
Threonine	0.58	0.83	0.63	0.68
Valine	0.99	0.95	0.66	0.87
TEAA	7.49	8.72	6.60	7.61

^{*} ABC refers the different collecting days of food waste

•

ly sine methionine

•

·

(2- 18). Ca

P 1.37%, 1.28% Ca:P 1:1 Ca P

•

100% Ca P 7

가 .

Table 2-18. Mineral Composition of Food Waste

Minerals	Content
Ca (%)	1.37
P (%)	1.28
NaCl (%)	3.28
K (%)	0.54
Mg (%)	0.20
Fe = (mg/Kg)	315
Mn (mg/Kg)	55.6
$Zn \qquad (mg/Kg)$	66.3
Cu = (mg/Kg)	15.8

(NaCl) 3.28% 가 가

•

(NRC1980).

 $6000 m\,g/l$

. 가 2.0%

6-8%

, ,

,

5 . 가

가 가 가 가 가 (2 0) 0 , 3 , 7 E. coli 2- 19

SalmonellaColiform 가

Coliform, E. coli, Salmonella 가

가 2- 20

가

Coliform, E. Coli, Salmonella

C 가 가 A 가 C 가가 В 가 가 . 가 가 가 가

2-21 .

500×107/g, E. Coli가 471×10//g 100% Coli form 가 가

가

가 가 가 가

Table 2-19. Microbiological Evaluation of Swine and Poultry Waste

	Days after Excreted			Days after Excreted		
	0	3	7	0	3	7
			Pig W	Vaste		
		Growing Pig			Sow	
Coliform	78X107	210X106	280X108	116X107	218X106	310X108
E.coli	ND	130X106	175X106	ND	150X106	230X108
Salmonella	-	+	+	-	+	+
			Poultry	Waste		
		Broiler			Layer	
Coliform	104X107	200X107	430X107	110X107	280X107	520X108
E.coli	5X107	136X107	321X107	2X107	215X107	478X108
Salmonella	+	+	+	+	+	+

 $[\]mbox{\ensuremath{\bigstar}}$ ND : Not detected., - : Negative Salmonella., + : Positive Salmonella.

Table 2-20. Microbiological Evaluation of Animal waste by Collected Location.

		Coli form	E. Coli	Salmonella
			Layer Waste	
Farmer	A	22 × 103	138 × 106	+
	В	71 × 106	47 × 106	+
	С	149 × 106	116 × 106	+
			Broiler Waste	
Farmer	A	343 × 103	138 × 106	+
	В	22 × 106	11 × 106	+
	C	97 × 108	24 × 108	+
			Growing Pig Waste	e
Farmer	A	240 × 104	62 × 104	-
	В	TNTC	TNTC	-
	C	360 × 104	165 × 104	-
			Sow Waste	
Farmer	A	74 × 103	72 × 103	-
	В	201 × 103	200 × 104	+
	C	2 × 106	4 × 106	<u>-</u>

^{* + :} Positive Salmonella.

Table 2-21. Microbiological Evaluation of Food and Poultry Waste Mixture. (Unit: counts/gram)

ERF formula	Coli form	E. Coli	Salmonella
Food Waste 100	500 × 107	471 × 107	+
Food Waste 80 + DPW 20	636 × 107	510 × 107	+
Food Waste 60 + DPW 40	650 × 107	581 × 107	+
Food Waste 40 + DPW 60	660 x 107	746 × 107	+
Food Waste 20 + DPW 80	701 × 107	757 × 107	+

^{* + :} Positive salmonella. DPW: Dryed Poultry Waste

가

. 40% 7 Bacillus spp., Proteus spp., E.coli
Enterbacteriaceae 60% Coliform

(Zindel, 1970). 12 Penicllium,
Scopulriopsis , Candida 7 coliform E. coli
Salmonellae (Lovett et al., 1971).

7ት (Messer et al., 1971).
150 3 100
48 7ት (Fontenot et al., 1971).
Salmonlla spp. 45
55-60 30 (Muller, 1980). 7ት

가 가

가 .

3 . 가 Extrusion

1 .

가 1) 2) 3) (compost) 6) 4) 5) Extrusion 가 가 가 Extrusion 가 . Extrusion cooker (extruder) 가 (110 160) extruder 20 40) (biopolymer) (30) (Camire et al., 1990). 가 extruder barrel 가 . extruder , , , , , 가 (protein denaturation), (starch gelatinization), (Cheftel, 1986). extruder extruder

•

extrusion

가 가 extrusion (Blake et al. 1990); Hauge et al. 1987; Tadtiyant et al. 1993), , (Blake et al.,1990; Haque et al., 1991; Tadtiyant et al., 1993 Vandepopuliere, 1990) (Miller, 1984; Tadtiyant et al., 1993) (Haque et al., 1991) 가 (Fronning & Berquist, 1990) extrusion (Reynolds, 1990) extrusion 가 extrusion extrusion 가 extrusion 2 1 . Extruder extruder () single

screw extruder Barrel 가 가

Inverter

.

O Main motor: 20HP (380V, 3 phase)

O Barrel: 62mm 4 straight groove

O Main screw: L/D ratio: 20, Compression ratio: 3.5:1,

Diameter: 56.1mm, Length: 1,122mm,

Screw tip: constant pith

O Screw speed: (0 350rpm, stepless speed control)

O Raw material feeder: forced feeding by feed screw

stepless speed control (0 150rpm)

O Die : flat type with orifice type die (die diameter 3.9mm,

4.3mm, 5.3mm, K=0.2)

Extruder 가 extruding

Extruder 가 가

Barrel 가 가

feed screw forced feeding

Barrel screw compression ratio 3.5:1 L/D ratio 20

. Extruder Barrel

Heating system .

Die diameter Screw speed

.

Single-screw extrruder die , barrel

barrel screw

. screw , screw speed,

Single=screw extruder

. Screw

 $main\ moter \qquad L/D \qquad .$

2 . Extrusion

Extrusion autogenous type extruder

, 가 Hobart Mixer

24 . Barrel

Temprature 90, 110, 130 150oC Screw speed

200 350 rpm orifice type die 3.9, 4.3,

5.3mm 1 extrusion .

extrusion 30

, T1, T2, T3()

•

extrudate 7%

Willy mill 100mesh .

3 .

가.

A.O.A.C(1990) .

•

extrusion 1

(kg/hr)

(Bulk density:FD)

Extrudate (Bulk density: BD) Bhattacharya

(1986) sample

1000 CC mass beaker

·

extrudate

extrudate 가 5

extrudate wt.(Kg)
Bulk Density = ----extrudate Volume (1)

(Expansion Ratio:E.R)

(expansion ratio) extrudate

extrudate Vernier Caliper

20 extrudate .

extrudate (de)
(E.R) = ------(dm)

(Water Absorption Index; WAI) (Water Solubility Index; WSI) Anderson (1969) (60 80mesh) 2.5g(dry basis) 50**M**€ 25 가 M₽ 30 30 shaking 32.5g 3,000 **x** g 10 (water absorption dry oven 105 index) (%) (water solubility index) (Gelatinization rate:GR) glucose glucoamylase 70 가 (40mesh) 0.5g 100ml volume flask flask 25m1 blank . 가 flask 2N NaOH 10ml heater 20 가 flask 1N acetate buffer 2N HCl 10ml 10m1 . 50 Diazyme enzyme solution 5m1 가 40 70 incubation 70 25% TCA 5ml 가

. Glucose analyzer(YSI 2700) glucose

•

(Nitrogen Solubility Index:NSI)

(NSI) AACC

400ml beaker (10 16 mesh) 5g 30

200ml 30 , 120rpm 120 250ml

. 50ml 40ml

1500rpm 1 . glass wool

25m1 250m1 25m1

micro-kjeldahl .

.

.

AOAC(1990) 12% TCA

, ERF

Lumac kit(Netherland, 1995) Coliform, E. coli, Salmonella

. 1g 100ml

1ml

33 24 48

g .

3 .

1 . Extruding Recycling Feed(ERF)

가. Barrel Temperature 가 ERF

(1 Extruding)

Extruder 가

Barrel Temperature(BT) .

Extruder 100, 110, 120, 130, 140, 150

Screw Speed(SS) 200 rpm Die Diameter(DD) 5.4

. Extruding 80:20, 70:30 60:40

30%

,

,

3-1 .

(Feed Density:FD)

(Expansion Rate:ER)

(Water Absorbtion Index:WAI), (Water Solubility Index:

WSI) (Gelatinization Rate:GR) . FD ER

. Extrudate Die

. WAI Gel

WAI

Table 3-1. Effect of Extrusion Temperature on Some Physical

Characteristic of Extruded Products from Poultry Waste

Measured item		Corn(80	0%) : La	yer wast	te(20%)	
Barrel Temp.()	100	110	120	130	140	150
Moisture(%)	6.00	22.33	22.66	21.32	14.34	13.51
Feed Density(kg/l)	0.441	0.393	0.511	0.577	0.570	0.536
Expention rate	1.426	1.448	1.323	1.346	1.354	1.304
WSI	4.784	4.777	4.296	3.943	4.333	4.224
WAI	7.722	6.739	7.152	5.354	5.388	5.062
		Corn(70	0%) : La	yer wast	te(30%)	
Barrel Temp.()	100	110	120	130	140	150
Moisture(%)	17.98	17.12	16.91	15.11	20.47	16.19
Feed Density(kg/l)	0.539	0.393	0.439	0.401	0.389	0.235
Expention rate	1.195	1.195	1.197	1.366	1.352	1.429
WSI	4.370	4.836	4.089	4.137	4.207	4.158
WAI	11.196	10.499	11.124	10.031	10.411	18.085
		Corn(60	0%) : La	yer wast	e(40%)	
Barrel Temp.()	100	110	120	130	140	150
Moisture(%)	22.78	22.22	28.70	24.96	20.17	18.39
Feed Density(kg/l)	0.529	0.545	0.540	0.483	0.472	0.499
Expention rate	1.153	1.180	1.075	1.153	1.176	1.125
WSI	4.097	3.732	3.895	3.775	3.817	3.937
WAI	8.167	10.792	14.380	11.097	14.905	17.808

. WAI

(Kim & Rottier, 1980).

WSI WAI

. WSI가 가

가 . GR

. 3-1 3-1 FD 0.396 0.577

Kg/l , ER 1.080 1.429 :

가 BT가 가 ER 가

. 3-1 Extruder BT

가 FD ER

. WAI 3.682 4.836, WSI 6.739

18.085 BT가 가 가

WAI WSI 가 BT

130 ER, WAI, WSI 가 . BT가

Extrusion

가 가

170 ER

dextrinization 가 가 (Mercier &

Feillet,1975; Launay & Lisch, 1983) ER

Die BT

가 (Alvarez- Martinez et

al, 1988) ER BT가 가 ER 가

FD, ER, WSI, WSI

30% BT 130℃

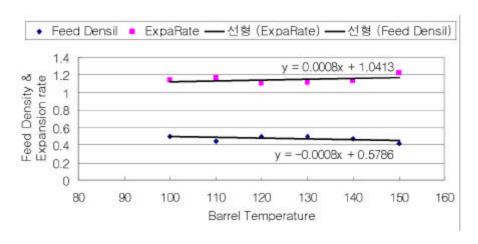


Fig. 3-1. Effect of Barrel Temp.on Feed Density and Expansion rate of Poultry Waste Extrudates

```
. Die diameter, Screw speed Barrel Temperature 가
ERF
                    (2 Extruding
                                  )
     1) Extruding
      1
                            30%
                       70:30 60:40
                                             Barrel
Temperature(BT) 90, 110, 130, 150 Die Diameter(DD) 5.3mm,
3.9mm
        Screw Speed(SS) 200, 250, 300, 350 rpm
                                              3-2,
3-3, 3-4, 3-5( 1) .
                                          1, 2, 3, 4
A, B, C, D
   DD Barrel
              . 3-1
  (FD)
            (ER)
                    DD FD
               ER
                     DD 3.9mm
                                          1.55
            DD 3.9mm
5.3mm 1.47
                     ER
  30%, 40%
                        DD 3.9 5.3mm
                      (GR)
                           3.9mm
                                              WAI
  WSI
                                               Die
  3.9mm 가
                           . Hayter et al.(1988)
                                           DD
가 ER
            FD 가
                                    가
    SS
            200 350 rpm
   FD 0.75, 0.54 0.52 0.34Kg/1
                                              ER
```

WAI

1.36, 1.41, 1.44 1.09 가

GR 가 WSI(3-5). SS 350 rpm FD ER, WAI, WSI GR SS가 shear rate 가 SS가 가 Barrel (Mosso et al., 1982; Fletcher et al., 1985) 가 Barrel (Della Valle et al., 1987; Davidson et al., 1984). 가 BT90 150oC 가 90 150 가 FD ER 1.52, 1.69, 1.57, 1.38 가 WSI GR BT 150 3-2). ER WSIGR DD 3.9mm가 Screw speed 250-300rpm, Barrel Temperature 130 가

- 87 -

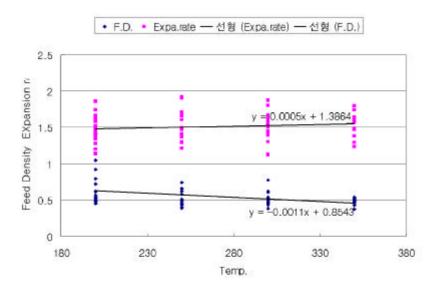


Fig.3-2 .Effect of Barrel Temperatures on Feed Density & Expasion

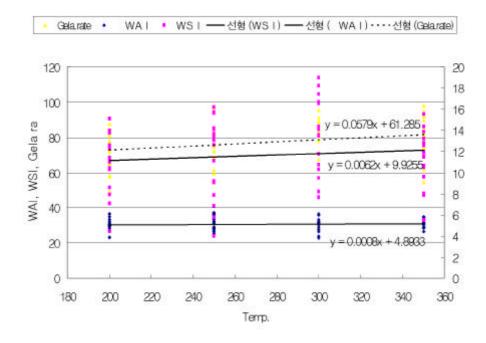


Fig.3-3. Effect of Barrel Temperature on WAI, WSI, & Gelatinization rate of Poultry WasteExtrudates

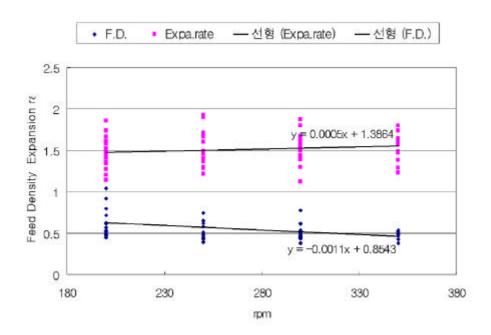


Fig.3-4. Effect of Screw speed on Feed Density & Expansion rate of Poultry Waste Extrudates

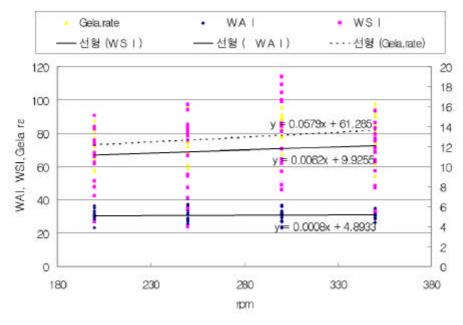


Fig.3-5. Effect of Screw speed on WAI,WSI & Gelatinization rate of Poultry Waste Extrudates

Extrusion 2) Extruding Extruding 3-2 . 가 DD가 3.9mm, SS가 250 rpm 3-2 30% 40% ST가 5% 가 가 가 DD SSST가 150 130 가 가 Extrusion Extrusion 가 가 (:Texturization) 가 가 Extrusion 가 가 가(NPR) (PER) (Molina et al., 1983; Vaidehi & Gowda, 1981; Jorge Joao et al., 1980). 가 가 가

Table 3-2. Nutrients Content of Materials and its Extruded

Products from Poultry Waste.(%DM)

Materials	Temp.	Moisture	Crude Protein	Crude Fat	Crude Fiber	NFE	Ash
Corn70+DPW30		25.99	15.90	5.12	5.59	67.47	5.92
Extrudates	90	20.09	15.63	2.15	4.03	74.09	4.10
	110	17.33	15.21	2.30	4.75	73.39	4.35
	130	15.27	14.72	1.90	4.89	73.70	4.79
	150	17.02	15.92	1.94	5.21	72.86	4.07
Corn60+DPW 40		31.69	15.90	5.75	6.35	64.63	7.37
Extrudates	90	25.63	16.42	2.23	6.23	65.16	9.96
	110	24.87	15.68	2.39	6.23	64.02	11.67
	130	24.80	15.20	2.58	6.20	65.57	10.45
	150	23.90	14.74	1.88	6.14	66.39	10.85

Extrusion

. Delort- Laval & Mercier (1976) 40-55%

Extrusion Diethyl ether . Noerle et al. (1980) 40% Mega (1978)

Extrusion 15% . Exrusion

Amylose-lipid complex

Mustakas et al.(1970) Extrusion 가 Shin & Gray(1983) extrusion 50% 가 100% Extrusion 가 (Varo et al., 1983; Bjorch et al., 1984; 가 가 Siljestrom et al., 1986). Extrusion 가 Maillard lignin glucan 가 Extrusion arabinoxylan (Westerlund, 1987). enzyme resistant fraction glucose-base fiber 가 가 가 가 (Colonna et al., 1981). 30% 가 . 40% Extrusion 가 가

- 92 -

3)

(20) 0 , 3 , 7

,

3-3

E.coli Salmonella

Coliform 3

가 Coliform, E.coli, Salmonella

가 가 . 가

가 NH3가 가

. 가

Table 3-3. Microbiological Evaluation of Poultry Waste

(count / gram)

	Corn:DPW				
	70 : 30	60:40			
Coliform	280X105	387X105			
E.coli	200X105	254X105			
Salmonella	+	+			

* + : Positive Salmonella.

Extrusion 3-4

30% 40% 110

Coliform, E.Coli, Salmonella

Extrusion 가

가 Extrusion

. Extrusion

Bouveresse et al.(1912), Van de Velde et al.(1984). VandeVelde-Mary (1985) Noguchi(1986) .

Table 3-4. Microbiological Evaluation of Extuded Product from Poultry

Waste and Corn Mixture. (count / gram)

Extruding	Microorganisms						
Condition							
BT - DD - SS	Coliform	E.coli	Salmonella				
-	Corn 60 : Poultr	y Manure40					
90 - 3.9 - 250	13 x 107	3 x 107	-				
110 - 3.9 - 250	ND	ND	-				
130 - 3.9 - 250	ND	ND	-				
150 - 3.9 - 250	ND	ND	-				
	Corn 70 : Poult	ry Manure 30					
90 - 3.9 - 250	8 × 107	2 × 107	-				
110 - 3.9 - 250	ND	ND	-				
130 - 3.9 - 250	ND	ND	-				
150 - 3.9 - 250	ND	ND	-				

Bacillus stearothermophilus FS 1518

- Extruder die 5

35 120

•

가 (Noguchi, 1986).

150 Extrusion Die
. 110

.

. ERF

Extruding

Extruder Single Screw Extruder 기 .

Extruder Die Diameter(DD) 3.9 mm, Screw Speed(SS) 250 rpm, Barrel Temperature

(BT) 110-130

20% 34% 7\\
3-5 Fig 3-6 3-7 .

3-5
7\tag{FD} 7\tag{FD} FR

(ER) 7t 7t 34% ER
35% Die .

WAI 가 WSI
. Extrusion 가 ER

가 (Seiler et al., 1980; Faubion & Hoseney, 1982;

Antila et al., 1983; Guy & Horne, 1988). Faubion & Hoseney(1982)

ER

ER 가 .

•

Table 3-5. Effect of Initial Moisture Content before Extrusion on Some Physical Characteristics of Extruded Products from Poultry Waste.

ВТ	Mosture	Feed	Expansion	WAI	WSI	NSI
()	%	Density	Rate	W A1	W 31	NSI
110	20.4	0.575	1.212	5.63	14.77	14.77
	23.2	0.613	1.325	5.00	13.75	13.75
	26.0	0.658	1.614	6.68	12.11	12.11
	28.8	0.707	1.758	6.85	11.55	11.55
	31.6	0.728	1.652	6.11	11.47	11.47
	34.4	0.843	0.975	7.47	13.44	13.44
130	20.4	0.544	1.254	5.95	13.57	13.57
	23.2	0.588	1.395	5.32	12.84	12.84
	26.0	0.630	1.683	6.66	12.42	12.42
	28.8	0.673	1.794	6.47	11.79	11.79
	31.6	0.722	1.484	6.57	12.53	12.53
	34.4	0.793	1.102	7.35	13.57	13.57

Conway & Anderson(1973)

Hayter et al.(1987) 가 가 FD . Extrusion die (Guy & Horne, 1988). 가 FD ER 가 Faubion & Hoseney(1982) 가 WSI Extruder ER 26 32% 가 가

26 32%

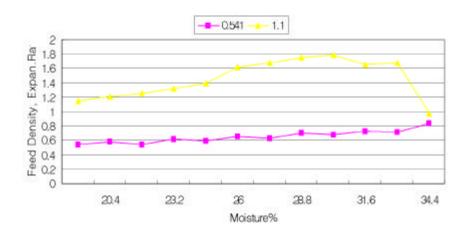


Fig. 3-6. Effect of Material Moisture Content on Feed Density & Expansion Rate of Poultry Waste Extrudates

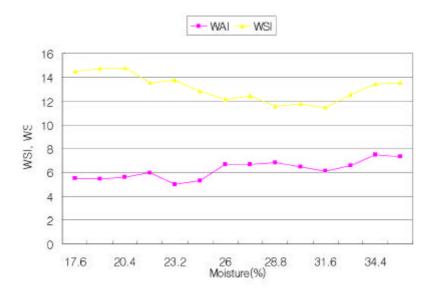


Fig. 3-7. Effect of Material Mosture Content on WAI & WSI of Poultry Waste Extrudates

. () ERF 1) ERF (ER) 가 . (GR) Die 가 . 가 Extruding (74%) Extruding 3-6 40% (FD) 507-698 g/l 70% 가 가 FD 가 60% 가 FD . Barrel Temperature(BT) 130 FD가 110 가 1.546 1.793 (ER) WAI가 4.089 5.635 가 WSI . (GR)가 45.64% 80.00% 7.119 10.448 가 가 가 가 ER 가 40% GR

가

70% 가

Extrusion ER

(Van Zuilichem et al., 1975; Maga & Cohen, 1978; Faubion & Hoseney, 1982; Alvarez-Martinez et al., 1988).

.

Table 3-6. Effect of Corn Levels on Physical Characteristics of

Extruded Products from Poultry Waste

Extruding Condition		ERF 1	formula			
Temp Die- RPM	Extrudate Product(kg/hr)	FD	ER	WAI	WSI	GR
	Co	orn(70)	: DPM	(30)		
110- 3.9- 250	31.4	609	1.758	5.635	10.012	80.00
130- 3.9- 250		652	1.793	5.278	10.448	54.78
	Co	orn(60)	: DPM	(40)		
110- 3.9- 250	31.4	695	1.752	5.112	8.422	50.95
130- 3.9- 250		698	1.781	5.178	8.573	51.17
	Co	orn(50)	: DPM	(50)		
110- 3.9- 250	31.4	560	1.635	4.470	8.423	61.48
130- 3.9- 250		561	1.675	4.398	8.701	57.39
	Co	orn(40)	: DPM	(60)		
110- 3.9- 250	31.4	518	1.573	4.089	7.331	45.64
130- 3.9- 250		529	1.586	4.296	7.119	52.56

^{*}DPM: Dried Poultry Manure

100% ER 500%, 65 78% ER 400%

40 50% ER 200 300% 0 10% ER 150 200%

(Horn, 1977). ER

60 70% 7 (Conway, 1971). 가 가 가 가 (Launay & Lisch, 1983). 55.04 71.42% 29.6 51.8% ER 155 179% ER 가 % 가 . ER Horn(1977) ER ER Extrusion 가 55% 가 40 70% 가 FD ER 40 70% 가 가 (Gelatnization) amylase 가 가 WSI가 (Holm et al., 1988). WSI가 가 GR 가 Extrusion 3-6 Extruding 50% DD 3.9mm BT 100, 130, 150 SS200, 250, 300 rpm 3-7 . FD 516 697 g/l, ER 1.344 1.622

BT SS

BT가 130cC SS가 250 rpm 가

WAI, WSI GR

: ERF BT 130cC SS가 250rpm 가

.

Table 3-7. Effect of Extruding Condition on Physical Characteristic of

Extrudates from Poultry Waste and Corn Mixture

Extruding Condition		Dryed P	oultry Wa	aste 50 +	Corn 50	
(Temp-rpm)	FD	ER	WSI	WAI	GR	NSI
100- 200	644	1.526	14.19	3.71	87.61	24.77
100- 250	605	1.385	14.63	3.49	86.72	26.32
100- 300	641	1.546	14.48	3.61	91.56	25.64
130- 200	577	1.613	14.40	3.69	86.16	21.11
130- 250	516	1.622	14.50	3.96	85.34	28.60
130- 300	519	1.508	13.77	3.79	87.17	29.84
150- 200	697	1.492	13.70	3.94	95.24	33.14
150- 250	616	1.408	13.28	3.94	82.61	26.33
150- 300	675	1.344	13.47	3.91	88.02	25.68

2) ERF

3-8 Extrusion 가 가 가 가 3-5%

(3 3 1) Exrusion 가 가 Amylose-lipid 가 Extruding 가 가 가 amylolysis 가 Extrusion glucose (Holm et al., 1986; Siljestrom et al., 1986; Mercier & Feillet, 1975). Extrusion가 ER(Guy & Horne, 1988). Extruding 가 가

- 102 -

50%

가 가

50%

50-60%()

Table 3-8. Nutrient Content of Material and its Extrudate From Poultry Waste and Corn(%DM)

	Moisture	C.Protein	C.Fat	C.Fiber	NFE	C.Ash			
	(Corn70+DP	W 30						
Material	26.31	14.91	3.18	5.12	71.42	5.36			
Extrudate	20.73	15.57	2.32	4.43	70.53	7.14			
	(Corn60+DP	W 40						
Material	22.92	15.72	3.29	4.95	68.07	7.95			
Extrudate	16.51	17.19	2.47	3.85	67.45	8.99			
	(Corn50+DP	W 50						
Materials	19.89	18.24	3.41	6.33	62.30	9.72			
Extrudate	13.67	18.23	3.30	6.10	64.19	9.55			
	Corn40+DPW60								
Meterials	24.82	19.79	3.96	7.11	55.04	14.08			
Extrudate	16.19	19.23	2.74	7.39	54.88	15.74			

. ERF

1) ERF

- ERF

10% 20% Extruding

. Barrel

Temperature(BT)7 100 150 Screw Speed(SS) 200 300 rpm

3-9 Fig 3-8 . Extruder 가 가 가 가 가 (Stanley, 1989). 10% 20% Extruding BT가 FD ER BT 가 3-9 FD 10% 가 596 g/l 532 g/l 713 g/l 548 g/l 20% 가 . ER BT10% ER 1.33 1.44 , 150 130 1.32

BT가 100 130 ER 가 . 20% BT ER (Fig. 3-9).

가 ER

BT가 WAI WSI 10% BT가 WAI WSI 가 20%

WAI 가 WSI . BT가 GR (NSI) BT가 GR

NSI (Fig.

20% WAI WSI 3-10). NSI

20%

. SS FD ER

SS가 WAI WSI GR NSI 가 (Gelatnization) amylase 가 (Holm 가 WSI가 et al., 1988). GR 가 Extrusion NSI가 NSI가 (Rhee et al., 1981). 가 Extrusion (rheological property) Extrusion 가 Extrusion (Extractability) . Faubion & Hoseney(1982) Gluten ER (9 vs 15%) ER Gluten 11% ER ER (Soy protein isolate:SPI) Gluten SPI 1-8% 가 ER 가 ER Extrusion BT 130 SS가 200-250 rpm 가 10- 20% 가 10%

- 105 -

Table 3-9. Effect of Adding Soybean Meal on Physical Characteristic of Extrudates from Poultry Waste

Extruded	ERF formula									
Condition		DPM	50 + Corr	n 40 + SB	M 10					
(Temp-rpm)	FD	ER	WSI	WAI	GR	NSI				
	DPW 50+Corn 40+SBM 10									
100- 200	596	1.379	13.10	3.89	87.88	26.08				
100- 250	549	1.358	11.98	4.08	79.21	24.54				
100- 300	523	1.262	13.53	4.11	75.82	19.34				
130- 200	578	1.436	13.56	4.10	82.42	14.33				
130- 250	529	1.457	12.81	4.27	93.79	21.77				
130- 300	494	1.413	12.46	4.57	87.57	16.62				
150- 200	554	1.340	13.82	3.52	91.52	34.67				
150- 250	547	1.360	13.56	3.68	89.94	24.56				
150- 300	532	1.258	13.77	3.84	92.77	25.38				
		DPW 50+	-Corn30+S	BM20						
100- 200	713	1.423	15.52	3.45	92.65	7.13				
100- 250	657	1.383	15.76	3.47	79.85	8.04				
100- 300	546	1.225	15.11	3.74	87.94	18.17				
130- 200	597	1.394	14.93	3.45	95.45	19.17				
130- 250	467	1.392	14.54	3.53	95.74	13.71				
130- 300	533	1.226	14.80	3.88	95.83	19.00				
150- 200	553	1.430	14.93	3.72	94.81	13.96				
150- 250	548	1.434	14.28	3.47	96.03	14.13				
150- 300	597	1.266	14.42	3.90	92.31	13.34				

*DPW: Dried Poultry Waste, SBM: Soybean meal

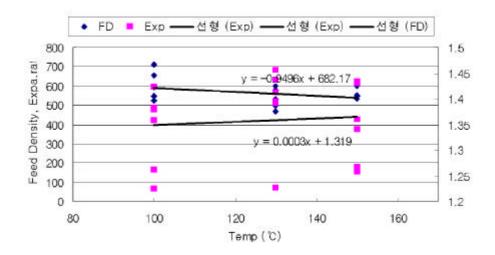


Fig. 3-8. Effect of Barrel Temperature on Feed Density & Expansion rate of Poultry Waste Extrudates

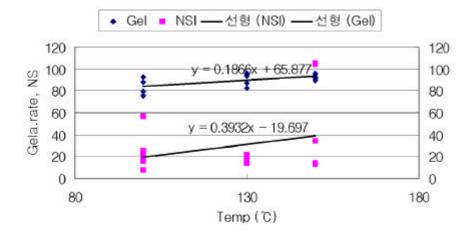


Fig. 3-9. Effect of Barrel Temperature on Gelatinization rate & Nitrogen Solubility Index of Poultry Waste Extrudates

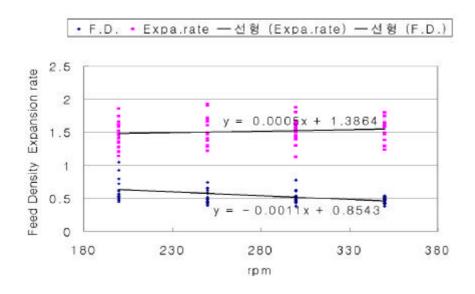


Fig. 3-10. Effect of Screw speed on Feed Density & Expansion rate of Extrudates

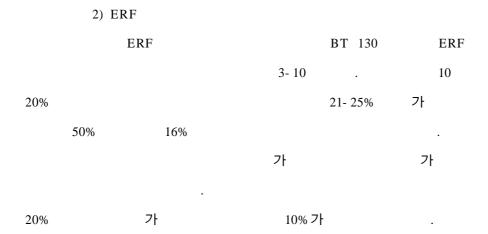


Table 3-10. Nutrient Content of Extrudates from Poultry Waste, Corn and Soybean Meal(%DM)

	Moisture	Crude Protein	Ether Extract	Crude Ash	Crude Fiber	NFE	Ca	P
DPW50:Crn50	2.88	15.18	3.06	12.17	5.46	64.13	0.85	0.77
DPW50:Corn40: SBM10	2.79	20.34	3.00	11.57	6.60	58.49	0.66	0.43
DPW50:Corn30: SBM 20	4.27	25.62	2.54	11.54	5.81	54.49	0.70	0.68

^{*}DPW: Dryed Poultry Waste,C: Corn, BM: Soybean Meal

. 가 ERF

1) , , ERF

Extruding

가

. Kg 7\ 255 150

가 . ERF 가

가 Extruding

10 40%

Extrusion Die diameter 3.9 mm, Screw Speed 250 rpm, Barrel Temperature 130

3-11 . 3-11 (FD)가 454 619

가 FD가

. 가

Table 3-11. Effect of Corn and Tapioca Ratio on Physical Chracteristics of Extrudates from Poultry Waste

	FD	ER	WSI	WAI	ER	NSI
P50:C50	619	1.722	8.61	4.54	93.63	22.83
P50:C40:T10	514	1.692	9.11	4.24	91.46	22.83
P50:C30:T20	552	1.638	9.76	4.22	94.33	22.38
P50:C20T 30	471	1.503	14.07	3.60	90.53	18.85
P50:C10T40	454	1.430	16.03	3.38	92.18	20.54

^{*}P: Dried Poultry Waste, C: Corn, T: Tapioca

가 (ER) 50% 1.722 40% ER 1.430 가 WSIWAI(GR) 50 +NSI 30 + 20 가 WSI, WAI, NSI 50% 가

20% 가 ER GR (1 4). 1 가 50

: 30 : 20 ERF Extrusion

2 . Die Diameter(DD)

Table 3-12. Effect of Extruding Condition on Physical Characteritic of Extrudates from Poultry Waste, Corn and Tapioca.

Extrudint			ERF f	formula		
Condition		DPW	50 : Corn	30 : Tap	oioca 20	
Temp-rpm)	FD	ER	WSI	WAI	GR	NSI
100- 200	597	1.592	16.72	3.10	75.13	20.02
100- 250	556	1.508	17.45	3.19	81.77	29.28
100- 300	575	1.510	16.28	3.18	84.30	29.98
130- 200	721	1.623	17.15	3.21	87.50	29.87
130- 250	564	1.692	17.24	3.51	87.60	33.47
130- 300	522	1.587	15.71	3.42	82.14	35.15
150- 200	546	1.583	15.35	3.48	81.56	23.24
150- 250	518	1.517	15.01	3.52	86.67	33.30
150- 300	578	1.233	14.33	3.47	83.76	43.48

^{*}DPW: Dried Poultry Waste

3.9mm, Barrel Temperature(BT) 100 , 130 , 160 , Screw Speed(SS) 200, 250, 300 Extrusion 3- 12 . 3-12 BT 100-150 FD 518 597 g/l, ER 가 1.233 1.692 BT 130 , SS 200 250 rpm 가 ER WAIWSIBT가 WAIWSIBTGR NSI BT가 130 , SS 200-250 rpm 50 : 30 : 20 ERF Extrusion

.

2) ERF ERF Extrusion 가 3- 13 . Extrusion 10% 17% 15% 가 10-40% 6- 10% Extrusion 가 Ca P P 가 가 Extrusion . Anderson et al.(1981) Phytate가 13-35%

Table 3-13. Nutrient Content of Materials and Their Extrudates from Poultry Waste, Corn and Tapioca

	Moisture	Crude Protein	Ether Extract	Crude Ash	Crude fiber	NFE	Ca	P
ERF Material								
DPW 50 Corn 40 Tapioca 10	: : 21.93	17.32	2.68	15.68	8.50	55.80	0.67	0.61
DPW 50 Corn 30 Tapioca 20	: : 22.24	17.22	2.36	15.16	8.21	57.05	0.60	0.55
DPW 50 Corn 20 Tapioca 30	: : 21.81	16.42	1.29	14.99	8.73	58.57	0.54	0.48
DPW 50 Corn 10 Tapioca 40	: : 21.03	15.03	1.72	15.42	8.78	59.05	0.57	0.60
			ERF Pro	duct				
DPW 50 Corn 40 Tapioca 10	: : 11.79	17.25	1.63	14.74	7.62	58.76	0.67	0.78
DPW 50 Corn 30 Tapioca 20	: : 11.36	16.89	2.12	14.55	7.68	58.76	0.60	0.61
DPW 50 Corn 20 Tapioca 30	: : 11.94	15.77	1.07	14.90	7.98	60.28	0.54	0.60
DPW 50 Corn 10 Tapioca 40	: : 11.37	15.36	1.35	14.78	7.25	61.26	0.57	0.58

Table 3-14. Microbiological Evaluation of Material and Its

Extrudates from Poultry Waste, Corn and Tapioca.

(counts/gram)

	Coli form	E. coli	Salmonella
ERF Material			
DPW	34 × 104	42 x 104	+
ERF Product			
DPW 50 : Corn 40 : Tapioca 10	ND	ND	-
DPW 50 : Corn 30 : Tapioca 20	ND	ND	-
DPW 50 : Corn 20 : Tapioca 30	ND	ND	-
DPW 50 : Corn 10 : Tapioca 40	ND	ND	-

DPW: Dried Poultry Waste

3) ERF

, , , ERF 7\text{ Textrusion Coliform, E. Coli Salmonella}

3- 14 .

. 130 Extrusion

2 . (Extruded Recycle Feed:ERF)

가. Die Diameter, Screw Speed Barrel Temperature가 ERF (Extruding)

1) ERF

1 0.6-1.0% 가

가 .

46%, 54%

77% 23% . pH 7.2 8.3

Extrusion Extruder

Die diameter(DD) 3.9 5.3mm, Screw Speed(SS) 200, 250, 300 350 rpm, Barrel Temperature(BT) 90, 110, 130, 150 70

+ 30 60 + 40 64

Extrusion 2 3-10 3-11 .

5, 6, 7, 8 A, B, C, D

DD 3.9mm 5.3mm (FD) 0.70

0.75 (ER) 1.57 1.53 가

WAI WSI (GR) 5.3mm 가

(City Sismin)

. DD 3.9 mm 5.3mm가

.

- 115 -

SS 200 350 rpm 가 FD ER 가 . 200 350 rpm 가 FD 0.72, 0.72, 0.67, 0.67Kg/l ER 1.45, 1.55, 1.61 가 . WSI 7.74, 10.43, 9.76 1.61 10.33 GR 50.12, 51.9, 52.8, 49.9 350 rpm ER, WSI, GR BT 90 150 가 FD 1.16, 0.66, 0.55 0.55 ER 1.41, 1.70 1.77 1.60 가 . WSI 8.44, 9.69, 11.02, 10.67 7 GR 62.95, 64.84, 70.79, 51.97 BT WSI GR 가 가 . 가 FD ER 가 Horvath et al, (1989) Cumming etal, (1972) 150 ER, WSI, GR DD 5.3mm, SS 250-300 rpm, Extrusion BT 130 가

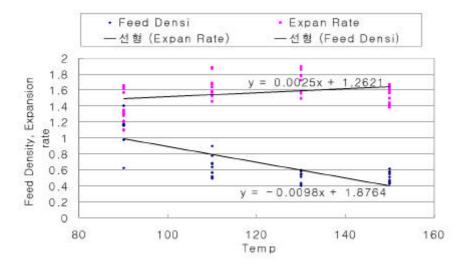


Fig. 3-10 Effect of Barrel Temperature on Feed Density & Expansion rate of Pig Waste Extrudates

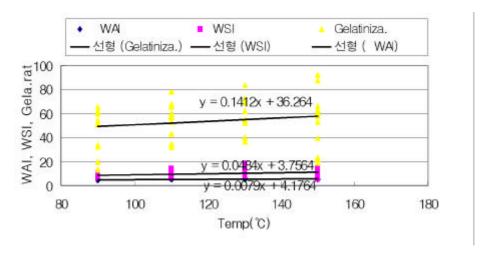


Fig.3-11. Effect of Barrel Temperature on WAI, WSI & Gelatinization rate of Pig Waste Extrudates

2) ERF

Extrusion

Extrusion

3- 15 .

Die 3.9mm, Screw speed 300 rpm

(2).

Table 3-15. Nutrient Content of Materials and Thier Extrudates from Swine Waste and Corn.

1		Moisture	Crude	Ether	Crude	NFE	Crude
1		Moisture	Protein	Extract	Fiber	NFE	Ash
Corn70+DSM30		28.43	15.22	7.41	4.09	70.22	4.95
Material							
Extrudate	90	24.04	15.97	3.15	3.46		
	110	23.01	15.69	2.01	3.64	74.61	5.96
	130	20.96	15.55	3.07	3.56	74.22	6.26
	150	20.50	15.19	2.94	3.44	74.46	5.97
Corn 60+DSM40		34.31	15.25	8.79	6.62	60.42	8.91
Material							
Extrudate	90	28.93	16.60	3.35	7.25	66.53	6.29
	110	27.35	16.09	2.74	6.38	66.52	6.42
	130	26.7	16.04	3.52	6.36	68.29	5.78
	150	25.5	14.99	3.24	6.47	69.38	5.89

(3 3 1) Extruding

Extruding

. 가

가 가

.

3) ERF

•

(20) E.Coli, Coliform, Salmonella

3-16 .

E.coli Coliform

Salmonella positive

.

Table 3-16. Microbiological Evaluation of Swine Waste(Counts/g)

_	Pig manure							
	Growing Pig	Sow						
Coliform	79 × 105	84 x 106						
E. coli	116 x 106	165 × 106						
Samonella	+	+						

^{* + :} Positive salmonella

Table 3-17. Microbiological Evaluation of Extrudates from Swine

Waste and Corn(count/gram)

Temp Die- RPM	Coliform	E.coli	Salmonella
(Corn(70) : Pig Mar	nure(30)	
90 - 5.3 - 250	9 x 105	11 x 106	-
110 - 5.3 - 250	ND	ND	-
130 - 5.3 - 250	ND	ND	-
150 - 5.3 - 250	ND	ND	-
	Corn(60): Pig M	anure(40)	
90 - 5.3 - 250	6 × 105	7 × 106	-
110 - 5.3 - 250	ND	ND	-
130 - 5.3 - 250	ND	ND	-
150 - 5.3 - 250	ND	ND	

Extrusion 3- 17
. 30% 40% 110

Coliform, E.Coli, Salmonella

. Extrusion 가

가 Extrusion

Barrel Temperature 90

Coliform, E.coli.가

Extrusion

. , , ERF

ERF

10%

80% 10 40%

Extrusion

3- 18

Table 3-18. Effect of Extrusion Temperature on Physical Characteristics of Extrudates from Swine Waste, Corn and Soybean Meal.

DSW:Corn:SBM	Feed Density	Expan. Rate	Gelatnz Rate	NSI	WSI	WAI		
	100							
10:80:10	500	1.547	82.37	27.72	15.4	4.26		
20 : 70 : 10	480	1.477	83.42	28.72	14.9	4.22		
30 : 60 : 10	420	1.363	84.07	28.21	13.9	3.90		
40 : 50 : 10	730	1.332	83.32	26.27	14.2	4.10		
		130						
10:80:10	480	1.824	83.72	27.32	16.2	4.32		
20 : 70 : 10	470	1.820	84.72	27.94	15.4	4.20		
30 : 60 : 10	460	1.522	84.76	27.94	14.5	4.20		
40 : 50 : 10	450	1.574	83.97	26.92	14.1	3.80		
		150						
10 : 80 : 10	450	1.347	84.63	26.21	14.9	4.20		
20 : 70 : 10	590	1.420	84.37	26.76	14.5	4.05		
30 : 60 : 10	700	1.267	83.92	27.32	14.3	3.90		
40 : 50 : 10	590	1.025	82.42	25.43	14.0	3.70		

Extrusion DD 5.4 mm, SS 250 rpm, BT 100, 130, 150

. 3-18 FD 420-730 g/l

7 FD7 7 ER 1.267-1.824

130 ER 가 . WAI 3.7 0 4.32 WSI 13.9 16.2 BT가 가 130 . GR 82.37 84.76% 가 NSI 24.72 28.76 가 가 BT가 Extursion BT

. Extursion B1

가 130 가

. ERF

ERF

가

3-19 . Extrusion Die diameter(DD) 5.4 mm, Screw Speed(SS) 250rpm, Barrel Temperature 130 .

(FD) 1.16-1.30 kg/l (ER) 0.90-1.09 ER
. WAI WSI .

ER NFE 가 (28-

55%)

Extrusion

Table 3-19. Effect of Swine Waste and Food Waste Ratio on Physical

Characteristics of Extrudate

ERFformula	Feed Density	Expan. Rate	WAI	WSI
Food Waste 100	1.204	1.09	2.56	12.63
Food Waste 80 : DSW 20	1.250	1.06	2.55	10.72
Food Waste 60 : DSW 40	1.300	1.07	2.58	13.13
Food Waste 40 : DSW 60	1.170	0.98	2.62	11.66
Food Waste 20 : DSW 80	1.150	0.90	2.54	11.54

^{*}DSW: Dryed Swine Waste

. ERF

1) ERF

Extrusion 가

ERF

 $3\text{-}\,20$. Extrusion Die diameter(DD) 5.4 mm, Screw Speed(SS) 250 rpm, Barrel Temperature 130 .

ER, WSI, GR

가 .

(NFE 28%) ER

ER WAI, WSI

()

.

Table 3-20. Effect of Food Waste and Corn Ratio on Physical

Characteristics of Extrudates

EDE f1-	Feed	Expan.	WCI	XX A I	Gelatiz
ERF formula	Density	Rate	WSI	WAI	n Rate
Food Waste 100	1.204	1.09	11.62	3.01	62.64
Food Waste 80 + Corn 20	0.810	1.23	11.77	3.12	62.88
Food Waste 60 + Corn 40	1.084	1.58	11.73	3.08	63.48
Food Waste 40 + Corn 60	1.161	1.64	12.11	3.17	64.25
Food Waste 20 + Corn 80	1.276	1.72	13.01	3.06	65.53

2) ERF

ERF

3- 21 Extrusion 16%

. 1 3% 2-3%

가

. 가 가 2%

.

3-21. Nutrient Content of Materials from Food Waste and Corn.

(% DM)

ERF formula		Moisture	Crude Protein	Ether Extract	Crude Ash	Crude Fiber	NFE
	ERF	Material	S				
Food Waste 100		22.29	26.08	28.68	3.57	5.49	36.16
Food Waste 80:Corn	20	21.42	22.62	23.45	3.15	4.85	45.89
Food Waste 60:Corn	40	21.78	19.30	18.43	2.75	4.24	55.27
Food Waste 40:Corn	60	22.01	17.21	13.61	2.36	3.66	64.24
Food Waste 20:Corn	80	23.11	13.06	8.98	1.98	3.10	72.86
	ERF :	Products					
Food Waste 80:Corn	20	5.99	22.32	21.55	3.10	3.28	49.75
Food Waste 60:Corn	40	6.67	19.10	15.76	2.93	2.04	60.17
Food Waste 40:Corn	60	5.99	16.85	10.25	2.57	1.27	69.06
Food Waste 20:Corn	80	6.23	12.54	6.38	4.26	1.59	75.23

Extrusion 가 가

. Extrusion

가 (Varo et al., 1983; Bjorch et al., 1984; Siljestrom et al., 1986). Extrusion 가 가

가 glucan

Maillard lignin 가

Extrusion arabinoxylan

(Westerlund, 1987). 가 가 가 가 (Guy & Horne, 1988). Extrusion 가 Extrusion 가 3) ERF 가 (20) E. Coli, Coliform Salmonella 3-22 . E. coli Coliform 가 . Salmonella positive

Extrusion (3-22)

E. Coli, Coliform, Salmonella

. Extrusion 가

Extrusion .

Table 3-22. Microbiological Evaluation of Material and Product from Food Waste and Corn.(counts/gram)

ERF formula	Coli form	E. Coli	Salmonella
ERF Material			
Food Waste 100	500 × 107	471 × 107	+
ERF Products			
Food Waste 80 + Corn 20	ND	ND	-
Food Waste 60 + Corn 40	ND	ND	-
Food Waste 40 + Corn 60	ND	ND	-
Food Waste 20 + Corn 80	ND	ND	-

^{*} ND : Not detected., -: Negative salmonella.+ : Positive salmonella.

. ERF

1) ERF

가

ERF

3- 25

Die diameter(DD) 5.4mm, Screw Speed(SS) 250 rpm

Barril Temperature(BT) 100, 130 150 (FD) 521-703 g/l . (ER) 1.021-1.821 가 가 ER WAI(9.8-11.9), WSI 가 (9.8-11.9). (GR) 가 (81.34-88.26), NSI (29.8-32.2).() ER WAI, WSI, GR ERF Extruding 20% BT 가 FD 100 , 130 , 150 ER 1.58, 가 1.73, 1.47 130 가 . WAI, WSI, GR 7.08, 10.8, 85.5 가 130 가 BT 130 40:40:20

Table 3-25. Effect of Extrusion Temperature on Physical

Characteristic of Extrudates from Different Level of

Swine Waste, Food Waste and Corn

FW:DSW:Corn	FD	ER	WAI	WSI	GR	NSI		
	100							
0:10:80	642	1.732	5.6	11.9	89.21	29.8		
20 : 20 : 60	597	1.632	6.2	10.6	83.92	30.2		
30 : 30 : 40	629	1.627	7.2	10.5	83.20	31.5		
40 : 40 : 20	621	1.327	7.9	9.8	82.22	31.2		
	130							
10 : 10 : 80	627	1.821	5.7	11.5	90.34	30.1		
20 : 20 : 60	629	1.793	6.9	10.9	84.72	31.0		
30 : 30 : 40	633	1.678	7.5	10.2	82.92	32.2		
40 : 40 : 20	521	1.421	8.2	10.5	84.23	32.2		
		15	0					
10 : 10 : 80	633	1.722	5.2	11.2	88.26	30.2		
20 : 20 : 60	607	1.624	6.5	10.5	84.32	31.5		
30 : 30 : 40	521	1.521	7.2	10.0	81.34	30.9		
40 : 40 : 20	703	1.021	7.8	10.3	80.77	31.5		

 GE

가 40: 40: 20

18.57%, GE 4363 Kcal/Kg

5.4%, 10.34% 68% 93%

GE 98%

Extrusion

Table 3-26. Nutrient Content of Materials and Extrudates from Swine Waste, Food Waste and Corn.

DSW:FW:Corn	Moisture	Crude Protin	Ether Extract	Crude Fiber	NFE	Crude Ash	GE(kcal/g)
	ERF Materials						
10: 10: 80	27.64	11.208	4.91	3.85	65.15	3.83	4494
20: 20: 60	27.48	13.91	5.92	5.10	60.51	6.26	4476
30: 30: 40	28.31	16.62	6.93	6.36	55.87	8.69	4458
40: 40: 20	28.64	19.33	7.94	7.61	51.23	11.12	4440
		E	RF Prod	uct			
10 : 10 : 80	12.56	10.86	2.65	2.68	79.74	4.07	4432
20 : 20 : 60	8.82	13.37	2.22	2.71	79.12	5.58	4393
30 : 30 : 40	11.88	16.85	3.42	3.82	74.32	8.59	4351
40 : 40 : 20	16.68	18.57	5.40	5.01	66.68	10.34	4363

*DSW: Dryed Swine Waste, FW: Food Waste

3) ERF

가 .

DD 5.4, BT 130 , SS 250 rpm

Exrusion

ERF

Table 3-27. Microbiological Evaluation of Extrudates from Swine Waste,
Food Waste and Corn.(count/gram)

	Coliform	E.coli	Salmonella
FW 10: DSW 10: Corn 80	ND	ND	_
FW 20: DSW 20: Corn 60	ND	ND	-
FW 30: DSW 30: Corn 40	ND	ND	-
FW 40: DSW 40: Corn 20	ND	ND	

^{*} FW:Food waste DSW: Dryed Swine Waste ND: Not Detecte -: Negative salmInella

Coliform E.coli.가

Extrusion BT 130

.

ERF 가 4 1 . , , ERF 가 Broiler 1 . 2 Extrusion 3 가 가 가 가 가 가 Flegal & Zindel(1970) 가 (Dehydrated Poultry Waste:DPW) 20% 5% 가 Bieley et al.(1972) 5 20% Lee & Blair(1973) 10% 가 DPW 5%

- 132 -

(1973) Flegal & zindel(1971)

가 DPW 10 40% 10% 2 30% 가 가 가 가 가 가 ME가 Extruder Extrusion 가 가 가 3 (Extruded Recycling Feed:ERF) 2 . 가. Arbor Acre

- 133 -

1997

18

1997

10

23

6

210

(1996) (0-3) (4-6)

Brill Computer Program

4- 1

4-2 . 3 , 10 210

1) ,

4

- 134 -

Table 4-1. Composition of Starter Diets for Broiler Fed ERF.

	Control		ERF	(%)	
	Control ·	10	20	30	40
Ingredient					
ERF 1)	-	10.00	20.00	30.00	40.00
Corn	65.00	65.00	57.34	49.67	41.90
Wheat bran	10.00	10.00	10.00	10.00	10.00
SBM(CP, 44%)	13.83	13.27	8.16	5.92	3.70
Canola meal	-	-	3.00	3.00	3.00
Sorghum	5.00	0.03	-	-	-
Corn gluten meal	4.27	-	-	-	-
Limestone	0.80	1.20	1.00	1.00	1.00
T CP	0.50	0.30	0.30	0.20	0.20
Additive2)	0.20	0.20	0.20	0.20	0.20
TOTAL	100.00	100.00	100.00	100.00	100.00
Chemical Composition	n				
ME	3100	3100	3100	3100	3100
CP	21	21	21	21	21
Ca	1.20	1.00	1.00	1.00	1.00
Available P	0.45	0.45	0.45	0.45	0.45

¹⁾ ERF(Extrusion recycle feed) = Dried Poultry Waste : Corn : Tapioca

^{: 50 : 30 : 20.}

²⁾ Additive: Trace mineral and Vitamin premix.

Table 4-2. Composition of Finisher Diets Fed ERF.

	Control -	ERF (%)			
	Control -	10	20	30	40
Ingredient					
ERF 1)	-	10.00	20.00	30.00	40.00
Corn	58.19	54.94	49.81	45.75	35.88
SBM(CP, 44%)	17.00	17.00	14.72	11.63	11.76
Wheat bran	5.00	3.00	-	-	-
Corn gluten meal	4.30	5.00	-	-	-
T apioca	5.00	2.34	3.67	0.62	0.86
Canolar meal	3.00	-	3.00	3.00	1.00
Fish meal	2.94	3.00	3.00	3.00	3.00
Limestone	1.00	1.00	1.00	1.00	0.50
Soy oil	2.00	2.00	3.00	3.00	5.00
T CP	1.00	1.00	1.00	1.00	1.00
Methionine	0.17	0.22	0.25	0.35	0.30
Lys	0.10	0.20	0.25	0.35	0.40
Additive2)	0.30	0.30	0.30	0.30	0.30
TOTAL	100.00	100.00	100.00	100.00	100.00
Chemical Composition	n				
ME	3100	3100	3100	3100	3100
CP	18	18	18	18	18
Ca	1.0	1.04	1.11	1.16	1.02
Available P	0.39	0.40	0.41	0.43	0.44

¹⁾ ERF(Extrusion recycle feed) = Dried Poultry Waste : Corn : Tapioca : 50 : 30 : 20.

2)

가 3

Deaton et al.(1974)

²⁾ Additive: Trace mineral and Vitamin premix.

, , Abdominal fat pad ,

(Meat chopper, DAEWOO, Korea)

(SFDSM12, SAMWON, Korea) 48

, AOAC

.

3) 가

가 20

. 가

가

0 5 가 .

4) 가

· 가

kg 가 가

가 . ERF 가 Extrusion 가 (1995) .

SAS Package Program (1985)

- 137 -

Duncan

3 .

ERF , 50 : 30 : 20 Extruder Die 5.3 mm, Screw speed 250 rpm, Barrel Temperature 130 ERF 10, 20, 30 40% 4-3 4-4 . 4-3 (0-3) ERF 40% 가

ERF 40%

. ERF 10% 가 가 (p < 0.05)가

가 ERF 10%

. ERF 40% 가

(p < 0.05)ERF 40% 가 가

(4-3) ERF 가

(p<0.05) 가 가 40% 가

ERF 10%

가 가가 가 ERF

가 . 가

ERF가 ME ERF 가

가 가 ERF .

Table 4-3. Effects of Feeding ERF Starter Diets on Body Weight Gain,
Feed Intake and Feed Conversion Ratio of Broiler (0-3wks).

Treatment	Body weight gain	Food intake	Feed conversion
	(g)	(g)	ratio
Control	700.2 ± 1.30 b	$1163 \pm 13.12c$	1.66 ± 0.03 b
ERF 10%	$737.5 \pm 2.07a$	1235 ± 17.56b	$1.67 \pm 0.02b$
ERF 20%	$701.1 \pm 2.90 \mathbf{b}$	1251 ± 13.55c	$1.78 \pm 0.03a$
ERF 30%	696.9 ± 1.71b	$1206 \pm 11.79 \text{bc}$	1.73 ± 0.05 ab
ERF 40%	713.6 ± 2.93 b	1299 ± 11.22a	$1.82 \pm 0.04a$
ERF 40 (0.04%)	677.4 ± 6.16c	1276 ± 13.77a	$1.88 \pm 0.04a$
ERF 40 (0.10%)	636.5 ± 0.72 d	1212 ± 9.37 bc	$1.90 \pm 0.04a$

abcdMeans in the same row with different superscripts differ significantly $(p\!<\!0.05)$

(4-6) 가 ERF 4-4 1.273kg 가 가 ERF (p < 0.05). 2.728kg 가 ERF 가 가 ERF 40% 가 가 ERF 가 4-5) 6

Table 4-4. Effects of Feeding ERF Finisher Diets on Body Weight

Gain, Feed Intake and Feed Conversion Ratio of Broiler

(4-6wks).

Treatment	Body weight gain	Eggd intoles (a)	Feed conversion
1 reatment	(g)	Food intake (g)	ratio
Control	$1273.0 \pm 21.1a$	$2728 \pm 31.3b$	$2.14 \pm 0.14\mathrm{b}$
ERF 10%	$1172.9 \pm 92.1b$	$2691 \pm 21.7b$	$2.29 \pm 0.13b$
ERF 20%	1147.6 ± 86.3b	2937 ± 27.9 ab	$2.56 \pm 0.16ab$
ERF 30%	1163.8 ± 15.9 b	$2998 \pm 29.7 ab$	$2.58 \pm 0.11ab$
ERF 40%	$1099.3 \pm 17.5c$	$3131 \pm 20.4a$	$2.85 \pm 0.02a$
ERF 40 (0.04%)	$1103.1 \pm 18.5c$	3112 ± 17.5a	$2.82 \pm 0.02a$
ERF 40 (0.10%)	$1108.2 \pm 42.1c$	$3178 \pm 20.3a$	$2.87 \pm 0.02a$

a,b,c,dMeans in the same row with different superscripts differ significantly $(p\!<\!0.05)$

Table 4-5. Effects of Feeding ERF Diets on Body Weight Gain, Feed

Intake and Feed Conversion Ratio of Broiler (0-6wks).

	Body weight gain (g)	Food intake (g)	Feed conversion ratio
Control	1973.2 ± 21.3a	3892 ± 41.87c	1.97 ± 0.04d
ERF 10%	1910.4 ± 112.1ab	3928 ± 33.91c	$2.06 \pm 0.11d$
ERF 20%	1848.7 ± 106.3 bcd	4188 ± 40.47 b	$2.27 \pm 0.13c$
ERF 30%	1860.7 ± 15.9 bc	$4207 \pm 36.79b$	$2.26 \pm 0.04c$
ERF 40%	$1812.9 \pm 21.9 \text{bcd}$	$4432 \pm 28.32a$	$2.44 \pm 0.02b$
ERF 40 (0.04%)	1780.5 ± 6.16 cd	4391 ± 30.32a	$2.47 \pm 0.02a$
ERF 40 (0.10%)	1744.7 ± 4.21d	$4391 \pm 26.02a$	$2.52 \pm 0.02a$

abc, d Means in the same row with different superscripts differ significantly (p < 0.05)

Bare et al.(1964) Uric acid 2%

. ERF 10, 20, 30 40% NPN 0.48, 0.96, 1.44,

1.93% 7 Uric acid 0.29, 0.59, 0.89, 1.19% ERF40%

uric acid 7

. Boushy & Vink(1977) 가

NPN uric acid

NPN 1.43%

ERF 30% NPN . ERF (ERF 40%) . 23%

가

가 ERF ME가 가 가 . ERF 가

ERF 30%

가 .

ERF 100g 4- 6 . % 72.85%

ERF 70.46% 68.58%

. 64.5% ERF

Table 4-6. Carcass Rate and Organ Weight of Broiler Fed Different Levels of ERF Diets. ($g/100g\ B.W.$)

Treatment	Dressed Carcase(%)		Abdominal fat pad(%)	Gizzard	Crop	Liver
Control	70.85a	63.66	1.25c	2.08b	0.30c	3.25bl)
ERF 10%	70.46a	63.15	1.89b	2.32b	0.34b	3.78ab
ERF 20%	70.08a	62.86	1.86b	2.31b	0.48a	4.00a
ERF 30%	69.76b	62.20	2.62a	2.76a	0.50a	3.59ab
ERF 40%	68.58b	61.15	2.48a	2.81a	0.48a	3.31b

¹⁾ Means with different superscripts within the same calumn differ(p<0.05). Mean values \pm standard error.

63.15% 61.15% .

가 1.25% 가 ERF 10 20% 1.89% 1.86%

가 2.62%, 2.48%

가

Ogunmodede & Aninge(1978)

가

ERF 20% 가 4.00g

ERF 40% 3.25 3.31 ERF

100g

2.08g ERF 10 20% 2.32 2.31g

ERF 30 40% 2.76, 2.81g

가 .

가

ERF

Table 4-7. Body Composition of Broiler Fed Different Levels of ERF

D i e t

	Moisture	Crude Protein	Ether Extract	Crude Ash
Control	69.10	18.01	12.17	1.01
ERF 10%	66.61	19.23	12.89	1.00
ERF 20%	64.20	20.04	13.97	1.06
ERF 30%	65.18	20.00	13.24	1.01
ERF 40%	64.37	19.53	14.60	0.97

ERF 6 4-7

. 가 69.1% ERF

64 66% . 18 20%

11.17%

ERF 10% 가 12.89%

ERF

가

가

(Munro, 1964)

Table 4-8. Sensory evaluation of broiler meat fed different levels of ERF diet .

<u> </u>					
	Taste	Color	Juiciness	Texture	T otal acceptability
Control	4.2	3.9a	3.5	4.1	3.93
ERF 10%	4.1	3.9a	3.4	4.2	3.90
ERF 20%	4.3	3.6b	3.5	4.0	3.85
ERF 30%	4.2	3.8a	3.5	4.0	3.88
ERF 40%	4.0	4.0a	3.5	4.1	3.90

^{*} Means with different superscripts within the same calumn show significant difference(p<0.05).

4-8 가

ERF 가 20% 가

ERF

가 .

, ,

^{**}Panal evaluation: Higly palatable 5: Palatable 4: Mean 3: Undecided 2: Unpalatable 1

ERF

.

Table 4-9. Economical analysis of ERF diets.

I (W)		ERF (%)						
Item(Won)	Control	10	20	30	40			
A. Feed Price/kg	299.1	296.1	265.7	256.2	247.4			
B. Total Feed Price	1164.1	1163.1	1090.9	1077.7	1096.5			
C.Body Wt. gain(kg)	1.97	1.91	1.80	1.86	1.81			
D. Meat price/kg	1200	1200	1200	1200	1200			
E.Total Meat price	2367.8	2292.5	2159.3	2231.8	2175.5			
F. Gross Income	1203.7	1129.4	1068.4	1154.0	1079.0			

^{*:} Total Feed price=(A \times feed intake), Total Meat price, $C \times D$: Gross Income= E-B

가 4-9 ERF kg 가 가 A В C D 가 $C \times D$ 가 가 가 E-B kg가 가 ERF 가 가 ERF 가 ERF 가 가 가

가

ERF 가 가 . .

ERF

10%

가 .

ERF 2 가 1 . 2.0kg 260g 300g 20g . 16- 17kg 1.728 kg 2kg 635g . 8 4 5.8 32 (ERF) 가 (Flegal & Zindel, 1971; Hodgetts, 1971; Flegal et al., 1972; Nesheim, 1972). 가 Extrusion3 가

- 147 -

ERF

가

2 .

가.
Isa-Brown 400

1997 7 14 10 13 13

.

ERF 50:30:20

Extrusion Extrusion Die diameter 3.9mm, Screw Speed 250rpm, Barrel Temperature 130 .

NRC (1996) ERF 10, 20 40%
4 4-10 .

100 400 .

•

1)

Hen-Day 1 .

2) , Haugh Unit

(FHK)

albumen height Haugh Unit 70 80

Drying Oven (FHK) 3

Table 4-10. Composition of Layer Experimental Diets.

	Control		ERF (%))
	Control	10	20	40
ERF	-	10	20	40
Corn	65.36	54.34	55.54	36.40
SBM(CP, 44%)	12.58	10.00	10.00	10.00
Fish meal	5.00	7.92	5.00	1.90
Canola meal	3.00	-	0.08	-
T apioca	3.00	5.00	-	-
Wheat bran	1.64	-	-	-
Limestone	8.00	5.00	5.43	5.00
TCP	0.22	1.00	0.50	1.00
Soy oil	1.00	3.00	3.00	5.00
Methionine	0.10	0.15	0.15	0.25
Lysine	-	-	0.10	0.25
Vitmin Mix.	0.10	0.10	0.10	0.10
Total	100.00	100.00	100.00	100.00
Chemical composition(%)			
ME(kcal/kg)	2,900	2,900	2,900	2,900
Crude protein	16.00	16.00	16.00	16.00
Lysine	0.94	0.91	0.88	0.82
Methionine + Cystine	0.63	0.66	0.63	0.64
Calcium	3.25	3.11	2.53	2.47
Av. phosphorus	0.29	0.51	0.37	0.42

1) ERF : Extrudate Recycle Feed

\$30\$. Haugh Unit $\label{eq:HU=100log(H+7.57-1.7W037)} \mbox{ . } \mbox{H}$

albumen height W egg weight .

.

SAS Package Program

(1985)

Duncan .

3 .

ERF

4-11 . 60.57%

ERF 10, 20, 40% 59.71% 59.74% 58.41%

가 .

108.9g 가 ERF 가 가

가 10

가 . ERF

12 ERF

20 40% ERF 가

가 Haugh unit .

Flegal et al.(1972) Nesheim(1972) (DPW)

12.5% 25% 22.5% DPW 7

가 .

DPW 12.5% 가 .

Quisenberry & Brdley(1969) Flegal & Zindel(1970, 1971) DPW

10 40% 10%

Table 4-11. Effect of Poultry manure ERF Feeding on Egg Production

Feed Effciecy of Laying Hen

	Egg Production % (Hen-Day)	Feed Intake (g/day)	Feed/10Egg (Kg)
Control	60.57 ± 6.0	108.88	1.797
ERF 10	59.71 ± 7.9	110.00	1.842
ERF 20	59.74 ± 6.6	112.03	1.875
ERF 40	58.41 ± 7.2	114.27	1.956

Table 4-12. Effect of Poultry manure ERF Feeding on Egg Weitht and

Egg Quality of Laying Hen

		Shell	
	Egg Wt.(g)	Thickness	Haugh unit
		(mm)	
Contral	70.86 ± 6.0	0.3909	89.38
ERF 10	70.18 ± 4.3	0.3940	89.10
ERF 20	72.98 ± 3.2	0.4088	89.54
ERF 40	72.43 ± 2.0	0.4124	89.98

ERF 40%	DPW 20%	
가	가	가

Battacharya & Talor(1971) Flegal & Zindel(1971)

. DPW 7

DPW

DPW

20% 14%

((Martin et al., 1983). DPW Extrusion

가 ERF

40% (DPW 20%) .

20-68% 7;
(Jordan et al., 1968, McInnes et al., 1968, Brugman et al., 1969,
De Galmez et al., 1970). Bishop et al.(1971)

2 가 가 가

가 , ERF () , , ,

4:6

4

9 4

Temperature 130 , Extrusion . 1

Table 4-13. Composition of experimental diets for Korea Native Goat.

	4 . 1		ERF (%)			
	control	10	20	30	40	
Ingradient(%)						
ERF1)	-	10.00	20.00	30.00	40.00	
Corn	65.00	65.00	57.34	49.67	41.90	
Wheat bran	10.00	10.00	10.00	10.00	10.00	
SBM(CP, 44%)	13.83	13.27	8.16	5.92	3.70	
Canola meal	-	-	3.00	3.00	3.00	
Sorghum	5.00	0.03	-	-	-	
Corn gluten meal	4.27	-	-	-	-	
Limestone	0.80	1.20	1.00	1.00	1.00	
T CP2)	0.50	0.30	0.30	0.20	0.20	
Additive3)	0.20	0.20	0.20	0.20	0.20	
Total	100.00	100.00	100.00	100.00	100.00	
Chemical composition						
DE, kcal/kg	3400	3400	3400	3400	3400	
Crude Protein	15	15	15	15	15	
Calcium	0.62	0.68	0.67	0.68	0.73	
Avaiable P	0.49	0.46	0.51	0.52	0.54	

A.O.A.C

(1984)

•

SAS Package Program

(1985)

Duncan .

3 .

, , ERF

,

4-14 . 가 119.8g 가

ERF 10, 20 30% 96.8, 89.3, 108.2g

가 ERF 40% 1

78.3g

ERF 10, 20, 30%

가 . 가

ERF가

가 .

ERF 30%

ERF

가 ERF40%

. プト 2.87 ERF

3.42-4.02 ERF 가 가 .

ERF 10, 20 30% 40% . Brugman et al.(1969) 50% 50% 80% 20% De Galmez et al.(1970, 1971) 38, 58, 68% 68% 32% 87% 13% ERF 30% 가 NPN ERF 30% ERF 4- 15 가 67.8% ERF 67.3, 66.5, 66.7, 64.0% Harmon et al.(1975) 가 가 가 ERF 40%

Khattav et al.(1982)

Bhattachary & Fontenot(1966) .

53.8%

71.8%

가

54.6%

가

63.7%

Table 4-14. Body weight gained, feed intake and feed conversion of Korea Native Goat fed various levels of ERF.

	C1	ERF (%)				
	Control	10	20	30	40	
Initial Wt. (kg)	11.04 ± 1.38	9.92 ± 1.64	12.47 ± 3.60	10.78 ± 2.66	9.99 ± 1.28	
Final Wt. (kg)	16.07 ± 1.53	13.98 ± 2.20	16.22 ± 4.52	15.32 ± 2.36	12.95 ± 2.00	
Daily Wt. Gain (g)	119.8 ± 12.2a	96.8 ± 26.1ab	98.3 ± 22.2ab	108.2 ± 15.1ab	78.3 ± 5.4 b	
Total Feed Intake(g)	596.1 ± 19.7	584.5 ± 29.5	620.6 ± 70.8	698.5 ± 85.8	590.7 ± 21.7	
Daily Roughage Intaial (g)	252.3 ± 11.3	253.0 ± 10.5	274.8 ± 44.8	285.8 ± 83.2	276.2 ± 17.3	
Daily Concentrate Intake(g)	343.8 ± 25.8	331.5 ± 48.7	345.8 ± 96.5	412.7 ± 88.9	314.5 ± 25.5	
Total Feed/Gain	5.01 ± 0.41 b	6.28 ± 1.46 ab	6.31 ± 1.17ab	$6.46 \pm 1.17ab$	$7.54 \pm 2.10a$	
Concentrate/Gain	2.87 ± 0.25	3.42 ± 0.84	3.51 ± 0.75	3.81 ± 0.62	4.02 ± 1.05	
Roughage /Gain	2.11 ± 0.33	2.61 ± 0.47	2.80 ± 0.58	2.64 ± 0.83	3.53 ± 0.76	

ERF 가 Extrusion

ERF

Bhattacharya & Fontenot(1966) Fontenot et al.(1971)

Smith & Calvert(1976)

Table 4-15. Digestion Coefficients of the Experimental Diets.

	Contral	ERF10%	ERF 20%	ERF 30%	ERF 40%
Dry Matter	67.8	67.3	65.5	66.7	65.9
Crude Protein	53.8	50.8	52.6	53.9	54.6
Ether Extract	78.3	79.5	78.0	75.5	68.5
Crude Fiber	63.7	65.3	67.5	70.4	71.8
NFE	76.2	76.6	73.8	76.2	76.4
Crude Ash	12.8	17.8	18.5	19.3	14.6

(Right Saddle)

5 4- 16 49.68% ERF 10 30%

ERF 40% 44.53%

가 66.08% 가 ERF 20%

40%

ERF 20% 30% 7 19.72 18.54% ERF

10% 16.66 16.52% .

가 16.33% 가 ERF

ERF

Table 4-16. Carcass Quality of Native Goats Fed ERF(%DM).

	Carcass %	Moisture	Crude Protein	Ether Extract	Crude Ash
Control	49.68	66.08b	16.66b	16.33a	0.86
ERF 10%	49.75	71.93ab	16.52b	10.44b	0.84
ERF 20%	48.31	74.99a	19.72a	5.66c	0.94
ERF 30%	47.85	71.94ab	18.54a	8.60bc	0.88
ERF 40%	45.22	74.31a	17.16ab	6.62c	0.87

*Values in the same row with different superscripts differ significantly (p $\!<\!0.05)$

ERF

가 ERF 30%

가 ERF 30%

Extrusion .

ERF30% 40%

4% 가 .

가 .

ERF

.

Extrusion

. ERF

가 .

가 **ERF 5** 가 1 . ERF 1 . 가 가 가 1% 15 20% 1) , 2) (Oxidationditch mixed liquor:ODML) , 3)

가 Orr et al.(1971, 1973) . 가

30%

.

. Diggs et al.(1965)

Day & Harmon(1969) (ODML) 27.7% 50% . Harmon et al.(1973) (sludge) 30% 가 (Flachowsky et al., 1977). NaOH 5% (24 vs 36%), (35 vs 82%), 가 (36 vs 53%) (Henning et al., 1977). 3 (Swine Waste Extruded Recycling 3 Feed:ERF) 가 ERF 가 2 . 가.

1998 5

210

- 162 -

11 1998 6 22

Arbor Acre

6

.

.

NRC

(0-3) (4-6) 2 5-1 5-2 . (Swine

Extruded Recycling Feed:SWERF)

Die diameter 5.4mm, Screw

Speed 250rpm, Barrel Temperature 130

10, 20, 30, 40 50%

3 10 180 .

.

1) ,

1 4

.

2) ,

가 3

, ,

100g .

.

Table 5-1. Composition of Experimental Diets for Broiler Starter

	C 1	SWERF (%)				
	Control -	10	20	30	40	50
Ingredient						
SWERF 1)	-	10.0	20.0	30.0	40.0	50.0
Corn	56.2	47.1	39.1	34.8	26.4	18.6
SBMCP, 44%)	23.5	23.3	20.3	22.2	20.6	18.9
Wheat bran	5.0	5.0	5.0	-	-	-
Fish meal	5.0	4.0	5.0	5.0	5.0	5.0
Tapioca	3.0	3.0	3.0	3.0	3.0	3.0
Canola meal	3.0	3.0	3.0	-	-	-
Soy oil	2.0	2.0	2.0	2.0	2.0	2.0
TCP	1.3	1.1	1.1	1.5	1.5	1.5
Limestone	0.5	1.0	1.0	1.0	1.0	0.5
Methionine	0.4	0.4	0.4	0.4	0.4	0.4
Additive2)	0.1	0.1	0.1	0.1	0.1	0.1
TOTAL	100	100	100	100	100	100
Chemical Compos	ition					
ME(Kcal/kg)	3100	3100	3100	3100	3100	3100
Crude Protein	21	21	21	21	21	21
Calcium	1.12	1.20	1.13	1.16	1.00	1.20
Available P	0.46	0.47	0.47	0.47	0.45	0.46

¹⁾ SWERF(Swine waste extruded recycling feed) = Swain waste : Dried food waste : Corn = 40 : 40 : 20.

 $^{2) \} Additive : Trace \ mineral \ and \ Vitamin \ premix.$

Table 5-2. Composition of Experimental Diets for Broiler Finisher

	C t1		S	SWERF (%)		
	Control -	10	20	30	40	50
Ingredient						
SWERF 1)	-	10.0	20.0	30.0	40.0	50.0
Corn	58.5	47.8	39.2	34.9	26.3	17.7
SBM(CP, 44%)	23.8	22.0	21.6	22.6	21.2	19.8
Wheat bran	5.0	5.0	5.0	-	-	-
Fish meal	1.5	5.0	5.0	5.0	5.0	5.0
Tapioca	3.0	3.0	3.0	3.0	3.0	3.0
Canolar meal	3.0	3.0	3.0	-	-	-
Soy oil	2.0	2.0	2.0	2.0	2.0	2.0
TCP	0.9	1.2	1.2	1.5	1.5	1.5
Limestone	2.0	0.5	0.5	0.5	0.5	0.5
Methionine	0.2	0.4	0.4	0.4	0.4	0.4
Additive2)	0.1	0.1	0.1	0.1	0.1	0.1
TOTAL	100	100	100	100	100	100
Chemical Composit	tion					
ME(Kcal/kg)	3100	3100	3100	3100	3100	3100
Crude Protein	18	18	18	18	18	18
Calcium	1.02	1.02	1.00	0.12	1.05	1.03
Available P	0.39	0.41	0.41	0.41	0.41	0.45

¹⁾ SWERF(Swine waste extruded recycling feed) = Swain waste : Dried food waste : Corn = 40 : 40 : 20.

ERF 가

20

가

가

²⁾ Additive: Trace mineral and Vitamin premix.

0 5 가 . · 가

가 가 가 가 .

SWERF 가 Extrusion 가 (1995) .

.

SAS Package Program

Duncan .

(1985)

3 .

SWERF 10 50% 5-3

. SWERF 40% 가 SWERF 50%

(p<0.05). SWERF

가 SWERF 20% 가 가 SWERF 30% 40% (p<0.05)

가 . SWERF 40% SWERF 가

가 SWERF

. SWERF 50%

Table 5-3. Body Weight Gained, Feed Intake, and Feed Conversion of
Broiler Fed SWERF

	Initial	Final	Body	Feed	
	Body Wt.	Body Wt.		Intake	Feed/Gain
-	(g)	(g)	(g)	(g)	
Contral	42.5	1858.5	1816.0a	3776.4b	2.08
SWERF 10%	42.5	1861.5	1819.0a	3813.2ab	2.10
SWERF 20%	42.4	1866.0	1823.6a	3865.8ab	2.12
SWERF 30%	42.5	1857.3	1814.8a	3905.0a	2.15
SWERF 40%	42.6	1852.4	1809.8a	3912.0a	2.16
SWERF 50%	42.7	1818.0	1775.3b	3781.5b	2.13

Values with different superscripts within the same column differ significantly (p<0.05).

SWERF 40%

가 SWERF 가 가 가 .

Orr et al.(1971, 1973)

Flegal & Zindel(1970)

Diggs(1965) Boushy & Vink(1977)

Diggs (1965) 15%

Boushy & Vink(1977) 15%

SWERF 40% 16%

SWERF 5-4.

SWERF 40% .

 $65.86 \quad 68.48\% \,, \qquad \qquad 19.26 \quad 20.56\% \,, \qquad \qquad 11.47 \quad 12.82\%$

가 .

SWERF 30%

SWERF 40%

.

Table 5-4. Carcass Quality and Body Composition of Broiler Chick Fed SWERF

	Dressed	Eviscerated	Abdominal	Mosture	Crude	Ether	Crude
	Carcass	Carcass	Fat Pad	Mosture	Protein	Extract	Ash
Contral	71.65	63.88	1.41	66.22	19.26	12.82	1.28
SWERF10	72.28	64.28	1.07	65.85	20.56	11.47	1.32
SWERF20	71.76	63.28	1.03	66.53	20.29	12.35	1.78
SWERF30	71.38	62.33	1.10	66.94	20.82	11.58	1.67
SWERF40	70.52	62.37	1.16	67.88	19.72	12.74	1.68
SWERF50	69.22	61.54	1.01	68.48	19.35	11.82	1.44

5-5 3.40g

SWERF 20 30% (p<0.05)

. SWERF 30%

7 SWERF 40 50% (p<0.05)

. SWERF 40

50% 가

,

가

가

Table 5-5. Organ Weights of Broiler Chicks Fed SWERF (g/100g B.W.)

	Control			SWERF (%))	
	Control -	10	20	30	40	50
Liver	3.40b	3.65ab	4.14a	4.25a	3.75ab	3.89ab
Crop	0.43b	0.41b	0.49b	0.47b	0.66a	0.66a
Gizzard	2.11ab	1.81b	2.25ab	2.12ab	2.45a	2.60a
Pancreas	0.36ns	0.38	0.35	0.36	0.38	0.40
Heart	0.79b	1.05a	0.72b	0.75b	0.64b	0.89b
Kidney	0.17ns	0.10	0.13	0.10	0.09	0.14

abcMean in the same row with different superscripts differ significantly(p<0.05)

SWERF 가

5-6 . ()

가 3.3 SWERF 3.2 3.4 SWERF

. 7t 3.0 7t SWERF 10 20% 2.6 SWERF 30% 3.2

가 . 가가 가 SWERF

20% 가 가 가 가

가 .

가 SWERF

Table 5-6. Sensory evaluation of broiler meat fed SWERF

	Taste	Color	Juiciness	Texture	Total Acceptibility
Contral	3.3	3.2	3.0	3.3	3.3
ERF 10%	3.4	3.1	2.6	3.1	3.0
ERF 20%	3.2	3.4	2.6	2.7	3.0
ERF 30%	3.4	3.3	3.2	3.2	3.3
ERF 40%	3.2	3.4	3.3	3.3	3.3
ERF 50%	3.2	3.2	3.2	3.0	3.2

^{*} Means with different superscripts within the same calumn show significant difference (p<0.05).

Table 5-7. Gross Income of Broiler Chicks Fed SWERF

It (W)		SWERF (%)					
Item (Won)	Control	10	20	30	40	50	
A.Feed Cost/kg	288.1	290.9	281.3	274.5	263.3	251.0	
B.Total Feed Cost	1087.9	1109.2	1087.4	1072.0	1029.9	952.9	
C. Body Gain	1.82	1.82	1.82	1.81	1.81	1.78	
D. Meat Cost/Kg	1200	1200	1200	1200	1200	1200	
E.T otal Meat Cost	2179.2	2182.8	2188.3	2177.8	2171.8	2130.4	
F. Gross Income	1091.3	1073.6	1100.9	1105.7	1141.9	1177.5	

Total feed cost=A x feed intake, Total meat cost=C x D, Gross Income= E-B.

^{**}Panal evaluation: Higly palatable 5: Palatable 4: Mean 3: Undecided 2: Unpalatable 1

SWERF 가 가

•

SWERF 40%

50%

5 W EKI

. SWERF

•

2 . SWERF 가

1 .

가

(Swine Waste Exruded Recycling Feed:SWERF)

2 3 .

(Quisenberry &

Bradley, 1969; Flegal & Zindel, 1971; Biely et al., 1972; Nesheim, 1972)

•

,

SWERF 가

.

2 .

가.

Is a - Brown 54

360 7 6 9 27

12 .

Table 5-8. Composition of Experimental Diets for Laying Hen.

	Control	FW 20%	FW 40%	SWERF 10%	SWERF 1) 20%	SWERF 40%
SWERF	-	-	-	10.00	20.00	40.00
Food waste	-	20.00	40.00	-	-	-
Corn	65.40	49.20	33.70	59.42	50.90	37.40
SBM(CP, 44%)	12.60	11.00	10.20	10.28	10.00	5.40
Fish meal	5.00	4.00	3.50	7.05	3.00	4.00
Canola meal	3.00	3.00	0.80	-	3.00	-
Tapioca	3.00	3.00	3.00	3.00	3.00	3.00
Wheat bran	1.60	0.80	-	-	-	-
Limestone	8.00	7.60	7.00	6.00	8.00	8.00
TCP	0.20	0.20	0.50	2.00	0.30	-
Soy oil	1.00	1.00	1.00	2.0	1.50	1.80
Methionine	0.10	0.10	0.10	0.15	0.10	0.10
Lysine	-	-	-	-	-	-
Additive	0.10	0.10	0.10	0.10	0.10	0.10
Total	100	100	100	100	100	100
Calculated Nutrient C	Content:					
ME(kcal/kg)	2,900	2,900	2,900	2,900	2,900	2,900
Crude protein	16.00	16.00	16.00	16.00	16.00	16.00
Lysine	0.94	0.88	0.85	0.89	0.89	0.83
Methionine + Cystine	0.63	0.60	0.60	0.60	0.60	0.62
Calcium	3.25	3.25	3.25	3.25	3.25	3.25
Available P	0.32	0.32	0.32	0.32	0.32	0.32

1) SWERF : Swine Waste Extruded Recycling Feed

.

SWERF

40:40:20 Die Diameter 5.3mm, Screw speed 250rpm, Barrel temperature 130 NRC (1996) MEBrill Computer program 가 . SWERF 10%, 20% 40% (Food Waste: FW) 20% 40% 5-8 . 6 3 20 1) 2 Hen-day base 2) 1 3) Haugh Unit 10 (FHK) 70 80 albumen height Haugh Unit (FHK 3 Drying Oven)

. (p<0.05)7

(Feed/Gain)

FW40% FW20% SWERF 40% . 가

SWERF40% 가

FW 40%

. SWERF가 Extrusion

FW

FW가

•

Table 5-9. Egg production, feed intake and feed conversion of laying hen fed SWERF

	Egg prod.	Feed intake(g)	Feed/10Egg
Control	67.5a	130.2	1.93a
FW 1) 20	58.9b	136.0	2.31ab
FW 40	47.6bc	138.6	2.91b
SWERF2)10	68.4a	135.7	1.98a
SWERF 20	67.2a	129.8	1.93a
SWERF 40	59.8b	132.0	2.21ab

1) FW: Food Waste

2) SWERF: Swine Waste Extruded Recycling Feed

Table 5-10. Egg quality of laying hen fed SWERF

	Egg wt(g/egg)	Shell Thickness	Haugh Unit
Control	66.0	0.407	90.21
FW 1) 20	64.7	0.427	90.86
FW 40	64.6	0.436	91.35
SWERF2) 10	66.7	0.436	90.88
SWERF 20	64.8	0.433	91.55
SWERF 40	62.9	0.458	92.28

1) FW: Food Waste

2) SWERF: Swine Waste Extruded Recycling Feed

SWERF FW

Haugh Unit 가

SWERF 20%

. FW

(DPW) 12.5% 25% DPW 7

가 (Flegal et al.,

1972; Nesheim, 1972). DPW 10 40% Quisenberry &

Bradley(1969) Biely et al.(1972)

DPW 10% DPW 20%

가 가 12

SWERF 10, 20, 40% 4, ,8 16%

SWERF 20%

Biely et al.(1972)

가 20%

.

(SWERF) 가 1 . 가 가 가 . 가 가 가 (Bhattacharya & Tayor, 1975), 가 (, 1994; , 1998). (Harmon, 1972; Kornegay, , (Diggs et al., 1965), (Orr et 1977), al., 1971) 가 가 . Diggs et al.(1965) 가 15%, 30% 30% 가 가 Orr et al.(1971) 20%

- 178 -

가

3 .

가 (1998) 1997 13,000 1 4,745 가 가 (, 1997) 가 IMF 가 가가 가 가 가 가 가 5- 10% (, 1994), , 1997; , 1998) 가 가 (extrusion)

- 179 -

가.

(SWERF)

SWERF 10, 20, 30, 40% 7 5 2 .

(60) 6 10% 가

(MI Engerring, Korea) 10% 가

.

SWERF

(40%, 40%, 20%) 가

25-30% 7\ (Namsung,

NSE-25, Korea) Die diameter 5.3mm, Screw speed 250 rpm,

Barrel Temperature 130 가 .

가 SWERF (, 6mm screen)

, 5-11 5-12

 $(L \times Y)$ 1

24kg) (5 2 , 4) 85 가 4 4가 (3) Cr2O3 0.3% 가 4 2 (4) (5-1) SWERF(40%, 40%, 20%) extruding 7:3 (70% + 30%) SWERF $(L \times Y)$ 1 12 ((5 3 , 1). 60kg) (9:00) (16:00) 1 2 가 Cr2O3 0.3% フト 4 2

40 (

- 181 -

.

1) ,

.

.

2)

1 Cr2O3 0.3% (, 1987) 7 4 5-6

4 (4) 60 24

1 2

.

Cr2O3 (%) (%)

(%) = 100-(100 -------(1)

Cr2O3 (%) (%)

 $(\%) = \frac{(- (\times 0.7))}{0.3} - \dots (2)$

Table 5-11. Formula and chemical composition of experimental diets in growing pigs(20-50kg)

	C1		SWER	RF(%)		
	Control -	10	20	30	40	
SWERF	-	10.00	20.00	30.00	40.00	
Corn	65.20	52.89	46.19	39.49	33.20	
SBM(CP, 44%)	25.00	21.00	20.00	18.00	14.21	
Wheat bran	-	5.00	-	-	-	
Fish meal	3.00	2.90	3.00	3.00	3.00	
T apioca	3.00	5.00	5.00	3.70	3.78	
Canola meal	-	0.10	3.00	3.00	3.00	
Soy oil	2.00	2.00	2.00	2.00	2.00	
Limestone	1.00	0.01	0.01	0.01	0.01	
T CP	0.50	0.80	0.50	0.50	0.50	
Vit-min mix.l)	0.10	0.10	0.10	0.10	0.10	
Methionine(50%)	-	0.20	0.20	0.20	0.20	
Salt	0.20	-	-	-	-	
Total	100.00	100.00	100.00	100.00	100.00	
Chemical composition2) (%)						
DE (kcal/kg)	3,380	3,380	3,380	3,380	3,380	
Crude protein	18.54	18.00	18.79	18.76	18.00	
Lysine	1.11	1.03	1.07	1.04	0.96	
Methionine + Cystine	0.63	0.58	0.60	0.59	0.55	
Calcium	0.77	0.60	0.62	0.71	0.79	
Phosphorus	0.53	0.67	0.68	0.75	0.81	
Av. phosphorus	0.31	0.35	0.29	0.28	0.26	

SWERF:Swine waste Extruding recycle formula(swine manure 40%, food waste 40%, corn 20%).

¹⁾ Supplied per kg diet : 8,0001U vitamin A, 2,5001U vitamin D3, 301U vitaminE, 3mg vitamin K, 1.5mg thiamin, 10mg riboflavin, 2mg vitamin B6, $40\,\mu\,g$ vitamin B12, 30mg pantothenic acid, 60mg niacine, 0.1mg biotin, 0.5mg folic acid, 200mg Cu, 100mg Fe, 150mg Zn, 60mg Mn, 1mg I, 0.5mg Co, 0.3mg Se.

²⁾ Calculated value.

Table 5-12. Formula and chemical composition of experimental diets in finishing pigs(50-80kg)

	Gt1		SWE	RF(%)		
	Control -	10	20	30	40	
SWERF	-	10.00	20.00	30.00	40.00	
Corn	64.45	56.20	48.66	40.77	36.57	
SBM(CP, 44%)	18.42	16.67	14.92	13.17	10.00	
Wheat bran	5.00	5.00	5.00	5.00	5.00	
Fish meal	2.00	2.00	2.00	2.00	2.00	
Canola meal	3.00	3.00	3.00	3.00	2.03	
Soy oil	2.00	2.00	2.00	2.00	2.00	
Limestone	4.73	4.37	4.02	3.66	1.90	
TCP	0.10	0.10	0.10	0.10	0.10	
Vit-min mix.1)	0.10	0.10	0.10	0.10	0.10	
Methionine(50%)	0.10	0.10	0.10	0.10	0.10	
Lysine	0.10	0.10	0.10	0.10	0.20	
Total	100.00	100.00	100.00	100.00	100.00	
Chemical composition2) (%)						
DE (kcal/kg)	3,380	3,380	3,380	3,380	3,380	
Crude protein	17.00	17.00	17.00	17.00	17.00	
Lysine	1.06	1.04	1.01	0.99	1.01	
Methionine + Cystine	0.44	0.65	0.63	0.62	0.58	
Calcium	1.89	1.86	1.83	1.79	1.22	
Phosphorus	0.46	0.53	0.59	0.66	0.87	
Av. phosphorus	0.22	0.25	0.27	0.29	0.28	

SWERF:Swine waste Extruding recycle formula(swine manure 40%, food waste 40%, corn 20%).

I) Supplied per kg diet : 8,000IU vitamin A, 2,500IU vitamin D3, 30IU vitaminE, 3mg vitamin K, 1.5mg thiamin, 10mg riboflavin, 2mg vitamin B6, $40\,\mu\,g$ vitamin B12, 30mg pantothenic acid, 60mg niacine, 0.1mg biotin, 0.5mg folic acid, 200mg Cu, 100mg Fe, 150mg Zn, 60mg Mn, 1mg I, 0.5mg Co, 0.3mg Se.

3) (last rib back fat) (Muscle, trapezius cevicalis) 6mm plate 2 200g (1 ± 1) (TBARS, POV) AOAC(1990), adiabetic bomb calorimeter(Parr, USA) Cr atomic absorption spectrophotometer (Kontron 942, Italy) TBARS(Thiobarbituric acid reactive substance) Sinnhuber Yu (1977)0.4g(propylene glycol + warm Tween + BHT + BHA) 2-3 , TBA 3ml, TCA-HCL 17ml 2-3 100 vortex 30 가 5m1

2) Calculated value.

- 185 -

chloroform 2m1

532n m

3000rpm 15

TBARS kg mg .

 $TBARS(mg malonaldehyde/kg sample) = \frac{(As-Ab)\times 46}{Sample(g)\times 5}$

As: Absorbance of sample

Ab: Absorbance of blank

가(Peroxide value; POV) Shantha Decker(1994)

. 0.4 0.5g chloroform-

 $methanol(2:1) \hspace{1.5cm} . \hspace{1.5cm} 10mL \hspace{1.5cm} C\text{-}\hspace{1.5cm} M$

2ml 7 2 3 vortex 3000rpm 10

. 3m1

1.9ml chloroform-methanol(2:1), 25 $\mu\ell$ ammonium thiocyanate

 $, 25\mu\ell$ iron() 20 500nm

. POV kg meq

.

POV(meq/kg sample)=
$$\frac{(As-Ab) \times 20.76 \times V_2}{55.84 \times m \times 2 \times V_1}$$

As: Absorbance of sample

Ab: Absorbance of blank

20.76: Slope of the calibration curve

55.84: Atomic weight of iron

V1: Volumn used in measurement

V2: Total volumn of extract

SAS (1985)

Duncan

(Snedecor Cochran, 1980) .

3 .

1.

(SWERF) , Table

5-13 .

Table 5-13. Effects of feeding SWERF on growth performance in growing -finshing pigs

	Control		SWE	RF(%)		CE
	Control	10	10 20		40	- SE
Initial BW(kg)	23.00	24.18	25.19	24.68	23.55	2.50
Final BW(kg)	85.40	93.10	88.95	85.45	84.00	6.08
BW Gain(kg)	62.40	68.93	63.76	60.88	60.46	5.14
Grower(24-55kg, 43days)						
ADG(g)	657	713	669	615	653	69.19
ADFI(g)	1,970	2,002	2,030	1,886	1,912	72.83
Feed/Gain	3.01	2.80	3.08	3.08	2.92	0.26
Finisher(56-88kg, 42days)						
ADG(g)	747ab	839a	766ab	754ab	706b	57.43
ADFI(g)	3,375	3,325	3,330	3,334	3,170	180.83
Feed/Gain	4.51a	3.96b	4.35a	4.42a	4.74a	0.33
Overall(24-88kg, 85days)						
ADG(g)	701	774	716	682	679	57.72
ADFI(g)	2,431	2,415	2,427	2,378	2,303	107.91
Feed/Gain	3.47	3.12	3.39	3.49	3.39	0.21

ab Values with different superscripts in the same row differ (P<0.05). $(24\text{-}55kg) \hspace{1cm} \text{,} \hspace{1cm} ,$

가 (P>0.05). (56-88kg)

SWERF 가

SWERF 40% 가 SWERF 10% 가

(P<0.05) . 가

, SWERF 10% 가 가

(P < 0.05).

가

30%

(P>0.05).

가

. SWERF 30% 가 12% 가

(Diggs et al., 1965; Orr, 1974)

15%

가

가 . (1997) 10%, 20% 10% 가 20%

•

SWERF 30%

12% 가 가

2.

(1998) (72-110kg) 0,

12, 18, 30% 12% 가

. 가

. Harmon (1972) Orr

(1974)

•

SWERF 가 Table 5-14 .

SWERF 40% 가 가 (P<0.05) ,

SWERF 20% 가

(P<0.05). SWERF 30% 가

가 가 SWERF 40% 가 (P<0.05)

. SWERF 10% 20% 가 가

(P<0.05) SWERF 40%

가 가 (P<0.05) .

Table 5-14. Nutrient digestibility of experimental diets in growing pigs

Dist	C1		SWER	F (%)		C.F.
Diet	Control	10	20	30	40	SE
Dry matter	64.80a	66.83a	66.47a	66.06a	59.60b	3.05
Gross energy	65.85b	66.54ab	68.51a	67.85ab	63.41c	5.61
Crude protein	67.64c	71.24ab	69.17bc	73.01a	58.04d	2.20
Crude fat	67.48b	78.26a	78.78a	64.65b	49.71c	11.39
Crude ash	51.30	42.82	37.63	36.44	37.42	10.54
Calcium	63.33ab	57.83bc	74.90a	54.81bc	50.85c	11.93
Phosphorus	61.72a	57.20a	60.79a	58.46a	41.45b	8.71

abod Values with different superscripts in the same row differ (P<0.05).

5- 15 . , (P < 0.05)가 SWERF SWERF (P < 0.05)Extrusion 가 SWERF Extrusion SWERF (P < 0.05)**SWERF** Extrusion GE 8% 4% 가 가 Extrusion

Table 5-15. Apparent fecal diestibilities of nutrients in swine waste and food waste mixture (SMFW) for growing pigs

Nutrient	Grower	Swine waste -	SWEI	SE	
Nutrient	diet	Swine waste	Raw	Extruded	SE
Dry matter	67.54a	52.18b	68.97a	69.61a	9.00
Gross energy	70.52a	53.18c	62.96b	70.35a	9.43
Crude protein	66.98a	50.31b	63.31a	67.59a	10.89
Crude fat	65.57a	44.20c	52.91bc	53.16b	10.94
Crude ash	44.96a	27.41b	46.97a	31.50b	11.75
Calcium	54.70a	31.83b	35.49b	37.58b	8.47
Phosphorus	65.50a	51.28b	64.83a	65.38a	8.70

1) SWERF: Swine manure 40%, Food waste 40%, Corn 20%. abc Values on the same line without a common superscript differ $(P\!<\!0.05).$

, 가

가

•

(Harmon , 1972; Kornegay , 1977) (, 1998)

, SWERF 30%

가 가

(Hancock, 1992; Chae , 1996;

1997)

, 기 (Morrison, 1987; O'Neill

Pillips, 1992; Mackie, 1994; Zhu , 1997), 7 (1998)

가 가

가 .

,

53%, 50% (1998) 22%, 26% . SWERF

```
가
  Extrusion
                Extrusion 가
                                              가
          (Sauer , 1980; Hancock, 1992; Chae , 1997)
         . Hancock(1992)
           가
                                   가
Extrusion 가
           (1998)
가
     SWERF 30% 가 Extrusion
    3. 가
    Table 5-16
  가
       SWERF 40%
                                SWERF 10
                                          20%
                                          가
                 (P < 0.05).
(P > 0.05)
        가
TBARS가 POV가
                        SWERF 가 가
                    가
                                가 (Fig. 5-1),
                                   (P < 0.05)
  ESMFW 40% 가
```

Table 5. Carcass and pork quality as affected by feeding SWERF

T	Gt1		SWERF (%)				
Item	Control	10	20	30	40	SE	
Carcass characteristics	79.67	96.25	93.75	88.90	88.15	13.13	
Body wt at slaughter(kg) Back fat thickness(last rib, mm) Dressing %	2.63 71.09ab	2.45 72.95a	2.70 72.76a	2.83 71.66ab	2.93 69.89b	0.35 1.98	
Chemical composition(DM) Crude protein(%) Crude fat(%)	81.99 10.81 4.77	83.87 8.50 4.49	88.19 9.59 5.08	86.70 9.68 5.21	85.93 9.54 5.38	3.03 1.40 0.41	
Crude ash(%) Gross energy(kcal/kg) Pork stability	832	844	1057	1025	997	103.45	
TBARS(wk, mg/kg)	2.17	2.24	2.20	2.55	2 22	0.22	
1 2	3.17 2.77	3.24 2.88	3.39	3.55 4.96	3.32 4.49	0.32 1.52	
3 4	3.45b 4.59b 6.97b	3.52b 4.55b 8.00b	4.54ab 4.99b 8.40b	3.90ab 5.05b 7.70b	5.45a 7.77a 12.59a	1.07 1.35 2.17	
POV(wk, meq/kg)	0.032	0.028	0.031	0.032	0.037	0.007	
1 2	0.032 0.037 0.052c	0.028 0.036 0.061b	0.037	0.032 0.040 0.061b	0.037 0.042 0.070a	0.007 0.005 0.007	
3 4	0.052c 0.075b 0.092b	0.061b 0.075b 0.095b	0.077b	0.061b 0.079ab 0.102ab	0.084a	0.007 0.005 0.008	

abcValues with different superscripts in the same row differ (P<0.05).

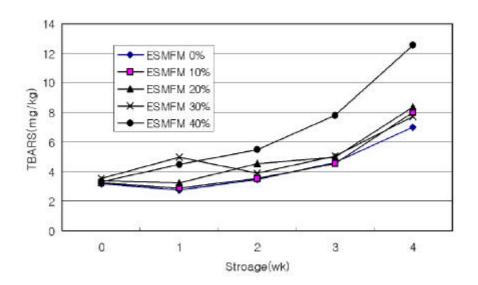
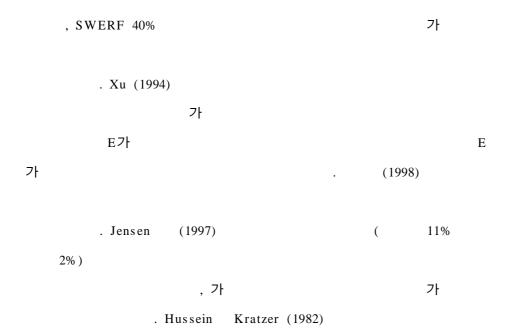



Figure 5-1. Changes in TBARS values in pork affected by feeding extruded swine waste and food waste mixture

TBARS가 가

가

. EW 가

.

SWERF 30% 가

•

6

1. Alvarez-Martinez, L., K.P. Kondury. and J.M. Harper. 1988. A general

model for expansion of extruded products. J. Food Sci. 53:609-615.

- 2. Anderson, I.H., A.S. Levine. and M.D. Levitt. 1981. Incomplete absorption of the carbohydrate in all-purpose wheat flour. New Engl. J. Med. 304:891-892.
- 3. A.O.A.C. 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists. Washington. D.C.
- 4. Bhattacharya, A.N. and J.C. Taylor. 1975. Recycling animal waste as a feedstuff: A review. J. Anim. Sci. 41:1438.
- 5. Bhattacharya, A.N. and J.P. Fontenot. 1965. Utilization of different levels of poultry litter nitrogen by sheep. J. Anim. Sci. 24:1965.
- 6. Bhattacharya, A.N. and J.P. Fontenot. 1966. Protein and energy value of peanuthull and wood-shaving poultry litter. J. Anim. Sci. 25:367.
- 7. Biely, J., R. Soong., L. Seier. and W.H. Pope. 1972. Dehydrated poultry ration. Pou. Sci. 51:1502-1511.
- 8. Bjorck, I., M. Nyman. and N.G. ASP. 1984. Extrusion cooking and dietary fiber-Effects on dietary fiber content and on degradation in the rat intestinal tract. Cereal Chem. 61:174-179.

- 9. Blair, R. and J.J. Waring. 1969. Growth response of chicks following addition to the diet of various sourcesof nitrogen. Br. Poul. Sci. 10:37-40.
- 10. Blake, J.P., M.E. Cook., C.C. Miller. and D. Reynolds. 1990. Dry extrusion of poultry processing plant waste and poultry farm mortalities. In: Agricultural and Food Processing Wastes, Proceedings of the Sixth International Symposium on Agricultural and Food Processing Wastes. pp. 319-327. American Society of Agricultural Engineer, St. Joseph, MI.
- 11. Blake, J.P., M.E. Cook. and D. Reynolds. 1991. Extruding poultry farm mortalities. The American Society of Agricultural Engineers, 1991. International Summer Meeting, Alburquerque, New Mexico.
- 12. Chae, B.J., I.K. Han., J.H. Kim., C.J. Yang., S.J. Ohh., Y.C. Rhee. and T.D. Hancock. 1997. Effects of feed processing and feeding methods on growth performance and carcass characteristics for growing-finishing pigs. Asian-Australasian J. Anim. Sci. 10(2):164.
- 13. Chae, B.J., I.K. Han., J.H. Kim., Y.K. Chung., S.J. Ohh. and K.H. Ryu. 1996. Effect of different extrusion condition of corn and soybean meal on the ileal digestibility and growth performance of weaned pigs. J. Anim. Sci. 74 (suppl. 1):188.
- 14. Cheftel, J.C. 1986. Nutritional effects of extrusion-cooking. Fd Chem.

- 15. Colonaa, P. and C. Mercier. 1983. Macromolecular modifications of manioc starch components by extrusion-cooking with and without lipids. Carbohydr. Polym. 3:87-108.
- 16. Colonaa, P., J.L. Doublier., J.P. Melcion., F. De Monredon. and C. Mercier. 1984. Extrusion cooking and drum drying of wheat starch. I. Physical and macro-molecular modifications. Cereal Chem. 61:538-543.
- 17. Conway, H.F. and R.A. Anderson. 1973. Protein-fortified extruded food products. Cereal Sci. Today. 18:94-97.
- 18. Cumming, D.B., D.W. Stanley. and J.M. De Man. 1972.

 Texture-structure relationships in texturized soy protein.-Part.

 Textural properties and ultrastructure of an extruded soybean product.

 Can. Inst. Fd Sci. Technol. J. 5:124-128.
- 19. Davidson, V.J., D. Paton., L.L. Diosady. and G.J. Larocque. 1984. Degradation of wheat starch in a single screw extruder: Characteristics of extruded starch polymers. J. Food Sci. 49:453-458.
- 20. De Castro, L.F.V., A.M.S. Duarte. and T.H. Fernandes. 1984. A note on the nutritive value of dehydrated poultry waste in layer feeding. Agricultural Wastes. 11:25-30.

- 21. Della Valle, G., J. Tayeb. and J.P. Melcion. 1987. Relationship of extrusion variables with pressure and temperature during twin screw extrusion cooking of starch. J. Food Eng. 6:423-444.
- 22. Delort-Laval, J. and C. Mercier. 1976. Selection of treatments and study of their influence on the carbohydrate fraction of wheat, barley and maize. Am. Zootechnol. 25:3-12.
- 23. Diggs, B.G., Jr.B. Baker. and F.G. James. 1965. Value of pig feces in swine finishing rations. J. Anim. Sci. 24:291.
- 24. El-Ashry, M.A., H.M. Khattab., A. El-Serafy., H. Soliman. and S.M. Abd Elmoula. 1987. Nutritive value of poultry wastes for sheep. Biological Wastes. 19:287-298.
- 25. El Boushy, A.R. and F.W.A. Vink. 1977. The value of dried poultry waste as a feedstuff in broiler diets. FEEDSTUFFS. December 12.
- 26. Faubion, J.M. and R.C. Hoseney. 1982a. High-temperature short-time extrusion cooking of wheat starch and flour. . Effect of moisture and flour type on extrudate properties. Cereal Chem. 59:529-533.
- 27. Faubion, J.M. and R.C. Hoseney. 1982b. High-temperature short-time extrusion cooking of wheat starch and flour. . Effect of protein and lipid on extrudate properties. Cereal Chem. 59:533-537.

- 28. Flegal, C.J. and H.C. Zindel. 1970. Results of feeding dried poultry waste to laying hens on egg production and feed conversion. Michigan Agric. Exp. Sta. Research Report. 117:29-31.
- 29. Flegal, C.J. and H.C. Zindel. 1971. The use of dehydrated poultry waste in poultry rations. In: Livestock waste management and pollution abatement. American Society of Agricultural Engineers, ST. Joseph, MI. pp. 305-307.
- 30. Flegal, C.J., C.C. Sheppard. and D.A. Dorn. 1972. The effects of continuous recycling and storage on nutrient quality of dehydrated poultry waste(DPW). In: Waste management research. Cornell University, Ithaca, NY. pp. 295-300.
- 31. Fletcher, S.I., P. Richmond. and A.C. Smith. 1985. An experimental study of twin screw extrusion cooking of maize grits. J. Food Eng. 4:291-312.
- 32. Fontenot, J.P., Jr.K.E. Webb., B.W. Harmon., R.E. Tucker. and W.E.C. Moor. 1971. Studies of processing, nutritional value and palatability of broiler litter for ruminants. Livestock Waste Management and Pollution Abatement Proc. Intern. Symp. on Livestock Wastes, Columbus, Ohio. P. 301.
- 33. Fontenot, J.P., Jr.K.E. Webb. and R.F. Kelly. 1972. Feed intake and

feedlot performance of cattle fed different levels of broiler litter. Livestock Research Report 145, Virginia Polytechnic Institute and State Univ., Blacksburg.

- 34. Froning, G.W. and D. Bergquist. 1990. Utilization of inedible eggshells and technical egg white using extrusion technology. Poultry Sci. 69:2051-2053.
- 35. Guy, R.C.E. and A.W. Horne. 1988. Extrusion and co-extrusion of cereals. Pages 331-349 in: Food Structure-Its Creation and Evaluation. J.M.V. Blanshard and J.V. Mitchell, eds. Butterworths, London.
- 36. Hancock, J.D. 1992. Extrusion cooking of dietary ingredients for animal feeding. Contribution No. 92-316A. Kansas Agricultural Experiment Station. Published in Proceedings of the Distillers Feed Conference. Cincinnati. Ohio, Vol. 47.
- 37. Haque, A.K.M.A., J.J. Lyons. and J.M. Vanderpopuliere. 1991. Extrusion processing of broiler starter diets containing ground whole hens, poultry by-product meal, or ground feathers. Poultry Sci. 70:234-240.
- 38. Harel, S. and Kanner, J. 1985. Muscle membranal lipid peroxidation initiatied by hydrogen peroxide activated metmyoglobin. J. Agric. Food Chem. 33:1182-1192.

- 39. Harmon, B.G., D.L. Day., A.H. Jensen. and D.H. Baker. 1972. Nutritive value of aerobically sustained swine excrement. J. Anim. Sci. 34:403.
- 40. Harmon, B.W., J.B. Fontenot. and K.E.Jr. Webb. 1975. Ensiled broiler litter and corn forage. 1. Fermentation characteristic. J. Anim. Sci. 40:144.
- 41. Harper, J.M. 1977. Extrusion processing of food. Food Technol. (Chicago). 32(7):67-76, 82.
- 42. Harper, J.M. 1979. Food extrusion. Crit. Rev. Food Sci. Nutr. 11:155-215.
- 43. Hayter, A.L., A.C. Smith. and P. Richmond. 1986. The physical properties of extruded food foams. J. Mater. Sci. 21:3729-3736.
- 44. Hodgetts, B. 1971. The effects of including dried poultry wastes in the feed of laying hens. In: Livestock waste management and pollution abatement. American Society of Agricultural Engineers, ST. Joseph, MI. pp. 311-313.
- 45. Holm, J., I. Lundquist., I. Bjorck., A.C. Eliasson. and N.G. ASP. 1988a. Relationship between degree of gelatinization, digestion rate in vitro and metabolic response in rats. Am. J. Clin. Nutr. 47:1010-1016.

- 46. Horn, R.E. 1977. Extrusion cooking systems. Paper 77-3522. Am. Soc. Agric. Eng. St. Joseph, MO.
- 47. Horvath, E., J. Petres., E. Gelencser. and B. Czukor. 1989. Effect of extrusion temperature on physicao-chemical properties and biological value of soybean-protein. Acta Alimentaria. 18(3):299-311.
- 48. Hussein, A.S. and F.H. Kratzer. 1982. Effect of rancidity on the feeding value of rice bran for chickens. Poultry Sci. 61:9-12.
- 49. Jensen, C., R. Engberg., K. Jakobsen., L.H. Skibsted. and G. Bertelsen. 1997. Influence of the oxidative quality of dietary oil broiler meat storage stability. Meat Sci. 47:211-222.
- 50. Jorge Joao, W.S., L.G. Elias. and R. Bressani. 1980. Efecto del proceso de coccion extrusion (Brady Crop Cooker) sobre el valor nutritivo de mezclas elaboradas a base de frijol caupi(Vigna sinensis)- maix, y de frijol caupi- tuca. Arch. Latinoam. Nutr. 30:539-550.
- Khattab, H.M., M.A. El-Ashry., A.M. El-Serafy. and H.S. So;iman.
 Wood-shaving duck litter in ration for growing lambs.
 Agricultural Wastes. 4:25.
- 52. Kim, J.C. and W. Rottier. 1979. Veraenderungen der Eigenschaften von Aestivumweizen-Griess durch Extrusion. Getreide Mehl Brot.

- 53. Kornegay, E.T., M.R. Holland., Jr.K.E. Webb., K.P. Bovard. and J.D. Hedges. 1977. Nutrient characterization of swine fecal waste and utilization of these nutrients by swine. J. Anim. Sci. 44:608.
- 54. Kratzer, F.H. and C.G. Payne. 1977. Effect of autoclaving, hot-water terating, parboiling and addition of ethoxyquin on the value of rice bran as a dietary ingredient for chickens. Br. Poult. Sci. 18:475-482.
- 55. Launay, B. and J.M. Lisch. 1983. Twin screw extrusion cooking of starches: Behavior of starch pastes, expansion and mechanical properties of extrudates. J. Food Eng. 2:259-280.
- 56. Lin, M.J.Y., E.S. Humbert. and F.W. Sosulski. 1974. Certain functional properties of sunflower meal products. J. Fd Sci. 39:368-370.
- 57. Mackie, R.I. 1994. Microbial production of order componebts. Proc. Int. Round Table on Swine Order Control. Iowa State Univ., Ames, IA. P. 18.
- 58. Maga, J.A. and M.R. Cohen. 1978. Effect of extrusion parameters on certain sensory, physical and nutritional properties of potato flakes. Lebensm. Wiss. Technol. 11:185-187.

- 59. Martin, Jr.J.H., R.C. Loehr. and T.E. Pilbeam. 1983. Animal manures as feedstuffs: poultry manure feeding trials. Agricultural Wastes. 6:193-220.
- 60. Mercier, C. and P. Feillet. 1975. Modification of carbohydrate components by extrusion -cooking of cereal products. Cerea. Chem. 52:283-297.
- 61. Miller, B.F. 1984. Extruding hatchery waste. Poultry Sci. 63:1284-1286.
- 62. Molina, M.R., J.E. Braham. and R. Bressni. 1983. Some characteristics of whole corn: whole soybean (70:30) and rice:whole soybean (70:30) mixtures processed by simple extrusion cooking. J. Food Sci. 48:434-437.
- 63. Morrison, R.T. 1987. Organic Chemistry. 5th ed. Allyn and Bacon. Boston, MA.
- 64. Mosso, K., J. Jeunink. and J.C. Cheftel. 1982. Temperature, pression et temps de sejour d'un melange alimentaire dans un cuiseur-extrudeur bi-vis: Influence des parametres operatoires. Ind. Aliment. Agric. 99:5-18.
- 65. Mustakas, G.C., W.J. Albrecht., G.N. Bookwalter., J.E. McGhee., W.F.

Kwolek. and E.L. Griffin. 1970. Extruder processing to imprive nutritional quality, flavour and keeping quality of full-fat soy flour. Food Technol. 24:1290-1296.

- 66. Nesheim, M.C. 1972. Evaluation of dehydration poultry manures as feed ingredient. In: Waste Management Research, Cornell University, Ithaca, NY. pp. 301-309.
- 67. O'Neill, D.H., V.R. Phillips. 1992. A review of the control of ordor nuisance from livestock buildings. Properties of the ordorous substances which have been identified in livestock wastes or in the air around them. J. Agri. Eng. Res. 53:23.
- 68. Orr, D.E. 1974. A nutritional evaluation of recycled swine waste. Ph.D. Thesis. Michigan State Univ., East Lansing.
- 69. Quisenberry, J.H. and J.W. Bradley. 1969. Nutrient recycling by laying hens. Feedstuffs. 41(5):9.
- 70. Reynolds, D. 1990. Microbiological evalution of dead bird meal. The Mid-West Poultry Federation, Minneapolis, MN. March 2, 1990.
- 71. RHEE, K.C., C.K. KUO. and E.W. Lusas. 1981. Texturization. Pages 51-88 in: Protein Functionality in Foods. J. P. Cherry, ed. Am. Chem. Soc., Washington, DC.

72. Rinehart, K.E., D.C. Snetsinger., W.W. and R.A. Zimmerman. 1973. Feeding value of dehydrated poultry waste. Poultry Sci. 52:2078.

73. SAS. 1985. Statistics for Personal Computer. SAS Institute Inc. Cary. NC.

74. Sauer, W.C., R. Mosenthin. and A.B. Pierce. 1990. The utilization of pellet, extruded, and extruded and repelleted diets by early weaned pigs. Anim. Feed Sci. Technol., 31:269.

75. Shannon, D.W.F., R. Blair. and D.J.W. Lee. 1973. Chemical and bacteriological composition and the metabolizable energy value of eight samples of dried poultry waste produced in the United Kingdom. In: Proc. 4th Europ. Poult. Conf. London. pp. 487-494.

76. Shantha, N.C. and E.A. Decker, 1994. Rapid sensitive iron-based spectrophotometric methods for the determination of peroxide values in food lipids. J. Assoc. Offic. Anal. Chem. Intl. 77: 421-424.

77. Shin, H.S. and J.I. Gray. 1983. Physicochemical assessment of quality characteristics of extruded barley under varied storage conditions. Korean J. Food Sci. Technol. 15:189-194.

78. Siljesstrom, M., E. Westerlund., I. Bjorck., J. Holm., N.G. ASP. and O. Theander. 1986. The effects of various thermal processes on dietary

fibre and starch content of whole grain wheat and white flour. J. Cereal Sci. 4:315-323.

- 79. Sinnhuber, R.O. and T.C. Yu. 1977. The 2-thiobarbituric acid reaction, an objective measure of the oxidative determination occurring in fats and oils. J. Jap. Soc. Fish Sci. 26:259-267.
- 80. Smith, A.K. and S.J. Circle. 1972. Soybeans chemistry and technology. O. C. S. Method Ba 11-65. AVI Publishing Company, Inc., Westport, Connecticut, Vol. 1. pp. 451-452.
- 81. Smith, L.W. and C.C. Calvert. 1976. Dehydrated broiler excreta versus soybean meal as nitrogen supplements for sheep. J. Anim. Sci. 43(6).
- 82. Snedecor, G.W. and W.G. Cochran. 1980. Statistical Methods (7th ed). Iowa Stste University Press. Ames, IA.
- 83. Sosulski, F.W. 1962. The centrifuge method for determining flour absorption in hard red spring wheats. Cereal Chem. 39:344-350.
- 84. Tadtiyanant, C., J.J. Lyons. and J.M. Vanderpopuliere. 1993. Extrusion processing used to poultry, feathers, eggshells, hatchery waste, and mechanically deboned residue into feedstuffs for poultry. Poultry Sci. 72:1515-1527.

- 85. Tajima, G. and K. Shikama. 1987. Autoxidation of myoglobin. An overall stoichiometry including subsequent side reactions. J. Biol. Chem. 262:12603-122606.
- 86. Tidtiyanant, C., J.J. Lyons. and J.M. Vandepopuliere. 1993. Extrusion Processing Used to Convert Dead Poultry, Feathers, Eggshells, Hatchery Waste and Mechanically Deboned Residue into Feedstuffs for Laying Hens. Poultry Sci. 72:1515-1527.
- 87. Vaidehi, M.P. and A. Gowda. 1981. Protein quality of extrusion cooked cereal based weaning foods in Wistar strain albino rats. Nutr. Rep. Int. 23:363-370.
- 88. Vanderpopuliere, J.M. 1976. Convert hatchery wastes into feedstuffs. Poult. Digest. 35:247-248.
- 89. Vanderpopuliere, J.M., H.K. Kanungo., H.V. Walton. and O.J. Cotterill. 1977. Broiler and egg type chick hatchery by-product meal evaluated as laying hen feedstuffs. Poultry Sci. 56:1140-1144.
- 90. Vanzuilichem, D.J., G. Lamers. and W. Stolp. 1975. Influence of process variables on quality of extruded maize grits. Proc. Eur. Symp. Engineering and Food Quality, 6th, Cambridge, UK.

- 91. Varo, P., R. Liane. and P. Koivistoinen. 1983. Effect of heat treatment on dietary fiber: Interlaboratory study. J. Assoc. Off. Anal. Chem. 66:933-938.
- 92. Warnants, N., M.J. Van Oeckel. and Ch.V. Boucqué. 1996. Incorporation of dietary polyunsaturated fatty acids in pork tissues and its implications for the quality of the end products. Meat Sci. 44:125-144.
- 93. Xu, Z. 1994. Vitamin E vitamers and cholesterol content, and oxidative stability of pork from pigs fed either non-rancid or rancid rice bran. M.S. Thesis. Louisiana State University.
- 94. Yasumatsu, K., K. Sawada., S. Mortitaka., M. Misaki., J. Toda. and K. Ishii. 1972. Whipping and emulsifying properties of soybean products. Agric. Biol. Chem. 36:719-729.
- 95. Zhu, J., D.S. bundy, X. Li. and N. Rashid. 1997. A Procedure and its application in evaluating pit additives for order control. canadian Agri. Eng. 39(3):207.
- 97. . 1998. .

. . . P. 13.

98. . 1998. 가 가. P. 113.

99. , , , . 1998. 7\ P. 69.

101. . 1998. Spirurina

103. . 1994. . / .

104. , , , , , , , . 1987.

- 211 -

1. Extrusion ERF

Die	Rpm	Temp	FD	ER	WAI	WSI	GR
5.3	200	90	1.05	1.20	3.87	13.96	49.13
5.3	200	110	0.80	1.47	4.54	13.77	65.11
5.3	200	130	0.71	1.36	4.76	10.40	58.13
5.3	200	150	0.47	1.28	5.01	11.38	57.46
5.3	250	90	0.74	1.30	4.23	11.09	83.08
5.3	250	110	0.46	1.49	4.42	13.05	72.28
5.3	250	130	0.62	1.39	4.60	14.05	59.41
5.3	250	150	0.44	1.28	4.76	14.16	54.44
5.3	300	90	0.78	1.39	4.44	14.07	67.46
5.3	300	110	0.44	1.43	4.63	16.53	67.59
5.3	300	130	0.46	1.44	4.44	14.33	71.03
5.3	300	150	0.62	1.30	5.21	8.18	56.85
5.3	350	90	0.54	1.49	4.76	14.36	69.53
5.3	350	110	0.42	1.47	4.79	10.64	81.04
5.3	350	130	0.44	1.38	4.87	13.23	73.97
5.3	350	150	0.43	1.29	5.08	10.58	94.90
3.9	200	90	1.42	1.34	4.48	10.98	84.66
3.9	200	110	0.63	1.58	4.73	4.43	83.97
3.9	200	130	0.57	1.41	5.10	12.57	87.63
3.9	200	150	0.92	1.14	5.35	7.93	72.24
3.9	250	90	0.66	1.41	4.86	13.32	68.64
3.9	250	110	0.39	1.61	4.85	4.01	80.94
3.9	250	130	0.49	1.49	5.41	6.84	78.91
3.9	250	150	0.65	1.22	6.01	7.87	96.77
3.9	300	90	0.61	1.61	4.56	13.54	80.93
3.9	300	110	0.48	1.56	4.87	13.50	78.44
3.9	300	130	0.38	1.51	5.09	11.78	84.40
3.9	300	150	0.53	1.13	5.39	10.32	95.54
3.9	350	90	0.54	1.60	4.41	15.53	61.74
3.9	350	110	0.47	1.64	5.10	12.78	54.52
3.9	350	130	0.38	1.48	5.59	8.05	77.90
3.9	350	150	0.52	1.23	5.71	10.50	76.14

Die	Rpm	Temp	FD	ER	WAI	WSI	GR
5.3	200	90	0.45	1.53	4.48	10.28	66.67
5.3	200	110	0.49	1.66	4.95	8.55	69.07
5.3	200	130	0.61	1.52	5.19	12.21	72.58
5.3	200	150	0.53	1.36	5.82	7.06	76.31
5.3	250	90	0.45	1.66	5.23	9.06	61.31
5.3	250	110	0.45	1.71	5.36	9.15	79.49
5.3	250	130	0.48	1.48	5.76	12.61	74.74
5.3	250	150	0.51	1.47	6.12	5.78	75.13
5.3	300	90	0.45	1.67	5.54	9.49	83.19
5.3	300	110	0.47	1.59	5.32	8.19	91.36
5.3	300	130	0.54	1.51	5.27	7.67	88.89
5.3	300	150	0.50	1.50	5.54	10.73	84.34
5.3	350	90	0.49	1.74	5.21	9.58	90.00
5.3	350	110	0.53	1.80	5.27	7.89	92.00
5.3	350	130	0.48	1.61	5.83	5.52	92.00
5.3	350	150	0.54	1.63	5.38	13.85	97.88
3.9	200	90	0.50	1.86	4.92	15.12	77.83
3.9	200	110	0.54	1.74	6.08	10.27	73.61
3.9	200	130	0.52	1.61	4.74	11.36	81.28
3.9	200	150	0.56	1.45	5.54	12.59	83.13
3.9	250	90	0.45	1.90	5.38	15.64	83.53
3.9	250	110	0.40	1.92	6.01	16.20	82.22
3.9	250	130	0.42	1.67	6.22	13.64	75.52
3.9	250	150	0.58	1.37	5.61	15.68	82.22
3.9	300	90	0.46	1.87	6.10	17.40	82.60
3.9	300	110	0.43	1.80	6.00	16.64	87.50
3.9	300	130	0.48	1.65	3.97	19.00	78.11
3.9	300	150	0.53	1.44	3.84	18.24	89.33
3.9	350	90	0.49	1.62	5.25	12.54	77.87
3.9	350	110	0.48	1.62	5.26	11.86	82.42
3.9	350	130	0.50	1.57	5.26	11.96	80.44
3.9	350	150	0.54	1.58	5.53	11.47	84.66

2. Extrusion	ERF

Die	Rpm	Temp	FD	ER	WAI	WSI	GR
5.3	200	90	1.21	1.30	4.92	6.66	50.79
5.3	200	110	0.64	1.46	5.12	7.29	77.82
5.3	200	130	0.51	1.49	4.94	7.35	83.98
5.3	200	150	0.51	1.50	5.07	11.41	91.92
5.3	250	90	1.17	1.28	4.70	8.80	61.84
5.3	250	110	0.90	1.53	4.85	9.67	65.76
5.3	250	130	0.58	1.72	5.06	11.01	72.76
5.3	250	150	0.54	1.57	5.21	14.52	87.16
5.3	300	90	1.11	1.29	4.58	6.10	60.15
5.3	300	110	0.68	1.68	4.98	8.49	65.26
5.3	300	130	0.58	1.78	4.99	11.22	69.22
5.3	300	150	0.55	1.56	5.15	11.35	87.58
5.3	350	90	1.18	1.32	4.62	9.42	65.66
5.3	350	110	0.68	1.64	4.95	8.08	67.45
5.3	350	130	0.60	1.72	5.08	9.29	69.15
5.3	350	150	0.61	1.60	5.03	9.61	66.07
3.9	200	90	1.16	1.20	3.98	6.30	60.98
3.9	200	110	0.78	1.68	4.76	6.12	59.56
3.9	200	130	0.56	1.90	5.55	7.61	55.28
3.9	200	150	0.57	1.67	5.26	12.08	60.35
3.9	250	90	1.18	1.62	4.98	6.72	60.58
3.9	250	110	0.57	1.88	5.81	7.59	57.19
3.9	250	130	0.43	1.86	5.99	7.53	52.11
3.9	250	150	0.44	1.61	5.35	12.85	57.63
3.9	300	90	1.16	1.65	5.21	6.88	54.40
3.9	300	110	0.51	1.88	5.54	10.24	52.89
3.9	300	130	0.53	1.88	5.77	9.77	61.98
3.9	300	150	0.57	1.65	5.61	7.66	62.95
3.9	350	90	1.16	1.66	5.66	6.97	52.11
3.9	350	110	0.56	1.87	5.24	10.11	57.63
3.9	350	130	0.59	1.88	5.31	13.76	54.40
3.9	350	150	0.58	1.62	5.79	8.72	52.69

3.9 200 110 0.49 1.52 5.20 7.44 42.81 3.9 200 130 0.55 1.50 5.30 7.31 40.13 3.9 200 150 0.42 1.39 5.06 5.48 39.48 3.9 250 90 1.40 1.09 4.27 10.28 13.10								
3.9 200 110 0.49 1.52 5.20 7.44 42.81 3.9 200 130 0.55 1.50 5.30 7.31 40.13 3.9 200 150 0.42 1.39 5.06 5.48 39.48 3.9 250 90 1.40 1.09 4.27 10.28 13.10	Die	Rpm	Temp	FD	ER	WAI	WSI	GR
3.9 200 130 0.55 1.50 5.30 7.31 40.13 3.9 200 150 0.42 1.39 5.06 5.48 39.48 3.9 250 90 1.40 1.09 4.27 10.28 13.10	3.9	200	90	1.30	1.28	4.63	7.86	34.13
3.9 200 150 0.42 1.39 5.06 5.48 39.48 3.9 250 90 1.40 1.09 4.27 10.28 13.10	3.9	200	110	0.49	1.52	5.20	7.44	42.81
3.9 250 90 1.40 1.09 4.27 10.28 13.10	3.9	200	130	0.55	1.50	5.30	7.31	40.13
	3.9	200	150	0.42	1.39	5.06	5.48	39.48
3.0 250 110 0.63 1.52 4.80 14.10 34.51	3.9	250	90	1.40	1.09	4.27	10.28	13.10
3.9 230 110 0.03 1.32 4.89 14.10 34.31	3.9	250	110	0.63	1.52	4.89	14.10	34.51
3.9 250 130 0.40 1.57 4.91 10.26 39.46	3.9	250	130	0.40	1.57	4.91	10.26	39.46
3.9 250 150 0.46 1.40 5.41 11.85 21.72	3.9	250	150	0.46	1.40	5.41	11.85	21.72
3.9 300 90 0.98 1.35 4.87 7.69 32.18	3.9	300	90	0.98	1.35	4.87	7.69	32.18
3.9 300 110 0.50 1.59 4.95 9.85 31.52	3.9	300	110	0.50	1.59	4.95	9.85	31.52
3.9 300 130 0.41 1.58 4.61 18.01 36.36	3.9	300	130	0.41	1.58	4.61	18.01	36.36
3.9 300 150 0.45 1.44 5.25 9.84 19.22	3.9	300	150	0.45	1.44	5.25	9.84	19.22
3.9 350 90 0.62 1.57 5.45 10.15 19.62	3.9	350	90	0.62	1.57	5.45	10.15	19.62
3.9 350 110 0.52 1.57 5.08 12.41 34.32	3.9	350	110	0.52	1.57	5.08	12.41	34.32
<u>3.9</u> <u>350</u> <u>130</u> <u>0.43</u> <u>1.56</u> <u>5.32</u> <u>13.24</u> <u>36.45</u>	3.9	350	130	0.43	1.56	5.32	13.24	36.45