Development of Real Time Quality Evaluation Technology, Automatic Sorting and Packaging System of Mushroom for Export

1997					
	: 1.	8			
	2.		1		
				1997.12	
				:	
				:	()

" ,,

.

1997.12. .

:

•

•

가 . 16 5 가 가 가 가 가 가 • 6가 , , , 가 가 . 2 가 가 .

가 가 50 · , , , , 가 .

가 , 가 , 가 . 가

•

· . , 가

, On-line

フトフト

.

.

D , , , D

가.

.

- 가 . ..
- 7+
 ..

 0
 On-Line

 .
 ..

 0
 1

 ,
 On-line
- ロ 1 0.7 プト 1 5,000 プト .

S U MME R Y

I. Title of Research

Development of Real Time Quality Evaluation Technology, Automatic Sorting and Packaging System of Mushroom for Export

II. Summary of Research Results

Quality evaluation of dried oak mushrooms are done first by classifying them into more than 10 different categories based on the state of opening of the cap and the surface pattern and color of the cap and gill. And mushrooms of each category are further classified into 3 or 4 groups based on its shape and size, resulting into total 30 to 40 different grades.

Size sorting is usually done roughly using a series of a set of conveyor mounted with vibrating plate having different sizes of punched round holes. However, quality evaluation and sorting based on the external visual features are done manually. Since visual features of mushroom affecting quality grades are distributed over the entire surface of the mushroom, both front(cap) and back(stem and gill) surfaces should be inspected thoroughly. In fact, it is almost impossible for human to inspect every mushroom, especially when they are fed continuously via conveyor.

In this research, computer vision neural network based algorithms for the automatic visual feature extraction, measurement, and recognition have been developed. Also as a final product, a computer controlled on-line real time automatic gradinf/sorting system has been developed and tested.

External visual feature inspection software was developed which can give a quantaitative data of cap size, shape, rolled thickness of back(gill and stipe) side, color of gill and cap surface and arrangement state of gill membrane etc..

Considering real time on-line system implementation and the hardware

limitation, neuro-net based image processing algorithm for quality grading has been developed. The neuro-net based mushroom identification and grading utilized the captured raw gray value image of fed mushrooms by the camera without any complex image processing such as visual feature extraction and image enhancement. Grading algorithm ulitized the modified BP(back propagation) network and direct raw gray level image captured by the camera. Prior to grading, a training process was done. For the successful implementation of the trained network, illumination calibration was also developed.

Neuro-net based grading of oak mushroom was developed and tested in two ways. One was using geometrical feature obtained from visual feature extraction algorithm and the other was using direct gray scale(256 stage) image captured by the camera.

Since from a viewpoint of the system implementation it was quite difficult to acquire both side images of the fed mushroom simultaneously, each side image of fed mushrooms was acquired sequentially using the side reversing mechanism. One set of vision system was used and the field of the view of the camera was adjusted enough to cover the both side images of mushrooms before and after reversing. Both side images were utilized for quality grading of a mushroom.

Once the fed mushroom was identified from the optic sensor, the image was captured. Using the captured raw gray level image, location of the mushroom was identified and the measuring window was assigned. The window was converted to the rectangular input grids to the network being composed of 64(8x8) grids. Since the size of rectangular input grid varies according to the size of the mushroom, the total number of grids are kept same. Value of each grid was computed by averaging the gray values of pixels which belong to each grid and was normalized between 0 and 1. Using these converted input values the feeding states of mushrooms were

identified as either front side up or not via network processing. The converted network input values were kept for further processing.

Then, mushroom was reversed and the image was captured again. Exactly same process was repeated for the reversed mushroom. The converted network input values of the reversed mushroom were also kept after identifying the feeding state. Two sets of the converted network inputs, 128 normalized grid values with normalized 8 size factors(x, y, |x-y|, x+y) computed from two measuring windows were used for the network input for quality grading. The illumination compensation process was also done to ensure the consistent performance of the trained network.

Network training for the feeding state recognition and grading was done using static images. 200 samples(20 grade levels and 10 per each grade) were used for training. Network grading and feeding state recognition for training samples showed near 100% accuracy. 300 sample mushrooms(20 grade levels and 15 per each grade) were used for verification of the trained network. By changing orientation of each sample, 600 sample data sets were made and used for the test. And the trained network showed around 91% grading accuracy.

Grading performance of the network which was trained by 200 static samples was then tested for moving mushrooms. With the conveyor speed of 150.6mm/sec grading accuracy was around 88%. As a result, it could be seen that the blurring effect of the camera captured moving image under the 1/500 sec shutter speed was negligible in grading performance.

The proposed grading scheme required average 0.23 second per mushroom. Theoretical grading capacity was 15,000/hr without considering actuator delay. Considering the actuating device and control response, average 0.6 to 0.7 second was enough for grading and sorting of one mushroom resulting into 5000/hr to 6,000/hr processing capability.

The developed algorithm was implemented to the prototype on-line

grading and sorting system. Developed on-line real time grading and sorting system for oak mushrooms was composed of 1 set of computer vision system with lighting chamber, storag hopper, feeding device such as conveyor and vibrating feeder, automatic reversing device, two channel bucket, unloading device, one board controller with optic sensors, and computer. Controller was developed with F-8086 microprocessor.

Lighting chamber was designed for a computer vision system and 4 high frequency(20,000Hz) inverter fluorescent lighting were installed to reduce the shade effect caused by lighting. Large vibrating hopper was installed to store and feed the dried mushrooms. Two vibrating feeders were installed to control the number of mushrooms to be fed and to avoid overlapping and to precisely feed one by one. Specially designed round cross-sectioned plate was mounted on the vibrating feeder. Utilizing the speed variation of feeding between the vibrating feeder and the conveyor, mushrooms could be successfully isolated and fed while maintaining certain distance interval.

To sort graded mushrooms into the designated buckets, pneumatic cylinders and air jet nozzles were installed. The electronic shutter speed controller was mounted to the B/W CCD camera to reduce the blurring effect of the camera captured image caused by the movement of the mushroom.

Contents

TABLE

FIGURE

CH.1 INTRODUCTION

Session	1.	Background	 1
Session	2.	Objective .	 2

CH.2 IMAGE PROCESSING FOR VISUAL FEATURE

EXTRACTION

Session 1. Introduction	4
Session 2. Image Processing System	5
Session 3. Image Processing Algorithm	8
Session 4. Development of Visual Feature Extraction Algorithm	ithm
for Mushhrooms	24

CH.3 NEURO-GRADING

Session 1. Introduction	50
Session 2. Neural Network	52
Session 3. F/B Side Identification	58
Session 4. Stem Identification	60
Session 5. Grading Algorithm	64

CH.4 DEVELOPMENT OF REAL TIME MUSHROOM GRADING AND SORTING SYSTEM

Session	1.	1st	Prototype	 73
Session	2.	2nd	Prototype	 85

CH.5 CONCLU	USION AND	SUMMARY	102
REFERENCE	E		

1	
1	 1
2	 2

1		 4
2		 5
3	•	 8
4		 24

1.	 50
2	 52
3.	 58
4	 60
5	 64

1	1	 73
2	2	 85

5	 102
5	 102

2-1		•			
2-2					
2-3					
2-4			フト(: mm2,	: mm).
2-5 12					
2-6					
2-7 12					
2-8					
2-9		•			
2-10					
2-11		•			
2-12		•			
2-13	12				
2-14					
3-1					
3-2					
4-1					
4-2 가					
4-3 PLC					

4 .
(SDDA) .

•				
	(1).		
	•			
		•		
		2		
,				
				•
DC				
	DC	(1	(1). 	(1).

1

1

.

,

가 健康食品 가 가 가 가 . , 가 輸出 林産物 , , 가 10% . 가 가 . , 가 , , , 75%

. , 가 ,

7ŀ . 16 , 5 10

가 가 .

.

,

- 1 -

가 가

,

2

,

.

•

. 가가

, 가 , .

가 ,

, (,1995).

가 .

乾,,,,,,,,

等級判定

- 2 -

. 乾

가.

	外觀	檢索
On-Line		,乾
40 673		
視覺		

.

.

가. , CCD , Grabber ,

,

가 . . .

- 3 -

2 1 乾 가 . , , 가 . 乾 가 ,前面 ,前面 後面 後面 , 二値化 , 視覺 測度設定, 實測畵素 , 가 . (Sarkar,1985), (Marc,1994), (Brown,1986, Read ,1986, Rehkugler,1986), (Miller,1989) , (Paulsen, 1989), (Dowell, 1992), (Paulsen, 1989) (Okado,1992) . (1990) , 幾何學的 • (1991) gray value (1991) . (1992) . 8 , . 4 (1992) . 가

. (1992) . (1992) . (1993) アト (1994) . (1994)

•

•

2

1.

CCD	Pulnix		Canon	8mm
(f=1.4)				
	(flic	kering)		
20,000 Hz		가	4	
	2-1	2-1		

2-1

IBM Compatible 486-DX2/66
Pulnix Co. TM-7CN B/W CCD Camera ,
Pulnix Co. SC-745
ITEX Co. PC Vision Plus Frame Grabber
IC Inverter Fluorscent Lamp (40,000 Hz)
PL Filter etc.

.

2-2

- 6 -

.

(a)

(b) 2-2

- 7 -

3

1.

가.

가 . T

, , , , . 가 가

,

(bimode) . 7 (unimode) 3 (multimode) .

. ア ア ア ア ア ア ア ア

, ,

. (,1995).

·

가

- 8 -

$$() y_s(x_g)$$

Т

 $y_l(x_g)$

$$= \max(y_l(x_g) - y_s(x_g))$$
, 0 g 255

2-3

2-3

. P-tile

· 가 . ,

- 9 -

.

.

	(100-P)%	가
	P%	
P%	가	

•

가

(maximum depth searching thresholding)

.

가

у

.

.

 $a = \frac{y_{2n} - y_{1n}}{x_{2g} - x_{1g}}$ $b = \frac{x_{2g} \cdot y_{1n} - x_{1g} \cdot y_{2n}}{x_{2g} - x_{1g}}$ $y_n(x_g)$ $y_n(x_g) = a \cdot x_g + b$ $T \qquad y_n(x_g) \qquad y_h(x_g)$ $x_g \qquad x_g$

- 10 -

.

•

•

- 12 -

가

2-7

•

.

2-9

- 14 -

(a)

- 15 -

(b)

2-11

2-2

	& &	£ &	& {	}		& &	z	& 8	ž {	
8	&&{()&&()8	& &(.)	&&
()}								
!{	} &&{	&&	&&	}&&	!{					}
!{	} &&{	&&	&&	}&&	!{					}
!{	} &&{	&&	&&	}&&	!{					}
!{	}&&{	&&	&&	}&&	!{					}
	ا ع (!{ !{ !{ !{	& & &&{{((!{ } &&{{ !{ } &&{{ !{ } &&{{ !{ } } &&{{	<pre></pre>	<pre> & & & & & { && { && & {</pre>	<pre> & & & & & { } & & & ()& & (()} !{ } & & { & &</pre>	<pre> & & & & & & { } & & & ()& & ()& ()} !{ } & & { & &</pre>	<pre> & & & & & { } & &</pre>	<pre> & & & & & { } & &</pre>	&& & & & & <	& & & & & & & & & & & & & & & & & & &

- 17 -

(b) hole (c) notch (d) isolated point (e) bump (f) lower-right (g) lower-left (h) upper-left (i) upper-right 2-12 3x3 . . 3. (Calibration) . 7}. . . ? . . ? . <

(a) 3×3

$$CX =$$
 (X)

$$CY =$$
 (Y)

(aspect ratio)

•

•

•

.

.

, x, y

.

F I R 가

가

$$F(x, y) = I(x, y) \cdot R(x, y)$$

$$= K \cdot R(x, y)$$

K

. К , 255 .

$$K = -255$$

- 19 -

, 歪曲 . . .

가 .

•

.

5.

4.

3×3 X,Y , , , , , . . 8 . 8 . 7, , . . N_x, N_y, N_d

CX, CY, CD 7

 $Perimeter = ((N_x \times CX) + (N_y \times CY) + (N_d \times CD)) \times CV$

CV

Y=0 X=0 フト 8 フト .

 $AREA = \sum area_1 + \sum area_2 + \cdots + \sum area_8$ (centroid)

1

$$M_x = \int_0^y y \, dA \qquad M_y = \int_0^x x \, dA$$

 7;
 X c, Y c
 .

.

- 20 -

$$X_{c} = \frac{M_{y}}{A \ rea}$$
, $Y_{c} = \frac{M_{x}}{A \ rea}$

< > < :1> < :2>

: , : , : , :

(gray image)
8 3×3 2-7 5×5, 7×7 9×9 . 6.

가.

.

.

$$Center_x = -\frac{X_max_{-}}{2} \frac{X_min_{-}}{2}$$

$$Center_{y} = -\frac{Y_{max}}{2} - \frac{Y_{min}}{2}$$

 $Box \ area = (Xmax - Xmin) \cdot (Ymax - Ymin)$ $Box \ perimeter = 2 \cdot ((Xmax - Xmin) + (Ymax - Ymin))$

Box width = Xmax - Xm in Box height = Ymax - Ym in $Width/Height ratio = \frac{box_width}{box_height}$

Perimeter ratio =
$$\frac{perimeter}{box perimeter}$$

A rea ratio = $\frac{area}{box area}$
A xis ratio = $\frac{length_cf_major_axis}{length_cf_minor_axis}$
Complex ratio = $\frac{perimeter^2}{area}$

$$Roundness = -\frac{4 \cdot \cancel{2} \cdot area}{perimeter^2}$$

4

1.

가 (stem)가 가 · 가 가 가 . . 가 가 . , . 가 • • 가 . 가 가 .

(60) フト ・ ・ 1 アト 1/7 ・

- 24 -

1 . 2 . 10%

•

.

가 .

•

•

l_{i+1} l_i 7⊦ . .

·

1/7 2 . , 60 7t . 5

- 25 -

$$P_{1} P_{4} 2-14$$

$$P_{1} = P_{2} - INT$$

$$P_{4} = P_{3} + INT$$

$$I/4$$

•

Overhauser

.

. Overhauser

.

t 0 1 C(t)

$$C(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \begin{bmatrix} -1/2 & 3/2 & -3/2 & 1/2 \\ 1 & -5/2 & 2 & -1/2 \\ -1/2 & 0 & 1/2 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{bmatrix}$$

갓의 크기는 꼭지부 제거 알고리즘에 의해 제거과정을 거친 후 체인코딩에 의해 산출된 면적으로 나타냈으며, 표고 12등급에 대해 각 10개의 샘플을 측정 하였다. 여기서, 크기는 향신 대가 가장 크게 나타났으며, 표 2-3에 향신 대의 크기를 기준으로 나머지 크기를 상대적으로 나타냈다.

표 2-3 꼭지부 제거후의 버섯 크기

7		12 등급 표고										
1	1	2	3	4	5	6	7	8	9	10	11	12
크기	0.642	0.428	0.615	0.500	0.623	0.507	0.250	0.944	0.608	1.00	0.641	0.457

(1: 화고 대, 2:화고 소, 3:흑화고 대, 4:흑화고 소, 5:동고 대, 6:동고 중, 7:동고 소, 8:향고 대, 9:향고 소, 10:향신 대, 11:향신 소, 12:격외)

•

·

가

,

가

2-	4
----	---

7†(: mm2, : mm)

		())		
			, 	(B)	$(A) \div (B)$
1	Area	1371.35	1238.45	1255.73	0.986
	Perim	156.86	132.80	135.17	0.983
2	Area	1020.83	939.13	939.11	1.000
	Perim	129.39	118.20	118.49	0.998
3	Area	1030.19	928.34	920.54	1.009
	Perim	124.76	103.30	98.32	1.051
4	Area	415.95	364.52	373.65	0.976
	Perim	86.93	72.30	74.45	0.971
5	Area	1060.36	987.53	1001.74	0.986
	Perim	139.57	119.10	120.06	0.992
6	Area	1096.02	970.75	964.56	1.006
	Perim	137.18	119.60	118.27	1.011
7	Area	1199.88	1039.30	1040.99	0.998
	Perim	142.46	123.40	122.88	1.004
8	Area	646.40	594.69	590.64	1.007
	Perim	110.79	95.70	90.34	1.059
9	Area	1230.76	1026.30	1020.50	1.005
	Perim	145.20	120.70	118.45	1.019
10	Area	723.34	604.30	598.74	1.009
	Perim	125.67	102.30	100.23	1.021

2.

				((roundness)		(complex		
ratio)		(eccent	ricity)						
	가				,		,		
			가	1					
		(roundness)	가	가			1	

근접한 수치로 나올때 원에 가까운 정도를 의미한다. 표고 12등급에 대한 平均 원형도는 표 2-5에 나타냈는데 향고 대(hyanggo large)가 가장 큰 수치로 나타 났으며 격외(bad)가 0.470으로 가장 낮은 수치로 나타났다.

동급	12 등급 표고											
항목	1	2	3	4	5	6	7	8	9	10	11	12
원형도	0.836	0.810	0.807	0.791	0.796	0.749	0.766	0.841	0.768	0.724	0.712	0.470

표 2-5 12등급 표고의 원형도.

(1: 화고 대, 2:화고 소, 3:흑화고 대, 4:흑화고 소, 5:동고 대, 6:동고 중, 7:동고 소, 8:향고 대, 9:향고 소, 10:향신 대, 11:향신 소, 12:격외)

3. 버섯갓의 전후면 자세 판정

혼합형 자동이치화에 의해 표고의 표피영상을 추출한 후 국부마스크를 설정 하여 표피상태를 정량적으로 추출하여 버섯의 전후면 자세 판정을 수행하였다. 윈도우 확장에 의하여 얻어지는 이치영상으로부터 갓 바깥으로 돌출한 꼭지부의 존재 및 제거여부를 결정하는 전처리결과에 의거하여 꼭지부의 제거위치를 알고 . 2-16

•

2-16

. ,

DX, DY ,

•

-	
<u> </u>	6
/_	0

DX	DY Y	x	Ŷ
+	+	-	-
+	-	-	+
-	+	+	-
-	-	+	+
	·	+	<u>+</u>

•

- 33 -

가 .

6 (interior skin)가 7

. 2-17 フト , 2-18

가 2 가 .

가 가.

- 34 -

2-17

(a)

Checking region

(a)

(b)

•

2-18

,

,

•

•

, 4

,

가

가

가

.

.

- 36 -

표 2-7에 화고 大의 밝기를 기준으로 하여 나머지 등급의 밝기를 상대적으로 나 타냈다. 표고의 밝기는 화고→구름화고→향고→동고→향신→격외의 순서로 밝 게 나타났다.

혼합형이치화에 의해 산출한 이치영상에 대해 마스크 기법을 적용하여 표고 의 전후면을 인식하는 방법에 대한 연구를 수행하였다. 혼합형이치화에 의해 설정된 경계값을 이용하여 표피의 무늬형상을 효과적으로 추출할 수 있으며 등 급별 표고의 세부적인 전후면 표피형상을 얻을수 있다.

표피의 형상을 정량적으로 검색하기 위해 화소간의 상대적인 위치와 밝기를 고려한 통계적인 텍스쳐(texture) 분석법을 이용하였으며 그림 2-20과 같이 경로 마스크를 설정하여 각 경로에 대한 텍스쳐 데이타를 비교하였다.

丑	2-7	12등급	표고의	평균	화소밝기

	12 등급 표고									
11	12									
0.610	0.500									
0.612	0.560									
0	.612									

(1: 화고 대, 2:화고 소, 3:흑화고 대, 4:흑화고 소, 5:동고 대, 6:동고 중, 7:동고 소, 8:향고 대, 9:향고 소, 10:향신 대, 11:향신 소, 12:격외)

- 37 -

(a) 1 (b) 2 (c) 3 (d) 4 (e) 8 2-20 4 .

 $a_{11}, a_{12}, a_{21}, a_{22}$ p 7

.

•

(0,0), (0,255), (255,0), (255,255)

А

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

A n C . $C = -\frac{A}{n}$

, k , k , 가 .

• (maximum probability) : max $_{ij}(C_{ij})$

• k (EDM):
$$\sum_{i} \sum_{j} (i - j)^{k} C_{ij}$$

• k (IEDM) :
$$\frac{\sum_{i}\sum_{j}}{(i-j)^{k}}$$
 , $i \neq j$

• : -
$$\sum_{i} \sum_{j} C_{ij} \log C_{ij}$$

• :
$$\sum_{i} \sum_{j} (C_{ij})^2$$

.

$$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$$
,

C22가

•

C 11

. ,

,

,

•

2-8

	c11	c12	c21	c22	пах с	EDM	Entr.	Unif.
 1	0. 652	0. 030	0. 036	0. 282	0. 652	0. 066	0. 452	0. 543
2	0.628	0. 074	0. 074	0. 224	0. 628	0. 149	0. 340	0. 479
3	0.635	0. 067	0. 067	0. 231	0. 635	0. 133	0. 335	0. 490
4	0. 723	0. 025	0. 033	0. 219	0. 723	0. 058	0. 265	0. 603
 1	0. 728	0. 021	0. 025	0. 226	0. 728	0. 046	0. 400	0. 600
2	0.641	0. 058	0. 059	0. 242	0. 641	0. 117	0. 331	0. 497
3	0.646	0. 053	0. 054	0. 247	0.646	0. 107	0. 327	0. 505
4	0. 718	0. 019	0. 024	0. 239	0. 718	0.043	0. 267	0. 600
 <u>†</u>	†					1		<u> </u>

2-9

 	c11	c12	c21	c22	nax c	EDM	Entr.	Unif.
 1	0. 472	0. 031	0. 026	0. 471	0. 472	0. 057	0. 547	0. 457
2	0. 427	0. 070	0. 072	0. 431	0. 427	0. 142	0. 392	0. 386
3	0. 433	0. 064	0. 064	0. 439	0. 439	0. 128	0. 387	0. 396
4	0. 477	0. 029	0. 024	0. 470	0. 477	0. 052	0. 347	0. 461
 1	0. 760	0. 016	0. 018	0. 207	0. 760	0. 057	0. 547	0. 457
2	0. 702	0. 043	0. 048	0. 208	0. 702	0. 090	0. 299	0. 552
3	0. 707	0. 038	0. 039	0. 217	0. 707	0. 076	0. 296	0. 561
4	0. 772	0. 014	0. 016	0. 198	0. 772	0. 030	0. 241	0. 650

2-10

 	c11	c12	c21	c22	пах с	EDM	Entr.	Unif.
1	0. 338	0. 026	0. 018	0. 618	0. 618	0. 043	0. 524	0. 512
2	0. 318	0. 054	0. 054	0. 575	0. 575	0. 107	0. 357	0. 451
3	0. 324	0. 047	0. 047	0. 581	0. 581	0. 094	0. 351	0. 461

•

4	0. 341	0. 024	0. 016	0. 620	0. 620	0. 040	0. 319	0. 516
1	0. 684	0. 021	0. 019	0. 276	0. 684	0. 040	0. 431	0. 568
2	0. 626	0. 049	0. 052	0. 274	0. 626	0. 100	0. 334	0. 488
3	0. 630	0. 044	0. 044	0. 281	0. 630	0. 088	0. 330	0. 497
4	0. 697	0. 019	0. 017	0. 267	0. 697	0. 036	0. 279	0. 583
 <u>-</u>								

2-11

		c11	c12	c21	c22	пах с	EDM	Entr.	Unif.
	1	0. 138	0. 035	0. 024	0. 803	0. 803	0. 059	0. 384	0. 676
	2	0. 144	0.067	0. 083	0. 706	0. 706	0. 150	0. 297	0. 544
	3	0. 150	0. 061	0. 061	0. 729	0. 729	0. 121	0. 289	0. 573
	4	0. 131	0. 032	0. 021	0. 816	0. 816	0. 053	0. 227	0. 694
	1	0. 720	0. 015	0. 018	0. 246	0. 720	0. 033	0. 393	0. 604
	2	0. 664	0. 044	0. 052	0. 239	0. 664	0. 097	0. 313	0. 522
	3	0. 672	0. 036	0. 037	0. 254	0. 672	0. 074	0. 307	0. 538
-	4	0. 730	0. 014	0. 017	0. 239	0. 730	0. 031	0. 257	0. 616

2-	12
----	----

		c11	c12	c21	c22	nax c	EDM	Entr.	Unif.
	1 2 3 4	0. 137 0. 141 0. 155 0. 131	0. 028 0. 064 0. 049 0. 027	0. 020 0. 059 0. 051 0. 018	0. 815 0. 737 0. 745 0. 824	0. 815 0. 737 0. 745 0. 824	0. 048 0. 122 0. 100 0. 044	0. 367 0. 283 0. 275 0. 216	0. 698 0. 585 0. 598 0. 711
	1 2	0. 837	0. 015	0. 015	0. 132	0.837	0.031	0. 276	0. 732
_	2 3 4	0. 788 0. 847	0. 034 0. 034 0. 013	0. 043 0. 034 0. 014	0. 130 0. 145 0. 125	0. 788 0. 847	0. 068 0. 028	0. 230 0. 241 0. 185	0. 657 0. 747

5. 가

. フト 2-21(a) 60 フト

가 . 가 기 가 , 2-21(b) 60

. T 7ŀ . (8) ,

(Gray level 255), (Gray level 0)

. 60

(scan line conversion) 2-22

.

- 42 -

(SDDA:Simple Digital Differential Analyzer)

.

.

.

표 2-13 표고 12등급에 대한 후면부 말린부위의 양 측정

동급	12 등급 표고												
\backslash	1	2	3	4	5	6	7	8	9	10	11	12	
말린 두께	1.00	0.64	0.985	0.930	0.675	0.683	0.474	0.885	0.363	0.183	0.106	0.011	

(1: 화고 대, 2:화고 소, 3:흑화고 대, 4:흑화고 소, 5:동고 대, 6:동고 중, 7:동고 소, 8:향고 대, 9:향고 소, 10:향신 대, 11:향신 소, 12:격외)

a)

b) 2- 21

- 45 -

.

2-22

6.

(gray)

2-23

•

.

가

Ŧ	2-14	표고	후면의	내피부	측정	결과
---	------	----	-----	-----	----	----

동급		12 등급 표고												
항목	1	2	3	4	5	6	7	8	9	10	11	12		
내피상태	0.974	0.951	1.000	0.963	0.928	0.869	0.795	0.838	0.970	0.747	0.608	0.403		
(밝기)														

(1: 화고 대, 2:화고 소, 3:흑화고 대, 4:흑화고 소, 5:동고 대, 6:동고 중, 7:동고 소, 8:향고 대, 9:향고 소, 10:향신 대, 11:향신 소, 12:격외)

7. 표고 외관 분석 소프트웨어 개발

마이크로소프트 C 7.0 그래픽 라이브러리와 ITEX PFG 라이브러리를 이용하 였으며 모든 알고리즘의 처리과정이 順次的으로 이루어지도록 사용자 편의에 의 거하여 개발하였다. 소프트웨어의 기능블럭도는 그림 2-24에 나타냈다.

2-25

2-25-(a) (stem)7

2-25-(b) 7누

.

a)

2-25

- 50 -

•

.

,

,

.

, 가 ,

3

1

가 , , , , , , 가 . 가

recognition)

가 가 .

가 .

(texture)

가 (edge)

•

가.

- 52 -

가 . 가 . 가 . 가 , .

가 가 가 .

.

가.,,,

, , , , .

. 가 가 가 . , , , , ,

. , , ,

. 가

- 53 -

2

1.

(ne	ural network)	가	
가	(association)	(similarity)	가
	(associa	tive reasoning),	(learning),
(parallel dist	ributed processing),	(generaliz	zation effect)
		가	,
	7	'F	
	가	(artificial n	neural network)
	(artificia	al intelligence)	

.

.

- 54 -

(natural intelligence) 1960 Rosenblatt(1958)가 Widrow (1960) Adaline Minsky (1969) XOR 가 Adaline LMS(least mean square) . . 1970 가 Grossberg(1976) ART(adaptive resonance theory)가 , Kohonen(1982) (self organization) 가 Albus(1975) CMAC(cerebellar model articulation controller) . 1970 Werbos(1974) BP(back 1980 propagation) Rumelhart (1986) BP 가 .

Hopfield(1982)(recurrent type), Hinton(1984)(boltzman machine), Kosko(1987)BAM(bidirectionalassociative memory).

80

,

가

.

. , (western mushroom)

- 55 -

.

2.

BP(back propagation) (Error Back 가 Propagation) (delta rule) . (activation 가 function) . BP (perceptron) 가 (weight) • (supervised learning) 3-1 BP (layer) • (2^{k}) k (k) \ ↓ *∠* (j) l Ĺ ↓ $\|$ 1 (i)

3-1 BP

•

- 56 -

, 가 . (neuron)

· · · · ·

(sigmoid) 0 1 , Hyperbolic Tangent - 1 1 .

, . BP 3-3 (sigmoid)

0 1 0 1 . Tangent - 1 1 . フト

. *i j*

 $net_j = \sum w_{ji} o_i \tag{3-1}$

, w_{ji} 先行層 i j 가

 o_i i . 7 7 7 (learning

pathology) . 기 0 .

- 57 -
, j i $o_j = f(n \ et_j)$ (3-2) , *f* o_j . $o_j = \frac{1}{1 + \exp\left[-\frac{1}{(net_j + \theta_j)}\right]}$ (3-3) , θ_j (threshold) j Bias . Bias $0 o_{j} 1$. Bias 가 가 (dummy unit) . . 가 • . $E = \sum_{p} E_{p} = -\frac{1}{2} \sum_{p} \sum_{j} (t_{j} - o_{j})^{2}$ (3-4)

p , t_{Fj}

*o*_{*ij*} . BP

Gradient Descent , 7

j , Oj Uj .

- 58 -

р

. .

Bias

 E_p

$$\frac{-9E_p}{9w_{ji}} = \sum_p 9_{jj} O_{\mathfrak{X}}$$
(3-5)

가

$$\frac{-9E_p}{9\varrho_j} = \sum_p \varrho_{pj}$$
(3-6)

 \mathcal{Q}_{IJ}

$$\mathfrak{P}_{ij} = \frac{-\mathfrak{P}E_p}{\mathfrak{P}et_{ij}} \tag{3-7}$$

.

 Q_{IJ} chain rule

.

$$9_{pj} = \frac{-9E_p}{9\sigma_{pj}} \cdot \frac{-9\sigma_{lj}}{9net_{lj}}$$
(3-8)

$$(3-8) (3-9) (3-9) (3-9)$$

$$\frac{-9E_{p}}{9o_{jj}} = -\frac{-9E_{p}}{9o_{jj}} \cdot \sum_{j=1}^{1} (t_{pj} - o_{jj})^{2} = -(t_{pj} - o_{jj})$$
(3-10)

$$\frac{-9E_p}{9o_{pj}} = \sum_{k} \frac{9E_p}{9net_{pk}} \cdot \frac{9net_{pk}}{o_{jj}} = -\sum_{k} 9p_{k} \cdot w_{kj}$$
(3-11)

- 59 -

	$. \qquad \mathfrak{P}_{pj}$	(output layer)	(hidden layer)
		${\mathbb Q}_{_{FJ}}$.	
	$\mathcal{Q}_{pj} = (t_{pj} - t_{pj})$	o_{ij}) · (1 - o_{ij}) · o_{ij}	(3-12)
(3-1)		${\mathfrak Q}_{pj}$	
	$\mathcal{Q}_{pj} = (1 - $	$o_{ij} \cdot o_{ij} - \sum \mathfrak{P}_{pk} \cdot w_{kj}$	(3-13)
, 가	w _{ji} Bias	θ_{j}	

$$\nabla w_{ji} = \vartheta \sum Q_{ij} \cdot o_{\mathfrak{X}} + \mathfrak{G} \cdot w_{ji}(n-1)$$
(3-14)

$$\Delta \delta^{i} = \eta \sum \delta^{i} + \alpha \cdot \theta^{i} (u - 1)$$
(3-12)

(learning rate) 가 가

(momentum) ^(K) 7} (Rumelhart,1986).

.

,

.

(network pathology), (local minimum problem),

,

가

· 가 , (binary) (gray) 가 .

. .

· , 가 가 가 .

(binary) 3-26 가 10×10 0 1 1 , , . 3-9 100, 20, 1 01가 0.9 , 0.1 • . 20 100% .

60 . 60 フト 100

- 61 -

. K , フト 60 フト 2ト 100% .

60 . フト フト フト 100% .

4

가 가 . . ,

가 가 . 가 , 가

- 62 -

1.

2-4-5

	50	
5		, 90%
가		

가 .

2. ()

가 가 10 100 가 0 1 , . 가 45° 50 45° 8 가 . 9 가 • 15 4 0.7, 0.4

0.000001 . Onet 4

- 63 -

	. 01			0.9 가
	0.1			O2, O3, O4
(0,0,0)	, (0,0,1)	, (0,1,0)	, (0,1,1)	, (1,0,0)
, (1,0,1)) , (1,1,0)	, (1,1	1,1)	
	$O_{net} = [O_1$	$, O_{2}, O_{3}, O_{4}$]	
			3-28	. 50
	32	가		18
가		. 50		
	100%	,)		
檢言	登 未學	習習	50	, 4
92%			,	
		가		
	100		가	,
	フト		0 1	
		45	0	가
	50	가		
		8		
가	9			4
			15	
0.6,	0.1		0.	.00001
	3-13			
	0			가
0.1 0.9		0	1	,
O2, O3, O4	(0,0,0)	, (0,0,1)	, (0,1,0)	, (0,1,1)
, (1,0,0)	, (1,0,1)	, (1,1,0	0) , (1,1,1)
		22	71	
50	-1	32	۲۲ ۲۵	
18	1	1.0.0	. 50	
		100	/%0	

- 64 -

			50	
, 3		94%		
	,			
가				

3. ()

100 . 100, 30, 4 . 가 45° 50 30 4 0.6, 0.3 0.0001 가 50 32 18 가 Onet . 가 0.1 0.9 O2, O3, O4 (0,0,0) 01 , , (0,1,0) , (0,0,1) , (1,0,0) , (0,1,1) , (1,0,1) , (1,1,0) , (1,1,1) 가 (0.9,0.1,0.1,0.1) . 9344 100% , 50 , 6 88% 가 4 가 45° 100 가 20 4 0.4, 0.001 0.1 3-15

- 65 -

• 가 100 80 . Onet 20 가 가 0.1 0.9 O2, O3, O4 (0,0,0) 01 , , (0,0,1) , (0,1,0) , (0,1,1) , (1,0,0) , (1,0,1) , (1,1,0) , (1,1,1) 가 • (0.9,0.1,0.1,0.1)

100 9,344

50 , 3 94% .

100%

,

•

•

5 7 1 16 12 . 20

. .

(grayl) .

3-2 BP

가 ,

(), (), (,), (), () . (grid) 76 (intensity value) 12 • 가 大(小) 大(小) 4가 大(中,小), , , 大(小), 格外 大(小), 8 가 4 . , 8 12

- 68 -

가.	1:		4				
	4	(),	() 10)		40
	가 256	5	가				
		76					
			78	8.			
5	2 .		0 ₁ , 0 ₂ 7	0.1, 0.1	7	大,0.1 0.9	Ð
	小, 0.9 0.1		大, 0.9	0.9	Ņ	Jv	
	가 92	39			0.0	000001	
		20		가	8	0	
	5		93.	8%			
•	2 :		8				
	(,),	(),	(),	8		10	
	80	가	BP				
	•			76		가	
	256		가				
			76				
					78		
未知層	5	가 1			•	出力層	3
_	± #3 33	•			1.50		
5	木学省	20		가	160		

13 91.9% . 7t 23434 0.00001

.

- 69 -

3: • 12 12 10 120 BP . 가 76 256 가 (gray) 12 . 3-34 76

 154
 20

 71
 .

 30000
 0.00001

 0.0027543
 100%

 20
 가
 240
 檢證
 23

 90.4%
 .

4: 12 (4) (8) 가

. , 가

•

,

76

78

.

- 70 -

10		가 1				4
•						
			二値	值(binary)		多
值(gray)			優秀	秀		12
		前面	後面	4	8	
	가			3-1		

3-1

•

	No. of	Recognition
	misrecognition	Performance
	(total)	(%)
1	5 (80)	93.8
2	13 (160)	91.9
3	23 (240)	90.4
4	19 (240)	92.1

(gray image)

•

.

•

- 72 -

,

.

2

1

3-	2
2	-

N1	M11	
N2	M12	
N3	M13	
N4	N14	
N5	N15	
N6	N16	
N7	N17	
N8	N18	
N9	M19	
M10	N20	

.

1 가

•

8x8

.

20 10 200 BP . 64 가 256 ア 多値

•

64 가 X, Y, X*Y K / 가. 50 가 1 132 5 . . 가 1697 , 0.3 0.001 . 100%

 20
 7 +
 400

 46
 88.5%
 .

 $O_1 \qquad O_2 \qquad O_3 \qquad O_4 \qquad O_5$

- 74 -

₽	+ +	+ +	
			(5)
			(50)
			(122)

(64) + (64) + (4)

3-5 .

4

1 1

1. 2 1 . 1 ,

. 가 , , 2

가 . 4-1 ..

- 76 -

4-1 (1).

4-2 .

•

1 I/O , PLC(programmable logic controller), . 4-1 .

4-1

	Autonics Co., BM3M-TDT1 · 2, Korea
PLC	KMC R0, Korea
I/O Board	GSI, MASTER K-50 Series, Korea
	AXIOM Co. AX5008 , Taiwan
	Tanhay Pneumatics Co., Korea
	Korea Pubot Co., TRC-00-30-600, Korea
	Seowon Compressor Co. B980S/9.5cm
	SMC Co., IDF1C-1, Japan

- 78 -

(vibrating feeder)

•

2.

r

, , 4-3 .

1.	2.	3. PLC		4. 1	
5. 2	6. 1		7.2		8.
9. 10.		10.			

4-3 1

- 80 -

가. (1) -

(1) • (\ /) 3-8 가 .

2 (I) . (1) , , (back , ,

feeding), (1) 4 (2) .

. , , 가

. (2) •

(2) (1) • .

反轉 1 2 4-4 字 案內 (Shoute) V字 (Rotary actuator)

•

- 81 -

	-	V- (가
(total=100)	67	57.3	96.7

•

가

	(brake cylinder)	(brake cylinder)		
가	(stroke)	3		

- 82 -

•

•

- 83 -

(photo sensor) . 8 I/O (AXIOM co. AX-5008) (relay) . (magnetic lead switch) . 가 光 . 가 ROM , 8 가 PLC 가 . I/O PLC • (ON)

> (timing) PLC 가 . PLC

> > - 84 -

•

4-7

- 85 -

		0x 300)		
		I/O	0 x2	200	
	(log	ical AND)			
. PLC	I/C)	Ch1	Ch4	
Ch1					
	(slot)	I/O	3-19	37	D
	PLC				
PLC	Master K-	50 PLC ,	(AC 220V	⁷),	(DC
24V), ,					

	負荷			
	(ladder)		(mneumonic)	
		直列	PLC	
4-8		PLC		

1	3	DIC
-+-	5	ILU

P00	SW1	emergency stop : push button main switch
P01	OPSW1	optic switch for image capture (vision system I)
P02	OPSW2	optic switch for hwago out
P03	OPSW3	optic switch for hwago out check
P04	OPSW4	optic switch for mushroom feed back
P05	OPSW5	optic switch for image capture (vision system II)
P06	OPSW6	optic switch for hyanggo out check
P07	OPSW7	optic switch for mushroom feed back check
P10	SWB1	cylinder #1 switch for backward direction
P11	SWF1	cylinder #1 switch for forward direction
P12	SWB2	cylinder #2 switch for backward direction
P13	SWF2	cylinder #2 switch for forward direction
P14	SWB3	cylinder #3 switch for backward direction
P15	SWF3	cylinder #3 switch for forward direction
P16	SWB4	cylinder #4 switch for backward direction
P17	SWF4	cylinder #4 switch for forward direction
P20	AS1	brake cylinder A switch 1 (4 grading)
P21	AS2	brake cylinder A switch 2
P22	AS3	brake cylinder A switch 3
P23	AS4	brake cylinder A switch 4
P24	BS1	brake cylinder B switch 1 (8 grading)
P25	BS2	brake cylinder B switch 2
P26	BS3	brake cylinder B switch 3
P27	BS4	brake cylinder B switch 4
P30	AA	I/O board 1 output 1
P31	AB	I/O board 1 output 2
P32	AC	I/O board 1 output 3
P33	AD	I/O board I output 4
P34	BA	I/O board 2 output 1
P35	BB	1/O board 2 output 2
P36	BC	I/O board 2 output 3
P3/ D40		1/O board 2 output 4
P40 D41	SOLI	solenoid valve for cylinder #1
r41 D42	SOL2	solanoid valve for cylinder #2
r42 D42	SOLS	solanoid valve for cylinder #3
Г 4 Э Р / /		solenoid valve B for brake cylinder A
г 44 Р45	ASOLD	solenoid valve A for brake cylinder A
P/6	ABRK	brake solenoid value for brake cylinder $\Delta(COMMON)$
P47	ABRK	brake solenoid valve for brake cylinder A
P50	BSOI B	solenoid valve B for brake cylinder B
P51	BSOLE	solenoid valve A for brake cylinder B
P52	BBRK	brake solenoid valve for brake cylinder B(COMMON)
P53	BBRK	brake solenoid valve for brake cylinder B(commonly)

- 88 -

PLC F8086 CPU

4-9

.

,

4-10

(bowl feeder),

2.

가.

"'''"

.

,

.

가

기 (OFF) .

- 91 -

4-11

.

.

4-12 ,

4-13

•

•

- 93 -
•

14 15

(a)

(b)

2

•

1

4-14

- 94 -

(a)

1

(b)

2

4-15 DC

4-16 . 4-17 . 4-18 . 4-19 20 . 7† 2

•

.

4-17

•

•

4-18

.

4-20 2

4-21 F8680

.

그림 4-22 제어기 주회로.

DC

.

•

- 101 -

그림 4-25 분류기 제어부 회로.

4. 제어기 선별알고리즘

2

1

임의로 입력되는 버섯은 컴퓨터에서 영상처리를 통한 등급판정 사이클과 제 어기에서의 동기신호를 얻기가 어렵다. 동시에 두 개이상의 작업이 수행될 때 우선순위를 구하는 알고리즘의 개발은 연속이동 시스템에서 중요한 요인이다.

.

가.

•

•

•

()

가	(MSB가 1)	가
	· ? :				
,	i	"			

가 .

и "у .

" " " ,

- 103 -

" , . , . .

가 가

•

•

. 가

,

· : 가 가

· 7 · 1/3

가 .

가 .

, 가 .

- 104 -

그림 4-26 제어기 선별 알고리즘 작동도.

	가			,	,
5,000	6,000	0.6 0.7 가 가 가			2
			2		

.

- 106 -

5.

.

5

. . 1. , , ,

3.

4. On-Line . 5. , . On-line . 6. 1 0.6 0.7 가

5,000 6,000 7⁻ .

參考文獻

- Abutaleb A.S. 1989. Automatic thresholding of gray level pictures using two dimensional entropy. Computer vision, graphics, and image processing. 47:22-32
- Albus, J.S.,1975, A new approach to manipulator control: The cerebellar model articulation controller(CMAC), Journal of Dymanic System Measurement Control.
- 3. Anderson, J.A. and E. Rosenfeld. 1988. Neurocomputing:Foundations and Research. MIT Press.
- Atkin G.K., J.E.Bowcock, and N.M.Queen. 1989. Solution of distributed deterministic parallel network using simulated annealing. Pattern recognition. 22(4):461-466.
- Bachelor M.M. and S.W. Searcy. 1988. Computer vision determination of the stem/root joint on processing carrots. J. of Eng. Res. 43:259-269.
- 6. Brewer J.A. and D.C. Anderson. 1977. Visual interaction with overhauser curves and surfaces. Computer graphics. 11:400-405
- 7. Brown, G.K. and J.A. Throop,1986, Apple sorting with machine vision,Trans. of ASAE, 17(1), pp17-19.
- Ching.Y. Suen, M. Berthod, and Shunji Mori.1980. Automatic recognition of handprinted chracters- the state of art. Proceedings of the IEEE, 68 (4):469-487.
- Davenel A., C. Guizard, T. Labarre and F. Sevila. 1988. Automatic detection of surface defects on fruit by using a vision system. J. of Agri. Eng. Res. 41:1-9.
- Davis L.S. 1975, Survey of edge detection techniques, Computer Graphics and Image Processing, 6:492-501

- Dowell, F.E. ,1992, Identifying undamaged and damaged peanut kernels using tristimulus values and spectral reflectance, Trans. of ASAE, 35(3):931-937.
- 12. Fu K.S.,R.C. Gonzalez, and C.S.G. Lee. 1987. Robotics-control sensing vision and intelligence. McGraw-Hill International Publishing Inc.
- 13. Granlund G.H. 1972. Fourier preprocessing for hand print chracter recognition. IEEE Transaction on Computers, p195-201.
- Gonzalez, R.C. and P. Wintz.1987. Digital image processing. 2nd edition, Addition Wesley, pp414-417.
- Grossberg, S., 1976, Adaptive pattern classification and universal recording II:Feedback, ecpectation, olfaction, and illusion, Bio. Cybern, Vol. 23
- Gunasekaran, S., T.M. Cooper and A.G. Berlage. 1988. Soybean seed coat and cotyledon crack detection by image processing. J. of Agri. Eng. Res. 41:139-148
- 17. Haralick, R. M., 1979, Statistical and structural approaches to texture, Proc. 4th Intl. Joint conf. pattern recognition, p:45-60.
- Hinton, G.E., T.J. Sejnowski, and D.H. Ackley,1984, Boltzman machines:Constraint satisfaction network that learn, Carnegie Mellon Univ.,Dept. of Computer Science, Tech. Rep.
- Hopfield, J.J., 1982, Neural network and physical systems with emergent collective computational abilities, Proc. Nati. Academy Science, Vol. 79.
- Hwang, H., C.H. Lee and Y.K. Lee.1993. Automatic visual feature extraction and measurement of mushroom(Lentinus Edodes L.). ICAMPE 93' Oct.19-22, pp1232-1243.
- Hwang, H., C.H. Lee and J.H. Han. 1993. Neuro-net based automatic sorting and grading of a mushroom(Lentnus Edodes L.). ICAMPE 93' Oct. 19-22. pp1243-1253.
- 22. Ikram, E.A. and W.K. Pratt, 1979, Quantitive design and evaluation of

- 109 -

enhancement/thresholding edge detection, Trans. of IEEE ,5:753-763

- 23. Image Technology, 1987, ITEX PCVISION PLUS user's manual. Imaging Technology Inc, Massachusetts
- 24. Image Technology,1987, ITEX PCVISION PLUS programmer's manual. Imaging Technology Inc, Massachusetts.
- 25. Jamsa C. 1990. Graphics programming with microsoft C and microsoft quick C. Micro Press.
- 26. Kapur, J.N., P.K. Sahoo and A.K.C. Wong, 1985, A new method for gray level picture thresholding using the entropy of the histogram, Computer Vision, Graphics, and Image Processing, 29:273-285.
- 27. Kitchen P.W. and A. Pugh . 1981. Processing of binary images. Robot vision.
- Kohonen, T.,1982, Self organization formation of topologically correct feature maps, Bio. Cyber., Vol. 43
- 29. Kosko, B., 1987, Adaptive bidirectional associative memories, Appl. Optics, Vol. 26
- 30. Langers, R.A. 1991. Locating the growing-point of flower bulbs with computer vision. CEMAGREF. pp111-121.
- Marc, L., T. Zimmerman, C. Baur, P. Gugerli and T. Pun, 1994, Potato Operation:automatic detection of potato diseases, Proceeding of Optics in Agricultural, Forestry, and Biological Processing, Vol.2345, pp2-7.
- 32. Masakazu, F. 1990. Machine vision technology : past, present, and future", IEEE IROS 90'. pp XXIX-XXXX.
- 33. Matsuhisa T. and A. Hosokawa. 1983. Quantitative measurement of the texture and cracks of hulled non-glutinous rice grains using image data processing system. J. of JSAM. 45(3):357-367
- 34. Mezin M. 1989. Image acquition with thresholding. 1
- 35. Micro. 1992. Microsoft C 7.0 Optimizing compiler. Microsoft co.

- 110 -

Washington

- 36. Miller B.K., M.J. Delwiche. 1989. A color vision system for peach grading. Trans. of ASAE. 32(4):1484-1490.
- 37. Minsky, M. and Papert, S. 1969. Perceptrons. MIT Press
- 38. Okado, M. and Y. Nakamura, 1992, Studies on the measurement of the color of the rice leaves by image processing, Journal of JSAM 55(5):75-81
- 39. Panigrahi S. and M.K. Misra. 1990. Feature extraction techniques for corn germplasm by color computer vision. ASAE Paper No. 90-7050.
- Pao,Y. H. 1988. Adaptive Pattern Recognition and Neural Networks. Addison-Wesley Publishing Company.
- Paulsen M.R., W.D. Wigger, J.B. Litchfield, and J.B. Sinclair. 1989. Computer image anlysis for detection of maize and soybean kernel quality factors. J. of Agri. Eng. Res. 43:93-101
- 42. Pavlidis, T., 1978, " A review of algorithm for shape analysis ", Computer Graphics and Image Processing, 7:243-258.
- Peliand, T. and D. Malah,1982, A study of edge detection algorithms, Computer Graphics and Image Processing, 20:1-21
- 44. Pratt W.K. 1991. igital image processing. John Wiley & Sons Inc.
- 45. Read W.S. 1970. Optical detection of apple skin, bruise, flesh, stem and calix. J. of Agri. Eng. Res. 21:291-295.
- 46. Rehkugler G.E., A.J. Throop. 1986. Apple sorting with machine vision. Trans. of ASAE. 29(5):1388-1397.
- 47. Richard P.Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazing, pages 4-22, April 1987.
- Robert Hecht-Nielsen. Theory of the back-propagation neural network. In Proc. 1989 IEEE International Conference on Neural Networks, pages I- 593- 604, 1989.
- 49. Rosenblatt, F., 1958, The perceptron: A probablistic model for information

- 111 -

storage and organization in the brain, Physiological Rev. Vol.65

- 50. Rumelhart, D.E. and McCleland, J.L. (eds) 1986. Parallel Distributed Processing, MIT Press, Vol. I, p318-362.
- Sarkar, N., and R.R. Wolfe, 1985, "Feature extraction techniques for sorting tomatoes by computer vision", Transactions of the ASAE 28(3): pp 970-979.
- 52. Sarkar, N., and R.R. Wolfe, 1985, "Computer vision based system for quality seperation of fresh market tomatoes ", Transactions of the ASAE 28(5): pp 1714-1718.
- 53. Schalkoff. R., 1992, "Pattern recognition : statistical, structural and neural approaches", John Wiley & Sons, Inc.
- 54. Sistler F.E. 1990. Grading agricultural products with machine vision. IEEE Int. workshop on intelligent robots and systems. IROS '90.p255-261
- 55. Stanley, J. 1989. Introduction to Neural Networks. California Scientific Software.
- 56. Tamar P. and M. David,1982, A study of edge detection algorithm, Computer Graphics and Image Processing, 20:1-21.
- 57. Tillet R. 1989. Locating mushrooms for robotic harvesting. Proc. of intelligent robots and computer vision. VIII Systems ans applications.p260-267.
- Timothy A.Grogan and O.Robert Mitchell.1983. Shape recognition and description: A comparative study. Technical Report TR-EE 83-22, School of Electrical Engineering, Purdue University, West Lafayette, Indiana, 1983.
- 59. Tojeiro, P. and Wheaton P.,1992, Oyeter orientation using computer vision, Trans. of ASAE, p689
- T sai W.H. 1985. Moment preserving thresholding: A new approach. Computer vision, graphics and image processing. (29):377-392

- 112 -

- 61. Vemuri, V.1988. Artificial Neural Networks: Theoretical Concepts. IEEE Computer Society Press.
- 62. Weideman W.E. 1989. A comparison of a nearest neighbor classfier and a neural network for numeric handprint character recognition. In IEEE International conference on Neural Networks, (I)p117-120
- 63. Werbos, P., 1974, Beyond regression: New tools for prediction and analysis in the behavioral sciences, Ph.D. dissertation, Harvard Univ.
- 64. Widrow, B. 1987. DARPA neural network study, AFCEA Int. Press
- 65. Widrow, B., and M.E. Hoff, Jr., 1960, Adaptive switching circuit, Stanford Electron Lab, Palo, Alto, CA, Tech. Rep.
- 66. Wolfe, R.R. and W.E. Sandler.1985. An algorithm for stem detection using digital analysis. Trans. of the ASAE 28(2):641-644.

70. , 1994,

- 71. , 1991,
- 72. , 1995,
- 73. , ,1994,
 - , 19(2):124-137

, . .

:

가 .

. (,).

- 114 -

1.					
2.					
3.	가				