Fd

SHUSIREEN = = TTRH(KSGP) o LA 1

o FT & 3 A

AE| 754 olYEIE O[ST B A
s W27l W

(Development of Sea Water Cooler for Aquarium

by Steam Driven Ejector)

2006. 7. 12.

datistn SG AL

=EHMMABNESY

NLRITIY

0014457

of &+ & F




Ijd

A

HA
12 ME&LCh

=
(=)

Ao =

71 JH

==
o

20
oed 7&# 12¢

<r
0.
K0

il
ol
..A

<r
0.
K0

-

KO

T

O

ol Kl
1o %

%0

<k
E

&I

10

el
~a

]

~a

Kl
<0



oot M A 2N O HEHE 0|88 S dHES

S o RE A PHSEr EAS HaY FLES FAAAL AEL
Uch weh BB A AZU HELES HEOE A T

sts17] glstod 94 FARE 4 WY Aol 4T 2THT) webd

to
o ox

U= YA (F)d Bre 3
A7) siME ALE(F
BAZEEs 95~100)0e Bdd &5 o83t 712 si+& #
AEH2 B AF2Er} 25Toldo] HE olfY 4% &=}
K

o rd
K
N
o)
ofN

q
4 =
+ e
o
l
&N
a
@)
)
N
s
"
o
ffo o
[
il
$ H

>
N
o
N yo A
[ ° of

o o
o £

|29 hthee] Aol E H472 SRS 7]
o8 19 BEPOR st Yol H4E T Ak webd Axulgol
A A1 ojgwe Wuao] st Aase] A Aol HF 27 W) of
g fistel B A7 el AW 754 ofHES o83t AY 3UY 4
WAL WA AL ALt et

3. 472 AL
73U 4 242 AT 24 AW olHEE BEY JEAA
.20 49e 229 35 st Aawle A, A © 23
thAlA] 4% Hele W Ag A



I AT hE W e

2% 754 o Alxwe] A

W 754 ofHEE ST £ A7olM A8T A% TEA oAHY b
Zo) B Zolsh &7 AP ul7l 5 ez AT AY o] shardd ©f HH =
A9l oEl AlxRolth A= TAAL 2482 A ¥4 FARA, 28 o
g B3l Lot 129 3718 $&%tn, EY AW o¥HE T=b 149 &
A7 e SEUAE AE ZANE Bolo] AAolUAL WsjstAA Het o
359 Ade B AT Aotk AE TAAL 4A 2o met g
Aol Uehid, £ Aol Hoh 20mbge] A7 %Y o] Yehi=s A
A otk 199 29 olgeE oy AAnes a3 1F 45S Uehi
7 1@ wiRo] AE ZUAF olg3lel A3 YA FU Avlk PHE e
oith oleidt WS BT} A WA AARE A % 2olch

2.803 &719 F=3H

28 BAE A F AA A W testE $3A WA B 7 wol] HE RE
532 4 5 545 mofsidrt. 342 A& software ANSYS 7.1& AH&-3}
o] A= SUS304E 3}9l3, tensile strengthi= 632MPa, yield strength= 320
MPa, young modulus+ 199700MPa, poisson’s ratiow 0.29% 3} 3| & 383519
th. A3HFol Q= $F inletZ} outleto] AZAF = UFE & 183t ZE W
e 2 YL 1St o] 7E52AE 3 (ux, uy, uwz)o 2 F&314Tt
et B2 UF= lmmHgolil, ¥+ tiZI¢d 760mmHg(lbar)o] B2, 7] dAiqt
F HIAE YFdHel A3 dYPo g Ho o3| 2oz Fastgrt

7l Y-S e AR BB thste] KS B 6734 8o &g gLy AA e
the}f 4mm B =0t J[XE Fol HAASHH bmmrt HPGste ofof LAt A2 H
28 BI= vaE oz HdAFAL Fsiach

L} ANSYSo] 2j3t —TL ’611 A3} o X7 ®AL gFo] 5MPag] FHo| A}

4 2% o
B2 YEAE oju] o 1.5 %8 A $o| wsisirt

3.

<= 5% & $15to] RID-Type Thermocoupled ©|-&3}3iom, 53 AL JF=A
Ul 63, & ARIY I, EFEA T XL S AF HIA YRS
49]= 0/, 50/, 1007, 150 /2 3tgom 115 /g wf & 27| G2 47
/min, 574 /min, 6 /¢ /min, 7/ /min, 8 ¢ /min, 10 ¢ /min, 127 /minZ & 117}7] A3
< 3t AL 7 FEY 227 4FY of ARsta A" ofAE e JF
B3 59 Qo] AE E'Ao] &5t §4 60mmHgoll TR A -] A¥ HY



o] MBS dol T euYY AP BEAUTL VU A LWIo] HUHE B
SEE 35CE #A5] AStd RAHR AojRrh. HE APL AT ¥ AP
Wby e stoith

4 2% ojHE ) £x1314 23
A YTAY Walel chy oJHE 27 Zhol o e ARsiYc). &7
ZAL flov split 3} 2.6570Q W F74A] 2o tjtt sjaow &7 2ol o
2 oldEe F Q) AAE unsd &7 AL Foi2 ul A4 A} &
Aoz Uehgth UF o wslel oyt slMeldE o]HE U S5 s
g & 4t

TFAY Ea-Brjzo] ot sl E THA Q7 Fa7Zo] 2.0°, 2.5°Y
o FUYo] tier T&ol HA AHiE Uehi:, tIFA 27¢ Hrjzo] 5.5~
7.5°0 o ¥ #8e Urhiglt. tiAe Fazo] ow 4 27 Aol
wAsly] el AAY WAL Frsjod f5F S0 WA YEE = A
ol 2slm, TRA Hrjzte 27} AJW WA Hasy] o] ug A
o) w3E Foie 4 k.

aE3, 2 AFeld A8 oldEo] thal FgtY wgo] Do) A¥e VaAs
o, ol 44kra8] ATYAE AL 4+ Ygom, FAN APl AT FY &
g 223} AP0 4B ES] HolE UrhiadARt AWM wjo] 7 &4
3} o npao] &% A5 T8 T w £Xsido] T A3tel Aol AT A
b A% B Pe Ul ok B AR el £xs)d dolyst &
S212) @ejo] 500kPad wie] Agoe] o TolElE By A3t AF el ¥
Qo] w4t A3r} ok A& ¢ 4 Tt

f

Mo rlo

1

5.3 Wz} A% #H

7t ol tidt da®y] J&T Bd 2% EXE AT=6.0CTE Yeiych =3
AT=5Co|AS AfsI= HeolR YLy §3k2 oF 600kg/hrE BrIEodct olufg)
A $7| Egc o} 93%2 FIIEF Tl AT [FFo] FEFF T A

bund



V. o 1o|t

N
B0 ZTeIeIAE ARt U0l FAH ol
Zukgtee

of Rt £ ATolAe]

BE:
SES PP

&
Z|#20Cojl A Fdo]
Q_]lz

& RISk

Al

z ) =Y
e 7IE dAE §

13E w7 ES]
& HA  AFUH
20mnHg ©]¥} A

% gtk

100

SEREERIE LS
0mil e & 4+ 9on Hay o] o
2)Steam Ejector, Jet Condenser 2|3 Steam Ejector

+Jet Condensero] 2J3F Z ¢}8 Tglo) tf3t AT L&
T C

43835} t}. Steam Ejector+Jet Condensero] £]3%t
2 AE ZVAME o]&3to] 260mmHg™ =2
RAL ThE 2F oUH S LFoo] AL o

(<}
th olme] AFEE RmigEEe AU T4
gglon, & A¥Y T 13U A3 20mig o]

== gt

-Steam Ejectoro] &J3%F 2%

B
-Jet Condensero] 2]3t 2T
-Steam Ejector+Jet Condensero] 2]3t

3

2% : 2 mnHg
DHAE ZHAAME 0|83t 2¥60mmHg

BT The 28 oAHE FHEsel 2

U7t A|ARIO 2 A 60mHg =Y FF
21Colq & AZbo] el B H

750 mmHg

A
2! 40 mmHg

=2

¢t =3
I
A

S
il

Mo ¢

a8 &3
3% ol 4| 100

13

=

2 3027} 2025 9h
2)
4)Steam E+Jet Condensere] 2J%F 20 mmHg =% A&

maTT
¥ 2 mmHg 24,

O ) A~ %E
HAA 7R o 18302 o2 Lfelytt]
qH2

[]

L
A|Zbe oF 3Ho] A QT gt}
T= A

58 Axme] HA A
g A7 o 8% 2eF ).
DAY B3 72 A4E B¢ A 9=

100
A ZE Y S8
A7 Zaek: 80kg/h, 2)udeF: 51,120Kcal/h

DR EREE e

3 AM2 okE: Tkg/cn’
olx|3 ety 12, lkg/cmz

100
WA 2, 9m*

(>
od oo




i 3

2l
R4 100

W7k A28 JPRE 93t tierst dasy] ¥

2)3x}¢d  ANSYS FR3IAE E3Flo] Deformation}

Stress& |4 stSirt,

2)2 Al A”lo] H3URt AY daBIE AUsisict

3EA#Y] &S a7 ol weta Zelzt 9l

O} O He]+= 86.5%, 88.1%, 92.0% L 93,0 52
])J-

Uelkon] SEXQl 80x o4& WA SHGTE

AgEo] WE Y47

2
R HE A 100

=

1) g =3 yFe $9&= 0/, 504, 1007, 150
/2 stgdon 115/ wf & 23] {SIE 4/
/min, 54 /min, 67 /min, 7/¢/min, 87 /min, 10/
/min, 127 /ming® & 117}x] A8 & R 3Ps}icl.

2)7} 4o that W47l AES spusteic
IAT5Col S MBS S F W47 RPe
600kg/hr LU}EIY o EIFE JI43F 580kg/h oA =R
UEbitTh,

Q47] A2Re Bl

Ak 2ha 100

1)2x}4d STAR-CD X[3[4 & B3l L {530
A2t Ay gt 2F dA=A st ity
2) e ] 5ol tigt FXsHog ARIQtHo] A
U(2bar)ol =2 RF Fool F2 B 7dste] B
A rd& sfustch

3)AAY t]FAY F4-FHriZo] g FAHHE F
st F4742 2.0°, 2.5°Y uf, Frjz2 5.5°~7.5°
d o IF 4FPe HF Fe5S Ueldo oAB Y 4
T BAAE 9T 2d S spustach

4)J7] ALY RYEE g5t

5)Y¥4718] &Ex= AT=7.8TC, 6.1C, 5.5C,5.2C
o7 z7} Yelgton HREA| 22X} AT=5T o4
A gt

—

ltlo ot




V. 7|t 21}

1. 244 S

A o= oF 6000971] Aol Gl ol of 3%k 7IE ME 429 Zols} 10m FEQ!
o 602 £ oy £2E EA31 gtk olE thiEo] AEE W TIYOEAN B
Fohiel A= /A 8-S Z3tHA g W Tlol 3t W4 Walo] o&sta gl 2 A
T BAZA Aul§ B4 FFo] TRt A S AR Akt AP oYY Mzt

off 7]o4& Zlelch

2
Soto] MARIIAE 29 WiEsiginh EY U USsAL Hugosy 3

714 FL 71 el 7hsstA H el

7L o] A3 FolA ZEle urH2006d 2% 392 5)= x| F= ool Zuist
ol Foreign Teacher® W& o} F=ollA 3 AFE AL Qlch
L} 3ol 4 ZojlA] o]AbE ulaAK2006d 8Y A E A )L 2006 3Y 1YEE
AACIE} 2 a2 W do} (319} 380] ¢s}al gl
T} 20060 AJ3E3F -85 2nhA] BR21AIGe] BMALE SR MY Fgom 3}F 7d
7t Q¥R FQl AF Az} Y PEE shA = ch

-k HER g(E A MYz}

B3 037 9 oiXAA A7

—

p



SUMMARY

SUBJECT: Development of Sea Water Cooler for Aquarium by
Steam Driven Ejector

A new steam driven ejector was designed. Its ratio of the throat length of
nozzle to diameter of inlet is 5 and it shows the optimum condition when
inlet steam pressure is 5Sbar, As the secondary low pressure producer, jet
condenser condenses high temperature steam flowing out of steam ejector. The
high velocity jet stream of steam emitted by the motive nozzle creates a
suction chamber, which draws the low pressure gases, The diffuser converts
the kinetic energy of high velocity flow to pressure energy. Since a jet
condenser shows the difference of performance according to a design
condition, the get condenser used in this research was designed to achieve
maximum 20mmHg of vacuum pressure performance. Because a single-stage steam
ejector was impossible to show effective vacuum performance by itself, vacuum

pressure was increased by jet condenser,

For actual experiments and tests after manufacturing a steam ejector,
temperatures were measured and flow characteristics of pressures were
investigated with each height of tank. ANSYS 7.1, a common software was used
for analysis and material is SUS304 as previously mentioned. The analysis was
performed where tensile strength was 632MPa, yield strength 320 MPa, young
modulus 199700MPa and poisson’s ratio 0.29. The inside restriction condition
was set 3-ways(ux, uy, uz) by fixing the inside to inlet and outlet of upper
and lower parts completely. Because the internal pressure of low pressure
tank was lmmHg and the external pressure is 760mmHg(1lbar), the pressure, as
much as pressure difference, was equally applied to the outside of tank at
the right angles to the surface, As the used unit was mm, the unit for

pressure was unified as MPa.

For a vacuum tank withstanding internal pressure, internal pressure tank
design value is about 4mm based on KS B 6734. To leave a margin, bmm seems to

be proper and the steam tank designed based on this was confirmed that it was



comparative reliably designed. As a result of the structural analysis with
ANSYS, about 5MPa stress was generated at outer wall of the vacuum tank, so
that little stress, about 1.5% by contrast with yield strength, was

generated.

RTD-Type Thermocouple was used for measuring temperature as a fundamental
performance experiment. The measuring points were 8 in all: 6 points inside
of vacuum tank, the inlet and the outlet of heat exchanger. 11 sorts of
experiments have conducted: the water level was set to 04, 50/, 1004 and
150 ¢ and the flow rates of heat exchanger was 4 ¢ /min, 574 /min, 64 /min, 7/
/min, 87 /min, 107 /min, 1274 /min at 1157 . The experiments was began when
the temperatures of each part was constant and steam ejector spouted high
temperature and pressure steam with turning on the valve of steam boiler when
the inside pressure of vacuum tank had been reached to 60mmHg by jet
condenser. To maintain the temperature of water flowing into heat exchanger
at 25°C, the boiler was controlled. Every experiment was conducted for one
and half hour.

We have researched into the efficiency of suction pressure by numerical
analysis and experiment on primary fluid pressure. In the comparative study
between experiment and numerical analysis, the suction pressure difference is
about AP=0.4kPa and because it is the error of vacuum pressure which is
less than 1 percent of the absolute pressure 101.32kPa, the every result
values of experiment and numerical analysis show the proper efficiency of
suction pressure. The vacuum pressure data show almost similar values at
about 6 seconds. From experimental data, although there is a little
difference after performing vacuum pressure, the changes about 0.173~0.333
kPa of vacuum pressure value are repeated. It means that the results of
numerical analysis and experiment are similar because the vacuum pressure
values of numerical analysis are also repeated about 0.159~0.160%Pa.

We have researched into the effects of enlargement angle of diffuser on
suction pressure according to apply low or high pressure to ejector inlet.
Because the present research 1is not for incompressible flow but for
compressible, the flow field of pressure and velocity about the contraction
and enlargement angle is opposite to incompressible flow. Therefore, the
efficiency of suction pressure is lower by the element of resistance to

pressure transportation because the area of flow way is smaller at [3=3.5°



and 4.5°. It is better because the area of flow way is enough at (3=3.5°,
4.5°, Consequently, the efficiency of suction pressure get better by the
higher pressure transportation which is generated by securing the enough
area of flow way that is important to fluid flow.

In case of enlargement angle, the efficiency become better at enlargement
angle (=5.5°~7.5° by areal velocity equation contrary to the typical
incompressible flow, A cost reduction is expected by increasing enlargement
angle which make the diffuser short. We can obtain data for the optimum

design of outlet and inlet by analyzing on contraction-enlargement angle.

As a result of the experiments on cooling seawater, the mean temperature
distribution( AT) at inlet and outlet of heat exchanger was revealed 6.0T
The flow rate of cooler was estimated about 600kg/hr within the experiments
achieved over AT=5C. On this occasion, the efficiency of heat exchanger was
about 93%. Because the more the flow rate of heat exchanger was increased,
the less the amount of heat was remained, the efficiency of heat exchanger

had a tendency to increase,

_10_
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Ha girh o] AARZ tFEo] Bl £5& St F7|(chiller) F2 A4
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¥ 2. &8 oFEY dA =4
DOC. NO. SHEET
STEAM EJECTOR 10F 1
[< SGP REQ. or P.O NO. [REV.
NO DATE REVISION " 0
ITEM NO. DATE
08/05/2004
PROJECT : ARF P78 SERVICE NO of UNITS
PLANT STEAM EJECTOR 1
LOCATION PREPD CHKD APPD
0 08/05/2004 FINAL
OPERATING CONDITIONS
SUCTION CONDITIONS
FLUID - WATER VAPOR + AIR
PRESSURE mmHg A 15
TEMPERATURE T 25 = 15.5
CAPACITY kg/hr 11.3 + 1.7
DISCHARGE CONDITIONS
PRESSURE mmHg A 70
TEMPERATURE T 41.5
CAPACITY kg/hr 41.3 + 1.7
MOTIVE CONDITIONS
FLUID - STEAM
PRESSURE mmHg A 5
TEMPERATURE T SAT.
CAPACITY kg/hr 30
NOISE LEVEL dB Max.90 dB@1m
DESIGN CONDITIONS
PRES. (Steam Chest/ Suction, Diffuser) kg/cm2G 705 / PBV~5
TEMP. (Steam Chest/ Suction, Diffuser) T 245 / 180
MIN. CORROSION ALLOWANCE mm 3.2
APPLICABLE CODE HEI, ASME SEC VII DIV.1, ANSI, ASTM
MATERIALS
STEAM CHEST : STPG370 SUCTION CHAMBER SC480 or EQ DIFFUSER SC480 or EQ
JET NOZZLE SUS304 GASKET : NON-ASBESTOS BOLT/NUT : SS400
MODEL & SIZE
MODEL
LENGTH mm 1035
WEIGHT kg 50
CONECTION SIZE & RATING
MOTIVE JIS 10K - 20A RF
SUCTION JIS 10K - 80A RF
DISCHARGE JIS 10K - 80A RF
REMARK
1) Atmospheric pressure : 1.0332 kg/cm?A
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3. AE WA dA =4

DOC. NO. SHEET
JET CONDENSER 10F 1
K SGP REQ. or P.O NO. [REV.
NO DATE REVISION 0
ITEM NO. DATE
08/05/2004
PROJECT : A& Qyztr == SERVICE NO of UNITS
PLANT : JET CONDENSER 1
LOCATION : PREPD CHKD APPD
0 | 08/05/2004 FINAL
OPERATING CONDITIONS
SUCTION CONDITIONS
FLUID - WATER VAPOR +AIR
PRESSURE mmHg A 60
TEMPERATURE T 41.5
CAPACITY kg/hr 11.3 + 1.7
DISCHARGE CONDITIONS
PRESSURE mmHg A 760
TEMPERATURE T 35
CAPACITY m°/hr 4.5413
MOTIVE CONDITIONS
FLUID - WATER
PRESSURE mmHg A 3.5
TEMPERATURE T 25.
CAPACITY m’/hr 5
NOISE LEVEL dB Max.90 dB@1m
DESIGN CONDITIONS
PRES. (DRIV. / Suction, Diffuser) kg/cm2G 5 / FV~5
TEMP. (DRIV. / Suction, Diffuser) T 70 / 180
MIN. CORROSION ALLOWANCE mm 3.2
APPLICABLE CODE HEI, JIS
MATERIALS
GUIDE VANE : SUS304 SUCTION CHAMBER : STP370, SS400 DIFFUSER : STP370, SS400
JET NOZZLE : SUS304 GASKET © NON-ASBESTOS BOLT/NUT : SS400
MODEL & SIZE
MODEL
LENGTH mm 607
WEIGHT kg 35
CONECTION SIZE & RATING
MOTIVE JIS 10K - 40A FF
SUCTION JIS 10K - 80A RF
DISCHARGE JIS 10K - 40A FF
REMARK
1) Atmsheric pressure : 1.0332 kg/cm?A
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2. 87 g A dA < Ay

2% 754 oL F o] 8% WZA2WE UFE o8 NAoTA AP
o AAZ} uf-g Faslch weld £ dFolA AR F BAE the} Zo] A
AS A%sioy,

S AAEI1Y BE okelel AAH B 2xSe] AHT ATk

Azt : ©aggo] 0.3% o3, BE TABS Feol ©27} 0.2% 0|8}

- KS D3521

L7 § HI(BVUAAT), ALY W D] TEVEL 0.2% o]sie
MAZR =S SPPV235(6mm~200mm), 315(6mm~100mm), 355(6mm~75), 450(6~75),
490(6~75)F AH&3tm FEAlo wel 7o Ao} A& St HF, bl =i
solRg she A9, AWl WY WNVL SH= A9, AW YAT TR st
2L 502 AMgx}Y FEof uhel 7he] 7|} HEL TR W AHA L)
A" & 4 k.

ﬂlllll o

- KS D3540

2 53| Z} 7]Zujr} —‘?—771] 12.5mmo] 3} & F¢= ¥4
grgako] 0.21~0.27% o|5te] 7O T A SGV410, 450, 480 A}-&35hH, '1—771] 38mm
o|3te] At FEAERE FHAFEE wol7] AT HFHoE welo|F & AX

2y, FAE A8HAel AFAAL WA, LTl el 27Fo ol o}
g il g FREY Aol 12 BagTE] ALHIL glon}, HFol |
8ot HelUold Uy, UAg ol $4 AHddA AU A8T 245
o] REH o= AgHIL gtk

o83t £A)=A STS304, STS31650] gloit & oM STSI04 L& AHg3)
N E 8718 AA AFsnA Frh

£ 45 A% B39 A 2AL Ushi, 33 102 A B2 4A =92 Y
ERiL T

_31_



¥ 4. AF B3 A =4
DOC. NO. SHEET
VACUUM TANK 10F 1
[< SGP REQ. or P.O NO. |REV.
NO DATE REVISION 0
ITEM NO. DATE
08/05/2004
PROJECT AHF JZA 2 E SERVICE NO of UNITS
PLANT EVAPORATIVE TANK 1
LOCATION PREPD CHKD APPD
0 08/05/2004 FINAL
OPERATING CONDITIONS
FLOW RATE INLET OUTLET
WATER kg/hr 885 873.7
WATER VAPOR kg/hr " 11.3
AIR kg/hr 1.7 1.7
PRESSURE mmhg A 15
TEMPERATURE T 25 15.5
TYPE - VERTICAL
DIAMETER mm 610
HEIGHT TOP TO BOTTOM mm 1002.5
NOISE LEVEL dB Max.90 dB@1m
DESIGN CONDITIONS
PRESSURE. kg/cm2G F.Vv~5
TEMPERATURE T 75
MIN. CORROSION ALLOWANCE mm 3.2
APPLICABLE CODE HEI, ASME SEC VII DIV.1, JIS
MATERIALS
SHELL : STS304 TOP STS304 BOTOM STS304
SPRAY NOZZLE : STS304 TRAY STS304 DEFLECTOR STS304

MODEL & SIZE

MODEL

WATER INLET

JIS 10K - 25A FF

CHILLER WATER OUTLET

JIS 10K - 25A FF

WATER VAPOR OUTLET

JIS 10K - 80A RF

VACUUM BRAKE

PF 20K

REMARK

1) Atmsheric pressure :

1.0332 kg/cm?A
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¥ 5. Chemical compositions of STS 304 stainless steel(wt.%)

Si

Mn

p

S

Cr

Ni

0.072

0.50

0.68

0.026

0.013

18.0

8.36
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Heje g
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%) 11. Dimensions and shape of tensile test (STS304).
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65 100 65

260

%) 12. Dimensions and shape for poisson’s ratio test.

I

(.

% 13, Straingauge shape for poisson’s ratio test.

(3) AZAE 2+

F 62 71AA A¥ol A% ARZAAE Jehia ok A A €& SUS304 £
28] FEZR= 320MPag AA JIELE UYEIIE A HudRAEE
632MPaS LIERAL Tt I3 4= QAAAMFAZ} €2 J=E Vehf 23 15
= AFAEIY ARE UERAIL Qltt

I 6. Mechanical properties of STS304 stainless steel at 20T

Yield tensile elongation |reduction in| young’s Poisson’s
stress(\[Pa) |stress(MPa) (%) area(%) |modulus(GPa) ratio
20C 320. 06 632.48 59.04 72.20 199.7 0.29
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Stress(MPa)

0 s 1 s 1 s 1 s 1 s
0 5 10 15 20 25

Displacement(mm)

%) 14, Result of tensile test for STS304.

7.3 15. Photo of tensile tester.
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0.,ds dsot Oods dsot
199,85 205,50 — pds, ds,
(8] 79
9, % _
71 79 t
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1ot 22 BAAE membrane theory 2} 3p o] A& ¢k ¥ ¢} &7]o &

g 4 9k

T3 17. Stress of thin cylinder wall.

f1e] I o] K U5 Y &3l &Y or, ovF B3I
ry = ©, r; = ro|2ZE membrane theoryZH¥ t}3} Zro] HT].

o) — ﬂ — m

Y t 2t
WY AFASY oF 5] fEl xFof tiste] R chdo] 2E-3t= Ui
T2t Hehjfol e 3o glojA FP AL ETE
Oxﬂa’t = —niﬁp
o — pd
* 4¢
wetx] dEE WY AFEY o7t SHFY JAEYH ol 27 Hroke AE
d 4 glod 919 F A& ARESi o]EA WUETIY FA AxA o] A&
t}.

(2) Membrane TheoryZH-E] KS 32| L7 A _}
UZe] vjst TA7 ¢S 98 =X B(t/d<1/10)8] AL 73t LRojs o
Aot A-EHo] Brl

thickness
Length

Inside radius

o - 4
1
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Pi = Internal pressure

(7}) Circumferential Stress : Sc
Ut PiZl |ISUEE FEE= FAYYelY MR & FHo FE
< Ut}

fr
29
2
&

Sc X TXL =Pi xDxL

(P; x D)

Sc = (2 x 1)

(L}) Longitudinal Stress : Sp
4T Ao 2E3le AYY Poll AYsHr] ¢8] dFdH S AFEH o]
WAy gt

4

S, = Pix D
L AT
olgu& £E sk
T = LixD
4S. x E
(T}) membrane theory
S 1 _ 9] A 7

s = AR 4 g6« pi

LB — 5 06« Pi
( Pix R)
T="5=06xP)

T — (Pix R)
(S*xE — 0.6 x Pi)

whetA (7})8] o3 v oA FET FA& V2L E 3|A Membrane theory&
o]-&3}to] ASTMOL} KSEF (Lh)oll AMEH gt AN E AHEste] FAE Alatsty
ARESHH, o]t TIEA Uide] ofl 2j¢te] ZREiE wle FA At AAAZ
ASTM, KS BF o|2l= tiE2A AEZEC] HEA/E Axdel Y3 FA A4S sfofgt
t} .
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th Ut &71¢ 54

ALt gA), 714 F FAE A 2 £l 58 HFoz 4ol dd + A
A AA, AZH BE &7](Vessel )& WdtW 1 FF[ol= Drum, Tower, Holder,
Reactor, Storage Tank, Heat Exchange & ojg] £&/F7} aitl. | o]g 3l gL
Zlol it TiedRt A= S F oz Yol o|Foxil glon, AMH == Y
o] x| glont, EEF tfFE AN Wel FT + S= AHAYHY UdY¥E
7181 AFAE T S5 FHOoE AEHE Rores 13 4¥HEI7 AHEEHL
drt o] AYR LI & ETe] FFola, FUFFo= AHUF L
B FEH UYL B BT FYEEE UE Qi) 53], ¥4 H
st A HA o] FFHo Leha ot A, FPFelde €82S o
|3t ARAEE FFAIF17] Atk EF, FFETE A o] Lolsta, &
yol ofg ofr AMEEHIL gt

) AzEe] ABIMEFU AYE7IY B9 FA dmmd| ZFHo] AFe} =
T dmne] ZeE 2AFUE R F ST FHE 7HFSH7] 934 forminge®
A2 stodct. forming®] B¢ FB ALY UFLZE forginge] vls] A& =42t
2| 4=2] W37 AL gLVl wiEel FHT A+2 IFH sFsted Felsivh o|FA
A2 Z@I A dAE LEHIEA €3S St e S st UEE&
71§ A Zstsict

E dFolAE A Az &7 A 2o 2R FXIH S Tl o]EF
NS At AT AE Bl HHET o] st AUET] BHIAY HA
W7ol FHA A A UYL AFe] 7[R dataZA #-&3tA} gk

gl = ALA] Lol & A
(1) 3-8 F(Applicable CODE)

UH L7 A, ARl AT L ZtFof uizt tiEA F LIt 9o T &
o 238 /12 BV Aol ATk FAUAINE kS FHol AR, FAF
< IS0 74, 8|3 n]=] ASME #4<] it @t KS 3738 7§ ASMEC] A
29 Salolmg WAL ASE Sec. VIl FA& wol AMshm itk

&718 FAE ZARsle 32T 242X, £719 HY U¥E LIl AAUY

< #319] #3%¥(Operating Pressure) W =2 WIS st ko] o
& HAdste] 2Asie, ditgoR UYL 5 SV d¥E HaedgHolzt
Shal, FHIa2AdH ofF 1% TR ¥ Hued ¢ge 1L.8E 7R Y
3 2 IS HALEeE AH3T

AAYEZ g Y F 7R d¥eE e U k. @FeE B
AH&718 A7 thFE videl o3t AAE i, A%te] B¢ @2 H3L data 7}
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Y23t

(3) AA2%=(Design Temperature)
AALGE L npA7IRR2 &719 o) LEE wWshy, dityeg Hu AL
10~ 20CE Y3t kS HAAREE st ZA9Ul Qo) AAYY 1 25 Al
HojAL g4 W A}¥(Specification)oll whet A oA E L7 wet Iy
Ha dARXEY ZF 33" (Impact Test)?] oFE ZASt3 MDMI(Design
Minimum Metal Temperature)oljx] 2ZAX|Ho| A F J=EF AAAHZE 3jof 3t

(4) H-AlodB-(Corrosion Allowance)

d = 231F HAY F e FA ¥ ARFolBE AxtelA e A5t

Axsi ANE Solo] R4S Thith T Lalo] Solut A8
2g U ot LHANLRE A8t £ ATANE FAof 9

5l 2 9322} AEAdIAAZLE Y3t oLt tAE 915t

HEFHoE RAARE 1~2m Fo| AiLE ¥l

dg
»
lo

—
=3
—
—
Q
5
—
0]
5]
-t
=
]
[4)]
n

g

(5) 51&8&H
&3S AALE, A& BE, 2758 T A8 JIRE aHA Hsht £
AFAL FBALE JZPET 3[4 AALS 2.58 AL sl ZEAMNS
i}

(6) & 2
€352 WA A8 (Radiographic Test) BEol umlgl Fodt= FEo2, AR
FullQl 79 100%, SpotQl Z-9ol: 85%, AAISHA] o= AL 70%8] o]
< &3t & YAk Aol wel o] FHES 27 1.0, 0.85 E 0.7E o]
E7& 28T 2 dFoAE £HolREES 0.858 A&t
- WAk A]@(Radiographic Test) : &FF-9]e] uvlutz] ZHAxle] dFo= R.T.
Fullojgt 2Juli= 83749 Zo] FAE ISty YHAFRE 3tst= A& HWs
™, Spotgt th7 &FF ol 20x7t Y3t HE& u]ic}

(7) 71EtshE

A ZE AP LI]o] iyt Y W HF L SF L v FoE £33t ojuf cf
A HYE FHLE A7) AYE o] £T strain gaugeS AHE-3iT),
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o}, Cylindrical shell?] Thickness A4t
(1) KS B 6734 780l &3t AXHI) : o] 2&3t= B¢

(7}) Design condition

Material STS304
Design Pressure P=1 MPa
Design Temperature T = 23T
Inside Diameter D=1000 mm
Corrosion Allowance Ca =2 mm
Joint Efficiency E=0.38
Allowable Stress 0a = 160MPa

Qlade] ZHAL 27] Ui #¢o] 1 mHgo]|RE tf7]F¢ 483} xtolE 759mnHg =
A2 4 93, o Lol &7lo] AEYrIL T + YO ET o] YA TeHA
& ot 1 Waoln, 1882} B AL 2% S UHAET) 200Pac|2R
38282 o 160MPac] T},

(L}) Ed w3kggo] 23t At F4
o P xR _ L N/mm *x 500 _mm
! 0, xE — 0.6 xP 160 N/mm?x0.8 — 0.6x1 N/mm?
= 3.9 mm

(Th 43 $ol o3 AT

L= 5 EP_:]%4 S = 1N/2mm2X500 mm g
a* A4 % 2 x160 N/mm*°x0.8 + 0.4x1 N/mm
=1.95 mm
Tt D te
t=t1+Ca=3.9+1=4.9
ta = 5 mm

(2) KS B6734 7o 213 A4t : 2jgto] FL3l= HG
2JQte] &= F+= TR FolRd U= FE13 FE2&E
ofzj e} Zro] AArsl, #z| o|FA A X£E wWol AREE I gt
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% Shell thickness under external press
(7}) Design condition
» Material : STS304
- Design External pressure : P = 1 MPa
- Design external temperature : T = 20 (C)
+ Used thickness : To = 5 (mm)
 Corrosion allowance : ¢ = (0 (mm)
- Modulus of elasticity : Es = 1895803 (kg/cm®)
* Shell outside diameter : Do = 1008 (mm)
- Design length : L = 1660 (mm)

(L}) Minimum required thickness (UG-28(c) (1) )
1) assumed a value for min. required thickness
T =4 (mm)
2) D, / T =252.00, L/ D,=1.647
if L/ D, <0.05 useL / D, = 0.05
if L/ D, >50.0, useL /D, =50.0
factor A = 0.000204
195.67 (kg/cm’)

3) Allowable external working pressure

factor B

«if factor A falling to the left end of the material/temperature line

p. = _ 4B _  4x195.67x4
A 3(D,/T) 3x1008
Py = 1.04 (kg/cn®)

4) compare Px with P,

Py = 1.04 (kg/cm®) > P, = 1.00 (kg/cm®)

(c}) Min. required thickness T1 = T = 4.0 (mm)
(2}) Design thickness
To =Ty + C= 4,00 (mm)

(3) shelle] $7 A4t 23

KS FAol &% ARFAL Ugdel g3t 9L ol 759mig
3.9 m, $ARE TS o smAEolW AY ROT Az
ASE @ KS) A% 2lgto] HEsHe A o] 760mHgolT SET} 20C
AZTE tmE Axto] Holon 448 Lt sSmrt HsiT,

[¢]
BE e

S

=

gyt
2%

a
d

mehd, & dFold AstnAsts 871 SAE sm FEold A2 A}
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&ol 7T ZoE Azt A AHAEFTA d¥E71e FAU SmBA H

shthe 2 @ 4+ gtk

SRR BEEER

2% 182 ¢EE7le 3AY EUE UshiD Aok AY F A UYL test
S 04 Q98U AP 7 Bol WE 2% 23 gde £F 542 volsl
7 A8 ol Uk EEAY e holeg RO HA7IAE UkEe A
ARES Uehi] shiol Aeels 1 18 % 4=el F olF v Uthis
¢l otz F&22] hole ¥HE Ul 34317 =2 gl

A9 A8 softvare ANSYS 7.1& AFEstel Wold M&T 23 ol As
SUS304E 51915, tensile strength:= 632MPa, yield strengthi:= 320 MPa, young
modulus= 199700MPa, poisson’s ratiox= 0.29% 3} 3] & 438319},

a9 195 UU871e mesh ¥4S Ushiz Atk sidel 8T st
tetrahedral shape(4node) ANSYS Element No.45& A}&3}913, element F=
72345, node =+ 242405 A}-&£31%ic).

a8 202 2% 21 BARA W sFRAS Ve St

AsHo] 9 2 inlet?} outleto] AZAEHE= UYEE ARSI B
o] UL AF3l e 7E52AE 3WH(ux, vy, uz) 22 FE3TL

Mo §2e] UL Imbge], 9% th7] el 760mbg(lbar)ol B, 7]gbxie

Hol- aok

ol
|

v

Z 3 E FdHo] Fd3 gPo® Hoj 3] oz HIyslgct oju, 2Y
S FAT 9= mo| B2, ¢S WPaE T U3

O

71217} 759mmHgo] B8, 31ES e 0.10102MPa2 =33 jdol oisfA A
3 4 E st
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%! 18. 3D Model of vacuum tank.

ELEMENTS

AN

APR 27 ZOOA
05:47:45

%] 19. Mesh shape of analysis model.
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%) 20. Boundary condition.

: AREAS AN

TYPE NUM APR 27 Z008

PRES-NORM
1010z

05-48: 54

%) 21. Load condition.
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(1) 3l Az}
(7}) deformation
el 2] 9JHoA o] EXsla QoEE BIAyl r&FHI 9lom, B3] AHst
Hol 9l 2% inlet?} outleto] ¥d TAE o], ZA FHH FAL HoFa 9l
th ol HEH 712 0.0258mmo| B2, A2 WHF o] WAR] ¢ YL ¢ £
oot HMyH AL mofsty] $lste I 22(a)ele /MR CE UFH ABS
B3y glon, 18 22(b)ole AA HPH 7A5E BAqF2 Qlrh

AN

APR Z7 Z00E
QE:18:29

DISPLACEMENT

ETEP=1
EUEB =1
TIME=1
DI =.0ZE2132

(a) Magnified deformation

DISPLACEMENT AN

STEP=1 APR 27 2006
06:18:47

EUB =1
TIME=L
DM =.0Z5212

(a) actual deformation

18! 22, Results of deformation,

— zl? —



(L}) Stress

ool iAol SJald WSt el Ho) AW $HREES 19 230] et
Wz gl o] Aw 28321 23.36MPao]il, inlet} outlet F-ZojA] LS
e, B o s SMPao|ste] W2 FHIlo]l WSt AUSES o 4+ T
o= sus3048] FEFZ =7t 320MPaldl] Bl3l BIE L] AFFET SMPaZ A thE}
15ue] 242 S0l WAREEA el A4 FHeIAL tus] $osThs A
& @ 4 2k 3el3 Hchunrseio] 23,360l W AZRol g of *
2o A A2A $7 beedE FEI FOTA R AU ¥ Wast gk 13
R inler $20 WHHS AUEILLES Helshd weiz2 glew, 2
2 2ol BT Rl BASE HPIYREEE RoRD gr

o

NODAL SOLUTION AN

aTEP=1 ADR 26 2006
SUB =1 16:54:28
TINE=1

SEQV (AVE)
DMX =. 025813
SMN = 014079
SMX =20.993

I
.014079 4.678 9.338 14 13.662
Z.345 7.007 11.663 16,331 20,993

18! 23, Equivalence stress distribution,
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NODAL Z0LUTION

STEP=1

SUE =1

TIME=1

SEQV (AVG)
DIn =.0Z5813
SMN =.0326lE
M =23.353

038615 - 40
2.63 7.812 12.994

%] 24, Equivalence stress of inlet part.

HNODAL SOLUTION AN

STEP=1 APE Z& 2006
SUE =1 17:10:44
TIME=1

SEQV LAV

LMD = 0zEElE

EMN = 03861

SID{ =Z3.359

J03E6L15 5.221 10,403 15.585 20,765
Z.63 7.812 12.984 18.176 23.359

.3 25, Equivalence stress of inner part.
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At oz ¢t &UloAMe SHY SHA F= Yk Ot FEI F231E2
2, x5 HFAE 1A 2AE =& T2 °§]§l° B8] Pl
W3t AN A2 7. 26\4Pa°] WAl 3L, inletZ} outlet F-ZoA UYFo R
-9.60MPao] U3l Tt FEZIHYEEE 7 26~280 4 BoFa glh. FWdre
S8 inlet?} outlet —‘T'— oA &0 F -10.83MPac] WSt glom, QIO E
= Bl W= A3} inlet} outletd] FTA|FoIA UAAHIL QS o +
gtk ¥ 29&= SWUY 3Y TEEE HA9FI rh

l AN
HODAL S0LUTION

APR P& FOOA&
17:08:31

STEP=1

1_ 646 -
—-7.718 -3.973 -.227167 3.518 7.264

18! 26, Hoop stress distribution,
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MNODAL SOLUTION

STEP=1

SUEB =1

TINE=1

ST (AVG)
RETS=30

DMY =_02E213
SMN =-3.531
SN =5.507

%] 27. Hoop stress distribution of inlet part.

1

NODAL SOLUTION A.N
STEDP=1 APR 26 Z00&
SUE =1 17:11:41
TIME=1
BY (AVG)
RETES=30
DM =.025813
EMN =-5_53l1
SMK =6.507

—-3.531 -6.013 -Z.436 1.141 4.718

=7.802 -4 ZE5 -.647E6E .93 &.507

12! 28. Hoop stress distribution of inner part.
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NODAL S0LUTION

STEP=1

SUE =1

TIME=1

3 (ATG)
BETS=30

DD =.025813
EMN =-10.234
SMK =7.616

-10.5834

—-6.734

-Z.634

-4_634

1466
-.533306

AN

APR 26 Z008
17:08: 55

7.61l6

8! 29, Stress distribution of Axial direction.
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AL HE

(1) e W Q8712 314 Ks B 6734 0l o jgs] dA ghe
thet dm FEOIU JRAE Fol AASHA 5wt Hsi olo] At A2 B
AH L7 vl GgF o AA Hr

(2) aNSYSol &%t TEshH Azt cher g1 ol Swpas] ol A
slmz EZE oyl e 1.5 %8 & g0l wastarh.
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A2d 2% T34 oAy A

1. 28 354 oJqHE 0|8 Wz A"

28 08 &8 TR S T 42 AL AL e e
Zojtt, & AAHFE AR oAHE YA A-E BHEY] f3) AF HAdYE
AXstla, MF BAE X sta, ’ﬂ"‘g‘ A Fol a3V E o]&3 HAES ¢
3 @aRV|E AAstden, IF HIVde 2=EF EFYE ¢
Thermocouple(RTD PT100Q)E AX|stgom, IF B3 AFo= ¢4y SHE
Bourdon tube gauge?} Pressure transducer(PSHA0760HAAJ)S /‘42]6}910124 g3
71 ol &% AFE fsliA A7) BdHE HAsto 25T & F3Y T+ A=F
stoich ¥ 2= SIS A A8 #1814 Data Logger?} ComputerE ©]-§
stgeh. 39 312 37 22" AF =EHE vehd Zojth

P

[nt

X 3o
2

el
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=igam Ejector

Q-

Fasd Watsr Tank

Jat Condensar

i

nmn—]1
T2 —
T3 —]
T4

Elactric
Boilar

TH—| ﬁ

T8 ——

Vacuum Tank

Staam
Baoiler

i
A
!
i
s J:
: J
I'—E‘-;
il :
3 Ei
d
1.

a% 30, 28 75N olHEE 08T W2t A2y AFEe} AL
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BILL OF MATERIALS

[ ESETIN =
TG e Thalen- At
RErE=] R ]

1 e
% T
il

VTR
T
{Tioa)

&
n

7
W\
[
HHH
HHH

1] I v W
1| En mE
=

o
1| v wemmer
VATER LET

BRI EHEREIEE

RHHEHEBEEHEHE

e | Tree | Pamr
Jar Er | oo ot | s PR |
[ e

NQZZLE LIST

H

3

Ewvonm

ik

[ PR IR v | o | eow

| 2
e
LA
i

]
[

2K4 GENU — KSGP

THERMAL & FLUID RESEARCH GROUP Tn GSNU

DIMENSIONAL OUTLET DRAWING
v o - e e
TEW HAKEL LATOLT IRAVING WITH TKI FERD W 1 ZET
o s

a3 3L AY TEA olHE A Y 29,

2. gagr|e HA

a#7E= Shte] FA EEAAM E thE #A £
Aotk AZ 2E7l TiER IAHeR FH F °iﬂ% Atol ] @] L2
2F B2 ZTUSEIorIA dofjutar Qlth o] @aS £yt AEHE B
AE AV} By FHUR, dF, 37 i} }‘]E Az 3F, A 33,
71§ BA, T3 AL BEE &% s A2 thgd T B A&
gt &2 FolAe AF BAU FHE = a7 A E AHE 95t o
of AT A a7 72U FEE Ayt

[ok
al
lo
ke
lo,
ne
ra
L
o
9,
t
fr

7t B8 P

%"’5*7]-4 7= A¥FHOE {5l (flow arrangement)z} 22 FHA](type
of construction)ol] 7]Ql% I:} ZHRF ZHekst d a3yl SAIFHEE o] Z2H) LR
A 22 W e AIUReR 329 /ALY A2 FAV =2 BT
3% 32a2] FP [T (parallel-flow) vldolM = A2 D A2 FAIS0] 22 £
oA Eol7A, 2 WPos T=3, 22 WA U2th

33 32b8] th3F-5(counter-flow) BB FAIEC] WtfF WA &0l
7t Ricitdko s 3=, AR W& EWolA u2th olgte dE fAEC]
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23 330149) Ho] YA Ho] gl BY ALV Bl 2Jste] B

P
[T
fr 2%

i)

N

A5 (cross-flow) 28 T E 4% Qt}. F AxE= #E v AU & =8
7t EFHA YUt (unmixed), T F A1 (nixed)o] wiz} c}E FAlo0E FH

"k,

O 32, A Ea¥.

% 33304 ¥o] F FEHF(x)E TIEAEE WF(y)LEY RS U] o
of f3ls EFER] YUTtHunmixed) HIITE ©] FH, FAHIEE

2} wigicl, diwo] I3 33be o] gl HIME JIEXEE WgoE {FA9
5, wetd Ego] JisEin, LEEE FE F S5UYCE dojurt. BH
52 TYFA ¢oB=E o] g ARI|AE T FAE EEHL tE /A4
E EYEA dtrh 39 fHo| JdE BN E F /A B

AR
ot Egzdel YA ARy solE 2 4% uA 4 ok

r

0SS
T=f@xy |

T TIE dutFel FHells A-dE=-FH(shell-and-tube)d EzH7|o|ct A &



H3E Pajo] I 4o yEeht glrh wiE(baffle)2 T2
BEE Estd A2 dF@ALATE F7HR1717] #15to

TES FHFE YL FONY A ZFEHR U ANY F T
H 37 5o] Ztz 18 35a¢} 35bo]] EA|F o] gltt.
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(a) 14 S22 B8, (b) 28 329 48 =

ZAUWE o IF7](compact heat exchanger)Z}il 3= o] A= (o] dzl HE
= BUEY I MES X, FHox 3 FATF 7|Ao] mietA E2 o
FAAYALE 7 SHo| Yt Ao F2 AEBLh BES 13 36a, b
o} coll Mot o] Ztzh Hatal AP U 4 U} FAFY daBT|E= ¥lo] FAFA
L} 3z o R Fo] om(corrugated), TLTE(DY 36d) E+= TIEFEE(2Y
3e)e] RES AEHUCH AYE dusle PANE SEEE AWHOE 24n
( Dh < 5mm ), &2 BEF SFHoITh

_59_



() e~ ) EE 0

(a) H-A(2 A5, A5FU ¥E),
(b) &-W(HY BE, ASIT ),
(c) ¥-W(HY A&, 43 ¥s),
(d) BT-H(HLT=),

(e) BH-J(rI3E=)

L A 2% W3

a8 379 uephdt 7t Foll st & = SRl 2] Y 2= HE
5742 71513t /5 @Ak #=-ol olvlh. IjleA sHER} He & /AlE, C=
AL FAE Ve Q) Id $571E BASEAL Qe O3 37a0A TC= &
AR7 Y {5 WIS wet FUksle i THe %%5}71] frA "t

3% 37be] EAIZ FYRF EIABIY BF LEAHTH-TC) & + =
Zagith, 23 AL FAY E7F =L AL FAY &1F R} S 5
gltl. & TC,out < TH,outo|T},

38 37cq] Y¥is aBUY FF 2=AHTH-TC)= HA3tAY F718 4 3l
oof BET Aeel Y 4% Aok, AL FAY F1E L£ 28
272 2xur) Bold 4 9ol feslo} Wl YR4E duBsY ex

o

oV
%
oY
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Fehe AL fAlol ths) B9 Hsict.

AY @B BF 2 Feol Uehd AAE 275 L=t Azo| e

Bt BYHoE Uit 2

MRt FF 9 BVl &yt 2E W § 5
T = FYFT 2 U7 (stean

$71 ged 2T d2A 3P 37felA B

generator)& & 4 9t}

TH.out

T
TC.DN R i |
_ ) R % o Tc.out
. : 5

Tein
0
X

(b) Parallel-flow

0
) x
(a) Single-stream (a condenser)

i :
Hot .H.in
Te.om
/uld'/

x
(¢) Counterflow (d) Cross-flow

TH.wt
1I"C.in

(=]

Retrieval

" K Te &

Storage
Tein
T - 0 T

(e) Fixed-bed regenerator

THin

Hot (combustion gases)

T
Superheated steam H.out
TC.nul

Saturated steam
-

Cold
Tein Subcooled water

/]
x
(/) Parallel-flow steam generator

3% 37, o8 Y] HAY mE {4 2%
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7} F AU QAYHE o8 7 e ¥ 5 girh TP EF FAol
Ay wde 22 gitgo gy SV U] RYSEER AEHTE 1A tf oA
d 37| (gas-to-1liquid heat exchanger)2} o] 3 3t Ho A 2] d=#|3lo] 1;].__

o @ARETH WA 2 ok & GAY FBHS A A8 RS ¥
syl vl BE U B wigde] Fasico o dEdHe] ¥g —Hrz}
7= qth WY TUE RV 3¢ B P e we By
ok A Jl&AtEe] AEY ¢4 B glo] AAY WAL AL 4 U1 FA
of AFu1g ET AAsA 317 91T 1ol Aol UYL A B U=

% 389 AFA Y@II7H FL ool

ALUMINUM RADIATOR
COMPONENTS-AER

% 38. AEAE wWaT] o.

zt, SYEALA ST

BE €] o] glojA HfFojx|gt, %—zé— M ERAYT FE2 Y
d A g AT (overall heat transfer coefficient)E ZAAS}= dojt}. A 12H
o APE T B Al G e 2 ‘QAmes gAR. 4 29 4
304 of A4t 7tz SUHW =3 FUATY Wl 3| B AT Abole]
A=AREH EHE"‘W” stoq @’gﬂ‘:} —’E']L} olg|gt AAUES A AR

& 19
313 ¥o] ¢le FHRE FE&HTI= AL of= Zo] F23i}

)

1 _ 1
U= "RuA = LI+ (Lalkn) + Lyl + (Lolk)+(1/ )]
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A
Rtotzth_TT =T}Z (2)
U= 7 7 17 7 7 ¥ (3)
ZL+;L1nJ+;L1n4’L+;L1 =
1 A 1 B 2 c 73 vy hy

B43e 42y FAeolMe FHL fAY ECE, Y Y e uE &4
et ¥ AT Aloje Hhgow FHE EH(fouling)3t HAHTE EH 919 o E&=
A U(scale)d] A&FQ HZFo| FAIE Aol @A Wiy AYE A F71
A2 4 gt} o] T EFAS(fouling factor) Rfela = 71y GA3
< T3t TthE 4 ot} o] 32 AFE, fAGE g ¥ AT

o whel gatr,

1
nosH tiREAT o dAYe ZaAATh med, BEEEz B(FY
29)E}E TUSt] FYIIWASE T Lol Uehd 4 gtk

1 . 1 R’ ;. R, 1 4
UA, = (hd). T ), TRt o), T (ngnay, M

A71M ot his A7 2 A L T RASL TV F WS AVY ©, He
% m& A71e%e FAY West grkUcic = Uhah). T3k Ac = Ahold U =
ho] BE, FUAALASY Are Ate® Tdd b de® Ed4 F ojn
2& 7122 slgEAel wel Qe A=A Rei Bl sl 4 52

PH 2% 4 A3, LYl thsiAL A 622 HE Fojrt,

T

R t, cond — . PA

In(7y/ 7))

R t,cond onlk

2]

d23d SZ2AF7E B 7ol Uehd QAR o] A da¥y] FAF F ¢ W
oith. (71X EHo] thzt 022 RY HEHEo| Elo] FHHAA F7IRich)
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E 7. tEF E2AFTE

‘ﬁ‘}“ R”f(mz'K/W)
42} AeH RAgF4(50C o]3}) 0. 0001
42t AeH RdaZ4(50C o]4}) 0.0002
&}l E(50C o]3}) 0.0002 ~ 0.001
A8 G 0.0009
Rkl 0. 0002
571 (Bl FHlo %)) 0. 0001

2] 40 48] n = ®o] FAH EHO FHFEHHE(overall surface efficiency
) E“E‘ 2= &% (temperature effectiveness)E} H3Ic} o]ZAL X ¥ = 4

& THo] thsle] FAYEo| ey TES FHL)

4= h A(T,— T.) (7)
714 Toi JFEHLEC|L A (U =29 719HS P FABFoT},
o] oA T Aol HE=H it
A
ny=1-“34(1-n) (8)

71A Afe AA ¥ EHHF|D n = TAYY ZLojth Zo|rt Lal A ¥

®x % (Pin fin)o] AR EZ ¥ o] wdHITiy sbgshd e FAUEL
F3t= g/=V hPEA O anhml A2 FEEY =gFd FY A
n,=—2 ——2 v ez} go| T}, o7 Af: He W oL}

4 max hAfeb =

n = -tanhtml) (9)
714 m = (2h/kt)1/20]2, t= ¥ FAoltt. A (annular) ¥of tfdt &2 1

4 szrel @g + A
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aY 39, Ay gRUEe K BYUe B

P OT 52 FAESY of2 Yol AELHEER, 4] 42 HAEY2 FF F
AlE 4 gl 3, tfRE@ALATE FY shus FF thE 2R} tds] ze
22, ety SHEALEATY 2F S 2Pk odE =9, T #AT J1AlelL
T FAI7E 93] B &5 £ HTE 3t e IA-F7] EPECIH, 7AF
o] HRdAdAse 4 o Zrl o2y A% wiel o] JAEY UFE F
X771 18] AMgHrt FUEALEATE] tE3A FhEol E 80 2% 4l
c}.

—

o] ¢t #¥¥(tubular) EF7]o] tisted 4] 4= vz Zo] Hrh
L_ 1 _ 1 _ R”fi ln(Do/Dz' R”fo 1
UA~ UA, ~ UA, A, T A, okl A, ta, (10

E 8. FHIALAFL] UEF YE
S R ,(m* - K/W)

shsot Ael® HAeAZ4(50C ol3}) 0.0001

sha=o} Ha® Rda2=(50T o) 0. 0002

spde] 2(50T o]3h) 0.0002 ~ 0,001

Aze 0. 0009

L 0. 0002

371 (8] Flel &) 0. 0001

_65_



A7IA AL i o= TR A EE F Al =&FH e 4F FEH(Af =
7Dil)Z} v}z B|EH (4o = nDoL)S UERIATH

FTHIALATE v "’E]"’ T fA dRrddALArsd, EZ2AsE 28
3L HAR 7318t mieinEES ¥F 2R E 4 drh

33 40, 284 IV 12T ASRAEY U & JUANFYE.

of. X R7] Y ¢ 2IFIFLEAS] o]F
daB7E HASAY BE% oy
%—r«l FAZES, IYEALASF, 2
AA7l= Zlo] EeFolrt °l9Jr 2 #AN 2 el =
1—17‘1“‘ < ASFA S ASRAC] HEAZLEAN YA €& + Utk 5§
A St A2RA Ale]e] F dALECIAL, daRr|e}
:% FA"E 4 glen, T]X]ﬂlbizl?—} —v—%ﬁlﬁ"l
(11a)8] of=] BPAL HEshd v} 2o

to

iy e
E
o
ﬂllﬂ
i
4
>

a=mCip i =15 ,) (11-a)

q= y;lc( ic,o_ic,i) (12—8.)

& &}l 974 it §x2 dey](enthalpy)oltl. HEAE he} c= T L28A ¢}
ZHAE £, i¢ o= RAYF FAETL RAES LR 2ef {fA7L
HILE dog|x] ¢ T2l dF vdEe] 7T, o] HE2 thE3 ol
Tr.

i o> X

bund

a=myc 1 (Thi—Th,) (11-b)
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a=m.c, (T, ,—T.;) (12-b)

oltt. oJ7]A A5 UeEhtE 2552 AFH XS0 HAFALEE0]
th AE 113 125 § HH%A A7) e FAalo] FRAZ Fostel

E THE f83F Ao] & dAYE & Z2/A A2/A Ate]le] L=} AT}
FAANLLEAN ol £ il 7|A AT a3} Zth

AT=T,—T. (13)
olg| gt A2 TRt thREILEAS h il %‘L‘% 2dA g UE AH&¥ Newton?]
dzhd o] Holel & 4 rh. TEL AT 719 $1x]o] uwiel WHEIIE
2, th A H|SWHA L E 1 F= Zo] %36}1‘—}.

g = UAAT,, (14)
A7|A ATmE FAZ FFLL=xto|t) 2] 4= A 11 2 2] 122} §7 427 3
53

g 435ty AFRE 4 9t} T} o]Fo] M R]7] oA ATmd] A

o] B sofo} gt

—

L. 2= nlAAH(micro-fin tube)Jr T, &3 & ol&¥
thEHet. U)o dIALATE FURNBLEN F

: energy efficiency ratio)& 7|A¥ 4 9oy, daF7|e aA7NE Oﬂ
o FHENE FEY F vt BT FTHE SULEHN THFLE 4 1:}15-3’—}
= 7@ 4 vk 2 AA RBINE FRI]0] H-&el glo %‘?—-l‘?_
BI7E ol&siviels dml = dA 2 EV|UY dHe] niet I dsol |
2ol & LiEpd 4= Qlth.

F271%] 85 Bl oA FAH Aefol e ¥ey d JuALHEERE F
QL3RR IR, AL, olg PR FY Y HIEE WFHA|FAHF . wel
A QY 58 2 BAES HAHISIHA JIEL AHEE UEAIT] A da®
71 AA FYo] 71 FaF WHeeln & £ glon, AA spdTAAA o] Fio
W2 AR E AXA Hch

FZIo AHEEHE U-F AV I¥ 413 L FXRE FHo| 9od, 4

+ n19.
.



o ER3} ¢Tuly Wow TH= ok BVE dnje SEYRI $H0%
AolE Bl RESA el Uoid A7 AE BeE ¥ u: 3
(corss-flow) @272t & 4 Slch. AA ASol dolHE 2By
g HAln 2% AHES Hrolyl st Wul HE 7o) ue K3
so] glch.

o
o o EJ
oo Ht

].

ol

FuUoME A7 9.52m L 7.0me] L cfF-E AR&SE 9led, 7.0m: A
E3t 2 7H = H20F e £33 27 AUJle] F2 AREEHI UnAlo= tiF
= 9.52mm o] 2Qlit}.

olet Z2 -} dxF7|e dAYS W Ful W F715 tiREAY, B
o A=gAY W A A Ao]e] FHIAYLE g 4 glon, A=FAYS
A @AY 1% mye]BR RS Zo] UntFojrt AbHA 13 F27
o] A=zZolA R2 uje W S F2 FF LA Wi 3,000 ~
5,0001/m2C B=EH, Z71% AFLASE oF 50 ~ 150§/m2C =2 &HA 9l
th AEEA Y] tiyt A7+ Wel A4S Hashd th 5000 ~ 10,000¥/m2C
FE=E LT

oj¢t Zo] F715 FALASTL JuiFe of 1/40%}e] UHER AdAHE St
A7) $lste] Wg FEste] ARgRITh 9.52me] Ffole WmiE AH ] o
3t F71& A vt U= 20 ~ 30 i HAFHC 9len, 7.0me FF
T o410 ~ 208 = Hr} o8} 22 $AE VISR B WA EAYolA F
71& @A¥o] AA St HlFo] 50 ~ 802 7 A, WulE L FEHIAAYo|
247} 10 ~ 20% = i ¥ 4 vt weby F71E dAEATE A=
A X gaRy] d5S AAFLE FUAZ £ oirke AE & & Yok

2
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B 5 S PPz 2
9 GAYAS 3L AEEA 30, Y 37 59 PEe
e PHOE 3 4e YRS BFel T2

ARt WY AN 47 Wnl FE U 97 97 Bes
3 1%

110 [
|- sz | a
| —o— 2wz | 4
= [ S
1.05 M & oixizg —— T T
% a——"
&
1.00 — _.ééi;j_n__ e ———
e
.
oo f—— — o ST—e
0.90

0.75 1.00 1.25 1.50 1.75 2.00 2.25

SO SRS (AoHED

3% 42, JulS ALAF(LTRD.

34 42 3971 0 $4719) 8715 AAYALTE B0l STkt Aol B
2718 Wsd, 20AY L U LN E S W3} Folg Urshdrh. o] Jex
533 A1ge 2270 istel ARE ABeoldg Botel @ AAA
Hol 9ol gTlel el F& G2Wy] 59 Aol weh T 417} ey
= 9oy, thhe) B9ol 13 419 e Y Yehitia 47wt 17 41
BashE U710 $5718 ARYALT SAlo] 100% SIS W
Fox, oluanlzgol o 8 AE F7lol 2AE Re U 4 9w, UM
YASE 1005 F77E Zo] VUFHLE wje g WS BAY
2B B EE B AHYUASE PANLLEA FEI| A%
FHoz AdsrlE oldtts 2 & 4 Utk

o

(2) 322 HA
- dur)ed g 2 58 34 shve QuidEE e tigsiA dAE
T © Holzia ¥ & gich 22 A= dar)e] HHslehs S
A F FR3AT F2IY A FHRo QlojA AP el ¥ 4 3l
Tl a7l dAE DUIER st Z7]delL @R 58 FEol Bagl,
A= Zte] Ym) 2 EAE §IeERE ARHE AAFI o st AT
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ot EZ I Juje] AgFEGo| F4F dALATI FIBIEE AHEAS
23R et dAY FHoME WU ER s Zo] Jasith. Iy A
A2 B Fufe] {Eol sl A As7L UASIEZE ATyt A= APIIE ¥|5t
71 fist F2719 e | AlojRe utel WulE £7]35t thed
HEE Fgste Zo] utFolrt. Pufe] 4HFsIrt H=stA HE a7 o
Tot &9 7] FEAT AAA A2 A o] AVe T A IS

W oflel 4F7] AnAYE ST

gutd o g Wul=d 10kcal/h @ Zf2F 0T Wnj&3afo] 2. 5kg/h A= FH o,
Wteg e F7tel nrel dujeBo] A v|gF oz FUIRIciaL # it
nfe] o dFAst= JiEH R YujedY 1.5 ~ 2XFe Hldlv}tﬁ #73e
4.5 ~ S5A|Fol| vha|IT) weld dof 2 s IRV WY, du
] #e] Zo], UZB & Est AHASHA ZAHo|oF 3, FaBr] A&+
o+ 7512 tfe} 0.5kef/cn’ o]3t2 dH= o] UntHolr},

o|g} o] ARV HEE tirE Y B 7MY F4T EA= dujd
ol ZAoltt. Yyl 53T 2o HFHo] Feyrid AAFoE HIRIE
HE &30 2 HESHA Heol dool 4932 & £ ohlel, 8237 =9 &+
URE 2o ol& #I T A —Er A& Fgr

Wuj2] Fufo]l thste AA QA o]E2 FHH vyl glom, dntFog HA=
o B3R W APER Q0] &3l X3F LEHHSJE Ftohj= Zo] gAloltt. BT 7
Bujd2e] ARy RALEE S35t EE HY 22Ut FYsHA AAEHES
AASHE ZRol ulgtZ sy, 53] Z 328 &4 2271 AAHES 3= Zo]
T Fasith. daRv)Y duFE et gSsS 23 #HYo] AS+F Y
e o YA, 53] SHI|IETE FUY ol dof dFAs AA do)
2o & &8 31RE t§ oYt}

(3) @a¥7|e] A 9 A=
ozt Zo] U= I FH LA wetN RS EER Y, AAF] Jta
rh. 2 dF A&RS tfr|gdelsty] AF HefdA Y dafe] FH S si=
2 oo ¢yl daBr|e HA o] Fasitt &, AFStolA g %"i} o
< tiFoll &% gAYl ALY g7l wiel Al da% do] A5t E
t}.

2wz s B daBIE A8l B 2 a4 Wz 548 viet
staat gl W-TY L2WAE x}%w QAP TEEY olHol YA Wato|

£ Aaglel AP o] ol VF Pl BY Y2VAE A&t U
goz AAstd g2 2A sk
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T2 43, AFEI U dIFy] 33 =4

H 422 AT BA UFE AR REAYY Zon, ¥ 432 IF #B3A
2 a

A 420]4 BE AZEI)
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of ZFol BF B7E F537] AT a7} stieo] B¥AE At a7t
Azl =Hof glth AFe] daBr|E AAT A2 AF ZE&E S A7 S R
ol 4 2] ¥zt AEE A Zorh Fxte] HAH 2 & Y
i

2 3357 13 AA]olrh

=)
g

3 K
M
N,
o
i e

3. 34 8 Ay A

2 AolAt S4E o8 WA AY YNA ¢ 4P P A4y d=
o gEAaol TR BHE FPsHA] AN FEAY $ENEY FIIE AR
stairh.

4] #BAEL SISI4 B2YaE AAste] ABN4EE BE AEE A
on, Agsh4e) ML Bz YHF o] Ut A7) B(electric heater) &
ol g3t WA AS(HK)E BAN BLEF AAR Fol 4AS Fol 200/
o dgeN4+E Asigrt

39 455 SBARRAY AE Ushd Zola, 17 6= AEAY §EAks
% 574718 tehdz

QN Steam ejector &
Jet.condenser,

i

E}t-mmc b]iler

{

SteatBoilst
ol

\ Recirculation tank

E'
b |/

-
Computer &
Data logger

23 45. =3 AP A AL
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18! 47, Pressure transducer, 12! 48, Thermocouple positions

in the vacuum tank.

3 472 o438 ZHE 23t Pressure transducerE LUIERZ, 218 482 FZ

ThermocoupleE A Xx|&t A}A & el Qicl,
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A3A 34 32719 A

1. 712443

2 FHoAE 2¥ T3] @7 A2 V2P e ABRS AYsHAh JxEE
AP JFeP2e AF= AP JFRBI o] & 07, 507, 1007, 1157 ¥
AF B3 84 EZA5AEe ol AFE IAsiATE 2= FF2 RTD-Type
Thermocoupled o] &3tglon, &L AFed3a JFof 63, & 2379 g7,
ETEA ¥ 8RS st

AELE 2t FE2 2571 4B8% of A, IF B3 5 o] AE
Ao &3le] 60mmHgel] =3t A|Fo] A% B WHE do] AE £&
AlA 28 AAEE 2Este] IFE st WHLoR FstArt. o)) Zo] A
q3le olfire £ dTolA AHEH 2¥ 7524 odAEHe 19d AdAEEA AE
ZUAME o1&t AF o 7T AaPeE FA4FA 9] wiEel A
A AE ZHUAME o] &35t AFES AT Fol AH HEHE sl AF A&
S F71 AFle WEeE AP S AY ot A¥ A2 902 e IItAcCh
¥ 9& AF2AE Yvepdcol I3 BN 9] F 1167 & AT olf= AF

A @377t Sl 7= &°l7F 1154 0]7] wjFolt),

2 9. 7|2 4% A" =4

AFRIA U F4 (2 ) | € 2B §3( £ /min)
Type 1 0L 0 L/min
Type 2 50 L 0 L/min
Type 3 100 L 0 L/min
Type 4 115 L 0 L/min
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0O 5 10 156 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90

Time (min.)

% 49, Variation of vacuum pressure in vacuum tank by water flow

rate at 0 /2 /min, 0 L,.

321

28

Temperature (°C)

Ambient

- 8 PR IO U T E—— P 1 1 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time (min.)

%! 50, Temperature distributions in vacuum tank by water flow

rate at 0 Z/min, 0 L.
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39 495 AF B3 bR B Po] 04 oL @ AW FFl0¢ /nin U
W AF B2 U dFEsE Uehiz otk A8 A o 1R S
Weol FH3 Zastn 1 FREE gl AL 0~lmigitolold YFHA
e ¢ 4 grh Od 502 AF W3 URY 2= H3E Ushiz gk 2]
el FAY AT st AT BA VR =L ST AU 274
F0 ol ste] 2Ev FAS PP BAY £ Uth HA 49CAH &
=7} Fojzl theel thi 2E7 wolde BB Ryrh olze AF el
Ago] FAHHA 2717 AL glolel wet Brlo] G 2= H3E Uehirt
9% 22 Gl 3] th BEste A2 WL,
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1% 51. Variation of vacuum pressure in vacuum tank by water flow

rate at 04 /min, 50 L,

—_— T1 L
........ @ -cevee T2
32 T3
T4
28 -_ s — - T5
— e — = T6
~ 24 Ambient
9 .}
20 [e%ge
\G-S ) )“0..". AAAAAAAA oo al
+= - \ ® .'.‘.
g 12 ° soceeee® ¢
Q I v °®
g 8 " o
) - ‘ °
= af

M“’l‘u‘..pmnmﬂul““'"“.'
A B B S B

- 8 PR IO U T E—— P 1 1 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time (min.)

18! 52, Temperature distributions in vacuum tank by water flow rate

at 0/ /min, 50 L.
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Time (min.)

8 53. Variation of vacuum pressure in vacuum tank by water flow

rate at 0/ /min, 100 L.,

—_——— T1

ey (PPPPPPR T PR T2 —
32 - T3
T4
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@)
@]
Nt
O]
=
2
o
)
£
) A
~ ; .=
I-III“
1 4
- ‘ q
alk "““0. o®
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Time (min.)

%! 54, Temperature distributions in vacuum tank by water flow

rate at 04 /min, 100 L,.
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18 55, Variation of vacuum pressure in vacuum tank by water flow
rate at 04 /min, 115L,,

——— T1

® T2

T3

32 T4

— &% — T5

28 — —m— T6
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Temperature (°C)

4t

- 8 P | 1 1 1 1 | IR I I | 1 | - | - | IR I I I

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time (min.)

%! 56, Temperature distributions in vacuum tank by water flow

rate at 04 /min, 115L,.

_79_



a8 51 A3 B2 e BY ool 504 o3, & 2 Fel 04 /min
A wel AF B2 el QHEE Ushi doh Age Al o 7 5
G gEo] A Zast] 1 FREE Yol AL 0~lmiigitolold AFSHA
AEe

4 gtk 39 52k AF WA R LEWNE Ushiz otk T
Ze exoln T5% T62 ol #7 Arjelth. AW Azste] 7]
£ Al oln FE AU th F4EsHe tEel Bol &7

T5oh T62 FAL W3t glol MM sHAsHe FHE Ushdz o,

aY 53¢ AF WA el B ol 100402 @ LB Kol 04 /min
QW) A WA Y GHHE Uehlz k. AF AHA o 52 5
e ool 37438 Bastn 1 FREL ol AL 2~3mHgitolols YA
FAYE ¢ 4 Atk 1Y 5= AF B3 YR 2=ERE Uehia th T
1~T3& B7] &e] L2l T4~T6L Bol A Aelelch A Azstel 37 &
of gl TI~Tok Alzie] ol 3= Aubd thi F4S3he Walo] 3~162 3
83 glo] HAs] shAse FME Ushi gtk

a9 55 AF WA R B o] 1154 ol @ Y ol 04/min
Qo] A WA GARE Uehia gvk AW AzA o 4R TR
Aeo] 28| AstH I FREE UPo] AL 3~migatolo) ] YFHAH #2)
4g @ 4 9k I 56 ATWA ¥ L= WS Uehhz Ytk TI~T2
L g7 &9 2Eoln 13~T62 Bol 7 Aeholth AW Algste]l 871 ol 9
& TI~T6o] BF M3 stste F4E Ushia otk

N2 Aol B dTold 273 S AolE Ushiy] 9ig 1T 49

2 BF of~2mHgd) YAEL B 4+ UYL, AT B2 Ul AL BY 2=
o] EFF of ATHToIHY 2= 4 odrh wetd AF PAUe AT

2
=
2

ol
=
g 35 T F A%

G} B2 L= HAY doly
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2. (k)] da7 49

= HolX= Alg(fK)el tis) @ ZB7IE ol &3 B3Z ool JT HHES
Bstgicth. & HolA €olX AP e ¥4 TS EUR € IRV E ol§
Bzt el dd AdEE IR stalch

e &

10, IRV E 0|8 ¥ 45 AE 22

AW el 291 ( £ ) | @ 28I F(£/min)
Type 5 115 4
Type 6 115 5
Type 7 115 6
Type 8 115 7
Type 9 115 8
Type 10 115 10
Type 11 115 12

F 102 dIVE ol 8% ¥ He A8 2PE Vel gk AF ®HA
of & 11572 ¥ & ZBIY KHE vEA sl 4 AYP A2 0E F
o} X|3NEL & }o:h;].

A Az A RE 25 AY 5YsHA §A stden, &Y oHeE 23 =
3 2] ¢tade] AE ZulAE A}L5e] 60mmHg o] =YEIAE w A¥)

WHE JUste] ZAEstgch E3, dARTVE FYUEHE EY 25+ BTCE
371 418l A7) B E AMEste] B & & Ao 3t
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%) 57, Variation of pressure in vacuum tank by water flow rate at
4 ¢ /min, 115L,,
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18] 58, Temperature distributions in vacuum tank by water flow rate at
4 ¢ /min, 115Ls.
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% 93, Variation of pressure in vacuum tank at 100 L, recirculation
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M 15. Geometric properties
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%! 102. Pressure contours at P;=200kPa.
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%! 103, Velocity vector at P=200kPa,
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%) 104. Pressure contours at P;=300kPa.
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%! 105, Velocity vector at P=300kPa,
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% 106. Pressure contour at P;=400kPa.
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3%l 107, Velocity vector at P=400kPa,
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%! 108. Pressure contour at P;=500kPa.
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%! 109, Velocity vector at P=500kPa,
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13l 110, Variation of suction pressure at P;=200kPa, 300kPa, 400kPa and
500k Pa.
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X 16. Main parameter for Numerical analysis of 2600Pa

Nozzle inlet boundary
o Outlet boundary conditions
conditions( ;)
200k Pa, 403K 2.6kPa, 293K
300k Pa, 413K 2.6kPa, 293K
400k Pa, 423K 2.6kPa, 293K
500k Pa, 433K 2.6kPa, 293K
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PRESSURE
REL TG PREF
PA
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2730
2574
2364
2158
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1737,
13527,
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4742
2637
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%! 111. Pressure contour at 0.05kPa to 3kPa, P;=200kPa, 403K.
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18 112, Mach number contour at P;=200kPa, 403K,
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REL TO PREF
PA
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%! 113. Pressure contour at 0.07kPa to 3kPa, P;=300kPa, 413K.
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13 114, Mach number contour at P;=300kPa, 413K,
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PRESSURE
REL T PREF
PA
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T6T.3
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L

%! 115, Pressure contour at 0.08kPa to 5kPa, P;=400kPa, 423K.
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3%l 116. Mach number contour at P;=400kPa, 423K.
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% 117. Pressure contour at 0.1kPa to 5kPa, P;=500kPa, 433K.
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%) 118. Mach number contour at P;=500kPa, 433K,
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12! 119, Pressure distributions of inside ejector at P;=200kPa, 300kPa,
400kPa and 500kPa.
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181 120, Pressure distributions of inside ejector at 0.0kPa to 10kPa.
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%! 121. Mach number distributions of inside ejector.
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13l 122, Variation of suction pressure at P;=200kPa, 300kPa, 400kPa and
500k Pa.
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18! 122, Photography of experimental setup.

3 17. Experimental conditions

Steam Primary working Secondary Steam
pressure( kPa) fluid working fluid | temperature(K)
Superheated
200 Air 403
steam
Superheated
300 Air 413
steam
Superheated
400 Air 423
steam
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500 Air 433
steam

3% 1232 A% o] 200kPa, 300kPa, 400kPa, 500kPa® wi 48 HHE U}
el otk o 10835 ZAT Fo o] YFsAE A B 4 rh 1Y

1242 &Y {3} g =E AALE 2Fst] UERR Jlojt,
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T3] 123. A variation of pressure at 200kPa, 300kPa, 400kPa and 500k Pa.
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% 124, Detail in variation of pressure at 2bar, 3bar, 4bar and 5bar.
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% 125. Vacuum pressure distributions of CFD(steady state) and

experimental ,

80

—e— CFD(trasient)
70 r -0 Experimental(5bar)

60 -

50

40

30

Pressure, (mmHg)

20

10 |

time, (sec.)

%! 126. Vacuum pressure distributions of CFD{transient) and

experimental (500kPa).
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1% 125+ CFD(steady state) &} Aol g g ¢S vjAste] Yepd 1
g Zolrt, FAFYH oA oY &7 4 FA 2L 2.6kPa, 293K22 FIlAL,
ofFE R 7] ¢4y AL AE FUME o &3t IFE FET 8kru,
293ke.2 AFsidct. AP +AHMS FL YHor S APt 2 2
2} AgolA uje] T EAFE A3t HBA FX A ALyt FARRE
A& o 5 odddeh FASANG AP AT vz AFoA FY g Al A
P=3miHg F= Urhf glom, o]Z& Hrfetd 760mmHgel thet AT 4o ot
7b 1wel ol B2 X312t Ao o3 A g2 BT HEY
Ve gich

7% 1262 CFD(transient)$} A¥ol 23t AF g wlzste] Uepd dzi=
ojth. WA HEje] Alat2 AEI FUYT RALE AYS stHEdl, A oF
BE A8 FxtEE Al UF IF d¥o] 60mHgd wiFE siHE S
th FRFAL 62 FUE AL st UEISE 607hH AME I¥stAch

-

FY U9 4

JeZold BE £XNY ATYHLS AY FHOT 4 Beh WsE 2e
g 4 g, ol £ANT 4P FYLRY SAAlolN WAL RO
2 mieE)

AEY AZFUY dolHE 62 odME AY vy A S Uehiz
a3 1269 FFYPol] it AP I Zol N AFUPo] FAYH o] Fof okzte] A
t UehiA|E o}1.3~2. 5mHg®] HF4 ko] Wt wrEEHE A& vrhz
th #2842 AF gYPE o4 .196~1.197mHg B =] ofzte] AF Y 71
Harh wigEER, A@ sANY At AY FA4F 13U E vehix

2 dold 245 g0 wguelE FFY FY ¢ A5 Urhiz g
thoole x39) AAL UFAL A 13, oY 270 iyt dLoz o

g ol g7 AAolA oJHE XA Tt MAE ZespAnt A Axmle] A
Aol whel ulgAzel e AAHA AR AN Assithe RE UEhin
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68 TIFAL Fa-Hrizo] tat 4

o] EHoME FHAT A WHIE Ut FHY 4 FFH4L {E Uisto
g3t 13 1270 £ |7 A&
JEIZE =AMF ez Uehidcoh J#oA F=
7 Thol Mo T Aol, Hrf WAy ¢ & Fi/FRE FYstart. 714 spEAE 1
2= ZtZ st 2 AFe stRE uvehin, F3d f2d B¢ (2%
127(a))= fr&ol AFE3 Fo AFE Q@ 7IF3lden, G54 F2(Id”
127(b)) 8] BRole 28] 3 vena contracta 3HF2] A

BlE @2 sPEstnt a™eA p= He, PP L zet /L A te(base

e,
N
0
o
ol
o
X
=
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o&
— ﬂllﬁ
o
)

fr
1=
,
nm
o,
ra,
le
ox
=
e
s © rm
[

pressure). “* & REU FOE AW gFLAoITh I 1272 FE YToIA
50l oheH(1)Y A9, o
o owgste ZA%E TAT Bl 3 4
D457 VAT B ATAE 77 D~Q AololH s Huty e
A BgEAel Wiastel Atia sbgsted TASATh E R5E VAR 7

Y
W, TR FHSHE LRIN YU 3

Continuity equation : p,Fu,= p,Fyu,= (6.1)
Momentum equation: p,F +p;(F, — )+, = p, Fy +ma, (6.2)
Energy equation: h;+ %(U_I)Q = hy + %(U_Q)Q (6.3)
Equation of state: p=pRT (6.4)
Equation of mach number: M= u/\/ﬁ (6.5)
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Pressure

(a) Abrupt contraction pipe (b) Abrupt enlargement pipe

18! 127, Schematic diagram of abrupt contraction and enlargement

pipes.

s1e] A(6.1)~(6.5)04 ZHT /e AToIN MeLEH Hojwayw
(SFUF)E 7HAsHe AL nx2t p P T peE Hm, 919 ASZEE ol

E9 72 7T 4 Qivh. ¥ A(6.1)2} (6.3), (6.4), (6.5)0] tisle] HrjH 3
H] + & AHL3IE ot} ol FYH p/pr E= F YTk

UM 24— 10 o
o Oz @AtelY HWEH] p/pie 2](6.4), (6.5), (6.7)& o]-&31H
1
P _ M{H(W—l)Mf}? (6.7)
p My (24 (y—1)M] '

= 2otk E A po/pe BHEHE BAY (6.5)2 A(6.6)02RE tha
o] FolArt.
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2] 2 (6.6)~(6. 8)% frEol dadEizta JPETE ZleR, /2 dHFo] o
7=0.10] oAM= gYich FH) AFL miske FAN (6.1
(6.5)2F &< a(= wum )& o] 83l 2(6.2)& HMH3 12 BA
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E
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o
)
2
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1 1
M{2+G-0M} M2+ (-1 6o
1+711122 N pf)(l_sp) (6.9)
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L+~ +(

71014 pee IH 127(a)el L}E}L" Hiel o] #-52 4H5HES LY AU
o, FHul dFolA FEol £2F+IAY F-F(=1.0). T2} Zo| pr o T3t A

£ @g 4 gtk

1
Pr_ ¢ { (7“)2(”'7]‘4;)1(7“)} (6.10)
M2+ (-1}
A8 Aol AA LY pr= M2 Fhol 1o FI8HE pe/pi=02 Hrh M<1.08] Z-¢,
JolA pi/pi=1. 022 7E3RA T, p/pi®] ZE FEiHA U= e
of % FolmE, FHT AToIM VAT FAF, SERE, URZE 53 B
A=A "ot oetA g gue] 159 E5ouRe S/ EAREEA ¢
Bl 758 S LA MK 0oAME p/pi<l.00.2 E £ glr}. dntzo
2 FH FEAA wAsts A f53 R dHols2gd IA &S
2l o=th wehA pe/piol] oiE] o3 Zo] FoZich

p /=
T —1.0-ar’ (6.11)
Py

A71o1A ag} B MAHTE 2 A Hrf WFuo] T FeE, o B
o TAE Urhind, o $26l4 agt B L - Zhol Z7iel oiat 27
A ztasiel, ¢ 7b o 0.28TF AXE A A QA Bk olAY ARL
WClel A ALl QA Uei, ol A4 FuW Awe WA} 2
A ghThaL BaLE o QLT
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YOASZ FUALAE o) TH4L FEE AR whoheod e} 240

o2t AL FE2Y ARFet R dulel T
oJ&3HA =M, .:’.%I 127( yollAl LR uvlet Zro] wbH 28] A& vena contracta
offA] WAttt I-oA ¥hH C:= f3 whdFo] AT I &= vena contractao]
W, FadE] S F/RE 3590, ot A48H fERde 1U%
o] Borda mouthpieceE X o2 Qlal, ARIH| &3l AU whd 19 Y
2 ZYsicttn JHRSIg ey, = (2 TS FH4o] wlE ZFHA < (Contraction
coefficient) CcE T U3t} o] 3 2FAFCcy Ho|lxRSF7) v|23d A3 v
UH4 5 A9, Jeln wE Faur} T Aol okhst L VA 4
= Zlo® oA ot}

Al M AU st Pol MY F5ol Ags} gk A o
Zam AN - (F/F)ol A&, c o gho] 10 Y Ao EEAHA &
wasi, A 453 @ QxRN @A Brh mebd ol %zal 9g Rl
Asted £ ATeME T3 B A ol &staT)

C. = 0.61375+0.13318" — 0.26095" +0.51146° (6.13)

A7 B W Pt 95 297E ERAL coof
Sey

CEEE
22] wiHAo] Ztix 7}"35}?3, :LETEH*W] *}%54 Zlﬁﬂ‘ﬂ”g’ﬂéa HLE £ 9l
o wehd 3E4 42U A9 L5 YL 0 Po] 2oir)

P E oy (Fz _F1)+p1u_12Fl =p,F +p2u_22F2 (6.14)

SF4 HEoA LAASIE reaction forceE: LER D, 2]9]

J
o ZawAu] - o QU WE A& TheIt ol 2ok,
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u  F(1-F) P My

w Mo 0 EO0-F)
“ 17 ! ’ (6.15)
e P +AE) M i
1 s 2 1+7E5
T £ —— 1 +qF)1—F) (6.16)
f2_ R 1
]-i ]‘112@ ’7 5
v—1 1— £ I;
14+ -—
2 1+~F
P2 (14 F) — il (6.17)
Poi 1+ =2
2
98 4Bl AHgH Fid} Fsi theel A2 et
_1 7
[p(1+~M2) — (go—l)(lﬂTMfV*
(6.18)

]1412302 2+ (y—1)M]
(v+ 1)}7’2

o|Esj oA a7 127(b)o] VER u}e} Borda mouthpieceZ2H-E ThHH C71x] 2]
AE F5HEA AEL] FHolA Yol Foid Loyt glou), AAHo=R oF
FA37l= ul¢ ZLIBIEE, 2 dYore 4 pcrt 7Y T st 43
stz st wely g O © Alolo] REWRAES ALstH Ajuy
BAELZ ti&3} Zo] 2o Frl

Continuity equation: m= p,u, F, = p,u,F, (6.19)

Momentum equation:

F(“, —\2 F(" —\2
e +p01(?+ﬂ)+/)1 (U1) K ZPCF"'P(;(UC) £, (6.20)

- _
pout c U

Energy equation: L—1+—:Lp—+—(21)
=1 p 2 ¥y—1 pc 2

Equation of mach number: A/ = \/ oC (6.21)
1+~(C.—1)

o AlolA ABA —& fEH U BIRE sy, et Rk 27 T
so2 gegct
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- - 2 _ y— 1 y— 1

Fio=

(6.22)

. 1_]%12902[2—&-(7—1)]%2]
" [1+72C— 1] Fie

91e] 21(6.18)~(6.21)& Aelshd, 21(6.14), (6.15), (6.16)2} Zo] wH D2
AeEfEFo] Fojz FPo wE oA HEjBES FIrL

2. OFAL F247 Hste] ofgt 444

121 128, Schematic diagram of ejector,

I 18. Main parameter for numerical analysis of contraction angle

Nozzle inlet boundary

conditions(P, 7) Contraction angle of diffuser(a)
2.5°

200k Pa, 403K 3.5°
4.5°
2.5°

500k Pa, 433K 3.5°
4.5°

2 FolHL M UFAL F27 W] oyt £AHE DAl dolA
e QT ¢ W] et £XslM AANE Eojz B AolN U7 ¥ 22
£ 200kPad} 500kPed ©) TIFA Z47HS 2.5°, 3.5°, 4.5°0] thal L% SE
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of thgt six & HF 4Y Fol ot S APsiAct. 2 HojA oA &
F BAA RAL 2.6kPa, 293K 313, oHE R 27| RAL 8kPa, 293K
2 it 38 128 oAYL AREE vehd ZAdd, 74 o7t tFAY
Faztolth, & 182 £XFH & 28 H4LE Uehia ol

PRESSURE
REL T PREF
PA

3nan
z7ag
2575
2363
2151
1938
1728
1813
1301
1083

;

5; :

a76.3
BE4.0
451.8
239.2
26.68

|

18! 128, Pressure contour at a=2.5° and P;=200kPa, T=403K.

W ACH MUNMBER

& 3.544
B 3.289
3.034
2771
2523
Z.268

2013
1757
=) (=2 En— 302
1247

0.9916
07363
04610
M 0.2256

YR

Y

L

3% 129, Mach number contour at a=2,5° and P;=200kPa, 7=403K.
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PRESSURE
REL T PREF
PA

0.1000E+03
9384,
G766
fi152
736,
BIZ0.
5304,
DEGE.
s072.
4456
3839,
Jeza
ZB07.
1591,
1374,

Y

-

%) 130. Pressure contour at «=3.5° and P;=200kPa, T=403K.

MACH NUMBER

A 2.ga0
B 2640
2429
2214
2.009
1.799

1589
I_B\ 1378
I 1188

D=t (— J 08T

\_%_9 0.7476

L 05374

D372

No01170

N

L

23 131. Mach number contour at «=3.5° and P;=200kPa, 7=403K.
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PRESZSURE
REL TG PREF
PA

0.1000E+05
9386
G773,
G159,
7543,
6332
B316.
57085,
5091,
4477
3664,
3250,
2636,
2023,
1409.

L

181 132, Pressure contour at a=4.5° and P;=200kPa, T=403K.

WACH NUMBER

& 278
ERS-
2323
21z
1921
1720
1918
[ ( [ 1117
10155
I_%?’ 0.7144
LS
03123
NIRERT
A

L

%! 133, Mach number contour at a=4,5° and P;=200kPa, 7=403K.
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PRESSURE
REL TO PREF
PA

3000.
2789,
2579,
2366,
2157,
1947
1736
15285,
1313,
1104,
0934
Bz 6
4721
2615
50.80

ki

L

%) 134, Pressure contour at a=2.5° and P;=500kPa, T=433K.

MACH NUMBER

o aE72
5 3407

3142

2677

2613

2348

2.083

1613

= | 1,554
1 Az8e

1.025

L 07600

04353

Noo0.230

L

%! 135, Mach number contour at «=2.5° and P;=500kPa, T=433K.
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PRESSURE
REL TG PREF
PA

0.2000E+05
01871E+05
0.1743E+03
0.1614E+05
0.1486E+05
0.1337E+05
0.1229E+05
0.1100E+05
9714,

G429,

T143.

SfiE7

4571

Y

L

%) 136. Pressure contour at «=3.5° and P;=500kPa, T=433K.

MACH MUMBER

A 3.234
B 2.996
2757
2516
z.279

2041
m 1602

1563
C==C = ( C I A

S 108
| L 0 6465
L 06081
0.3693
Mo 07305
Y

-

% 137. Mach number contour at «=3.5° and P;=500kPa, T=433K.
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PRESSURE
REL TC PREF
PA

0.2000E+05
0.1G74E+05
0.1749E+05
0.1623E+05
0.1437E+05
0.1371E+05
0.1246E+05
0.1120E+05
35943,
B6E6.
7429,
6171,
4914,
3657,
2400.

-

%) 138. Pressure contour at a=4.5° and P;=500kPa, T=433K.

hACH MUMBER

A 2873

B 2661
2450
2.238
2.026

1614
= 1380
D=t ( I 1178
J o 0aEe2

\_}'/ 07542

L 0.5423
0.3304

N 0.1185
Y

L

% 139, Mach number contour at «=4.5° and P;=500kPa, T=433K.
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18] 140, Pressure distributions of suction pressure at a=2°, 2.5°, 3.5°

or 4.5° and P;=200kPa or 500kPa.
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3. UHA iz Asjel cigt x4

% 141. Schematic diagram of ejector.

3 19. Main parameter for numerical analysis of enlargement angle

Nozzle inlet boundary Enlargement angle of

conditions( 7, T') diffuser ()

50

50

200000Pa, 403K 5°

50

50

50

50

500000Pa, 433K 5°

50

N | » RN e o e w

.o°

= AoA = oAE tvlFAY Huizd Hilel] tist X34 & ARSI oA
o A UF UY Wjo] tigt FAjH HIAE EdE & HoA dF ¢ =3
L 200kPa®t 500kPcd wi T]FHA rjzh& 3.5°, 4.5°, 5.5°, 7.5°¢] uisf LiF
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T35l gt siA 2 AF U dso] gt s S APt 2 HojA o
B 7 AA RAL 2.6kPa, 293KO.Z 319, oMY B 27| RAL 8kPd,
293K 2 sjadch. I 141+ dFE Y AR=EE yelbd Add, 7|4 prt tlH

Aol Hejziolt), ¥ 162 $A34S AT W4S Urhiz k.

7} P;=200kPa, 403K and $=3.5°, 4.5°, 5.5°, 6.5° and 7.5°

== =

ra o
L3 )
)
w o

Y

-

1%l 142, Pressure contour at (3=3.5° and P;=200kPa, 7=403K.

MACH NUMBER

A 4.530
B 3.270
am
2791
2491
.23
1.87z

]
1432

D) - 11sz
0.9325

04130
M 0153z

Y

-

% 143. Mach number contour at (3=3.5° and P,;=200kPa, 7=403K.
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PREZSURE
REL TQ PREF
PA

1730,
15819,
1307,
1043,
8636

Y

L

%! 144. Pressure contour at (=4.5° and P;=200kPa, 7=403K.

MACH MUWBER

A 3.525
B 3264
3.004
2.744
2483
2223
1.963
| 1442
1182
035212
L 0.6808
0.4005
M 014m

Q@Q

Y

L

%! 145, Mach number contour at (3=4.5° and P;=200kPa, T=403K.
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PRESSURE
REL T PREF
PA

3004
2787
2573
2360

2148
1933
1714
1a08
1292

1079
5.2
6317
438.2
2247
11.25

L

%! 146. Pressure contour at (=5.5° and P;=200kPa, 7=403K.

WACH NUMBER

m =

2486

2224

= 1363
A | 1439

L.
=
==

%! 147, Mach number contour at (3=5.5° and P;=200kPa, T=403K.
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PRESSURE
REL TG PREF
PA

3000,
2787
2573,
2360
2146

1933,
1714
1506,
1292
1073

665.2
651.7
436.2
2247
1125

Y

L

%! 148. Pressure contour at (=6.5° and P;=200kPa, 7=403K.

hACH NUMBER
& 34832
B 321N
3.009
2.748
2486
z2.2ed
1.963
| 1433
J 1178
09161
L 06545
0.3929
M 01312
Y

3% 149. Mach number contour at (3=6.5° and P;=200kPa, 7=403K.
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PRESSURE
REL T PREF
PA

3000

2767,
2573,
2360

2146,
1933,
1718

15086,
1292,
1079,
G65.2
631.7
436.2
2247
11.25

==

Y

-

%! 150. Pressure contour at (=7.5° and P;=200kPa, 7=403K.

MACH MUMBER
A 3532
B 327
3.009
2748
2486

i
533

J 1173
0.91681

L 0.6545
0.3929

M 01z
Y

%! 151. Mach number contour at (3=7.5° and P;=200kPa, T=403K.
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U, P,=500kPa, 433K and $=3.5°, 4.5°, 5.5°, 6.5° or 7.5°

PRESSURE
REL TQ PREF
PA

Y

L

8l 152, Pressure contour at (3=3.5° and P;=500kPa, 7=433K.

MACH NUWBER

& 3851
B 336
3114
2545
2576
2306
‘ M 2033
1770
‘Q I 1501
S 1z
0.9636
L 0695
04262
N 0I57S
Y

-

12! 153, Mach number contour at (3=3,5° and P;=500kPa, T=433K.
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PRESSLIRE
REL TQ PREF
PA

N

L

% 154, Mach number contour at (3=4.5° and P;=500kPa, T=433K.

MACH NUMBER

%! 155, Mach number contour at (3=4.5° and P;=500kPa, T=433K.
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PRESSURE
REL TC PREF
PA

a000
4844
4267
3931
3374
Erakil
2861
2505
2143
1792
1436
1079
Tézy
366.4
10.00

Y

L

%! 156. Pressure contour at (=5.5° and P;=500kPa, 7=433K.

WMACH NUMBER

%! 157. Mach number contour at (3=5.5° and P;=500kPa, T=433K.
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PRESSURE
REL TO PREF
PA

5000
4644,
4288,
333z,
3576
3zz0.
Cif4.
2508,
2132
1796.
14349,
1083
i
ama
1529

Y

-

%! 158. Pressure contour at (=6.5° and P;=500kPa, 7=433K.

MACH NUWMBER

A 3662
B 3.354
3126
2858
2.590
2323
) 2.055
—— 1787
| 1519
i 1.251

09535

L 07157

04473

N 0.1800

Y

%! 159, Mach number contour at (3=6.5° and P;=500kPa, T=433K.

- 157 -



PRESSURE
REL T PREF
PA

ki

o

%! 160. Pressure contour at (=7.5° and P;=500kPa, 7=433K.

WIACH NUMBER

& 3E62
B 33%
3126
2.858
2590
2323
2.055
’@ 1787
L I 1513
J1z9

0.9835

L 0nes

04479

N 01800

\Tf

%! 161. Mach number contour at (3=7.5° and P;=500kPa, T=433K.
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18! 162, Pressure distributions of suction pressure at (3=3,5°, 4,5°, 5,5°,

6.5° or 7.5° and P;=200kPa or 500kPa.
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Abstract

This paper represents on the heating properties of the paper type carbon heater. Generally, the

heat generation rates are proportional to the electrical currents. The purpose of this study was

intended to get the heat generation characteristics by input electrical power, and two types of

heaters were selected: floor type and frame type. In the experimental results, the temperature

and the current are proportionally increased with the voltage variations. The steady state was

after about 10 minutes, and temperature distribution was good.

Key Words : Paper type carbon heater, Frame type, Floor type
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<Fig. 1> Photograph of floor type carbon

heater.
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<Fig. 2> Photograph of frame type carbon
heater.

<Table 1> Specification of paper heater

Pdm-r heater

5 \ull‘- |Current| Watts |Resista | Frequncy
P @ | W |nce@ | 2
‘loor type| 218 | 1.08 235 | 203.4
Frame : : 60
200 3 92 66
type
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<Fig. 3> System for experimental apparatus.
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<Fig. 4> Schematic diagram for experimental
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<Fig. 6> Drawing of paper heater with frame
type.
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<Fig. 7> Temperature distributions with time

variation at each voltage for floor type.
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<{Table 2> Test results at each voltage for

floor type
Temp.
Volts {Current| Watts | Resistance (T 4T
W) | @ W) ((®)] Sur (T)
face Room
36 | 0.17 | 6.12 203.6 [17.5|155| 2
69 | 0.33 [22.77| 203.6 |21.7| 15 | 6.7
106 | 0.53 |56.18 | 203.6 [28.4(14.7|13.7
140 | 0.69 | 96.6 203.4 [39.3| 17 |22.3
154 | 0.76 |117.04] 2035 [43.5/17.6(25.9
175 | 0.86 |150.5| 203.4 [49.6(17.5|32.1
200 | 0.99 | 198 203.5 [55.7(16.1|39.6
218 | 1.08 |235.44| 2034 ([61.9]| 16 |45.9
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<Fig. 8> Current distributions with time
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<Table 3> Test results at each voltage for

frame type
Temp.
Volts|Current | Watts | Resistance |  (C) AT
| @ | W () Sur ()
Room
face
50 | 0.77 |38.61 63.8 273} 19 | 8.3

100 | 1.54 | 154 63.8 43.3| 20 |23.3

150 | 2.29 | 344 63.9 65.8| 20 |45.8

200 3 600 63.9 92 | 20 | 72
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<Fig. 11> Current distributions with time

variation at each voltage for frame type.
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A Study on the Frequency Response Characteristics of
High Response Flow Control Servo Valve
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ABSTRACT: The purpose of this research is to derive the principal design parameters gov-
erning the dynamic characteristics of the high response flow control servo valve. For this
purpose, a numerical modeling of the servo valve system and a parameter sensitivity analysis
to a frequency response characteristics were performed. As a result of these analysis, a basis
for improvement of a dynamic characteristics of servo valve was arranged.

Nomenclature

b  : feedback spring length [m]

B; : flapper effective damping coefficient
~ [m-N-s]

B, : spool effective damping coefficient [N/s]

C; : spool discharge coefficient

Cg; : drain orifice discharge coefficient

C4 : fixed orifice discharge coefficient

Cy4 : nozzle effective discharge coefficient

C, : spool volume coefficient

D : spool diameter [m]

D; : drain orifice diameter [m]

D, : nozzle diameter [m]

D, : fixed orifice diameter [m]

Js ¢ armature-flapper rotational inertia

[m-N-s7]

K, : flexure tube stiffness [N/m]

K, : torque motor gain

K, : feedback spring stiffness [N/m]

M, : spool mass [kg]

* Corresponding author
Tel.: +82-55-640-3185; fax: +B2-55-640-3188
E-mail address: hschung@nongae.gsnu.ac.kr

V; : drain chamber volume [m’]

V,  contained volume at each end of spool
[m’]

Xy : clearance between flapper and nozzle at
null [m]

X o © spool max. displacement from null [m]

Greek symbols

o - hydraulic oil density [kg-s%m)
: oil effective bulk modulus [m?/N]
y  : flapper length [m]

o

1. Introduction

In general, servo or servo mechanism mean
an organized control system in order that the
system follow random variations of target val-
ue by controlling position, velocity, acceleration,
and attitude of an object. Electrohydraulic ser-
vovalve is valve for controlling oil flow or
pressure of hydraulic system, which valve, in
general, controls hundreds kg/cm® of pressure
and thousands lpm of flow through weak elec-
tric signal in about some mA. Electrohydraulic
servovalve is an important part that decides
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the whole capacity of control system, in case
of configuring hydraulic servo control system
of the various industrial heavy equipments,
robots, aircraft, and satellite. Therefore, in be-
half of competing with advanced nations in the
area of up-to-date technology in the future,
the most important tasks are attaining localized
hydraulic servovalve skill and servo control
system’'s design skill. Accordingly, the skill for
interpreting dynamic characteristics™ of servo-
valve as well as the skill for designing electric
machine are surely obtained, which typically
come under mechatronics technology develop-
ment. In particular, electrohydraulic servovalve
of a nozzle-flapper type was developed by
Moog in US., and established theoretically by
Merritt.? Afterwards, a study on characteris-
tics of nozzle-flapper part's pressure and flow
was done by Fengm who offered experimental
apparatus and experimental value toward noz-
zle's spraying power and spraying coefficient.
Lin and Akers* predicted the capacity of
nozzle-flapper valve and presented their study
results. This thesis analyzed modeling of the
whole servovalve system and interpreted sen-
sitivity toward frequency response character-
istics in order to derive influences of each
parameter on the whole system’'s dynamic
characteristics through a quantitative (numerical)
analysis.

2. Numerical analysis for servo valve
2.1 Summary of servo valve

Types of Electrohydraulic servovalve are clas-
sified into nozzle-flapper type, z-pipe type, de-
flector type, and other types according to main
shapes, which sorted into 1 step, 2step, and 3
step according to amplification steps. They are
also divided into flow control type, pressure
control type, and pressure-flow control type ac-
cording to control types, are classified into di-
rect feedback way, position feedback way, pres-
sure feedback way according to feedback ways.
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Fig. 1 Schematic diagram of a typical electro-
hydraulic servo valve.

This thesis studied flow control electrohydrau-
lic servo valve of nozzle-flapper type. which 2
step power feedback way. The basic structure
is shown in Fig. 1.

2.2 Analysis for nozzle-flapper

Mathematical model of each operative torque
is decided as follows;

(1) Magnetictorque

T, =K, i w
(2) Torque by flexure tube

Ty=K; 0 (2)
(3) Torque by feedback spring

T.,=M~+F, r

Sl e gt i

(4) Torque by flow force in flapper-nozzle part

Fo=(F—F)-r
= (Py—Pu)An-7
+4xC¢3;[(xm+x;)z(P,l—P.)
~(xp— %) (Pp— P+ 7

(4)
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(5) Derivation of flapper movement equation

2
D _;YLI_EEJFBE. % =T+ T—T—T; 5B

Figure 2 presents a various torque that are
generated in armature-flapper assembly part
when inputting electric current into torque mo-
tor.

F,
Fig. 2 Acting force on flapper-nozzle assem-
bly.

3

Fig. 3 Acting force on feedback spring.

Py

1Dyl
=

__..'—m-"'"'"f;' 5‘*\3" ]. Tin 4
I — .
\'Twmwn.!r. Q‘-‘;\ L

I: :
E}
2

Fig. 4 Flapper-nozzle,

Figure 3 shows that there is counteraction
between Fs, force given to both ends of feed-
back spring and moment Ms on the lower part
(connecting point) of flapper.

Figure 4 represents flowing force operating
flapper through fluid coming forth out of noz-
zle of both-side-spraying flapper valve.

2.3 Analysis for spool-sleeve

Figure 5 is a detail drawing of hydraulic ser-
vovalve's spool. Flow passing through orifice
from feed line is supplied to flapper-nozzle
part of valve. Force operating here on to valve
spool is divided into flow force F; and F,
generating by pressure from spool’s both ends,
and F; generating by feedback spring.

2.3.1 Continuity equation of spool inside

Pressure change shown in each chamber from
hydraulic servovalve’s feed line to spool’s cross
section, and nozzle part as well as inside of
drain orifice are decided by following conti-
nuity equation.

dP, .
71 = “% " (Qsl_in_Atxv) (6)

dP, .
Tz Z_% '(Qsz_an"'Asxv) (7

Here,

Faz
—F!
_’"‘.
——’F

L

L
2 1,5

Fig. 5 Structure of spool valve.
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n Y= Vot A,-x,, Va=Vop—A,x,

(8)
- dP,
g =-%-(0.1+0.r0¢)

232 Movement equation of spool valve

In case that fluid accelerates or decelerates
by fluid - flow change inside valve chamber, a
transient state flow force equation inside each
chamber is as follow;

F; = (L,—Ly)CdoV p(Ps— PL) ‘:}:" ()]

Normal state flow force equation that pre-
vents valve's opening because of increasing
pressure-differences caused by spraying veloc-
ity changes of fluid flowing throttle part by
fluid's flowing area control is as follows;

—=— Q
Fs =p@, Cc - wx, cos &
%
+0Q; Co - 5%, cos 8 (10)
= 2CgC.,ﬂ.'(Ps"’ PL)X‘; cos @
Here, @ is jet angle. Also, flowing force op-

erating onto valve spool is presented as fol-
lows;

F;=Fs+ F, (1

Force generating by pressure of both valve
spool’s ends is as follows;

Fy=(Py—Py)A, 12)
Therefore, valve spool's movement _equation
derived after synthesizing the above equations

is shown in Egs. 13 and 14.

d’, dx,

M, = (Pul_Puz)A: (13)

+Fs—Fy

d*,
dtz

ﬁv
+{B,+(L,—L3) Caw(Ps— P)} Z 14

+(2C¢C.,w(Ps—P;_)oosr+K.,} * Xy

(Pu—Pu) A+ K, (r+b)8 =M,

3. Sensitivity analysis for frequency
response characteristics

As for scale showing dynamic characteristics
of electrohydraulic servovalve, frequency re-
sponse characteristics are generally used. As
for frequency response characteristics, frequen-
cy-e in which 90° phase difference is shown
from the system’s bode plot is defined as
bandwidth of hydraulic servovalve, then, they
are descried by minimum input-output ratio in
this zone. And it becomes an important design
specifications of the system.

3.1 Model linearization and der_l\_fat_ion of
transfer function

3.1.1 Linearization for the model of ‘hydraulic
servovalve '
In order to predict hydraulic servovalve's fre-
quency response characteristics. from mathema-
tical model, the process of model linearization

. is required. For this model linearization, values

should be defined at hydraulic servovalve state
variables’ operating point. Above all, in order to
identically state range of each state variables’
values, normalized state variable need to be de-
fined as shown in following equation, then, line-
arization model should be stated with use of it.

—__ Xs - x’v

xv_xw» xs_xw (15)
G=-4 5=-2L

8= b, 8= » (16)
—_— _Pnlh 5 _Pnz D _Pf
P, = Ps ' P, = Ps P'_Ps (17

Values at 7 state variables’ operating points,
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which state the mathematical model of hydrau-
lic servovalve are calculated as follows. First,
valugs at operating points of spool disposition,
spool velocity, flapper’s rotational disposition,
and flapper's rotational velocity are expressed
as follows;,

% =0, 2,=0 18)
=0, =0 19)

Also, pressure at null of both-ends’ nozzle
chamber and drain chamber is derived from
normal state governing equations, ie.,.in case
of no pressure change in each chamber, Egs.
20 and 21 are settled;

(Pu)o = (Pu)oy = Ps, (P)op=Pu
CaufA, 2—::‘5 Y1=Py . . (20}

"CgD,.a’xmv _2%"5’ -y ?o—?‘e =0

2Cy Dunxyo) 2_'::2 "V Py— Py
—caA,\}'%'-dP.o =0

Normal state pressure is calculated as follows,
at operating point of each chamber, through
the above equation.

@1)

— _ __RX1+RH
Po= 1+ RZ(1+R%) )

R RZR:
= T L DI LDy
- Po=TTRIG+RD e

Here,-lé,andR,are-expressedbyEq&%and
25.

CaA,

C@D. Xy 20

R, =

2Cy Dy nxsg
— n
Ra= CauAy (%)

In accordance, if linearizing the non-linear dif-
ferential equation by the operating point stan-
dard, which describes dynamic behavior of hy-
draulic servovalve, following expressions are de-
rives;

Movement eguation of flapper
: s :
12t +B. %+ k0=
K\ (4P, —dP )+ K, i+ Kz,

(26)

Here,

J.=J;, B,=B;
Ki=K+ K, (r+b)°
~167CY %707 Ps(Py— Poy)
2.2
K1=“ Ps;i,r + 43’C§atm?’Ps )
_ K (r+8)xm
__—_3. ,

K i

K, 6.

K,.=
Movement equation of spool
2
M,%+B,%+K,x,=
_ . _ . en
K3(4P, — 4P ;) + K, 6

Here,

Mv= M,

BV-B:+(L1_L2)C‘{“N p(P.S_PL)
K,=K,+ ZC.'C.,W(PS— P;)cosy

- PSA: , K4= K..(;+b}9..

X om o™

K;

Dt ial ion_f . .
chamber

F@P) = ~K,dPu-KD
-~ m% +K,4P,
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4 (4P ) = — K, 4P+ Kb @)

+K,%E+K,AT°.

Here,

. !(Ef_s_ )
S VoPs{C"’A" o (291—?0)
2P
+CaDumenl 5 (orry )

P =
K,-—I_—,f}-,-s- Cdﬂ,xrﬁ,\/ =2 P—Pa

4 (4P.) =— K.dP.+ K 4P+ 4P.5) G

Here,

K= 2Capimen| B 55l
L Ca-”‘d\(zf:; ’ (_ZLJ‘:]}

B [ 2Ps 7_1_
Ky V‘Ps(cdfnunm P 2 ?o_?‘o

3.1.2 Derivation of transfer funtion

When Laplace transform is executed toward
hydraulic servovalve's linearization model ob-
tained in the above, following transfer function
expression is derived;

(Jo5*+ Bas+ K,) 6 = K (AP, (s)

= = — @3n
—APyp(s)+ K I+ K, X,

(M,s*+ B,s+ K,) X, = K3 (4P, (s)

_ — (32)
— 4P, (s)+ K0

.0

o | 5 J
Lok | |

Fig. 6 Block diagram of the electro hydratilic-
servo valve. '

($'+' K,)A?,u (S) = — Kea— K;SY.,

_ (33)
+K,dP(s) -

(s+K,) 4P (s) = K;6+ K;sX, -(3.4)'
+K,4P.(s)

(s+ K,)Aﬁ.(s) = K{(ﬁ?ul(s) 35)
+AT’,.2(S))

The spool disposition transfer function and
block diagram when inputting electric current,
is described in Eq. 36 and Fig. 6 respectively.

X.(s) _ N(s)
7() ~ D(s) 36)

Here,

N(s)=Kn(s+ K,){K,(s+ K,) —2K;K,}

D(s)=[{(Jas®+ Bus+ K.) (s +K,) + 2K, K}
x{(M,s*+ B,s+ K,) (s+ K,) + 2K, K s)
+ (2K, K s— Ko (s+ K)H K (s+ K,) -
—2K;K,}]

3.2. Sensitivity analysis for design parameters

This thesis selected the main design param-
eter that should be considered when designing
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Table 1 Principal design parameters

Index Symbol Description
1 K, Torque motor gain
2 K., Feedback spring stiffness
3 K; Flexture tube stiffness
458 Dk Fixed orifice diameter
5 D, MNozzle diameter
6 D Spool diameter
T Dy Drain orifice diameter
8 X MNozzle-flapper initial gap
9 Ir Flapper rotational inertia
10 B;  Flapper effective damping coefficient
11 M, Spool mass
12 B;  Spool effective damping coefficient
13 B Oil effective bulk modulus
14 4 Flapper length
15 b Feedback spring length

hydraulic servovalve and examined the system's
frequency response characteristics changes shown
according to changes of each design parameter.
Then, it was aimed to extract factors giving
major effects on frequency response characteri-
stics and make use of them as design infor-
mation. The parameter of this thesis is shown
in Table 1.

Figure 7 is bode plot concerning frequency
response characteristics of standard servovalve,
and represents amplitude ratio and phase dif-
ference according to frequency transform.

Fig. 7 Bode plot of servo valve.

3.2.1 Definition of parameter sensitivity for frequency
response characteristics
The sensitivity function for finding out pa-
rameter representing governing influences upon
frequency response characteristics of hydraulic
servovalve through an interpretive AM (access
method) is defined like Eqs. 37 and 38.

Sensitivity f litude rati

_ GG | b
Si=gtol o =1.2....15) @D

Here,

4G(@) =G0 pu3sap—1 GO , 3,
4p;=0.01p;

Sensitivity for ol Jiff

.d(é Gi(jw)) by vl
S‘.=Tjw) = _21"5" (1—1,2,...,15}(38)

Here,

A2 GCGa) = £G(i0) 5,1, — £Glia) -3,
4p;=0.01%;

3.2.2 Review for parameter sensitivity analysis

Figures 8 and 9 show sensitivity analysis re-
sults on torque motor gain, flexure tube stiff-
ness coefficient, and feedback spring stiffness
coefficient. The sensitivity ratio to torgue motor
gain ratio shows regular characteristics regard-
less of frequency, which, in particular, doesn’t
have effects on phase difference of the system.
In case of flexure tube stiffness coefficient,
particularly, in case that parameter values rise
in the low frequency range, a phase lag effect
is shown. A rise of feedback spring constant
causes a fall of gain ratio, which effect is
shown in the range of low frequency in par-
ticular.
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Fig. 9 Phase difference (i=1,2, 3).

Figures 10 and 11 show sensitivity analysis
results on hydraulic servovalve's spool diame-
ter, fixed orifice diameter, drain orifice diame-
ter, and nozzle diameter. In case of fixed or-
ifice diameter and drain orifice diameter, gain
ratio increases, phase difference also shows a
character of phase lead. But gain ratio shows
governing effects in the range of high fre-
quency and phase difference shows governing
effects in the area of low frequency. Sensitiv-
ity characteristics of spool diameter and noz-
zle diameter are different in ranges of fre-
quency. In particular, effects of spool diameter
are comparatively bigger, characteristics of the
system change as follows; gain ratio rises ac-
cording to value-rise and falls in the area of
high frequency. Nozzle shows opposite char-

Rl s

o

\

T vé:"-ﬂ'%#_‘iﬁf

Fig. 11 Phase difference ( {=4,5,6, 7).

acters, but in case of nozzle, its SG (specific
gravity) is lower when compared with spool
diameter. Sensitivity toward phase difference be-
tween two parameters is shown in the range
of low frequency.

Figures 12 and 13 represent sensitivity anal-
ysis results on clearance hetween flapper and
nozzle at null [m]. In particular, sensitivity to-
ward gain ratio is dominant in the area of
high frequency and sensitivity toward phase
difference is dominant in the area of low fre-
quency. But when considering sensitivity of pa-
rameters stated in the above, system frequency
response characters are comparatively insensi-
tive toward parameter changes.

Figures 14, 15, 16, and 17 show influences and
influence results of inertia - viscosity related
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ol

Fig. 13 Phase difference. Fig. 16 Amplitude ratio (=11, 12).

Fig. 14 Amplitude ratio ( i=9, 10), Fig. 17 Phase difference ( i=11, 12).

parameter changes upon changes of system fre- results of interpretation, spool’s mass (quality
quency response characteristics, in movement and quantity) changes and viscosity coefficient

equation of flapper and spool. As shown in changes had no effects on changes of system
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characteristics, which is shown quantitatively.
The rotational inertia of flapper is identical, but
changes of effective viscous coefficient in flap-
per-nozzle part, which are caused by fluid, had
comparatively bigger effects on other dynamic
parameters in the area of high frequency over
system natural frequency.

4. Conclusions

This thesis examined movement characteris-
tics of hydraulic servovalve and executed mod-
eling in each main part of valve through dy-
namic characteristics interpretation of flapper-
nozzle and feedback spring and flow interpre-
tation according to spool disposition, in flapper-
nozzle type 2step power-feedback type flow
control electrohydraulic servovalve.

Also, sensitivity toward frequency response
characteristics was interpreted. This thesis sug-
gested the 6th system's transfer function model
from the Linearization eguation, defined sensiti-
vity function toward each parameter’s changes in
servovalve, and quantitatively derived influences
of each parameter upon the whole system's
dynamic characteristics, then compared them.
This thesis made a standard to effectively im-
prove dynamic characteristics of servovalve.
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The aquaculture tank is used for breeding fish in sea water which was pumped up to land.

The flow characteristics in the aquaculture were investigated with varying the tank geometry and
flow rate. The numerical analysis has been employed for calculating the velocity and tempera-
ture distributions in a water tank of rectangular type. The finite volume method and SIMPLE
algorithm with 3-dimensional standard k-¢ turbulence model were used for the numerical
analysis. For comparison with experimental results, the PIV system was applied to visualize the
flow patterns quantitatively. The numerical results showed good agreements with the ex-
perimental results. The mean velocity and temperature versus aquarium depth were represented
for various circulating flow rates. Especially, the aquaculture environment is recommended that
the aquarium depth has to be d=0.5m, and this case is the condition of higher velocity and
temperature in winter season.

Key Words : PIV (Particle Image Velocimetry), Circulating Flow Rate, Flow Characteristics,

Standard k-& Turbulence Model, FVM (Finite Volume Method)
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from the eutrophication, red tide, etc. On the
other hands, the importations of marine products
are increasing. Thus, the fisheries are gradually
turning to the aquaculture for getting more high
values.

This aquaculture system is free from the ma-
rine pollutions and outside sea water conditions.
But a land aquaculture tank requires more wide
space and the equipment of circulating sea water
system. The design of land aquaculture tank is
very important to the growth of fish. Therefore,
the water circulating system in a land aquacul-
ture affects to the water temperature and velocity
of flow. There are many kinds of the aquarium
tank ; the general type is a rectangular shape be-
cause of more effective space utilization. But the
optimum design of aquarium researches seems to
be lacking at the engineering technique.

Several investigations of aquaculture in sea
water have been reported. Kim (1997) examined
the marine pollutions in view of biology. But,
this biological treatment has no problems in
aquaculture industry because the aquarium tank
is separated from the water pollution. Partrid-
ge (1989) and Sannomiya (1987) examined the
swimming structure and behavior of fish in aqua-
rium tank. Takaki et al.(1993) considered the
affection of the aquarium tank size and shape.
Jeong et al.(1998) reported the flow characteris-
tic by comparing a numerical analysis and flow
visualization images. Mirashi et al.(1995) exam-
ined the affection of water current in aquacui-
ture environment of the seas. Generally, the
aquaculture equipment has two types of closed
and open flow systems.

The closed type is the system which the sea
water is recirculated again in the aquarium tank.
But, the water in case of the open flow system
is discharged to sea directly. Thus, the first sys-
tem need a more expensive equipment cost, but
this system can be saved the energy for heating
the aquarium tank water in winter season. Lee
(1994) carried out the experiment of a flow char-
acteristics in the closed aquarium tank. In the
design of aquaculture tank, what should be em-
phasized is the aquaculture environment. This
means that the wrong design can cause the mass

mortality of the breeding fish.

There are many kinds of important things for
breeding fish in aquarium tank, what are espe-
cially important are the velocity and temperature
condition. The general swimming pattern of fish
is intended to be counter flow direction, thus the
fish can be exposed to fatigue condition in case
of large velocity. Hirashi et al.(1995) reported
that there is a velocity limit in aquarium tank,
and they experimented the velocity limit has to
be under 3.2/ (cm/s). Where, L means the
length of fish. But the velocity can attribute to
cleaning an aquarium bath.

For a temperature condition in aquarium tank,
Lee (1994) and industrial filed of fishery recom-
mends the temperature range of 10C to 25C.
Therefore, to maintain this temperature the wa-
ter heating apparatus is required and the growth
of fish is very slow or can be died of disease in
winter season.

In this study, we performed a numerical an-
alysis for investigating flow characteristics in a
aquarium tank of rectangular type, and the nu-
merical results were compared with the experi-
mental results measured by a PIV (Particle Image
Velocimetry) system. The PIV was adopted to
study the flow characteristics of an experimental
model with rectangular type. This paper is in-
tended as an investigation of the flow charac-
teristics in aquarium tank for breeding fish, and
we will concentrate on the velocity and tempera-
ture distributions. The main parameters are the
aquarium tank depths and circulating flow rates
in determinating the optimum aquaculture condi-
tions.

2. Study Methods

2.1 Numerical analysis

Figure | shows the schematic diagram of nu-
merical analysis model. The geometry of rectan-
gular tank model is WXLXH=0.2X0.2X0.1
(m). This model is consisted of two inlets and
one outlet with the same size of 0.01X0.01(m).
A 41 X41X41 non-uniform grid was used in the
computations, and the grid points were densely
packed at near inlets and outlet. There are many
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Flow in
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Fig. 1 Schematic diagram for numerical model

kinds of turbulence models for a flow field cal-
culation (Jones et al., 1973 ; Patel et al., 1985), we
introduced the two-equation turbulence model
by Jones (1973) and Seo (1998). This turbulence
model is based on the wall function and very
widely used in a large space calculation because
of no fine grids near walls and economical CPU
time.

The numerical analysis was assumed as 3-
dimensional and incompressible flow, and the
standard k-¢ turbulence model is used for solv-
ing flow field. The governing equations are as
follows :

Continuity :

oU;

ox, 0 m

Momentum :

3eUU) 3P _ 3 [ (3, oU;
axX; aX,.'an["<TXT axi)]

—ain[pTujJ +0u0ghAT

Energy

AeUT) _ 3 [< @ m)aT} 3)

Turbulent kinetic energy

a(PU,-k)‘ a L ok
X *ax;[(ﬁ*“) aX,J @
+G—ps+g/?g—:g—)€

Turbulent dissipation rate

G gt T
G =8B o

Where, G is the turbulent generation term

=, (90U, 3U; \ aU:
C=( G+ o5 ) o%. ©)

Here, the turbulence model constants are given as
follows :

Ci=1.44, C;=192, g.=1.3

(7
0x=1.0, C,=0.09, 6:=0.7

In this study, we adopted a finite volume method
for solving each values from given equations, the
SIMPLE algorithm by Patankar (1980) was used
to solve the pressure term.

The boundary conditions in numerical calcula-
tion are as follows ;

The wall function and adiabatic condition were
introduced for near walls, and the energy balance
condition at the free surface is expressed as equa-
tion (8) :

(qcand+ Qeonv) water = (QCond+ (Icam:) air (8)

Where, the subscripts of gcone andg geons are the
heat flux per normal length by conduction and
convection at the free surface, respectively.

2.2 Experimental study

Figure 2 shows the photograph of experimental
set up for PIV measurement. The experimental
test model has a top opening with rectangular
shape, and the top surface is opened to atmos-
phere of 10°C. Also, the working fluid was used
by water at 20°C and flow rate was set to 2L/M.
The bottom and side walls were covered with
black painting to get a good particle images by
CCD camera. The laser source was projected by
Argon-Ton laser with 750 mW. Table 1 shows a
condition of the present experimental study. The
particle tracers are PVC (Poly Vinyl Chloride)
and the average diameter is 200 um. The CCD
camera with model of CV-MS50 was used for
image capturing. The numbers of image are 277
frames to get an average image.
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Table 1 Experimental condition for PIV measure-
ment

Item Specification

DT3155 (6404480 pixel, B&W)

Image grabber

Light source 750 mW, Ar-lon Laser
Particle seed | PVC (Poly Vinyl Chloride : 200 ;__an
" Working fluid | " Water (20C)
Sheet light Cylindrical Lens
" Image recorder SDR-2000

Computer Intel Pentium 111 PC (800MHz)

Frame number for

217 F
Time-averaged LR

e ‘ Two-Frame Gray-Level Cross
Identification L :
| Correlation Algorithin

Photograph of experimental set up for PIV

Fig. 2

The cross-correlation algorithm was adopted
to calculate the coefficients from two consecu-
tive images (Daichin, 2003). 277 consecutive im-
age frames were captured successively and digi-
tized with a frame grabber into arrays of 640X
480 pixels.

3. Results & Discussions

3.1 Comparisons of the experimental and
numerical results

The numerical code was validated by PIV
results in experimental aquarium tank as shown
Fig. 1. The experimental and numerical results
are compared at @=2.0L/M. Figures 3~6 repre-
sent the velocity vectors between the experiment
and numerical results.

Hyo Min Jeong, Han Shik Chung, Se Hyun Kim, Seuk Cheun Choi and Kang Youl Bae

X
(a) Experimental result

(h) Numerical result

Fig. 3 Comparison between experimental and nu-
merical result at near bottom in X-Z plane.
Y =0.003m

(b) Numerical result

(a) Experimental result

Fig. 4 Comparison between experimental and nu-
merical result at near center in X-Y plane,
Z=0.lm

Figure 3 shows the ime-averaged velocity vec-
tors between the experimental and numerical
result at near the bottom wall, Y=0.003 m. The
general breeding fish inhabit at near bottom of
aquarium tank. Thus, the velocity distributions at
near bottom wall were selected as a horizontal
plane. The entire flow patierns have a swirling
flow, and this results from the inlet flow that
have a opposite inflow direction. The unique flow
pattern was appeared at near center of X-axis,
and the opposite velocity direction was observed
in this area. The velocity values at center of X-Z
plane have some difference between experiment
and calculation, the reason of this difference is
considered by the P1V resolution errors because
of high velocity around the outlet.

Figure 4 shows the comparisons of the velocity
distributions at center section in X-Y plane, Z=
0.1 m. Centering around Z=0.1m, the pair of
vortex was appeared with a small velocity values
than horizontal plane as shown Fig. 3(a).

Figure 5 shows the velocity vectors al near
wall of X-Y plane, Z=0.195 m. The large and
paralleled velocity was represented at top hall
area, this has a connection with a inertia force
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L

(a) Experimental result (b) Numerical result
Fig. § Comparison between experimental and nu-
merical result at near wall in X-Y plane,

Z=0.195m

(b) Numerical result

(a) Experimental result

Fig. 6 Comparison between experimental and nu-
merical result at near wall in Y-Z plane,
X=0.01m

of inlet flow from the left top corner, and the
clockwise rotation vortex was formulated at right
bottom corner. The calculated velocity distribu-
tions are slightly smoother than those of the ex-
periments, although the general flow pattern is
predicted fairly satisfactorily.

The Figure 6 shows the velocity vectors at
near wall in Y-Z plane, X=0.01 m. The diagonal
flow pattern was observed in this plane because
of encounter flow from inlet. In order to clarify
the applicability of the foregoing numerical code,
comparative studies with experimental results ha-
ve been carried out in aquarium tank model, and
the calculated results had good agreements with
experiment.

3.2 Flow characteristics of actual aquacul-
ture tank

As mentioned above, we analyzed and veri-
fied the flow field in aquaculture tank model.
One of the main purpose of this study is to obtain
the flow and temperature profile in the actual
aquaculture tank. In the aquaculture industry,
the length of aquaculture tank is ranged about
3m~10m. The tank depth is variable, but it is
taken under Ilm. The general circulation flow
rate per day to aquarium tank is about ten times
of aquarium tank volume and the optimum tem-
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Fig. 7 The photograph of actual aquaculture tank

perature for breeding fish is about 20C in winter
season. Thus, in this study, the size of aquacul-
ture tank for calculation was set to WXLXH=
5.0x50xd (m), and the circulation flow rates
per day were changed to the ranges of 8~12
times of tank volume. The main parameters are
the aquarium depth, the values depth & was var-
ied over a wide range, from 0.5 to 1.0 at 0.1 meter
intervals. In the case of actual aguaculture tank
for a breeding fish, the aquaculture tank depth
is not used below 0.5 meter. Therefore, the aqua-
culture tank depth was selected at the range of
0.5 to 1.0 meter in this study. Figure 7 shows
the photograph of actual aquaculture tank. The
breeding fish in aquarium tank behave al near
bottom of tank, Thus, the main flow characteris-
tics were investigated at near bottom in X-Z
plane. Y=0.15m. As a general circulating flow
rate is selected by 10 times of tank volume, the
next figures of velocity and temperature repres-
ented in case of 10 times of tank volume.

Figure 8 shows the velocily distributions at
near bottom in X-Z plane. The flow pattern in
case of d=0.5m have a one large circulation
cell, but the flow pattern was changed to a dia-
gonal direction flow when the aquarium depth
becomes deeper.

Figure 9 shows the streamline patterns at near
bottom in X-Z plane for the different values of
depth. The apparent swirl motion is observed in
case of a shallow tank. As the depth is deeper,
the swirl motion is disappeared due to high inlet
velocity. Consequently, for a fixed circulation
flow rate, when the depth is very deep the flow
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T—PX
(a) d=0.5m (b) d=0.6m (a) d=05m (b) d=0.6m
)
VA
X X T—PX
(c) d=0.7m (d) d=0.8m (¢) d=0Tm (d) d=0D8m
o 1
z p Z |
X X T—bx T—-bx '
(e) d=09m (f) d=1.0m (e) d=09m () d=1.0m

Fig. 8 Velocity distributions for various tank depth
at near bottom in X-Z plane, Y=0.15m

at near the bottom wall can be showed the
stagnation area. Therefore, this region can cause
the stagnation of a pollutants and excrements,
et

Figure 10 shows the distributions of tempera-
ture at near bottom in X-Z plane for different
tank depth. This temperature is a dimensionless
temperature values by inflow and ambient tem-
perature. This temperature is a dimensionless
temperature values by inflow and ambient tem-
perature, and this temperature is defined as

T—T,
Tw_ Ta

9)

Where, T, T, and T, are the calculated value,
ambient and inflow temperature.
As shown in Fig. 10(a), the high tempera-
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Fig. 9 Streamline for various tank depth at near
bottom in X-Z plane, Y=0.15m

ture appears at near the each walls of the X-
direction, and this high temperature is distri-
buted widely in the plane by the swirling flow.
As the tank depth is deeper, the high tempera-
ture can not be propagated to other region. This
results from the separated flow pattern as shown
Fig. 9(f). Thus, in order to distribute the high
inflow temperature to the bottom, it is one of
method to design or maintain a shallow water
level.

3.3 The optimum conditions for aquarium
tank
The mean values of velocity and temperature
of a horizontal plane are more useful in aquacul-
ture tank because the breeding fishes are gener-
ally acting around the plane.
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Fig. 10 Temperature distributions for various tank
depth at near bottom in X-Z plane, Y=
0.15m

Figure 11 shows the mean dimensionless velo-
city for various circulation flow rates in X-Z7
plane, Y=0.15m, and this dimensionless values
were obtained by v U+ W?. The highest and
lowest mean velocity was appeared in case of
d=0.5m and 0.8 m, respectively. In these results,
the adequate aquaculture conditions will be in-
suranced in case of a shallow depth, and these
conditions can preserve clean water due to a high
velocity. As the circulation flow rates are in-
creased, the velocity is changed in proportion to
flow rate.

Figure 12 shows the mean dimensionless tem-
perature in X-Z plane. The high mean dimen-
sionless temperature value appears in the case
of d=0.5m and 1.0m. This calculation study

[Q@= Cirmay| | —— Qe
| == Q=10
| == Q=12

00030 -

Mean dimensionless velocity

L0025 b

onzo . ~ L L
(%] s 0.6 07 0 0.y

=)

Aquarium tank depth
Fig. 11 Mean velocity for various depth in X-Z
plane, Y=0.15m

£
-

Mean dimensionless temperature
= e
o =
< s
n
(2]
H
oos
I el

02

(L8602

w10 L . " L L L
04 0.5 6 0.7 L& L Lo 11

Aquarium tank depth
Fig. 12 Mean temperature for various depth in X-Z
plane, Y=0.15m

was intended for obtaining the temperature en-
vironment in winter season, thus, the tempera-
ture in case of d=0.5m is more useful for a
breeding fish. The good aquaculture environment
is defined in case of @=0.5 m, this case is satisfied
in velocity and temperature at the same time.

4. Conclusions

In order to verify the calculation code, the
numerical analysis and experimental PIV data
were compared in the aquaculture tank model of
rectangular type. Based on this calculation code,
the flow field in aquaculture tank was carried out
for various tank depths. Some important results
can be summarized as follows.
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(1) The comparative studies with experiment-
al results have been carried out, and the calcu-
lated results had good agreements with experi-
ment.

(2) When the depth of aquarium tank be-
comes deeper, the flow field near bottom wall was
separated with two large vortex, but, in opposite
case, one large circulation was appeared.

(3) As the depth of aquarium tank is shallow,
the maximum temperature is appeared near wall
of the X-direction, and this high temperature
is distributed widely due to large swirling flow.
The temperature in aquarium is increased when
the depth of aquarium becomes shallower.

(4) The case of d=0.5m, the high mean ve-
locity and temperature was appeared, and this
conditions can be recommended as a good aqua
cultural environment.
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The general cooling tower is a device for cooling water in industrial condensers or heat
exchangers. The present cooling towers have defects with noises, complicated structures and
environmental problems. This paper focuses on a new water cooling system using the latent heat
of evaporation in an enclosed vacuum tank and a water driven ejector system. Several experi-
ments were carried out to improve high vacuum pressure and water cooling characteristics. The
ejector performance was tested with various water temperatures. Based on the vacuum pressure
of the water driven ejector, the water cooling characteristics were investigated for the condensed
and vaporized air and the effect of increased evaporating surface area in an enclosed tank.

Key Words : Cooling Tower, Water Driven Ejector, Vacuum Pressure, Latent Heat of

Evaporation

Nomenclature
A  Cotton area [m?]

L Tank volume [L]

P Pressure [mmHg. abs.]
Q : Flow rate [L/min.]
RT : Refrigeration Tonnage
T : Temperature [C]

Subscripts

A ! Air in enclosed tank

hc . Heat exchanger for condensing
he  Heat exchanger for ejector water
tn . Initial value

E ! Ejector
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. Ejector pump

. Area ratio

. Enclosed tank

. Water in enclosed tank
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1. Introduction

Cooling towers are commonly used to dissipate
heat from water-cooled refrigeration, air-condi-
tioning, and industrial process systems. The heat
that is generated by these systems must be re-
moved. Water is commonly used as a heat transfer
medium to remove the heat from industrial refri-
gerant condensers or heat exchangers. Water util-
ity bills become expensive because of increased
water supply and disposal costs. Similarly, cool-
ing water drawn from natural sources is unavail-
able due to environmental disturbances.

In a once-through system, the water consump-
tion rate of the cooling tower is about 5%, and the
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re-circulating flow rate as described in the design
handbook (SAREK, 1987) is 780L/RT/hr. There-
fore, as the cooling tower capacity is increased,
the water consumption rate is proportionally in-
creased and causes environmental problems, such
as Legionella disease, by the vaporized water drift
from cooling towers.

In the past, cooling towers were not important
to refrigerating systems because the power con-
sumption rate in the cooling tower is below 2%.
We have to focus on the cooling tower with other
viewpoints. The cost of electric power rises 10%
or more as the cooling water temperature rises by
1.5°C. When the water returns from the cooling
tower, the temperature of the water is about
31~32°C. The temperature of the water that flows
into the cooling tower is about 37°C. Thus, the
temperature difference for the standard cooling
tower system is estimated at 5~6'C.

The present cooling towers are summarized as
two types. Namely counter flow and cross flow,
reported Chu et al.(1999) and Kim et al.(2000).
Most of the present cooling towers utilize the
effects of latent heat of evaporation and sensible
heat by the atmosphere. This system poses the
following dilemmas. First, the cooling rate is
strongly influenced by atmospheric conditions.
Second, present cooling towers need a great deal
of added health and safety features to prevent
Legionella disease. Third, electrical failure and
energy consumption are high because of the large
fans, making the system very complicated. Fourth,
the external appearance is not appealing. This
system generates a great deal of noise because it is
constructed outside of buildings. There are three
kinds of ejectors in industrial processes. These
ejectors are classified by the driving fluids used
such as air, steam or water. The water driven
ejector is most commonly used because of its
simple design and cost effectiveness. The water
driven ejector has been utilized for the following
two theories. (Kim, 2000, Simizu, 1987): one is
the transportation of materials such as a bilge
discharge, brine discharge in fresh water genera-
tors and fish pumps, etc., The other is for making
the vacuum pressure in an enclosed tank (Kim,
2001). Most research focused on the inside flow
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of an ejector by the numerical (Choi et al., 2001)
and experimental (Kim et al, 2002; Lee et al.,
2001) analysis.

In this paper, we focused on the water cooling
characteristics using an enclosed vacuum tank
and water driven ejector for replacing present
cooling tower systems.

The proposed water cooling system is operat-
ed by the latent heat of evaporation , thus this
system needs a vacuum pressure to make the wa-
ter evaporate in the enclosed tank. The effects of
the cooling water are dependent on the vacuum
pressure and the ejector plays an important role
in preserving the evaporating pressure. The main
purpose of this study is to experiment with ejector
performance at various driving temperatures and
to study the characteristics of water cooling in an
enclosed vacuum. Condensation of the vaporized
air and the effect of an increased evaporating area
were also studied.

2. Experimental Descriptions

The cooling effects are dependent on the vacu-
um pressure, thus the vacuum pump has to ac-
hieve the pressure of evaporation. As the general
vacuum pump is designed for high vacuuming in
a small space, the cjector pump system is more
suitable than the vacuum pump. In this paper, the
water driven ejector pump system is proposed for
vacuuming in the enclosed tank.

Figure | shows the details of the ejector. This
system consists of three main parts: the nozzle,
straight pipe and diffuser. The nozzle diameter is
5.7mm and the straight pipe diameter is 15 mm
with lengths of 65 mm each. The length of the
diffuser is 101 mm and the diffuser angle is 6.2°.

Fig. 1

Drawings and photo of gjector.
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(a)
Fig. 2

Figurc 2 shows the experimental apparatus to
measure the effect of vacuum levels in the enclos-
ed tank. The designed vacuum chamber has a ca-
pacity of 368L and the inside air of the vacuum
tank is evacuated by a water driven ejector. The
water that passes from the cjector is re-circulated
through the feed water tank into the ejector pump.
The vacuum tank achieves a low pressure state
according to the cjected air. Therefore, the water
in the vacuum tank achieves an evaporation con-
dition faster than an atmosphere condition, and
the water in the vacuum tank is cooled down. The
ejector pump has a [loat type low meter and ad-
justiﬁg valve. The pressure transducer (PSHA-
0760HAAJ) was installed on the top of the vacu-
um tank. The pressure signal is transmitted to a
personal computer and data logger (DR130, YO-
KOGAWA). The flow rates were controlled by a
flow rate adjusting valve and were measured by
variable area flow meter. The uncertainty in the
flow rate measurement was =+ 1~2% Tempera-
tures in the feed water tank and enclosed tank for
both cooling and heating mediums were measured
by means of chromel-alumel thermocouples. The
uncertainty in the temperature measurement was
with in £1°C. The pressure at the top of enclosed
tank was measured with pressure transducer. The
uncertainty in the pressure measurement was with-
in +0.15%. Two heat exchangers were installed
in the experimental apparatus. One was located
on the air side in the enclosed tank for condensing
the evaporated water. The other was immersed in

(b)

(a) Schematic diagram of experimental setup (b) Photography of experimental setup

a feed water tank for cooling the water that is
pumped to the ejector. The primary experimental
process is carried out for about 6 hours before
the main experiment. The initial temperature of
the re-circulated water in the feed tank was set to
7.4°C. 13.8°C. 35.5°C and 49.8°C. The initial water
temperature in the enclosed vacuum tank was
about 37°C. During the experiment, the ambient
temperature was 25°C. The temperature of the two
heat exchangers was controlled by a temperature
regulator.

3. Results & Discussion

3.1 Effect of ejector water temperature

To achieve cooling water, the water should be
in an evaporating condition. This condition can
be achieved by vacuuming. The water driven
ejector was introduced in this study.

Generally, the vacuum pressure by a water
driven ejector is dependent on the flow rate, water
temperature, nozzle size and diffuser angle of the
ejector outlet, etc. In Fig. 3(a), the flow rate is
related to the vacuum pressure. The vacuuming
rate is proportional to the flow rate. To get the
best vacuum pressure an optimum condition must
be achieved. We also focus on the effects of ¢jec-
tor water lemperature, Fig. 3(b) shows the vacu-
um pressure distributions for the various initial
temperatures of the ejector water. Because the
general water density depends on the temperature.
If the density of the working fluid is increased,
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Fig. 4 The temperature variations of ejector
water

the amount of suction is higher. Therefore, when
the pressure inside the tank is dropped the suction
is lower.

An empty tank with a capacity of 568L was
used in this experiment. The main parameter is
the initial temperature of the ejector water. As the
initial temperature Tg was low, the enclosed tank
pressure had a higher vacuum pressure. This pre-
ssure was constant after about 90 minutes. This is
why the low water temperature caused a high
density suction around the ejector. From Fig. 3
(a) and (b}, even if the ejector pump capacity is
small, the equivalent vacuum pressure can be
achieved by placing water with a lower tempera-
ture into the ejector.

Figure 4 shows the temperature variations of
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—
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Fig. 5 Relationships between vacuum pressure and
mean ejector water temperature

ejector driven water in a feed water tank. This
temperature increased linearly because the fric-
tion is increased in the pipe and ejector.

Figure 5 represents the relationship between
vacuum pressure and mean ejector water temper-
ature. The temperatures on the horizontal axis
were taken at 90 minutes. In Fig. 4 this is consi-
dered a steady state. From this point, the wake
temperature through the ejector has a direct cor-
relation to the vacuuming pressure. To get a high
vacuum pressure, it is recommended that the low
initial temperature be maintained.

3.2 Water cooling characteristics
Lower temperature water flowing into the ejec-
tor induces the high vacuum pressure. This means
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Table 1 Main experimental parameters for water
cooling test
Typel | Type2 | Type3
Enclosed !ank s68 | 568 568
volume (Liters) |
Filled water and air 300Lyw | 300Ly | 300Ly
volume (Liters) 268Ly | 268La | 268L,4
Flow rate inlo gjector
50 50 50
pump, Q; (L/M) e
Flow rate in heat
exchanger of ejector none 8 | none
water, Qpe (L/M)
Flow rate in heat
exchanger of condensing,| none | none 53
Qe (L/M)

Fig. 6 Schematic diagram and photography ol tem-
perature measuring points

that the evaporative condition can be easily
obtained. The water under the evaporative condi-
tion absorbs the latent heat and will be cooled. In
this section, the water cooling characteristics were
investigated with several experimental conditions.

The temperature measuring points in an en-

closed tank are shown in Fig. 6. The capacity of

the empty vacuum tank is 568L. For example,
300Lyw means the water in the vacuum tank is
filled with 300L of water and the remaining air
occupied a volume of 268L.

The initial water temperature was set to about
37°C in this experiment. This temperature was
intended as the temperature for a general cooling
tower syslem.

As shown in Fig. 6, the temperature sensors
(RTD PTI00Q) TI1, T2 and T3 are immersed in
the water, and the other temperature sensors T4,

BN
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=8 500
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Fig. 7 Vacuum pressure distributions for three
types : Typel, Type2 and Type3

T5, Té and T7 arc contacted with the air in the
enclosed tank.

Table | shows the parameters for the three
types. The experiments were carried out for the
effects between Qne and Qpe. The values of Qpe
and Qpe are the ejector water flow rate in the heat
exchanger of ejector water and the air in the
enclosed tank as shown in Fig. 2(a), respectively.

Figure 7 represents the vacuum pressure distri-
butions for the three experiments as shown in
Table 1. Alter 30 minules, the pressure had an al-
most steady condition and the pressure values ol
Typel, Type2 and Type3 were recorded 49.4, 48.8
and 47.6 mmHg. abs., respectively.

These pressure values were gradually decreased
to 45, 38 and 26 mmHg. at 180 minutes. Type3
had the highest vacuum pressure, which meant
that more cooling water was obtained because of
the active evaporated water.

In order to investigate the water cooling effect
under vacuum pressure, the following experiment
was conducted in the cases of Typel, Type2 and
Type3. Figs. 8~10 show the temperature di-
stributions of the enclosed tank and ejector water
for each type. In these figures, the black and white
symbols are the temperatures of the water and
air, respectively. The temperature Tg is the water
temperature in the ejector pump line and this
water is re-circulated with a closed pipe line.
The water temperature had a steep gradient of
around 30 minutes. The evaporating condition
was reached at this point. From Figs. 8~ 10, there
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Fig. 8 Temperature distributions of enclosed tank
and ejector in case of Typel
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Fig. 10 Temperature distributions of enclosed tank
and ejector in case of Type3

is no temperature difference among TI1, T2 and
T3, thus the water temperature can be estimated
as the same. In cases of less than 30 minutes, the
temperature difference of T4, TS5, T6 and T7 are
strongly allected by the temperature of the surlace
water in the vacuum tank, Therefore T4, T3, T6
and T7 are in an unstable condition and have a
temperature differences. The initial temperature of
the air was gradually increased until 30 minutes.
Because the general evaporating conditions for
water is 50 mmHg. abs.. under 38°C. the pressure
value at 30 minutes has reached the evaporating
condition. This evaporative phenomena can be
observed from the abrupt decreasing temperature
as shown in Figs. 8~10.

The tendency of air temperature distributions

Temperature('C )

0 Il L L L I | I

0 20 40 a0 BO 100 120 140 160 180

Time(min.)

Temperature distributions of enclosed tank
and ejector in case of Type2

Temp. Difference, T“"—".I'I

0 20 40 60 B0 100 120 140 1&D 180
Time(min.}

Fig. 11 Temperature difference distributions in

enclosed tank

coincided with water temperatures after 30 minu-
tes. This is why the latent heat from water is
dominant on the air side. The temperature differ-
ences belween waler and air were not apparent.
However, in the case of Type3 shown in Fig. 11,
the air temperature was lower than the water.
This is due to the air condensation by the heat
exchanger which was installed in the enclosed
tank as shown in Fig. 2.

The ejector water temperature was almost lin-
carly increased except in Type2 because the
cooling water was supplied in Type2 only.

Figure 11 shows the variations of the tempera-
ture difference in the enclosed tank. The vertical
axis values, T, Tt represent the temperature dif-
ferences between the initial water temperature of
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Table 2 Main experimental parameters for incre-
asing an evaporating area

I Typed | TypeS | Typeb
Enclosed tank
L 68 | se8 | s6s
volume (Liters)
Filled water and air 200Lw | 200Lw | 200Lw
volume (Liters) 368La | 368L. | 368L,
Flow rate into ejector 50 50 50
pump, Q, (L/M)
ﬁ\p?wximatc initial cj:ec-‘ 0 10 16
tor inlet temperature (C)|
Flow rate in heat
exchanger of ejector | none none none
water, Qne (L/M)
Flow rate in heat
exchanger of condensing,| 5.3 5.3 5:3
Que (L/M)
Sheets of cotton none 5 13
Evaporating area ratio, i i'6 24
Ar

38°C and the T1 temperature. The largest cooling
waler effects were obtained in the case of Type3.
When the experimental time is 180 minutes, Type3
had the lowest vacuum pressure of about 35C of
ejector water as shown in Figs. 7 and 10, From
these results, the low ejector water temperature
can be attributed to the high vacuum pressure.
This is effective within the limit cjecting effect get
started. The ejector water temperature is not sig-
nificant at the beginning of the steady pressure
condition, and it is recommended that the initial
¢cjector water is below 10°C in this experimental
system. There are two factors for making vacuum
pressure high, namely the influences of the initial
cjector water temperature and flow rate in which
the water flows into ejector.

Comparison between the three cases reveals
that the air condensing effect is closely related to
the water cooling characteristics more than other
factors as shown in Fig. 11.

3.3 Cooling effect for increasing an
evaporating area
Water particles have an interactive attraction
among water molecules and when the partial

gricd

aunn.,
Tt tassmaannatt®

Fig. 12 Photo of hygroscopic test under atmospheric
pressure

pressure is dropped under the condition of evap-
oration, evaporation is started. Water evapora-
tion is generated from surface water when the
evaporating pressure was reached. There are
many methods to get a water cooling effect ; the
method for increasing an evaporation area by
inserting cotton microfibers was introduced in
this paper.

Figure 12 shows a photo of a hygroscopic test
under the atmospheric pressure before it was
installed into the enclosed tank. The wetted leng-
th to gravitational direction was about 135 mm by
capillary attraction and cotton microfiber of 450
mm X 175 mm was used in the enclosed tank.

Table 2 represents the experimental parameters
to investigate the cooling effects by increasing the
evaporating area of the water surface in the en-
closed tank.

The evaporating arca ratio, Ay, was defined as
the ratio of total evaporating surface and the cir-
cular area of the water surface. For example, Ar=
2.4 means that the total evaporating area is 2.4
times greater than in Typed where cotton was not
inserted into the tank.

Figures 13~15 shows the temperature distri-
butions of the enclosed tank and ejector water in
A;=1, 1.6 and 2.4. The temperature sensors T1
and T2 are immersed and the others are contact-
ed with the air. The general temperature distri-
butions present a similarity to Fig. 10 except in
air side temperatures. These air side temperatures
from T3 to T7 in Figs. 13~15 are lower than
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Fig. 13 Temperature distributions of enclosed tank
and ejector in case of Typed
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Fig. 15 Temperature distributions of enclosed tank

and ejector in case of Type6

Fig. 10. More evaporated water is cooled by the
heat exchanger in the air side. This evaporated
walter has a larger heat capacity than the case of
Fig. 10, and the ejector water temperature had an
almost linear increase because of frictional heat
generated in the ejector water line.

Figure 16 shows the distributions of the tem-
perature differences in the enclosed tank. The
best water cooling effects were obtained in Typeo6.
When the experimental time is 100 minutes, all of
the cases have a stable and steady heat exchange.
These results lead us to conclude that the im-
provements of the water cooling characteristics
can be achieved by increasing water surface in the
evaporation area.

50
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Fig. 14 Temperature distributions of enclosed tank
and gjector in case of Types
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Fig. 16 Temperature difference distributions in
enclosed tank

4. Conclusions

In this paper, we proposed a water cooling
system by latent heat of evaporation. This system
consists of the enclosed vacuum tank and water
driven gjector system. From an experimental re-
sult, the conclusions are summarized as follows :

(1) The water temperature being cooled in a
present cooling tower system is about 37°C. To
get an advanced cooling effect from this tempera-
ture, we introduced the forced evaporating system
which operates under vacuum pressure,

In this paper, the cooling effects and the vacu-
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um pressure for getting latent heat of evaporation
were obtained by ejecting air in an enclosed tank.

(2) At lower water temperatures the ejector
produced a higher vacuum pressure, the initial
temperature for the water ejector is important. It
is desired to maintain the initial temperature and
not to exceed 10°C in this experimental system.
The relationship between vacuum pressure and
cjector driving water were represented as P=
20.09 % 1.036™, where P and Tg mean the enclosed
tank pressure and ejector driving water tempera-
ture.

(3) Comparisons between the several experi-
mental cases reveals that the air side condensing
in the enclosed tank is more important to the
water cooling characteristics than the other facto-
rs. The improvements of water cooling charac-
teristics can also be achieved by increasing the
evaporation area of the water surface. The cool-
ing rate was increased by 10% in case that the
evaporaling area ratio is 2.4.

(4) By increasing the ejector pump flow rate
the time to reach an evaporation condition can
be shorter and higher vacuum pressure is easily
obtained.
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Abstract

The aquaculture tank is used for fish breeding by using sea water. This aquaculture system is
free from the marine pollutions and outside sea water conditions. But a land aquaculture tank
needs larger space and more equipment for circulating sea water. The design of land aquaculture
tank is very important for the fish growth. Therefore, the water circulator system influences to
the water temperature and velocity of flow in a land aquaculture tank. There are many kinds of
the aquarium tanks, the general type has circle or rectangular shape which is rounded at the four
corners. But the optimum design of aquarium researches seems to be lacking at the view of
engineering.

In this study, we adopt the rectangular shape with round off corner type. The PIV is adopted
to study the basic flow characteristics of experimental model. This paper is intended as an
investigation of the flow characteristics in aquarium tank, and we could obtain the flow pattern
and velocity distributions.

Key Words : PIV(Particle Image Velocimetry), Standard k—e& turbulence model, FVM(Finite
Volume Method).

eutrophication, red tide and the later being
surrounded by habitats or industries from all
sides. The destruction of ecosystem has lent

1. INTRODUCTION

These days our coasts have been damaged many problems to aquaculture that raises

by the polluted water resulting from the
construction of industry on the sea shore,
increasing population, and urbanization. As
compared with the open sea, an inland sea
has a higher pollution level because of

aquatic products for eating. The major

environmental factors include water
temperature, the amount of dissolved oxygen
which is a function of the water temperature,

salt, CO;, ammonia, PH and amount of

_23_
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nourished salt that are associated with the
breeding of the aquaculture
imbalance in these may have effects on the

because

growth of the creatures and lead to their
serious diseases.

In the korean aquaculture industry, lefteve
flounder (Paralichthys olivaceus) and rock
fish(Sebastes schlegeli) are preferred by
fishermen on. the grounds that the former is
characterized by highly added value and
better returns, and the latter has advantage of
Nowadays,
aquafarm uses recirculated sea water. This

raising the creatures. inland
implies that to help quickly grow and to be
strong enough to get over diseases, the fishes
need to have much of melted oxygen and
hence better control and maintenance of
optimum water temperature is necessary.
Recirculated sea water cause many problems.
The major problem with this process is
increased cost of production associated with
cooling down the hot water before
recirculating it. Also improper cooling and
imbalance in the water contents leads to
various diseases to fish.

Several investigations of aquaculture in sea
water have been reported. Kim(1997)"
examined the marine pollutions in view of
biology. This biological treatment has no
problems in aquaculture industry because the
aquarium tank is separated from the water
pollution. Partridge(1989)|2' and Sannomiya
(1987) " examined the swimming structure
and behavior of fish in aquarium tank. Takaki
et al.(1993)'* considered the effect of the
aquarium tankssize and shape. Generally, the
aquaculture equipment has two types of
closed and open flow systems. Jeong et
al.(1998)"" reported the flow characteristic
by comparing numerical analysis and flow
visualization images. Mirashi et al. (1995)'%

examined the effect of water current in the
aquaculture environment of the seas. The
closed type is the system which the sea
water is recirculated again in the aquarium
tank. The water in the case of the open flow
system is discharged to the sea. Thus, the
first system needs more expensive
equipment, but this system can save the
energy for heating needed by the aquarium
tank water in winter season unlike in open
systems where the incoming water has to be
heated each time and the useful hot water
discarded instead of recirculating it. Lee
(1994)'" carried out the experiment of a flow
characteristics in the closed aquarium tank. In
the design of an aquarium tank, what needs to
be emphasized is the aquaculture environ—
ments, This means that the wrong design can
cause the mass mortality of the breeding fish.

In this paper, we performed a numerical
analysis for fluid flow characteristics in an
inland aquafarm, and the numerical results are
compared with the experimental results by
visualization technique with PIV. This paper is
intended as an investigation of the flow
characteristics in an inland aquafarm, and we
will concentrate on the temperature and
velocity distributions.

2. STUDY METHODS

2.1 Experimental Study

Fig. 1 shows the schematic diagram of the
numerical analysis model. The geometry of an
inland aquafarm model is WxHxL=200mmx
200mx40mm. where L is the height of the
water level in the model.

The height of the model is 150mm. This
model consisted of one inlet and one outlet

_24_
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pipe with diameter d=5mm. The height of the
inlet pipe to the model aguafarm is 35mm.
The dimensions of an actual aquafarm is
5mx5mx1.1-1.3m where 1.1-1.3m is the
height of water level in the actual aquafarm.
The height of the actual aquafarm tank is
3.75—4m. It can be seen that our model has
been scaled down from the original model by
25 times.

<Fig. 1> Schematic diagram for numerical
model

Inflow —=

Aquacubture rank

Sheet light

CCD camiers
Ar-lon laser

N =

Computer & Software Dightad recorder
(a) Schematic diagram of experimental
apparatus

(b) Photograph of experimental apparatus

<Fig. 2> Schematic diagram and Photograph

Fig. 2(a) and (b) shows the schematic
diagram and photograph of the experimental
apparatus. The experimental test model has a
rectangular type top opening which has
rounded four corner. The top surface is
opened with an outside temperature of 10T,
The working fluid used by water at 20T and
the incoming flow rate was set to Re=
2.12x10°. The bottom and side walls were
covered with black paint to achieve good
particle image by CCD camera. The laser
source was an Argon—Ion laser with 490mW.

Table 1 shows the apparatus used in the
present experimental study. The particle
tracers are PVC(Poly Vinyl Chloride) whose
average diameter is 200um. The CCD camera,
model CV-M50, was used for

capturing. The number of images is 200

image

frames to get an average image. The cross—
correlation algorithm was adopted to calculate
the coefficients from two consecutive images.
200 consecutive image frames were captured
successively and digitized with a frame
grabber into arrays of 640x480 pixels.

<{Table 1> Experimental conditions for PIV
measurement

Item Specification

Image grabber | DT3155(640x480 pixel, B & W)

Light source | 750mW, Ar-Ion Laser

Particle seed jP\’C(Poiy Vinyl Chloride : 200m)

Working fluid Water (20T)

Sheet light Cylinderical Lens

Image recorder SDR-2000

Computer Intel Pen[iu;‘n I PC(800MHz)

Frame number for
. 200 Frames
time-averaged

" : Two—Frame Gray—Level Cross
Identification - 1
Correlation Algorithm

- 925 -
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2.2 Numerical Analysis

<Table 2> Flow chart of PIV processing

Test Aquaculture Tank

!

CCD Camera Controls
Image Acquisition

|

| DT-3155 Board attached in the P/C |
)

| Analysis by CACTUS 2000 Software |
}

] Field Section 2" Frame Odd/Even ]
)

‘ Calculation of Mean Value ]
}

l Result of Flow Visualization ‘

Three—dimensional incompressible steady—
state (water pumped in = water taken out
through the withdrawal pipe) Navier—Stokes
equations were used to predict the internal
flow and heat transfer characteristics. The
standard k—¢ turbulence model is generally
used in the analysis of a turbulent flow field.
The SIMPLE (Semi—Implicit Method for
Pressure—Linked Equations) solution algorithm
for correcting the pressure field was used,
as explained in Parankar(1980).

This is mainly suitable for steady state
flows and is stable for undistorted grid
systems. Its virtue is that it is computationally
efficient, generally requiring less CPU effort
per iteration than other more hybrid schemes.
At high Reynolds numbers the accuracy of the
spatial discretion of convective fluxes is a
determining factor for both calculation accuracy
and stability.

The continuity and momentum equations
can be described in Cartesian tensor notation
as follows:

— Equation of continuity

2
- =0
ox, (o) ¢)

— Equation of momentum

ax ’ 2
— Equation of energy

a(pU.,T
%_)=§[(ﬁ+ﬂ)£}
j J

a oP
_}{W:“;' - rﬂ) = g +Si

P o, X, 3)
where p is the density of water and it is the
velocity component. Tij and Si denote the
component of the stress tensor and momentum
source respectively.

The particular high Reynolds number form
the k—¢ turbulence model used in the
STAR-CD is 'appropriate’, subject to the
caveats given earlier, to fully turbulent,
incompressible or compressible flows.
turbulent
kinetic energy and dissipation in the Standard
k—¢ turbulence model are as follows :

The governing equations for

— Equation of Turbulent kinetic energy

e , - Mgy Ok
— k- )=
2, (pu; % axj)

2, ou ou
P+ PB)-pe—=(u,—Lt+ pk)—+ P,
)ur( s) PE S(Jurax[ 'at)ax, NL 4)
where,
—— du,
Py =(-uu, -2s,)—
e L Vg,

— Equation of Turbulence dissipation rate

O (oo Hear 08,
axj(P"JE s, &x,)
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£ 7 ou,
Cay| 4P+ CaBy) =2 (H, a’r ﬂk}a]
& au, & (5)
-Cap T +Cpe E: +C, EP NL

where 0;, Cq, Ces, Ces and Ciy are empirical
values, taken from
in_ Table—3. The
represent

coefficients whose

references, are given

right—hand side terms similar
effects to those described above for the k

equation.

{Table 3> Values assigned to standard k—ge

turbulence model coefficients

Cu 0.09 Ces =033
Ca 1.44 Ok » 1.0
Cez 1.92 Oe 1.22
Cea 0.0 or 1.0 On 0.9

(a) Geometry of inland aquafarm

(b) Computational grid system of inland

aquafarm

<Fig. 3> Geometry and grid system for
numerical analysis

The incoming Revnolds number is set to
2.12x10°. The
atmosphere temperature are set to 293k and

incoming temperature and

283K, respectively. The vertical velocity was

assumed to be 0, and turbulence intensity is
set to 5% uniformly. The dynamic condition
near the walls used wall function and
adiabatic condition. The heat flux is set to
—20W/m®.

3D model calculation was performed using
CATIA, and PRO—AM was used to create the
lattice. The total number of lattices used for
modeling was  60,000. Actual
calculation of the model used the common
CFD code, STAR—CD ver—3.15A. Fig. 3(a)
shows the measurement of inland aguafarm.

numerical

The grid system of the numerical model is
in Fig. 3(b).
repeated at steady state, and the iteration

shown The calculation is
was assumed to be convergent when the
residual value of the dependent variables was
107 or less.

3. RESULTS AND DISCUSSIONS

3.1 Comparisons of the experimental
and numerical results

The general breeding fish inhabit near the
bottom of a land aquaculture tank. The
velocity distributions near bottom wall were
found by planes at
different depths from top. Fig. 4 and 5

selecting horizontal

represent the velocity vectors of the
experiment and numerical results respec—
tively. The experimental and numerical
results are compared for velocity difference,
according to different X-Z planes at
Re=2.12x10°%

Fig. 4 shows the time—averaged velocity
vectors of the experimental results. Aquarium
tank height from bottom are set to 10mm,
25mm and 35mm. The entire flow has a

swirling flow pattern. The unique flow pattern

- 27 -
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(a) Y=35mm (b) Y=25mm (¢) Y=10mm

<Fig. 4> Distributions of Velocity vectors for experimental results(X—7 plane, Re=2,12x10%

(a) Y=35mm (b) Y=256mm (c) Y=10mm

<Fig. 5> Distributions of Velocity vectors for numerical analysis(X—Z plane, Re=2.12x10"

(a) Y=35mm (b) Y=25mm (c) Y=10mm

<Fig. 6> Streamline for numerical analysis(X—2 plane, Re=2.12x10%

i)
i e o 5
j an --,;'"'--w:_'i"'} 3w E

<Fig. 8> Velocity distributions with

<Fig. 7> Velocity distributions with
Re=4.23x10% at Z=100mm and Y=10mm

Re=4.23x10% at X=100m and Y=10mm
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b

(a) Y=35mm (b) Y=25mm (c) Y=10mm

<Fig. 9> Temperature contours for numerical results(X—=Z plane, Re=4.23x10%)

(a) Y=35mm (b) Y=25mm (c)

Y=10mm

<Fig. 10> Temperature contours for numerical analysis(X—Z plane, Re= 1.27x10%
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(a) Y=35mm (b) Y=26mm (c) Y=10mm

<Fig. 11> Temperature contours for numerical analysis(X—Z plane, Re=2.12x10%)

appeared at near center. Velocity magnitude
of this flow is decreased because the
aquarium tank is shallow, and the velocity
magnitude of walls are decreased by [riction.
Fig 4(b) shows the stagnation region at the
corner of the right side. This is because of
the increased fluid velocity as the depth is
decreased by X—Z plane at Re=2.12x10°. The
stagnation region is the smallest near the
bottom which implies fluid flow is more stable
at the bottom.

As the aquarium tank is shallow, the

stagnation region is decreased to least area at
the bottom of the aquarium tank.

Fig. 5 shows the time—averaged velocity
vectors at the numerical analysis results, Fig.
5(a) shows that the velocity increases near
the inlet as evident from the increased
velocity vectors at Y=35mm near where the
inlet is located. This is because the inlet
velocity is streamed by a narrow pipe.
Results of this section, the velocity values
have some difference between the experiment
and the numerical analysis results. The
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reason for this difference is considered to be
the PIV resolution errors because of high
velocity around the inlet. In order to clarify
the applicability of the foregoing numerical
analysis, comparative studies with the
experimental results have been carried out in
an inland aquafarm model, and the calculated
results had good agreements with the
experiment.

Fig. 6 shows the streamline patterns at
each section. The apparent swirl motion is
observed in each section of the aquarium
tank. As the depth is deeper, the swirl motion
is advanced to right side the corner by outlet
flow velocity.

Consequently, when the depth is 10
millimeters, the flow at near right hand side
of the centre can not be shown as the
stagnation region. Therefore, this region can
not cause the stagnation of pollutants and

excrements, etc..

3.2 Temperature distributions of
numerical analysis

As mentioned above, we analyzed and
verified the flow field in an inland aguafarm
model. One of the main purposes of this study
is to obtain the flow and temperature profile
in the actual aquaculture tank. In the
aquaculture industry, the optimum tempera—
ture for breeding fish is about 20T in winter
season. Thus, in this study, the size and
temperature of the
calculation was set to the same conditions. In

aquarium tank for

the case of an actual aquarium tank for
breeding fish, the aquarium tank depth is not
over 400 mm. Therefore, the aquaculture tank
depth selected was between 10 to 35 mm.
The costly breeding of fish in aquarium tanks
is found to occur at near bottom of tank.

Thus, the main flow characteristics were
focused near the bottom in X—Z plane, Y=10
mm,

Fig. 7 shows distributions of velocity with
Re=4.23x10% at X=100mm and Y=10mm. Fig.
8 shows distributions of velocity with Re=
4.23x10° at Z=100mm and Y=10mm. The
counterclockwise  rotation vortex was
formulated at the center point on the same
streamline pattern.

Fig. 9~Fig. 11 shows the distributions of
temperature by each section according to the
Reynolds number. Reynolds numbers at the
inlet are selected as 4.23x10% 1.27x10% and
2.12x10%

The high temperature appears near each
wall of the X-—direction and Z—direction
where the hot recirculated water enters the
aquafarm, and this high temperature is
distributed widely in the plane by the swirling
flow. As the tank depth deepens, the high
temperature can be propagated to other
regions as seen from wider and higher
temperature distribution with decreasing Y i.e.
with increasing depth.

4. CONCLUSION

In order to verify the calculation code, the
numerical analysis and experimental PIV data
were compared in the aquaculture tank model.
Based on this calculation code, the flow field
in the aquaculture tank was carried out for
tank geometry. Some

results can be summarized as follows.

various important
1. The comparative studies with experi—
mental results have been carried out, and the
calculated results had good agreements with
the experiment.
2, When the depth of the aguarium tank

_m_
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becomes deeper, the flow field near the
bottom wall was advanced with stable flow
and the stagnation region was least
prominent. Therefore, this region can not
stagnation of pollutants and
excrements which is good for fish breeding.

3. As the depth of the aquarium tank is
deeper, the high temperature appeared near
the wall in the X—direction and Z-direction,
and this high temperature is distributed
widely due to large swirling flow.

4. The temperature in the aguarium tank is

cause the

increased when the inlet velocity increases
upto a point and then the temperature falls. In
our experiment when we increased the Re
from 4.23x10% to 1.27x10° the temperature
for a particular Y wvalue increased and
decreased as we further increased the Re
from 1.27x10° to 2.12x10°. So to maintain
proper temperature we should maintain Re
close to 1.27x10°%
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Abstract

This study performed of a water cooling system by using a steam ejector and jet condenser
to drop the temperature of the water in aquafarm by about 5T from 25T or higher. In this
research, to replace the present water cooling system, we focused on a water cooling system
operated by latent heat of evaporation, thus this system needs a vacuum pressure to evaporate
the water in enclosed tank. The water cooling effects are dependent on the vacuum pressure in
the enclosed tank, and the cooling water is generated by evaporation. As the experimental

[~

results, the absolute vacuum pressure obtained was about 5~8 mmHg using a steam driven

ejector with jet condenser.

Key Words : Steam driven ejector (=% 7% ¢l #E]), Jet condenser (A= F¢AH), Latent heat of
evaporation (F2E4).
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Abstract : This study shows a water cooling system by using a steam ejector and jet condenser to drop the
temperature of the water by about 5°C from 25T or higher. In this research, to replace the present water
cooling system, we focused on a water cooling system by latent heat of evaporation, thus this system needs a
vacuum pressure to evaporate the water in enclosed tank. The water cooling effects are depended on the
vacuum pressure in the enclosed tank, and the cooling water is generated by latent head of evaporation. As
the experimental results, the absolute vacuum pressure obtained was about 5~8 mmHg using a steam driven
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Study on Fluid Flow in the Land Aquaculture Tank by Using PIV
Bo-Han Kim*, Tae-Woo Kong*, Wanda Ali Akbar* Jong-Soo Seo* and Han-Shik Chung**

ABSTRACT

The aquaculture tank is a place for fish breeding by using sea water. This aquaculture system is
free from the marine pollutions and outside sea water conditions. However a land aquaculture tank
needs larger space and more equipment for circulating sea water. The design of land aquaculture tank
is very important for the fish growth. Therefore, the water circulator system influences to the water
temperature and velocity of flow in a land aguaculture tank. There are many kinds of the aquarium
tanks, the general type usually has circle or rectangular shape with rounded comers. But the optimum
design of aquarium researches seems to be lack on the engineering point of view.

In this study, we adopt the rectangular shape with round off corner type. The PIV is adopted to
investigate the basic flow characteristics of experimental model. This paper is intended as an
investigation of the flow characteristics in aquarium tank, the flow pattern and velocity distributions
could be obtained.

Key words: PIV(Y#H3“3+%7)), Land Aquaculture Tank(54 422 %4214, Kinetic Energy (-5l ])
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A Study on the Thermal and Fluid Flow Characteristics in an inland
Aquafarm
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ABSTRACT-The aquafarm is used for breeding fish by using sea water, and this paper represents the characteristics
of fluid flow in the aquafarm by the variations of tank geometry and flow rate. The numerical analysis has been
developed for calculating the velocity and temperature distributions in a rectangular water tank, and the finite volume
method and SIMPLE algorithm were used for the numerical analysis. The numerical model is assumed as the steady
state, the incompressible flow and the 3-dimensional standard k-£ turbulence model. For the comparison with the
experiment and the numerical analysis, the numerical results had good agreement with the experimental results, and
obtained the relationship between the aquarium depth and aquacultural conditions of the mean velocity and

temperature.

KEY WORDS: PIV(Particle Image Velocimetry), Standard k-& turbulence model, FVM(Finite Volume Method)

1. INTRODUCTION

These days our coasts have been damaged by the
polluted water that resulted from the construction of
industry on the shore, increasing population, and
urbanization. As compared with the open sea, an inland
sea a higher pollution level because of eutrophication
and red tide. etc.. Aquaculture that raises aquatic
products for eating, has generated many problems by
destroying of an ecosystem.

The major environmental factors include water
temperature, the amount of melted oxygen, salt, CO,,
ammonia, PH and nourished salt that are associated with
the breeding of the aquaculture because it may have
effects on the growth of the creatures and lead to their
serious diseases.

In the korean aquaculture industry, lefteye flounder
(Paralichthys  olivaceus) and rock fish(Sebastes
schlegeli) are preferred by fishermen on the grounds
that the former is characterized by highly added value
and better returns, and the latter has advantage of raising
the creatures. Nowadays, inland aquafarm uses
recirculated sea water. This implies that to help quickly
grow and to be strong enough to get over diseases needs

* Corresponding author. e-mail: p-hyunjang@hanmail.net

to have much of melted oxygen, to have a better control
on temperature. Therefore, recirculated sea water cause
many problems. The major problem with this process is
increased cost of production and the disease to fish.
Several investigations of aquaculture in sea water
have been reported. Kim(1997) examined the marine
pollutions in view of biology. This biological treatment
has no problems in aquaculture industry because the
aquarium tank is separated from the water pollution.
Partridge(1989) and Sannomiya(1987) examined the
swimming structure and behavior of fish in aquarium
tank. Takaki et al.(1993) considered the effect of the
aquarium tanks size and shape. Generally, the
aquaculture equipment has two types of closed and open
flow systems. Jeong et al.(1998) reported the flow
characteristic by comparing numerical analysis and flow
visualization images. Mirashi et al. (1995) examined the
effect of water current in the aquaculture environment
of the seas. The closed type is the system which the sea
water is recirculated again in the aquarium tank. The
water in the case of the open flow system is discharged
to the sea. Thus, the first system needs more expensive
equipment, but this system can save on the energy for
heating needed the aquarium tank water in winter
season. Lee(1994) carried out the experiment of a flow
characteristics in the closed aquarium tank. In the
design of an aquarium tank, what needs to be
emphasized is the aquaculture environments, This
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means that the wrong design can cause the mass
mortality of the breeding fish.

In this paper, we performed a numerical analysis for
fluid flow characteristics in an inland aquafarm, and the
numerical results are compared with the experimental
results by visualization technique with PIV. This paper
is intended as an investigation of the flow characteristics
in an inland aquafarm, and we will concentrate on the
temperature and velocity distributions.

2. STUDY METHODS

2.1 Experimental study

Figure 1 shows the schematic diagram of the
numerical analysis model. The geometry of an inland
aquafarm model is WxHxL=0.2x0.2x0.04(m). This
model consisted of one inlet and one outlet with the size
of d=0.005m.

Figure 2(a) and (b) shows the photogragh and
schematic diagram of the experimental apparatus. The
experimental test model has a tectangular type top
opening which has rounded four corner. The top surface
is opened with an outside temperature of 10C. The
working fluid used by water at 20°C and the incoming
flow rate was set to 2.108x103. The bottom and side
walls were covered with black paint to achieve good
particle image by CCD camera. The laser source was
projected by an Argon-Ton laser with 490mW.

Table 1 shows the condition of the present

Characteristics in an Inland Aquafarm

SDR-2000
Computer & Saftwars Dightal recorder

(a) Schematic diagram of experimental apparatus

il

(b) Photograph of experimental apparatus
Figure 2. Schematic diagram and Photograph.

Table 1. Experimental conditions for PIV measurement

experimental study. The particle tracers are PVC(Poly

Vinyl Chloride) and the average diameter is 200 tm. The
CCD camera, model CV-M50, was used for image

capturing. The number of images is 200 frames to get an

average image. The cross-correlation algorithm was
adopted to calculate the coefficients from two

consecutive images. 200 consecutive image frames were
captured successively and digitized with a frame

grabber into arrays of 640x480 pixels.

Item Specification
Image grabber DT3155(640=480 pixel, B & W)
Light source 750mW, Ar-lIon Laser
Particle seed PVC(Poly Vinyl Chloride : 200 tm)
Working fluid Water(20C)
Sheet light Cylinderical Lens
Image recorder SDR-2000
Computer Intel Pentium I PC(800MHz)
Fra}mc number for 200 Frames
time-averaged
deiaton | TV e Gr vl Cros

Figure 1, Schematic diagram for numerical model.
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2.2 Numerical analysis

Three-dimensional ~ incompressible  steady-state
Navier-Stokes equations were used to predict the
internal flow and heat transfer characteristics. The
standard k- turbulence model is generally used in the
analysis of a turbulent flow field. The SIMPLE(Semi-
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Implicit Method for Pressure-Linked Equations)
solution algorithm for correcting the pressure field was
used, as explained in Parankar(1980).

Table 2. Flow chart of PIV processing.
[ Test Aquaculture Tank il
i
CCD Camera Controls
Image Acquisition
i
DT-3155 Board attached in the P/C |
4
[ Analysis by CACTUS 2000 Software |
i

.

| Field Section 2™ Frame Odd/Even ]
L
| Calculation of Mean Value |

!

[ Result of Flow Visualization |

This is mainly suitable for steady state flows and is
stable for undistorted grid systems. Its virtue is that it is
computationally efficient, generally requiring less CPU
effort per iteration than other more hybrid schemes. At
high Reynolds numbers the accuracy of the spatial
discretion of convective fluxes is a determining factor
for both calculation accuracy and stability.

The continuity and momentum equations can be
described in Cartesian tensor notation as follows:

- Equation of continuity

3
e T 1
ax, P =0 M

i
- Equation of momentum

0 aP
E(Wru; —ru.)=§+8,. 2

(]

- Equation of energy

BORTTY= Rer | SHiioT G)
X, X,|'P, o, X,

where p is the density of water and v; is the velocity
component. T; and S; denote the component of the
stress tensor and momentum source respectively.

The particular high Reynolds number form the k-¢
turbulence model used in the STAR-CD is ‘appropriate’,
subject to the caveats given earlier, to fully turbulent,
incompressible or compressible flows.

-87-

The governing equations for turbulent kinetic energy
and dissipation in the Standard k-g turbulence model are
as follows :

- Equation of Turbulent kinetic energy

a Mo Ok
Ll nde
Ou, (ous o, ox;
2, &u ou
:U.-(P"'PB)_PE_E(IL‘;E:"'W)E:*'PNL 4

where P, = (_ru} =2 _gu) %
i

- Equation of Turbulence dissipation rate

i ol Mg O
——(pue——L—)=
ax, L oy axj)
£ 2, Ol du,
C;l };{ﬂ;(io"‘cgjps)_g(ﬂr ax‘ +Pk) 6x,]
iy du &
‘Cszp-k—"'c.;apfg: +CazPu ®)

where 6, Cea, Ca» Ce and Cy are empirical
coefficients whose values, taken from references, are
given in Table-3. The right-hand side terms represent
similar effects to those described above for the k
equation.

Table 3. Values assigned to standard k- & turbulence
model coefficients.

(2 0.09 (& -0.33
Cét 1.44 Oy 1.0
Ce 1.92 A 1.22
[.Ca 0.0or 1.0 o 0.9

The incoming Reynolds number is set to 2.108x10°,
The incoming temperature and atmosphere temperature
are set to 293k and 283k, respectively. The vertical
velocity was assumed to be 0, and turbulence intensity
is set to 5% uniformly. The dynamic condition near the
walls used wallfunction and adiabatic condition. The
heat flux is set to -20W/m®.

(a) Geometry of inland aquafarm
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(b) Computational grid system of inland aquafarm
Figure 3. Geometry and grid system for numerical
analysis.

3D model calculation was performed using CATIA,

and PRO-AM was used to create the lattice. The total
number of lattices used for numerical modeling was
60,000. Actual calculation of the model used the
common CFD code, STAR-CD ver-3.15A. Figure 3(a)
shows the measurement of inland aquafarm. The grid
system of the numerical model is shown in Figure 3(b).
The calculation is repeated at steady state, and the
iteration was assumed to be converged when the
residual value of the dependent variables was 107 or
less.

3. RESULTS & DISCUSSIONS

3.1 Comparisons of the experimental and
numerical results

The general breeding fish inhabit near the bottom of
a land aquaculture tank. The velocity distributions are
near bottom wall were selected as a horizontal plane.
Figure 4 and 5 represent the velocity vectors between
the experiment and numerical results. The experimental
and numerical results are compared velocity difference
according to X-Z plane at Re=2.108=103.

Figure 4 shows the time-averaged velocity vectors at
the experimental results. Aquarium tank depth is set to
0.010m, 0.025m and 0.035m. The entire flow pattern
has a swirling flow pattern. The unique flow pattern
appeared at near center. Velocity magnitude of this flow
is decreased because the depth of the aquarium tank is
shallow, and the velocity magnitude of walls are
decreased by friction. Fig 4(b) shows the stagnation
region at the comer of the right side. This is because of
the increased fluid wvelocity as the Y-axis(depth
direction) by X-Z plane at Re=2.108x103. As the depth
of aquarium tank is shallow, the stagnation region is
decreased at the aquarium tank.

Figure 5 shows the time-averaged velocity vectors at
the numerical analysis results. Figure 5(a) shows that
the velocity increases near the inlet. This is because the
inlet velocity by streamed a narrow pipe. Results of this
section, the velocity values have some difference
between the experiment and the numerical analysis

results. The reason for this difference is considered to be
the PIV resolution errors because of high velocity
around the inlet. In order to clarify the applicability of
the foregoing numerical analysis, comparative studies
with the experimental results have been carried out in an
inland aquafarm model, and the calculated results had
good agreements with the experiment.

Figure 6 shows the streamline patterns at each section.
The apparent swirl motion is observed in each section of
the aquarium tank. As the depth is deeper, the swirl
motion is advanced to right side the corner by outlet
flow velocity. Consequently, when the depth is 0.010
meters, the flow at near bottom wall can not be shown
as the stagnation region. Therefore, this region can not
cause the stagnation of pollutants and excrements, etc..

3.2 Temperature distributions of numerical
analysis

As mentioned above, we analyzed and verified the
flow field in an inland aquafarm model. One of the main
purposes of this study is to obtain the flow and
temperature profile in the actual aquaculture tank. In the
aquaculture industry, the optimum temperature for
breeding fish is about 20°C in winter season. Thus, in
this study, the size of the aquarium tank for calculation
was sct to the same conditions. In the case of an actual
aquarium tank for breeding fish, the aquarium tank
depth is not over 0.4 meter. Therfore, the aquaculture
tank depth selected was between 0.01 to 0.035 meter in
this study. The costly breeding of fish in aquarium tanks
behave at near bottom of tank. Thus, the main flow
characteristics were focused near the bottom in X-Z
plane, Y=0.010 m.

Figure 7 shows distributions of velocity with
Re=4.215x102 at X=0.lm and Y=0.010m. Figure 8
shows distributions of velocity with Re=4.215x102 at
Z=0.1m and Y=0.0lm. The counterclockwise rotation
vortex was formulated at the center point on the same
streamline pattern.

Figure 9 ~ Figure 11 shows the distributions of
temperature by each section according to the Reynolds
number, Reynolds numbers at the inlet are selected as
4.215%102, 1.265x103 and 2.108x103. The high
temperature appears near each wall of the X-direction
and Z-direction, and this high temperatue is distributed
widely in the plane by the swirling flow. As the tank
depth deepens, the high temperature can be propagated
to other regions.
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X
(a) Y=0.035m (b) Y=0.025m (c) Y=0.0lm
Figure 4. Distributions of Velocity vectors for experimental results(X-Z plane, Re=2. 108x10%).

(a) Y=0.035m (b) Y=0.025m (¢) Y=0.01m
Figure 5. Distributions of Velocity vectors for numerical analysis(X-Z plane, Re=2.108x10%),

(a) Y=0.035m (b) ¥Y=0.025m (c) Y=0.0lm
Figure 6. Streamline for numerical analysis(X-Z plane, Re=2.108x10%).
@0 0003
ooz b
o}

Weveloclty
i

/

-:-ﬂ! d-‘“i J;ﬂi 0.000 0.001 o002 L] 10 20 ko “
U-velocity X-axis
Figure 7. Velocity distributions with Re=4.215x102 Figure 8. Velocity distributions with Re=4.215x102
at X=0.1m and Y=0.01m. at Z=0.1m and Y=0.01m.
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i

(:]as Y=0.035m (b) Y=0.025m

(c) Y=0.0lm

Figure 9. Temperature contours for numerical results(X-Z plane, Re=4.215x 10’).

e

4. CONCLUSION

In order to verify the calculation code, the numerical
analysis and experimental PIV data were compared in
the aquaculture tank model. Based on this calculation
code, the flow field in the aquaculture tank was carried
out for various tank geometry. Some important results
can be summarized as follows.

(5 Y=0.035m (b) Y=0.025m

(b) Y=0.025m

REL TO TREF
(KELVIN)
0w
2000

(c) Y=0.0lm
Figure 10. Temperature contours for numerical analysis(X-Z plane, Re=1.265%10°).

(¢) Y=0.0lm
Figure 11. Temperature contours for numerical analysis(X-Z plane, Re=2.108x 10%).

1. The comparative studies with experimental results
have been carried out, and the calculated results had
good agreements with the experiment.

2. When the depth of the aguarium tank becomes
deeper, the flow field near the bottom wall was
advanced with stable flow.

3. As the depth of the aquarium tank is deeper, the
high temperature appeared near the wall in the X-
direction and Z-direction, and this high temperature is
distributed widely due to large swirling flow.

4, The temperature in the aquarium tank is increased
when the inlet velocity increases.
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ABSTRACT- A technical analysis was conducted to predict the development trend of engineering plastic and
articles form fundamental resin researches. The study was based on a submitted patent during 1965 and 2003 in
Korea, Japan and America. The Total number of extruded patents from the registered database was 1733 and the
filtering process makes the reduction for the data number to 1605. The patent of USA for the industrial part is
compared to the other country due to approximately 61%. Otherwise, the patent of Japan for the research and
development is compared with the other country. We expects to the gradually increasing for engineering plastic

research because the patent of korea is increasing after 1995

KEY WORDS: Engineering Plastic, Patent, Resin

1. INTRODUCTION

Recently, the researches are increasing about E/P,
which replacing cast-iron product. Existing metallic
cast-iron product cause of 10% bubble defectiveness
during it's manufacture process. Cast-iron producer try
to decreasing rate of defectiveness and decreasing rate
of manufacturing and processing cost. Therefore, now
replacing material research is gradually increased. At
the end of 1956 year, Engineering Plastic, its means
"Plastic of challenge the metal"

Dupont(American)company ~ developed Polyacetal
Homopolymer. After than production and marketing
since 1960 years, its have a short article history during
40 year. But application of industrial part increased
truly amazing as compared with short history.

* Corresponding author, e-mail : yhchun@gsnu.ac.kr

It’s usage are machine, flight, electricity, electronic
and automobile etc. focus on industrial products and
continually. Engineering Plastic is defined tow parts.
one is high performance plastic, such as replacing metal
product in structure parts and machine parts. The other
is industry used plastic in automobile, electricity parts,
electronic parts. This product has over 500Kg.f/cm2,
tensile strength and over 20,000 Kg.flem2, winding
elasticity and over 100C thermal endurance.

This researches, we focused on the inquiry and
analysis of patent registration trend of Korea, USA,
Japan' E/P, and these results can be use for basic design
in a new material development. The data is collected
1960's E/P patent to 2003 year, technical improvement
progress, recently technical trend, disparity in technique.
Situation and main distribution chart of technique etc.
classified by country, a field of technique and articles

group.

_93_
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2. STUDY METHODS

The. E/P patent is divide two parts in patent purpose.
First resin composite patent such as raw material resin
of Engineering plastic that production method of
manufacturing. Second, patent of special E/P resin. For
technical analysis of E/P utilized patent in formation
index in patent technical.

Information  center(www kipris.or.kr),  Finding
abstract list and then find full papers or patent
registration list.

Table 1. Result of raw data filtering process

R Data processing e
Coumtry data Erase Total(%) data
duplicated date
Korea 143 15 10.5 128
USA 798 76 9.5 732
Jopan | 702 | 47 | 9 | 205
Total 1733 138 3.6 1605

In a information searching period, Korea investigated
since 1979, USA since 1966, Japan since 1975
investigated after E/P patent was starting. Patent
technical search results are 1773 in three countries, it's
include overlapping data.

All data is filtered by removing noise data and overlap
data. The rate of overlapping data is 8.6% compare with
all results data. Table 1 shows the result of E/P patent.

3. RESULTS AND DISCUSSION

Finding data is collected about 1605 data, Above data
is divided two parts by technical separate system.
According to E/P technical analysis during 1996 to 2003
year, we can separate various parameters which is
technical trend, disparity in technique by country, field
of technique.

3.1 E/P technique development

In order to find patent registration, we check E/P
patent registration in three countries patent office. Table
2 shows the patent registration or patent registration the
present position result are below.

Table 2. Patent registration list.

Country UsA Korea Japan
Patent
Registration] 745 732 128

—8— USA
sg | | —=— Korea
—O— Japan

Number of patent
5

18965 1870 1975 |éﬂ WIGS IQIQB |9I35 Z‘D‘W 2005
Year
Figure 1. Trend of patent registration between

each country.

Patent registration trend by graph each  country in
Fig. 1. Korea is start in 1976 year gradually increase
transition at every year, compare with USA and Japan
rate of patent registration E/P. Korea is gradually
increase transition of patent registration in recently.
Japan begin a extremely increase patent registration in
1980 year. Patent registration about E/P is higher level
during the middle of 1970's. This meaning USA
alternate - development study of E/P cast-iron material
ahead of Korea and Japan.

3.2 Classified by technical Development trend

Table 3 shows dividing patent registration in present.
Patent registration is divided development of resin,
forming, manufacturing and application of product.
Patent registration about resin is 935 data(58%), patent
of articles registration is 670 data(42%) in the Patent for
analysis total 1605 data. The rate of patent registration
in korea is low level compare with USA and Japan. In
case of Japan, patent registration of resin is 4 times
higher than of product patent registration

This result imply in Japan focus on the basic
development of resin more than E/P products, On the
other hand, the patent registration of application is 1.5
times bigger than in case of USA. USA developed not
only E/P but also normal plastic of various kinds resin,
the beginning Dupont company progressed development
and study, the present time is able to definite that
increase of articles application.

Table 3. Patent registration number of each country with
a classified category.

Country
g Tapan USA Korea
Resin 578 288 69
Articles 167 444 59

—94_
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Number of pantent
5

"
o

1970 1875 19‘90 m‘as 1690 19‘05 2000
Year
Figure 2. Patent registration trend between three
country (Resin).

a5

30 || =o= Japan
—=— Korea

1970 75 1880 1985 1830 10“6 ﬂlﬂo
Year

Figure 3. Patent registration trend between three

country (Articles).

Fig. 2 and Fig 3. shows classified registration year
and trend, In the patent registration of total 128 data
correspond to 53% about resin of 69 data and the other
about application articles. Patent registration for resin is
slowly increase after the middle of 1990's in patent
trend. At the same time patent registration of articles
application is increased. Recently, report - resin
development and article application about E/P in
government and company published in papers. This
meaning that Korea research about E/P is a little behind
compare with two countries.

In case of USA, 444 data(60%) is application from
among registered 732 total data, about resin is 288
matter(40%) its, compare with the rate of resin in E/P
whole patent is 58% that meaning is differ numerical
value result. From the middle of 1970 to recent years,
resin have registered almost 9 times by each year. Also,
patent registration of applied product shows constant
results after 1970.

76% is resin patent and the rest parts are applied
patent in case of Japan. In case of resin, the patent
registration is high in 1990 to 2000 year. After this year,
the patent registration 20 times by each years in case of
Japan. In case of patent register is the highest valve in
1999 year. After 1999 year, average 60 data is
registrated in patent. .

3.3 Classified by application rate of patent
registration for E/P

E/P analyzed different registered patent. Wide
separation of E/P analysis divided resin and application
of product. Detail separation of E/P analysis divided
resin process method and resin composite. And
application of product is industry, -electronic,
construction, automobile. The rest parts included flight,
toy, marine, medical, textiles, sports, ship etc. Fig. 4
shows the rate of patent trend separation in three
countries.

This percentage is more than half value in all of
patent technique. This imply for resin development and
research is more activate than a application of product
by classified each country.

B Industry(23%)

W Resin process method(37%)
O Resin composita(28%)

O Electronic(3%)

M Construction(3%)
Automobile(3%)

M etc.(3%)

Figure 4. Patent registration ratio in the three country.

@ Industry(27%)

M Resin process method(27%)
O Resin composite(20%)

O Electronic(7%)

M Construction(4%)

B Autormobile(4%)

M etc.(1%)

Figure 5. Patent registration ratio in Korea.

Fig, 5 shows the rate of patent registered in Korea.
The rate of Resin process method(27%), Resin
composite(27%) and industry(30%) are almost similar
with each other.

_95_
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As I said earlier, Korea' E/P technique present
condition is underdeveloped compare with USA and
Japan.

@ industry(41%

W Resin process method(25%
D Resin composite(14%

O Electronic(5%)

W Construction{4%)

B Automobile( 499

Welc (7%

7
Figure 6. Patent registration ratio in USA.

Fig. 6 shows the rate of patent registered in USA.
The patent registration of resin(39%) is lower than the
rest parts which is industry(41%), electronic(5%),
construction (4%), automobile(4%) and etc(7%). USA
is strong power country about E/P, produced resin since
1960's. there is no comparison between Korea and USA
technical level for development of resin and process
method and forming method about resin composite.

Since the first industrialization, USA produced
product through development and study of resin with
learning technical applied various fields of industry.

In case of USA used more parts of variety of
application in E/P product. more than Korea and Japan.

B Industry(15%

W Resin process method(42%
O Resin composite(35%

[ Electronic(299

W Construction(3%

B Automobile( 2%

Wele.(1%

Figure 7. Patent registration ratio in Japan.

Fig, 7 shows the rate of patent registered in Japan.
The result of this graph completely different from the
result of USA.

Resin  process method(42%) and  Resin
composite(35%) are more than industry application
product rate(23%) in Japan. Recently, Japan is
tremendous effort about development of resin and
researches.

In case of Japan is 8 times bigger than korea in resin
patent registration

This results imply about Japan is various industrial
application through the study of fundamental resin
process method and composite.

The number of patent registration is almost similar
with USA. but the rate of fundamental resin process is
higher than the rate of product application.

4. CONCLUSION

In this study, patent about E/P registered in Korea,
USA, and Japan 3 country with technical development
of E/P and the following conclusion are obtained.

(1) Registration tendency of Patent technique in USA
732 data, Japan 745 data and Korea 128 data. The
number of registration tendency of patent technique in
USA is similar with Japan.

(2) USA has many patent about industry(61%) but
Japan is focus on development and study of resin.

(3) Korea's rate of patent registration is smaller than
USA and Japan but gradually increase trend after 1995.

(4) In case of USA's patent tendency is begin 1960
year for the fundamental research about development
and research of resin. At the same time, application of
industrial parts are gradually increased.

(5) In case of Japan's patent tendency, patent
registration of resin tremendous increased in the late
1980 year. Also, industrial application is in creased in
the late 1990 year.
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ABSTRACT- There are many important factors for breeding fish in an aquafarm. Some of these factors are
biological others include sea water temperature and so on. What is especially important for good quality breeding or
fish is the maintenance of optimum aguaculture temperature. In summertime, when sea temperatures rise above 25T
the growth condition is bad and cause a diseases in fish spread.

In this study water cooling system using a steam ejector was used to drop the temperature of the water in the
aquafarm by about 5T from 25T or higher. To replace the present water cooling system, we focused on system
operated by the latent heat of evaporation. This can be get by using a vacuum pressure to evaporate the water in an
enclosed tank. The water cooling effects are dependent on the vacuum pressure in the enclosed tank, and the cooling
water is generated by evaporation.

As the experimental result, the absclute vacuum pressure obtained was about 8-10mmHg using a steam driven
ejector with jet condenser. The time needed to reach this vacuum pressure was about 8~10 minutes and the

temperature difference of the water is about 6 T .

KEY WORDS: Steam driven gjector, Aquafarm, Latent heat of evaporation, Vacuum pressure

1. INTRODUCTION

These days, our coasts have been damaged by polluted
water resulting from the construction of industry
complexes, increasing population, and the development
of metropolitans.

Major environmental factors include water temperature,
the amount of melted oxygen, salt, CO,, ammonia and
PH. Nourished salts that are associated with the
breeding of the aquaculture are also important because
they may effect the growth of the fish and lead to
serious diseases.

In Korean aquaculture industry, flatfish and jacopever
are preferred by fishermen on the ground that the former
is characterized by the highly added value and better
returns and the latter has advantage of raising the
creatures. This implies that to help fries to quickly grow
and to be strong enough to get over diseases needs to
have much of melted oxygen, expecially to have a better
control on temperature.

Several investigations of aquaculture in sea water have
been reported. Kim(1997) examined the marine
pollutions in view of bioclogy. This biological treatment
poses no problems to the aquaculture industry because
the aguarium tank is separated from the water pollution.
Partridge(1989) and Sannomiva(1987) examined the
swimming structure and behavior of fish in an aquarium.
Takaki et al(1993) considered the effect of the

aquarium tank size and shape. Generally, the
aquaculture equipment have two types of closed and
open flow systems. Jeong et al.{1998) reported the flow
characteristic by comparing a numerical analysis and
flow wisualization images. Mirashi et al (1995)
examined the effect of water current in the aquaculture
environments of the sea. The closed type is the system
which the sea water 1s recirculated again in the
aquarium tank. The water in the case of the open flow
system is discharged into the sea. The first system needs
a more expensive equipment, but this system can save
energy in heating the aquarium water during the winter
season. Lee(1994) carried out the experiment of a flow
characteristics in the closed aquarium. In the design of
the aquaculture tank, what needs to be emphasized is the
aquaculture environments. This means that the wrong
design can cause mass mortality of breeding fish.

There are many important factors for breeding fish in an
aquafarm. Some of these factors are biological others
include sea water temperature and so on. What is
especially important for good quality is the maintenance
of the optimum aquaculture temperature. In
summertime, when sea temperatures rise above 25T the
growth condition is bad and cause a diseases in fish
spread.

Therefore, we performed a study of a sea water cooling
system by using a steam ejector to drop the temperature
of the water in the aquafarm by about 5T from 25T or
higher. To replace the present water cooling system, we
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focused on a system operated by the latent heat of
evaporation, using a vacuum pressure to evaporate the
water in enclosed tank. The water cooling effects are
dependent on the vacuum pressure in the enclosed tank,
and the cooling water is generated by evaporation.

2. STEAM EJECTOR THEORY

A steam gjector is a equipment which compresses the
gases to a desired discharge pressure. Steam ejectors are
constructed of three parts ; a suction chamber, a motive
nozzle and a diffuser. The high velocity jet stream of
steam emitted by the motive nozzle creates a suction
chamber which draws the low pressure gases. The
diffuser converts the kinetic energy of high velocity
flow to pressure energy[21].

A schematic view of a typical steam ejector is shown
in Figure 1. The flow process is also presented in
Mollier’s chart [1,5] Figure 2. Referring to Figure 1, as
the high pressure steam(P) , known as ‘primary fluid’,
expands and accclerates through the primary nozzle (i),
it flows out with supersonic speed to create a very low
pressure region at the nozzle exit plane (ii) and hence in
the mixing chamber. According to the differences of
pressure of the two positions, higher-pressure vapor,
which, can be called the ‘secondary fluid® (S), can be
entrained into the mixing chamber. The primary fluid’s
expanded wave was thought to flow and form a
converging duct withou! mixing with the secondary
fluid. At some cross-section along this duct, the speed
of secondary fluid rises to sonic value (iii) and chokes.
This cross-section was defined by Munday and Bagster
[6] as the ‘effective area’. The experimental results and
analysis, provided in [7,8], indicated that this
hypothetical area was not constant but vared with the
operating conditions. Munday and Bagster also
suggested that the mixing process begins after the

secondary flow chokes.

. Mising Charsber __ Thivat _ Sebsonic Difflser
=i i

Primary Fluid ——
— -

!
i

L vl

Contents

E Proiicr
£
|
L Pa
R -
total enthalpy of
the mixed flow
_______ L B
= " Praising
saturated vapour line

Entropy
Figure 2. Mollier’s chart of an ejector.

This mixing causes the primary flow to be retarded
whilst secondary flow is accelerated. By the end of the
mixing chamber, the two streams are completely mixed
and the static pressure was assumed to remain constant
[1] until it reaches the throat section (iv). The pressure
in the mixing chamber was a function of primary fluid,
secondary fluid and the back pressure of ejector [9].
Due to a high-pressure region downstream of the mixing
chamber’s throat, a normal shock of essential zero
thickness is induced (v). This shock causes a major
compression effect and a sudden drop in the flow speed
from supersonic to subsonic. We have to note that this
norm al shock is wvalid in the assumption of one-
dimensional analysis only. In real situations, because of
a thick boundary layer, the shock is not fully normal but
includes complex oblique shock patterns. A further
compression of the flow is achieved (vi) as it is brought
to stagnation through a subsonic diffuser. The
experimental results  of static  pressure  profile
measurement taken along the wall of ejector have
shown these assumptions to be valid in the studies of
Eames et al. [22], Huang et al.[7], Chunnanond and
Aphomratana [23] and Chen and Sun [10].

The above one-dimensional gjector theory was first
introduced by Keenan et al. [11]. Their mathematical
analysis was based on an ideal gas dynamics together
with the principles of mass, momentum, and energy
conservation, and it has been used as a theoretical basis
in ejector design for the past fifty vears. However,
Keenan's theory, cannot predict the constani-capacity
characteristic that was proposed later by Munday and
Bagster [6]. In order to eliminate the analytical error
induced by the ideal gas assumption when the ejector
issued with refrigerants, the thermodynamics properties
of real gases were applied [3,12,14]. However, the
of Aphomratana [14] and Abdel-Aal et al. [13]

i

Distance along Ejector
Figure 1. Schematic view and the variation in stream
pressure and velocity as a function of location along a
steam ejector.

indicated that both approaches provide the similar
results. Since the pressure in the mixing chamber is very
low, therefore, the fluids behave like an ideal gas.
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Moreover, to make the simulated model become more
realistic, the isentropic efficiency [3,4.5,14,16]
including the friction losses [17,18] and pressure loss
[19] were taken into account. From the Mollier’s chart
shown in Figure 2, it can be seen that the normal shock,
which creates a major compression effect, causes loss in
total pressure of the mixed stream. If the mixed stream
is brought to stagnation state isentropically (without a
normal shock), the exhaust pressure will be as high as
P,

3. EXPERIMENTAL APPARATUS AND
DESCRIPTION

The cooling effects are dependent on the vacuum
pressure, thus the vacuum pump has to achieve the
pressure of evaporation. As the general vacuum pump is
designed for high vacuuming in a small space, the
ejector pump system is more suitable than the vacuum
pump. In this paper, we conducted this experiment using
an ejector. There are three kinds of ejector; an air
ejector, a water ejector and a steam ejector. This
research excluded air ejector because of size and cost.
Accordingly, this experiment made a comparative study
of water and steam ejector.

Figure 3. Schematic diagram of the experimental
apparatus.

Figure. 3 shows the experimental apparatus to

measure the effect of vacuum levels in the enclosed tank.

The designed vacuum chamber has a capacity of 568L
and the inside air of the vacuum tank is evacuated by a
water driven ejector. Two heat exchangers were
installed in the experimental apparatus. One was located
on the air side in the enclosed tank for condensing the
evaporated water., The other was immersed in a feed
water tank for cooling the water that is pumped to the
ejector. The water that passes from the ejector is re-
circulated through the feed water tank into the ejector
pump. The ejector pump has a float type flow meter and
adjusting valve.

The pressure transducer (PSHAOT60HAAT) was
installed on the top of the vacuum tank. The pressure
signal is transmitted to a personal computer and data
logger (DR130, YOKOGAWA).

Contents

Figure 4. Photography of experimental setup.

Figure 4 shows photography of experimental setup.
Temperature regulator is needed for condensing air and
cooling the water. The pressure signal is transmitted to a
personal computer and data logger.

Figure 5 shows drawing of a water ejector. This
system consists of main three parts; the nozzle, straight
pipe and diffuser.

apparatus.

Figure 6 shows the experimental apparatus to
measure the effect of vacuum levels in the enclosed tank.
Figure 6 Shows the system generating cooling water by
using latent heat of evaporation at low pressure. The
low pressure generating system adopts vapor driven in
this research. The vapor is created by a steam boiler and
goes through a steam ejector. As the steam which
passed the ejector goes through a jet condenser, it drops
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the pressure inside of the vacuum tank to a vaporable

pressure.
Figure 7 shows photography of experimental setup of

steam ejector. The pressure and temperature signal are

transmitted to a personal computer and data logger.

Figure 8 Drawing of steam ejector.

Figure 8. shows the drawing of a steam ejector. The
steam ejector is constructed of three parts ; a suction
chamber, a motive nozzle and a diffuser. The high
velocity jet stream of steam emitted by the motive
nozzle creates a suction chamber, which draws the low
pressure gases. The diffuser converts the kinetic energy
of high velocity flow to pressure energy.

Figure 9. Drawing of jet condenser.
Figure 9 shows the drawing of a jet condenser. Jet
condensers in an ejector system reduce the amount of

Contents

vapor load that a downstream ejector must handle. Jet
condensers in an ejector system are designed to
condense steam.

Table 1 shows experimented with three types of water
ejectors. The different parameters are flow rate in the
heat exchanger of the ejector water and condensing,

Table 2 shows the main parameter for water cooling
test by using steam ejector. The experimental was
conducted using three different driven conditions; a
steam ejector, jet condenser and steam ejector with jet
condenser.

Table 1. Main experimental parameters for the water
cooling test by using a water ejector.

Typel Type2 Types
Enclosed tank volume(Liters) 568 568 568
Filled water and air 300L, 3001, 3001,
volme{Liters) 2681, 2681, 2651,
Flow rate into cjector pump, Q, 0 s s
)
Flow rate in heat exchanger of ORE 8 e
ejector water, O (L/M)
Flow rate in heat exchanger of none none i
condensing, O, (1/M) -

Table 2. Main experimental parameter for water cooling
test.

Typel Type2 Types
s Steam ejector with
Driven condition Steam ejector | Jet condenser il
Enclosed tank -
volunre(Liters) 3 ‘“ 5
Flow rate into ejector SSLw SSLw SsLw
pump, <, (L/M) 30La 30La 30La
‘Steam pressure I
(kgliem?) o Flow rate nio | 3.5-8kgll em® 100LM 85 Im;’;‘ L
jet condenser pump(LAM)

4. RESULTS AND DISCUSSION

To achieve cooling water, the water should be in an
evaporating condition. This condition can be achieved
by vacuuming. The water driven ejector and steam
driven ejector were introduced in this study.

Figure 10 shows the vapor pressure and temperature
curve. The pressure in the vacuum chamber has to
search the vapor pressure to obtain the cooling effects
by using the latent heat of evaporating.
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Figure 11. Vacuum pressure distributions for three
types ; Typel, Type2 and Type3 in tablel.

Figure 11 shows the vacuum pressure distributions
for three types of ejector in table]. The absolute vacuum
pressure obtained was about 30~-50mmHg using a water
gjector.
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Figure 12, Vacuum pressure of typel in table2.

Figure 12 Shows vacuum pressure of the steam
ejector. Steam ejector used in this experiment is a single
stage steam ejector. To get the desired vacuum pressure
1s impossible by using a single stage steam ejector.
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Figure 13. Vacuum pressure of type2 in table2.

Figure 13 shows vacuum pressure by jet condenser. The
absolute vacuum pressure obtained was about 40mmHg.
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Figure 14 Vacuum pressure of type3 in table2.

Figure 14 shows vacuum pressure by steam ejector with
Jjet condenser. The steam ejector is operated after getting
60mmHg vacuum pressure by using a jet condenser.
This figure shows the performance of the absolute
vacuum pressure shows about 8~10mmHHg.

Temperature, (°C)

10 I " L " L n L

[] 100 200 300 400 500 600 TOD 80O

time, {sec)
Figure 15. A vanation of temperature in enclosed tank
of type3 in table2.

Figure 15 shows a variation of temperature in enclosed
tank of type3 in table2, obtained about A T=6C.
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5. CONCLUSION

In this research, to replace the present water cooling
systems, we focused on a system operated by latent heat
of evaporation, using a vacuum pressure to evaporate
the water in an enclosed tank. The water cooling effects
are dependent on the vacuum pressure in the enclosed
tank, and the cooling water is generated by evaporation.

As the experimental result, it is impossible to get the
desired vacuum pressure by using a single stage steam
ejector, Thus a multiple stage steam ejector is needed to
get the vacuum pressure.

The absolute vacuum pressure obtained was about
30~50mmHg using a water ejector. However, we could
not get the desired vacuum pressure. The absolute
vacuum pressure obtained about 40mmHg by a jet
driven condenser.

The absolute vacuum pressure obtained was about
8~10mmHg using a steam driven ejector with jet
condenser. The time needed to reach this vacuum
pressure was about 8~10 minutes and the temperature
difference of the water is about 6.
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Abstract: Resources recycling are very important and urgent technology for world industry.
Development of waste recycling process includes environment protection and resources aspect. This
process is very important for raw material of plastic industry, and the profit from this process is going
to contribute national revenue. Especially waste plastic materials, if this process is not performed, it
will cause serious problem for our environment. Therefore, recycling process technology of macro
molecular material such as plastic is very important to be developed. The system for the treatment
temperature (Tg) of waste material by using liquefied gas with super low temperature and technology
is proposed for plastic recycling process. In addition, In this study, Impact energy is obtained for
comminution of the low temperature in industry waste PE, PP, PVC material. The result of impact
strength PE, PP and PVC in the super low temperature experiment at —80~-86 is compared with
normal temperature at 187, It is found that the impact strength of PE, PP, and PVC decrease about

94.6%, 90.57%, 93.12% respectively

Keywords: Liquefied Gas, Super Low Temperature, Impact strength, Plastic, Comminution

NOMENCLATURE

: Temperature ['C]

: Initial angle [°]

: Angle after collision with specimen [°]
- Impact value [N-cm/cm®)

: Impact energy[N-cm)

: Area of notch cross section [cm)

: Weight of hammer [kg]

R : Radius of hammer arm [cm]

h1 : Initial height of the hammer [cm]

h2 : Height of hammer after collision [cm]

s»mcwme =

1. INTRODUCTION

Resources recycling are very important and
urgent technolegy for world industry. Development of
waste recycling process includes environment
protection and resources aspect. [1-5], this process is
very important for raw material of plastic industry, and
the profit from this process is going to contribute
national revenue. In case of waste plastic materials, if
this process is not performed, it will cause serious
problem for our environment. Therefore, recycling
process technology of macro molecular material such
as plastic is very important to be developed. [6-8] The
system for the treatment temperature (Tg) of waste
material by using liquefied gas with super low
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temperature and technology is proposed for plastic
recycling process.

In this study, Impact energy is obtained for
comminution of the low temperature in industry waste
PE, PP, PVC material. In order to obtain glass
transition temperature of each material, the chamber
is made and the temperature is controlled. This
system will achieve glass transition temperature from
-120°C, which is transition temperature of PE, up to
ambient temperature. With this, delay time is studied
at the each transition temperature and information of
glass transition temperature is acquired

2. PREPARING THE MANUSCRIPT DESIGN
OF VAPORIZATION SYSTEM BY USING
LIQUEFIED NITROGEN

In this study, liquefied nitrogen is utilized
as cooling energy. To utilize the coaling energy, direct
cooling energy environment and indirect cooling
energy environment was constructed, and then this
system is used to conduct experimental study of glass
transition temperature.

Figure 1 illustrate schematic diagram of
experimental equipment in order to used cooling
energy system.
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Figure 1: System of the Waste Matter Treatment Tg by Using Liquefied Gas with Super Low Temperature.

In this system, nitrogen form LN; tank is supplied
to direct cooling energy chamber. At the same time,
indirect cooling energy chamber is cooled by heat
exchanger which is connected to LN: tank. Say
chamber 1, 2 and 3 are direct cooling energy
environment. Chamber 4 is indirect cooling energy
environment. At the schematic diagram (Fig. 1),
chamber 1 is super low temperature nitrogen gas
from which nitrogen is discharged into the chamber at
once. LN: tank also supplies super low temperature
nitrogen to heat exchanger 2. After passing heat
exchanger 2, this nitrogen will be sent to the chamber
2. Therefore chamber 2 temperature will be higher
than chamber 1. Likewise, the heat exchanger 2
receive nitrogen LN, tank and transmit it to the
chamber 3. Because air inlet temperature at heat
exchanger 1 is higher than air inlet temperature at
heat exchanger 2, therefore temperature of chamber
3 will be higher than chamber 2. Meanwhile, indirect
cooling energy from the air passes heat exchanger 1
and 2. So this chamber temperature will be higher
than direct cooling energy chamber.

First, testing specimen of plastic and rubber
produce, after the test, the physical properties of
material at the glass transition temperature in each
chamber are obtained and ensure the whole process
technology for comminution.

Figure 2 illustrate cooling energy system which is
drawn by using CATIA. First, super low temperature
nitrogen is discharged from the LN tank, Passing
through heat exchanger 1 and heat exchanger 2 and
discharged to the liquid dewar. Inlet air from outside
was suck by fan. This inlet air passes heat exchanger
1 and heat exchanger 2 respectively. This air is used
to cool down chamber in order to reach glass
transition temperature for experimental plastic and
after exchange cool energy to the chamber, this air is
rejected to the environment.

Figure 3 depict experimental equipment in order to
make cooling environment.
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Heat Exchanger 1
Heat Exchanger 2

Outflow-ai
Inflow—air

Figure 3: Experimental system Apparatus

Upper panel is controller unit for controlling entire
system and measuring temperature of each part. And
this experimental is made up 2 Heat Exchanger and a
Fan.

3. IMPACT TEST SUING CHARPY' METHOD
Basic experiment is performed by using CHARPY'
for impact testing of high molecular substance such
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as plastic. The purpose of this impact testing is to
measure impact resistance, ductility and brittleness of
plastic material by CHARPY' impact testing. [9-13]
Ambient impact tester and super low temperature
condition is approached at this experimental study.
Figure 4 is CHARPY' impact tester which is measured
impact strength under glass transition temperature at
the experiment apparatus manufactured for cool
energy environment construction. First, plastic was
set on the anvil which islocated at bottom left.
Second, hammer was lifted up under specific angle
and drop [14-18]. Finishing cut the plastic specimen,
hammer swing one times, going through anvil and
stopped by bend brake. Finally, quantity of absorption
energy can be read from impact gage in order to
obtain the impact strength.

Figure 4: CHARPY' impact tester

Figure 5 is Principle of CHARPY' impact tester. R
is radius of hammer arm, « is initial angle, # is angle
after collision with specimen, h1 is initial height of the
hammer, h2 is height of hammer after collision, W is
weight of hammer. Impact energy for cutting
specimen is calculated as follows [18-19]

E=Wh —Wh,

Wh =W(l-=cosa)

Wh, =W(l—cosf3)
Impact energy E is

E=WR (cos 8 -cos a)

Figure 5: Principle of CHARPY' impact tester
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Impact value U is

_E
= A
U= Wi(cos ff—cosar) kef-miomd

A
(A: Area of notch cross section)

V or U notch is prepared at middle cutting part of
specimen to show stress concentration effect.

4. INVESTIGATION AND RESULT FO
EXPERIMENT

This test is using PP, PE, PVC standard

specimen(10mm:><10mm>=<55mm) and impact test is
conducted at ambient temperature (18), at super
low temperature (-1967), exposure specimen in
ambient temperature after 1 minute and 2 minute.

Figure 6: Specimen of PP, PE and PVC

Figure 6 shows three type of specimen (PP, PE,
PVC) “that is tested in this experimental. These
specimens were tested 5 times for each of 20
specimens. Next picture shows LN» gas in gas
cylinder to set the specimen environment under super
low temperature. Each specimen is measured for 5
times. Except for ambient temperature test, PP, PE
and PVC specimens were only tested one time.

Figure 7: Lay up Liquid Dewar of LNz
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4.1 Temperature distributions of PP, PE and PVC

Figure 8~10 is temperature distributions of PE PP,
PVC in the gas cylinder during 10 minute, 20 minute
and 30 minute in the super low temperature. In this
graph, each specimen is measured at the ambient
temperature for 10 minute. At the first time, specimen
temperature show at intervals of -5'C—-10C under the
exposure from gas cylinder to ambient temperature.
But immediately, each specimen display relatively
same temperature  distribution. To  measure
temperature of specimen, T type thermocouple was
utilize to measure temperature down to -200°C. This
thermocouple was inserted into 10mm hole at middle-
left position. This conditions is employed to the PP,
PE, PVC and disregard adiabatic characteristic of
specimen. In a CHARPY' impact tester, length of
hammer is 76cm, Weight of hammer is 30kg, initial
angle is 30° for all condition.

Temperatwe (°C)

Time (min)

Figure 8: Temperature distributions of PE

Temperature (Ch

Figure 9: Temperature distributions of PE
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Temperatuze (°C)
i b -

Time {min)

Figure 10: Temperature distributions of PVC

4.2 Impact strength of PP, PE and PVC for each
temperature

Table 1~3 shows impact strength of specimen for
each temperature which is calculated by equation (2).
PP shows the highest impact strength of all testing
material. Instead of cut it just bent. Value of impact
strength was 367.39 N » cm/icm® Also, smallest
impact strength occur when thetest is under the
condition of super low temperature LNz gas which the
plastic only get short exposure. All kind of material
showed same result impact strength by 19.58
N - cmicm®

Table 1: Impact strength of PP

T{C) 18T -86°T -58T -37T

Impact 367.39 19.59 19.59 56.95

Strength

Table 2: Impact strength of PE

Te) i8¢ -86c  -BBT 37

Impact  207.76 18.59

Strength

29.16  20.16

Table 3: Impact strength of PVC

T{%€) 18T -86T -58C 37T

Impact 28491 1959 1959 29.16

Strength

Figure. 11 shows result impact strength of PP, PE,
PVC. When the time is 0, X axis shows result of PP
impact strength at normal temperature is very high.
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Figure 11: Impact strength distributions of PP,
PE and PVC

At the axis equal to 1(when the material get short
exposure to normal temperature), Y axis shows the
value of impact strength of PP, PC and PVC have
same results. The test result of three materials at
ambient temperature exposure after 1 minute and 2
minute only shows little variation.

4.3 Observation of cutting surface of PP, PE, PVC

The picture of four different temperatures cutting
surface, when hammer cut the specimen of PP, PE
and PVC, is taken by close photograph digital camera.
First, picture at ambient temperature, second, at quick
exposure from LNz gas cylinder to ambient tempera-
ture. Third, after exposure at ambient temperature
during 1 minute and the fourth is after 2 minute of
exposure.

Figure 12~17 shows cutting surface after
measured by CHARPY' impact strength with two
piece of PP, PE and PVC

Figure 17: PE Fracture surface at -50'Cand -30C

Figure 12 - 17 compare cutting surface at normal
temperature(18°C) and quick (-867~-80T) exposure
to ambient temperature. By using this picture,
characteristic of impact strength at low temperature
will be able to study. In the figure 12 ~ 17 hammer
smash the specimen form the bottom to upper
direction. At the first time, cutting surface (b) showed
smooth fracture which exposed to ambient
temperature. In the contrary ambient temperature
(18'C) specimens show rough fracture. (Left side
photographs)

This is the reason why glass transition
temperature for specimen with super low temperature
Figure 13: PE Fracture surface at -53C and -35¢C LN gas has brittleness characteristic. By comparing
impact strength result for instance PP, result of
impact strength at ambient temperature(18C, 207.76
N » em/em?®) is 20 times higher than at the low
temperature (-80T, 15.59 N » cm/em’®)
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5. CONCLUSION

A chamber with liquid LNz gas is installed for
constructing super low temperature system in order to
develop technical treatment of waste matter handling
using super low temperature liquid gas.

Experiment for testing PP, PE and PVC impact
strength at super low temperature is conduct in this
study.

This experimental study shows that the impact
strength of PP, PC and PVC specimen is very low at
super low temperature condition. This material is very
brittle at super low temperature. Therefore this
condition is very suitable for PP, PC and PVC waste
recycling process
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Abstract: This study performed of a water cooling system by using a steam ejector and jet
condenser to drop the temperature of the water in aquafarm by about 5 from 25°C or higher. In this
research, to replace the present water cooling system, we focused on a water cooling system
operated by latent heat of evaporation, thus this system needs a vacuum pressure to evaporate the
water in enclosed tank. The water cooling effects are dependent on the vacuum pressure in the
enclosed tank, and the cooling water is generated by evaporation. As the experimental results, the
absolute vacuum pressure obtained was about 5-8mmHg using a steam driven ejector with jet
condenser in experiments from Type 1 to Type12. The temperature difference of the water is about
5C from Figure 8, 10, 12. Figure 13, 15 and 17 is the graphs of temperature difference of heat
exchanger. The obtained results are respectively AT=7C, AT=5'C and AT=5.5"C. Figure 19, 21 and
23 is the graphs of temperature difference of heat exchanger. The obtained results are respectively

AT=5.5'C, AT=5.5C and AT=5.57C.

Keywords: driven gjector, Jet condenser, Aquafarm, Vacuum, Latent heat of evaporation

NOMENCLATURE
La : Air volume in enclosed tank [ L ]

L, :Water volume in enclosed tank [ L]
Q :Flow rate [L/min.]
T :Temperature [ C ]

1. INTRODUCTION

In Korean aquaculture industry, flatfish and
jacopever are preferred by fishermen on the
ground that the former is characterized by the
highly added value and better returns and the
latter has advantage of raising the creatures.
This implies that to help fries to quickly grow and
to be strong enough to get over diseases needs
to have much of melted oxygen, expecially to
have a better control on temperature.

Several investigations of aquaculture in sea
water have been reported. Kim(1997)"
examined the marine pollutions in view of
biology. This biological treatment poses no
problems to the aquaculture industry because
the aquarium tank is separated from the water
pollution. Paﬂridge(1989)m and
Sannomiya(1987)"! examined the swimming

-532-

- 277 -

structure and behavior of fish in an aquarium.
Takagi et al.(1993)" considered the effect of the
aquarium tank size and shape. Generally, the
aquaculture equipment has two types of closed
and open flow systems. Jeong et al.(1998)"
reported the flow characteristic by comparing
a numerical analysis and flow visualization
images. Hirashi et al. (1995)"! examined the
effect of water current in the agquaculture
environments of the sea. The closed type is the
system which the sea water is recirculated
again in the aguarium fank. The water in the
case of the open flow system is discharged into
the sea. The first system needs more expensive
eqguipment, but this system can save energy in
heating the aguarium water during the winter
season. Lee(1994)"" carried out the experiment
of a flow characteristics in the closed aquarium.
In the design of the aquaculture tank, what need
to be emphasized are the aquaculture
environments. This means that the wrong
design can cause mass mortality of breeding
fish.

There are many important factors for
breeding fish in an aquafarm. Some of these
factors are biological others include sea water
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temperature and so on. What is especially
important for good quality is the maintenance of
the optimum aquaculture temperature. In
summertime, when sea temperatures rise above
25'C the growth condition is greater and
diseases in fish spread.

Therefore, we performed a study of a sea
water cooling system by using a steam ejector
to drop the temperature of the water in the
aquafarm by about 5°C from 25°C or higher. To
replace the present water cooling system, we
focused on a system operated by the latent heat
of evaporation, using a vacuum pressure fo
evaporate the water in enclosed tank. The water
cooling effects are dependent on the vacuum
pressure in the enclosed tank, and the cooling
water is generated by evaporation.

2. EXPERIMENTAL APPARATUS AND
DESCRIPTION

The cooling effects are dependent on the
vacuum pressure, thus the vacuum pump has to
achieve the pressure of evaporation. As the
general vacuum pump is designed for high
vacuuming in a small space, the ejector pump
system is more suitable than the vacuum pump.
In this paper, the steam driven ejector pump

system is proposed for vacuuming in the
enclosed tank.

il e G e i . P

Figure 1:
apparatus.

Schematic diagram of the experimental

Figure 1 shows the experimental apparatus
to measure the effect of vacuum levels in the
enclosed tank. The designed vacuum chamber
has a capacity of 200L and the inside air of the
vacuum tank is evacuated by a steam driven
ejector. One heat exchanger was installed in the
experimental apparatus.

Figure 1 shows the system generating
cooling water by using latent heat of evaporation
at low pressure. The low pressure generating
system adopts vapor driven in this research.
The vapor is created by a steam boiler and goes

through a steam ejector. As the steam which
passed the ejector goes through a jet condenser,
it drops the pressure inside of the vacuum tank
to a vaporable pressure.

The pressure transducer (PSHAOQ760HAAJ)
was installed on the top of the vacuum tank. Six
thermocouples(RTD PT100Q) were installed
inside vacuum tank at regular intervals. The
pressure signal is transmitted to a personal
computer and data logger (DA100, YOKO-
GAWA).

Figure 2; Photography of experimental setup.

Figure 2 shows photography of experimental
setup of steam ejector. The pressure and
temperature signal are transmitted to a personal
computer and data logger.

bt = Hﬁﬁ

MR G GEmcT e

Figure 4: Drawing of jet condenser.
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Figure 3 shows the drawing of a steam
ejector. The steam ejector is constructed of
three parts; a suction chamber, a motive nozzle
and a diffuser. The high velocity jet stream of
steam emitted by the motive nozzle creates a
suction chamber, which draws the low pressure
gases. The diffuser converts the kinetic energy
of high velocity flow to pressure energy.

Figure 4 shows the drawing of a jet
condenser. Jet condenser in an ejector system
reduces the amount of vapor load that a
downstream ejector must handle. Jet condenser
in an ejector system is designed to condense
steam.

Table 1: Experimental parameters for water cooling
effect and vacuum efficiency of the system.

Typel | Type 2 | Typed | Type4
Enclosed tank
volume(Liter) 200 200 200 200

Filled waterand | OLw | 50Ly | 100Ly | 150Ly

air volume(Liter) | 200L; | 150Ls | 100Ls | 50Ls

Steam pressure 4-~5gf | 4~5gf | 4-5gf | 4-5gf
(kgf/em®) fem® | fem® | /em® | /em®

Table 2: Experimental parameters for water cooling
efficiency of heat exchanger flow rate at 4L/M.

Type5 | Type6 Type7

Enclosed tank
volume(Liter)

Filled water and air | 50Ly 100L., 150Ly
volume(Liter) 150L, 100L, 50L,

200 200 200

Steam pressure | 4-5kgff | 4-5kgf/ | 4-5kgf/
(kaf/cm?) cm’ cm® cm®
Flow rate into heat
exchanger Q(L/M) LM 4 4

Table 3: Experimental parameters for water cooling
efficiency of heat exchanger flow rate at 4.5L/M.

TypeB Type9 | Typel0
Enclosed tank
volume(Liter) 200 200 200
Filled water and air 50L. 100Ly 150Lw
volume(Liter) 150Ls 1001, 50Ly
Steam pressure 4-5kafl | 4~5kaf! | 4~5kgf/
(kgf/em®) cm"g' cm?f r:rn?1
Flow rate into heat 45 4.5 4.5

exchanger Q(L/M) LM LM /M

Table 1,2 and 3 is processed as follow
method.  The steam ejector is operated after
getting 60mmHg vacuum pressure by using a jet
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condenser, and then cooling efficiency is
measured by experiments with each flow rate of
heat exchanger.

3. RESULT AND DISCUSSION

To achieve cooling water, the water should
be in an evaporating condition.

This condition can be achieved by
vacuuming.

Figure 5 shows the vapor pressure and
temperature curve. The pressure in the vacuum
chamber has to search the vapor pressure to
obtain the cooling effects by using the latent
heat of evaporating.

[ ven 7370 19000 00000 2w o, 7 sosx 1!

Vapor pressure, PimmHg}

HESESHESE
s
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] 0 ) @ L] “
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Temp. T (°C)
Figure 5! Characteristics curve of vapor pressure by
the variation of temperature. at-10"CsT=80°C
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Figure 6: Vacuum pressure of Type1 in table 1.
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Figure 7: Vacuum pressure of Type2 in table 1.
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Figure 8: Temperature distributions in enclosed tank
of Type2 in table 1.
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Figure 9: Vacuum pressure of Type3 in table 1.
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Figure 10: Temperature distributions in enclosed tank
of Type3 in table 1.
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Figure 11: Vacuum pressure of Type4 in table 1.
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Figure 11: Temperature distributions in enclosed tank
of Type4 in table 1.

Figure 6, 7, 9 and 10 represents the vacuum
pressure distributions for the four experiments as
shown in table 1.

Table 1. After 15~20minutes, the pressure had an
almost steady condition and the pressure values of
Typel, Type2, Type3 and Type4 were recorded
5~BmmHg. abs.

Figure 8, 10 and 11 show the temperature
distributions of the enclosed tank for each type. AT
obtained from each type is about 10°C and the
pertinence of this system is proved by experimental
graphs of pressure and temperature.
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Figure 12: Vacuum pressure of Type5 in table 2.
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Figure 13: Variation temperature of heat exchanger
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at Type5 in table 2.
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Figure 14: Vacuum pressure of Type6 in table 2.
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Figure 15: Variation temperature of heat exchanger
at Type6 in table 2.
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Figure 16: Vacuum pressure of Type7 in table 2.
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Figure 17: Variation temperature of heat exchanger
at Type7 in table 2.

Figure 12, 14 and 16 show vacuum pressure of
heat exchanger flow rate at 4LUM and the absolute
vacuum pressure obtained was about 5-8mmHg at
this point.
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Figure 13, 15 and 17 is the graphs of temperature
difference of heat exchanger. The obtained results
are respectively AT=7'C, AT=5'C and AT=5.5T.
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Figure 18: Vcauum pressure of Type8 in table 3.
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Figure 19: Variation temperature of heat exchanger
at Type8 in table 3.
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Figure 20: Vacuum pressure of Typeg in table 3.
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Figure 21: Variation temperature of heat exchanger
at Typed in table 3.
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Figure 22: Vacuum pressure of Type10 in table 3.
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Figure 23: Variation temperature of heat exchanger
at Type10in table 3.

Figure 18, 20 and 22 show vacuum pressure of
heat exchanger flow rate at 4.5L/M and the absolute
vacuum pressure obtained was about 5~8mmHg at
this point.

Figure 19, 21 and 23 is the graphs of temperature
difference of heat exchanger. The obtained results
are respectively AT=5.5"C, AT=5.5'C and AT=5.5"C.

When the graphs of heat exchanger flow rate at
4LUM and 4.5L/M are compared bigger temperature
difference can be obtained with lower flow rate.

4. CONCLUSION

In this research, we proposed a water cooling
system by latent heat of evaporation. This system
consists of the enclosed vacuum tank and steam
driven ejector with jet condenser.

From an experimental result, the conclusions are
summarized as follows;

Water temperature proposed in this research is
25C and higher and the cooling system that
temperature difference is about 5°C was introduced.

As the experimental results, the absolute vacuum
pressure obtained was about 5-8mmHg using a
steam driven ejector with jet condenser in
experiments from Type 1 to Typel12. The temperature
difference of the water is about 5°C from Figure 8, 10,
12
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Figure 13, 15 and 17 are the graphs of
temperature  difference of heat exchanger. The
obtained results are respectively AT=7'C, AT=5T
and AT=5.5C.

Figure 19, 21 and 23 are the graphs of
temperature difference of heat exchanger. The
obtained results are respectively AT=5.5C, AT=5.5""
and AT=5.5C.

The proper cooling effect needed in this research
can be obtained by using heat exchanger.

From Typel to Type 4, the bigger temperature
difference is occurred when heat exchanged is not
used. It means that the bigger cooling effect can be
obtained with the system of water circulating through
inside of tank.
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Abstract: LNG Vaporizers must be smaller, more efficient, and easier to operate and maintain.
Recently, the vaporizers with greatly enhanced performance as compared to conventional type have
been developed to fulfill these requirements. This paper was studied for optimum design of the used
vaporizer at a satellite station. Generally, the moisture freezing of air is created by temperature drop
under 0'C on vaporizer surface. This problem is increasingly appeared as time passed and humidity
rise. In addition, the moisiure freezing makes an ice layer and heat transfer on vaporizer is
decreased by the ice layer form into the adiabatic condition. By this reason, recent vaporizer system
is installed as parallel type, and it takes tree times of vaporizer capacity. But this vaporizer system
has much installation costs and is restricted by some space. To solve this problem is very important,
and main impacts of vaporizer can be the circumference distance or angle between fin and fin, length,
thickness, materials, temperature conditions Inner vaporizer and so on. This paper was carried out
the numerical analysis and experiment to get the optimum design information of vaporizer fin for
liquefied natural gas with super low temperature. The geometry of numerical analysis and
experiment were identical. Used parameters are the circumference distance or angle between fins,
and fin thickness of vaporizer. Results on numerical analysis were represented about the correlations
with the ice layer thickness of vaporizer surface according to the temperature variations inner
vaporizer, fin thickness and circumference distance between fins of vaporizer. These results were
also verified by experimental study. Finally, the information for oplimum design of vaporizer was

proposed with correlation equations in this paper.

Keywords: LNG, super low temperature, vaporizer

NOMENCLATURE

De: outside diameter of vaporizer tube [mm]

t/s: ratio of fin thickness by circumference distance of
outside diameter between fins

@ (or s): angle or circumference distance of outside
diameter between fins [’]

THe (or f): thickness of vaporizer fin [mm]

Tre: temperature of fin end point [T]

Tue: inner working fluid temperature of vaporizer [T]
R: a radius of vaporizer tube [mm]

1. INTRODUCTION

Recently, many Korea researchers have been
concentrating on the super low temperature fields due
to the increasing demand of the LNG which has many
applications like quick freezing, a power generation
by cold energy, low temperature refrigeration and so
on."™ LNG consists of CHy as main component,
which is made by cooling and pressurization process
of natural gas. LNG is carried and saved as a liquid

below -162T from the outside. But, LNG must be
vaporized for using like fuels in industries and home
and so on, and then cold energy was generated about
latent heat of 120kecallkg and sensible heat of
BOkcal/kg, while the vaporization process. In fact,
much additional cost and facilities are demanded for
vaporization of LNG.®* Therefore, this utilization of
cold enmergy and develop of vaporizer is wvery
important. Generally, the vaporization method of LNG
is compartmentalized into two types. One is to use
the air of atmosphere and another is to use the sea
water. The sea water type is used in LNG undertaking
station require much heat quantity, however it has
some problems to make ice on vaporizer surface in
sea water. The vaporizer used at the satellite station
is almost by the air vaporization method. In case of air
type, the freezing moisture of air is created by
temperature drop under 0T on vaporizer surface, too.
This problem is increasingly appeared according to
rising of time and humidity. In addition, the freezing
moisture makes ice layer and heat transfer on
vaporizer decrease by the ice layer formation form
into the adiabatic condition.”” Because of this reason,
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recent vaporizer system is installed as parallel type,
and it takes tree times of vaporizer capacity. But this
vaporizer system requires much installation costs and
larger space. Therefore, LNG vaporizer system must
be smaller, more efficient, and easier to operate and
maintain. But, Korea is in the initial stages of super
low temperature fields as vaporizer and utilization
technologies of cold energy about LNG, which are
lacked of data on the physical and theoretical of super
low temperature fields.

The geometry of vaporizer in this paper likes one of
vaporizer at the satellite station which is star fin-tube
type, Additionally, the geometry change of this
vaporizer determine to promote the heat transfer and
ice layer formation. Accordingly, parameters such as
circumference distance or angle between fin and fin,
thickness of fin and temperature conditions of working
fluid inner vaporizer were adapted in this study.
Liquefied natural gas was supposed as working fluid
inner vaporizer, and outside of vaporizer was
assumed to be heated by ambient air. Ultimate
purpose of this study is to get information of optimal
design of vaporizer such star fin-tube which can be
used in LNG satellite station by prediction of ice layer
thickness on vaporizer surface through numerical
analysis. As one of results, optimal ratio of t/s as
thickness of fin by outside diameter circumference
distance between fins was proposed this paper

2. NUMERICAL ANALYSIS

Using vaporizer in LNG satellite station is
distinguished from general heat changers of industry.
For adequate vaporization of LNG, the supplied flow-
rates of LNG, the conditions of air such as humidity
and velocity of air, the geometries of fin like width,
length and spacing were very important. Therefore,
the numerical model of vaporizer this paper was
presented in Fig. 1.

Fig. 1 shows the numerical models of vaporizer

according to angle or circumference distance
between fins, and THr means the thickness of fin
which is 2mm, 4mm, 6mm, and Ty as inner working
fluid temperature of wvaporizer is given each
temperature such -162C, -120C, -80C, -407, -207C.

Fig 1: Geometry of vaporizer models for numerical
analysis

Above numerical model are two dimensions, and
assumed that fin and tube are pure aluminium. Two
dimensions model of Vaporizer was not considering
the effect of gravity because it supposed horizontal
section about vertical arrangement of vaporizer. Also,
inner warking fluid of vaporizer is always kept on the

selected temperature, and the conditions of ambient
air have temperature of 20C, pressure of 1.013bar.
Hence, heat conduction equation of steady state was
only used in this paper because it is calculated by
temperature difference due to no effect of gravity and
no flow of mass. First of all, main assumption of this
study is that ice layer on vaporizer surface is
formatted from surface temperature of vaporizer to
0C of surrounding.

For this study, creating surface of numerical model
was carried out by using CAD, and creating grid as
hexahedral mesh was made by ICEM-CFD software.
Lastly, the calculation of model for numerical analysis
was accomplished by STAR-CD such common CFD
code. The grid system for the calculation zone was
shown Fig. 2 and used grid numbers were required
about 40,000.

Fig 2: Grid system for the calculation zone

3.NUMERICAL ANALYSIS RESULTS &
DISCUSSIONS

Fig 3: Actual photograph of ice layer formation of the
general vaporizer

Fig. 3 shows a picture of using vaporizer in LNG
satellite station. Ice layer formation between fins on
vaporizer surface thickly presented in Fig. 3.
Therefore, the thickness of ice layer and end point
temperature of fin length in numerical study can be
presented like Fig. 4 leading to variation of the
circumference distance or angle of between fins,
working fluid temperature like LNG and fin thickness.

THice

Fig 4: A part of the calculated ice layer thickness and
end point temperature of fin on each vaporizer
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Fig 5: Ice layer thickness according to variation of fin
thickness and inner temperature on vaporizer with
each other different angle between fins

Fig. 5 shows the thickness of ice layer formation
according to fin thickness, inner temperature of
vaporizer with different angle between fins, and
horizontal axis presents inner working fluid
temperature of vaporizer. As shown, thickness of ice
layer was decreased when the angle between fins
and the working fluid temperature inner vaporizer
grow larger, and it has also the increasing trend due
to rise of the fin thickness. However, comparing the
thickness difference of ice layer about different fin
thickness, the case @®=45° shows the decreasing of
ice thickness difference to -B0T after thickness
difference increased with temperature grow of inner
working fluid. On the other hand, ice thickness
difference of the case ®=90° and ®=120° were
gradually decreased with temperature grow of inner
working fluid.

Table 1: summary of numerical analysis results

uo
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Therefore, ice thickness from more than ®©=80° was

hardly affected by the variation of fin thickness
according to the temperature increase of the inner
working fluid. Here, we can find that a vaporizer
model with fin thickness of 2mm was well suited. And,
the ice thickness was affected by the angle(®) or
circumference distance(s) between fins more than fin
thickness(f). This result was guessed due to effect by
decrease of some space between fins. Accordingly,
ratio of t/s as fin thickness by outside diameter
circumference distance between fins was presented
with the correlation equations about ice layer
thickness according to temperature variation in Table
2

Table 2: Correlation equations of ice layer thickness
according to inner temperature variation of vaporizer

Q0837 | Tijpoe= ~ 02013[ Ty) ~1.88 2
Q09 | THjop= —02408( Tyy) — 1892 2
0127 | Thyo~ 036 Ty) — 23897 1
0169 | Tljm= —00023{ 13— OTETp) — 1OIT| 45 2
04659 | THpmy = — 02561 Thy) - 14202 a0 4
01911 | THyg= - 03328] Tyy) — 05437 ETN T

02548 | THpg= - 03057] Ty} — 12851
03397 | THyg ~ —0007( L) ~ 0.0086{T}y) + B.7813| 45
05086 | THygg= ~0.0002( Thy)'— 05006 Ty ) + 1244 | 45

-.nl-au

Fig. 6 shows the correlation between the ice layer
thickness and ratios of t/s according to the LNG
temperature. In this study, geometries of same ratio is
t/s, one is the vaporizer in case of ®=45" and THr
=2mm, and the others are ®=90" and THr =4mm. All
of bath have the same ratio of #/5=0.1699 however the
ice thickness by numerical results are different each
other. The ice layer thickness in case ®©=90" and TH
=4 was presented less than the case ®=45" and THr
=2mm, which can be known in Fig. 7(a). Also,
t/5=0.1699(®=90" and THr =4mm), t/s=0.2584(®=45"
and THe =4mm) and t/s=0.5096(®=45" and THr
=6mm) had relatively high ice thickness than others.
By this reason, the heat transfer and efficiency of
vaporizer must be considered apart from the
vaporizer geometries is /s of 1.699, 0.2584 and
0.5096, additionally the ice thickness in case of all
was not increased by increasing of t/s ratios but
general ice thickness by increasing of ¢/s ratios show
the increasing tendency.
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Fig 6: the ice layer thickness of vapotizer surface
according to the increase of LNG temperature and
ratios of t/s
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Fig 7: End point temperature distributions of

vaporizer fin according to the increase of LNG
temperature and ratios of t/s

Fig. 7 shows the end point temperature distributions
of vaporizer fin according to the increase of LNG
temperature and ratios of ¢'s. to increase of fin end
point by temperature increase of working fluid is
general a fact. Therefore, the temperature of fin end
point was increased with the increasing of vaporizer
inner temperature, in the contrary the temperature
difference of fin end point by the variation of t/s ratios
was reduced according to inner temperature increase
of vaporizer the increasing of vaporizer inner
temperature. additionally the fin end temperature in
case of t/s=0.0637 was presented the best high
temperature. Order of the fin end temperature in
respect to t/s ratios is:

0.0637(=120" and THr =2mm) >
0.0849(®=80" and THr =2mm) >
0.1699(®=90" and THg =4mm) >
0.1274(®=120" and THr =4mm) >
0.1699(®=45" and THr =2mm) >
0.3397(¢=45" and TH =4mm) >
0.1911(=120" and THr =6mm) >
0.2548(®=80" and THer =6mm) >
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0.5096(®=45" and THF =6mm)

Accordingly, the correlation equations about ice
layer thickness according to LNG temperature
variation were summarized in Table 3.

Table 3: Correlation equations of fin end point
temperature according to inner temperature variation
of vaporizer

s Corrdlation Eq. [ ere1 e oy
00637 | Typ= 08493{Tyl+ 04412 120 2
0,089 Tp= 0.0505(7),)+ 0.6287 ap 2
01274 Tpe= 04TI3{ Ty} + 02035 120 f
0160 Typ= 0064B( Ty )+ 04810 | 45 2
01699 Tye= 0OTB( o)+ 02318 | o0 1
01911 Tpp= 0886(7,)+ 018m | 10 6
02548 | Tpe= 08846(Tp)+ 00T | 90 6
03307 Tsz= 00802(7))+ 02588 | 45 4
05096 Tye= 0.98589( T )+ 01647 15 &
4. EXPERIMENT
Inlet temperature
contral unit

| Test room for vaporizer —l [ Data acquisition unit ‘

Fig 8: Experimental setup for vaporizer

Fig. 8 shows the experiment system of vaporizer
according to angle or circumference distance
between fins, and the thickness of fin which is 2mm
and Ty as inner working fluid temperature of
vaporizer is given each temperature such -170°C,
-120°C, -80°C, -40°C. The working fluid is LNz.

Above experiment system are inlet temperature
control unit and LN2 tank and humidifier and data
acquisition unit

Fig. 9-18 shows the vaporizer model for experiment
which has ratio THe=2mm. Inner working fluid of
vaporizer for experiment was used the liquefied
nitragen which has a low boiling point of -196T at
1atm. However, for identical temperature condition
like working fluid of numerical analysis, the nitrogen
temperature of -162T was constantly maintained by
controlling of heating coil. The testing room has
temperature of 20T and air humidity of 50%. The
material of physical vaporizer is AB063S and has
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excellent heat conductivity. T-type thermocouple was
installed at fin end point to get fin end temperature
according to time.

R | T e e i =

i 1

Fig 9: Test model of Finless.
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Fig 10: Test model of 3fin25LEws
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Fig 13: Test model of 4fin25LEwr
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Fig 17: Test model of 8finS0LEnr
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Fig 18: Test model of Bfin75LEwr

Fig. 19 — 22 show measured temperature profile to
various type and temperature. Flow rate is 0.5kg/min.
shows the end point temperature distributions of
vaporizer fin according to the increase of LN
temperature to increase of fin end point by
temperature increase of working fluid is general a fact.
In the various model, present 4finS0LEyr have most
efficient according to temperature grade in Table 4.

Tempersture | “C]
g

"
Tima [ min]

Fig 19: Measured temperature profile
to 4fin50LEwr, Q=0.5kg/min, Tin=-40°C, HUM.=50%
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Fig 20: Measured temperature profile
to 4fin50LEwr, Q=0.5kg/min, Tin=-80°C, HUM.=50%
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Fig 21: Measured temperature profile to
4finS0LEwF, Q=0.5kg/min, Tin=-120°C, HUM.=50%
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Fig 22: Measured temperature profile
to 4fin50LEwr, Q=0.5kg/min, Tin=-170"C, HUM.=50

Table 4: Grade of various types on the Outlet
temperature at Inlet temperature of -170°C

Type alet Outlet Grade

finless -170°C -132°C i
3EnZ5LEw -1M°C -154°C 8
35n50LEw -170°C -100°C 6
3ENTELEw -170°C -16°C 1
Bz e e 5 3
ABnS0LEw -170°C -31°C 3
AfnT5LEw -170°C -88°C 2
BEnZSLEw -170°C -161°C 10
BAnS0LEw AT°C -82°C 4
BhnTELEw -17°C -98°C []
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5. COMPARISON VERIFICATION OF
NUMERICAL ANALYSIS & EXPERIMENT

Terrparsburs [ €]

Tirme [sec.)

Fig 23: the fin end temperature distributions of the
experiment and calculation according to time at the
working fluid temperature of -162 T

Fig. 23 shows the temperature distributions of fin
end on the experiment and calculation result with
respect to time. The experimental result takes about
6.5 sec to reach 0'C, and the numerical result takes 5
sec to reach 0. Like this, the heat transfer before
ice layer formation rapidly occurred by supplying of
much heat quantity from outside. But, the heat
transfer after ice layer formation will was reduced by
effect of it. And, the time difference between
experimental and numerical results reaching 0T is
1.5 sec. Although the numerical result is faster than
experiment, the temperature distribution pattern of the
numerical result is well met with the experiment, and
this can be known by comparing the graph in Fig. 11.

6. CONCLUSION

Numerical analysis and experiment for the optimum
design and the prediction of the ice layer formation on
the vaporizer fin has been carried out

1) By increasing of the fin thickness and decreasing
of angle or circumference distance between fins, the
heat transfer on vaporizer of the initial stage of
vaporizer operating can be promoted due to grow of
heat transfer area but it in late stage was predicted to
reduce by increasing of the ice layer thickness,

2) Considering initial stage and late stage of
vaporizer operating, #s=0.849 (ie. ®=90" and
THr=2mm) was evaluated as optimum geometry of
others. And, the geometries are allowed to change
according to circumstances in range of t/s ratios,
excluding  #5=0.1699(®=90° and THr=4mm),
1/5=0.2584(P=45" and THe=4mm) and
/5=0.5096(®=45" and THg =6mm).

3) Ratio of t/s as fin thickness by outside diameter
circumference distance between fins was defined in
this paper, and quantitative values of the information
about the ice layer thickness and fin end temperature
according to LNG temperatures and 0.0637 < t/s <
0.5096 were obtained.

4) The correlation equations of the ice layer
thickness and fin end temperature according to LNG
temperature variation were proposed. The numerical
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result was verified by comparison with experimental
result and was agreed with experiment.

5) n the experiment models, 4fin50LEye type have
most efficient according to outlet temperature grade.
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Abstract: The aquafarm is a system used for breeding fish by using sea water. The main advantage
of this paper presents the characteristics of fluid flow and temperature distribution at different plans in
the aquafarm by the variations of inlet pipe position, inlet water temperature and flow rate. The paper
aims to find an optimum combination of these factors which produces a velocity and temperature
profile ideally suited for the breeding of a certain type of fish.The numerical analysis has been
developed for caleulating the velocity and temperature distributions in a rectangular model of an
actual aquafarm scaled down by 25 times, the finite volume method and SIMPLE algorithm being
used for the numerical analysis. The numerical model is based on the assumptions of steady state
incompressible flow and uses 3-dimensional standard k-eturbulence model. Experiments were also
done. This exprements ware compared with the results of numerical analysis showed good
agreement.

Keywords: PIV(Particle Image Velocimetry), Standard k-e turbulence model, FVM(Finite Volume

Method)

1. INTRODUCTION

Nowadays our coasts have been damaged by the
water pollution that resulted from the construction of
industry on the shore, increasing population, and
urbanization. As compared with the open sea, an inland
sea has higher pollution level because of eutrophication
and red tide. etc. Aguaculture, that raises aquatic
products for eating, has generated many problems by
destroying of an ecosystem.

The major environmental factors include water
temperature, the amount of melted oxygen, salt, COz,
ammonia, PH and nourished salt that are associated
with the breeding of the aquaculture because it may
have effects on the growth of the creatures and lead to
their serious diseases.

In the korean aquaculture industry, fisherman on
the grounds prefer lefteye flounder (Paralichthys
ofivaceus) and rockfish (Sebastes schlegeli). The
former is characterized by highly benefit and better
returns, and the latter has advantage of raising the
creatures. MNowadays, inland aquafarm uses
recirculated sea water. This implies that to help quickly
grow and to be strong enough to get over diseases
needs to have much of melted oxygen, to have a better
control on temperature. Therefore, recirculated
seawater causes many problems. The major problem
on this process is the increasing- cost of production and
the disease to fish.

Several investigations of aguaculture in sea water
have been reported. Kim({1997) examined the marine
poliutions in bioclogy point of view. This biological
treatment has no problems in aquaculture industry

because the aquarium tank is separated from the water
pollution.  Partridge(1989) and  Sannomiya(1987)
examined the swimming structure and behavior of fish
in aquarium tank. Takagi et al.(1993) considered the
effect of the size and shape of aquarium tanks.
Generally, the aguaculture equipment has two types of
closed and open flow systems. Jeong et al.(1998)
reported the flow characteristic by comparing numerical
analysis and flow visualization images. Hirashi et al.
(1995) examined the effect of water current in the
aquaculture environment of the seas. The closed type
is the system in which the sea water is recirculated
again in the aquarium tank. The water in the case of the
open flow system is discharged to the sea. Thus, the
first system needs more expensive equipment, but this
system can save on the energy for heating needed by
the aguarium tank water in winter season. Lee(1994)
carried out the experiment of a flow characteristics in
the closed aquarium tank. In the design of an aquarium
tank, what needs to be emphasized is the aguaculture
environments, This means that the wrong design can
cause the mass mortality of the breeding fish.

In this paper, we performed a numerical analysis for
fluid flow characteristics in a land aquaculture tank is
perpormed, and the numerical results are compared to
the experimental results by visualization technique with
PIV. This paper is intended as an investigation of the
flow characteristics in an inland aquafarm, and will be
focused on the distributions temperature and velocity.

2. STUDY METHOD
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2.1 Experimental Study

Figure 1 shows the schematic diagram of the
numerical analysis model. The geometry of an inland
aquafarm model is WxHxL=0.2x0.2x0.04(m). This
model consisted of one inlet and one outlet with the
size of d=0.005m.

Figure 2(a) and (b) shows the photogragh and
schematic diagram of the experimental apparatus. The
experimental test model has a tectangular type top
opening which has rounded four corner. The top
surface is opened with an outside temperature of 10TC.
The working fluid used by water at 20C and the
incoming flow rate was set to 1.27x10°. The bottom and
sidewalls were covered with black paint to achieve
good particle image by CCD camera. The laser source
was projected by an Argon-lon laser with 490mW.

Table 1 shows the condition of the present
experimental study. The particle tracers are PVC(Poly
Vinyl Chloride) and the average diameter is 200. The
CCD camera, model CV-M50, was used for image
capturing, The number of images is 200 frames to get
an average image. The cross-correlation algorithm was
adopted to calculate the coefficients from two
consecutive images. 200 consecutive image frames
were captured successively and digitized with a frame
grabber into arrays of 640x480 pixels.

f =S,

Inflow —a=

He=4lmm

[l

IW=200mm
= ——
ChatFlow
d=5mm

Figure 1: Schematic diagram for numerical model.

Tuflow —

Aquucaliure cask
Lo

CCD famera ‘

N ==

Computer & Soltware Thgieal reserdie

(a) Schematic diagram of experimental apparatus.

ulinre dank

CCD came¥a

{b) Photograph of experimental apparatus.
Figure 2: Schematic diagram and Photograph.

Table 1: Experimental conditions for PIV measurement.

Item Specification

Image grabber DT3155(640x480 pixel, B & W)
Light source 750mW, Ar-lon Laser

Particle seed PVC(Poly Vinyl Chloride : 200.)
Working fluid Water(207)

Sheet light Cylinderical Lens

Image recorder SDR-2000

Computer Intel Pentium 11l PC(800MHz)

Frame number for

time-averaged 200 Frames

Two-Frame Gray-Level Cross

Identification Correlation Algorithm

2.2 Numerical Analysis

Table 2: Flow chart of PIV processing.

[ Test Aquaculture Tank
|

v

CCD Camera Controls
Image Acquisition
!
| DT-3155 Board attached in the P/C |

1
+

| Analysis by CACTUS 2000 Software |
|
E Field Section 2* Frame Odd/Even |

1
—

| Calculation of Mcan Value
|_ Result of Flow Visualization |

l

Three-dimensional  incompressible  steady-state
Navier-Stokes equations were used to predict the
internal flow and heat transfer characteristics. The
standard k-¢ turbulence model is generally used in the
analysis of a turbulent flow field. The SIMPLE (Semi-
Implicit Method for Pressure-Linked Equations) solution
algorithm for correcting the pressure field was used, as
explained in Patankar(1980).
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This is mainly suitable for steady state flows and is
stable for undistorted grid systems. Its virtue is that it is
computationally efficient, generally requiring less CPU
effort per iteration than other more hybrid schemes. At
high Reynolds numbers the accuracy of the spatial
discretion of convective fluxes is a determining factor
for both calculation accuracy and stability.

The continuity and momentum equations can be
described in Cartesian tensor notation as follows:

- Equation of continuity

d
E (pu;)=0 (1)
- Equation of momentum
aP
(,t:m‘uJ ;)= —+S (2)

- Equation of energy

9puT)_ 3 # u,) @
X, X, X,

where p is the densnty of water and u is the velocity
component. 7y and S, denote the component of the
stress tensor and momentum source respectively.

The particular high Reynolds number form the k-e
turbulence model used in the STAR-CD is ‘appropriate’,
subject to the caveats given earlier, to fully turbulent,
incompressible or compressible flows

The governing equations for turbulent kinetic energy
and dissipation in the Standard k-e turbulence model
are as follows:

- Equation of Turbulent kinetic energy

0 = My Ok,
du, (pusk o, dx, =
u P+ )= pe-2s 2t py 2 p, (0
ax; ox,
where P, = (_“:Tj_z%)%
X

g
- Equation of Turbulence dissipation rate

9 i HgdEy
ax).(p“}e o, ax,)
d
Cri%[ﬂ:(")+cc3pn) "'(.lur = k)i
g3 u,
Cazp'I' 4p€a +CchPw (5)

where a;, Cu, G, G:S and C. are empirical
coefficients whose values, taken from references, are
given in Table-3. The right-hand side terms represent
similar effects to those described above for the k
equation.

Table 3: Values assigned to standard k- € turbulence
model coefficients,

C, 0.09 (o -0.33
Cui 1.44 Ok 1.0
Ce 1.92 a. 1.22
Cia 0.00r1.0 On 0.9
The incoming Reynolds number is set to 2.108x10°,
The incoming temperature and  atmosphere

temperature are set to 293k and 283k, respectively.
The vertical velocity was assumed to be 0, and
turbulence intensity is set to 5% uniformly. The dynamic
condition near the walls used wall function and
adiabatic condition. The heat flux is set to -20W/m?.

(a) Geometry of inland aguafarm.

(b) Computational grid system of inland aquafarm,

Figure 3: Geometry and grid system for numerical
analysis.

3D model calculation was performed using CATIA,
and PRO-AM was used to create the lattice. The total
number of lattices used for numerical modeling is
60,000. Actual calculation of the model used the
common CFD code, STAR-CD ver-3.15A. Figure 3(a)
shows the measurement of inland aquafarm. The grid
system of the numerical model is shown in Figure 3(b).
The calculation is repeated at steady state, and the
iteration was assumed to be converged when the
residual value of the dependent variables was 10° or
less.

3. RESULTS & DISCUSSIONS

3.1 Comparisons of the experimental and numerical
results

The general breeding fish inhabit near the bottom of
a land aquaculture tank. The velocity distributions near
bottom wall were selected as a horizontal plane. Figure
4 and 5 represent the velocity vectors between the
experiment and numerical results. The experimental
and numerical results are compared base on velocity
difference according to X-Z plane at Re=1.27x10°.

Figure 4 shows each inlet fluid flow characteristics
and the time-averaged velocity vectors at the
experimental results. Aquarium tank depth is set to
10mm, 25mm and 35mm. The entire flow pattern has a
swirling flow pattern. The unique flow pattern appeared
at near center. Velocity magnitude of this flow is
decreased because the depth of the aquarium tank is
shallow, and the velocity magnitude of walls is
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(b) Y=25mm (¢) Y=10mm

Figure 4: Distributions of Velacity vectors for experimental results at X-Z plane, Re=1.27x10%.

(a) Y=35mm (b) Y=25mm (e) Y=10mm
Figure 5: Distributions of Velocity vectors for numerical analysis at X-Z plane, Re=1.27x10%,

Figure 6: Particle tracking for numerical analysis at X-Z plane, Re=2.12x10°
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Figure 7: Velocity distributions with Re=1.27x10%at
X=100mm and Y=10mm

decreased by friction. Fig 4(b) shows the stagnation
region at the corner of the right side. This is because of
the increased fluid wvelocity on the Y-axis(depth
direction) by X-Z plane at Re=1.27x10%, As the depth of
aquarium tank is shallow, the stagnation region is
decreased at the aquarium tank.

(a) Y=35mm

(a) Y=35mm
Figure 10: Temperature contours for numerical analysis at X-Z plane, Re=1.27x10"

a) Y=35mm

(b) Y=25mm
Figure 9: Temperature contours for numerical results at X-Z plane, Re=4.23x10

(b) Y=25mm

(b) Y=25mm_
Figure 11: Temperature contours for numerical analysis at X-Z plane, Re=2.12x10°

V-Velocity

BENNE

w 10 m £ 40
XeAxls

Figure 8: Velocity distributions with Re=1.27x10%t

Z=100mm and Y=25mm.

Figure 5 shows the time-averaged velocity vectors
at the numerical analysis results. Figure 5(a) shows
that the velocity increases near the inlet. This is
because the inlet velocity by streamed a narrow pipe.
Results of this section, the velocity values have some
difference between the experiment and the numerical

TEMPERATURE
TE TQ TREF
KELVIN

GeTTRIEHE 1590
(c) Y=10mm

(e) Y=10mm

(c) Y=10mm
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analysis results. The reason for this difference s
considered to be the PIV resolution errors because of
high velocity around the inlet. In order to clarify the
applicability of the foregoing numerical analysis,
comparative studies with the experimental results have
been carried out in an inland aquafarm model, and the
calculated results had good agreements with the
experiment.

Figure 6 shows the particle tracking at each section.
The apparent swirl motion is observed in each section
of the aquarium tank. As the depth is deeper, the swirl
motion is advanced to right side the corner by outlet
flow velocity. Consequently, when the depth is 10 and
25milimeters, the flow at near bottom wall can not be
shown as the stagnation region. Therefore, this region
can not cause the stagnation of pollutants and
excrements, efc..

3.2 Temperature distributions of numerical analysis

As mentioned above, this study anaiyzes and
verified the flow field in an inland aquafarm model. One
of the main purposes of this study is to obtain the flow
and temperature profile in the actual aguaculture tank.
In the aquaculture industry, the optimum temperature
for breeding fish is about 20T in winter season. Thus,
in this study, the size of the aquarium tank for
calculation was set to the same conditions. In the case
of an actual aquarium tank for breeding fish, the
aquarium tank depth is not aver 40milimeter. Therefore,
the aguaculture tank depth selected was between 10 to
35 millimeter in this study. The costly breeding of fish in
aguarium tanks behave at near bottom of tank. Thus,
the main flow characteristics were focused near the
bottom in X-Z plane, Y=10mm.

Figure 7 shows distributions of welocity with
Re=1.27x10% at X=100mm and Y=10mm. Figure 8
shows distributions of velocity with Re=1.27x10° at
Z=100mm and Y=25mm.The counterclockwise rotation
vortex was formulated at the center point on the same
streamline pattern.

Figure 9 -~ Figure 11 shows the distributions of
temperature by each section according to the Reynolds
number. Reynolds numbers at the inlet are selected as,
423x10* ,1.27%10% and 2.12x10°.

The high temperature appears.near each wall of the
X-direction and Z-direction, and this high temperatue is
distributed widely in the plane by the swirling flow. As
the tank depth deepens, the high temperature can be
propagated to other regions.

4. CONCLUSION

In order to verify the calculation code, the numerical
analysis and experimental PIV data were compared in
the aquaculture tank model. Based on this calculation
code, the flow field in the aquaculture tank was carried
out for various tank geometries. Some important results
can be summarized as follows.

1. Inlet flow close by z-direction maintains normal
fuid than different type.

2. The comparative studies with experimental
results have been carried out, and the calculation
results had good agreements with the experiment.

3. When the depth of the aquarium tank becomes
deeper, the flow field near the bottom wall was
advanced with stable flow.

4. As the depth of the aquarium tank is deeper, the
high temperature appeared near the wall in the X-
direction and Z-direction, and this high temperature is
distributed widely due to large swirling flow.

5. The temperature in the aguarium
increased when the inlet velocity increases.

tank is
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Experimental Study on the Water Cooling Characteristics by Steam Driven Ejector
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Abstract

A steam ejector 15 a device which 15 used to transport vapor or liquid at low pressure to a higher pressure or to make

vacuum as its simplicity and reliability. It is widely used in refrigeration system, power system and food industry etc.

This study showed the water cooling system by using a steam ejector to drop water temperature by about 5T from 25T

or higher. In this study, to replace the present water cooling system, we focused on a water cooling system operated by

the latent heat of evaporation, thus this system needs a vacuum pressure to evaporate the water i enclosed tank. The

water cooling effects are depended on the vacuum pressure in the enclosed tank, and the cooling water is generated by

the latent heat of evaporation. As the expenimental results, the absolute vacuum pressure was obtained about

7~11mmHg by using a steam ejector. The necessary time to reach this vacuum pressure was about 3~5minutes and the

temperature difference of the water were obtained about 6 T.

1. Introduction

Global warming and ozone layer depletion are serious
environmental concerns which have become a focus for
new research in the field of refrigeration. Efforts have
been targeted to the energy conversion systems that
would be capable of meeting cooling. One overlooked
technology that could be used to produce cooling is the
steam ejector ™. A Steam ejector is a device which is
used to transport vapor or liquid at low pressure to a
higher pressure or to make vacuuming pressure %,

Steam ejectors are constructed of three parts: a suction
chamber, nozzle and diffuser. The high velocity jet
stream of steam emitted by the motive nozzle creates a
suction chamber which draws the low pressure air. The
diffuser converts the kinetic energy of high velocity
flow to pressure energy @,

T Graduate School, Department of Mechamcal and
Precision Engineering, Gyeongsang National
University
E-mail : jinzhenhua2001{@yahoo.com.cn
TEL : {055)646-4T766  FAX : (055)644-4766

* Graduate School, Department of Mechanical and Precision
Engineering, Gyeongsang National University

*% Sehool of Mecharical and Aerospace Engineering,
Gyeongsang Mational University

The ejector 15 used to get low pressure, and it has been
applied to a lot of industry field like the heat engine, the
power plant, the food industry, environmental industry
etc, and there are not any problems even it is mixed
with any kind of liquid, gas and solid .

In aquaculture industry, there are many important
factors for breeding fish in an aquafarm. What is
especially important for good quality is the maintenance
of the optimum aguaculture temperature.

Therefore, we performed a study of water cooling
system by using steam ¢jector to drop the temperature
of the water in the aquafarm form 25C or higher. This
study focused on the system operated by the latent heat
of evaporation and it 1s working under vacuum pressure
to evaporate the water in enclosed tank. The water
cooling effects are depended on the vacuum pressure in
the enclosed tank.

2. Experimental Apparatus and Description
2.1 Experimental set up

Fig.1 shows the experimental apparatus for the water
cooling by steam driven ejector. It consists of the steam
boiler, ¢jector, vacuum tank, jet condenser, data logger
and computer. The steam with high pressure and
temperature is used as the primary fluid for the ejector.
When the steam from the boiler passes through ejector
draws the air from vacuum tank. And then the vacuum
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tartk achieves a low pressire state becanse of suction.
Therefore, the water in the vaomwm tatk achiewes an
evaporation condition and the water is cooled down.

Fig.1 Experimental apparatus

The pressure transducer (PSHAOTSOHAAT) was
installed at tep of the vacuum tank. The pressure signal
is tramemitted to computer by data logger (DAL0D,
FOREOGAWA) RID-Type thermocouples are set at
heat exchanger inlet, outlet, varuum tank and jet
condenser outlet. There ae =x thermocouples by
tegplar intervals in the vacoum tank. The vacoum tank
has a capacity of 200 Liters.

Fig 2 Thermocouple positions in the vacium tank

22 Description

Fig2 presents the schematic diagram of a water cooling
system using steam ejector. In this system, the vapor
(primary fud from the boiler through the neezle of the
gector and enfraing the ait (secondary fluid from
vacium tank at low pressore. The primary flud and
secotidary fluid mix in the mizing section and recover a
pressure in diffuser The combined fluid flows to jet
condenser ™.
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Fig.3 Schematic of experimental apparatis

Table 1 shows the experimental condtions In this
study, expetimental tests were conducted with a range
of flow rate of mto heat exchanger from 4 2 fminto 8 £

fmine The filled water in vacuum tank was set constart
of 115 Liters.

Table 1 Experimental condition

Filled water in Flow tate of heat
vacium tark ex changer
(Liter (2 fmi)
Trpe 1 115 0
Trpe 2 115 4
Type 3 115 5
Type 4 115 6
Trpe 5 115 7
Type b 115 g

3. Eesults and Discussion

Experimental tests were conducted with a range of
flow rate of heat exchanger from 4 2 /minto 8 2 fmin
3.1 DBasic expetiment

From Figd, the presmwe of vacuum tark is decreaged
rapidly within four mimites, and than it arrives to stable
state. Absolite vacuum pressute is obtained about
3~TmmHg by using a steam ejector.

Figh shows the temperature distibution of the
enclosed varum tank T1 and T2 are exposed the air
temperature it vacuum tank, T3~T6 shows the water
temperature in vacmum tank. As can be seen in Figh,
the ar temperature was lower than the water
temperatre i1 varum tank. The temperature was drop
gradually with the decreasing pressure of vacuwn tank
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Fig.4 Vacuum pressure distribution in enclosed tank with

115 water, 0€/min flow rate of heat exchanger
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Fig.5 Temperature distributions in enclosed tank with
1158 water, OL/min flow rate of heat exchanger

32 Temperature characteristics by heat exchanger

Fig. 6~Fig.8 shows the distribution of pressure and
temperature when the flow rate of into heat exchanger
was 4 £ /min. From Fig. 6, the pressure of vacuum tank
is decreased rapidly within four minutes, and than it
ammives to stable state. Absolute vacuum pressure 1s
obtained about 7~10mmHg. Fig7 shows the
temperature distribution of the enclosed vacuum tank.
The temperature was decreasing gradually with the
decreasing pressure of vacuum tank. Fig. 8 shows the
temperature variation of heat exchanger inlet and outlet
when the flow rate of heat exchanger at 4 £ /min and
AT=6.7T was obtained.

4189

800

700 —=— Pressure (mmHg)

600

400

300

Pressure (mmHg)

200

100

0 5 10 15 20 25 30 35 40 45 50 55 60 &5 70 75 B0 BS 90

Time (min.)

Fig.6 Vacuum pressure distribution in enclosed tank with

115 water, 4£/min flow rate of heat exchanger
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Fig.7 Temperature distributions in enclosed tank with
115¢ water, 4¢/min flow rate of heat exchanger
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Fig.8 Temperature Variation of heat exchanger at
4&/min flow rate
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Fig.9 Vacuum pressure distribution in enclosed tank with
1158 water, 5€/min flow rate of heat exchanger
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Fig.10 Temperature distributions in enclosed tank with
1158 water, 5£/min flow rate of heat exchanger

& 5] ] =

Temperature (°C)

S

-

0 5 10 15 20 25 30 35 40 45 50 55 60 65 VO Y5 60 65 80

Time (min.)

Fig.11 Temperature Variation of heat exchanger at
5L/min flow rate
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From Fig.9, the pressure of vacuum tank is decreased
rapidly within four minutes, and than it arrives to stable
state. Absolute vacuum pressure is obtained about
T~10mmHg. Fig 10 shows the temperature distribution
of the enclosed vacuum tank. Fig. 11 shows the
temperature variation of heat exchanger inlet and outlet
with flow rate of into heat exchanger at 5 { /minand 4
T=6.3T was obtained. Fig.12 shows the pressure of
vacuum tank is decreased rapidly within four minutes,
and than it arrives to stable state. Absolute vacuum
pressure is obtained about 9-11lmmHg. Fig.13 shows
the temperature distribution of the enclosed vacuum
tank. Fig. 14 shows the temperature variation of heat
exchanger inlet and outlet when the flow rate of into
heat exchanger at 6{/min and AT=6.1T was
obtained.
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Fig.12 Vacuum pressure distribution in enclosed tank
with 115L water, 6L/min flow rate of heat exchanger
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Fig.13 Temperature distributions in enclosed tank with
115 water, 6L/min flow rate of heat exchanger
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Fig.14 Temperature Variation of heat exchanger at

60/min flow rate
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Fig.15 Vacuum pressure distribution in enclosed tank
with 115€ water, 78/min flow rate of heat exchanger
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fig.17 Temperature Variation of heat exchanger at
7t/min flow rate
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Fig.18 Vacuum pressure distribution in enclosed tank
with 115€ water, 8/min flow rate of heat exchanger
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Fig.20 Temperature Variation of heat exchanger at
80/min flow rate

Fig.15 shows the pressure of vacuum tank is decreased
rapidly within four minutes, and than it arrives to stable
state. Absolute vacuum pressure 15 obtained about
8~11mmHg. Fig.16 shows the temperature distribution
of the enclosed vacuum tank Fig. 17 shows the
temperature variation of heat exchanger inlet and outlet
when the flow rate of heat exchanger at 7 £ /min and
AT=6.3Twas obtained.

Fig. 18 shows the pressure of vacuum tank is decreased
rapidly within four minutes, and than it arrives to stable
state. Absolute vacuum pressure 15 obtained about
8~11mmHg. Fig.19 shows the temperature distribution
of the enclosed vacuum tank. Fig. 20 shows the
temperature variation of heat exchanger inlet and outlet
when the flow rate of heat exchanger at 8 £ /min and
AT=55T was obtained.

4. Conclusion

This study focused on a system operated by the latent
heat of evaporation, using a vacuum pressure to
evaporate the water in enclosed tank. In this study the
water cooling system by latent heat of evaporation.
From experimental results showed as follows:

As the experimental results showed that the pressure
of vacuum tank 1s decreased rapidly within five minutes,
and than it arrives to stable state. Absolute vacuum
pressure 15 obtained about 7-11mmHg by using a steam
ejector.

The temperature vanation of heat exchanger inlet and
outlet with different flow rate was AT=67T, A
T=63T, AT=61T, AT=63T and AT=55T,
respectively.
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ABSTRACT: This study performed of a water cooling system by using a steam ejector
and jet condenser to drop the temperature of the water in aquafarm by about 5T from 25T
or higher. In this research, to replace the present water cooling system, we focused on a
water cooling system operated by latent heat of evaporation, thus this system needs a
vacuum pressure to evaporate the water in enclosed tank. The water cooling effects are
dependent on the vacuum pressure in the enclosed tank, and the cooling water is generated
by evaporation. As the experimental results, the absolute vacuum pressure obtained was
about 57 8mmHg using a steam driven ejector with jet condenser in experiments. The
obtained results are respectively AT=7T, AT=5T and AT=5.5T at heat exchanger flow rate
4L/M. The obtained results are respectively AT=5.5T, AT=5.5T and AT=5.5T at heat

exchanger flow rate 4.5L/M.

Nomenclature

La @ Air volume in enclosed tank [L]

L. ! Water volume in enclosed tank [L]
@ : Flow rate [L/min.]

T : Temperature [T]

1. INTRODUCTION

In Korean aquaculture industry, flatfish and
jacopever are preferred by fishermen on the
ground that the former is characterized by the

tA4d g

E-~mail : hmjeong@gnu.ac.kr

TEL : (065)640-3184 FAX : (0661640-3180
+ Addiza iz
= Addsta AR TN, APegd T

highly added value and better returns and the
latter has advantage of raising the creatures.
This implies that to help fries to quickly grow
and to be strong enough to get over diseases
to have much of melted oxygen,
expecially to have a better control on temperat

needs

ure. Several investigations of aquaculture in
sea water have been reported. Kim(1997)°
examined the marine pollutions in view of
biology. This biclogical treatment poses no
problems to the aguaculture industry because
the aquarium tank is separated from the water
pollution. Partridge(1989)° and Sannomiva(1987)°
examined the swimming structure and behavior
of fish in an aquarium.

Takagi et al.(1993) considered the effect of the
aquarium tank size and shape. Generally, the
aquaculture equipment has two types of closed
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and open flow systems. Jeong et {511.(1998)l
reported the flow characteristic by comparing a
numerical  analysis and  flow  wvisualization
images. Hirashi et al. (1995)" examined the
effect of water current in the aquaculture
environments of the sea. The closed type is
the system which the sea water is recirculated
again in the aguarium tank. The water in the
case of the open flow svstern Iz discharged
into the sea. The first svstem needs more
expensive equipment, but this system can save
energy in heating the aquarium water during
the winter season. Lee(1994)* carried out the
experiment of a flow characteristics in the
closed aquarium. In the design of the
aguaculture tank, what need to be emphasized
are the aguaculture environments. This means
that the wrong design can cause mass
mortality of breeding fish.

There are manvy important factors for bresding
fish in an aquafarm. Some of these factors are
biological others include sea water temperature
and so on. What is especially important for
good quality is the maintenance of the
optirnum agquaculture ternperature. In
summertime, when sea temperatures rise above
25T the growth condition is greater and
dizeases in fish spread.

Therefore, we performed a study of a sea
water cooling system by using a steam ejector
to drop the temperature of the water in the
aquafarm by about 5T from 25T or higher.
To replace the present water cooling svstem,
we focused on a system operated by the latent
heat of evaporation, using & vacuum pressure
to evaporate the water in enclosed tank. The
water cooling effects are dependent on the
vacuum pressure in the enclosed tank, and the
cooling water is generated by evaporation.
Much attention is given to dual-evaporator

refrigeration cveles in these days.‘i_B

2. Experimental apparatus and
description.

The cooling effects are dependent on the
vacuuwrl pressure, thus the vacuwn pump has
to achieve the pressure of evaporation. As the
general vacuum pump is designed for high
vacuwning in a small space, the ejector purmp
systern Is more suitable than the wvacuum
pump. In this paper, the steam driven sjector
pumnp system is proposed for vacuuming in the

enclosed tank.

Steam ejector

Tet condenser 1
L
[_' \
ﬁ\' Heat exchanges
‘ — 1 ang
= T =
=
a B«
Water tank Vacuun tatk Steam boiler

Fig. 1 Zchematic diagram of the experimental
apparatus.

Fig. 1 shows the experimental apparatus to
measure the effect of vacuum levels in the
enclosed tank. The designed vacuuwn chamber
hag a capacity of 200L and the ingide air of
the wvacuun tank is evacuated by a steam
driven ejector. One heat exchanger was
installed in the experimental apparatus.

Fig. 1 shows the system generating cooling
water by using latent heat of evaporation at
low pressure. The low pressure generating
system adopts vapor driven in this research.
The wapor is created by a steam boiler and
goes through a steam ejector. As the steam
which passed the ejector goes through a jet
condenser, it drops the pressure inside of the
vacuurl tank to a vaporable pressure.

The pressure transducer (PSHAD7E0HAAD
was [nstalled on the top of the vacuum tank.
PTIODR)  were

inside wvacuuwrn tank at regular

Six  thermocouples(RTD
installed
intervals. Thepressure signal is transmitted to
a personal computer and data logger (DA1QQ,

- 780 -
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YOKO-GAWA),

Fig. 2 Photography of experimental setup.

Fig. 2 shows photography of experimental
setup of steam ejector. The pressure and
are transmitted to a

temperature  signal

personal computer and data logger.

Fig. 3 Drawing of steam ejector.
Fig. 3 shows the drawing of a steam ejector.
The steam ejector is constructed of three
parts: a suction chamber, a motive nozzle and
a diffuser, The high velocity jet stream of
steam emitted by the motive nozzle creates a
chamber, which draws the
The diffuser converts the
velocity

suction low
pressure gases,
kinetic energy of high flow to
pressure energy.

Table 1,
The
60mmHg wvacuum pressure by using a jet

then cooling efficiency is

steam ejector is operated after getting
condenser, and
measured by experiments with each flow rate
of heat exchanger,

Table. 1 Experimental parameters for water
cooling efficiency of heat exchanger flow rate
at 4L/

Typel Type2 Typed
Enclosed tank
nelosed tankf o0 | 509 200
volume(Liter)
Filled wate
L WAHET | 5oLy | 100L. | 150L.
ar aimr
) 150L, | 100L. | 50La
volume(Liter)
tes
Steam | 4~ sigt/ |4~ 5kgt/ | 4™ 5kgt/
pressuce em” cm” em”
(kgf/em®)
Flow rate into
heat exchanger| 4L/M 4L/M 4L
QUL/AD

Table. 2 Experimental parameters for water
cooling efficiency of heat exchanger flow rate
at 4.5L/M.

Typed Typeb Typeb
Enclosed ‘lank 200 200 200
volume(Liter)
Filled wate
o i“_a”" 50Ly | 100Ly | 150Ls
and air
- 150L, | 100L. | 50L
volume(Liter)
Stez i s —
COM Ny~ 5kgi/ | 4~ 5kef/ | 4 ~ 5kat/
A em® em” em’
(kgffem?)
Flow rate into _ - -
ot h 4.5 4.5 4.5
eat exchanger|
L/M L/M L/M
QL)

3. Results and discussion

To achieve cooling water, the water should be
in an evaporating condition.

This condition can be achieved by vacuuming.
Fig. 4 the
temperature curve. The pressure in the vacuum

shows vapor pressure and
chamber has to search the vapor pressure to
obtain the cooling effects by using the latent

heat of evaporating,
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Fig. 7 Vacuum pressure of Type? in table 1.
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Fig. 6 Variation temperature of heat exchanger T
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exchanger flow rate at 4L/M and the absolute i" \\\ M ortc o S
vacuum pressure obtained was about 57 s \‘\‘\
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Fig. 10 Variation
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exchanger at Type3 in table 1.

Fig. 6, 8 and 10 is the graphs of temperature
difference of heat exchanger. The obtained
resulis are respectively AT=7T, AT=5T and A
T=5.5T.

Presaie fmm Hgh

¥ 8 B B B 8 %

mm wm 10 150 nm
Teme gmin )

Fig. 11 Vcauum pressure of Type4 in table 2.

Temperature

7
L3
[Lihe: ] MHE0 i o e

Time | min )
Fig. 12 Variation temperature of heat
exchanger at Typed in table 2.
B0
— T
T
B0
By
i,
I
H
X0
L]
;Dtﬁ i) nm W nm

T i )

Fig. 13 Vacuum pressure of Type5 in table 2.
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L
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Fig. 14 Variation

exchanger at Type5 in table 2.
m

temperature of heat
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Tm
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L [ i 140 onm
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Fig. 15 Vacuum pressure of Type6 in table 2.
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Fig. 16 Variation temperature of heat
exchanger at Type6 in table 2.

Fig. 11, 13 and 15 show wacuum pressure of
heat exchanger flow rate at 4.5L/M and the
absolute vacuum pressure obtained was about
57 BmmHg at this point.

Fig. 12, 14 and 16 is the graphs of temperature
difference of heat exchanger. The obtained
results are respectively AT=5.5T, AT=5.5T
and AT=5.5T,

When the graphs of heat exchanger [low rate
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at 4L/M and 4.5L/M are compared bigger
temperature difference can be obtained with

lower flow rate.

4, CONCLUSIONS

In this research, we proposed a water cooling
system by latent heat of evaporation. This
system consists of the enclosed vacuum tank
and steam driven ejector with jet condenser.
From an experimental result, the conclusions
are summarized as follows:

Water temperature proposed in this research is
25T and higher and the cooling system that
temperature difference is about 5T was
introduced.

results, the absolute

vacuum pressure obtained was about 5~8mmHg

As the experimental

using a steam driven ejector with jet
condenser in experiments.

The obtained results are respectively AT=7T,
AT=57T and AT=5.5T at heat exchanger flow
rate 4L/M.

The obtained results are respectively AT=5.5T,
AT=5.5TC and AT=5.5T at heat exchanger flow

rate 4.51/M.

The proper cooling effect needed in this
research can be obtained by wusing heat
exchanger.
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A Study on the Performance of Steam Ejector by Variation of Steam

Pressure
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University, 445 Inpyeong-dong, Gyveongsang-namdo 650160, Korea
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National University, 445 Inpyeong-dong. Gveongsang-namdo 650160, Korea

ABSTRACT: This paper describes a study on the performance of steam ejector by
variation of steam pressure. Water temperature is especially important for good quality of
fish in an inland aquafam. In summer season, the water temperature increases above 25T,
but for good quality breeding or fish is the maintenance of optimum aguafam temperature by
about 207T. Therefore it is needed to drop the water temperature to provide suitable
conditions of fish growth. There are many kinds of cooling system, in this study using
steam ejector, Aflter cooling the water in vacuum tank with the steam ejector then circulate
this water to inland aquafam. In this way to minimizes fish stress that it is caused by water
temperature. The objective of research confirms the difference of the case which there is
no water in the vacuum tank and has water in the vacuum tank. The purpose of this paper is
to examine the effects on the performance of steam ejector by variation of steam pressure.

Key words: Inland aquafam(£4 3), Steam driven ejector{=% +% ol A g)
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Fig. 1 Photograph of experimental apparatus
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(a) Photo of Steam ejector
T‘ﬁﬁ——h

(b) Schematic diagram of Steam ejector

Fig. 4 schematic diagram of Steam ejector

Fig. 5 Photo and schematic diagram of jet

condenser
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Table 3& 24 W2 AF B3 el 10009]
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Table 1 Specification of jet pump
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Table 3 Experimental condition of Pressure
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Fig. 6 Pressure distribution in vacuum tank of
model 174
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