춘란의 초다형성 SSR DNA ID와 돌연변이 유도를 통한 우수 신품종의 개발

Development of hyperpolymorphic SSR DNA ID and new strains by mutagen treatment in Cymbidium goeringii

정 기 화

공주대학교

제 출 문

농림수산식품부 장관 귀하

이 보고서를 "춘란의 초다형성 SSR DNA ID와 돌연변이 유도를 통한 우수 신품종의 개 발에 관한 연구 (세부과제: 춘란 유전체로부터 초다형성 SSR 좌위의 대량분리 및 품종별 DNA ID 부여, 협동과제: 방사선 및 화학적 처리와 조직배양을 통한 우수 신품종의 유도 및 재배기술 개발)" 과제의 보고서로 제출합니다.

2012년 4월 9일

주관연구기관명 : 공주대학교
주관연구책임자: 정기화
세부연구책임자: 정기화
연 구 원: 현영세 外
협동연구기관명 : 제주대학교
협동연구책임자: 이효연
연 구 원: 고재철 外

요 약 문

I. 제 목

춘란의 초다형성 SSR DNA ID 와 돌연변이 유도를 통한 우수 신품종의 개발에 관한 연구

II. 연구개발의 목적 및 필요성

○ 본 연구의 목표는 (1) 춘란의 유전체로부터 초다형성 microsatellite (SSR) 좌위의 대량 분 리 및 SSR 동시증폭 키트 개발, (2) 방사선이나 화학적 처리에 의한 돌연변이의 유도를 통한 우수 돌연변이체의 분리, 및 (3) 신품종에 대한 SSR DNA ID를 확립하는 것이다.
○ 국내•외적으로 처음 시도되는 DNA ID 개발과 EMS 처리에 의한 춘란 돌연변이 유도 연 구는 유전적 계보가 인증된 신품종의 국외 시장 진출, 유통 춘란의 위품 근절 및 국내 춘 란의 유전자원의 보호, 및 품종 특이적 분자마커 개발에 기여할 것이며, 전반적인 난 산업 의 활성화에 일조할 것이다.

III. 연구개발 내용 및 범위

○ 춘란의 SSR-enriched library 스크린을 통한 SSR 서열 및 다형성 좌위의 분리
○ SSR 좌위의 multiplex PCR 키트의 개발 및 상품화 (hexaplex kit 3종 이상)
○ 개체별 고유 SSR DNA-Finger ID 부여 및 시장 적용성 검사 (변별력: 99.9999% 이상)
O 춘란의 지역별 - 품종별 - 원산지(국가)별 계통유전학적 차별성 규명
○ 춘란의 종자에 방사선 $\left({ }^{60} \mathrm{Co}\right)$ 처리를 통한 돌연변이 유도 및 변이체 분리
O 춘란의 근경에 화학물질(EMS) 처리를 통한 돌연변이 유도 및 변이체 분리
○ 우수 희귀 돌연변이체의 조직배양을 통한 대량 증식과 신품종 확립

IV. 연구개발결과

○ 춘란의 유전체에서 346 개의 SSR 서열을 대량으로 분리하여 21 개의 다형성 마커를 개발하였으며, 한 국, 중국, 일본의 춘란을 수집하여 집단 및 원산지별 춘란의 유전적 특성을 분석함.
O 다형성 좌위의 동시증폭 PCR 시스템 3 종류를 개발하여 실험시간 단축, 시료 절감 등의 효율성을 극대화시켰음 (Octaplex, pentaplex, tetraplex). 이들 마커에 대해 높은 재연성을 확인하였으며, 아울 러 동양란 7종에 대해 종간 교차적용성을 확립하여 다형성 SSR 마커의 유용성을 확인함.
○ 고정된 춘란 40 품종 및 돌연변이 유도 사피 2 품종에 대해 99.9999% 이상의 정확한 변별력을 갖는 개체별 고유 DNA ID를 부여하였고, 이를 간단하게 표현 할 수 있는 2 차원 DNA 바코드 표기법을 고안함.
○ 조직배양기술을 이용하여 발아시킨 춘란 근경에 0.2% 의 EMS를 처리함으로써 엽록소 결 핍 돌연변이 근경을 유도하였음. EMS 처리시 50% 이상의 춘란 근경이 갈변되었으며, 갈변 된 근경을 근경증식용 고체배지에 배양하였을 때 갈변된 근경의 일부 조직으로부터 새로 운 측지근경의 생장이 관찰됨

○ 근경조직을 절단하여 색소변이 근경을 식물체로 재분화시킨 결과 중투, 사피, 산반, 단엽종 등 다양한 잎 돌연변이 식물체들로 분화됨을 관찰함. 특히 EMS 처리에 의해 선발된 춘란 사피 2개 돌연변이체에 대해 품종으로 고정함
○ 한국춘란과 중국춘란의 형태적 비교의 경우에는 중국춘란이 한국산보다 화주 윗면에서 안토시 아닌 반점이 더 많이 나타났으며, 순판점에서 순판돌기 사이에 발현된 안토시아닌 반점은 두 배나 높게 발현되었음. 순판점의 길이와 넓이에서는 한국산이 더 컸으며, 순판점의 모 양은 중국산이 V 형에 가까웠으나 한국산은 U 형에 더욱 가까웠음.

V. 연구성과 및 성과활용 계획

○ 다형성 SSR 마커를 이용한 높은 변별력의 개체식별법의 적용 및 DNA ID의 바코드 표기 법의 실용화로 고가에 유통되고 있는 우수 품종에 대한 유전적 검증 시스템을 확립한다면 구매자의 신뢰성 증진 등 난 시장의 불신해소와 침체되어있는 시장 활성화에 기여할 것으 로 사료됨
○ EMS와 방사선 처리 등으로 돌연변이를 유도하여 대량 증식된 신품종에 대한 DNA ID 부 여 및 유전자 검증을 통해 조직배양 춘란의 원 개체와 동일 여부 확인이 가능케 되어 인 위적 신품종에 대한 효율적인 관리를 할 수 있고, 일반 춘란과의 차별화된 가격과 판매전 략이 확립되어 다양한 신규 소비자를 확보할 수 있을 것으로 기대됨
○ 또한 본 연구결과에서 얻어진 근경을 식물체 재분화 배지에 이식하여 동일한 변이를 가진 식물체를 대량 증식시킬 수 있는 배양체계를 확립하였으므로, 연구에서 개발한 잎 돌연변 이 춘란은 향후 산업적으로 이용이 가능할 것으로 생각됨
○ 주요 정량적 성과: 특허출원 3 건(1 건 등록), 논문 5 편 (SCI 급: 3 편), 학회발표 11 회, 유전자 (SSR 마커) 등록 202건, 신품종 고정 2건

SUMMARY

I . Title

Development of hyperpolymorphic SSR DNA ID and new strains by mutagen treatment in Cymbidium goeringii

II. Aims and necessity

O The purpose of this study is (1) mass-isolation of hyperpolymorphic microsatellite (SSR) markers from spring orchid genome and development of SSR multiplex PCR kits, (2) superior mutant isolation by radiation or chemical treatment, (3) establishment of SSR DNA ID for the developed new cultivars.
O Development of SSR DNA ID will be first in the world, and genetic identification of new artificial cultivars will be useful for development of new domestic or oversea markets, reservation of genetic resources, and application of cultivar-specific molecular marker.

III. Contents

Establishment of red ginseng method by the extrusion processDevelopment of highly qualified and functional food materials using cultured mountain ginseng which is converted into red ginseng\bigcirc Identification of hyper-polymorphic microsatellite (SSR) markers from spring orchid SSR-enriched libraryDevelopment of SSR multiplex PCR kits (more than 3 kits)Development of SSR DNA-Finger ID using combined genotypes of SSR genotypes and application test (discriminative power: $\geq 99.9999 \%$)
\bigcirc Phylogeneitc classification and difference of spring orchid according to regions, cultivars and countries
O Induction and isolation of superior mutants by treatment of radio active ${ }^{60} \mathrm{Co}$ and chemicals (EMS)
O Mass production of new rare superior mutant cultivars by in vitro tissue cultures

IV. Results

We identified 346 novel microsatellite markers including 21 polymorphic markers, and characterized genetic properties among samples from Korea, china and Japan.\bigcirc Three SSR multiplex PCR systems were designed (Octaplex, pentaplex, tetraplex). We also confirmed inter-species cross transferency for 7 oriental orchid species.
O The DNA ID of SSR haplotype was established with discrimination power of
99.9999%, and the ID was endowed for 40 cultivars and 2 artificially induced mutants. The DNA ID was expressed as 2-dimensional DNA bar-code.We induced chloroplast-deficient mutant rootstocks by treatment of 0.2% EMS. When EMS was treated, more than 50% of rootstocks were brown-colored.
O We observed variable leaf mutants (such as Joongtoo, Sapi, and Sanban) by the re-differentiation of rootstock sections. Particularly, 2 Sapi mutants induced by EMS treatment were fixed as the new cultivars.
O When wild orchids from Korea and China were compared, China orchids showed more anthocyanin spots than Korean orchids. The length and width of flowers for Koreans were larger than China samples, and the shapes were likely U-shape in Korean samples, but more likely V-shape in China samples.

V. Achievements and expected effects

O We developed highly discriminative DNA ID and DNA bar-code. The DNA bar-code will be usefully applied to superior spring orchid cultivars to certify the genetic lineage. This will contribute activation of orchid industry and trustworthy market.The SSR DNA ID and two-dimensional barcode may be very usefully applied for discrimination and maintenance of cultivars and management of clones from in vitro cultures of C. goeringii.
O Achievements: patent application: 3, publication: 5(SCI 3, non-SCI 2), academic presentation: 11, registration SSR markers at GenBank: 202, and new mutant establishment: 2.

CONTENTS

SUMMARY 5
Chapter 1. Introduction 11
Chapter 2. Current research status 15
Chapter 3. Experimental methods and results 16
Chapter 4. Research achievements and contribution to related fields 77
Chapter 5. Application and prospects 79
Chapter 6. References 84

목 차

제출문 1
요약문 3
SUMMARY 5
CONTENTS 7
목차 9
제 1 장 연구개발과제의 개요 11
제 1 절 연구개발의 목적 11
제 2 절 연구개발의 필요성 11
제 3 절 연구개발의 범위 14
제 2 장 국내외 기술개발 현황 15
제 1 절 국내외 기술개발 현황 15
제 2 절 향후 기술개발 전망 15
제 3 장 연구개발수행 내용 및 결과 16
제 1 절 연구개발 내용 16
제 2 절 연구개발 방법 17
제 3 절 연구수행 결과 24
제 4장 목표 달성도 및 관련분야에의 기여도 77
제 1 절 연구개발의 연구목표 및 달성도 77
제 2 절 관련 분야에의 기여도 78
제 5 장 연구개발 성과 및 성과 활용계획 79
제 1 절 실용화•산업화 계획 79
제 2 절 교육•지도•홍보 등 기술확산 계획 79
제 3 절 특허, 논문 및 학회발표 성과 및 계획 81
제 6 장 참고문헌 84

제 1 장 연구개발과제의 개요

제 1 절 연구개발의 목적

본 사업의 목표는 춘란의 유전체로부터 microsatellite（SSR） 250 좌위 이상을 분리하고，아 울러 방사선 돌연변이 및 화학적 돌연변이원 처리를 통해 우수 희귀 변이종을 확립한 후， SSR ID 를 부여함으로서 고품격의 신품종을 개발하는 것이다．주관세부과제는 다형성 SSR 좌위의 선별과 동시다중 증폭 SSR PCR 개발에 집중하며，협동과제는 돌연변이원을 처리하여 우선적 으로 잎의 변이를 보이는 엽예품 중심의 신품종의 개발에 초점을 둘 것이다．우수 희귀품종에 대한 SSR DNA ID 를 부여와 춘란의 EMS 처리에 의한 돌연변이 유도는 세계적으로 처음 시 도되는 연구로서，춘란 산업의 활성화 및 구매자의 신뢰 회복은 물론 국내 자생 춘란의 유전자 원의 보호와 고품격 신품종의 해외 수출에도 기여할 것이다．

제 2 절 연구개발의 필요성

1．경제적－산업적 중요성

○ 난과 식물（Orchidacea）은 단자엽식물 중 가장 많은 종을 포함하고 있는데，세계적으로 $700^{\sim} 900$ 속에 $25,000-35,000$ 여종이 존재하는 것으로 알려져 있으며，이들중 심비디움 속은 전 세계적으로 약 70 여 종이 된다（Dressler，1993；Lawler，1984）．그 중，춘란（Cymbidium goeringii）은 잎이 일반적으로 짙은 초록의 관엽성이지만，잎의 변이를 보이는 엽예품（葉藝品）과 꽃의 변이를 보이는 화예품（花藝品）으로 나누어진다（그림 1）．

그림 1．춘란의 다양한 변이체로서 화예품（a，b）과 엽예품（c，d）．a：주금화，b．색설화，c：중투호， d ：단엽복륜．

○ 전국적인（춘）란 관련 단체로는 한국난산업총연합회，한국난영농조합， e －난사모 등 수십개 에 이르며，춘란 농장은 300 여개로 추정된다．이런 단체들의 춘란 매출액은 1,500 억원에 이 르며（2007년 난사모 추정 통계），최근 급증한 인터넷 판매를 고려하면 시장 규모는 훨씬 클 것으로 여겨진다．
○ 난 산업은 농림업 통계에 따르면 화훼류 수출 실적에 있어 2006년 10,820 천\＄로 장미 $(8,847$

천\$), 국화 (6,971천\$), 백합(9,716천\$), 선인장(2,179천\$) 등 다른 화훼류보다 높은 실적을 보 여 화훼식물의 수출을 선도하고 있다. 최근 심비디움의 중국 수출의 활성화도 긍정적인 요 소이다.
○ 그럼에도 불구하고 아직 난류는 수출보다 수입이 훨씬 상회하여 무역수지의 적자를 보이고 있는 실정이다. 2000 년 이후 난초류 무역의 누적 적자는 36 백만\$에 이른다(표 1).

표 1. 난류 연도별 수출입 내역(2000년~2006년)

연도	수출		수입		무역수지	
	물량(Ton)	금액(천\$)	물량(Ton)	금액 (천\$)	물량(ton)	금액(천\$)
2000	1,610	3,250	767	10,826	-834	$-7,570$
2001	1,275	3,860	860	11,968	-415	$-8,108$
2002	1,599	5,394	1,120	14,229	-479	$-8,834$
2003	3,259	11,808	956	12,372	$-2,303$	$-1,063$
2004	1,695	9,044	1,285	12,714	-409	$-3,070$
2005	3,837	16,568	1,303	14,545	2,533	2,122
2006	1,989	10,820	1,943	20,301	-46	$-9,481$
합계	15,267	61,446	8,237	97,458	$-7,030$	$-36,011$

[출처: 농산물유통공사 수출입 통계자료]

○ 대만의 경우 우리나라를 난(특히 심비디움)의 주요 수출 대상국으로 여기고 있으며(표 2), 미국의 난 생산량은 매년 꾸준히 증가하면서 수출을 늘리고 있다(그림 2). 우리나라가 무역 적자를 해소하고, 난초류의 국제 시장을 선도하기 위해서는 차별화된 제품 개발의 노력이 절실한 상황이다.

표 2. 대만의 동양 신비디움 수촐 대상국

순위	국가	수출액(US \$)
1	한국	$8,853,184$
2	미국	31,143
3	일본	30,783
4	캐나다	7,880
5	독일	3,778
6	베트남	1,756
7	칠레	1,240
8	싱가포르	1,141

[촐처: 대만분화협회 통계(2006)

그림 2. 미국의 난(potted orchid) 연간 생산량의 증가 현황[출처: 2007 난 국제심포지움 자료].

○ 춘란은 지속적인 시장성장의 추세를 보이는 화훼류로서 부가가치가 높은 산업이다. 생활의 질 향상으로 춘란 배양이 증가되고 있으며, 최근에는 재테크의 한 방법으로 인식되어 인터 넷을 통한 많은 거래가 형성되고 있다. 그러나 수요의 증가에 따라 약제 등을 처리한 가짜 변이종이 유통되어 난 시장의 불신이 확산되고 있다. 또한 값싼 중국산 난이 고가품으로 거

래되기도 하여 난에 대한 불신이 더욱 깊어지는 추세이다. 특히 춘란의 가격이 변이성에 따 라 몇천원에서 억대까지 천차만별이므로 (표 3), 흔한 품종을 희귀 화예품으로 둔갑시키는 위품 생산 및 판매의 유혹이 높다.

표 3. 시중에서 거래되는 춘란의 품종별 가격(품종별 평균적인 단가 예시)

화예품			엽예품		
품 종	형태상 분류	가격(천원)	품종	형태상 분류	가격(천원)
복륜화	실형	10	산반	입끝형	5
색설화	준색설	300	복륜	호형	500
황화	극황색	1,000	서반	중투형	500
홍화	적홍색	3,000	단예	장엽종	1,000
두화	소심	100,000	중투	중압형	3,000

O Microsatellite (simple sequence repeat: SSR) 유전좌위는 농작물의 유전육종 및 근연종간 구분에 광범위하게 이용되고 있다. SSR 을 이용한 유전자 감식은 지문처럼 개체마다 다른 초변이성 DNA 를 분석하는 기술로 DNA 지문법(fingerprinting)으로도 일컬어진다. 즉, SSR 은 (1) genome 상의 매우 빈번한 분포도, (2) 높은 변별력과 정보력, (3) 높은 재현성 (reproducibility)과 근연종간의 교차 적용성 (cross-species transferability)으로 어떤 유전적 마커보다도 우수하다.
○ Microsatellite 좌위에 대한 연구는 1980 년대 인간의 유전체 연구에서부터 비롯된 후, 지금 은 주요 농축산 (동 • 식)물에 대해서 상당히 마커들이 개발된 수준이다. 국내에서는 벼, 고 추, 인삼 등에 대한 microsatellite가 연구되었다.

2. 연구개발의 필요성

○ 서양란 (심비디움)의 경우는 세계적으로 유전자조작 및 돌연변이 유발을 통한 신품종의 개 발 및 보급이 상당히 진행된 상태이지만, 춘란에 대해서는 국제적으로 분자유전육종은 아직 시도 단계이므로 신품종 개발을 진행한다면 국제 경쟁력을 확보할 수 있을 것이다.
○ 세계적으로 $\mathrm{FAO}-\mathrm{IAEA}$ 돌연변이 육종 데이터베이스에 등록된 품종은 2,323종이며, 그중에 서 국화 등 화훼작물이 566 품종, 벼 등 종자번식 작물이 1,628 품종이다 (www.iaea.org). 국 가별로는 네덜란드에서 국화, 알스트로메리아 등 화종에서 173 품종으로 가장 많으며, 다음으 로 인도 (103 품종) , 독일 (79 품종) 이지만, 한국은 겨우 1 품종만을 등재하였다 (hibisicus).
○ 춘란은 교잡육종을 통한 신품종 육성이 긴 세대로 인해 어려워 대부분 자연변이로부터 품 종이 선발되었다. 선발된 품종은 주로 분주나 종자의 무균발아에 의해 증식이 이루어졌으나 분주는 증식 속도가 느리고 종자는 후대가 모체와 동일하지 않은 이형주의 빈도가 높은 단 점을 갖고 있다.
○ 춘란의 변이체 생산기술은 매우 낮은 수준이다. 확립된 형질전환 방법이 없어 유전공학적인 방법의 적용이 어렵고 세대가 길어 전통육종방법으로 변이체를 확보하는 것 또한 어렵다. 본 연구를 통해 확립될 화학물질 및 방사선을 이용한 돌연변이 유도는 신품종개발의 핵심이 될 것이다.
○ 아직 춘란을 포함한 난초류의 SSR-library 스크린을 통한 SSR 좌위가 보고된 적은 세계적

으로 없다. 현재까지는 대부분 randomly amplified polymorphic DNA(RAPD) (Choi et al., 1998; Lee et al., 2004; Obara-Okeyo and Kako), 및 inter-simple sequence repeats (ISSR) 마커를 이용한 방법으로서 (Smith et al., 2002; Xiaohong et al., 2007), 변별력이나 재현성의 문제가 제기되고 있다. 따라서 국내 춘란시장의 활성화와 차별화된 신품종의 세계 진출 및 국내 자생 춘란의 유전자원 보호 측면에서도 SSR 좌위를 서둘러 개발해야 할 것이다.
○ 본 연구에서 개발될 SSR ID 를 돌연변이원 처리와 기내배양에 의한 동일 품종 (클론)의 대 량 생산에 적용한다면, 원 개체와 그로부터 유래된 배양체가 동일한지를 정확하게 밝힐 것 이다. 이것은 사람의 개인식별을 위해 10 좌위 이상의 SSR 유전자형을 이용하는 법의학적 원리 (Forensic Science)를 난초류의 식별에 처음 도입하는 흥미로운 일이다. 특히 잎의 모 양이 중요시되는 엽예품과는 달리 꽃에 가치를 가지는 화예품의 경우 꽃이 피어있지 않은 개체에 대해서도 DNA ID 를 통해 유전적 동일 기원여부를 99.9999% 이상의 정확도로서 확 인할 것이다.

제 3 절 연구개발의 범위

세부과제	연구개발의 목표	연구개발의 내용
세부과제	춘란의 유전체로부터 초다형성 microsatellite (SSR) 좌위의 대량 분리, SSR 동시증폭 키트 개발 및 품종별 DNA ID 부여	O Library 스크린을 통한 SSR 좌위의 대 량 분리 다형성 좌위의 통계적 유용성 확립 지역별•국가별•품종별 차별성 확립 - SSR 좌위의 multiplex PCR 키트 개발
헙동과제	방사선 및 화학적 처리와 조직배양을 통한 우수 신품종(돌연변이체)의 유도 및 재배 기술 개발	○ 지역별 자생 춘란 및 주요 국내외 재배 품종의 시료 수집 방사선 및 EMS를 이용한 돌연변이 유 도 기술 확립 ○ 조직배양 기술을 이용한 유도된 돌연변 이 춘란의 배양계 확립과 신품종 고정

제 2 장 국내외 기술개발 현황

제 1 절 국내외 기술개발 현황

1. 세계적 수준

개념정립 단계	O	기업화 단계		기술 안정화 단계	

2. 국내수준

개념정립 단계	O	기업화 단계		기술 안정화 단계	

3. 국내•외의 연구현황

연구수행 기관		연구개발의 내용	연구개발성과의 활용현황
국	제주도 농업기술원	RAPD 를 이용한 Cymbidium속 식물의 유연관계 분석	동남아시아 원종, 동양란계열, 양란 심비디움 계열의 유연관계 구분을 위한 기초자ㄹㅛㅛ 제공
	한국원자력연구소	방사선을 이용한 Cymbidium속 품종 대국의 돌연변이체 개발	원품종의 변이체인 동이와 은설 개발 상업화에 성공함.
University of 국 외	영국에 자생하는 난류의 유전적 분화	5 ISSR 마커를 이용한 Gymnadenia 속 3종의 유전적 다양성 확립	
	ISSR 분석을 통한 Cymbidium의 유전적 다양성 조사	중국 7개 지역으로부터 채집한 춘란의 유전적 다양성 비교조사: 유전자원의 보존성을 위한 자료 제공	

제 2 절 향후 기술개발 전망

O 전반적으로 생활이 윤택해지고, 노렁인구의 증가에 따라 춘란의 수요는 증가할 것이다. 따라 서 기내생산된 다양한 변이체 (품종)가 대량으로 유통됨에 따라 자연에서 산채되어 판매되 는 품종간의 원산지나 이력의 진위성에 대한 논란이 빈번하게 발생할 것으로 예상된다.
O 향후 기내배양 품종에 대해서는 원 개체에 대한 DNA ID를 부여하게 하여 자생란과 구분하 는 기술이 요구될 것이며, 비교적 저가의 우수 기내배양종과 고가의 자생품종으로 시장이 형성되고, 각 소비자는 자신에게 맞는 난 구입과 여가생활을 하게 될 것이다.

제 3 장 연구개발수행 내용 및 결과

제 1 절 연구개발 내용

1. 제1세부: 춘란 유전체로부터 초다형성 SSR 좌위의 대량분리 및 품종별 DNA ID 부여

구분	연구개발의 목표	연구개발의 내용	연구범위
1차년도 (2009)	OSSR-enriched library로부터 SSR 서열의 분 리 OSSR 좌위별 primer 제작 및 PCR 조건확립 O 다형성 SSR 좌 위의 선별	O춘란 SSR-enriched library 스크린 - White colony random selection - Plasmid 분리 및 insert 확인 O염기분석법을 이용한 SSR 서열의 동정 - 염기서열결정 - SSR 반복 motif의 탐색 $O S S R$ motif별 PCR 증폭조건 결정 - SSR 서열 특이적 primer 제작 - PCR 증폭 조건 확립 OSSR 좌위별 genotyping 수행 - 변성 PAGE 및 silver staining - 형광-표지 primer를 이용하여 PCR 및 automatic sequencer로 타이핑	- Plasmid 분리: $1,000 \mathrm{cfu}$ 이상 - 0.1-1kb 선별 - 1,000 plasmid 이상 서열분석 - 250좌위 이상의 SSR 서열 동정 - 50 SSR 이상 PCR 법 확립 - 20 이상 다형성 좌 위 선별
2차년도 (2010)	다형성 SSR 좌 위의 통계적 특 성 확립 O춘란의 지역• 원산지별 유전 적 차이성 결정 O재현성과 종간 교차 적용성 확 립	O최종 선발된 다형성 SSR 좌위의 반복구 조 결정 및 대립유전자 명명 - 대립유전자 명명 및 반복구조결정 대립유전자의 종류 및 빈도 결정 - 이형접합도, GD, PIC, PE, PM - HWE 평형, linkage disequilibrium O다형성 SSR 좌위의 계통유전학적 규명 - 지역별 집단 비교 - 고정된 우수 품종별 비교 O 재현성(reproducibility): 시로상태에 따른 타이핑 오류율 제거 OCross-species transferability: 검사: Cymbidium 속을 포함한 난초과 식물의 교차 적용성 검사	- 21좌위에 대한 대 립유전자 명명 및 빈도 결정 - 국내 및 중국, 일 본집단의 유전자비 교 및 계통수작성 - 통계적 특성이 확 립된 17좌위에 대 한 재현성 확인 - 6 가지 춘란 근연종 에 대한 교차 적용 성 확인
3차년도 (2011)	OMultiplex PCR 시스템 확립	OMultiplex PCR kit 개발 - 3-6 SSR 의 동시 증폭 조건 개발 - 최적의 Taq 및 buffer 시스템 개발	-8좌위, 5좌위, 4좌 위동시 증폭키트 개발

	O춘란의 개체별 DNA ID 부여 법 개발 돌연변이체 및 조직배양 클론 별 SSR DNA 검사 및 ID 부 여	- Multiplex kit 개발: 3종 이상 OSSR의 유전자형 haplotype으로 춘란 개 체별 고유 ID 확립 - Combined SSR 유전자형으로 DNA ID 부여법 개발 확립된 춘란 품종에 대한 적용섬 검사 - 엽예품 대상 우선 적용 - 동일 품종의 동일 DNA ID 검출 확인 O기내 조직배양체 및 돌연변이체 클론들 의DNA ID 동일성 검증	- 춘란 품종에 대한 99.999% 이상의 개 체식별력 확인 - 기내 조직배양체 및 돌연변이체 클론 들의 DNA ID 동일 성 확인

2. 방사선 및 화학적 처리와 조직배양을 통한 우수 신품종의 유도 및 재배기술 개발

구분	연구개발의 목표	연구개발의 내용	연구범위
$\begin{gathered} 1 \text { 차년도 } \\ (2009) \end{gathered}$	ㅇ춘란 개체시료 수집 OEMS 처리를 통한 돌연변이 근경의 유도 방사선 처리를 통한 돌연변이 근경의 유도 변이체 선발 및 조직배양	○한국 춘란의 원산지별, 지역별 재료수집 및 우량계통 선발 OEMS 처리를 통한 돌연변이 근경의 유 도 - EMS의 적정 농도 확립 ○방사선 처리를 통한 돌연변이 근경유도 - 야생 춘란의 인공수분수정후 ${ }^{60} \mathrm{Co}$ 를 이 용한 방사선 처리 ($0^{\sim} 100 \mathrm{~Gy}$) - 방사선 처리 후 수집된 종자의 발아율 비교를 통한 방사선 최적선량조건 확립: 50% 종자 치사선량 확립 O변이체 선발 및 조직배양 - EMS 처리에 의해 유도된 변이근경 선발 및 증식 - 방사선 조사에 의해 유도된 변이 근 경 선발 및 증식	- 충남, 전남, 경남, 경북 지역으로부터 춘란 수집 - EMS처리를 통하 여 돌연변이 근경 유도 및 증식 - 방사선 조사 후 종 자 파종하여 돌연 변이 근경 유도 및 증식
2차년도 (2010)	$\begin{aligned} & \text { ㅇ국내산 춘란의 } \\ & \text { 수집 및 특성 } \\ & \text { 조사 } \\ & \\ & \text { 올연변이 유도 } \\ & \text { 근경의 조직배 } \\ & \text { 양을 통한 신품 } \end{aligned}$	O국내산 춘란을 수집하여 특성조사 수행 - 국내수집 : 33지역 546개체 - 국외수집 : 중국 일본 7 지역 80개체 - 특성조사: 지역별 화경, 화형, 향기 등 특성 분석함 ○다양한 첨가제 처리를 통한 최적 배양조 건의 확립 - N, P 농도의 조절	- 국내외 수집종을 이용하여 외부형 태적 특성 조사 - N, P 농도를 조절함 으로써 신초 재분 화율을 높임.

	종의 육성 ㅇ근경 부위별 적 출을 통한 재분 화 조건 확립	- Casamino acid와 Charcol 첨가에 따른 신초형성율 조사 OAuxin과 cytokinin의 조합에 따른 근경증 식 및 재분화조건 확립 - NAA, BA 조합처리구에 따른 근경증식 및 재분화 O근경의 부위별 재분화율 확인	- Casamino acid와 Charcol을 첨가함 으로써 신초형성율 을 높임 - $\mathrm{Auxin}(\mathrm{NAA})$ 과 cytokinin(BA)의 조합에 따른 근경 증식 및 재분화조 전 확립 - 근경의 부위별 재 분화율 확인
3차년도 (2011)	$\begin{aligned} & \text { O국내외 춘란의 } \\ & \text { 수집 및 특성 } \\ & \text { 조사 } \end{aligned}$ 돌연변이 식물 체의 조직배양 을 통한 배양계 확립 ㅇ반복적 재분화 및 품종 고정을 통한 우수 신품 종의 확립	국내외 춘란의 수집 및 특성 조사 - 경남•북, 충남•북, 전남•북 등 일부 지 역, 동북아 국가의 춘란 시료의 추가 수 집 - 전시회를 통한 우수 유전자원 수집 - 수집종의 원예적 가치의 조사 및 통계 적 분석 돌연변이 식물체의 배양계 확립 - 변이종별 유기된 라이좀 증식, 배양조 건구명 - Shoot 및 root 형성 배양기간 단축방법 모색 - 순화기술 확립체계 구축 O선발된 근경을 반복적으로 재분화하여 변이 재현율 조사 - 선발된 근경의 재분화를 통한 우수 품 종선별 - 우수품종의 반복적 재분화를 통한 유전 적 동일성 검정 - 확립된 조직배양법을 이용한 형태적 안 정성의 확인	- 국내외 춘란 수집 종의 원예적 가치 및 통계적 분석을 수행. - 변이종별 재분화 조건 확립. - 일부 변이종 순화 기술확립. - 고정라인 선발체계 확립 후 변이의 연 속성 확인.

제 2 절 연구개발 방법

1. 춘란 시료수집 및 총 DNA 추출

가. 자생란 : 국내 및 중국, 일본의 자생란을 3 지역 이상에서 150 개체 이상을 확보.
나. 재배란 : 품종이 고정된 우수 품종을 대상으로 50 개체 이상 확보.
다. DNA의 분리 : 절취한 뿌리나 잎 조직을 액체질소를 이용하게 파쇄한 후, 총 DNA는 Plant-easy genomic DNA extraction kit (Qiagen)을 이용하여 추출.
2. 춘란 SSR library 제작 및 스크린

가. 플라스미드 분리: White 클론으로부터 pGEM-T 플라스미드를 분리한 후 EcoRI 제한효소 로 절단하여 insert의 크기 확인 (1,000 클론 이상 스크린).
나. Insert가 100bp 이상인 클론을 대상으로 M13 primer와 automatic sequencer를 이용하여 DNA 단편의 염기서열을 결정하고, SSR 서열의 위치와 특징 분석 (그림 3a).

그림 3. Library 스크린과 genotyping. (a) pGEM-T vector의 염기서열로부터 'AG' 반복서열 (빨간선) 을 확인한 chromatogram. (b) 각 개체별 좌위-특이적 primer (노란선 부위)로 PCR 수행 후 변성 PAGE와 silver staining으로 typing 실시.

3. SSR 마커의 genotyping

가. SSR 좌위 특이적 primer의 디자인 : Primer 3 프로그램을 활용하여 $20-26 \mathrm{mer}, \mathrm{T}_{\mathrm{m}}$ 은 $58^{\circ} \mathrm{C}$ 이상, PCR 산물의 길이는 $100-250 \mathrm{bp}$ 의 범위에 있게 제작 (그림 3 a 의 노란선).
나. PAGE : 비표지 primer로 증폭된 PCR 산물은 변성 PAGE 실시. Acrylamide 5\%, urea 7M 및 1 X TBE 의 겔을 준비하며, 전기영동은 40 mA 의 전류에서 $3-5$ 시간 동안 실시.
다. Silver staining : 전기영동이 끝난 겔을 10% ethanol에 20 분 고정시킨 후, $1 \% \mathrm{HNO}_{3}$ 용액 에 10 분간 담그고, 이어 staining solution $\left(\mathrm{AgNO}_{3} 1 \mathrm{~g}, 37 \%\right.$ formaldehyde $\left.1.5 \mathrm{ml} / \ell\right)$ 에 서 30 분간 가볍게 흔들어 준 다음, developer 용액을 처리하여 밴드가 나타날 때까지 둠 (그림 3 b).
라. 형광-표지 primer의 typing: 형광으로 표지된 primer로 증폭된 PCR 산물은 automatic sequencer로 분리한 후 Genotyper (Ver. 3.7)로 유전자형 결정 (그림 4).
(A)

(B)

그림 4. Hexaplex PCR kit의 제작예. (A) FAM과 PET로 표지된 6마커의 크기를 보여주고 있으며, (B) 각 좌위의 동시증폭 크로마토그램으로 표준 ladder가 첨부됨.

4. Multiplex PCR 조건의 확립

가. 증폭물의 크기가 중복될 경우 다른 dye로 표지시킴 (multiplex 예시: 그림 4A).
나. Multiplexing은 hexaplex 중심으로 개발하며, 각 primer의 T_{m} 값과 증폭 길이 및 염색체의 위치 등을 고려하여 마커 선별.
다. Primer의 농도에 차등을 두어 동시 증폭되는 각 좌위가 비슷한 강도로 증폭되게 하며, 각 마커에 대한 표준 allele ladder를 제작함 (그림 4B).
라. PCR은 비싼 Gold $T a q$ 을 대신할 국산 $T a q$ 시스템 개발.

5. DNA ID의 바코드화

가. 10 좌위 SSR 좌위의 정보를 동시에 암호화할 수 있는 2 차원 바코드 제작 (한국전자인식바 코사에 스캐너와 reader 제작).
나. 우수 신품종에 대해서는 DNA ID의 인증서를 발급하고 바코드를 부착.

6. 통계적 분석

가. 대립유전자 빈도는 gene counting method로 계산하며, Polymorphism information content (PIC) 값은 Bostein et al. (1980)의 방법으로 계산.
나. X^{2} test와 Fisher's exact test는 GDA 프로그램으로, 1-way ANOVA test, 및 Wilcoxon 2 sample test는 Statistical Analysis System software (SAS Institute)를 이용하여 수행.
다. 지역별, 품종별, 원산지 (국가)별 차이성 $\left(F_{\mathrm{st}}\right)$ 와 연관좌위 조사는 GENEPOP 프로그램으로 수행하고, $\mathrm{PD}, \mathrm{PE}, \mathrm{H}_{\mathrm{obs}}$ 등은 PowerStatsV12 program으로 계산.

7. 춘란꽃의 외부 형태조사

가. 춘란 꽃의 외부 헝태 조사를 위한 재료 수집 및 방법 : 춘란 꽃의 외부 형태학적 특성을 조사하기 위해 한국산 100 개체와 중국산 86 개체를 대상으로 두 집단으로 구분하여 각각 33 가지 특성 차이를 분석하였다. 춘란꽃의 조사는 특성조사기준표에 따라 식물체의 크기는 전자 켈리퍼로 측정하였고 안토시아닌의 양상은 육안으로 판단하여 조사하였다. 촉정한 값 은 엑셀 STDEV 통계 프로그램으로 표준편차 값을 구하였다. 춘란 화경의 마디 수는 꽃이 핀 화경을 대상으로, 마디 수는 벌브에서 붙어있던 최하 지점을 분리해 아래부터 맨 위의 자방까지의 마디 수를 측정하여 조사하였고, 화경의 길이 (Cm) 와 두께 (mm) 는 벌브에 붙 어 있던 최하점에서 자방의 맨 위쪽까지를 측정하여 길이의 값으로 하였고, 화경의 두께는 화경의 제일 위에서 아래로 1 번쩨 마디인 자방 아래 2 번째 마디를 측정 하였다.

나. Cluster 분석을 위한 춘란재료 수집 및 방법 : 춘란꽃의 형태학적 특성에 따른 주성분을 분

석하여 그에 따른 유연관계 분석을 수행하기 위해 서해안을 따라 대청도, 홍성, 청양, 군산, 군산, 고창, 무안, 그리고 남해안을 따라 진도, 추자도, 제주도, 해남, 보성, 순천, 진교, 문산, 마산 그리고 동해안을 따라 기장, 울산, 감포, 울진, 울릉도와 동부 내륙의 상주, 의성, 거창 의 한국 23 개 지역과 춘란이 가장 많이 서식하는 중국의 하남성 동백현과 호북성의 대오현 의 2 곳을 포함해 총 25 개 지역을 꽃이 핀 3 월경에 답사해 춘란의 형태적 특성을 조사하였 다. 특성의 조사는 국립종자관리원의 심비디움 특성조사기준표를 참고로 해 33가지로 구분 하여 조사하였다. 이에 따라 나눠진 각각의 특성들은 대부분 유전적인 소인으로 발현된다 는 점을 고려해 우리나라에서는 최초로 순판의 모양과 순판점의 형태 순판점에서 순판돌기 까지에 발현된 안토시아닌의 양상 등을 조사하였고, 지역별 평균값을 구하여 각각의 형질 의 유•무와 크기 그리고 강•약 등을 수치화하였다. 그리고 수치화된 점수에 따라 지역별, 특성별을 대상으로 PC-SAS를 이용하여 Cluster (주성분)을 구하고 주성분의 점수를 이용 하여 각각의 특성간 주성분의 상관관계를 분석하였다.

8. ${ }^{60} \mathrm{Co}$ 감마선을 이용한 종자의 방사선 처리

가. 인공 교배를 통해 수정시킨 춘란의 꽃기관에 ${ }^{60} \mathrm{Co}$ 감마선을 $0,10,20,30,40,50,60,70$, $80,90,100,150,200 \mathrm{~Gy}$ 로 처리 후 약 300 일 가량 종자의 성숙 기간을 거쳐 수확.
나. 각 처리구별 종자는 발아유도 실험을 거쳐 LD_{50} 값을 결정하고 최적 선량 결정.

9. 종자의 발아유도

가. 종자를 $5^{\circ} \mathrm{C}$ 에서 2 주간 저온처리 후 2% sodiumhypochlorite 용액에서 30 분간 살균하여 효 모추출액을 $1 \mathrm{~g} / \mathrm{L}$, peptone $3 \mathrm{~g} / \mathrm{L}$, NAA $0.5 \mathrm{mg} / \mathrm{L}$, sucrose $30 \mathrm{~g} / \mathrm{L}$ 를 포함한 MS 배지에 서 배양.
나. 효과적인 종자의 발아를 위해 초음파세척기 (Branson 3210)를 이용하여 0,5,10, 20, 40분 간 처리후 gelrite 0.2% 가 포함된 배지에서 발아를 유도 (그림 5).
10. 근경의 증식 및 화학직 돌연변이 유발

가. 종자로부터 얻은근경을 NAA $2 \mathrm{mg} / \mathrm{L}$, kinetin $0.5 \mathrm{mg} / \mathrm{L}$ 가 포함된 MS 배지에서 3 개월간 증식시킴.
나. 증식된 근경을 길이 5 cm 로 잘라서 gelrite와 활성탄이 첨가되지 않은 증식배지에서 3 주 간격으로 계대 배양을 2 개월간 진행시킨 후 EMS 0.2% 가 첨가된 액체배지에서 3 주간 배 양.

그림 5. (A) 종자의 발아유도사진. 채종된 종자를 무균배양을 통해 발아를 유도함. (B) 종자로부터 유도된 근경의 계대 배양 사진

11. 근경증식과 재분화에 대한 생장조절제의 조합 및 근경으로부터 식물체 유기

가. 근경증식 및 재분화에 대한 auxin과 cytokinin의 조합 효과는 MS 기본배지에 NAA와 BA , kinetin을 각각 $0,0.1,1,2,3 \mathrm{mg} / \mathrm{L}$ 의 농도로 조합한 배지에서 결정. Hyponex 배지는 hyponex $3 \mathrm{~g} / \mathrm{L}$, peptone $1.5 \mathrm{~g} / \mathrm{L}$, myo-inositol $0.1 \mathrm{~g} / \mathrm{L}$ 가 첨가된 배지를 사용함 (그림 6A).
나. 특이 형질을 보이는 근경부위를 절단한 후 hyponex $3 \mathrm{~g} / \mathrm{L}$, peptone $4 \mathrm{~g} / \mathrm{L}$, yeast extract $1 \mathrm{~g} / \mathrm{L}$, 바나나 $60 \mathrm{~g} / \mathrm{L}$, 감자전분 $3.5 \mathrm{~g} / \mathrm{L}$, myo-inositil $100 \mathrm{mg} / \mathrm{L}$, EDTA $40 \mathrm{mg} / \mathrm{L}$, gelrite $0.2 \%, \mathrm{pH} 5.5$ 로 조성된 배지에서 배양
다. 선별된 근경부위의 계대배양을 상기 배지로 진행 (그림 6 B).
라. 엽예품 중심의 돌연변이 선별을 위해 근경의 형태적 특성 (성장속도, 엽록체의 비율 및 분 포 등)을 고려하여 선별.

그림 6. 돌연변이가 유도된 근경의 배양. (A) EMS로 돌연변이를 유도한 근경의 대량 배양, (B) 선별된 근경의 계대배양을 통해 유도된 식물체.

제 2 절 연구개발 결과

1. 제 1 세부과제: 춘란의 유전체로부터 초다형성 SSR 좌위의 대량 분리 및 품종별 DNA ID 부여

가. 야생춘란의채집
(1) 국내 야생춘란 수집

국내 33 개 지역의 야산에서 총 546 개체를 수집하였는데 채집 지역이 다양하고 전국에 걸쳐 있어 국내 춘란의 지역별 특성을 분석 할 수 있게 되었고, 특히 백령도, 안면도, 흑산도, 진도, 제주도 (추자도), 울릉도 등 육지와 떨어진 섬에서도 상당한 검체를 채집하였으므로, 육지와 섬 지역의 춘란 사이에 유전적 차이를 조사할 수 있게 되었다 (그림 7).
(2) 중국 및 일본 야생춘란 수집

중국의 5 개 지역에서 75 개체를 수집하였고, 일본 군마현에서 15 개체를 수집하여 한국, 중국, 일본의 국가별 또는 원산지별 춘란의 특성을 분석할 수 있게 되었다 (그림 7A).

그림 7. 자생 춘란의 채집지 및 개체수. (A) 한국, 중국, 일본의 채집지역 및 개체 수, (B) 국내 자생 춘란 채집지역 및 개체 수.

나. SSR-enriched library로부터 SSR 서열의 분리

(1) Microsatellite-enriched genomic DNA library 의 제작

춘란 유전체로부터 SSR 을 분리하기 위해서 SSR gDNA library를 세계적으로 처음 제작하 였는데, 그 과정은 다음과 같다. 춘란으로부터 DNA를 추출한 후 Sau3AI 제한효소로 절단하고 Sau3AI- adaptor를 부착하였다. Adaptor-부착 DNA 단편을 12 종류의 biotin-표지 SSR oligomer로 혼성하고 SA-PMP 입자로 선별하였다 (표 4). 분리한 단편들을 PCR로 증폭하여 pGEM-T Easy vector에 삽입한 후, E. coli (DH10B)에 형질전환하였다 (그림 8).

표 4. Biotin-표지 SSR oligomer

Repeat unit	Oligomer sequences $\left(5^{\prime}\right.$-biotin $\left.\rightarrow 3^{\prime}\right)$
Di-nt repeats	$(\mathrm{AT})_{15},(\mathrm{AC})_{15},(\mathrm{AG})_{15}$
Tri-nt repeats	$(\mathrm{ACC})_{10},(\mathrm{TAA})_{10},(\mathrm{CAA})_{10},(\mathrm{GAA})_{10},(\mathrm{ACG})_{10}$
Tetra-nt repeats	$(\mathrm{AAAG})_{7},(\mathrm{AGAT})_{7},(\mathrm{AAAT})_{7},(\mathrm{ACAT})_{7}$

독립 균주의 수는 대략 $2 \times 10^{5} \mathrm{cfu}$ 로 계산되었으며, white colony로부터 플라스미드를 분 리한 후EcoRI으로 절단하였을 때 insert 비율은 91.7% 이었으며, 크기는 $0.2-1.2 \mathrm{~kb}$ 범위에 있었 다. 약 22% 의 클론이 SSR motif를 가지는 것으로 판정되어, 제작된 library가 SSR 동정에 적 합함을 확인할 수 있었다 (표 5).

그림 8. pGEM T easy vector system

표 5. 춘란 SSR-enriched library 제작 내용

Host cell	E. coli (DH10B)
Vector	pGEM-T Easy vector
Insert size	$0.2-1.2 \mathrm{~kb}$
Independent cfu	$2 \times 10^{5} \mathrm{cfu}$
SSR detection rate	22%

(2) Library 스크린 및 SSR 마커의 GenBank 등록

SSR genomic library의 E. coli를 X-gal이 포함된 LB/amp plate에 도말하여 배양한 후, white 콜로니 1,813 개를 임의 선정하였다. 선정된 white 콜로니로부터 플라스미드 DNA를 추출 하고 EcoRI 제한효소를 처리하여 insert를 확인한 결과 1,671 개 (92%)의 플라스미드에서 insert 가 확인되었다. 각 클론으로부터 분리한 1,671 개 플라스미드를 universal primer (M13 forward, M13 reverse)를 이용하여 염기서열을 분석하여 SSR motif가 존재하는지를 검사하였다. 위의 과정을 통해 분석된 염기서열 중 SSR motif를 갖는 346 개 $(20.7 \%: 346 / 1,671)$ 의 서열을 얻었 다 (표 6).

중복되지 않는 346 개의 SSR 염기서열은 2 염기 반복 200 회 (57.8%), 3 염기 반복 86 회 $(24.8 \%), 4$ 염기 반복 7 회 (2.0%), 5 염기 이상 반복 8 회 (2.3%) 로 관찰되었고, $(\mathrm{AC})_{\mathrm{m}}(\mathrm{AT})_{\mathrm{n}}$, $(\mathrm{ATG})_{\mathrm{m}}(\mathrm{CTGATG})_{\mathrm{n}}$ 과 같은 복합 반복구조도 45 회 (13.0%)로 관찰되었다 (그림 9).

표 6. Numbers of identified microsatellites according to repeat sequences.

Repeat unit	Repeat sequence	Synonym ${ }^{\text {a }}$	Observed No.	Total No.
Di-nt	AT	TA	4	200
	AC	CA, TG, GT	24	
	AG	GA, TC, CT	172	
Tri-nt	AAT	ATT, TTA, ATA, TAA, TAT	2	86
	AAC	ACA, CAA, TTG, TGT, GTT	8	
	AAG	AGA, GAA, TTC, TCT, CTT	20	
	ACC	CCA, CAC, TGG, GGT, GTG	44	
	AGG	GGA, GAG, GCT, CCT, CTC	8	
	Others	AGC, GAT	4	
Tetra-nt	AAAT	AAAT	1	7
	AAAG	AAAG	1	
	AGAT	AGAT	1	
	Others	AACC, AAGC, ATGA, TGAA	4	
Hexa\& hepta-nt		AAACAC,AAGAAAG,AAGAAG, AGGGTTT,CAACATCATCAT, GAATTT,TGGGGG,TTTGGA	8	8
Complex repeat		-	45	45
Total				346

${ }^{\text {a }}$ Repeat sequences as same as the sequence in the left column.

SSR gDNA library 스크린을 통해 얻어진 다량의 춘란 SSR 서열 중 202개 마커를 NCBI (GenBank)에 등록하고 등록번호 (accession number)를 부여 받음으로 인하여 누구나 춘란의 SSR 서열 정보를 활용할 수 있고 전 세계적으로 춘란의 공동 연구를 가능하게 하였다 (표 7).
(a) Di-nucleotide repeat unit: $(\mathrm{CA})_{8}-(\mathrm{TA})_{7}$ complex repeat

(b) Di-nucleotide repeat unit : $(\mathrm{TG})_{6}-(\mathrm{AG})_{21}$ complex repeat

(c) Tri-nucleotide repeat unit : (AAG) $)_{8}$ simple repeat

(d) Tri-nucleotide repeat unit : $(\mathrm{TCC})_{7}$ simple repeat

(e) Di - and Tetra-nucleotide repeat unit : $(\mathrm{AG})_{4}-(\mathrm{ATAG})_{12}$ complex repeat

(f) Hexa- and Di-nucleotide repeat unit : (GAGGGA) $-(\mathrm{GA})_{6}$ complex repeat

그림 9. SSR motif를 가지는 서열의 sequencing chromatogram.

표 7. 춘란 SSR 의 반복 구조와 GenBank 등록(1)

Locus	Repeat unit	GenBank Acc. No.	Locus	Repeat unit	GenBank Acc. No.
CG2	AG	HQ842872	CG301	ACC	JQ743123
CG5	ACC	HQ842873	CG310	AAG/AC	JQ743124
CG15	AG	HQ842874	CG334	AC	JQ743125
CG26	CAA	JQ743101	CG335	AG	JQ743126
CG29	CAA	JQ743102	CG336	ACC	HQ842901
CG36	AG	JQ743103	CG344	ACC	HQ842902
CG38	ACA	JQ743104	CG346	ACC	JQ743127
CG40	AC/AAC	HQ842875	CG351	ACC	JQ743128
CG42	AG	HQ842876	CG365	AC	JQ743129
CG44	CAA	HQ842877	CG378	AG	HQ842903
CG45	AC	JQ743105	CG388	AC	JQ743130
CG46	CCA	JQ743106	CG393	AG	JQ743131
CG47	CAA/CAT	HQ842878	CG394	TCT	JQ743132
CG70	CAA	HQ842879	CG403	AG	JQ743133
CG75	ACC	HQ842880	CG408	AG	JQ743134
CG81	ACC	HQ842881	CG410	ACC	HQ842904
CG93	AC	JQ743107	CG412	ACC	JQ743135
CG94	ACC	HQ842882	CG415	AG	HQ842905
CG97	ACC	HQ842883	CG420	AG	JQ743136
CG98	AG	HQ842884	CG424	AAG	HQ842906
CG99	AC	JQ743108	CG425	AG	HQ842907
CG106	CCA	JQ743109	CG428	AG	HQ842908
CG109	GT/CAC	JQ743110	CG430	AG	JQ743137
CG110	ACC	HQ842885	CG431	AG	JQ743138
CG112	ACC/ATC	HQ842886	CG433	ACC	JQ743139
CG119	ACC	HQ842887	CG443	AG	JQ743140
CG120	TG/AG	JQ743111	CG450	AG	HQ842909
CG122	AG	HQ842888	CG453	AG	JQ743141
CG126	ACC	HQ842889	CG459	AG	HQ842910
CG130	AGC	JQ743112	CG477	AG	HQ842911
CG168	CCA/ACC	JQ743113	CG489	AG	HQ842912
CG179	AG/AGAC	JQ743114	CG497	ACC	JQ743142
CG180	AG/AGAC	JQ743115	CG507	AC/AG	JQ743143
CG183	AG	HQ842890	CG517	TGAA	HQ842913
CG193	AG	JQ743116	CG530	CCA	JQ743144
CG203	AAG	JQ743117	CG541	AGG	HQ842914
CG206	AG	HQ842891	CG543	AG	HQ842915
CG211	AG	JQ743118	CG550	ATAG/AG	HQ842916
CG220	TG/AG	HQ842892	CG556	AC	HQ842917
CG222	GAATTT	HQ842893	CG565	AC	JQ743145
CG230	AG	HQ842894	CG580	CCA	JQ743146
CG232	AC	HQ842895	CG624	AT	JQ743147
CG246	TGGGGG	HQ842896	CG630	AC	JQ743148
CG247	AC	JQ743119	CG636	AG	HQ842918
CG248	TG/AG	JQ743120	CG649	AG	HQ842919
CG257	AG	HQ842897	CG661	AG	JQ743149
CG269	AG	HQ842898	CG669	AG	HQ842920
CG271	AG	JQ743121	CG679	AG	HQ842921
CG273	AG	JQ743122	CG701	AAG	JQ743150
CG280	AAAG	HQ842899	CG709	TG/AG	HQ842922
CG284	AG	HQ842900	CG722	AG	HQ842923

표 7. 춘란 SSR 의 반복 구조와 GenBank 등록(2)

Locus	Repeat unit	GenBank Acc. No.	Locus	Repeat unit	GenBank Acc. No.
CG735	ACC	JQ743151	CG1403	TG/AG	HQ842959
CG744	AG	HQ842924	CG1423	AC	HQ842960
CG783	AG	HQ842925	CG1428	ACC	JQ743165
CG787	AG	HQ842926	CG1432	AG	JQ743166
CG794	AGC/AG	HQ842927	CG1437	AG	JQ743167
CG799	AAAT	HQ842928	CG1445	GAT	HQ842961
CG831	CAA	HQ842929	CG1450	AG	HQ842962
CG846	AG	JQ743152	CG1458	AG	HQ842963
CG872	AG	JQ743153	CG1508	AG	HQ842964
CG862	AG	HQ842930	CG1512	AG	HQ842965
CG894	AAC	HQ842931	CG1521	AC	JQ743168
CG917	AG	HQ842932	CG1530	TTTGGA	JQ743169
CG926	AG	HQ842933	CG1531	ACC	JQ743170
CG936	ACTC/AC	HQ842934	CG1534	AG	HQ842966
CG963	AG	HQ857477	CG1538	AGG	JQ743171
CG981	AG	HQ842935	CG1576	AG	JQ743172
CG988	AG	HQ842936	CG1585	ACC	HQ842967
CG1023	AG	HQ842937	CG1586	GAA	JQ743173
CG1028	AG	HQ842938	CG1592	AG	JQ743174
CG1030	AG	HQ842939	CG1599	ACC	JQ743175
CG1036	AAG	HQ842940	CG1615	TG/AG	JQ743176
CG1047	AAG	HQ842941	CG1620	AGG	JQ743177
CG1084	AG/TG	JQ743154	CG1639	TC/AC	JQ743178
CG1085	AG	HQ842942	CG1641	AG	JQ743179
CG1086	AG	HQ842943	CG1645	AG	HQ842968
CG1126	ACC	JQ743155	CG1651	AG	JQ743180
CG1163	AC/AG	HQ842944	CG1657	AG	HQ842969
CG1184	CAA	HQ842945	CG1703	AG/TG	JQ743181
CG1210	AG	HQ842946	CG1713	AG	JQ743182
CG1218	AG	HQ842947	CG1715	AG	HQ842970
CG1229	AC	HQ842948	CG1731	AG	HQ842971
CG1235	AC	HQ842949	CG1737	AACC	JQ743183
CG1244	AG	JQ743156	CG1761	ACC	JQ743184
CG1256	TC/AC	HQ842950	CG1779	AAG	JQ743185
CG1265	ACC/AAC	HQ842951	CG1788	AT	JQ743186
CG1267	AG	HQ842952	CG1790	AG	JQ743187
CG1269	AG	JQ743157	CG1817	AG	JQ743188
CG1273	TG/AG	JQ743158	CG1823	TTA/AAG	JQ743189
CG1285	AG	JQ743159	CG1831	AG	HQ842972
CG1318	AGC	JQ743160	CG1835	$\mathrm{AC} / \mathrm{AG}$	JQ743190
CG1319	AG	JQ743161	CG1845	AGG	JQ743191
CG1336	AG	JQ743162	CG1850	AC	JQ743192
CG1381	AGGGTTT	JQ743163	CG1851	ACC/CCA	JQ743193
CG1394	AG	JQ743164	CG1855	AG	HQ842973
CG1281	AG	HQ842953	CG1859	AG	JQ743194
CG1320	CAA	HQ842954	CG1870	ATT	JQ743195
CG1341	AAG/AG	HQ842955	CG1873	AG	JQ743196
CG1348	AG	HQ842956	CG1878	AG	JQ743197
CG1396	AAG/AGG	HQ842957	CG1890	AG	JQ743198
CG1400	AG	HQ842958	CG1895	AG	JQ743199

다. SSR 좌위별 primer 제작 및 다형성 SSR 마커의 선별

(1) Primer의 제작

SSR-enriched library 스크린으로 분리된 346개의 중복되지 않는 SSR 서열을 바탕으로 SSR motif를 증폭할 수 있는 특이적 primer 94 쌍을 Primer3 프로그램을 이용하여 제작하여 PCR 증폭을 실시하였다. 제작된 primer는 18-26 bp 내외의 길이로 SSR motif가 확인된 양쪽 의 flanking 서열에 상보적으로 제작되었으며, 각각의 primer의 결합 온도 $\left(58^{\circ} \mathrm{C}\right.$ 이상)를 고려 하여 PCR 조건을 확립하고 증폭을 실시하였고, primer 당 춘란 $10^{\sim} 15$ 개의 genomic DNA 시료 를 주형으로 하여 실시하였다. 그 결과, 춘란의 DNA 시료에서 94 개 가운데 58 개 primer로 증 폭에 성공하였다 (59/94; 62.7\%) (표 8).

표 8. List of SSR-specific primers in Cymbidium goeringii.

Locus	Size (bp)	Repeat sequence	Ta (${ }^{\circ} \mathrm{C}$)	Locus	Size (bp)	Repeat sequence	Ta $\left({ }^{\circ} \mathrm{C}\right)$
CG2	144	P21 N26 (AG)16 N27 P20	58	CG722	183	P20 N77 (AG)12 N24 P20	58
CG5	162	P24 N40 (ACC) 5 N58 P23	60	CG744	140	P22 N21 (AG)12 N34 P21	58
CG26	106	P22 N8 (AAC)8 N21 P22	60	CG787	136	P21 N27 (AG)23 N1 P23	58
CG40	125	P20 N7 (CAA)8 N34 P22	60	CG794	108	P24 N19 (AGC) 7 N21 P23	56
CG44	109	P20 N39 (CAA)6 N11 P21	60	CG831	178	P21 N62 (CAA) 8 N32 P21	58
CG97	126	P23 N42 (ACC)7 N18 P22	60	CG894	129	P23 N22 (AAC)6 N5 P25	58
CG119	90	P22 N23 (ACC) 6 N3 P24	60	CG926	146	P21 N14 (AG)22 N28 P21	60
CG192	123	P27 N41 (CAA)6 N12 P25	60	CG963	137	P22 N18 (AG) 12 N34 P21	58
CG222	184	P24 N52 (GAATTT)4 N60 P24	60	CG981	131	P23 N39 (AG)12 N3 P24	58
CG242	139	P24 N37 (CAA) 7 N36 P22	60	CG1023	211	P19 N89 (AG)13 N35 P24	58
CG246	205	P22 N41 (TGGGGG)3 N79 P22	60	CG1028	179	P24 N8 (AG)28 N51 P24	58
CG257	226	P22 N56 (AG)30 N49 P21	61	CG1036	188	P20 N64 (GAA)16 N16 P22	60
CG269	139	P22 N54 (AG)19 N2 P24	56	CG1085	131	P23 N9 (AG)16 N26 P20	58
CG280	146	P21 N56 (AAAG)7 N1 P24	58	CG1086	168	P20 N34 (AG)25 N27 P19	56
CG336	140	P22 N12 (ACC)13 N39 P22	60	CG1184	183	P24 N51 (CAA)6 N50 P22	57
CG344	171	P23 N53 (ACC)5 N37 P25	58	CG1210	142	P21 N42 (AG)15 N10 P21	58
CG378	190	P22 N33 (AG)37 N23 P20	57	CG1229	205	P20 N87 (AC)29 N0 P22	58
CG410	95	P24 N22 (CCA)8 N3 P25	60	CG1265	176	P20 N53 (CAA)9 N36 P20	60
CG415	139	P21 N27 (AG)12 N29 P20	58	CG1281	176	P21 N69 (AG)15 N17 P21	58
CG424	179	P25 N33 (AAG) 7 N77 P25	60	CG1320	148	P22 N63 (CAA)7 N3 P21	58
CG428	184	P24 N34 (AG)24 N36 P24	58	CG1341	198	P21 N41 (AG)26 N45 P21	59
CG450	133	P24 N4 (AG)18 N29 P22	58	CG1348	168	P18 N28 (AG)29 N26 P20	59
CG459	130	P24 N31 (AG)13 N7 P24	58	CG1400	163	P21 N36 (AG)21 N24 P22	58
CG477	169	P21 N73 (AG)13 N12 P19	60	CG1445	106	P20 N22 (GAT)8 N2 P20	60
CG541	173	P22 N29 (AGG)5 N65 P24	58	CG1450	177	P21 N47 (AG) 15 N40 P21	59
CG543	202	P22 N9 (AG)32 N69 P20	60	CG1508	198	P22 N15 (AG)33 N56 P21	58
CG556	125	P22 N3 (AG)24 N13 P21	58	CG1585	135	P20 N2 (ACC) 5 N58 P22	60
CG649	180	P21 N68 (AG)11 N30 P22	58	CG1731	230	P20 N80 (AG)30 N32 P20	58
CG709	170	P22 N16 (AG)13 N68 P20	58	CG1855	196	P21 N49 (AG)23 N41 P21	58

(2) 유전자형 분석 및 다형성 마커의 선별

PCR 을 통해 증폭된 산물은 자동 유전자형 분석기를 이용해 genotyping을 하여 대립유전자 의 다형성 유무를 결정하였다. 총 59개의 primer set 중 43 개의 좌위에서 다형성 대립유전자 패턴을 확인하였고, 16 개의 좌위에서는 어떠한 다형성도 보이지 않았다. 다형성을 보이는 43 개 좌위 중에서도 18 개 좌위는 대립유전자 타입이 4 개 이하로 다형성이 낮았고, 4 개 좌위는 재현 성 떨어져 이후 실험에 사용할 수 없었으며 최종적으로 춘란 내에서 다형성을 갖는 21 개의 microsatellite 좌위를 분리하였다 (표 9, 그림 10).

표 9. 춘란 내에서 다형성을 나타내는 21 개 SSR 마커

Loci	GenBank Acc. No.	Primersequence $\left(5^{\prime}-3^{\prime}\right)$	Repeat motif	$\begin{aligned} & \mathrm{Ta} \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	Sizerange (bp)
CG2	HQ842872	F:TGATTAAGCAGCCATTCAAGG R:TGGCTCTCAATCTCCCTCAC	(AG) 16	58	114-138
CG280	HQ842899	F:CCCCACAAAAGAATCACAAAG R:CAGCTGGAGAAAGATAAGGTCTCC	(AAAG) 7	58	101-132
CG415	HQ842905	F:CTTCCAACAACCCCTTCTGTC R:CTTTGCTACGGAGGTCATGC	(AG)12	58	117-150
CG428	HQ842908	F:AGACATCAAATTCACCAAGAGAGG R:TCAGCTCACTGATTAGGAAAATCC	(AG)24	59	130-178
CG450	HQ842909	F:CCAAACTGCCTTAACTCACTTACA R:ACTTGGGGCCTTACAACTGATA	(AG)18	56	89-160
CG459	HQ842910	F:ACCAGTTCACTTTCCATTATCTGG R:GGGATGTAGCCATATTACCAATGA	(AG)13	58	94-146
CG649	HQ842919	F:CAATGGGATAAGGTGGCTTTC R:TCCTTTGCTTTCTCTCCTTGG	(AG) 11	58	161-185
CG709	HQ842922	F:TTGACCGATTGAGGAAGTATCA R:CATGCCATCAATCATCATCC	(AG)13	58	148-193
CG722	HQ842923	F:TGGTGCAAGCAGTTGGAATA R:CAGGTTGCCTCATCTCCACT	(AG)12	58	160-197
CG787	HQ842926	F:GGCAGCTACATCCACATCATC R:GTTTTTGATGGAGGTTCTATTGC	(AG)18	58	98-135
CG963	HQ842934	F:TGAGAACAGACGACAAATGTGA R:CGCCACAGGAATCAAAACTAA	(AG)12	58	119-147
CG1023	HQ842937	F:CGATGGCCGTCAAGAAGTA R:TCAGTTCACTCATTCTCTTCTTCC	(AG) 13	60	181-225
CG1028	HQ842938	F:AGGTAAGCCCATAATAGGTGTTTG R:GCTTTATGGGAAGCTTTATGAGTC	(AG)28	58	109-193
CG1085	HQ842942	F:TCGGGATTCGGTAGTAGTTGA R:TCTCTCAGCTTCCCCACTCT	(AG)16	58	92-159
CG1210	HQ842946	F:AGACAGTGTGCGGAGAAAGAA R:AACGCTCTTCCGTTAGGTTTC	(AG)15	58	102-164
CG1229	HQ842948	F:GCTCGGCCGATTACTTTCTT R:AACAAACAACTTCCCCTACACG	(AC)29	58	170-215
CG1281	HQ842953	F:TCAGGAAGTGTCCCATGTAGC R:GGTCCTCGAGGTGATGCTATT	(AG)15	58	144-174
CG1320	HQ842954	F:GATGGAATCAAAATGGCTTAGG R:GACCCCACCTAGTGGGATAAA	(CAA) 7	58	124-163
CG1400	HQ842958	F:TCCTCAGGGCACTCCCTATAC R:TTCCTGCTCAAGCAGCTAAAGT	(AG)21	58	121-189
CG1508	HQ842964	F:CCTATGTATTCTAAGGCATTCC R:GACCATTAGAGGGGTTTGAGG	(AG)33	58	132-184
CG1855	HQ842973	F:TGTAGCGGAGACAAGAAGGAG R:AAAACGTTCGTCTCGGTCTCT	(AG)23	61	145-194

그림 10. Polymorphic microsatellite markers in Cymbidium goeringii.

라. 다형성 SSR 마커의 통계적 특성 확립

(1) 다형성 SSR 좌위의 반복구조 결정 및 대립유전자 명명

선별된 21 개의 다형성 마커를 이용하여 수집된 155개체 춘란 시료의 유전자형을 분석하였 고, 이를 통해 발견된 대립유전자의 다형성 구조를 염기서열 분석을 통해 결정하였다. 다형성 좌위의 대립유전자를 마커 당 $2 \sim 3$ 개를 선별하여 좌위 특이적인 primer를 이용해 PCR 증폭하 고, 이를 sequencing하여 염기서열 및 반복구조를 결정하였다. 각 좌위별 대립유전자는 반복횟 수에 따라 숫자로 명명하였으며 (Bär et al., 1997), 좌위별 평균 20개의 대립유전자형을 나타냈 다 (그림 11).

그림 11. SSR 반복횟수에 따라 명명된 다형성 마커의 대립유전자 크로마토그램.
(2) 마커별 대립유전자의 빈도 계산

선별된 21 개 마커로 춘란의 유전자형을 분석하여 마커별 대립유전자 분포 특성과 개체 식 별 마커로써의 유용성을 알아보기 위해 대립유전자 빈도를 다양한 통계 프로그램을 이용해 분 석하였는데 Gene diversity, PIC, PE, PM 값은 PowerStatsV12 program으로, 이형접합도, HWE 평형, linkage disequilibrium은 GDA 프로그램으로, 집단별 차이성 $\left(F_{\mathrm{st}}\right)$ 은 GENEPOP S/W로 수 행하였다. 대립유전자 타입의 다양성은 마커별 평균 20개로 CG1508에서 29개로 가장 다양하게 나타났으며 지역별로는 중국 지역 춘란이 가장 다양하게 나타났으며, $\mathrm{H}_{\mathrm{exp}}$ 는 0.256-0.937 (평균 값: 0.743)로 나타났고, $\mathrm{H}_{\mathrm{obs}}$ 는 0.089-0.941 (평균값: 0.548)로 $\mathrm{H}_{\mathrm{obs}}$ 가 $\mathrm{H}_{\mathrm{exp}}$ 에 비해 다소 낮게 나타 났다. 다형성 정보의 함유량을 나타내는 PIC값는 평균 0.703 으로 CG1508에서 0.822 로 가장 높 게 나타났으며, CG280과 CG963을 제외한 모든 좌위에서 평균 0.6 이상의 값을 보여 유전적 다 형성이 높고, 개체식별 및 친자확인에 유용할 것으로 판단되었다.

대립유전자 배제능을 나타내는 PE 는 0.296 으로 조사되었고, 유전적 다양성을 나타내는 Gene diversity는 0.262-0.959의 범위로 평균 0.744 로 조사되었으며, 대부분의 좌위에서 중국 춘 란이 가장 높게 나타났다 (표 10).

표 10A. 다형성 SSR 마커(CG2, CG280, CG450)의 대립유전자 빈도 및 지역별 분포 특성

	CG2				CG280				CG450			
Allele	서해안	동해안	중국	일본	서해안	동해안	중국	일 본	서해안	동해안	중국	일본
2					0.070	0.111	0.096	0.036				
4							0.011					
6							0.021	0.107				
7		0.031	0.163	0.033	0.640	0.844	0.447	0.571				
8					0.128		0.043					
9		0.021	0.025				0.064					
10	0.034	0.021	0.025	0.067			0.032		0.012			
11	0.318	0.167		0.133					0.081	0.042	0.133	0.321
12	0.034		0.038	0.367			0.053		0.349	0.181	0.044	0.071
13			0.025								0.022	
14	0.136	0.135	0.225						0.012		0.067	
15			0.125								0.033	
16	0.136	0.208	0.063						0.163	0.236	0.044	0.357
17	0.034	0.010	0.025	0.100					0.186	0.250	0.156	0.107
18	0.057		0.063						0.012	0.097	0.056	0.036
19	0.034	0.094	0.138	0.133							0.122	
20	0.034	0.115	0.025	0.067							0.011	
21			0.013								0.022	
22	0.091	0.021									0.089	
23	0.011			0.067							0.067	
24			0.038								0.022	
25			0.013								0.033	0.071
35									0.012	0.014		
36									0.035			
37									0.081	0.111		
38									0.012	0.042		0.036
39									0.012	0.014		
40									0.012	0.014		
He	0.847	0.864	0.885	0.832	0.550	0.256	0.761	0.646	0.811	0.835	0.923	0.772
Ho	0.591	0.500	0.525	0.867	0.605	0.089	0.723	0.571	0.605	0.667	0.333	0.357
HWE	0.000	0.000	0.000	0.641	0.739	0.001	0.433	0.175	0.003	0.008	0.000	0.001
GD	0.851	0.883	0.913	0.834	0.531	0.275	0.743	0.621	0.845	0.834	0.918	0.766
PD	0.928	0.919	0.939	0.898	0.752	0.346	0.912	0.765	0.918	0.921	0.939	0.837
PIC	0.823	0.838	0.862	0.785	0.503	0.252	0.733	0.588	0.779	0.800	0.907	0.707
PE	0.280	0.188	0.210	0.728	0.296	0.007	0.465	0.258	0.296	0.379	0.078	0.090
Fst	서해안/동해안		$P<0.05$		서 해안/동해안		$P<0.05$		서해안/동해안		$P<0.05$	
	서 해안/중국		$P<0.05$		서해안/중국		$P<0.05$		서 해안/중국		$P<0.05$	
	동해안/중국		$P<0.05$		동해안/중국		$P<0.05$		동해안/중국		$P<0.05$	
	서 해안/일 본		$P<0.05$		서해안/일본		$P<0.05$		서해안/일본		$P<0.05$	
	동해안/일본		$P<0.05$		동해안/일본		$P<0.05$		동해안/일본		$P<0.05$	
	중국/일본		$P<0.05$		중국/일본		0.14314		중국/일 본		0.04448	

표 10B. 다형성 SSR 마커(CG415, CG428, CG459)의 대립유전자 빈도 및 지역별 분포 특성

	CG415				CG428				CG459			
Allele	서해안	동해안	중 국	일본	서해안	동해안	중국	일본	서해안	동해안	중국	일본
4											0.054	
6								0.067			0.043	
7							0.280	0.367				
8							0.073	0.033				
9							0.037			0.011	0.022	
10	0.023	0.021					0.012				0.065	
11	0.105	0.188	0.141	0.250			0.012					0.500
12	0.070	0.010	0.054	0.071			0.012		0.023		0.130	0.036
13	0.593	0.615	0.065						0.273	0.120		0.036
14	0.023		0.054						0.318	0.087	0.130	0.036
15	0.105	0.083	0.207				0.061		0.011	0.076	0.033	
16			0.043	0.036			0.049		0.330	0.337	0.196	
17	0.012		0.087		0.012		0.012		0.023	0.087	0.141	0.179
18			0.033	0.250	0.233	0.138		0.033		0.022		0.071
19	0.035		0.054	0.107			0.012					0.071
20			0.033	0.071					0.023	0.228	0.087	
21			0.054				0.012			0.033	0.011	
22	0.035	0.042		0.214	0.023		0.134				0.043	
23			0.054		0.081	0.138	0.085	0.033				
24					0.442	0.426	0.049	0.433				0.036
25			0.011		0.128	0.277	0.012				0.011	
26			0.011		0.047	0.011	0.085					
27					0.035		0.012	0.033			0.011	
30							0.012				0.011	
He	0.625	0.582	0.914	0.836	0.732	0.712	0.882	0.692	0.722	0.806	0.897	0.728
Ho	0.651	0.438	0.696	0.786	0.674	0.532	0.756	0.733	0.341	0.522	0.304	0.643
HWE	0.915	0.005	0.000	0.377	0.024	0.000	0.001	0.894	0.000	0.000	0.000	0.164
GD	0.592	0.591	0.921	0.808	0.749	0.719	0.881	0.673	0.723	0.823	0.899	0.713
PD	0.838	0.756	0.957	0.888	0.870	0.841	0.942	0.818	0.840	0.882	0.930	0.837
PIC	0.596	0.540	0.897	0.779	0.689	0.656	0.861	0.613	0.660	0.772	0.877	0.676
PE	0.357	0.138	0.422	0.573	0.390	0.217	0.520	0.482	0.082	0.207	0.065	0.345
Fst	서해안/동해안		0.35236		서해안/동해안		0.0277		서해안/동해안		$P<0.05$	
	서 해안/중국		$P<0.05$		서해안/중국		$P<0.05$		서 해안/중국		$P<0.05$	
	동 해안/중국		$P<0.05$		동해안/중국		$P<0.05$		동해안/중국		$P<0.05$	
	서해안/일 본		$P<0.05$		서해안/일본		$P<0.05$		서해안/일본		$P<0.05$	
	동해안/일본		$P<0.05$		동해안/일본		$P<0.05$		동해안/일본		$P<0.05$	
	중국/일본		$P<0.05$		중국/일본		$P<0.05$		중국/일본		$P<0.05$	

표 10C. 다형성 SSR 마커(CG649, CG709, CG722)의 대립유전자 빈도 및 지역별 분포 특성

	CG649				CG709				CG722			
Allele	서해안	동해안	중국	일본	서해안	동해안	중국	일본	서해안	동해안	중국	일본
7			0.032	0.100								
9			0.011	0.033								0.033
10	0.095		0.394								0.022	
11	0.571	0.641		0.200			0.011	0.036	0.167	0.149	0.211	0.133
12		0.038	0.074	0.167		0.031	0.011		0.397	0.511	0.156	0.300
13	0.012		0.149	0.233	0.038	0.167	0.021	0.071			0.011	
14	0.012		0.053				0.032			0.011		
15		0.013	0.011				0.032	0.036			0.011	
16	0.012	0.051	0.032	0.033	0.026		0.043				0.122	
17	0.012	0.051	0.011		0.423	0.260	0.064		0.179	0.160	0.033	0.033
18			0.011		0.231	0.156	0.181	0.357			0.033	
19	0.036	0.026	0.043		0.013	0.042	0.053	0.036			0.011	
20		0.013	0.064		0.013	0.021	0.181	0.071	0.128	0.117	0.011	0.033
21	0.012		0.011				0.043	0.071	0.013		0.033	0.300
22	0.012	0.026	0.011	0.067	0.077	0.125	0.021	0.179	0.103	0.053	0.067	0.067
23	0.012			0.133		0.052	0.106	0.107	0.013		0.178	
25	0.012	0.013	0.085		0.103	0.115	0.021					0.100
26	0.083	0.128	0.011				0.064					
27							0.043	0.036				
28	0.036						0.021				0.033	
29	0.012						0.011					
30	0.036			0.033								
33					0.077	0.031						
He	0.654	0.571	0.807	0.871	0.752	0.853	0.911	0.838	0.765	0.682	0.883	0.811
Ho	0.333	0.231	0.681	0.533	0.718	0.479	0.872	0.857	0.795	0.511	0.800	0.800
HWE	0.000	0.000	0.000	0.004	0.239	0.000	0.021	0.603	0.853	0.001	0.005	0.728
GD	0.659	0.571	0.795	0.853	0.747	0.871	0.902	0.831	0.768	0.689	0.899	0.887
PD	0.658	0.569	0.902	0.907	0.894	0.932	0.960	0.898	0.898	0.834	0.946	0.898
PIC	0.637	0.543	0.783	0.823	0.712	0.827	0.894	0.790	0.722	0.639	0.861	0.755
PE	0.078	0.039	0.399	0.218	0.457	0.170	0.739	0.709	0.590	0.197	0.599	0.599
Fst	서해안/동해안		0.03574		서해안/동해안		0.03459		서해안/동해안		0.6176	
	서해안/중국		$P<0.05$		서해안/중국		$P<0.05$		서해안/중국		$P<0.05$	
	동해안/중국		$P<0.05$		동해안/중국		$P<0.05$		동해안/중국		$P<0.05$	
	서해안/일본		$P<0.05$		서해안/일본		$P<0.05$		서 해안/일본		$P<0.05$	
	동해안/일본		$P<0.05$		동해안/일본		$P<0.05$		동해안/일본		$P<0.05$	
	중국/일본		$P<0.05$		중국/일본		0.10461		중국/일본		$P<0.05$	

표 10D. 다형성 SSR 마커(CG787, CG963, CG1023)의 대립유전자 빈도 및 지역별 분포 특성

	CG787				CG963				CG1023			
Allele	서해안	동해안	중국	일본	서해안	동해안	중국	일본	서해안	동해안	중국	일본
7							0.016				0.027	
9							0.016					
11						0.011	0.031	0.250			0.081	
12					0.852	0.859	0.469	0.500				
13			0.156		0.045		0.156	0.250	0.648	0.717	0.189	0.115
14							0.016				0.027	
15	0.012	0.022		0.214			0.016				0.068	
16	0.061		0.067				0.047		0.045		0.230	
17	0.134			0.071			0.063				0.095	0.038
18	0.037	0.011	0.011				0.047				0.041	
19	0.012	0.011	0.211				0.016		0.011	0.011		0.038
20		0.011	0.111	0.250			0.047		0.182	0.163		0.346
21		0.067	0.056							0.022	0.054	
22	0.061	0.067	0.067				0.016				0.041	
23	0.024	0.011	0.089									
24	0.439	0.589	0.022									
25	0.195	0.156	0.144	0.393	0.091	0.065					0.027	
26		0.056	0.056		0.011	0.065			0.091	0.054		0.346
27			0.011							0.011	0.068	0.077
28							0.016				0.027	
29				0.071			0.016		0.023	0.022		0.038
37									0.023			
38									0.011			
He	0.750	0.623	0.884	0.754	0.266	0.257	0.754	0.648	0.543	0.459	0.889	0.776
Ho	0.366	0.178	0.444	0.286	0.136	0.239	0.563	0.143	0.477	0.304	0.270	0.538
HWE	0.000	0.000	0.000	0.000	0.000	0.419	0.000	0.000	0.242	0.001	0.000	0.035
GD	0.811	0.652	0.906	0.729	0.274	0.262	0.751	0.625	0.545	0.466	0.887	0.759
PD	0.847	0.704	0.929	0.816	0.351	0.428	0.854	0.714	0.737	0.615	0.916	0.840
PIC	0.713	0.590	0.862	0.682	0.248	0.241	0.725	0.555	0.499	0.423	0.866	0.696
PE	0.094	0.024	0.143	0.058	0.015	0.041	0.248	0.016	0.168	0.065	0.052	0.223
Fst	서해안/동해안		0.00163		서해안/동해안		0.10089		서해안/동해안		0.3534	
	서해안/중국		$P<0.05$		서해안/중국		$\mathrm{P}<0.05$		서해안/중국		$\mathrm{P}<0.05$	
	동해안/중국		$\mathrm{P}<0.05$		동해안/중국		$\mathrm{P}<0.05$		동해안/중국		$\mathrm{P}<0.05$	
	서해안/일본		$P<0.05$		서해안/일본		$P<0.05$		서 해안/일본		$P<0.05$	
	동해안/일본		$\mathrm{P}<0.05$		동해안/일본		$P<0.05$		동해안/일본		$\mathrm{P}<0.05$	
	중국/일본		$P<0.05$		중국/일본		0.17646		중국/일본		$P<0.05$	

표 10E. 다형성 SSR 마커(CG1028, CG1085, CG1210)의 대립유전자 빈도 및 지역별 분포 특성

	CG1028				CG1085				CG1210			
Allele	서해안	동해안	중국	일본	서해안	동해안	중국	일본	서해안	동해안	중국	일본
6	0.200	0.094	0.337	0.321					0.034	0.125	0.277	0.200
7	0.043	0.021	0.228	0.286			0.023					
8			0.011				0.058			0.091	0.043	0.067
9			0.011			0.010	0.023	0.033	0.023		0.064	0.067
10							0.058	0.100		0.023		
11					0.012		0.070		0.011	0.034	0.011	
12	0.029	0.010					0.012		0.250	0.136		
13			0.011		0.023		0.023				0.032	0.067
14					0.012						0.085	0.033
15	0.057	0.229			0.395	0.417	0.070	0.067	0.341	0.375	0.032	0.167
16			0.022	0.107	0.186	0.104	0.035	0.200	0.034		0.053	
17	0.514	0.604		0.036	0.081	0.052			0.193	0.102	0.138	0.033
18	0.014	0.010	0.033						0.011		0.043	
19	0.029		0.228				0.151				0.011	0.033
20			0.011		0.081	0.094	0.058					0.033
21			0.011			0.042	0.081	0.033			0.011	
22			0.011			0.010	0.081	0.033			0.021	
23	0.029		0.022	0.143	0.023	0.010	0.012	0.433			0.011	
24				0.071			0.047				0.043	
25				0.036	0.047		0.070	0.033			0.043	
27					0.012					0.057		
28	0.014						0.081		0.011		0.021	0.200
29	0.071	0.031					0.035	0.067	0.034	0.011	0.021	
30									0.045	0.034		
38					0.023	0.021						
39					0.058	0.229						
40					0.023							
He	0.692	0.578	0.787	0.804	0.797	0.757	0.937	0.775	0.786	0.809	0.888	0.899
Ho	0.686	0.292	0.696	0.929	0.721	0.667	0.721	0.667	0.750	0.636	0.915	0.867
HWE	0.131	0.000	0.008	0.996	0.247	0.106	0.000	0.131	0.338	0.000	0.663	0.762
GD	0.695	0.587	0.793	0.783	0.795	0.763	0.959	0.757	0.782	0.803	0.897	0.883
PD	0.849	0.686	0.898	0.888	0.925	0.905	0.961	0.862	0.913	0.910	0.962	0.933
PIC	0.653	0.525	0.748	0.743	0.768	0.719	0.921	0.723	0.747	0.781	0.870	0.856
PE	0.407	0.060	0.422	0.854	0.461	0.379	0.461	0.379	0.510	0.337	0.826	0.728
Fst	서해안/동 해안		$\mathrm{P}<0.05$		서해안/동해안		$P<0.05$		서해안/동해안		$\mathrm{P}<0.05$	
	서 해안/중국		$\mathrm{P}<0.05$		서해안/중국		$\mathrm{P}<0.05$		서 해안/중국		$\mathrm{P}<0.05$	
	동해안/중국		$\mathrm{P}<0.05$		동해안/중국		$P<0.05$		동해안/중국		$\mathrm{P}<0.05$	
	서해안/일본		$\mathrm{P}<0.05$		서해안/일본		$\mathrm{P}<0.05$		서해안/일본		$\mathrm{P}<0.05$	
	동해안/일본		$\mathrm{P}<0.05$		동해안/일본		$P<0.05$		동해안/일본		$\mathrm{P}<0.05$	
	중국/일본		$\mathrm{P}<0.05$		중국/일본		$\mathrm{P}<0.05$		중국/일본		$\mathrm{P}<0.05$	

표 10F. 다형성 SSR 마커(CG1229, CG1281, CG1320)의 대립유전자 빈도 및 지역별 분포 특성

	CG1229				CG1281				CG1320			
Allele	서해안	동해안	중국	일본	서해안	동해안	중국	일본	서해안	동해안	중국	일본
5									0.023		0.035	0.033
6									0.068		0.047	
7									0.398	0.411	0.465	0.167
8						0.010	0.064	0.036				0.033
9					0.102	0.250	0.553	0.536			0.047	
10					0.136	0.073	0.085	0.071	0.148	0.067	0.151	0.033
11								0.107				
12									0.250	0.467	0.105	0.667
13									0.091	0.056	0.070	
14							0.021		0.023			0.067
15						0.010	0.074				0.058	
16					0.659	0.479	0.021				0.012	
17					0.102	0.177		0.036				
20	0.081	0.043		0.071			0.021					
21				0.179				0.036				
22							0.149	0.143				
25				0.036								
26		0.032	0.250									
27	0.291	0.404	0.125	0.429								
28		0.096	0.375	0.286								
29			0.080									
30	0.593	0.277	0.011									
31			0.045									
33	0.023	0.149										
He	0.563	0.734	0.778	0.722	0.532	0.678	0.660	0.696	0.752	0.612	0.744	0.538
Ho	0.209	0.362	0.432	0.500	0.568	0.438	0.596	0.429	0.636	0.622	0.535	0.400
HWE	0.000	0.000	0.000	0.073	0.203	0.000	0.207	0.067	0.394	0.341	0.003	0.305
GD	0.568	0.719	0.783	0.706	0.528	0.678	0.679	0.676	0.754	0.613	0.739	0.525
PD	0.675	0.836	0.873	0.827	0.736	0.798	0.847	0.827	0.898	0.745	0.874	0.729
PIC	0.491	0.684	0.741	0.646	0.491	0.620	0.628	0.646	0.707	0.526	0.713	0.488
PE	0.032	0.092	0.134	0.188	0.254	0.138	0.286	0.132	0.337	0.318	0.220	0.114
Fst	서해안/동해안		$\mathrm{P}<0.05$		서해안/동해안		0.02133		서해안/동해안		$P<0.05$	
	서 해 안/중국		$\mathrm{P}<0.05$		서 해 안/중국		$\mathrm{P}<0.05$		서 해안/중국		0.12584	
	동해 안/중국		$\mathrm{P}<0.05$		동해 안/중국		$\mathrm{P}<0.05$		동해안/중국		$\mathrm{P}<0.05$	
	서해안/일본		$\mathrm{P}<0.05$		서해 안/일본		$\mathrm{P}<0.05$		서해안/일본		$\mathrm{P}<0.05$	
	동해안/일본		$\mathrm{P}<0.05$		동해안/일본		$\mathrm{P}<0.05$		동해안/일본		$P<0.05$	
	중국/일 본		$\mathrm{P}<0.05$		중국/일 본		0.06079		중국/일 본		$\mathrm{P}<0.05$	

표 10G. 다형성 SSR 마커(CG1400, CG1508, CG1855)의 대립유전자 빈도 및 지역별 분포 특성

	CG1400				CG1508				CG1855			
Allele	서해 안	동해안	중국	일본	서해안	동해안	중국	일본	서해안	동해안	중국	일본
8											0.045	
9			0.029				0.011					
10						0.092	0.021	0.357				
11	0.024	0.022	0.074	0.167			0.064	0.036	0.038	0.087		
12							0.021	0.036				
13							0.021		0.238	0.022	0.170	
14	0.214	0.293	0.059				0.011			0.022	0.455	
15	0.012		0.015	0.167	0.025		0.021			0.022	0.068	0.233
16	0.012	0.011	0.191				0.021				0.023	0.467
17			0.044			0.013			0.063	0.087		0.167
18	0.095	0.054	0.088	0.083	0.213	0.303	0.053	0.071			0.080	
19		0.022	0.074			0.013	0.064		0.013		0.045	
20	0.226	0.109	0.044	0.042		0.066			0.038	0.022	0.068	
21	0.286	0.380		0.125		0.026		0.036	0.025	0.022		
22	0.024	0.022	0.088						0.050	0.087	0.011	
23			0.015	0.042					0.013			
24			0.029	0.208				0.107	0.325	0.500		0.133
25	0.107	0.087	0.088	0.083			0.117		0.188	0.109	0.023	
26			0.044				0.043					
27			0.015		0.025		0.064	0.107				
28			0.015		0.075	0.118	0.160	0.071				
29			0.015	0.083	0.038		0.032		0.013			
30			0.059		0.150	0.039		0.036				
31					0.300	0.118				0.022		
32					0.050	0.197	0.223					
33					0.113							
34			0.015				0.011	0.036				
He	0.809	0.753	0.927	0.899	0.829	0.837	0.899	0.852	0.803	0.720	0.752	0.706
Ho	0.857	0.630	0.941	0.833	0.350	0.553	0.489	0.500	0.350	0.391	0.295	0.533
HWE	0.635	0.005	0.663	0.341	0.000	0.000	0.000	0.029	0.000	0.000	0.000	0.239
GD	0.816	0.752	0.942	0.881	0.831	0.839	0.938	0.844	0.797	0.731	0.755	0.701
PD	0.906	0.883	0.962	0.903	0.891	0.898	0.943	0.918	0.845	0.757	0.814	0.836
PIC	0.771	0.709	0.908	0.846	0.797	0.806	0.880	0.806	0.765	0.693	0.721	0.633
PE	0.709	0.329	0.880	0.662	0.086	0.238	0.178	0.188	0.086	0.109	0.062	0.218
Fst	서해안/동해안		0.53		서해안/동해안		$\mathrm{P}<0.05$		서해안/동해안		0.01863	
	서 해안/중국		$\mathrm{P}<0.05$		서해안/중국		$\mathrm{P}<0.05$		서해안/중국		$P<0.05$	
	동해안/중국		$\mathrm{P}<0.05$		동해안/중국		$\mathrm{P}<0.05$		동해안/중국		$\mathrm{P}<0.05$	
	서해안/일본		$\mathrm{P}<0.05$		서해안/일본		$\mathrm{P}<0.05$		서해안/일본		$\mathrm{P}<0.05$	
	동해안/일본		$\mathrm{P}<0.05$		동해안/일본		$\mathrm{P}<0.05$		동해안/일본		$\mathrm{P}<0.05$	
	중국/일본		$\mathrm{P}<0.05$		중국/일본		$\mathrm{P}<0.05$		중국/일본		$\mathrm{P}<0.05$	

(3) 춘란의 지역 • 원산지별 유전적 차이성 결정 및 계통수 작성

원산지별 춘란의 유전자형 분포 특성을 분석하고 국산 춘란과 중국 및 일본산 춘란의 유전 적 차이를 알아보기 위해 국내에서 채집한 춘란을 동해안과 서해안 두 집단으로 분류하고, 중 국과 일본에서 채집한 춘란을 각각의 그룹으로 분류하여 GENEPOP S / W 로 분석한 결과 국내 두 집단 간에는 11 개의 마커에서 유전적 차이가 없는 것으로 나타났으나, 한국과 중국 또는 일 본을 비교한 경우 모든 마커에서 유전적으로 유의적인 차이를 나타냈다 (표 10).

한국의 동해안과 서해안, 중국, 일본 춘란 집단을 15 개씩 임의로 선별하여 계통수를 구성한 결과 유사도의 범위는 $0.865-0.999$ 로 높게 나타났으나, 중국과 일본 집단은 각각의 그룹으로 분류되었고, 한국 내 두 집단은 섞여서 분포하였다 (그림 12). 이를 통해 국가 간 유의적 차이 성을 보이는 마커들을 선별하여 활용한다면 유전적 차이를 이용한 춘란의 원산지별 구분이 가 능할 것으로 기대된다.

그림 12. 유전적 유사도를 이용한 춘란의 dendrogram.
(1) 춘란 근연종의 시료 수집 및 DNA 추출

춘란에서 개발된 다형성 마커의 종간 교차적용성 검사를 위해 춘란 근연종을 대상으로 시 료를 수집하고 춘란과 동일한 방식으로 DNA 를 추출하였는데, 수집된 종은 6 종으로 춘란과 같 은 Cymbidium 속의 근연종이며, 종 당 3-14개체를 사용하였다 (표 11).

표 11. 수집된 7 가지의 춘란 근연종

번호	학 명	품종명	개체수
1	Cymbidium goeringii RCHB	춘검란	3
2	Cymbidium gyokuchin	소심란	3
3	Cymbidium forrestii	중국춘란	5
4	Cymbidium kanran	한란	3
5	Cymbidium sinense	보세란	14
6	Cymbidium faberi ROLF	일경구화	5
	Total		33

(2) 춘란 SSR 마커를 이용한 근연종의 유전자형 분석

춘란에서 개발된 다형성 SSR 마커의 종간 교차 적용성을 알아보기 위하여 선별된 17 개의 다형성 마커를 Multiplex PCR 시스템으로 증폭하여 춘란과 동일한 방식으로 유전자형을 분석 하였다. 그 결과 12 개 마커에서 6 종 모두 유전자형 분석이 가능하였고, 품종 내 대립유전자의 다형성을 나타내었다 (표 12 , 그림 13). 분석된 근연종 개체별 유전자형을 바탕으로 계통수를 작성하였는데 개체별 유전적 유사도은 $0.824^{\sim} 1.000$ 의 범위로 높았으나 대부분 종별로 그룹화 되는 양상을 나타내었고, CG709 마커에서는 보세란과 일경구화에서 다른 품종과 확연히 구분 되는 큰 사이즈의 대립유전자를 나타내었다 (표 13, 그림 14). 이를 통해 춘란에서 개발된 다형 성 SSR 마커는 춘란뿐 아니라 Cymbidium 속의 다양한 근연종 내에서 종간 식별 및 개체식별 마커로서 활용이 가능할 것으로 사료된다.
(3) 재현성 확인 및 시료상태에 따른 타이핑 오류율 제거

통계적 특성이 확립된 21개 다형성 마커의 재현성 확인 및 타이핑 오류를 제거하기 위하여 DNA 농도가 다른 시료를 대상으로 반복 실험을 하였는데 모든 마커에서 동일한 결과를 얻을 수 있었고, Multiplex PCR 시스템을 통해 형광표지 프라이머로 유전자형을 분석한 결과 역시 동일한 size (bp) 로 분석되어 다형성 마커의 높은 재현성을 확인 하였다.

표 12. 춘란 근연종 내에서 증폭 가능한 12 개 다형성 SSR 마커

Locus	No. of Alleles (Total)	Repeat motif	Size range (bp)	Ta $\left({ }^{\circ} \mathrm{C}\right)$	GenBank AccessionNo.
CG415	14	(AG)12	$109-149$	58	HQ842905
CG459	14	(AG)13	$104-150$	58	HQ842910
CG709	22	(AG)13	$152-280$	58	HQ842922
CG722	12	(AG)12	$153-189$	58	HQ842923
CG1023	15	(AG)13	$181-225$	60	HQ842937
CG1028	15	(AG)28	$117-181$	58	HQ842938
CG1085	15	(AG)16	$97-145$	58	HQ842942
CG1210	20	(AG)15	$98-160$	58	HQ842946
CG1229	9	(AC)29	$175-204$	58	HQ842948
CG1281	16	(AG)15	$143-188$	58	HQ842953
CG1320	9	(CAA)7	$124-160$	58	HQ842954
CG1400	12	(AG)21	$121-163$	58	HQ842958

표 13. 12 개 다형성 마커에 대한 품종별 대립유전자의 크기 범위

sp. Locus	C. RCHB 춘검란(n=3)	C.gyokuchin 소심란(n=3)	C. forrestii 중국춘란(n=5)	C. kanran 한란(n=3)	C. sinense 보세란($\mathrm{n}=14)$	C. faberi 일경구화($\mathrm{n}=5)$
CG415	$133-133$	$129-131$	$115-149$	$129-147$	$109-133$	$129-133$
CG459	$114-118$	$132-150$	$112-130$	$104-150$	$112-142$	$118-126$
CG709	$154-154$	$172-176$	$152-194$	$160-180$	$176-280$	$258-272$
CG722	$175-175$	$163-163$	$161-185$	$161-189$	$153-177$	$159-177$
CG1023	$203-205$	$199-203$	$197-222$	$192-215$	$181-203$	$193-225$
CG1028	$143-148$	$117-140$	$117-155$	$151-151$	$117-140$	$127-181$
CG1085	$111-111$	$99-117$	$99-135$	$109-145$	$97-125$	$97-119$
CG1210	$98-150$	$130-130$	$106-150$	$132-156$	$118-160$	$116-136$
CG1229	$179-179$	$183-183$	$181-193$	$187-204$	$175-185$	$179-183$
CG1281	$148-152$	$152-152$	$144-150$	$143-169$	$146-177$	$160-188$
CG1320	$142-145$	$142-145$	$124-157$	$142-160$	$127-148$	$127-157$
CG1400	$141-141$	$125-127$	$127-159$	$125-149$	$125-163$	$121-151$

그림 13A. 다형성 SSR 마커(CG415, CG459, CG709, CG722, CG1023, CG1028)를 이용해 분석된 6 가지 근연종의 대립유전자 크로마토그램.

그림 13B. 다형성 SSR 마커(CG1085, CG1210, CG1229, CG1281, CG1320, CG1400)를 이용해 분석된 6가지 근연종의 대립유전자 크로마토그램.

C: 춘검란 Cybidium goeringiïRCHB
S : 소심란 Cybidium Gyokuchin
F : 중국춘란 Cybidium Forrestii
H : 한란 Cybidium Kanran
B : 보세란 Cybidium Sinense
I : 일경구화 Cybidium Faberi

그림 14. 유전적 유사도를 이용한 6가지 Cymbidium 속 근연종의 dendrogram.

바. 춘란 SSR 마커의 multiplex PCR 시스템의 개발

유전적 마커로서의 다형성이 입증된 SSR 마커는 형광표지 primer를 제작하여 다중 동시증 폭을 위한 'multiplex PCR 증폭 system'을 개발하였다.

동시증폭시스템은 PCG415, PCG459, PCG709, PCG722, PCG787, PCG1023, PCG1210, PCG 1281 8개의 마커를 동시 증폭할 수 있는 octaplex kit와 PCG1028, PCG1320, PCG1400, PCG150 8 4개 마커를 동시에 증폭할 수 있는 tetraplex kit 그리고 PCG450, PCG649, PCG963, PCG108 5, PCG1229 5개 마커를 동시에 증폭하는 pentaplex kit를 개발하여 3 번의 PCR 증폭으로 17 개 좌위를 동시에 확인할 수 있도록 하였다 (그림 15,16). 각 동시증폭 시스템에서는 primer 농도 를 차등화하여 좌위별 증목률이 비슷하게 조건을 확립하였고, 각 좌위별 allele ladder도 제작하 였다. 이와 같은 multiplex PCR 시스템은 실험 소요시간 단축 및 실험 과정의 단순화를 통해 비용 절감 및 적은 양의 시료로부터 많은 검색 효과를 얻을 수 있을 것으로 사료된다.

그림 15. 춘란의 SSR Multiplex PCR 증폭 시스템 모식도. (Multi 1) Octaplex kit, (Multi 2) tetraplex kit, (Multi 3) pentaplex kit

그림 16. 춘란의 SSR Multiplex PCR 증폭 시스템 크로마토그램.
(1) 고정된 춘란 품종 및 돌연변이 유도 변이체의 개체별 변별력

선별된 마커의 개체식별 마커로서의 활용 가능성을 알아보기 위하여 40개의 고정된 우수 품종을 대상으로 10 개의 다형성 마커를 이용해 유전자형을 분석하였으며, 품종 간 개체식별력 을 알아보기 위해 각 좌위별 빈도값의 곱으로 결합변별력을 계산한 결과 10 개 마커에 대한 개 체 간 결합변별력은 1.49×10^{-10} 에서 최대 1.06×10^{-19} (평균 $=2.21 \times 10^{-11}$)로 매우 높게 나타 났으며 이를 통해 10 개 이상의 마커를 이용하여 개체별 고유 DNA ID를 부여한다면 99.9999% 이상의 높은 정확도로 개체 식별이 가능할 것으로 기대된다 (Tereba, 1999).

또한, EMS와 방사선 $\left({ }^{60} \mathrm{Co}\right)$ 을 이용하여 동일 모체로부터 증식되어 돌연변이 유도된 변이체 사피종(3개체)을 동일한 방식으로 유전자형을 분석한 결과 9개 좌위에서 모두 동일한 유전자형 을 나타냈고 사피6만 CG1281 좌위에서 변이를 나타냈다. 이를 통해 돌연변이 유도기술을 이용 해 생산된 춘란의 변이체도 다형성 SSR 마커를 이용한 유전자형 분석을 통해서 각 개체의 동 일 기원여부를 정확히 구분해 낼 수 있을 것으로 기대된다 (표 14, 그림 17).
(2) DNA ID 바코드 시스템 개발

본 연구에서 Multiplex PCR kit으로 개발된 변별력있는 17 개의 SSR 마커를 이용하여 춘란 의 복합 유전자형 결과를 토대로 DNA ID를 부여하고 2 차원 바코드로 표현하는 시스템을 개발 하였다. 각 마커들의 유전자형을 work sheet로 정리하여 일괄 처리할 수 있도록 데이터베이스 화하여 파일로 작성하고 바코드 제작에 적용 가능하도록 일정한 헝식에 맞게 일괄등록하고 컴 퓨터를 통해 업데이트가 가능하도록 하였으며, SSR 마커를 이용해 분석된 춘란의 유전자형 정 보를 2 차원 바코드 형태로 변환하여 출력할 수 있는 2 차원 바코드 출력 프로그램을 제작하였 다 (한국전자인식, KEID; http://www.keid.co.kr). 춘란의 SSR 유전자형 ID 정보를 담고 있는 바코드는 전용 바코드 스캐너를 이용하여 읽어낼 수 있고, 스캐너를 통해 텍스트 형식으로 컴 퓨터에 전송되어 간편하고 빠르게 개체별 고유 유전자 ID 를 인식하고 재처리가 가능하다. 이와 같이 춘란의 SSR 유전자형을 ID 로 바코드화 하여 활용함으로써 유전자 데이터의 빠르고 쉬운 처리 운용과 더불어, 고가의 우수 품종 유통 및 유사품 관리에 효과적일 뿐 아니라 유전적 계 보 추적에 매우 유용한 시스템이 될 것으로 사료된다 (그림 18).

표 14. 고정된 춘란 품종 잋 돌연변이 유도 품종의 마커별 유전자형 잋 결합변별력

	PCG415	PCG459	PCG708	PCG722	PCG787	PCG1023	PCG1210	PCG1281	결합변별력
애빈	13-22	14-17	18-22	12-12	17-17	13-13	6-17	16-16	$4.00 \mathrm{E}-13$
일광	11-11	14-14	17-25	22-22	22-22	13-13	17-19	10-16	$4.18 \mathrm{E}-11$
금복	13-16	16-16	17-25	13-17	25-25	13.1-13.1	15-15	9-16	$5.10 \mathrm{E}-11$
설악산	11-13	16-16	17-25	12-17	25-25	13-13	15-15	9-16	$1.94 \mathrm{E}-08$
여울	13-17	16-17	17-22	23-23	24-24	13-30	16-16	16-16	1.26E-11
대관	11-12	16-16	16-17	12-17	22-24	13-13	12-12	10-17	$2.30 \mathrm{E}-12$
동	13-13	16-16	18-18	18-20	17-18	13-13	16-18	16-16	$1.29 \mathrm{E}-10$
청도	10-13	0-0	17-26	11-20	24-24	13-13	12-16	16-16	$7.31 \mathrm{E}-09$
화성	13-13	16-16	17-22	17-22	24-24	13-13	16-18	16-16	$3.93 \mathrm{E}-08$
반달	13-13	20-20	17-22	17-20	24-24	13-13	26.1-26.1	16-16	$1.35 \mathrm{E}-09$
형촌	11-13	14-16	17-17	12-17	22-24	13.1-13.1	17-17	3-16	$3.11 \mathrm{E}-09$
동해	13-13	16-20	18-18	18-20	17-18	13-13	15-17	16-16	$6.29 \mathrm{E}-10$
홍옥	11-13	16-20	17-34	11.1-12	24-27	13-13	17-17	9-10	$5.80 \mathrm{E}-11$
비상	11-11	13-13	13-25	20-21	24-24	13-13	17-17	10-16	$5.40 \mathrm{E}-12$
조양	11-13	16-16	17-18	12-20	24-24	0-0	6-15	10-17	$7.53 \mathrm{E}-08$
도리	15-15	16-17	17-17	20-20	24-24	20-26	17-17	8-24	$4.07 \mathrm{E}-10$
해태	17-17	17-17	18-21	24-24	13-13	19-19	9-9	21-21	$6.34 \mathrm{E}-21$
홍일품	0-0	16-16	17-17	12-20	22-24	13-19	12-12	9-16	$5.49 \mathrm{E}-08$
황금성	13-13	13-13	17-34	12-22	24-24	19-20	14-14	16-16	$9.00 \mathrm{E}-13$
햇살	11-11	13-16	22-22	13-20	24-24	13-13	0-0	16-16	$2.13 \mathrm{E}-07$
홍귀비	13-13	16-16	12-16	11-17	24-24	13-20	6-17	9-9	$7.50 \mathrm{E}-12$
레인보우	0-0	16-16	18-18	11-11	18-18	13-13	17-17	16-16	$6.44 \mathrm{E}-08$
정영	0-0	14-16	18-18	11-11	24-24	13-13	6-6	0-0	$2.30 \mathrm{E}-06$
신화	0-0	0-0	17-17	11-17	0-0	13.1-20.1	15-20	0-0	$4.30 \mathrm{E}-08$
양귀비	0-0	0-0	17-17	10-10	0-0	13.1-13.1	15-15	0-0	$8.49 \mathrm{E}-07$
함박골	13-13	14-14	22-22	11-17	24-24	13-13	15-15	10-16	$1.86 \mathrm{E}-10$
조인소	11-11	16-16	22-34	10-17	22-22	13-13	12-15	0-0	$4.72 \mathrm{E}-09$
향항	11-11	16-16	34-34	16-11	24-24	21-21	26.1-26.1	16-16	$1.00 \mathrm{E}-12$
남극	13-13	16-16	17-17	17-23	0-0	13-19	6-17	16-16	$1.50 \mathrm{E}-07$
도솔암	11-13	14-14	17-17	10-22	17-24	13-13	17-25.1	9-16	$3.06 \mathrm{E}-09$
심록	0-0	0-0	18-18	10-17	0-0	13.1-19.1	6-9	0-0	$1.35 \mathrm{E}-07$
매봉	13-13	16-17	22-25	10-10	22-24	13-13	17-19	9-16	$8.64 \mathrm{E}-10$
삼천리	0-0	14-14	17-18	17-20	0-0	13.1-20.1	17-19	0-0	$1.27 \mathrm{E}-07$
녹보	11-11	16-16	17-17	17-22	17-17-	13-13	6-19	9-16	$1.65 \mathrm{E}-09$
천금	0-0	0-0	17-18	12-13	0-0	13-20	12-12	0-0	$2.77 \mathrm{E}-06$
홍순	11-11	16-16	18-34	13-13	24-24	21.1-21.1	9-26.1	16-16	$3.80 \mathrm{E}-12$
진주소	0-0	13-16	17-34	12-20	24-24	13.1-20.1	9-25.1	0-0	$9.57 \mathrm{E}-09$
뎡궁	0-0	16-16	25-26	13-22	24-24	13.1-13.1	6-9	16-16	$7.77 \mathrm{E}-09$
신비	0-0	0-0	0-0	12-13	0-0	13.1-20.1	9-9	0-0	$4.86 \mathrm{E}-06$
세홍소	13-13	14-14	17-18	11-22	24-24	30-30	26.1-26.1	0-0	$1.09 \mathrm{E}-10$
변이체 1	11-11	10-16	26-30	25-25	17-17	25-25	$6-15$	6-6	1.36E-15
변이체 2	11-11	10-16	26-30	25-25	17-17	25-25	6-15	6-6	$1.36 \mathrm{E}-15$
변이체 3	11-11	10-16	26-30	25-25	17-17	25-25	$6-15$	6-6	$2.27 \mathrm{E}-15$

그림 17. 고정된 춘란 품종 및 변이체 사진. (A) 예빈, (B) 동, (C) 반달, (D) 형촌, (E) 동해, (F) 조 일소, (G) 남극, (H) 심록, (I) 녹보, (J) 양귀비, (K) 황금성, (L) 도리, (M) 홍일품, (N) 레인보우, (O) 진주소, (P) 향항, (Q) J정영, (R) 홍순, (S) 홍귀비, (T) 세홍소, (U) 일광, (V) 금복, (W) 여울, (X) 청도, (Y) 화성, (Z) 홍옥, (A^{\prime}) 해태, (B^{\prime}) 삼천리, (C^{\prime}) 함박골, (D^{\prime}) 신화, (E^{\prime}) 매봉, (F^{\prime}) 천검, (G^{\prime}) 명경, (H^{\prime}) 도솔암, (I^{\prime}) 신비, (J^{\prime}) 대관, (K^{\prime}) 설악산, (L^{\prime}) 비상, (M^{\prime}) 햇살, and (N^{\prime}) 조양, (M 1) 변이체1, (M2) 변이체2.

그림 18. 춘란의 DNA ID 바코드 시스템 모식도
2. 제 1 협동과제: 방사선 및 화학적 처리와 조직배양을 통한 우수 신품종의 유도 및 재배 기술 개발

가. 야생 춘란의 체집 및 특성분석
(1) 춘란의 수집지역 및 검체수

○ 난과식물은 단자엽 식물 중에서도 가장 진화된 식물이며 고등식물 25 만종 중 약 2 만종이 넘는 많은 종이 한대와 사막지대를 제외한 전 세계에 분포되어 있다 (Lawler, 1984). 우리나 라에는 약 34속 56종이 분포되어 있다. 춘란은 제주도와 남해안 도서지역, 전남북, 경남북, 내륙지역, 서해안으로는 대청도, 동해안으로는 울릉도, 울진, 강릉, 고성지역까지 분포하고 있으며 야산의 2 부 ~ 8 부 능선의 수림 아래의 반음지에 자생되고 있다 (강, 1989). 춘란 자생 지역은 겨울철 최저 $-6^{\circ} \mathrm{C}$ 등고선과 그 북한 한계선과 일치한다고 했는데 과거에 비해 분포 한계가 점점 북상되고 있는 것으로 나타났다.

○ 국내 수집지역은 서해안의 대청도를 비롯하여 충북, 충남, 전북, 전남 및 남해 도서 및 해안 지역과 경남, 경북, 강원도 고성지역에서 수집하였다 (표 15). 수집된 재료는 pot에 수태로 감싸서 유리 온실 내에서 재배보관 중이다 (그림 19,20).

그림 19. 춘란지역별 수집종의 유리온실내 보관

그림 20. 춘란의 형태와 중국 야생춘란. (좌) 지역별 수집종의 식물체 크기, 잎의 각도의 다양성. (우) 중국 수집종 춘란의 유리온실내 보관

표 15. 수집지역 및 채집 개체수

번호	수집지역	학명	개체수(개)	비고
1	당진	Cymbidium goeringii	15	2009.11.
2	광천	"	13	"
3	군산	"	14	"
4	고창	"	16	"
5	무안	"	18	"
6	진도	"	16	"
7	해남	"	15	"
8	보성	"	12	"
9	순천	"	19	"
10	진교	"	17	"
11	진주	"	20	"
12	마산	"	15	"
13	기장	"	20	"
14	울산	"	13	"
15	감포	"	15	"
16	후포	"	21	"
17	거창	"	23	"
18	경산	"	19	"
19	군위	"	20	"
20	옥천	"	7	"
21	대청도	"	12	"
22	흑산도	"	8	"
23	추자도	"	17	"
24	울릉도	"	18	"
25	강소성(중국)	"	4	"
26	절강성(중국)	"	3	"
27	사천성(중국)	"	3	"
28	운남성(중국)	"	3	"
총 검체수			396	

○ 식물체 크기 : 식물체 크기는 $3,5,7$ 계급으로 나누어 육안 관찰하여 조사한 결과, 크기 범 위는 $3.6 \sim 7.0$ 사이에 분포하였으며 장간대형으로 생육되고 있는 지역은 고창, 해남, 순천, 혹산도이며 중국 운남의 춘란도 식물체 크기는 5.7 정도로 생육되고 있었다. 한편, 단간소형 종으로 크기가 4.0 이하로 관찰되고 있는 지역은 동해안의 기장, 울산, 감포, 후포 지역에서 수집된 것이었으며 내륙지역의 경산수집종도 4.0 으로 나타났으며 충북 옥천에서 수집된 것 은 3.6 으로 크기에서 낮은 것으로 조사되었다.

○ 초장 : 수집된 춘란의 초장의 길이는 13.2 cm 에서 24.2 cm 사이에서 분포하였으며 초장의 크 기가 20.0 cm 이상인 지역은 보성, 순천, 진교의 남부해안지역과 가까운 곳이며 대청도, 흑산 도의 자생 춘란도 $21.0 \mathrm{~cm}, 24.2 \mathrm{~cm}$ 로 가장 컸으며 운남성 수집종도 24.0 cm 로 초장은 크게 나 타났다.

○ 상위엽의 각의 크기와 하위엽 끝부분까지의 각의 크기 : 최상에 위치한 잎의 세로축의 각 의 크기는 $18.7^{\circ} \sim 48.3^{\circ}$ 사이에 분포하였으며 각의 크기가 적을수록 직립에 가까우며 각의 크기가 클수록 주경의 기울기가 기울어지게 나타나는 것으로 상위잎이 직립에 가깝게 생육 되고 있는 지역은 순천, 마산, 감포 수집종이며, 최상위엽이 약간 하수형으로 보이는 지역은 진도, 추자도, 대청도 지역종이었다. 최장하위엽의 끝부분의 각의 크기를 조사한 결과 하수 정도가 심하게 나타난 지역 수집종은 진도, 혹산도, 추자도 지역종이며 중국에서 수집된 강 소성, 사천성, 운남성 수집종도 하수정도는 크게 나타났다.
(2) 춘란 수집종의 생육특성조사

○ 위구경 : 위구경의 평균 크기는 $3.3 \mathrm{~mm} \sim 12.1 \mathrm{~mm}$ 사이에서 분포하고 있으며 10.0 mm 이상으로 굵은 지역은 진도, 대청도, 축산도, 추자도 수집종으로 도서지역의 춘란에서 위구경이 큰 것 으로 나타났다. 위구경(pseudo bulb)의 절간은 신장하지 않고 비대하여 원형이나 장타원형으 로 나타내고 있다. 각 절에는 1 매의 엽이 착생되고 엽액에는 1 개의 액아가 나타난다. 위구경 기부의 $1 \sim 2$ 개의 액아가 신장 발달하여 차세대의 새로운 리드로 형성되고 있다.

○ 잎의 수와 길이 : 잎의 개수 분포는 3.3 개 ~ 5.3 개로 나타났으며 5 개 이상으로 나타낸 지역은 고창, 순천, 추자도, 사천성 수집종이며 3.5 개 이하로 적게 조사된 지역은 울산, 감포 수집종 이었다. 잎의 길이의 분포는 20.2 cm 에서 47.4 cm 로 나타났다. 잎 길이가 길게 생육되고 있는 지역은 순천, 혹산도 수집종이며 23.0 cm 이하로 짧게 나타난 지역은 기장, 울산, 감포, 경산, 군위 지역종이었다. 잎의 표면에는 큐티클라층이 발달해 있으며 선단으로부터 $3 \sim 4$ 번쩨의 엽이 가장 길고 이들로부터 뗠어져 있으면 그만큼 짧아진다. 벌브기부의 잎은 엽신이 발달 하지 않고 엽초가 되며, 엽의 수명은 약 3년으로 오래된 것 순으로 기부의 이층에서 뗠어져 나간다.

○ 잎과 기온의 영향 : 엽의 전개속도는 고온에서 빠르게 전개되나 고온에서는 엽수의 증가가 빠르게 정지되며, 엽수는 저온에서보다 고온에서 적어지는 경향이 있다. 엽수가 변동되는 것

은 엽원기로부터 엽으로의 발달 과정에 영향을 주는 것으로 볼 수 있다.

○ 잎의 길이와 넓이 및 두께 : 잎의 길이 분포는 20.2 cm 에서 47.7 cm 로 분포되었으며 36.0 cm 이 상으로 긴 수집종은 순천, 흑산도 종이며 23.0 cm 이하로 짧은 지역은 기장, 울산, 감포, 경산, 군위 지역에서 수집된 종들이었다.
잎의 넓이 분포는 $6.39 \mathrm{~mm} \sim 11.97 \mathrm{~mm}$ 로 나타났으며 7.0 mm 이하의 좁은 잎을 가진 지역은 진주, 기장, 울산, 후포, 옥천 지역종이며 9.50 mm 이상으로 약간 넓은 잎을 가진 지역은 대청도, 훅 산도, 울릉도 수집종이었다. 국내 28 개 지역별 수집종의 생육특성 조사결과는 표 17 및 표 18 과 같 다.

표 16. 춘란수집 지역별 장간대형종 및 단간소형종의 지역분포

구분	$\begin{gathered} \text { 식물체 } \\ \text { 크기 } \\ \hline \hline \end{gathered}$	$\begin{aligned} & \text { 초장 } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	상위잎 하수(${ }^{\circ}$)	하위잎 하수(${ }^{\circ}$)	$\begin{aligned} & \text { 위구경 } \\ & \text { 크기(mm) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 잎수 } \\ & \text { (개) } \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { 잎길이 } \\ (\mathrm{cm}) \end{array} \\ \hline \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { 잎넓 이 } \\ (\mathrm{mm}) \end{array} \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { 잎두께 } \\ (\mathrm{mm}) \\ \hline \hline \end{gathered}$
$\begin{aligned} & \hline \text { 조사 } \\ & \text { 범위 } \end{aligned}$	3.6-7.0	13.2-24.2	18.7-48.3	66.1-126.0	3.3-12.1	3.3-5.3	20.2-47.7	6.39-11.97	0.36-0.66
$\begin{aligned} & \text { 장 } \\ & \text { 간 } \\ & \text { 대 } \\ & \text { 형 } \\ & \text { 지 } \\ & \text { 역 } \end{aligned}$	4 고창	8 보성	6 진도	6 진도	6 진도	4 고창	9 순천	4 고창	21 대청도
	7 해남	9 순천	21 대청도	22 흑산도	21 대청도	9 순천	22 흑산도	21 대청도	22 흑산도
	9 순천	10 진교	23 추자도	23 추자도	22 흑산도	23 추자도		२2 흑산도	
	22 흑산도	21 대청도		25 강소성	23 추자도	27 사천성		24 울릉도	
	28 운남성	22 훅산도		27 사천성					
		28 운남성		28 운나ㅅㅓㅓㅇ					
	5.0 이상	14.0 이상	33 이상	114 이상	10.0 이상	5.0 이상	36.0 이상	9.50 이상	0.06 이상

구분	$\begin{aligned} & \text { 식물체 } \\ & \text { 크기 } \end{aligned}$	초장 (cm)	상위잎 하수 $\left({ }^{\circ}\right)$	하위잎 하수 $\left({ }^{\circ}\right)$	$\begin{aligned} & \text { 위구경 } \\ & \text { 크기(mm) } \end{aligned}$	잎수 (개)	$\begin{gathered} \text { 잎길이 } \\ (\mathrm{cm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { 잎넓이 } \\ (\mathrm{mm}) \end{array} \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { 잎두께 } \\ (\mathrm{mm}) \\ \hline \hline \end{gathered}$
$\begin{aligned} & \hline \text { 조사 } \\ & \text { 범위 } \\ & \hline \hline \end{aligned}$	3.6-7.0	13.2-24.2	18.7-48.3	66.1-126.0	3.3-12.1	3.3-5.3	20.2-47.7	6.39-11.97	0.36-0.66
$\begin{aligned} & \text { 단 } \\ & \text { 간 } \\ & \text { 소 } \\ & \text { 형 } \\ & \text { 지 } \\ & \text { 역 } \end{aligned}$	4.0 01하	14.0 0 ${ }^{\text {하 }}$	20 0아	77 0ㅇㅏㅏ	3.9 01하	3.5 이하	23.0 0ㅣㅏㅏ	7.00 01하	0.40 0ㅇㅏㅏ
	13 기장	13 기장	9 순천	4 고창	11 진주	14 울산	11 진주	11 진주	13 기장
	14 울산	14 울산	12 마산	12 마산	13 기장	15 감포	13 기장	13 기장	14 울산
	15 감포	18 경산	15 감포	14 울산	14 울산		14 울산	14 울산	15 감포
	16 후포	19 군위		15 감포	15 감포		15 감포	16 후포	16 후포
	18 경산				18 경산		18 경산	20 옥천	
					19 군위		19 군위		

표 17. 수집지역별 식물체 크기, 초장, 잎의 각도 및 위구경의 생육특성

지역		$\begin{gathered} \text { 식물체크기 } \\ (3,5,7) \end{gathered}$	초장 (cm)	잎최상 세로축의 각크기 (${ }^{\circ}$)	잎최장 끝부분의 각크기 (${ }^{\circ}$)	위구경			
		크기(mm)				종단면모양	횡단면모양		
1	당진		4.6	16.1	25.1	96.4	4.6	장타원형	원형
2	광천	4.2	17.5	29.6	77.1	4.2	장타원형	원형	
3	군산	4.6	14.6	26.2	88.9	4.2	장타원형	원형	
4	고창	5.6	18.9	21.8	71.5	9.5	원형	원형	
5	무안	4.2	16.6	24.5	92.9	9.6	장타원형	원형	
6	진도	4.8	18.9	34.8	120.4	10.7	장타원형	원형	
7	해남	5.8	18.7	25.8	81.6	4.4	원형	원형	
8	보성	5.4	20.2	24.0	80.9	4.8	장타원형	원형	
9	순천	5.8	23.9	19.8	96.8	5.6	장타원형	원형	
10	진교	5.2	21.4	24.0	80.2	5.4	장타원형	원형	
11	진주	4.6	15.8	22.8	79.4	3.6	장타원형	원형	
12	마산	5.0	19.0	18.7	72.6	4.2	장타원형	원형	
13	기장	3.6	13.7	28.3	88.3	3.4	장타원형	원형	
14	울산	3.4	13.6	23.5	76.5	3.4	장타원형	원형	
15	감포	3.8	14.9	19.1	66.1	3.8	장타원형	원형	
16	후포	3.6	17.4	26.0	78.9	4.6	장타원형	원형	
17	거창	5.0	19.1	21.4	82.5	5.4	장타원형	원형	
18	경산	4.0	13.9	24.5	82.7	3.8	장타원형	원형	
19	군위	4.4	13.7	26.3	79.6	3.3	장타원형	원형	
20	옥천	3.6	13.2	26.6	83.6	3.9	장타원형	원형	
21	대청도	5.0	21.0	33.6	95.7	10.2	장타원형	원형	
22	흑산도	7.0	24.2	25.6	114.4	12.1	장타원형	원형	
23	추자도	5.0	17.9	48.3	120.3	10.3	장타원형	원형	
24	울릉도	5.4	18.2	24.7	84.5	4.2	장타원형	원형	
25	강소성	5.0	19.5	24.4	102.0	4.0	장타원형	원형	
26	절강성	5.0	18.1	22.5	78.3	4.3	장타원형	원형	
27	사천성	5.0	18.2	27.5	100.0	5.0	장타원형	원형	
28	운남성	5.7	24.0	25.0	126.0	5.0	장타원형	원형	

표 18. 수집지역별 잎의 수, 길이, 넓이, 두께, 모양 등 주요생육특성

지	No.	잎					잎정단부 모양	잎선단의 대칭
		수(개)	길이(cm)	넓이(mm)	두께(mm)	모양		
1	당진	4.4	26.9	8.08	0.46	좁은피침형	예형	대칭
2	광천	3.9	28.7	7.62	0.46	좁은피침형	예형	대칭
3	군산	4.6	24.3	8.00	0.47	좁은피침형	예형	대칭
4	고창	5.3	33.3	9.85	0.57	좁은피침형	예형	대칭
5	무안	4.6	25.5	8.19	0.54	좁은피침형	예형	대칭
6	진도	4.2	33.8	7.49	0.52	좁은피침형	예형	대칭
7	해남	4.6	33.4	9.19	0.46	좁은피침형	예형	대칭
8	보성	4.5	30.2	8.17	0.47	좁은피침형	예형	대칭
9	순천	5.1	36.5	8.67	0.52	좁은피침형	예형	대칭
10	진교	4.5	28.7	9.32	0.54	좁은피침형	예형	대칭
11	진주	4.3	22.8	7.30	0.45	좁은피침형	예형	대칭
12	마산	4.4	32.4	8.65	0.50	좁은피침형	예형	대칭
13	기장	3.9	21.8	6.59	0.36	좁은피침형	예형	대칭
14	울산	3.3	22.8	6.66	0.39	좁은피침형	예형	대칭
15	감포	3.5	21.6	7.38	0.38	좁은피침형	예형	대칭
16	후포	3.8	26.3	6.76	0.39	좁은피침형	예형	대칭
17	거창	4.9	29.2	9.06	0.45	좁은피침형	예형	대칭
18	경산	4.0	20.8	7.63	0.44	좁은피침형	예형	대칭
19	군위	3.6	20.2	7.40	0.45	좁은피침형	예형	대칭
20	옥천	3.9	23.8	6.39	0.44	좁은피침형	예형	대칭
21	대청도	4.4	32.1	9.63	0.64	좁은피침형	예형	대칭
22	흑산도	4.4	47.7	11.97	0.66	좁은피침형	예형	대칭
23	추자도	5.2	33.4	7.77	0.57	좁은피침형	예형	대칭
24	울릉도	4.4	32.1	9.56	0.43	좁은피침형	예형	대칭
25	강소성	4.5	31.5	8.91	0.43	좁은피침형	예형	대칭
26	절강성	4.7	29.3	9.19	0.49	좁은피침형	예형	대칭
27	사천성	5.0	29.6	7.96	0.51	좁은피침형	예형	대칭
28	운남성	4.3	31.3	9.18	0.49	좁은피침형	예형	대칭

(1). EMS처리를 통한 돌연변이 근경의 유도

(가) 춘란종자의 초음파 처리에 의한 근경유도
실험에 사용된 춘란 종자를 무균적으로 발아시키기 위하여 완전히 개화된 춘란의 꽃을 수분 시켰다. 1 개월 후 수정된 꼬투리만 남기고 그 이외의 것은 제거시켰으며 꼬투리가 황변되기 시 작할 무렵 채종하여 $5^{\circ} \mathrm{C}$ 에서 2 주간 저온 처리하였다. 저은 처리된 춘란 꼬투리는 2% Sodium hypochlorite용액에 30 분간 침지시켜 표면 살균 한 후 종자를 채취하여 $1 \mathrm{gE} / \mathrm{L}$ 효모추출액, 3 g / L peptone, $0.5 \mathrm{mg} / \mathrm{L}$ NAA, $30 \mathrm{~g} / \mathrm{L}$ sucrose를 포함한 MS 액체배지에서 24 시간 배양하였다. 수분이 흡수된 종자는 스포이드로 5 mL 씩 채취하여 별균된 시험관에 넣어 초음파 세척기 (Branson 3210)에 넣고 초음파 처리하였다. 그 후 $1 \mathrm{~g} / \mathrm{L}$ 효모추출액, $3 \mathrm{~g} / \mathrm{L}$ peptone, $0.5 \mathrm{mg} / \mathrm{L}$ NAA, $30 \mathrm{~g} / \mathrm{L}$ sucrose, 0.2% gelrite, 0.2% 활성탄이 포함된 MS 고체배지에 종자를 파종하여 근경을 유도시켰다.
(나) 춘란 돌연변이 근경의 유도
상기의 방법으로 유도된 근경이 $2-3 \mathrm{~cm}$ 정도 자랐을 때 0.2% 의 EMS가 첨가된 액체배지에서 3 주간 암배양 한 후 갈변하지 않은 근경들만을 모아 근경증식용 고체 배지에 치상하여 돌연변 이 근경들을 유도하였다.

(2) 방사선 처리를 통한 춘란 돌연변이 근경의 유도

수분 수정이 끝난 춘란 꼬투리에 $0,50,100,150,200 \mathrm{~Gy}$ 의 선량으로 방사선을 조사한 후 꼬투리를 절개하여 $2.0 \mathrm{mg} / \mathrm{L} \mathrm{NAA}, 0.5 \mathrm{mg} / \mathrm{L}$ Kinetin이 함유된 $1 / 2 \mathrm{MS}$ 배지에 치상하였다. 그 결과 무처리구에서는 6 개체가 발아하였으며 50 Gy ,에서는 3 개체가 발아하였으나 1 개체는 성장 하지 못하고 고사하였다. 그 밖에 100 Gy 에서도 1 개체가 발아하였으나 생장하지 못하고 고사 하였다. 이러한 결과들로부터 방사선 조사에 의한 돌연변이 근경의 유도는 $0-50 \mathrm{~Gy}$ 사이의 선 량에서 조사할 필요가 있다고 생각된다. 또한 종자 파종 후 근경을 유도한 결과 EMS 처리했 을 때와 같이 엽록소가 결퓝된 근경들뿐만 아니라 callus화가 진행된 개체들도 관찰되었다(그 림 21).

일반적으로 난 종자의 경우 한 꼬투리 당 수 십 만개의 종자가 포함되어 있으나 자연상태에 서는 0.01% 도 발아하기 어렵다고 알려져 있다. 이러한 현상은 종자내의 발아억제물질의 존재, 종피내의 수분, 난균과의 공생 등이 주된 원인으로 알려져 있으나 확실한 증거는 밝혀져 있지 않다. 특히 방사선 조사를 수행한 경우 그 발아율이 현저하게 떨어지며 특히 100 Gy 의 방사선 조사에서는 종자가 거의 맺히지 않았다 (그림 22).

그림 21. 방사선 조사에 의해 유도된 근경.

그림 22. 방사선 조사 후 난 꼬투리 단면. 좌: OGy, 우: 100Gy

(3) EMS 처리에 의헤 유도된 춘란 돌연변이 근경의 선발 및 배양

EMS 처리에 의해 유도된 근경들은 1 년간 계대배양에 의해 증식시켰으며 이 중 부분적으 로 녹색의 색소가 결핍되어 흰색의 줄무늬가 나선형으로 들어있거나 전체적으로 색소가 결핍 되어 있는 근경의 부위만을 선발 하였다. 또한 일부는 $3 \mathrm{~g} / \mathrm{L}$ Hyponex, $4 \mathrm{~g} / \mathrm{L}$ peptone, $1 \mathrm{~g} / \mathrm{L}$ 효모추출액, $60 \mathrm{~g} / \mathrm{L}$ 바나나, $3.5 \mathrm{~g} / \mathrm{L}$ 감자전분, $100 \mathrm{mg} / \mathrm{L}$ myo-inositol, $40 \mathrm{mg} / \mathrm{L} \mathrm{Na} \mathrm{Na}_{2}$-EDTA, 0.2% gelrite, pH 5.5 가 첨가된 식물체 유도 배지에 배양하여 식물체를 유도하였다.

EMS 가 첨가된 근경 증식배지에서 3 주간 배양된 근경은 $50-60 \%$ 의 근경이 갈변되었으며 갈변되지 않은 주근경의 경우에도 측지근경의 생장은 정지된 상태로 있었다. 갈변된 근경을 포함하여 EMS 처리된 모든 근경을 근경증식용 고체배지에 치상하여 관찰한 결과 갈변되지 않은 근경과 1 개월 정도 늦었지만 갈변된 근경의 일부 조직에서부터 촉지 근경의 분열세포조 직의 생장이 시작되었다. 계대배양을 1 년정도 계속한 결과 갈변된 근경에서 생장된 측지근경 이 갈변되지 않은 촉지근경에 비해서 외관적으로 관찰해 볼 때 chlorophyll 변이가 약 3-4배 정도 더 많이 발생하였다.

EMS가 처리되지 않은 근경의 경우에는 chlorophyll 변이의 형태는 녹색의 바탕에 나선형 의 흰줄 또는 노란 줄무늬가 있는 것이 가장 많이 관찰되었고, 근경의 색깔 자체가 전반적으 로 얿은 노란색 또는 휜색의 것이 관찰되었다. 이상의 결과는 EMS의 처리가 근경의 분열세 포에 영향을 주어 변이가 발생된 것으로 생각된다. 나선형의 줄무늬 변이를 나타내는 근경의 경우 그 부위만을 절단하여 근경을 증식시켰을 때 측지 근경이 증식되는 과정에서 무늬가 소 멸되거나 더 굵어지는 현상이 관찰되었다.

EMS를 처리를 통하여 다양한 돌연변이 식물체들이 유도되었으며 본 연구 결과 얻어진 중 투, 산반, 사피 등의 돌연변이 식물체들은 실용화를 위하여 고정라인을 선발하였다(그림 23 , 24). 또한 고정된 사피 개체는 유전자형 분석을 위하여 공주대에 재료를 제공하였다(그림 25).

그림 23. EMS 처리 후 선발된 근경으로부터 유도된 다양한 종류의 춘란 산반 및 중투

그림 24. EMS 처리 후 선발된 근경으로부터 유도된 다양한 종류의 춘란 사피

그림 25. EMS 처리에 의해 선발되어 고정된 춘란 사피 (유전자형 분석을 위해 공주대에 재료제공)

다. 조직베양 기술을 이용한 유도된 돌언변이 춘란의 배양계 확립
(1) 근경증식 및 재분화에 대한 생장조절물질 조합조건 결정
(가) Auxin과 cytokinin의 조합에 따른 재분화 조건 확립 (NAA/BA)
근경증식 및 재분화에 미치는 auxin과 cytokinin의 조합 효과를 알아보기 위하여 $\mathrm{MS}(\mathrm{N}$ $\mathrm{X} 1 / 20, \mathrm{P}$ X5) 배지에 생장조절제로 auxin인 NAA와 cytokinin류인 BA 를 각각 NAA $0,0.05$, $0.1,0.5,1,2.5,5 \mathrm{mg} / \mathrm{L}$ 와 BA $0,0.5,1,2.5,5,10,20 \mathrm{mg} / \mathrm{L}$ 의 농도로 조합 첨가한 배지에 돌 연변이 처리에 의해 유도된 근경을 치상하였다. 그 결과 변이종 근경의 형질에 따라 차이가 있 으나 NAA와 BA 농도가 높을수록 신초 재분화가 저조하였으며, NAA $0.5 \mathrm{mg} / \mathrm{L}$ 단독 처리구에 서 신초 재분화율이 가장 좋았다(그림 26).

그림 26. 근경증식 및 신초형성에 미치는 NAA와 BA농도의 영향.
(나) MS 배지의 농도 및 N / P 농도가 신초, 뿌리 벌브에 미치는 영향
MS 배지에서 N 과 P 의 농도가 신초, 뿌리, 근경 형성에 미치는 영향을 조사하기 위하여 MS stock solution I, II, III, IV, V 용액을 증감하는 처리구와, MS stock solution I만 증감한 처리 구, MS stock solution I (N X1/20, P X5), II, III, IV, V를 증감한 처리구에 근경을 배양하여 조사하였다. 그 결과 MS 배지를 2 배 첨가하였을 경우 근경은 생육하지 않고 고사하였으며, 농 도가 낮을수록 근경의 생육은 저조하였다. MS stock solution I의 농도만 조절하였을 경우에는 농도가 높을수록 근경의 생육은 양호하였으나 신초분화는 이루어지지 않았다. 또한 N, P 농도 를 조정한 MS 배지를 전체적으로 증감시켰을 경우, 배지의 농도가 낮을수록 근경의 생육은 저 조하였으며, 농도를 반으로 줄인 경우 (X1/2) 신초가 분화하고 뿌리가 형성되었다. 그 밖에 N , P 농도를 조정한 MS stock solution I 의 농도만 조정하였을 경우 배지의 농도가 낮을수록 근 경의 생육은 저조하였으며 배지의 농도를 2 배로 증가시켰을 때 신초분화가 일어났다. 이러한 결과들로부터 신초의 형성에는 N 의 농도를 낮추고 P 의 농도를 높이는 것이 효과적이며 근경 의 증식은 N 의 농도가 높을수록 생육이 양호하다는 것이 증명되었다(그림 27).

MS (전체변화)

MS(No. 1 용액만 변화)
$\mathrm{MS}(\mathrm{N} \times 1 / 20, \mathrm{P} \times 5)$ (전체변화)
$M S(N \times 1 / 20, P \times 5)(N o .1$ 용액만변화)

그림 27. 근경증식, 신초, 뿌리형성에 미치는 N 과 P 농도의 영향.
(다) Casamino acid/Charcol이 신초 형성에 미치는 영향
Casamino acid와 Charcol이 신초형성에 미치는 영향을 조사하기 위하여 MS 배지에 Hyponex $3 \mathrm{~g} / \mathrm{L}$, malt extract $4 \mathrm{~g} / \mathrm{L}$, potato starch $3.5 \mathrm{~g} . \mathrm{L}$, myo-inositol $0.1 \mathrm{~g} . \mathrm{L}$, sucrose $35 \mathrm{~g} / \mathrm{L}$, EDTA-Na 15 ml , Thiamine- HCl 4 ml , charcol $0.2 \mathrm{~g} / \mathrm{L}$ 가 첨가된 배지와 상기의 배지 에 Casamino acid $2 \mathrm{~g} / \mathrm{L}$, charcol $1.0 \mathrm{~g} / \mathrm{L}$ 을 첨가시킨 배지에 근경을 치상하였다. 그 결과 배 양 3-4개월 후 Casamino acid가 첨가되지 않은 배지에서는 5-7개의 신초가 형성된 반면, Casamino acid $2 \mathrm{~g} / \mathrm{L}$, charcol $1.0 \mathrm{~g} / \mathrm{L}$ 이 첨가된 배지에서는 신초가 $7-12$ 개의 신초가 형성되었 으며, 생육 또한 양호하였다. 특히 사피의 근경 및 뿌리는 매우 굵고 튼튼하였으며 신초 재현

율 또한 거의 100% 로 매우 높았다(그림 28, 29). 이러한 결과들로부터 Casamino acid와 charcol이 신초형성 및 뿌리 발달에 영향을 끼친다는 것이 증명되었으며, 사피 이외에 중투, 산 반의 신초 재분화에도 유리하였다.

그림 28. 신초형성에 미치는 기타첨가물질의 영향 (Casamino acid, Charol).

그림 29. $2 \mathrm{mg} / \mathrm{L}$ 의 casamino acid, $1 \mathrm{~g} / \mathrm{L}$ 의 charcol이 첨가된 배지에서 효과적인 사피의 신초 재현.

라. 춘란수집종의 생육특성 조사

(1) 환경적 차이에 따른 변화 분석

춘란의 환경적 차이에 의한 형태적 변화 정도를 분석하기 위한 조사에서는 그림 30 의 5 가지 모두의 화경, 꽃받침, 꽃잎, 화주의 크기에서 차이가 없었고, 화주의 아래쪽에 나타난 안토시아 닌 반점의 양상과, 꽃받침과 꽃잎의 안토시아닌의 반점 양상에서도 차이가 없었다. 그림 31에 서 꽃받침과 꽃잎 그리고 화경의 맨 윗부분인 자방의 색상은 차광에 따라서 조금 붉게 보이는 것 외에는 모두에서 차이가 없었다. 그림 32에서 본 순판의 기부에 나타난 안토시아닌의 양상 과 그림 33 의 순판점에서 순판돌기 사이에 나타난 안토시아닌의 양상 모두에서 차이가 없었다.

그림 30. Anthocyanin types in petal, sepal, and peduncle for the analysis of morphological changes according to the environmental factors in C. goeringii flowers. (1) Incheon (2) Daejeon (3) Garden in Daegu (4) Mountain in Gyeongbuk (5) in Busan.

그림 31. Anthocyanin types in peduncle and bract for the analysis of morphological changes according to the environmental factors in Cymbidium goeringii flowers. (1) Apartment in Incheon (2) Apartment in Daejeon (3) Garden in Daegu (4) Mountain in Gyeongbuk (5) Apartment in Busan

그림 32. Anthocyanin types in the basal end of lip for the analysis of morphological changes according to the environmental factors in Cymbidium goeringii flowers. (1) Apartment in Incheon (2) Apartment in Daejeon (3) Garden in Daegu (4) Mountain in Gyeongbuk (5) Apartment in Busan.

그림 33. Anthocyanin sopptted types between lip spotted and lip bump for the analysis of morphological changes according to the environmental factors in C. goeringii flowers. (1) Incheon (2) Daejeon (3) Garden in Daegu (4) Mountain in Gyeongbuk (5) Busan
(2) 춘란 꽃의 외부형태조사

한국의 대청도 등 23 개 지역과 중국의 호북성과 하남성의 2 개 지역을 대상으로 화경의 길이 등 33 가지의 형태학적인 특성을 조사하여 각각의 특성별 평균값과 변이계수 등을 조사하였다 (표 19,20). 그리고 한국산을 서부 지역과 동부 지역으로 나누어 33가지의 특성을 조사하였고 평균값은 표 21 과 같았다.

그림 34에서는 중국산과 한국산의 두 지역간 꽃의 특성을 조사해 본 바 춘란꽃의 화경 마 디 수, 화경의 길이, 화경의 두께, 꽃받침의 종단면, 측면 꽃받침의 부착 방식, 꽃의 크기, 넓이 는 차이가 거의 없었다. 그러나 화경에 나타난 안토시아닌 양상은 한국산이 3.23이었고, 중국산 은 2.45 로 0.78 의 차이가 있어 한국산이 더 붉었다. 포의에 발현된 안토시아닌 양상과, 꽃받침 에 나타난 안토시아닌의 양상에서는 한국산이 중국산에 비해 안토시아닌 색상이 더 붉었다.

표 19. Characteristics used for analysis in Cymbidium goeringii flowers

No.	Abbreviation	Characteristics	Ranges or codes of characteristics
1	V1	Peduncle nodle (No.)	Measured
2	V2	Length of peduncle(Cm)	Measured
3	V3	Thickness of peduncle(mm)	Measured
4	V4	Anthocyanin type of peducle	1. None, 2. Light, 3. Mid, 4. Deep
5	V5	Anthocyanin type of bract	1. None, 2. Light, 3. Mid, 4. Deep
6	V6	Type of lateral sepal	1. Triangle, 2. Dropped, 3. Slightly dropped, 4. Horizontal, 5. Upright
7	V7	Vertical section of sepal	1. Strongly bent outward, 2. Slightly bent outward, 3. Flat, 4. Slightly bent inward, 5. Strongly bent inward
8	V8	Length of flower(mm)	Measured
9	V9	Width of flower(mm)	Measured
10	Va	Anthocyanin type of sepal	1. Very light, 2. Light, 3. Mid, 4. Deep
11	Vb	Length of dorsal sepal(mm)	Measured
12	Vc	Width of dorsal sepal(mm)	Measured
13	Vd	Thickness of dorsal sepal(mm)	Measured
14	Ve	Length of lateral sepal(mm)	Measured
15	Vf	Width of lateral sepal(mm)	Measured
16	Vg	Thickness of lateral sepal(mm)	Measured
17	Vh	Degree foldness of sepal	1. Widely open, 2 . Slightly open, 3. Vertical, 4. Partially folded, 5. Fully folded
18	Vi	Length of pedal(mm)	Measured
19	Vj	Width of pedal(mm)	Measured
20	Vk	Thickness of pedal(mm)	Measured
21	V1	Vertical section of pedal	1. Strongly bent outward, 2. Slightly bent outward, 3. Flat, 4. Slightly bent inward, 5. Strongly bent inward
22	Vm	Anthocyanin type of pedal	1. Very light, 2. Light, 3. Mid, 4. Deep
23	Vn	Shape of lip	1. Round, 2. Ladder, 3. Vertical, 4. Inverse ladder
24	Vo	Width of lip(mm)	Measured
25	Vp	Anthocyanin spotted type in lateral lip	1. Little, 2. Very thin, 3. Thin 4. Thick, 5 . Very thick
26	Vq	Anthocyanin spotted type between lip spotted and lip bump	1. None, 2. Light and few, 3. Light and many, 4. Deep and few, 5. Deep and many
27	Vr	Length of lip spotted(mm)	Measured
28	Vs	Width of lip spotted(mm)	Measured
29	Vt	Shape of lip spotted	1. Scattered dots Type, 2. ll Type, 3. V Type, 4. U Type
30	Vu	Length of column(mm)	Measured
31	Vv	Width of column(mm)	Measured
32	VW	Thickness of column (mm)	Measured
33	Vx	Anthocyanin spotted type in the upper part of column	1. None, 2. Light, 3. Mid, 4. Deep

표 20. Mean, standard deviation, and range of morphological characteristics of Korean and Chinese in Cymbidium goeringii flowers

Character istics	Korea				China			
	Mean \pm SD			$\begin{aligned} & \text { Range } \\ & \hline \hline 6.0-10 \end{aligned}$	Mean \pm SD			$\begin{gathered} \text { Range } \\ \hline \hline 5.0-9.0 \end{gathered}$
$1^{\text {a }}$	7.44	\pm	0.89		7.03	\pm	0.75	
2	12.69	\pm	2.95	5-18.5	13.20	\pm	2.22	7.3-19
3	3.0.2	\pm	0.58	1.9-4.9	3.17	\pm	0.4	2.1-4.0
4	3.23	\pm	0.77	1.0-4.0	2.45	\pm	0.73	1.0-4.0
5	2.91	\pm	0.70	1.0-4.0	2.41	\pm	0.76	1.0-4.0
6	3.26	\pm	0.94	1.0-5.0	3.50	\pm	0.92	1.0-5.0
7	3.53	\pm	0.68	2.0-5.0	3.58	\pm	0.95	1.0-5.0
8	37.07	\pm	6.52	22.1-50.9	39.71	\pm	6.71	21-54
9	52.24	\pm	7.91	28.4-68.3	55	\pm	9.85	32.2-74
10	2.89	\pm	0.81	1.0-4.0	2.3	\pm	0.88	1.0-4.0
11	27.55	\pm	3.40	20.7-34	29.98	\pm	2.74	21.2-36.4
12	9.87	\pm	1.22	6.8-13.5	10.24	\pm	1.32	7.6-13.7
13	0,48	\pm	0.07	0.36-0.87	0.5	\pm	0.1	0.31-0.83
14	27.64	\pm	3.30	20.6-36.7	29.84	\pm	3.21	20.9-36.6
15	9.38	\pm	1.21	7.0-14.2	9.27	\pm	1.25	6.1-12
16	0.51	\pm	0.08	0.39-0.97	0.49	\pm	0.08	0.3-0.71
17	2.49	\pm	0.97	1.0-4.0	2.65	\pm	1.16	1.0-4.0
18	20.66	\pm	2.08	16.7-26.8	21.98	\pm	2.13	17.6-27.7
19	7.59	\pm	0.82	5.6-9.3	7.86	\pm	0.9	5.2-11.3
20	0.35	\pm	0.06	0.17-0.57	0.34	\pm	0.06	0.18-0.52
21	4.01	\pm	0.52	$2.0-5.0$	3.67	\pm	0.73	2.0-5.0
22	2.73	\pm	0.67	1.0-4.0	2.87	\pm	0.68	1.0-4.0
23	3.51	\pm	0.73	1.0-4.0	3.27	\pm	0.86	2.0-4.0
24	8.70	\pm	1.09	5.5-11.7	8.3	\pm	1.07	6.0-10.7
25	4.20	\pm	0.81	1.0-5.0	3.76	\pm	0.80	1.0-5.0
26	1.22	\pm	0.51	1.0-3.0	2.49	\pm	1.19	1.0-5.0
27	5.58	\pm	1.36	2.7-9.4	4.45	\pm	1.38	0.5-8.3
28	1.71	\pm	0.58	0.3-4.29	1.49	\pm	0.75	0.37-4.7
29	3.37	\pm	0.75	1.0-4.0	2.94	\pm	1.20	1.0-4.0
30	15.0	\pm	1.57	9.2-19.7	15.76	\pm	1.44	11.3-19.3
31	3.83	\pm	0.49	2.7-5.2	4.17	\pm	0.52	2.9-5.8
32	2.36	\pm	0.40	1.3-3.5	2.41	\pm	0.45	1.3-3.4
33	1.52	\pm	0.79	1.0-4.0	2.34	\pm	0.86	1.0-4.0

표 21. Mean, standard deviation, and range of morphological characteristics of Cymbidium goeringii flowers from the east and west regions of Korea

Characte ristics	Korea							
	West				East			
	Man \pm SD			$\begin{aligned} & \text { Range } \\ & \hline 6.0-9.0 \end{aligned}$	Mean \pm SD			Range
$1^{\text {a }}$	7.32	\pm	0.83		7.43	\pm	1.16	6.0-10
2	12.3	\pm	3.06	5.0-17	11.26	\pm	3.49	5.0-16.3
3	3.11	\pm	0.47	2.4-3.90	3.29	\pm	0.80	2.0-4.9
4	3.20	\pm	0.70	2.0-4.0	2.86	\pm	1.03	1.0-4.0
5	2.84	\pm	0.71	1.0-4.0	3.14	\pm	0.86	2.0-4.0
6	3.39	\pm	0.78	1.0-5.0	3.50	\pm	1.22	1.0-5.0
7	3.45	\pm	0.63	2.0-5.0	3.07	\pm	0.73	2.0-4.0
8	36.0	\pm	6.14	24.3-46.5	36.23	\pm	6.50	26.4-49.3
9	52.3	\pm	6.47	38.9-65.9	48.56	\pm	6.97	37.4-59.5
10	2.91	\pm	0.68	2.0-4.0	2.64	\pm	0.93	1.0-4.0
11	26.6	\pm	3.13	20.8-33.6	25.56	\pm	3.35	20.7-30.9
12	9.80	\pm	1.23	6.8-13.5	9.96	\pm	1.25	8.1-11.7
13	0.47	\pm	0.08	0.36-0.87	0.51	\pm	0.06	0.41-0.59
14	26.8	\pm	2.65	22.4-33.1	25.43	\pm	2.86	21.2-31.3
15	9.33	\pm	1.09	7.2-11.6	9.59	\pm	1.00	7.9-11.5
16	0.50	\pm	0.09	0.39-0.97	0.53	\pm	0.06	0.43-0.62
17	2.59	\pm	1.02	1.0-4.0	2.79	\pm	1.12	1.0-4.0
18	19.9	\pm	1.67	16.7-23	19.17	\pm	1.52	17.3-22
19	7.50	\pm	0.87	5.6-9.3	7.56	\pm	0.51	6.5-8.4
20	0.36	\pm	0.06	0.27-0.57	0.35	\pm	0.06	0.17-0.44
21	3.90	\pm	0.43	2.0-5.0	3.93	\pm	1.00	2.0-5.0
22	2.66	\pm	0.61	1.0-4.0	2.50	\pm		1.0-3.0
23	3.52	\pm	0.70	1.0-4.0	3.86	\pm	0.53	2.0-4.0
24	8.51	\pm	1.3	5.5-10.8	8.31	\pm	0.92	7-9.9
25	4.30	\pm	0.67	3.0-5.0	4.21	\pm		3.0-5.0
26	1.09	\pm	0.36	1.0-3.0	1.57	\pm	0.76	1.0-3.0
27	5.11	\pm	1.13	2.7-7.4	5.44	\pm	1.18	3.1-7.5
28	1.74	\pm	0.61	0.8-4.29	1.39	\pm	0.39	0.9-2.2
29	3.45	\pm	0.70	2.0-4.0	3.43	\pm	0.76	2.0-4.0
30	14.5	\pm	1.54	9.2-17.8	14.73	\pm		12.2-17.5
31	3.74	\pm	0.40	3.1-4.8	3.91	\pm	0.56	2.7-4.7
32	2.36	\pm	0.37	1.6-3.1	2.25	\pm	0.47	1.3-3.1
33	1.61	\pm	0.89	1.0-4.0	1.50	\pm	0.52	1.0-2.0

${ }^{\text {a }}$ Entry numbers for characteristics are shown in Table 19.

그림 35에서는 윗 꽃받침의 길이, 윗 꽃받침의 넓이, 윗 꽃받침의 두께, 측면 꽃받침의 길이, 넓이, 두께와 꽃잎의 포개진 모양, 길이, 넓이, 두께 꽃잎의 안토시아닌의 양상에서는 유의차가 별로 없었고, 꽃잎의 종단면은 한국산이 4.01 로 약한 외곡(外曲) 이었고, 중국산은 3.67 로 한국 산에 비해 약간 평평하여 0.34 의 차이를 보였다. 그림 36 에서는 순판의 모양, 순판의 넓이, 화 주의 두께, 넓이, 화주 길이에서는 유의차가 거의 없었고, 순판 측면 안토시아닌반점의 양상은 중국산이 3.76 이었고, 한국산은 4.20 으로 중국산에 비해 한국산이 0.45 의 차이를 보여 안토시아 닌 반점에 의한 붉은 정도가 전반적으로 더욱 강하게 나타났다. 순판점에서 순판돌기 사이에 나타난 안토시아닌 반점의 양상은 한국산이 1.22 로 무(None) 에 가까웠으나, 중국산은 2.49 로 강(Deep)에 가까웠다(그림 37).

그림 34. Analysis of the characteristics of Korean and Chinese C. goeringii flowers.

그림 35. Analysis of the characteristics of Korean and Chinese C. goeringii flowers.

그림 36. Analysis of the characteristics of Korean and Chinese C. goeringii flowers.

그림 37. Anthocyanin spotted type observed between lip spotted and lip bump in C. goeringii flowers.

종합적으로 볼 때 한국산과 중국산의 비교에서는 꽃과 꽃받침의 크기 등은 중국산이 컸고, 안토시아닌 양상에서는 화경, 포의, 꽃받침, 순판의 측면에서 한국산이 더 많이 발현되었고, 중 국산에서는 화주의 윗면에서는 54% 의 유의차로 중국산에서 안토시안 반점이 맗이 나타났고, 순판점 윗부분에서 순판돌기 사이에서 약 100% 높게 발현되었다. 그리고 순판점의 길이와 넓

이에서는 한국산이 더 컸으며, 순판점의 모양은 중국산이 V 형에 가까웠으나 한국산은 U 형에 더욱 가까웠다. 서부산과 동부산에서는 순판점과 순판돌기 사이에 나타난 안토시아닌 반점의 양상에서 서부산은 거의 없는데 비해 동부산은 얿고 작은 반점 쪽으로 약 44% 의 차이가 나타 났으며, 포의에 발현된 안토시아닌 양상에서는 서부산보다 동부산이 30% 나 더 붉었다. 순판점 길이는 동부산이 약 7% 가 길었고, 꽃받침의 종단면은 동부산에 비해, 서부산이 약한 외곡 쪽 으로 0.38 의 차이를 나타냈고 꽃받침에 나타난 안토시아닌의 양상은 동부산이 낮아 서부산에 비해 덜 붉었다.
(3) Cluster 분석

중국과 한국의 25 개 지역의 춘란꽃의 형태를 조사 분석한 주성분의 분석의 값 중에서 보듯 이 주성분 값이 높아 변별력이 높은 우선순위의 주성분을 따로 분리해 보면(표 22) 제1 주성 분, 제 2 주성분, 제 3 주성분, 제 4 주성분으로 구분할 수 있다. 변별력이 높은 우선순위의 제 $1 \sim$ 제 5 주성분을 구분된 각 형질에 대한 계수를 기초로 주성분과 형질과의 관계를 정리해 보면 표 23과 같다 (그림 38).

표 23 에서 나타난 바와 같이 제 1 주성분의 고유 벡터는 각 수집 종들에 대한 제 1 주성분의 고유 벡터는 화경의 마디 수, 길이, 두께와 꽃의 크기, 꽃받침과 꽃잎의 길이, 순판넓이와 순판 점의 길이, 화주의 길이와 폭등의 형질에서 정(正)의 값을 보였다. 이는 제 1 주성분 점수가 클 수록 화경이 튼실하고 꽃도 크고 두텁고, 화주와 순판이 커 순판에 나타난 순판점의 길이도 긴 종들이 분포하게 되는 것을 나타내며, 고유 벡터가 작을수록 상반되는 특성을 가진 종들이 분 포하게 된다. 표 24 에서 각 지역별 수집 종들에 대한 제 1 주성분의 점수를 보면 제 1 주성분의 정(正)의 방향으로는 MaS (마산), UL (울릉), SC (순천) 등에 분포하는 종으로 나타났다. 제 2 주 성분에서는 점수가 높을수록 위와 측면 꽃받침이 넓고 두텁고, 꽃잎이 길고 순판의 폭도 넓어 순판점 또한 평균보다 훨씬 긴 종들이 이에 포함되었으며, HT (중국 하남성 동백현), MaS (마 산), ES (의성), UJ (울진) 등에 분포하는 종으로 나타나 동부 지역의 종들이 강세를 보였다. 제3 주성분 에서는 점수가 높을수록 화경이 크고 두터우며 마디 수가 많은 것과 꽃잎에 나타난 안 토시아닌이 강하며 그리고, 윗 꽃받침과 측면 꽃받침의 넓이가 평균에 비해 넓은 종들이 이에 포함 되었으며 UL (울릉도), CJ (추자), SC (순천), JK (진교) 등에 분포하는 종으로 나타났다. 제4 주성분 에서는 점수가 높을수록 화경의 마디수가 많고 화경의 두께는 두껍고 측면 꽃받침의 부착 방식이 평견으로 치우쳐졌고, 꽃잎의 포개진 모양은 벌어지는 쪽으로 꽃잎에 나타난 안토 시아닌 반점이 강하게 나타난 종들이 이에 포함되어 HT (중국 하남성 동백현), CY (청양), MA (무안), JK (진교) 등에 분포하는 종으로 나타났다.

주 주성분에 대한 산포도분석에서 제1 주성분과 제2 주성분 간(그림 39) 에는 대부분 동부 지역인 마산, 기장, 상주, 울산, 진교의 4곳에서 뚜렷하게 구별되는 독립적인 분포를 하고 있었 으며, 제 1 주성분과 제 3 주성분간 과 제 2 주성분과 제 3 주성분 사이에서도 진교를 제외하면 감 포, 울산, 기장, 상주, 울진 등으로 대부분 모두가 동부 지역에서 뚜렷하게 구별되는 독립적인 분포를 하고 있었다(그림 40, 41).

표 22. Characteristics in 25 collections of Cymbidium goeringii flowers used for the principal component analysis and the eigen vectors of characteristics of the first four components (Prin)

Characteristics	Prin1	Prin2	Prin3	Prin4
V1	0.214	0.050	0.191	0.158
V2	0.295	-0.087	0.096	0.056
V3	0.223	0.112	0.206	0.222
V4	0.036	-0.281	0.290	0.007
V5	0.020	-0.208	0.083	0.289
V6	-0.015	-0.126	-0.265	0.184
V7	-0.051	0.057	0.384	-0.269
V8	0.311	-0.100	0.013	0.054
V9	0.256	-0.209	-0.128	0.046
Va	0.065	-0.322	0.149	-0.055
Vb	0.319	-0.080	-0.141	-0.073
Vc	-0.029	0.309	0.264	0.021
Vd	0.171	0.234	-0.148	0.136
Ve	0.270	-0.097	-0.143	-0.276
Vf	-0.017	0.333	0.162	0.113
Vg	0.116	0.290	-0.052	0.182
Vh	-0.137	0.043	-0.206	0.281
Vi	0.282	-0.132	-0.178	-0.171
Vj	0.111	0.248	-0.062	-0.048
Vk	0.035	0.122	0.140	0.098
Vl	-0.106	0.026	-0.213	-0.153
Vm	0.042	-0.209	0.293	0.157
Vn	0.076	0.091	0.176	-0.321
Vo	0.215	-0.024	0.038	-0.277
Vp	0.046	-0.164	0.107	-0.001
Vq	0.089	0.069	-0.287	0.070
Vr	0.191	0.001	0.062	0.146
Vs	0.147	0.235	0.091	-0.180
Vt	0.105	0.196	-0.094	-0.322
Vu	0.288	0.058	0.067	0.136
Vv	0.265	0.127	-0.088	0.173
Vw	0.134	0.152	0.040	0.009
Vx	-0.033	-0.017	-0.116	-0.138

표 23. Relationships between principal components and morphological characteristics in C. goeringii flowers

Principal component	Correlationship	No. of characteristics	Corresponding characteristics (Entry No. ${ }^{\text {a }}$, \| Eigen vector $\mid>0.15$)
Prin1	positive	13	V1(number of peduncle nodes), V2(length of peduncle), V3(thickness of peduncle), V8(length of flower), V9(width of flower), Vb (length of dorsal sepal), Vd(thickness of dorsal sepal), Ve(length of lateral sepal), Vi(length of pedal), Vo(width of lip spotted), $\mathrm{Vr}($ length of lip spotted), Vu(length of column), Vv (width of column)
	negative	0	-
Prin2	positive	8	$\mathrm{Vc}($ width of dorsal sepal), Vd(thickness of dorsal sepal), Vf(width of lateral sepal), $\mathrm{Vg}($ thickness of lateral sepal), Vj(length of pedal), Vs(width of lip spotted), Vt(shape of lip spotted), Vw(thickness of column)
	negative	6	V4(anthocyanin in peduncle), V5(anthocyanin in bract), V 9 (width of flower), Va (anthocyanin in sepal), Vm(anthocyanin in pedal), Vp(anthocyanin in lateral lip spotted)
Prin3	positive	8	V1(number of peduncle node), V3(thickness of peduncle), V4(anthocyanin in peduncle), V7(vertical section of sepal), Vc(width of dorsal sepal), Vf(width of lateral sepal), Vm(anthocyanin in pedal), Vn(shape of lip spotted)
	negative	5	V6(type of lateral sepal), Vh(type of foldness), Vi(length of pedal), Vl (vertical section of pedal), Vq(anthocyanin in the upper part of lip spotted)
Prin4	positive	8	V1(number of peduncle nodes), V3(thickness of peduncle), V5(anthocyanin in bract), V6(type of lateral sepal), Vg (thickness of lateral sepal), Vh(type of foldness), Vm(anthocyanin in pedal), Vv (width of column)
	negative	8	V7(vertical section of sepal), Ve(length of lateral sepal), Vi(length of pedal), Vl (vertical section of pedal), Vn(type of lip), Vo(width of lip), Vs(width of lip spotted), Vt(type of lip spotted)
Prin5	positive	6	V1(number of peduncle nodes), V5(anthocyanin in bract), V7(vertical section of sepal), Vl (vertical section of pedal), Vq(anthocyanin in dorsal sepal), Vr(length of lip spotted)
	negative	8	V4(anthocyanin in column), V6(type of lateral sepal), V8(length of flower), V9(width of flower), $\operatorname{Vd}($ thickness of dorsal sepal), $\mathrm{Vk}($ thickness of pedal), Vo(width of lip), Vp(anthocyanin in outer lateral lip)

[^0]표 24. Eigen vectors of each collections on the four principal components in C. goeringii flowers(Prin)

Collections $^{\mathrm{a}}$	Prin1	Prin2	Prin3	Prin4
SJ	-5.614	3.129	0.049	-2.625
UJ	-4.178	-0.970	-1.237	1.033
JK	-3.583	-4.362	2.083	0.530
GS	-3.260	-1.753	-0.032	1.555
GJ	-2.329	5.803	1.510	0.483
GoC	-1.710	-1.605	0.137	0.896
ES	-1.551	-2.330	-0.462	2.524
CY	-1.397	1.553	1.448	-0.699
HN	-0.447	-0.389	1.289	-1.466
MuS	-0.398	0.811	-1.298	1.573
US	-0.325	-4.767	-0.729	-1.031
GP	0.141	1.841	-6.058	1.261
MA	0.215	-1.014	0.838	-1.784
BS	0.320	-0.044	1.271	-0.473
JD	0.360	0.818	-0.680	-2.102
HT	0.721	1.209	-1.826	-1.229
JJ	0.761	-1.013	-0.804	0.400
HS	1.018	0.927	-0.753	0.320
GeC	1.229	2.791	1.889	1.399
DC	2.269	-1.535	0.724	-0.525
HD	2.289	0.506	-3.283	-1.587
SC	3.011	-0.278	2.116	-1.133
CJ	3.011	-0.101	2.485	-1.635
UL	3.211	2.004	2.649	4.074
MaS	6.233	-1.231	-1.325	0.241

${ }^{\text {a }}$ Collection numbers are shown in Table 19.

그림 38. Scree plot of principal components in the collections of Cymbidium goeringii flowers.

그림 39. Plot of first and third principal components of morphological characteristics among 25 collections of Cymbidium goeringii flowers.

그림 40. Plot of first and third principal components of morphological characteristics among 25 collections of Cymbidium goeringii flowers.

그림 41. Plot of first and third principal components of morphological characteristics among 25 collections of Cymbidium goeringii flowers.

제 4 장 목표달성도 및 관련분야에의 기여도

제 1 절 연구개발의 연구목표 및 달성도

\begin{tabular}{|c|c|c|c|}
\hline 세부 - 과제 \& 추진목표 \& 달성내용 \& 달성도 \\
\hline 제1 세부과제 \& \begin{tabular}{l}
- 춘란의 SSR-enriched library 스 크린을 통한 SSR 서열 및 다형 성 좌위의 분리 \\
- 다형성 SSR 좌위의 통계적 특성 분석 \\
- 춘란의 지역•원산지별 유전적 차이성 결정 및 재연성과 교차적 용성 확립 \\
- SSR 좌위의 multiplex PCR 키 트 개발 및 춘란의 개체별 DNA-Finger ID 부여법 개발
\end{tabular} \& \begin{tabular}{l}
춘란의 SSR library 스크린을 통해 346 개의 SSR 서열을 동정하였고 202개를 GenBank에 등록하였음. \\
43개의 다형성 좌위를 분리하였고, 21 개 마커에 대해 155 개체 (한국 92 , 중국 48 , 일본:15)의 춘란에 대한 통계적 특성을 분 석하였음. \\
국내 및 중국, 일본에서 채집한 춘란을 대상으로 지역, 윈산지별 유전적 특성 분 석하였고, 21 개 마커의 재연성과 8 종의 춘 란 근연종에 대한 교차 적용성을 확인하 였음. \\
8좌위, 5 좌위, 4 좌위를 동시 증폭하는 3 종의 Multiplex PCR kit를 개발하였고, 고 정된 춘란 품종 40 개체와 돌연변이 유도 품종 2개체에 대한 DNA ID 부여 및 2차 원 바코드 시스템을 고안하였음.
\end{tabular} \& 100
100

100

100

\hline 제 1 협동과제 \& | - 춘란 수집 및 특성조사 |
| :--- |
| - EMS 및 방사선 처리를 통한 돌 연변이 근경의 유도 및 선발 |
| - 조직배양 기술을 이용한 유도된 돌연변이 춘란의 배양계 확립 및 고정라인 선발 | \& | 국내 546 개체, 중국 75 개체, 일본 15 개체 의 자생 춘란을 수집하여 지역별 생육 특 성 및 형태적 특성을 분석하였음. |
| :--- |
| EMS 및 방사선 처리 조건을 확립하였으 며, EMS 처리를 통해 중투, 산반, 사피의 돌연변이 근경을 유도하고 고정라인을 선 볼하였음. |
| 선발을 틍하여 확보된 다양한 종류의 변 이종을 이용하여 신초 재분화율을 높일 수 있는 조직배양계를 확립하였음. 또한 계대배양을 통하여 변이의 연속성을 확인 하였고, 고정된 사피 2 개체에 대한 유전자 형을 분석하였음. | \& 100

100

100

\hline
\end{tabular}

제 2 절 관련 분야에의 기여도

○ 춘란의 SSR DNA ID를 영양생식을 통해 번식하는 품종의 유전적 검증 시스템에 도입한다 면, 난 시장의 불신 해소와 침체되어있는 시장 활성화에 기여할 수 있을 것이다. 예를 들면, 춘란 화분의 용기에 DNA ID 에 대한 2차원 바코드를 표기함으로서, 구매자의 신뢰를 높일 수 있을 것이다. 만약 구매자가 의문을 제기하면, 그 제품으로부터 DNA를 추출한 후, SSR 프로필(profile)을 결정하여 바코드가 암호화하고 있는 프로필과 일치하는 지를 확인함으로 서 진위 여부는 정확하게 결정될 수 있다. 특히 잎의 모양이 중요시되는 엽예품과는 달리 꽃에 가치를 가지는 화예품의 경우 꽃이 피어있지 않은 개체에 대해서도 DNA ID를 통해 유전적 동일성 여부를 매우 정확하게 식별이 가능해진다. 또한 외관상 표현형이 매우 유사 한 품종간에도 적용하여 두 품종이 유전적으로 동일한 개체에서 유래한 것인지 아닌지를 판별할 수 있다.

○ 최근에는 ethyl methanesulfonate (EMS)와 같은 화학약품이나 ${ }^{60} \mathrm{Co}$ 와 같은 방사성 동위원소를 이용하여 돌연변이를 유도하고 (Bae et al., 2009; Song et al., 2009), 조직배양을 통해 대량 증식하여 인위적인 새로운 품종을 개발하는 기술이 일반화되고 있다. 만약 특정 품종을 조 직배양으로 대량 생산하였다면, 이들은 모두 처음 조직제공 개체에서 유래한 클론들로 동일 한 SSR 유전자형의 프로필을 가질 것이다. 따라서 본 연구에서 개발한 춘란의 SSR DNA ID 를 활용하여 조직배양 춘란의 원 개체에 대해 SSR 프로필을 결정하게 한다면, 조직배양 체는 언제든지 원 개체와의 유전자 프로필 비교검사를 통해 기내배양란인 것을 확인할 수 있을 것이다. 비록 SSR DNA ID로 표현형을 확인할 수는 없지만, 이렇게 되면, 춘란시장에 서 두 그룹간에 차별화된 가격과 판매전략이 확립되고 이로 인해 다양한 신규 소비자를 확 보할 수 있을 것이다. 아울러 본 연구의 DNA 바코드 시스템은 종(種) 번호 및 시료의 번호 를 일련 처리하기 때문에 추후 춘란뿐만 아니라 다양한 생물시료에의 유전정보 관리 시스 템으로도 그 활용도가 매우 높을 것으로 사료된다.

○ 일반적으로 자연상태에서 돌연변이 난이 유도될 확률은 매우 낮으며 동일한 유형 또한 동 시에 반복적으로 발생하지 않으므로 그 희소성이 높아 고가로 거래되고 있다. 특히 잎 변 이종의 경우 증식속도가 매우 느리고 종자를 파종할 경우 후대가 모체와 동일하지 않고 분 리되어 이형주가 생산될 가능성이 높다(Paek et. al., 1992, Choi and Chung, 1993). 그러므 로 돌연변이 및 조직배양기술을 이용하여 잎 돌연변이 춘란을 대량 증식시킴으로써 상업적 가치를 높일 뿐만 아니라 무분별한 불법도채로 인한 생태계 파괴 문제를 해결할 수 있을 것으로 사료된다.

제 5 장 연구개발 성과 및 성과활용 계획

제 1 절 실용화•산업화 계획

O 춘란의 신품종의 개발

- 분자적 마커(DNA ID)가 부여된 신품종의 국내 농가 보급
- 종묘의 해외 수출을 통한 로얄티 수입 획득

○ 춘란 개체별 ID 의 바코드화 및 실용화: DNA -Finger ID 증명서 발급

- 계대 배양된 춘란과 원 개체의 DNA 지문대조를 통해 진위성 확인 시스템 가동
- 춘란 시장 적용: 난구매자의 DNA ID 확인 요청시 동일 계통(체) 여부 확인
- 춘란 구입자와 판매자 모두를 대상으로 함

O 춘란 SSR multiplex PCR kit 등 3 종 이상 제품 개발

- 소량의 시료로 신속하고 정확한 타이핑 수행 (정확도: 99.9999% 이상)
- 교차 적용시 춘란 이외의 난초류에도 활용 가능함

○ 돌연변이 및 조직배양기술을 이용하여 선발 및 고정된 춘란 잎 돌연변이 식물체들은 추후 품종등록단계를 거쳐 상품화 할 수 있을 것으로 기대된다.

제 2 절 교육•지도•홍보 및 기술확산 계획

1. 인력활용/양성 성과

총 인력양성 인원	지원 대상 (학위별, 취득자)			성별		지역별			
	박사	석사	학사	기타	남	여	수도권	대전	기타지역
7	2	4	1		4	3	1		6

2. 교육 및 지도활동 성과

연도	교육명	주요내용	장소	비고
2009	춘란의 DNA 지문 개발과 활용	DNA지문의 개발 방법 및 향후 활용방안	공주대학교	국내
2009	동양란 재배	춘란의 재배 및 분류, 구입하기	경북농업기술원	국내
2012	농업금융컨설턴터 전문과정- 화훼농장경영 이론 및 사례	화훼농장 경영의 이론, 춘란 농장의 운영과 재배	NH농협 구미교육원	국내

3. 언론 홍보 성과

연도	홍보유형	매체명	제목	주요내용	비고
2009	중앙전문지	동아일보	네잎클로버 대량생산 가능 제수대 연구소 종자 개발	네잎클로버 대량생산 가능 종자 개발	국내
2009	지방TV방송	KBS 제주	행운의 네 잎클로버, 대량생산	네잎클로버 대량생산 가능 종자 개발	국내

4. 기술확산 계획

O 본 연구에서 제작한 춘란의 SSR library를 이용하여 추가적인 SSR 마커의 동정이 가능하 며, 분리한 마커를 이용하여 유전육종을 이용한 stress-내성 식물체 혹은 신품종 개발, 새 로운 유용 유전자의 분리, QTL 좌위의 분리 및 염색체 지도 작성에 활용 할 것이다.
O 춘란을 대상으로 제작된 SSR 마커가 Cymbidium 속의 다양한 종에서 증폭되어 높은 종간 교차적용성을 확인 할 수 있었다. 그러나 본 연구에서는 춘란 이외의 다른 품종은 개체수 가 적어 증폭 여부 및 일부의 다형성만 확인하였으므로, 향후 연구에서는 Cymbidium 속의 여러 품종에 대해 개체수를 늘려 적용해 봄으로써 본 마커의 활용범위를 넓힐 것이다.
○ 춘란의 DNA ID 바코드 개발은 춘란 및 근연종의 분류학적 위치를 확인함은 물론, 품종 간 개체식별 및 계통적 유연관계를 밝히는데 결정적인 단서를 제공할 것이다. 춘란의 DNA ID 개발과 활용은 국내 주요 기능성 식물의 유전자원 보호와 활용성을 높이는데 기여할 것이 며, 아울러 식물 유전체학 연구 및 바이오정보학의 활성화에 도움을 줄 것이다.
○ SSR ID는 기내배양 식물조직의 세포족보 (cell lineage) 인증 및 고급 영양번식 식물체의 식별법으로 유용하게 활용될 것이다. 기내배양 식물체의 SSR 마커를 분석하고 이에 대한 DNA ID를 부여하는 일은 식물 재료에 대한 품질 인증은 물론 유사품을 근본적으로 방지 하는 수단이 될 것이다.

제 3 절 특허, 논문 및 학회발표 성과 및 계획

1. 논문게재

게재 연도	논문명	저자			학술지명	Vol.(No.)	$\begin{aligned} & \text { 국내외 } \\ & \text { 구분 } \end{aligned}$	$\begin{aligned} & \mathrm{SCI} \\ & \text { 구분 } \end{aligned}$
		주저자	교신저자	공동저자				
2010	Effects of NaOCl Treatment on Seed Germination and Capsule Formation of Level of Flowering in Cymbidium goeringii	이대건	고재철	-	Flower Research Journal	$\begin{gathered} 18(4): \\ 271-277 \end{gathered}$	국내	비SCI
2011	Ethyl-methane-sulfonat e (EMS) 처리에 의한 춘란 잎 돌연변이 품종의 개발	신윤호	이효연	송인자 강은정 배태응 선현진 강시용 임평옥	$\begin{gathered} \text { 한국자원 } \\ \text { 식물학혀 } \\ \quad \text { 지 } \end{gathered}$	$\begin{gathered} 24(1): 17- \\ 22 \end{gathered}$	국내	비SCI
2011	Expression analysis of APETALA1/FRUITF ULL-like gene Phalaenopsis sp. 'Hatsuyuki' (Orchidacea e)	송인자	이효연	Fukuda T, Ko SM, Ito T, Yokoyama J, Ichikawa H, Horikawa Y, Kameya T, Kanno A	Hort, Environ. Biotechno 1.	$\begin{gathered} 52(2): 183 \\ -195 \end{gathered}$	국내	SCI
2011	Development of polymorphic microsatellite markers for Cymbidium goeringii(Orchidaeceae)	현영세	정기화	김준기	Am J Botany	$\begin{gathered} 99(5): \\ 193-196 \end{gathered}$	국외	SCI
2012	Determination and application of combined genotype of simple sequence repeats (SSR) DNA marker for cultivars of Cymbidium goeringii	이대건	정기화	고재철	Korean J Horticultur al Science \& Technol	In Press	국내	SCI

2. 학회발표

발표 연도	논문명		저자	학회명	개최장소	구분
		교신저자	공동저자			
2009	Identification of microsatellite markers in spring orchid	정기화	현영세, 김수진	한국 생물과학협회	대전대학교	국내
2009	Molecular genetic polymorphism of microsatellites in spring orchid, Cymbidium goeringii	정기화	현영세, 노희정, 김수진	한국분자 - 세포생물학회	$\begin{gathered} \text { 서울 } \\ \text { COEX } \end{gathered}$	국내
2009	Roles for Arabidopsis AP2 transcription factor in freezing and drought tolerance	이효연	최선희, 정하나, 김은경, 김준기, 임평옥	한국식물학회* 한국식물 생명공학회	김대중 컨벤션센터	국내
2009	Production of unbolting lines through gamma-ray irradiation mutagenesis in genetically modified herbicide-tolerant Zoysia japonica	이효연	배태웅, 김준기, 송인자, 송서영, 최선희, 임평옥, 송필순	한국식물학회* 한국식물 생명공학회	김대중 컨 벤션센더	국내
2010	Characterization of 10 microsatellite markers in spring orchid (Cymbidium goeringii) from Northeast Asia	정기화	현영세, 노희정, 지승미	한국 생물과학협 회	서울대학교	국내
2010	Characterization of 17 microsatellites using the Multiplex PCR in Spring Orchid (Cymbidium goeringii) from Northeast Asia	정기화	현영세, 노희정, 지승미	한국분자 - 세포생물학회	$\begin{gathered} \text { 서울 } \\ \text { COEX } \end{gathered}$	국내
2010	EMS 처리에 의해 유도된 춘란 (Cmbidium goerinygii) 변이종의 근경 적출 부위에 따른 식물체 재분화와 생육에 미치는 영향	이효연	신윤호, 송인자, 강은정, 강시용, 임평옥	한국육종학회	충남대학교	국내
2010	Identification of differentially expressed genes in leaves of wild type spring orchid (Cymbidium goeringii) and dwarf spring orchid mutant	이효연	송인자, 신윤호, 강시용, 임평옥	국제원예학회	Lisboa	국외
2010	Identification of RAPD markers linked to dwarf phenotype in spring orchid (Cymbidium goeringii) mutant	이효연	강은정, 신윤호, 강시용, 임평옥	국제원 예학회	Lisboa	국외
2011	Spring orchid (Cymbidium goeringii) microsatellites applicable to several Cymbidium Species	정기화	현영세, 지승미	한국 생물과학협회	한림대학교	국내
2011	Expression study of the SEP-like gene in Phalaenopsis sp.(Orchidacea)	이효연	Song IJ, Fukuda r, Kim BH, Ito T, Yokoyama J, Kameya T, Kanno A	한국 원 예학회	제주, 컨 벤션센더	국내

3. 특허 및 기타 지적재산권

출원연도	출원/등록	특허명	출원인	발명인	출원국	출원번호
2010	출원	춘란의 마이크로새틀라이트 마커 및 이를 증폭하기 위한 프라이머	공주대학교 산학협력단	정기화 이대건	국대	$10-2010-0037654$
2011	출원	춘란의 SSR 마커 및 이를 증폭하기 위한 프라이머	공주대학교 산학협력단	정기화	국대	$10-2011-0007809$
2012	등록	마이크로새틀라이트 마커를 이용한 심비디움속 동양란의 식별방법	공주대학교 산학협력단	정기화 현영세 이대건	국대	$10-2012-0034073$

제 6 장 참고문헌

강 법선. 1989. 동양란. 난과생 활사
Bär W, Brinkmann B, Budowle B, Carracedo A, Gill P, Lincoln P, Mayr W, and Olaisen B. 1997. DNA recommendations-Further report of the DNA Commission of the ISFH regarding the use of short tandem repeat systems. Int J LegaL Med. 110:175-176.

Botstein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 32(3):314 - 331.

Choi SO and Chung JD. 1993. Factors influencing rhizome formation from shoot tip culture of temperat Cymbidium Species. Kor J Plant Tissue Culture. 20:247-254.

Choi JY, So IS, Pak CH and Kwack BH. 1998. Randomly amplified polymorphic DNA (RAPD) analysis on compatibility of Korean native Cymbidium goeringii with other Cymbidium species. Kor J Hort Sci Technol. 16:361-363.

Dressler R.L. 1993. Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge.

Lawler LJ. 1984. Ethnobotany of Orchidaceae. In J Arditti(ed.) Orchid bioiogy, reviews and perspectives, Vol. III. Comstock Publishing Associate. Cornell University Press. p.30-116.

Lee JS, Kim BM, Yu SO, and Ryu KH. 2004. Analysis of phenotypic and genetic polymorphism of self-pollinated seedings of Korean native Cymbidium goeringii. Kor J Hort Sci Technol. 22:486-490.

Obara-Okeyo P and Kako S. 1998. Genetic diversity and identification of Cymbidium cultivars as measured by random amplified polymorphic DNA (RAPD) markers. Euphytica. 99:95-101.

Paek KY, Lee YT, Shim GB and Kim JU. 1992. Effects of mineral levels on organogenesis in rhizome cultures of temperate Cymbidiums in vitro. Kor J Plant Tissue Culture. 19:141-150.

Smith JL, Hunter KL and Hunter RB. 2002. Genetic variation in the terrestrial orchid Tipulariadiscolor. Southeast Nat. 1:17-26.

Song IJ, Kang HG, Kang JY, Kim HD, Bae TW, Kang SY, Lim PO, Adachi T and Lee HY. 2009. Breeding of four-leaf white clover (Trifoliumrepens L.) through ${ }^{60} \mathrm{Co}^{-}$ gamma-radiation. Plant Biotechnol Rep. 3:191-197.

Tereba A. 1999. Tools for analysis of population statistics. Profiles in DNA. 2:14-16.
Xiaohong Y, Li G and Bo Y. 2007. Genetic diversity of wild Cymbidium goeringii (Orchidaceae) populations from Hubei based on inter-simple sequence repeats analysis. Frontiers Biol China. 2:419-424.

주 의

1. 이 보고서는 농림수산식품부에서 시행한 농림수산식품 연구개발사업의 연구 보고서입니다.
2. 이 보고서 내용을 발표할 때에는 반드시 농림수산식품부에서 시행한 농림 수산식품 연구개발사업의 연구결과임을 밝혀야 합니다.
3. 국가과학기술 기밀유지에 필요한 내용은 대외적으로 발표 또는 공개하여서는 아니 됩니다.

[^0]: ${ }^{a}$ Entry numbers for characteristics are shown in Table 19.

