발 간 등 록 번 호 11-1543000-001661-01

# 중국 수출용 무 품종개발

Development of radish varieties for seed exporting to china

농업회사법인 대일바이오종묘(주)

농림축산식품부

# 제 출 문

# 농림축산식품부장관 귀하

이 보고서를 "중국 수출용 무 품종 개발" 과제(제1세부과제 "만추대 타원형 백수계 품종 개발", 제2세부과제 "만추대 타원형 청수계 품종개발" 및 제3세부과제 "중국 재래종을 이용한 무 품종개발")의 보고서로 제출합니다.

# 2017 년 03 월 31 일

프로젝트 연구기관명: 대일바이오종묘(주)

프로젝트 책 임 자: 강남희

세부프로젝트 연구기관명: (주)팜한농

세부프로젝트 책 임 자: 전 병 문

세부프로젝트 연구기관명: 농협종묘센터

세부프로젝트 책 임 자: 서 정 팔

세부프로젝트 연구기관명: 대일바이오종묘(주)

세부프로젝트 책 임 자: 강남희

위탁프로젝트 연구기관명: 현대종묘

위탁프로젝트 책 임 자: 조 윤 섭

# 보고서 요약서

| 과제고유번호                    | 213002-04-3-<br>CGL00    | 해 당 단 계<br>연 구 기 간     | 42개 월                         | 단 계 구 분           | 1 / 1                                              |  |
|---------------------------|--------------------------|------------------------|-------------------------------|-------------------|----------------------------------------------------|--|
| 어그 사이 번                   | 단위사업명                    | 채소,원예 : 농식             | 품기술개발(R&D)                    | )                 |                                                    |  |
| 연 구 사 업 명                 | 세부 사업명                   | Golden Seed 프로         | <b>로젝트</b>                    |                   |                                                    |  |
|                           | 프 로 젝 트 명                | 중국 수출용 무               | 품종개발                          |                   |                                                    |  |
| 연 구 과 제 명                 | 세부<br>프로젝트명              | 만추대 타원                 | 형 백수계 품종기                     | 개발((주)팜한농/전비      | 병문)                                                |  |
|                           | (주관 연구기                  | 만추대 타원                 | 형 청수계 품종기                     | 개발(농협종묘센터/        | 서정팔)                                               |  |
|                           | 관/연구책임<br>자)             | 중국 재래종                 | 을 이용한 무 품                     | -종개발(대일바이오        | 종묘(주)/강남희)                                         |  |
| 연 구 책 임 자                 | 강남희                      | 해당단계<br>참 여<br>연구원 수   | 총: 121명<br>내부: 117명<br>외부: 4명 | 해당단계<br>연 구 개 발 비 | 정부: 1,235,000천원<br>민간: 698,034천원<br>계: 1,933,034천원 |  |
|                           |                          | 총 연구기간<br>참 여<br>연구원 수 | 총: 121명<br>내부: 117명<br>외부: 4명 | 총 연구개발비           | 정부: 1,235,000천원<br>민간: 698,034천원<br>계: 1,933,034천원 |  |
| 연구기관명 및<br>소 속 부 서 명      | 대일바이오종도                  | L(주)                   | 참여기업명<br>㈜팜한농<br>농협종묘센터       |                   |                                                    |  |
| 위 탁 연 구                   | 연구기관명:<br>현대종묘           |                        |                               | 연구책임자:<br>조윤섭     |                                                    |  |
| 요약<br>품종개발 : 품종생성<br>품종보호 | │<br>산판매신고 11건<br>도출원 4건 | 보고 면수<br>174           |                               |                   |                                                    |  |
| 유전자원 : 등록 15              | 5건                       |                        |                               |                   |                                                    |  |
| 종자수출 : 135.5만             | 불                        |                        |                               |                   |                                                    |  |
| 국내매출 : 391,752            | 천원                       |                        |                               |                   |                                                    |  |
|                           |                          |                        |                               |                   |                                                    |  |

# 요 약 문

# I. 제 목

중국 수출용 무 품종 개발

#### Ⅱ. 연구성과 목표 대비 실적

제1세부 : 만추대 타원형 백수계 품종 개발

품종보호출원 2품종, 생산판매신고 1품종을 목표로 과제를 수행한 결과 중국 봄 백수계 무로 2품종(RACS2125, RACS3010)을 개발하여 품종보호출원 하였고 남방백수계로 1품종CT7008)을 생산판매 신고하였다.

수출 실적 목표는 4개년 누적 목표가 80만불로 신품종 및 기존 품종 판매 확대를 통해 101만불 수출 실적을 달성하였다.

제2세부 : 만추대 타원형 청수계 품종 개발

품종보호출원 1품종, 생산판매신고 2품종, 종자 수출 5만 7천불을 목표로 과제를 수행한 결과 품종보호출원 1품종, 생산판매신고 4품종을 신고하였다. 종자 수출은 1만5천불의 누적실적을 올려 과제종료 이후의 종자 수출의 발판을 마련하였으며 국내 누적매출 391.752.000원을 하였다.

제3세부 : 중국 재래종을 이용한 무 품종 개발

품종보호등록 1품종, 품종보호출원 3품종, 생산판매신고 4품종, 유전자원등록 30점, 종자수출4개년 누적목표 38만불로 과제를 수행한 결과 품종보호출원 1품종, 생산판매신고를 5품종, 유전자원 12점 등록하였으며 수출실적은 4개년 누적 수출 총 33만불을 달성하였다.

제3세부 위탁: 중국 남방계 재래종 품종 개발

생산판매신고 1품종, 유전자원 4점 등록, 수출실적 3만불을 목표로 과제를 수행한 결과 생산 판매신고 1건, 유전자원 3점 등록하였으며 종자수출기반을 수출시장 현지에 마련한 성과를 보 였다.

#### Ⅲ. 연구개발의 목적 및 필요성

중국 무 종자시장은 OP종이 대부분이었으나 최근 경제성장과 더불어 품질 및 내환경성, 내병성, 고순도의  $F_1$ 품종이 보급되면서 매년 교배종 종자시장이 성장하고 있다.

특히 한국종자회사 및 일본종자회사가 육성하여 판매하는 품종을 모방한 중국종자회사의 품종들이 중국종자시장에 진출하고 있어 교배종 시장규모가 상당히 커질 것으로 예상된다.

무의 주요 병해는 시들음병, 뿌리혹병, 무름병, 검은무늬병, 뿌리썩음병, 바이러스 등으로 일본의 경우 시들음병과 뿌리혹병에 강한 품종이 육성되고 있으며 지속적으로 병 저항성 품종을 육성하고 있다.

중국의 무는 광활한 면적에서 재배되므로 병 저항성 및 장거리 수송성, 무의 품질, 봄 무의 경우 추대안정성에 대한 요구도가 증가하고 있다. 따라서 중국시장에 적합한 고품질과 수송성, 내병성을 갖춘 품종을 개발하여 안정된 종자수출로 시장을 선도하고, 국내 종자회사의 연구 및

종자생산역량이 강화되면 종자수출로 국익을 창출할 수 있을 것으로 기대된다.

#### Ⅳ. 연구개발 내용 및 범위

본 연구과제는 중국 각 지역의 유전자원 수집과 해당 지역에 적합한 내재해성 고품질 무 품종을 육성하고 종자를 수출하고자 한다. 제1세부 연구과제는 중국용 만추대 타원형 백수계 품종을 육성, 제2세부 연구과제는 중국용 만추대 타원형 청수계 품종을 육성, 제3세부 연구과제는 중국 재래종을 이용한 무 품종을 육성, 제3세부 위탁 연구과제는 중국 남방계, 재래종 품종을 육성하고자 한다. 중국 수출용 품종을 육성하기 위해 중국 현지의 우수한 유전자원을 활용하여 MS, SI 등 기존의 육종방법과 소포자 배양과 같은 육종연한을 단축시킬 수 있는 기술을 활용하여 중국 시장을 리딩할 수 있는 수출 종자 개발을 진행하였다.

# V. 연구개발결과

1. 제1세부 만추대 타원형 백수계 품종 개발

본 과제를 수행하면서 개발된 품종은 총 3품종으로 2품종은 품종보호출원을 하였고 1품종은 생산판매 신고하였다. 품종보호출원한 품종 중 한 품종인 RACS2125는 근수부에 연한녹색이다소 발현되지만 추대가 안정되고 근형이 우수하여 품종으로 개발하였고 현재 수출 진행 중이다. 나머지 한 품종인 RACS3010은 추대성이 RACS2125보다 더 안정된 만추대성 품종으로 위황병에 강하고 근수색이 백색이면서 비대력과 근미맺힘이 우수하고 근피가 깨끗한 특성을 보여 상품화하였고, 재배 폭이 우수하여 현재 중국 전 지역에 농가 확대 시험을 수행 중이며 동시에 판매를 하였다. 생산판매 생산판매신고한 CT7008은 중국 남부지역에 내서성을 요구하는 작형으로 시장개발을 진행하였으며, 중국뿐만 아니라 태국 등 동남아 시장도 함께 개발하여 판매 진행 중이다.

### 2. 제2세부 만추대 타원형 청수계 품종 개발

중국 수출용 무 품종육성의 결과로 생산판매신고 (청경, 신흥, 멋진알타리, 백상단무지) 4품종, 품종보호출원 (백랑)을 1품종 하였고, 누적 수출 1.5만불, 국내 누적매출 391,752,000원을 하였다.

#### 3. 제3세부 중국 재래종을 이용한 무 품종 개발

과제를 수행하면서 중국 유전자원을 도입하였으며 품종개발결과 청춘하 1품종을 품종보호출원, 강남청수, 대청수, 화이트스노우미노, 리버풀-7, 리버풀-9등 5품종을 생산판매신고 하였다. 유전자원은 12점 등록하였다. 육성된 품종들은 중국 및 동남아시아에 종자수출 및 확대를 위해 해외시험포를 실시하고 누적수출 33만불을 달성하였다.

#### 4. 제3세부 위탁 중국 남방계 재래종 품종 개발

중국 유전자원의 특성을 검정하고 우수 계통을 육성하여 북경, 호북성 등 중국 각 지역에 지역적응성 검정을 수행하였고 HDR151을 생산판매신고 하였다. 유전자원은 3점 등록하였다.

#### VI. 연구성과 및 성과활용 계획

1. 제1세부 만추대 타원형 백수계 품종 개발

본 연구를 통해 중국 및 동남아 수출용 품종을 개발하여 현재 중국에 판매가 되거나, 타 국가에 판매를 확대하기 위해 개발이 진행 중으로, 품종의 상업화를 추진하고 있다. 또한 본 연구를 통해 육성된 계통은 현재보다 우수한 중국용 무 품종을 육성하는데 활용예정이며, 향후 수출 확대 및 시장 개발을 위한 신품종 육성에 활용할 예정이다.

#### 2. 제2세부 만추대 타원형 청수계 품종 개발

만추대 청수계 품종의 중국시장 면적은 약 30,000ha로 아직 미약하나 종자 소모량은 13,000kg 정도이고 소득수준향상과 연중 공급체계로 교배종시장이 급격히 증가할 것으로 기대된다. 육종 기반 연구팀과 공동 연구로 MS, 자가불화합성 등 육종효율을 증대할 수 있는 기술력을 확보하고, 시장성이 큰 중국을 바탕으로 GSP를 통해 개발된 중국 수출용 무 품종 (생산판매신고; 청경, 신흥, 멋진알타리, 백상단무지, 품종보호출원; 백랑) 및 수출용 무 육성으로 국익 창출에 기여할 것이다.

#### 3. 제3세부 중국 재래종을 이용한 무 품종 개발

본 과제를 통한 품종개발과정에서 축적한 기술들을 활용하여 품종 육성의 과학화 및 효율화, 해외 시장에 적합한 무 품종개발로 종자수출을 위한 품종육성에 박차를 가하고자 한다 중국 수출용으로 육성된 품종 중에서 중국 현지평가가 우수하여 차년도 종자수출을 위하여 현재 국내에서 대량 위탁 채종중이거나 해외 위탁채종중이며 종자수출의 다변화를 위하여 동남아시아, 서남아시아 시장도 개척할 예정이다.

### 4. 제3세부 위탁 중국 남방계 재래종 품종 개발

생산판매신고 된 품종과 육성계통들을 이용한 추가적인 중국 남방계 OP종을 육성개발하여 중국 현지적응성을 검토하고 종자 수출을 진행하고자 한다.

# **SUMMARY**

# I. Title

Development of radish varieties for seed exporting to China

# II. Record as project target.

[Project part 1] Development of white shoulder-radish varieties for seed exporting to China Objective of research: 2 varieties protection application, 1 production sales declarations of variety. Record for radish seed exports is 800,000\$ USD

Research results: 2 varieties protection application (RACS2125, RACS3010), 1 production sales declarations of variety (CT7008).

[Project part 2] Breeding of late-bolting and oval-shaped "Dark green shoulder" type radish cultivars for export to China

Objective of research: 1 variety protection application, 2 production sales declarations of varieties. Record for radish seed exports is 57,000\$ USD

Research results: 1 variety protection application. 4 production sales declarations of varieties. Record for radish seed exports is 15,000\$ USD, 391,752,000 won of domestic cumulative sales.

[Project part 3] Development of radish varieties using local varieties in China.

Objective of research: 1 variety protection registration. 3 varieties protection application, 4 production sales declarations of varieties. 30 genetic resources registration. Record for radish seed exports is 380,000\$ USD

Research results: 1 variety protection application. 5 production sales declarations of varieties. 12 genetic resources registration. Record for radish seed exports is 330,000\$ USD [Project commissioned part 3] Development of Chinese southern and OP radish varieties.

Objective of research: 1 production sales declarations of varieties. 4 genetic resources registration. Record for radish seed exports is 30,000\$ USD

Research results: 1 production sales declarations of varieties. 3 genetic resources registration.

# III. Objective and Necessity of Research Development

The Chinese radish seed market was comprised a large proportion by OP species, however, with recent economic growth,  $F_1$  varieties, considered for quality, environmental resistance, tolerance and high purity, has come into wide use. Chinese seed price and market size are expected to increase considerably. In addition, it is expected that the size

of the  $F_1$  market will increase considerably because the varieties of Chinese seed companies, that imitate the varieties of Korean and Japanese seed companies, are entering to the Chinese seed market.

The main diseases of radish are wilt disease, clubroot, bacterial rot, black spot disease, root rot disease, virus. Japan has already bred varieties that are resistant to wilt disease and clubroot, and also bred disease-resistant varieties continuously. China has increased demand for disease resistance, transportability and late-bolting varieties too.

Therefore, if we develop varieties with high quality and tolerance, we will be able to leading the market in the future by seeds selling at high price, strengthening the capabilities of domestic seed companies, and creating a national interest.

# IV. Research Content and Scope

This project aims to collect genetic resources in each region, breed radish varieties, which has multiple disaster tolerance, high-quality, regional adaptability, and seed export.

The project 1 is Development of white shoulder-radish varieties for seed exporting to China. The project 2 is Breeding of late-bolting and oval-shaped "Dark green shoulder" type radish cultivars for export to China. The project 3 is Development of radish varieties using local varieties in China. Project commissioned part 3 is Development of Chinese southern and OP radish varieties. In order to lead the Chinese market we developed exportable varieties to China by using the tradition breeding methods such as MS and SI and techniques to shorten of breeding cycle such as the microspore culture.

# V. Results

1. Project part 1: Development of white shoulder-radish varieties for seed exporting to China

In this research, we developed 3 varieties; 2 varieties protection application, 1 production sales declarations of variety. RACS2125, which variety protection application, has a bit green staining in root but good bolting tolerance and shape. It is now on sale. RACS3010, which variety protection application, is late-bolting better than RACS2125. It has fusarium wilt tolerance, white root and high quality root shape. It was carrying out site-specific adaptability test in the local area and selling at the same time. CT7008, which has production sales declarations of variety, developed for the market in southern part of China. CT7008 also has demand for the domestic market, and it is selling not only China but also Thailand and Southeast Asia market.

2. Project part 2: Breeding of late-bolting and oval-shaped "Dark green shoulder" type radish cultivars for export to China

As a result of breeding of radish varieties for export in China, there are reported 4 production sales declarations of varieties (Cheonggyeong, Shinheung, Gorgeous, Baeksang), 1 varieties protection application, \$ 15,000 of cumulative exports and 391,752,000 won of domestic cumulative sales.

3. Project part 3: Development of radish varieties using local varieties in China.

We developed radish varieties by using genetic resource in China. There are reported 1 variety protection application(Chungchunha), 5 production sales declarations of varieties(Gangnam Cheongsu, Daechungsu, White Snowmino, Liverpool-7 and Liverpool-9), 12 genetic resources registration. Record for radish seed exports is 330,000\$ USD

The reported varieties have passed to the local adaptation tests in the overseas cultivation fields for export to China and Southeast Asia. And it is exported 300,000\$ USD.

4. Project commissioned part 3: Development of Chinese southern and native radish varieties.

We tested the characteristics of Chinese genetic resources and developed superior breeding line. And carrying out evaluation of site-specific adaptability test in the China. There are reported 1 production sales declarations of variety(HDR151), 3 genetic resources registration.

# VI. Project result and proposal for application

1. Project part 1: Development of white shoulder-radish varieties for seed exporting to China

In this research, we are developing the Chinese varieties to export in China and Southeast Asia, and progressing to commercialization. In addition, superior lines bred through this research, GSP, will be used to breed varieties better than now. And it will make export to expansion and market development in the future.

2. Project part 2: Breeding of late-bolting and oval-shaped "Dark green shoulder" type radish cultivars for export to China

The market area of the late-bolting varieties is still about 30,000 hectares, however, the seed consumption is about 13,000 kg and it is expected to increase due to income level improvement and year-round supply system.

We will secure technological capability to increase breeding efficiency such as male sterile and self-incompatibility by joint research with base research team. Based on China with high marketability, it will contribute to creating national interest by the radish breeding for the export to China and other country through GSP.

3. Project part 3: Development of radish varieties using local varieties in China.

Using the technologies accumulated in the development process of varieties; shortening of breeding cycle by molecular marker selection, development of disease-resistant varieties, molecular mapping, microspore culture. It is improved the income of farmers and increase seed export.

The varieties bred for export to China will be mass-produced according to the Chinese evaluation and will expand seed exports to South-East Asia.

4. Project commissioned part 3: Development of Chinese southern and native radish varieties.

Chinese local adaptation test and the seed export will proceed by the variety, which has production sales declarations, and breeding new Chinese southern OP species.

# **CONTENTS**

| Chapter 1. Introduction                                                                                               | 17  |
|-----------------------------------------------------------------------------------------------------------------------|-----|
| Chapter 2. Research Situations                                                                                        | 21  |
| Chapter 3. Methods and Results                                                                                        | 23  |
| Section I.  Development of white shoulder-radish varieties  for seed exporting to China                               | 23  |
| Section II.  Breeding of late-bolting and oval-shaped "Dark green shoulder" type radish cultivars for export to China | 66  |
| Section III.  Development of radish varieties using local varieties in China                                          | 102 |
| Section IV.  Development of Chinese southern and native radish varieties                                              | 122 |
| Chapter 4. Achievement and Contributions                                                                              | 153 |
| Chapter 5. Applications                                                                                               | 157 |
| Chapter 6. International Research Information                                                                         | 165 |

# 목 차

| 제 | 1 | 장 . | 프로젝트의 개요 및 성과목표       | - 17 |
|---|---|-----|-----------------------|------|
| 제 | 2 | 장   | 국내외 기술개발 현황           | - 21 |
| 제 | 3 | 장   | 연구개발수행 내용 및 결과        | 23   |
| ; | 세 | 1 절 | 만추대 타원형 백수계 품종개발      | - 23 |
| , | 세 | 2 절 | 만추대 타원형 청수계 품종개발      | - 66 |
| , | 세 | 3 절 | 중국 재래종을 이용한 무 품종개발    | 102  |
| , | 세 | 4 절 | 중국 남방계 재래종 품종 개발      | 122  |
| 제 | 4 | 장   | 목표달성도 및 관련분야에의 기여도    | 153  |
| 제 | 5 | 장   | 연구개발 성과 및 성과활용 계획     | 157  |
| 제 | 6 | 장   | 연구개발과정에서 수집한 해외과학기술정보 | 165  |

# 제 1 장 프로젝트(세부프로젝트 포함)의 개요 및 성과목표

본 과제의 목표는 품종 개발을 통해 중국 종자 시장을 겨냥한 상업화 과제로 본 과제를 통해 중국용 무 신품종을 개발하고 중국 무 종자 시장 전반에 걸쳐 수출 경쟁력을 강화하고자 한다. 본 과제를 통해 중국 무의 주요 타입인 백수계/청수계/OP종 무의 고품질 F1 종자를 개발하고, 중국 현지 네트워크 구축을 통해 향후에도 안정적으로 중국 수출이 가능한 체계를 구축하여, 국내 종자 업계의 중국 수출 증대를 이루고자 한다.

#### ○ 국내 무 시장 동향

- 국내 생산량만을 고려한 중장기 수급 전망을 분석한 결과 무 재배면적은 2013년 이후 평균 1% 감소하여 2022년에 17,725ha가 될 것으로 전망된다(농촌경제연구원).
- 15년 작형별 재배면적을 보면 봄무는 2014년 1,438ha에서 약 39% 감소한 877ha, 고랭지무는 14년 2,608ha에서 24% 감소한 1,981ha, 가을무는 4,977ha에서 3.1% 증가한 5,134ha, 소형무·알타리는 작년과 비슷한 809ha 기록하였고, 열무와 단무지 등 기타무는 14년 4,123ha에서 4,798ha로 약 14% 증가하였다(통계청 농업면적조사, 2015).
- 국내 무 종자시장 규모는 약 340억원 정도이며, 채소종자 중 16%를 차지하고 있고(고추, 무, 양파, 토마토, 배추, 수박 순), 종자생산량(국내생산)은 약 193톤으로 13년 대비 24% 증가하였다.
- 국내에서는 농우바이오, 팜한농 등 대규모 회사와 기타 소규모 개인회사들이 일본, 중국 등해외수출용 무 품종을 육성해왔으나 현지시험, 개발, 영업 및 재정적인 측면에서 각자의 어려움이 있었고, 최근 GSP사업을 통해 이러한 어려움들이 많이 해결되어 종자개발 및 종자수출활로가 크게 열리게 되었다.

#### ○ 세계 무 시장 동향

- 채소 종자 시장규모 중 세계 11위. 약 1,122톤 수준이며 금액은 130-155백만불로 추정되며, 주도권을 갖고 있는 국가는 아시아의 중국, 인도, 유럽의 스페인이다.
- 아시아의 무 재배면적은 약 100만~150ha 정도이며, 2011년 총 1500억 원의 신흥시장으로, 향후 가장 큰 시장으로 성장할 것으로 예상된다. 무 생산의 대부분은 중국을 비롯한 아시아 지역에서 이루어지며, 시장 규모 면에서도 아시아 지역이 대부분을 차지하고 있다. 아시아 지역의 무 재배면적은 약 150만ha 정도로, 중국이 그 중 120만ha를 정도이며, 중국과 인도가 약 85~90%정도의 면적을 차지하고 있으나 종자 가격 면에서는 약 30~40%정도의 시장을 점유하

고 있는 상황이다. 중국 무 시장은 경제성장과 더불어 급격히 증가하여 약 367억원 규모의 시장을 형성하고 있으며 향후에도 고품질 F1 품종 보급으로 중국 시장이 급격히 증가될 것으로 전망하고 있다.

# ○ 중국 무 시장 동향

- 2015년 중국의 무 재배면적은 약 120만ha로 백수계 품종(백수계, 남방계 F1/OP 포함)이 약 80만ha, 청수계 품종(F1/OP포함)이 약 40만ha 정도 재배되고 있으며 종자 소요량은 약 5,300ton 정도로 추정하고 있다.
- 중국의 무 종자 시장은 봄, 여름, 가을, 겨울 등 재배시기와 청수, 백수 등 무 형태에 따라다양한 로컬 타입의 시장으로 세분화되어 있고 과거 OP 시장이 F1품종으로 확대되고 있다. 그중 백수계 무는 중국 전역에서 가장 많이 재배되고 선호되는 무 형태로 근피가 매끈하고 내부색이 순백색 품종이며, 봄 백수계 무는 중국 중부와 남부 지역에서 많이 재배되고 있다. 청수계 무는 주로 중국 북방지역에서 많이 재배되며, 한국형 봄무와 일본형 봄무가 도입되어 산동성 및 동북3성 지역에서 주로 재배되고 있다.
- 작형이 점차 세분화되고 있어 이에 적합한 품종이 요구되고 있으며, 전반적으로 고정종에서 F1품종으로 전환되고 있는 추세로 봄무의 경우 이미 F1 품종이 주를 이루고 있다. 남부 지역의 주 타입인 남방 판엽계 시장의 경우 가공용 OP 시장으로 주로 가을에 재배되며, 면적 및 종자 소요량이 가장 많으나 가격이 저렴한 시장이다. 중국 경제가 성장함에 따라 주년 공급을 요구하고, 양적인 부분보다는 품질을 요구하는 시장으로 전환되고 있는 추세로 OP에서 F1 품종으로 전환이 빠르게 진행되고 있다.

### ○ 수출용 품종 육성의 필요성

- 현재 중국의 경제 성장에 따라 고가의 외국 품종이라도 중국내 재배 작형 개발 또는 수요에 적합 할 경우 수입이 가능하게 되었으며, 특히 한국의 만추대성 품종이 수입되면서 기존에는 없던 봄 재배 작형이 중국 내에 정착하게 되면서 한국산 무 품종의 인지도가 상승되고 있는 추세이다. 따라서 앞으로 중국 지역별 재배작형 및 기호에 적합한 고품질 품종을 육성할 필요가 있다.
- 중국은 무를 장식, 생식, 샐러드, 탕, 무침 등 다양한 방법으로 요리하고 있으며 활용 목적에 적합한 다양한 자원을 활용하고 아직까지 만추대성 품종 육성 기술이 낙후되어 봄에 재배되고 있는 품종은 대부분 한국에서 수입하여 사용하고 있다.
- 이 처럼 중국의 무 육종기술이 우리나라와 격차를 보이고 있으나 중국이 국가적 차원에서 지원할 경우 다양한 유전자원을 보유한 중국에 추월당할 수 있어 시장 선점이 중요하다.

최근 일본회사들의 관심이 높아지고 있으며 일부지역이지만 판매를 확대하고 있고 품종개발 도 진행하고 있다.

- 무의 주요 병해는 시들음병, 뿌리혹병, 무름병, 검은무늬병, 뿌리썩음병, 바이러스 등으로 일본의 경우 시들음병과 뿌리혹병에 강한 품종이 육성되어 있으며 지속적으로 병 저항성 품 종을 육성하고 있고 중국 역시 병 저항성과 수송성, 만추대성 품종에 대한 요구도가 증가하 고 있으며 고품질과 내병성을 복합적으로 갖춘 품종을 개발하여 높은 가격으로 판매함으로 써 앞으로의 시장을 선도할 수 있다.
- 결론적으로 국내 강점 기술인 육종 기술을 활용하여 우수 종자를 개발하고, 지역별 현지적응 시험을 통해 중국 시장을 리딩 할 수 있는 품종 개발이 절실히 필요한 상황으로 본 과제를 통해 중국무의 주요 타입인 백수계 무의 고품질 F1 종자를 개발하고, 중국 현지 네트워크 구축을 통해 향후에도 안정적으로 중국 수출이 가능한 체계를 구축하여, 국내 종자 업계의 중국 수출 증대를 통해 국내 종자회사의 역량강화와 더불어 국익을 창출할 수 있을 것으로 기대된다.

### ○ 연구성과 목표

중국 무 종자시장은 OP종이 대부분이었으나 최근 경제성장과 더불어 품질 및 내환경성, 내병성, 고순도의 F1품종이 보급되면서 매년 교배종 종자시장이 성장하고 있으며 고품질 종자에 대한 요구도가 급증하고 있어 만추대, 내병성, 내생리장해성에 강한 지역 적합 품종을 요구하고 있다. 본 과제를 통해 국내 강점 기술인 계통 육성기술과 분자육종 기술을 활용하여 우수 품종을 개발하고, 지역별 현지 적응 시험을 통해 중국 시장을 리딩 할 수 있는 수출 종자를 개발하고 중국 현지 네트워크 구축을 통해 향후에도 안정적으로 중국 수출이 가능한 체계를 구축하여 수출 증대를 위한 기반을 제공하는 것을 목표로 한다. 따라서 본 연구과제는 중국 각지역의 유전자원 수집과 해당 지역에 적합한 내재해성 고품질 무 품종을 육성하고 종자를 수출하고자 한다. 제1세부 연구과제는 중국용 만추대 타원형 백수계 품종을 육성, 제2세부 연구과제는 중국용 만추대 타원형 청수계 품종을 육성, 제3세부 연구과제는 중국 자래종을 이용한 무 품종을 육성하기 위해 중국 현지의 우수한 유전자원을 활용하여 MS, SI 등 기존의 육중방법과 소포자 배양과 같은 육종연한을 단축시킬 수 있는 기술을 활용하여 중국 시장을 리딩할 수 있는 수출 종자 개발을 진행하였다.

# ○ 연구성과 실적

제1세부 과제의 연구개발 목표는 중국 전 지역에 걸쳐 재배되고, 가장 선호하는 백수무 신품 종을 개발하여 중국 종자 시장에 진입하고 판매하여 수출 목표를 달성하는데 있다. 연구 수행 결과 만추대 백수계 2품종(RACS2125, RACS3010)을 개발하여 중국 봄 작형 및 월동 작형 등 추대성을 요구하는 시장에 판매를 진행 중이며, 남방 백수계 1품종(CT7008)은 중국 남부지역의 내서성을 요구하는 시장에 개발 진행 중이다. 남방 백수계 신품종은 중국뿐만 아니라 태국등 동남아 지역 시장 개발도 동시에 진행 중이다. 신품종 및 기존 품종의 시장 개발로 수출 목표를 초과 달성하였다. 만추대 청수계 품종 개발로는 청경, 신흥, 멋진 알타리, 백상단무지 4품종이 육성되어 생산판매신고 하였고, 백랑 1품종을 품종보호 출원 하였다. 또한, 중국 OP종을이용한 품종 육성에서는 중국 유전자원을 도입하였으며 품종개발결과 청춘하 1품종을 품종보호출원, 강남청수, 대청수, 화이트스노우미노, 리버풀-7, 리버풀-9, HDR151 등 6품종을 생산판매신고를 하는 등품종개발에 대한 목표를 달성하였으며, 육성된 품종들은 중국 및 동남아시아에 종자수출 및 확대를 위해해외시험포를 실시하고 프로젝트 총 누적 수출 135.5만불을 달성하였다.

# 제 2 장 국내외 기술개발 현황

## ① 품종 개발 분야

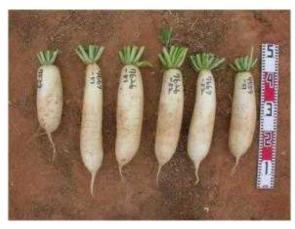
- 무 품종개발에서 가장 앞서 있는 국가는 일본과 한국으로, 일본의 Sakata, Takii, Mikado Kyowa 등의 종묘 기업은 무 유전자원 보유 수준이나 분자 육종 기술이 세계 최고 수준이며, 국내 기업도 유사한 수준이다.
- 국내 무 품종 육성은 민간 회사 및 민간 육성가들이 주축을 이루고 있고, 일본, 중국 시장을 개척하기 위해 경쟁하고 있다. 특히 웅성불임(MS)과 자가불화합(SI)를 이용한 F1 품 종 육성 분야에서는 세계 최고의 경쟁력을 갖고 있다.
- 그 동안 중국용 무 품종에 대한 연구 및 개발을 하는 국내 업체는 소수였으며 기존 품 종보다 우수한 품종은 나오지 않고 있었으나, 최근 점차 연구가 확대되고 있고 우수 중국에 적합한 품종들이 개발되고 있는 실정이다.

### ② 기반 기술(분자마커 및 소포자배양) 분야

- 최근 국내에서 무 유전체 해독연구(차세대바이오그린 21사업), 무 주요 병관련 분자마 커 연구, 소포자 배양법 개발등의 기반 기술 연구와 전통육종과의 결합으로 품종 육성의 경 쟁력을 확대 하고자하는 노력이 활발해 지고 있다.
- 해외 대형 종자 회사에서도 분자마커, 소포자 배양 등 반수체 육종을 이용하여 우수한 형질을 가진 품종의 종자를 생산하고 있으나, 무의 경우, 글로벌 작물이 아니고 활용 범위가 넓지 않아 품종 육성 및 재배 기술 연구 수준이 낮은 상황이다.
- 무 분자마커 연구 및 소포자 배양 연구 분야에서는 최근 국내 기술 수준이 급속히 향상되고 있는 추세이며, 주로 자가불화합/웅성불임성/위황병에 관련된 분자마커 개발과 약배양/소포자 배양에 관련된 기술 개발이 주를 이루고 있다.
- 최근 GSP 사업 1단계 연구를 통해 서울대학교에서 무 형질 및 근피색 관련 마커 개발을 진행하고 있으며 향후 다양한 목표 형질관련 유전자 및 분자마커를 개발하여 품종 육성을 위한 분자육종시스템을 개발, 보급 예정이다.

# 제 3 장 연 개발 수행 용 및 결

# 제 1 절 만추대 타원형 백수계 품종개발


# 1. 재료 개발

만추대성 백수계 무 품종을 개발하기 위해 기존 보유한 백수계 계통 및 일본용 재료들을 이용하여 백수계 무 재료를 육성하였다. 재료 육성에 사용된 소재는 추대성이 안정되고 근수색이 백수인 '봄 단무지 계통', 추대성이 안정된 '장근계 일본용 계통', 비대성이 우수하고 근미맺힘이 빠른 '삼계 계통', 근피가 깨끗하고 비대가 빠른 '남방계 계통' 등 기존 보유 계통들을 이용하여 분리세대(F2)를 만들고, 매년 봄, 가을 재배 시험을 통해 목적에 부합하는 개체를 선발하였다(그림 1~4). 선발된 모본은 인공교배를 통해 자가수분하여 계통 육성을 진행하였다. 봄 재배 시험은 '봄 단무지 계통'과 '삼계 계통', '장근계 일본용 계통'과 '삼계 계통' 또는 '남방계 계통'의 분리세대에서 추대성이 안정적이고 저온신장력이 우수한 장근계 백수계 개체를 선발하고, 근장은 짧으나 추대성이 안정적이고 저온비대성과 근미맺힘이 우수한 단근계 백수계 개체를 선발하였다. 봄 시험에서 선발된 개체는 저온보관 시설을 이용하여 저온처리 시킨 후 가을에 교배를 통해 종자를 확보하였다. 가을 재배 시험은 봄에 사용 된 재료 및 세대진전 중인 재료들을 이용하여 생리장해가 안정적이며 근수색이 순백색인 개체를 선발하여 세대진전 하였다.





그림 1. 1차년 선발 개체



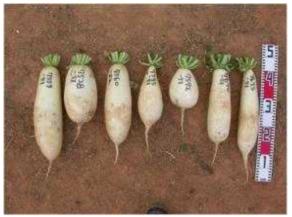



그림 2. 2차년 선발 개체





그림 3. 3차년 선발 개체





그림 4. 4차년 선발 개체

# 2. 조합 작성 및 시교 종자 생산

# 가. 신규 조합 작성

중국용 백수계 품종 개발을 위해 기 육성된 계통들을 이용하여 신규 조합을 작성하고 F1 종 자를 확보하여 국내와 중국 현지 성능검정을 진행하였다. 중국 백수계 시장은 '漢白玉' 타입의 만추대성 백수계 무 시장과 'R-301' 타입의 남방 백수계 무 시장으로 세분화되고 있어 그에 맞는 조합을 각각 작성하였다. 만추대성 백수계 조합은 추대가 안정적이고 근피가 깨끗한 장근계 계통과 근미맺힘이 우수하고 생리장해가 안정적인 백수 계통을 이용하였고. 남방 백수계 조합은 근 비대력과 내서성이 우수하며 생리장해가 안정적인 백수계 계통을 이용하였다. 1차년부터 4차년까지 기 보유한 계통 및 육성 중인 계통을 이용하여 표 1과 같이 각 년도별로 신규조합을 생산하고 국내 및 중국 현지 성능검정을 수행하였다. 신규 조합은 인공교배 및 소형 망실을 이용하여 생산을 진행하였다.

표 1. 년차별 신규 조합 작성 내역

| 년도      | 목표     | 달성도(%)  | 달성도(%) 구분 신규조합 수 |      | 합계    |
|---------|--------|---------|------------------|------|-------|
| 1.511.3 | 50조합   | 126%    | 봄 백수계            | 43조합 | 63조합  |
| 1차년     | 502. 협 | 120/0   | 남방 백수계           | 20조합 | 00고 명 |
| 2차년     | 70조합   | 120%    | 봄 백수계            | 72조합 | 84조합  |
|         | 70年曾   | 12070   | 남방 백수계           | 12조합 | 04고 협 |
| 3차년     | 100조합  | 127%    | 봄 백수계            | 92조합 | 127조합 |
|         |        |         | 남방 백수계           | 35조합 | 127年日 |
| 45k13   | 150ス하  | 01.2007 | 봄 백수계            | 81조합 | 137조합 |
| 4차년     | 150조합  | 91.30%  | 남방 백수계           | 56조합 | 101五日 |
| 소계      | 370조합  | 111%    |                  |      | 411조합 |

### 나. 시교 종자 생산

각 년차별로 국내 성능검정과 중국 현지 재배 시험을 수행하여 선발된 조합에 대해서 시교용 종자 생산을 진행하였다. 1차년에 선발된 조합, RA12-125와 27008 조합은 2차년 상반기에 종자를 생산하여 종자를 공급 하였고, 2차년에 선발된 37010은 3차년에 연구소에서 시교용 종자를 생산하여 종자를 공급 하였다. 시교용 종자 생산은 소형 망실에 정식하고 매개충(벌)을 이용하여 생산을 진행하고 종자 생산성도 확인하였다.

#### 3. 국내 및 중국 현지 재배 시험

국내 재배 시험은 연구소에서 봄/가을로 성능검정을 수행하여 봄에는 만추대성 백수무 조합을, 가을은 생리장해가 안정적이며 품질이 우수한 조합을 선발하였다. 1차년부터 4차년까지 매년 연구소 성능검정을 바탕으로 중국 현지 시험용 종자를 선발하였으며, 중국 타켓 지역에 따라 국내 강원도 여름 작형과 제주도 월동 작형에서 성능검정을 수행하여 예비 시험을 진행하였다. 중국 현지 재배 시험은 연구소에서 선발한 조합을 바탕으로 현지 성능검정을 수행하여 조합을 선발하였다.

# 가. 1차년도 결과

1차년도 연구소 성능검정은 봄 하우스와 노지 작형, 그리고 가을 노지 작형으로 재배시험을 실시하였으며 중국 시험은 봄, 가을 작형으로 현지 성능검정을 수행하였다. 국내 및 중국 봄 성능검정은 기존 조합을 이용하여 수행하였고 가을은 신규로 작성된 조합과 기존 조합을 이용하여 재배 시험을 진행하였다.

#### (1) 국내 재배 시험 결과

### (가) 봄 하우스 성능검정 결과

기 보유한 백수계 조합 중 추대성이 안정적인 조합을 선별하여 표 2와 같이 봄 하우스 성능 검정을 수행하였고, 그 결과 근 비대력과 근미맺힘 등 근형이 우수한 5조합을 선발하였다.

표 2. 1차년 봄 하우스 성능검정 경종 개요

| 파종    | 2013. 02. 06   | 조사             | 2013. 04. 30 |
|-------|----------------|----------------|--------------|
| 공시 조합 | 특신백옥춘(북경세농),天海 | 鳴春(대일교배) 등 대비吾 | 품종 포함하여 33조합 |

선발 조합명은 RA12-081, RA12-083, RA12-085, RA12-125, 61230으로 기본적으로 추대성이 대비품종(특신백옥춘 등) 보다 안정적인 특성을 보였으며 근형 및 생리장해 등이 안정적으로 나타나 선발하였다. 하우스 성능검정에서 선발된 조합의 특성은 아래와 같다(표 3, 그림 5).

\* RA12-081 : 근장이 길고 근피가 깨끗하며 근수부 청색 발현이 적음.

근비대력은 대비품종에 비해 약간 저조함.

\* RA12-083 : 근비대력이 좋고, 근미 맺힘이 우수한 백수계 조합으로 추대가 안정적임.

근수부 청색이 약하게 발현.

\* RA12-085 : 근피와 근수부위의 색이 백색으로 추대가 안정적이나 근미 맺힘이 다소 저조함

\* RA12-125 : 근장은 대비품종에 비해 짧은 편이나 추대가 가장 안정적이며 근피색이 순백색으로 깨끗함. 근수부 어깨 부위가 다소 넓음

\* 61230 : 엽수가 다소 많은 편이나 근형과 근장이 좋고 근 비대력이 우수함. 추대성과 생리장해가 안정적이며 근피 및 근수부가 순백색으로 깨끗함.

표 3. 1차년 연구소 봄 하우스 성능검정 결과

| No       | 근장   | į   | 구경(cn | n)  | 엽장   | 엽수 | 근중    | 엽중  | 추대   | 근수       | 바람 | 기타  |
|----------|------|-----|-------|-----|------|----|-------|-----|------|----------|----|-----|
| INO      | (cm) | 상   | 중     | 하   | (cm) | 日十 | (g)   | (g) | (cm) | 색        | 들이 | 174 |
| 특신백옥춘    | 34   | 5.3 | 7.1   | 5.2 | 43   | 21 | 1,400 | 230 | 0    | LG       | 3  |     |
| RA12-081 | 36   | 4.5 | 6.1   | 4.8 | 47   | 19 | 1,215 | 240 | 0    | W∼<br>LG | 2  |     |
| RA12-083 | 33   | 4.6 | 6.1   | 4.6 | 49   | 18 | 1,160 | 250 | 0    | LG~<br>W | 3  |     |
| RA12-085 | 35   | 4.9 | 6.0   | 5.1 | 51   | 21 | 1,180 | 320 | 0    | W        | 2  |     |
| RA12-125 | 29   | 5.5 | 5.7   | 4.8 | 43   | 23 | 1,030 | 250 | 0    | W        | 2  |     |
| 61230    | 34   | 5.6 | 6.3   | 5.2 | 43   | 33 | 1,310 | 347 | 0    | W        | 1  |     |

\* 근수색 ; W-순백색. LG-연한 녹색. G-녹색. DG-진한 녹색

\* 바람들이 : 1 (없거나 조금 있다) ~ 9 (매우 많다)

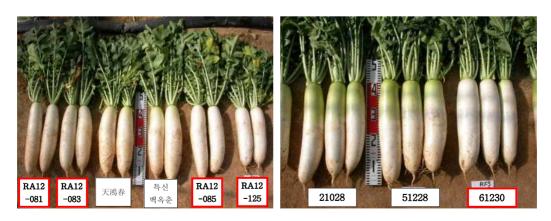


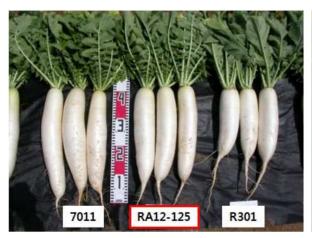

그림 5. 1차년 봄 하우스 성능검정 선발 조합

# (나) 봄 노지 성능검정 결과

봄 노지 성능검정은 봄 하우스에 사용된 조합 외에 기 보유한 조합을 추가하여 표 4와 같이 재배 시험을 수행하였고, 그 결과 봄 하우스에서 선발된 2조합(RA12-125, 61230)만이 봄 노지에서 선발되었다. RA12-125조합은 봄 하우스와 마찬가지로 만추대성 조합으로 근장이 약간 짧지만 근피, 근수색 등이 우수하고 생리장해(바람들이, 열근, 공동 등)가 안정적으로 나타났고, 61230 조합도 만추대성으로 근수색이 RA12-125보다 더 순백색으로 나타났으며 비대력과 근미맺힘이 우수하여 선발하였다(표 5, 그림 6).

표 4. 1차년 봄 노지 성능검정 경종 개요

| 파종    | 2013. 04. 18  | 조사              | 2013. 06. 28 ~ 07. 03 |
|-------|---------------|-----------------|-----------------------|
| 공시 조합 | 특신백옥춘(북경세농),R | -301(북경세농) 등 대비 | 품종 포함하여 191조합         |


표 5. 1차년 연구소 봄 노지 성능검정 결과

| No =     | 근장   | 근   | 경 (cr | n)  | 엽장   | 엽수 | 근중    | 엽중  | 추대   | 근수 | 바람 | 기타  |
|----------|------|-----|-------|-----|------|----|-------|-----|------|----|----|-----|
| 110      | (cm) | 상   | 중     | 하   | (cm) | ДΙ | (g)   | (g) | (cm) | 색  | 들이 | 714 |
| 특신백옥춘    | 42   | 6.9 | 7.5   | 6.3 | 40   | 18 | 1,593 | 260 | 68   | LG | 3  |     |
| R-301    | 29   | 7.1 | 6.8   | 5.4 | 35   | 15 | 807   | 380 | 86   | W  | 2  | 판엽  |
| RA12-125 | 33   | 7.9 | 7.3   | 6.1 | 34   | 22 | 1,280 | 120 | 0    | W  | 2  |     |
| 61230    | 35   | 7.7 | 7.9   | 6.5 | 39   | 31 | 1,460 | 312 | 0    | W  | 1  |     |

\* 추대 조사 시기는 2013. 07. 03 기준으로 나타난 자료 임

\* 근수색; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 바람들이 : 1 (없거나 조금 있다) ~ 9 (매우 많다)



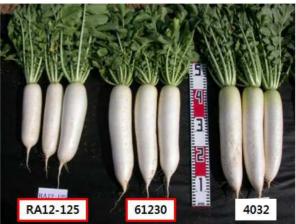



그림 6. 1차년 봄 노지 성능검정 선발 조합

# (다) 가을 노지 성능검정 결과

① 13년 상반기에 신규로 작성한 조합과 기존 조합을 이용하여 표 6과 같이 가을 성능검정을 수행하였다. 봄 백수계 조합의 가을 시험은 14년 봄 시험을 수행하기 위한 사전 테스트로 근 비대력과 근미맺힘, 근수색 등 외부 품질이 우수하고 열근 및 바람들이 등 생리장해가 안정적인 조합을 예비 선발하였다. 선발된 조합은 RA12-125를 포함하여 총 10조합을 예비 선발하였으며(표 7, 그림 7), 이 조합들은 만추대성 여부를 확인하기 위해 14년 국내 및 중국 현지 봄성능검정용 조합으로 공시하였다.

표 6. 1차년 가을 성능검정 경종 개요

| 파종    | 2013. 09. 04    | 조사                      | 2013. 11. 07 ~ 11      |
|-------|-----------------|-------------------------|------------------------|
|       | 봄 백수계 대비품종인 R-  | -301, 특신백옥춘(북경서         | 세농)과 남방 백수계 대비         |
| 공시 조합 | 품종인 快美 007(세미니스 | 는), Everest(Takii), Tro | opic Ivory(Biotong) 등을 |
|       | 포함하여 총 143조합 공시 | ]                       |                        |

표 7. 1차년 연구소 가을 성능검정 결과 (봄 백수계 예비 선발 조합)

| No       | 근장<br>(cm) | 근<br>상 | ·경 (cr. | n)<br>하 | 엽장<br>(cm) | 엽수 | 근중<br>(g) | 엽중<br>(g) | 근수색         | 바람<br>들이 |
|----------|------------|--------|---------|---------|------------|----|-----------|-----------|-------------|----------|
| 白光       | 28         | 6.7    | 8.7     | 7.8     | 38         | 17 | 1,287     | 160       | LG          | 3        |
| R-301    | 27         | 6.7    | 8.1     | 6.5     | 29         | 22 | 1,083     | 163       | W           | 2        |
| RA12-125 | 28         | 6.9    | 7.7     | 7.0     | 40         | 25 | 1,187     | 313       | W           | 2        |
| 37010    | 31         | 6.6    | 7.7     | 6.9     | 38         | 25 | 1,327     | 240       | $W \sim LG$ | 2        |
| 37011    | 33         | 7.2    | 8.5     | 7.1     | 47         | 26 | 1,587     | 400       | W~LG        | 2        |
| 37022    | 25         | 5.5    | 7.8     | 6.8     | 31         | 16 | 947       | 140       | W           | 2        |
| 37056    | 24         | 5.0    | 7.2     | 6.3     | 30         | 17 | 740       | 113       | $W\sim LG$  | 3        |
| 37061    | 25         | 4.9    | 6.4     | 5.3     | 26         | 15 | 660       | 73        | $W\sim LG$  | 2        |
| 37066    | 29         | 6.5    | 8.5     | 6.9     | 38         | 24 | 1,193     | 163       | LG          | 6        |
| 37067    | 31         | 6.5    | 8.6     | 7.2     | 33         | 21 | 1,353     | 147       | W           | 3        |
| 37071    | 27         | 6.0    | 7.6     | 6.2     | 34         | 18 | 927       | 160       | w~LG        | 3        |
| 37072    | 31         | 5.1    | 7.2     | 6.4     | 31         | 16 | 933       | 127       | w~LG        | 5        |
| 華盛春      | 29         | 5.3    | 7.5     | 6.7     | 32         | 18 | 993       | 133       | LG          | 4        |

\* 근수색; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 바람들이 : 1 (없거나 조금 있다) ~ 9 (매우 많다)



그림 7. 1차년 가을 성능검정 선발 조합 (만추대 백수계)

② 남방 백수계 조합은 중국 남부지역의 남방계 타입의 백수무를 타겟으로 내서성과 생리장해가 우수하고 근형과 비대력이 우수한 조합을 선발하기 위해 가을 성능검정을 수행하였다. 시험 경종개요는 표 6과 같이 봄 백수계 시험과 동일한 일정으로 진행하였으며, 중국뿐만 아니라동남아 지역 개발도 확대하기 위하여 태국 등 동남아 지역에서 우점하고 있는 품종들을 대비품종으로 공시하였다. 시험 결과 기존 동남아 지역으로 개발 진행 중인 27008 조합 외에 신규 8조합을 선발하였다(표 8, 그림 8).

표 8. 1차년 연구소 가을 성능검정 결과 (남방 백수계 선발 조합)

| No           | 근장   | ī   | 근경 (cm | 1)  | 엽장   | 엽수 | 근중    | 엽중  | 근수색  | 바람 |
|--------------|------|-----|--------|-----|------|----|-------|-----|------|----|
| 110          | (cm) | 상   | 중      | 하   | (cm) |    | (g)   | (g) |      | 들이 |
| Everest      | 28   | 5.7 | 8.0    | 6.3 | 31   | 14 | 1,033 | 113 | LG~W | 1  |
| Tropic Ivory | 32   | 5.4 | 7.7    | 6.4 | 28   | 18 | 1,073 | 120 | LG~W | 7  |
| 快美 007       | 26   | 5.7 | 7.9    | 6.5 | 27   | 19 | 1,007 | 93  | LG~W | 2  |
| 27008        | 23   | 5.7 | 7.2    | 6.4 | 26   | 13 | 693   | 67  | LG~W | 3  |
| 37106        | 27   | 6.4 | 7.9    | 6.6 | 29   | 15 | 973   | 93  | LG~W | 3  |
| 37112        | 25   | 6.2 | 7.5    | 6.9 | 34   | 17 | 880   | 167 | W    | 2  |
| 37116        | 27   | 6.6 | 9.4    | 8.4 | 41   | 13 | 1,267 | 200 | LG   | 4  |
| 37122        | 26   | 6.2 | 8.4    | 7.8 | 31   | 16 | 1,080 | 113 | LG~W | 3  |
| 37124        | 25   | 5.2 | 8.5    | 7.7 | 29   | 12 | 1,000 | 93  | LG~W | 1  |
| 37136        | 24   | 5.9 | 7.5    | 6.8 | 25   | 14 | 833   | 73  | LG~W | 3  |
| 37144        | 24   | 5.3 | 6.7    | 6.1 | 25   | 15 | 707   | 67  | LG~W | 3  |
| 37146        | 25   | 5.9 | 7.5    | 6.7 | 25   | 19 | 767   | 93  | LG~W | 3  |



그림 8. 1차년 가을 성능검정 선발 조합 (남방 백수계)

# (2) 중국 현지 재배 시험 결과

(가) 湖北성 武漢 봄 재배 시험 결과

중국용 봄 백수계 품종을 개발하기 위해 기존 보유 조합 및 대비품종 R-301(북경세농)과 한백옥 품종을 포함하여 102조합을 공시하여 중국 현지에서 시험을 진행하였다. 2013년 03월 08일 파종하여 현지 재배 방식에 따라 재배 관리되었고, 2013년 05월 12일부터 15일까지 현지조사를 실시하였다. 조사 결과 국내 봄 하우스에서 선발된 조합과 동일한 RA12-125(표 3, 그림 5 참조)을 포함하여 4조합을 선발하였으나, 거래처와 협의하여 최종 RA12-125조합만 선발하여 14년 시교 종자를 공급하기로 결정하였다(그림 9).








그림 9. 1차년 중국 武漢 봄 재배 시험 결과

## (나) 湖北성 武漢 가을 재배 시험 결과

중국 현지 가을 재배 시험은 연구소 봄 작형에서 선발한 조합과 신규 작성한 조합을 포함하여 100조합을 공시하여 2013. 09월 21일 파종하고 2013년 12월 08일부터 11일까지 조사를 실시하였다. 중국 가을 시험은 봄 백수계 조합과 남방 백수계 조합을 공시하여 봄 백수계 조합은 3조합 예비선발, 남방 백수계 3조합을 선발하였다. 봄 백수계 조합은 13년 봄 연구소에서 선발한 RA12-125와 61230외에 신규 조합 37010을 예비 선발하였으며 그 중 61230은 생산성 문제로 도태하기로 결정하였고, 신규 조합인 37010은 14년 봄 시험을 통해 추대성 및 근 특성 재확인하기로 결정하였다. 남방 백수계는 13년 가을에 선발되었던 조합들 중 27008, 37112, 37124이 선발되었다(그림 10).

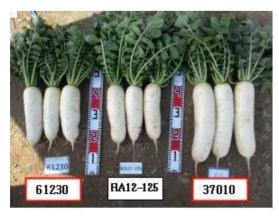





그림 10. 1차년 중국 武漢 가을 재배 시험 결과

# (3) 1차년 시교 조합 선발

국내 성능검정 및 중국 현지 시험을 통해 중국 현지 시교 사업을 진행할 조합을 최종 선발하였다. 시교 조합으로 선발된 조합은 봄 백수계 RA12-125로 중국 우한, 하얼빈, 북경에서 시교 사업을 진행하기로 결정하였고, 남방 백수계인 27008은 중국 광정우에서 시교 사업을 진행하기로 결정하였다. 시교 조합의 특성은 아래와 같다.

- (가) RA12-125: 근장이 기존 한백옥 품종보다 다소 짧으나(24~28cm), 근피가 깨끗하고 비대가 양호하며 근미 맺힘이 좋아 전체적으로 H형의 근형을 나타내고, 근수색이 백색으로 한백옥보다 좋고 만추대성 위황병 저항성 품종이다
- (나) 27008 : 남방 백수계 조합으로 잎은 판엽계이며 엽장이 짧고 엽수가 적으며, 내서성이 우수하고 비대성과 근미맺힘이 빠른 특성을 지닌 품종이다.

# 나. 2차년도 결과

1차년도 결과를 바탕으로 2차년도 상반기 시험을 설계하여 국내 및 중국 현지 재배 시험을 진행하였고, 상반기에 생산된 신규 조합을 이용하여 하반기 시험을 수행하였다. 시험은 1차년도 와 마찬가지로 국내 연구소 봄 하우스, 노지 작형, 그리고 가을 작형으로 재배 시험을 실시하였고 중국 현지 봄, 가을 작형으로 재배 시험을 수행하여 각 작형에서 우수 조합을 선발하였다.

# (1) 국내 재배 시험 결과

#### (가) 봄 하우스 성능검정 결과

13년 가을 연구소 성능검정에 사용된 조합 중 만추대성으로 예상되는 조합을 이용하여 표 9 와 같이 봄 하우스 시험을 수행하였다.

표 9. 2차년 봄 하우스 성능검정 경종 개요

| 파종    | 2014. 02. 05          | 조사              | 2014. 05. 02 |    |
|-------|-----------------------|-----------------|--------------|----|
| 공시 조합 | 특신백옥춘(북경세농), 白光<br>조합 | (팜한농), 圣農雪玉(北京圣 | 先福農种子) 포함하여  | 39 |

그 결과 13년에 봄 작형에서 선발되었던 RA12-125와 61230, 가을 작형에 예비 선발되었던 37010, 37011, 37022, 37067이 선발되었으며 그 외에 37014, 37060을 추가로 선발하여 총 8조합을 만추대성 백수계 조합으로 선발하였다. 선발된 조합들은 공통적으로 추대가 안정적으로 나타났으며 근 비대력과 근미 맺힘이 양호하였고, 근피색이 백색인 특성을 보여 선발하였다(표10, 그림 11).

표 10. 2차년 봄 하우스 연구소 성능검정 결과

| No. 근기   | 근장   | ī   | 근경 (cm | 1)  | 엽장   | 엽수  | 근중    | 엽중  | 근수색   | 생리   |
|----------|------|-----|--------|-----|------|-----|-------|-----|-------|------|
| INO.     | (cm) | 상경  | 중경     | 하경  | (cm) | (메) | (g)   | (g) | - 七十年 | 장해   |
| 특신백옥춘    | 33   | 6.7 | 6.8    | 5.5 | 52   | 20  | 1,173 | 373 | W     | 공동 2 |
| 圣農雪玉     | 40   | 6.6 | 7.4    | 6.3 | 51   | 20  | 1,560 | 467 | W∼LG  | 안정   |
| 61230    | 31   | 6.8 | 7.6    | 7.0 | 39   | 26  | 1,273 | 200 | W     | 안정   |
| RA12-125 | 27   | 7.2 | 7.0    | 5.5 | 47   | 21  | 993   | 340 | W     | 안정   |
| 37010    | 30   | 6.7 | 7.3    | 6.5 | 38   | 28  | 1,213 | 333 | W∼LG  | 안정   |
| 37011    | 29   | 7.0 | 7.2    | 6.1 | 43   | 31  | 1,113 | 393 | W∼LG  | 안정   |
| 37014    | 29   | 7.7 | 8.1    | 6.5 | 48   | 27  | 1,373 | 400 | W∼LG  | 안정   |
| 37022    | 33   | 6.8 | 7.5    | 6.1 | 56   | 23  | 1,260 | 433 | W     | 안정   |
| 37060    | 32   | 6.8 | 7.1    | 7.4 | 53   | 26  | 1,347 | 467 | W∼LG  | 안정   |
| 37067    | 33   | 7.5 | 7.4    | 6.0 | 59   | 25  | 1,393 | 467 | W∼LG  | 안정   |

\* 근수색 ; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다)



그림 11. 2차년 봄 하우스 연구소 성능검정 결과

조农雪玉 37067 특신백옥춘

圣衣雪玉 37060 특신백옥춘

# (나) 봄 노지 성능검정 결과

봄 노지는 봄 하우스에 사용된 조합 외에 대비품종 및 조합을 추가하여 표 11과 같이 성능 검정을 수행하였다. 시험 결과 하우스에서 선발되었던 조합 중 RA12-125, 61230, 37010, 37022, 4조합이 봄 노지에서도 선발되었으며, 추가로 37043 조합이 선발되었다. 선발된 조합들은 기본 적으로 대비품종인 R-301, 특신백옥춘(북경세농)과 대비하여 만추대성으로 원예적 형질과 생리 장해성이 안정적으로 나타나 선발하였다(표 12, 그림 12).

표 11. 2차년 봄 노지 성능검정 경종 개요

| 파종      | 2014. 04. 18                  | 조사               | 2014. 06. 23  |
|---------|-------------------------------|------------------|---------------|
| 공시 조합   | R-301, 특신백옥춘(북경세 <sup>-</sup> | 동), 白光(팜한농), 圣農雪 | 玉(北京圣先福農种子) 포 |
| 0 / 2 8 | 함하여 84조합                      |                  |               |

표 12. 2차년 봄 노지 연구소 성능검정 결과

| No.      | 근장   |     | 근경 (cm) | )   | 엽장   | 근중    | 추대   | 근수색   | 생리   |
|----------|------|-----|---------|-----|------|-------|------|-------|------|
| NO.      | (cm) | 상경  | 중경      | 하경  | (cm) | (g)   | (cm) | - 七千年 | 장해   |
| R-301    | 26   | 6.9 | 7.7     | 6.6 | 39   | 930   | 88   | W     | 열근 2 |
| 특신백옥춘    | 41   | 7.6 | 8.6     | 7.2 | 48   | 1,855 | 1    | LG    | 안정   |
| 61230    | 38   | 8.6 | 8.7     | 6.2 | 41   | 1,715 | 0    | W     | 안정   |
| RA12-125 | 35   | 8.1 | 8.5     | 6.8 | 37   | 1,310 | 0    | W     | 열근 1 |
| 37010    | 37   | 7.9 | 8.2     | 6.8 | 39   | 1,615 | 0    | W     | 열근 1 |
| 37022    | 45   | 7.6 | 8.5     | 6.1 | 45   | 1,915 | 0    | W~LG  | 곡근 1 |
| 37043    | 35   | 7.6 | 9.0     | 6.7 | 40   | 1,700 | 15   | W~LG  | 안정   |

\* 근수색 ; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색 \* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다)

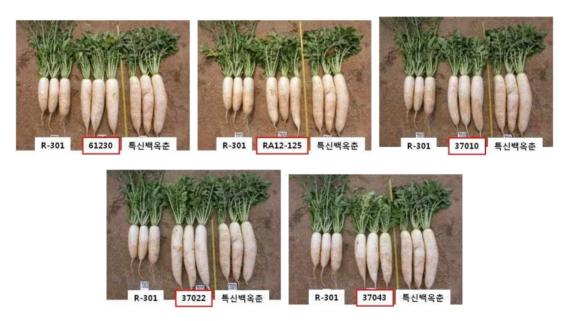



그림 12. 2차년 연구소 봄 노지 성능검정 결과

## (다) 가을 성능검정 결과

14년 신규로 작성한 봄 백수계 72조합, 남방 백수계 12조합을 포함하여 표 13과 같이 가을 성능검정을 수행하였다.

표 13. 가을 성능검정 경종 개요

|    | 파종    | 2014. 09. 01                              | 조사 | 2014. 10. 29 (남방 백수계)       2014. 11. 04 (봄 백수계) |
|----|-------|-------------------------------------------|----|--------------------------------------------------|
| 공시 | 남방백수계 | 대비품종 Everest(Takii)<br>(KNOWN-YOU seed) 3 |    | Biotong), 7007(세미니스), 永祥                         |
| 조합 | 봄 백수계 | 대비품종 특신백옥춘, R·<br>(北京圣先福農种子) 포함           | ,  | 白光(팜한농), 圣農雪玉                                    |

① 남방 백수계 성능검정 결과 13년 가을 선발되었던 37116, 37122, 37144 (그림 8)이 원예적 특성이 우수하여 14년 재 선발하였으며, 신규로 8조합, 47258, 47276, 47279, 47282, 47290, 47291, 47295, 47306을 선발하였다(표 14, 그림 13). 남방 백수계로 선발된 조합들은 중국뿐만 아니라 동남아 지역도 품종 개발을 확대하기 위해 태국 거래처에 종자를 전달하였다.

표 14. 2차년 연구소 가을 성능검정 결과 (남방 백수계)

| No.   | 근장   | 7   | 근경 (cm | )   | 엽장   | 엽수 | 근중  | 엽중  | 근수   | 생리            |
|-------|------|-----|--------|-----|------|----|-----|-----|------|---------------|
| INO.  | (cm) | 상경  | 중경     | 하경  | (cm) | 百十 | (g) | (g) | 색    | 장해            |
| 7007  | 25   | 5.5 | 7.1    | 5.4 | 43   | 15 | 795 | 190 | W    | 바람 3<br>/공동 1 |
| 永祥    | 27   | 5.8 | 7.5    | 6.4 | 43   | 11 | 925 | 150 | W    | 바람 2          |
| 37116 | 26   | 5.4 | 7.8    | 6.2 | 48   | 10 | 975 | 200 | W∼LG | 바람 3          |
| 37122 | 30   | 5.1 | 6.8    | 5.0 | 33   | 13 | 875 | 125 | W∼LG | 공동 2          |
| 37144 | 31   | 5.6 | 6.9    | 5.7 | 37   | 14 | 950 | 175 | W~LG | 바람 3<br>/공동 1 |
| 47258 | 31   | 5.8 | 6.6    | 5.1 | 48   | 18 | 950 | 300 | W    | 안정            |
| 47276 | 30   | 5.4 | 6.9    | 5.0 | 38   | 17 | 950 | 188 | W    | 바람 1<br>/공동 1 |
| 47279 | 26   | 6.1 | 7.3    | 5.9 | 40   | 15 | 925 | 200 | W    | 안정            |
| 47282 | 33   | 5.1 | 6.2    | 4.8 | 35   | 16 | 825 | 125 | W    | 바람 3          |
| 47290 | 30   | 5.1 | 6.9    | 5.4 | 37   | 17 | 950 | 175 | W    | 공동 1          |
| 47291 | 32   | 5.6 | 6.8    | 5.3 | 34   | 18 | 900 | 150 | W    | 바람 3          |
| 47295 | 30   | 5.3 | 7.0    | 5.4 | 39   | 13 | 950 | 175 | W    | 바람 1<br>/공동 1 |
| 47306 | 27   | 5.2 | 7.6    | 6.7 | 45   | 11 | 975 | 175 | W∼LG | 바람 1          |

<sup>\*</sup> 근수색 ; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색 \* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다) (바람 - 바람들이)

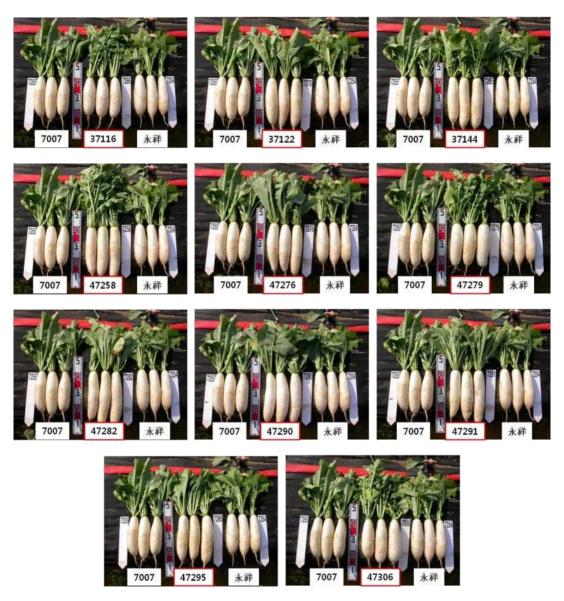



그림 13. 2차년 가을 연구소 성능검정 결과 (남방 백수계)

② 가을 성능검정을 통해 봄에 선발되었던 RA12-125, 61230, 37010이 봄 작형에서 나타난 근 특성과 동일한 특성을 보였으며 생리장해(바람들이, 공동, 열근 등)가 안정적으로 나타남을 확인하였다. 신규 선발된 조합은 총 12조합으로 대비품종인 R-301 대비 근피색이 백색으로 근비대력과 근미맺힘이 우수하고 생리장해가 안정적인 조합으로 선발하였다(표 15, 그림 14). 이번 가을에 선발된 신규 조합들은 15년 봄 성능검정을 통해 추대성을 확인한 후에 최종 선발하기로 하였다.

표 15. 2차년 가을 연구소 성능검정 결과 (봄 백수계)

| No       | 근장   | ī   | 근경 (cm | ı)  | 엽장   | 엽수  | 근중    | 엽중  | 근수   | 생리        |
|----------|------|-----|--------|-----|------|-----|-------|-----|------|-----------|
| No.      | (cm) | 상경  | 중경     | 하경  | (cm) | (메) | (g)   | (g) | 색    | 장해        |
| R-301    | 31   | 5.9 | 8.2    | 6.4 | 33   | 20  | 1,180 | 165 | W    | 안정        |
| R-501    | 31   | 6.2 | 8.4    | 6.9 | 36   | 23  | 1,353 | 260 | W    | 바람 3/열근 1 |
| RA12-125 | 35   | 6.4 | 7.6    | 6.2 | 41   | 24  | 1,315 | 260 | W    | 안정        |
| 61230    | 26   | 6.2 | 7.1    | 6.0 | 29   | 20  | 880   | 93  | W    | 안정        |
| 37010    | 32   | 6.3 | 7.9    | 6.4 | 34   | 22  | 1,305 | 205 | W    | 안정        |
| 47035    | 34   | 6.5 | 7.9    | 5.9 | 38   | 23  | 1,340 | 260 | W    | 기근 1      |
| 47036    | 33   | 6.3 | 7.9    | 5.8 | 38   | 22  | 1,245 | 220 | W    | 안정        |
| 47053    | 23   | 6.7 | 8.7    | 7.6 | 39   | 24  | 1,170 | 255 | W    | 안정        |
| 47058    | 33   | 5.7 | 7.7    | 6.6 | 38   | 22  | 1,290 | 225 | W~LG | 안정        |
| 47068    | 23   | 6.9 | 8.6    | 6.9 | 41   | 26  | 1,055 | 230 | W    | 바람 2      |
| 47073    | 34   | 6.6 | 8.1    | 6.5 | 42   | 24  | 1,380 | 255 | W    | 안정        |
| 47075    | 30   | 6.2 | 7.5    | 6.2 | 40   | 24  | 1,140 | 230 | W∼LG | 안정        |
| 47143    | 24   | 6.6 | 9.0    | 7.5 | 41   | 26  | 1,170 | 275 | W    | 바람 3      |
| 47147    | 23   | 6.3 | 8.5    | 7.2 | 33   | 25  | 980   | 235 | W    | 바람 4      |
| 47175    | 35   | 6.0 | 7.5    | 5.9 | 36   | 20  | 1,245 | 195 | W    | 바람 4      |
| 47186    | 32   | 7.4 | 8.6    | 6.4 | 41   | 24  | 1,515 | 245 | W    | 바람 2      |
| 47197    | 34   | 6.1 | 7.3    | 6.1 | 37   | 23  | 1,245 | 225 | W~LG | 바람 2      |

\* 근수색 ; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색 \* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다) (바람 - 바람들이)





그림 14. 2차년 가을 연구소 성능검정 결과 (봄 백수계)

### (2) 중국 현지 재배 시험 결과

#### (가) 湖北성 漢川 재배 시험

2차년도 중국 현지 재배 시험은 중국 거래처 농장을 임대하여 봄, 가을 진행하기로 결정하였고, 조사 시 거래처와 공동 선발하기로 하였다.

### ① 湖北성 漢川 봄 재배 시험 결과

중국 현지 봄 시험은 2014년 02월 15일에 파종을 하여 4월 27일부터 28일까지 조사를 실시하였다. 시험 조합은 대비품종인 漢白玉(대일종묘), R-501(북경세농)과 13년도 가을 선발 조합을 포함하여 총 27조합 공시하였다. 시험 지역의 온도가 예년에 비해 다소 낮았고, 2주간에 걸쳐 잦은 강우로 토양내 수분이 과다하였으며, 그로 인해 대부분의 조합에서 근피가 매끄럽지못하고 추대가 다소 발생하였다. 조사 결과 대비품종 대비 4조합(61230, 37010, 37072, 4044)이 추대성 및 원예적 특성이 우수하여 선발하였다(표 16, 그림 15). 4조합 중 한 조합인 61230은 1차년에 선발된 조합으로 만추대성이면서 근수색이 순백색으로 우수하였으나 근미맺힘이 느린 단점을 보였다. 37010조합은 1차년 가을 연구소 시험에서 예비선발한 조합으로 추대성이 대비품종 및 조합들 중 가장 안정적인 만추대성 조합으로 근 비대력, 근미맺힘 등 근형이 우수하였으나 근수부에 청색이 옅게 나타나는 특성을 보였으며, 37072조합은 추대성이 漢白玉과 유사하였고, 근피가 깨끗하였으나 비대력이 대비품종에 비해 약하게 나타났다. 4044조합은 漢白玉과유사한 특성을 보이는 조합으로 비대력이 漢白玉보다 우수하여 선발하였다.

표 16. 2차년 중국 현지 봄 시험 결과

| No.   | 근장<br>(cm) | 근경<br>(cm) | 엽장<br>(cm) | 추대<br>(cm) | 근피 | 근피색  | 생리장해 |
|-------|------------|------------|------------|------------|----|------|------|
| 한백옥   | 29         | 7          | 47         | 0          | 5  | W∼LG | 열근 2 |
| R-501 | 25         | 7          | 39         | 48         | 3  | W    | 안정   |
| 61230 | 32         | 7          | 31         | 0          | 4  | W    | 안정   |
| 37010 | 31         | 7          | 35         | 0          | 5  | W∼LG | 기근 2 |
| 37072 | 29         | 7          | 35         | 0          | 6  | W∼LG | 열근 2 |
| 4044  | 26         | 8          | 39         | 0          | 5  | W∼LG | 안전   |

\* 근피 : 1 (매우 좋음) - 9 (매우 나쁨)

\* 근수색 ; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다)




그림 15. 2차년도 중국 봄 현지 시험 결과

# ② 湖北성 漢川 가을 재배 시험 결과

중국 현지 가을 시험은 2014년 09월 18일 파종하여 11월 30일부터 12월 01일까지 조사를 수행하였고, 대비품종 R-301, R-501(북경세농) 포함하여 41조합을 공시하였다. 이번 가을 작황은 무 생육 후기에 전반적으로 온도가 높아 생육이 다소 빨랐으며, 이에 계획 조사 일정보다 2주

앞서 작황조사를 실시하였다. 생육 기간이 약 70일 지난 상황으로 전반적으로 비대가 많이 진전되었고, 토양의 질소 비료 성분이 많아 지상부 잎이 전체적으로 무성한 반면 칼리 비료분은 적어 몇몇 조합에서 결핍 증상이 보였다. 조사 결과 대비품종인 R-301 대비 유망 조합 37010, 47073, 2조합을 선발하였다(표 17, 그림 16). 37010조합은 연구소 및 중국 현지 봄 작황에서 우수하였던 조합으로 중국 거래처에서 15년 시교 사업을 요청하였고, 47073조합은 2차년 연구소가을 성능검정에서 예비 선발된 신 조합(그림 14)으로 기존 RA12-125조합의 생산성을 개선하기 위해 작성된 조합으로 위황병에 강하고 비대력과 근미맺힘이 양호하였다. 47073은 15년 봄시험에서 추대성 확인 후 최종 선발하기로 하였다.

표 17. 2차년 중국 가을 현지 시험 결과

| BN    | 근장   |    | 근경 (cm) | )  | 엽장   | 엽수  | 근피   | 근피색   | 생리 |
|-------|------|----|---------|----|------|-----|------|-------|----|
| DIN   | (cm) | 상경 | 중경      | 하경 | (cm) | (매) | L 47 | L 414 | 장해 |
| R-301 | 30   | 7  | 8       | 7  | 46   | 26  | 3    | W     | 안정 |
| 윽산백설  | 30   | 6  | 8       | 6  | 48   | 19  | 4    | W     | 안정 |
| 37010 | 32   | 8  | 8       | 7  | 47   | 30  | 4    | W     | 안정 |
| 47073 | 29   | 7  | 8       | 6  | 48   | 25  | 5    | W     | 안정 |

\* 근피 : 1 (매우 좋음) - 9 (매우 나쁨)

\* 근수색 ; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다)



그림 16. 2차년 중국 가을 현지 시험 결과

#### (3) 시교 사업 결과

13년도 만추대 백수계 조합으로 선발되었던 RA12-125는 14년도에 중국 거래처에서 중국 농가를 대상으로 시교 사업을 진행하였다. 재배는 북경 지역에서 실시하였으나 이형주 혼입으로

경쟁품종인 R-301보다 근 균일도가 떨어졌으나, 정상 개체는 근형 및 비대력이 우수하고 추대성이 안정되어 15년도에 재 시교 사업을 진행하기를 요청하였고, 14년 당사의 생산부에서 생산된 종자를 1.5kg 전달하였다.



그림 17. RA12-125 북경 시험 결과

남방 백수무로 선발한 27008 조합은 중국뿐만 아니라 동남아 지역 개발을 위해 시교 사업을 진행하였고 그 결과 중국보다 먼저 방글라데시 및 태국 지역에 판매를 진행하였다.

### (4) 2차년도 시교 조합 선발

국내 및 중국 현지 시험을 통해 중국 시교 사업을 진행할 조합을 최종 선발하였다. 선발 조합은 37010조합으로 13년 국내 및 중국 가을 시험에서 예비 선발되어 14년 국내 및 중국 봄시험을 통해 추대성 검정을 수행하였고, 만추대성 조합임을 확인하였다. 중국 거래처에서 15년 봄 시교 사업에 사용할 종자를 요청하여 14년 9월 100g을 전달하였고, 추가로 하반기에 사용할 종자 5kg을 요청하여 15년 하반기에 공급하기로 결정하였다.

37010조합의 주요 특성은 만추대 백수계 품종으로 대비품종 R-301 보다 추대가 안정적이고 위황병 강하며, 근장 30cm 전후로 비대력과 근미맺힘이 우수하고 근수부 색이 백색으로 漢白 玉보다 근피가 깨끗한 품종이다.

#### 다. 3차년도 결과

2차년도 결과를 바탕으로 3차년도 시험을 설계하여 국내 및 중국 현지 재배 시험을 수행하였다. 3차년도 국내 시험은 봄 하우스 작형을 제외하고, 중국 현지 고랭지 및 월동 작형에 맞는 조합을 선발하기 위해 국내 강원도 여름과 제주도 월동작형으로 재배 시험을 실시하여 우수 조합을 선발하였다. 중국 현지 시험은 2차년도와 같이 동일한 지역과 시기에 연구를 수행하여 우수 조합을 선발하였다.

## (1) 국내 재배 시험 결과

### (가) 연구소 봄 노지 성능검정 결과

14년 가을에 예비 시험한 봄 백수계 조합으로 15년 봄 노지 성능검정을 표 18과 같이 수행하여 추대성이 안정되고 근장 및 비대력이 우수하며 근수색이 백색인 47073과 47185 조합을 선발하였다(표 19, 그림 18). 47073조합은 2차년도 국내 가을 및 중국 가을 현지 시험에서 예비 선발된 조합으로 추대성은 중만추대성으로 R-301보다 안정적이나 漢白玉과는 유사하였다. 근형은 H 근형으로 근피는 양호하나 수확 지연 시 청색이 다소 발현하는 특성을 보였다. 47185 조합은 신규로 선발된 조합으로 추대성은 47073과 동일하였으며, H 근형으로 근수색은 백색으로 청색 발현이 없고 비대력과 근미맺힘이 우수하며 생리장해(바람들이, 열근 등)가 안정적인 특성을 보였다.

표 18. 연구소 봄 노지 경종개요

| 파종   | 2015. 04. 15                                  | 조사    | 2015. 06. 17 |
|------|-----------------------------------------------|-------|--------------|
| 대비품종 | 특신백옥춘, R-301, R-501(북경세농)<br>백설공주(Takii)외 7품종 | 시험 조합 | 140조합        |

표 19. 3차년 연구소 봄 노지 성능검정 결과

| BN      | 근장   | Ť   | 근경 (cm | )   | 근중     | 근수   | 엽장   | 엽수   | 엽중    | 생리  | 추대   |
|---------|------|-----|--------|-----|--------|------|------|------|-------|-----|------|
| DIV     | (cm) | 상   | 중      | 하   | (g)    | 색    | (cm) | (매)  | (g)   | 장해  | (cm) |
| R-301   | 27.2 | 6.0 | 5.9    | 5.1 | 933.3  | W    | 33.7 | 19.3 | 300.0 | 열근2 | 61.8 |
| RCH 812 | 42.8 | 5.2 | 6.4    | 5.5 | 1460.0 | W    | 38.0 | 18.3 | 206.7 | 안정  | 0.0  |
| 47073   | 38.0 | 6.4 | 6.2    | 5.5 | 1460.0 | W∼LG | 43.7 | 30.7 | 400.0 | 안정  | 0.0  |
| 47185   | 34.2 | 6.2 | 6.6    | 5.4 | 1426.7 | W    | 38.0 | 25.3 | 206.7 | 안정  | 0.3  |

\* 근수색 ; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다)



그림 18. 3차년 연구소 봄 노지 성능검정 결과

## (나) 강원도 여름 농가 성능검정 결과

중국 고랭지 지역을 대비하여 국내 고랭지 지역에서 예비 시험을 실시하였다. 국내 고랭지 시험 지역은 강원도 정선군 임계와 홍천군 내면에서 파종 시기를 달리하여 표 20과 같이 재배시험을 수행하였다. 시험 조합은 2차년 봄 하우스와 노지 시험에서 선발된 9조합(그림 11, 12)과 R-301과 漢白玉을 대비품종으로 하여 실시하였다.

표 20. 강원도 여름 농가 성능검정 경종개요

| 대비  | 품종 | R-301(북경세농), 汉白玉 | 시험 조합 | 61230, RA12-125, 37010, 37011, 37014, 37022, 37043, 37060, 37067 |
|-----|----|------------------|-------|------------------------------------------------------------------|
| 파종  | 임계 | 2015. 05. 28     | 조사    | 2015. 08. 11                                                     |
| म उ | 내면 | 2015. 06. 29     | 조사    | 2015. 09. 08                                                     |

① 임계 시험 결과 9조합 중 RA12-125조합이 대비품종인 R-301 대비 추대성과 생리장해(열 근, 바람들이)가 안정적이며, 비대력과 근미맺힘 또한 우수하였다(표 21, 그림19). 이 결과로 RA12-125는 중국 현지 봄 작형뿐만 아니라 고랭지 작형에서도 재배가 가능할 것으로 판단하였으며 거래처에 결과를 공유하였다.

표 21. 강원도 임계 성능검정 결과

| DM       | 근장   |     | 근경 (cm) |     | 근중     | 그스케  | 엽장   | 생리  | 추 대  |
|----------|------|-----|---------|-----|--------|------|------|-----|------|
| BN       | (cm) | 상   | 중       | 하   | (g)    | 근수색  | (cm) | 장해  | 추 대  |
| R-301    | 37.3 | 6.9 | 7.9     | 6.9 | 2306.7 | W    | 48.0 | 열근3 | 18.3 |
| RA12-125 | 41.2 | 6.9 | 7.3     | 6.6 | 2106.7 | W∼LG | 48.7 | 안정  | 0.0  |

\* 근수색 ; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다)





R-301 RA12-125

그림 19. 강원도 임계 성능검정 결과

② 내면 시험에서는 RA12-125보다 37010조합이 가장 성적이 우수하였다. RA12-125조합은 무름병 발생이 많고 근수부 열근이 다소 발생하였고 대비품종인 R-301은 내서성이 약해 근 신장 및 생육이 전반적으로 불량하였다. 대신 37010은 내서성이 우수하였으며 근장, 비대력, 근미 맺힘 등 근형이 우수하였고 근수색이 백색으로 청색이 발현되지 않았다(표 22, 그림 20). 2차년도 시교 조합으로 선발한 37010 조합에 대해서, 중국 거래처에 중국 현지 고랭지에서 시험이될 수 있도록 시험 결과를 공유하였다.

표 22. 강원도 내면 성능검정 결과

| DNI   | 근장   | -   | 근경 (cm) |     |        | 그 스 개 | 엽장   | 엽수   | 엽중    | 생리  |
|-------|------|-----|---------|-----|--------|-------|------|------|-------|-----|
| BN    | (cm) | 상   | 중       | 하   | (g)    | 근수색   | (cm) | (메)  | (g)   | 장해  |
| R-301 | 28.8 | 6.8 | 8.4     | 7.4 | 1626.7 | W     | 33.3 | 32.3 | 306.7 | 안정  |
| 汉白玉   | 46.8 | 5.7 | 7.5     | 6.5 | 2266.7 | W∼LG  | 42.7 | 26.3 | 313.3 | 열근2 |
| 37010 | 38.3 | 7.1 | 7.5     | 6.4 | 2033.3 | W     | 34.0 | 40.7 | 273.3 | 안정  |

\* 근수색 ; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다) (바람 - 바람들이)







R-301 漢白玉 37010



그림 20. 강원도 내면 성능검정 결과

# (다) 연구소 가을 성능검정 결과

15년 신규 작성하여 종자를 확보한 신규 조합(봄 백수계 92조합, 남방 백수계 35조합)을 이용하여 표 23과 같이 가을 성능검정을 수행하였다.

표 23. 가을 성능검정 경종 개요

| 파종    | 2015. 08. 28                                                 | 조사    | 2015. 11. 03 |
|-------|--------------------------------------------------------------|-------|--------------|
| 구분    | 대비품종                                                         |       | 시험조합         |
| 봄 백수계 | 특신백옥춘, R-301, R-501(북경세농)                                    | 외 6품종 | 152조합        |
| 남방계   | Everest(Takii), 永祥(Known-You)<br>Tropic Ivory(Biotong) 외 7품종 |       | 57조합         |

① 봄 백수계 가을 시험은 신규 조합을 포함하여 근형 및 생리장해 안정성 등을 예비 검정하였다. 시험 결과 3차년 봄 시험에서 선발한 47073, 47185 외에 신규로 14조합을 선발하였다 (표 24, 그림 21). 신규 선발한 조합들 중 대비품종 대비 근 신장력이 우수한 것과 근장은 다소짧으나 비대력과, 근피, 근수색 등이 우수하며 생리장해(열근, 바람들이)가 안정적인 조합을 예

비 선발하였다. 표 24. 3차년 가을 연구소 성능검정 결과\_봄 백수계

| DM    | 근장   | Ę   | 근경 (cm | )   | 근중     | 근수   | 엽장   | 엽수   | 엽중    | 생리      |
|-------|------|-----|--------|-----|--------|------|------|------|-------|---------|
| BN    | (cm) | 상   | 중      | 하   | (g)    | 색    | (cm) | (맨)  | (g)   | 장해      |
| R-301 | 35.0 | 6.8 | 7.0    | 6.4 | 1600.0 | W    | 47.7 | 30.7 | 400.0 | 공동 3    |
| 汉白玉   | 38.7 | 5.4 | 6.8    | 6.0 | 1570.0 | LG   | 54.7 | 21.7 | 400.0 | 바람2/공동2 |
| 57023 | 33.7 | 6.4 | 6.9    | 5.6 | 1493.3 | LG   | 49.7 | 21.3 | 286.7 | 공동 2    |
| 57024 | 36.3 | 5.5 | 5.6    | 5.4 | 1313.3 | W    | 48.3 | 23.3 | 290.0 | 안정      |
| 57027 | 37.0 | 5.9 | 5.8    | 5.3 | 1346.7 | W    | 50.7 | 28.0 | 400.0 | 공동 1    |
| 57036 | 30.7 | 6.9 | 7.5    | 6.3 | 1486.7 | W    | 44.0 | 20.7 | 233.3 | 공동 2    |
| 57048 | 28.0 | 6.9 | 8.0    | 7.4 | 1510.0 | W    | 41.7 | 31.0 | 630.0 | 바람 3    |
| 57049 | 25.0 | 5.5 | 8.2    | 8.4 | 1400.0 | W    | 37.0 | 26.3 | 276.7 | 안정      |
| 57057 | 26.7 | 6.4 | 7.8    | 7.1 | 1606.7 | W    | 46.3 | 35.0 | 253.3 | 안정      |
| 57060 | 38.3 | 5.7 | 6.6    | 6.1 | 1593.3 | W    | 52.3 | 20.3 | 376.7 | 공동 1    |
| 57066 | 36.7 | 6.0 | 7.0    | 6.5 | 1666.7 | W~LG | 57.3 | 18.0 | 420.0 | 안정      |
| 57071 | 34.7 | 6.7 | 7.0    | 6.9 | 1686.7 | W    | 48.7 | 29.0 | 393.3 | 바람 2    |
| 57141 | 33.3 | 6.0 | 7.3    | 6.1 | 1633.3 | W∼LG | 45.0 | 26.3 | 360.0 | 열근 1    |
| 57148 | 36.0 | 6.8 | 6.8    | 5.8 | 1653.3 | W    | 49.7 | 28.0 | 373.3 | 안정      |
| 57152 | 34.3 | 6.3 | 6.6    | 6.4 | 1600.0 | W∼LG | 47.7 | 30.0 | 366.7 | 안정      |
| 57157 | 34.3 | 6.0 | 6.5    | 5.0 | 1373.3 | W    | 52.0 | 32.3 | 466.7 | 안정      |

<sup>\*</sup> 근수색 ; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

<sup>\*</sup> 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다) (바람 - 바람들이)

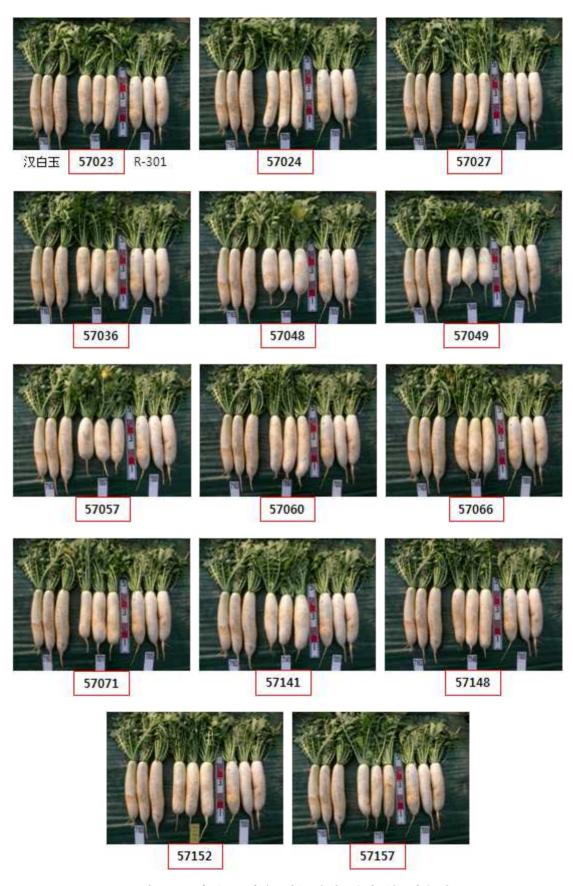



그림 21. 3차년도 가을 성능검정 결과\_봄 백수계

② 남방 백수계 시험은 중국뿐만 아니라 동남아 시장도 연계하여 품종 개발을 진행하고자 태국 거래처 2회사를 초청하여 공동 조사를 실시하였으며, 가능성이 보이는 조합을 선발하였다. 태국 A사는 4조합, 47258, 47261, 37144, 47295 조합을 선발하였고(표 25, 그림 22), 태국 B사는 6조합, 47258, 47261, 47270, 47282, 47291, 37126 조합을 선발하였다(표 25, 그림 23). 태국 현지에서 시험이 될 수 있도록, 태국 A사가 선발한 조합은 각 조합당 25ml 씩, 태국 B사는 각조합당 50g 씩 종자를 전달하였다. 태국 A사와 B사가 공통으로 선발한 47258, 47261, 2조합이품종으로 개발 가능성이 높아 보였다.

표 25. 3차년도 가을 성능검정 결과\_남방 백수계

| BN      | 선발  | 근장   | -   | 근경 (cm | )   | 근중     | 근수 | 엽장   | 엽수   | 엽중    | 생리  |
|---------|-----|------|-----|--------|-----|--------|----|------|------|-------|-----|
| DIN     | 회사  | (cm) | 상   | 중      | 하   | (g)    | 색  | (cm) | (매)  | (g)   | 장해  |
| Everest | _   | 35   | 6.2 | 6.5    | 5.7 | 1400.0 | W  | 44.0 | 16.4 | 208.0 | 바람3 |
| 27008   | _   | 34.3 | 5.8 | 6.7    | 6.5 | 1350.0 | W  | 37.0 | 17.0 | 180.0 | 바람5 |
| 47258   | A/B | 33.6 | 5.8 | 6.6    | 5.6 | 1280.0 | W  | 46.0 | 18.0 | 210.5 | 안정  |
| 47261   | A/B | 33.3 | 5.7 | 6.3    | 6.5 | 1280.0 | W  | 41.8 | 17.3 | 205.0 | 안정  |
| 47270   | В   | 34.8 | 5.9 | 6.7    | 6.7 | 1390.0 | W  | 40.5 | 16.5 | 190.0 | 바람3 |
| 37144   | A   | 38.0 | 6.3 | 7.0    | 6.6 | 1620.0 | W  | 39.0 | 20.0 | 230.0 | 열근1 |
| 47282   | В   | 34.8 | 5.7 | 6.5    | 5.8 | 1190.0 | W  | 30.5 | 21.5 | 165.0 | 바람5 |
| 47295   | A   | 35.4 | 6.5 | 7.2    | 6.9 | 1490.0 | W  | 37.5 | 18.3 | 207.5 | 안정  |
| 47291   | В   | 34.6 | 5.8 | 6.8    | 5.5 | 1380.0 | W  | 42.5 | 18.0 | 203.5 | 안정  |
| 37126   | В   | 32.4 | 5.6 | 6.2    | 5.3 | 1210.0 | W  | 43.0 | 17.5 | 207.0 | 안정  |

\* 근수색 ; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다) (바람 - 바람들이)



그림 22. 3차년도 가을 성능검정 결과\_남방 백수계\_태국 A사 선발



그림 23. 3차년도 가을 성능검정 결과\_남방 백수계\_태국 B사 선발

# (라) 제주도 겨울 농가 성능검정 결과

중국 남부지역의 월동 작형을 대비하여 국내 제주 지역에서 월동 작형 성능검정을 실시하였다. 제주도 시험 지역은 표 26과 같이 서귀포시 성산과 제주시 구좌 지역에서 실시하였으며, 시험 조합은 2차년 봄 시험 선발 조합과 3차년 봄 선발조합 포함하여 11조합을 시험하였다.

표 26. 제주도 농가 성능검정 경종 개요

| 대비품종 |    | R-301(북경세농),<br>汉白玉 | 시험 조합 | 61230, RA12-125, 37010, 37011, 37014, 37022, 37043, 37060, 37067, 47073, 47185 |
|------|----|---------------------|-------|--------------------------------------------------------------------------------|
| 파종   | 성산 | 2015. 09. 14        | 조사    | 2016. 02. 03                                                                   |
| 45   | 구좌 | 2015. 09. 15        | 조사    | 2016. 02. 02                                                                   |

시험 결과 제주도 월동 작형으로 시험한 조합들 중 RA12-125와 37010 조합이 대비품종 R-301과 대비하여 저온 신장력, 비대력, 근미맺힘 등 근형이 양호하였으며, 내한성이 강하고 생리장해가 안정적인 특성을 보였다(표 27, 그림 24). 구좌 지역에서는 R-301은 내한성이 약해 근수부위에 냉해 피해를 입었으나 선발된 2조합은 정상적으로 생육하였으며, 성산 지역에서는 당사 2조합이 R-301에 비해 근수부 청색 발현이 다소 나타나는 단점을 보였다. 이번 월동 작형 결과를 바탕으로 RA12-125와 37010은 중국 현지 월동 작형이 가능할 것으로 판단되며, 향후 중국 월동 작형으로 시험이 될 수 있도록 결과를 공유 하였다.

표 27. 제주도 겨울 성능검정 결과 (성산, 구좌)

| BN       | 근장   | 근경 (cm) |     |     | 근중    | 근수 | 엽장   | 엽수   | 엽중    | 내한 | 생리  |
|----------|------|---------|-----|-----|-------|----|------|------|-------|----|-----|
| DN       | (cm) | 상       | 중   | 하   | (g)   | 색  | (cm) | (매)  | (g)   | 성  | 장해  |
| R-301    | 38.2 | 8.1     | 9.4 | 8.9 | 2,283 | W  | 42.3 | 25.3 | 216.7 | 6  | 열근2 |
| RA12-125 | 36   | 7.8     | 8.5 | 8.3 | 1,900 | LG | 41.3 | 30.7 | 200   | 2  | 안정  |
| 37010    | 37.5 | 7.8     | 8.2 | 74  | 1,867 | LG | 37.7 | 37   | 201   | 2  | 안정  |

\* 근수색; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 내한성 ; 1 (강) ~ 9 (약)

\* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다) (바람 - 바람들이)



R-301 RA12-125 37010 <성산 시험 결과>



37010 RA12-125 <구좌 시험 결과>

그림 24. 제주도 겨울 성능검정 결과

R-301

### (2) 중국 현지 재배 시험 결과

### (가) 湖北성 漢川 봄 재배 시험 결과

3차년 중국 봄 시험은 추대성 검정을 위해 2차년도 보다 7일 일찍 파종을 진행하였고 표 28 과 같이 대비품종 외에 27조합 공시하여 봄 성능검정을 수행하였다. 이번 봄 작황은 생육 초기기온 저하와 생육 중반에 강우가 지속되어 생육이 전반적으로 불량하였다. 또한 조사 시기가지연되어 열근 및 무름병 등 생리장해와 병 발생이 많았다. 조사 결과 대비품종은 모두 추대가되었으며, 특히 R-301, R-501은 근형을 알아보기 힘들 정도로 추대가 빨리 진행되었다. 그 중거래처에서 도입하여 시험하고 있는 품종 중 한 품종, '77'번이 추대가 다소 안정되고 근피도양호한 특성을 보여 대비품종으로 당사 조합들과 특성을 비교하였다.

표 28. 중국 현지 봄 시험 경종 개요

| 파종   | 2015. 02. 08                               | 조사    | 2015. 05. 11 |
|------|--------------------------------------------|-------|--------------|
| 대비품종 | R-301, R-501, RCH 812(북경세농)<br>百雪公主(Takii) | 시험 조합 | 27 조합        |

조사 결과 당사 시험 조합들 대부분이 추대가 진행되었고, 37010, 1조합만이 추대가 안정적이였으며, 근형 및 비대력, 근미맺힘 등 외관이 우수하였고 근피 및 근수색도 양호하여 선발하였다(표 29, 그림 25). 37010은 14년 국내 가을 및 중국 가을 현지에서도 예비 선발된 조합으로 원예적 특성이 우수하였다.

표 29. 3차년 중국 현지 봄 성능검정 결과

| BN      | 근장<br>(cm) | 근경<br>(cm) | 엽장<br>(cm) | 추대<br>(cm) | 근피 | 근수색 | 생리<br>장해 |
|---------|------------|------------|------------|------------|----|-----|----------|
| RCH-812 | 33.2       | 8.8        | 45.0       | 82.0       | 4  | 4   | 안정       |
| 37010   | 31.3       | 8.3        | 46.3       | 14.0       | 3  | 4   | 안정       |
| 77      | 34.7       | 8.3        | 44.7       | 20.7       | 4  | 4   | 안정       |

\* 근피 : 1 (매우 좋음) - 9 (매우 나쁨)

\* 근수색 ; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다)





시험 포장 전경

RCH812 **37010** 

그림 25. 3차년 중국 현지 봄 성능검정 결과

## (나) 湖北성 漢川 가을 재배 시험 결과

중국 가을 시험은 표 30과 같이 09월 29일 파종하여 12월 17일 조사를 실시하였다. 파종 당시 온도가 예년에 비해 낮아서 이랑에 투명 비닐로 멀칭을 하고 관리하였으며 시험 주수는 30주 3반복으로 시험하였다.

표 30. 중국 가을 현지 성능검정 경종 개요

| 파종   | 2015. 09. 29         | 조사    | 2015. 12. 17 |
|------|----------------------|-------|--------------|
| 대비품종 | R-301(북경세농), 汉白玉(대일) | 시험 조합 | 21 조합        |

조사 결과 4조합, 61230, 54129, 54130, 47058이 예비 선발(표 31, 그림)되었으며, 선발된 4조합은 16년 봄 시험을 통해 추대성과 근 특성을 재 검정할 필요가 있지만, 거래처에서 16년 중국 봄 작형으로 농가 시험을 자체적으로 하기를 원해 종자를 공급하기로 하였다. 에비 선발 조합의 특성은 대비품종 대비 근피 부분과 근미맺힘 등이 다소 부족하지만 근장이 길고 열피 및 내한성이 강한 특성을 보여 예비 선발하였다.

표 31. 3차년 중국 가을 현지 성능검정 결과

| BN    | 근피    | 근장   |     | 근경 (cm) |     | 엽장   | 내한성     | 열피              |  |
|-------|-------|------|-----|---------|-----|------|---------|-----------------|--|
| DIV   | C - 1 | (cm) | 상   | 중       | 하   | (cm) | 11 12 0 | E 1             |  |
| R-301 | 3     | 23.7 | 5.7 | 7.6     | 6.5 | 35.9 | 5       | 3               |  |
| 汉白玉   | 6     | 25.5 | 5.5 | 6.7     | 5.6 | 48.5 | 5       | 7<br>(4주/6주, 심) |  |
| 37010 | 4     | 27   | 6.0 | 6.9     | 5.7 | 38.9 | 3       | 3               |  |
| 61230 | 4     | 29   | 6.2 | 6.8     | 5.6 | 33.6 | 3       | 4               |  |
| 54129 | 4     | 28.7 | 5.7 | 6.5     | 5.4 | 34.2 | 4       | 5<br>(2주/9주,약)  |  |
| 54130 | 4     | 29.3 | 5.7 | 6.4     | 5.2 | 34.3 | 5       | 4               |  |
| 47058 | 4     | 27.3 | 5.4 | 6.4     | 5.3 | 38.4 | 4       | 4               |  |

\* 근피 : 1 (매우 좋음) ~ 9 (매우 나쁨)

\* 열피/내한성 ; 1 (강)  $\sim$  9 (약)



R-301 54130 37010 R-301 47058 37010 그림 26. 3차년 중국 가을 현지 성능검정 결과

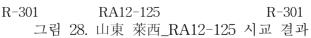
# (3) 시교 사업 결과

(가) RA12-125 시교 결과

2차년부터 시교 사업을 진행한 조합으로 거래처에서 江蘇 泰州와 山東 萊西에서 시험하여

품종 개발 가능성을 확인하였다. 江蘇 泰州 시험은 3월 파종, 5월 수확 조사하였고 그 결과 북경세농의 春秀 대비 추대가 안정되고 근수부 청색 발현이 없으며 근형이 우수하였고, 포장에오래 두어도 근장이 길어지지 않아 현지 농가에게 좋은 평가를 받았다(그림 27).




RA12-125 春秀 조합 그림 27. 江蘇 泰州\_RA12-125 시험 결과

山東 萊西 시교 사업은 5월 2일 파종, 6월 26일 결과로 북경세농의 R-301 대비 청수가 약하게 나타났으며 근피 광택이 약하였으나 근 신장력 및 비대력 등은 양호하였으며 근피도 깨끗하였다(표 32, 그림 28). 거래처에서는 RA12-125가 추대가 안정적인 조합이므로 山東 萊西 지역에서 추대성을 필요로 하는 3월 작형에 적합할 것으로 판단하고 있으며 16년도에 판매를 희망하였다.

표 32. 山東 萊西 RA12-125 시교 결과

| 품종       | 근장   | 근경              | 엽수  |
|----------|------|-----------------|-----|
| RA12-125 | 32cm | 6.0 - 6.5 - 6.2 | 19매 |
| R301     | 27cm | 5.7 - 6.2 - 5.5 | 22대 |







RA12-125

### (나) 37010 시교 결과

37010은 15년 국내 및 중국 봄 시험에서 선발한 조합으로 15년 하반기부터 시교 사업을 진행하였다. 거래처에서 중국 广東 陸丰 지역에서 10월 10일 파종, 12월 15일에 조사를 실시하였고, 거래처에서 당사 조합인 37010외에 다른 회사에서 11품종을 도입하여 당사 조합과 같이 시교 사업을 진행/조사하였다. 중간 작황조사 시점까지는 도입 1번, 4번, 그리고 당사의 37010(6번)이 작황이 양호하였으며 그 중 4번 품종이 가장 우수하였다고 하나, 최종 조사 결과 4번 품종이 열근이 많이 발생하는 등 단점이 나타났다. 당사의 37010은 근수색이 순백색이 아니지만 漢白玉보다는 깨끗하고 껍질이 두꺼워 열근에 강하고 잘 깨지지 않는다는 장점을 보였으며, 추대가 가장 늦은 편으로 거래처에서 16년 판매를 희망하였다(그림 29).







도입 1번

37010

도입 4번

그림 29. 广東 陸丰\_37010\_시교 결과

#### 라. 4차년도 결과

4차년 연구 수행은 전년도와 동일한 방식으로 시험을 진행하여 국내 및 중국 현지에서 우수 조합을 선발하였으며, 국립종자원에서 시행하는 중국 전시포 사업에도 참여하여 당사 품종의 중국 현지 적합성 여부를 검증 받았다.

#### (1) 국내 재배 시험 결과

#### (가) 연구소 봄 노지 성능검정 결과

15년 가을에 예비 시험한 봄 백수계 조합을 이용하여 봄 노지 성능검정을 표 33과 같이 수행하였다. 이번 봄 시험 조사는 중국 봄 백수계에 적합한 품종을 개발하기 위해 중국 거래처를 초청하여 공동 조사를 실시하여 근형이 우수하고 생리장해(열근, 바람들이 둥)와 추대성이 안정적인 조합을 선발하였다.

표 33. 연구소 봄 노지 경종 개요

| 파종   | 2016. 04. 19             | 조사    | 2016. 06. 23 |  |  |
|------|--------------------------|-------|--------------|--|--|
| 대비품종 | R-301, R-501(북경세농) 등 8품종 | 시험 조합 | 95조합         |  |  |

조사 결과 57047, 57149, 57152, 57154, 4조합으로 57152를 제외하고 3조합은 이번 봄 시험에서 새롭게 선발되었다(표 34, 그림 30). 57152는 15년 가을 예비 시험에서 선발된 조합으로 추대성과 비대성 등 원예적 형질이 우수하여 재 선발되었다. 57047은 근장이 짧은 조합이나 비대력과 근수색이 백색으로 외관 품질이 양호하였고 R-301보다 추대성이 안정적이었다. 57149는 만추대성 조합으로 비대력이 다소 느리나 근피가 깨끗하고 근장 및 근미맺힘, 생리장해가 양호하였다. 57154는 만추대성 조합으로 근수부에 청색이 조금 발현되나 근피와 근형 등 외관 품질이 우수하여 선발하였다. 봄 노지 작형 통해 선발된 4조합은 향후 중국 현지 시험을 통해 품종개발 가능성을 확인할 예정이며 차년도에 종자 생산성 검증을 실시할 예정이다.

표 34. 4차년도 연구소 봄 성능검정 결과

| BN    | 근형 | 비대성 | 근미맺힘 | 근장 | 근피 | 근수색 | 생리장해 | 추대성 | 최종평가 |
|-------|----|-----|------|----|----|-----|------|-----|------|
| R-301 | Δ  | 0   | Δ    | 0  | 0  | 0   | Δ    | X   | 0    |
| 57047 | 0  | 0   | 0    | Δ  | 0  | 0   | 0    | Δ   | 0    |
| 57149 | 0  | Δ   | 0    | 0  | 0  | 0   | 0    | 0   | 0    |
| 57152 | 0  | 0   | 0    | 0  | 0  | 0   | 0    | 0   | 0    |
| 57154 | 0  | 0   | 0    | 0  | 0  | Δ   | 0    | 0   | 0    |

◎: 매우 우수, ○: 우수, △: 보통, X: 나쁨







R-301 37010 57047







57149

57152

57154

그림 30. 4차년도 연구소 봄 성능검정 결과

## (나) 연구소 가을 성능검정 결과

기존 조합 및 신규 조합(봄 백수계 조합, 남방 백수계 조합)을 이용하여 표 35와 같이 가을 성능검정을 진행하였다. 시험은 기존과 동일한 방식으로 진행하였으며, 남방 백수무 조사 시 태국 거래처를 초청하여 공동 선발을 진행하였다.

표 35. 가을 성능검정 경종 개요

| 구분    | 파종           | 조사           | 공시 조합                                                                      |  |  |  |  |  |
|-------|--------------|--------------|----------------------------------------------------------------------------|--|--|--|--|--|
| 봄 백수계 | 2016. 08. 30 | 2016. 10. 27 | R-301, R-501(북경세농), 秋宝(湖北楚天新科), RACS2125,<br>RACS3010(팜한농) 등 대비품종 포함 125조합 |  |  |  |  |  |
| 남방백수계 | 2016. 09. 05 | 2016. 11. 02 | Everest(Takii), 永祥(Known-You), 快美007(세미니스),<br>CT7008(팜한농) 등 대비품종 포함 106조합 |  |  |  |  |  |

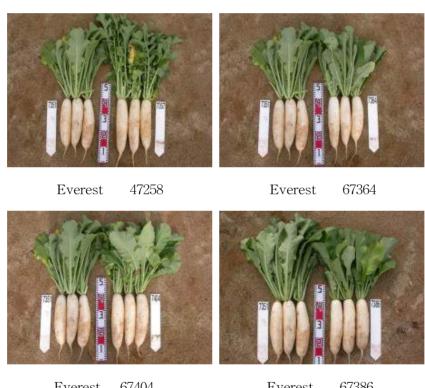

① 남방 백수계 시험은 3차년도와 같이 동남아 거래처를 초청하여 공동 조사를 실시하였다. 선발된 조합 중 47258은 3차년도에 선발하여 16년 태국 현지에서 시험한 조합으로 16년 현지 시험 결과가 우수하여 17년에 시교 사업을 진행하기를 거래처에서 요청하였다. 신 조합인 67364, 67386, 67040는 Everest 대비 비대력, 근피 등 외관 품질이 우수하고 생리장해(열근, 바람들이, 공동 등)가 안정적으로 나타나 거래처와 공동 선발하였다(표 36, 그림 31). 선발된 신 조합들은 종자량 확인 후 추후 태국 현지 시험 여부를 결정하기로 하였다.

표 36. 4차년 연구소 가을 성능검정 결과 (남방 백수계)

| BN      | 근장   | 근경 (cm) |     |     | 근중    | 근수 | 엽장   | 엽수   | 엽중    | 생리   |
|---------|------|---------|-----|-----|-------|----|------|------|-------|------|
| DIN     | (cm) | 상       | 중   | 하   | (g)   | 색  | (cm) | (매)  | (g)   | 장해   |
| Everest | 30.8 | 5.8     | 6.6 | 5.3 | 930.0 | W  | 45.5 | 15.7 | 276.7 | 바람 2 |
| 47258   | 31.8 | 5.2     | 5.4 | 3.9 | 896.7 | W  | 56.7 | 16.7 | 343.3 | 안정   |
| 67364   | 28.0 | 4.9     | 5.4 | 4.0 | 796.7 | W  | 38.7 | 16.3 | 203.3 | 안정   |
| 67386   | 28.0 | 5.1     | 5.2 | 4.5 | 863.3 | W  | 39.9 | 16.5 | 230.0 | 열근 1 |
| 67404   | 30.8 | 5.4     | 5.7 | 4.3 | 953.3 | W  | 45.5 | 15.0 | 243.3 | 바람 2 |

\* 근수색; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다) (바람 - 바람들이)



 Everest
 67404
 Everest
 67386

 그림 31. 연구소 가을 성능검정 결과\_남방 백수계

② 봄 백수계 가을 시험은 17년 봄 작형의 예비 시험으로 신규 조합의 원예적 특성을 확인하기 위해 성능검정을 수행하였다. 기존 조합 및 신규 조합을 이용하여 성능검정을 수행한 결과 근장이 길고 근미맺힘 양호하고 생리장해가 안정적인 봄 백수 장근계 11조합을 선발하였고 (그림 32), 근장은 짧으나 비대력과 근미맺힘이 우수하고 근수색이 순백색으로 외관 품질이 우수한 봄 백수 단근계 4조합을 선발하였다(그림 33). 장근 백수계 조합 중 57023, 57024, 57027, 57152는 15년 가을과 16년 봄에 선발된 조합으로 이번 가을 시험에서 재 선발되었으며 그 외

조합들은 16년 신규 조합이 선발되었다. 또한 단근 백수계 조합 중 67120을 제외하고 3조합은 기존 조합에서 선발되었다. 단근 백수 조합은 중국의 R-301과 漢白玉과 다른 차별화된 시장으 로 품종 개발을 진행 할 예정이다. 가을 예비 성능검정에서 선발된 조합들은 17년 봄 시험을 통해 추대성 확인 및 원예적 특성을 재 확인 후 최종 선발 예정이다.

표 37. 4차년 연구소 가을 성능검정 결과 (봄 백수계)

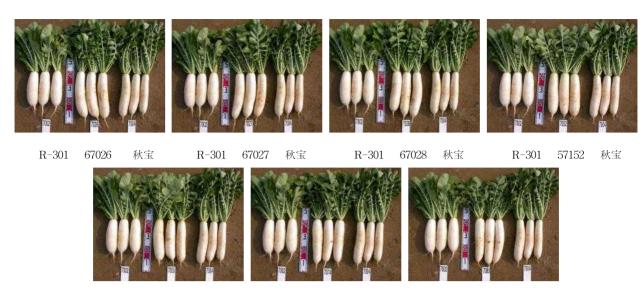
| BN    | 구분 | 근장   | Ę   | :경 (cn | n)  | 근중     | 근수   | 엽장   | 엽수   | 엽중    | 생리  |
|-------|----|------|-----|--------|-----|--------|------|------|------|-------|-----|
| DIN   | 12 | (cm) | 상   | 중      | 하   | (g)    | 색    | (cm) | (매)  | (g)   | 장해  |
| R-301 |    | 26.0 | 5.7 | 7.3    | 6.4 | 1108.3 | W    | 34.7 | 23.8 | 213.3 | 공동2 |
| 秋宝    |    | 30.8 | 4.2 | 5.4    | 5.3 | 896.7  | W-LG | 39.3 | 28.5 | 223.3 | 안정  |
| 57024 | 장근 | 32.2 | 5.6 | 5.8    | 5.3 | 1190.0 | W-LG | 48.3 | 25.3 | 316.7 | 안정  |
| 57026 | 장근 | 32.2 | 5.4 | 6.1    | 5.9 | 1270.0 | W-LG | 47.3 | 23.3 | 286.7 | 안정  |
| 57027 | 장근 | 31.5 | 5.4 | 5.8    | 5.6 | 1133.3 | W-LG | 44.7 | 25.0 | 293.3 | 안정  |
| 57023 | 장근 | 30.8 | 6.0 | 6.7    | 5.8 | 1306.7 | W-LG | 50.3 | 23.7 | 303.3 | 열근1 |
| 67026 | 장근 | 32.2 | 5.1 | 6.1    | 5.8 | 1236.7 | W    | 40.7 | 25.0 | 236.7 | 안정  |
| 67027 | 장근 | 31.5 | 5.4 | 6.3    | 5.5 | 1213.3 | W    | 40.3 | 25.3 | 226.7 | 안정  |
| 67028 | 장근 | 32.3 | 5.0 | 6.3    | 5.9 | 1243.3 | W    | 41.3 | 23.5 | 210.0 | 안정  |
| 57152 | 장근 | 29.8 | 5.2 | 6.4    | 5.8 | 1253.3 | LG   | 38.3 | 25.2 | 200.0 | 안정  |
| 57149 | 장근 | 29.2 | 4.5 | 6.1    | 5.9 | 1073.3 | LG   | 33.8 | 22.0 | 150.0 | 안정  |
| 57148 | 장근 | 30.8 | 5.3 | 6.2    | 5.3 | 1166.7 | W    | 40.5 | 23.5 | 198.3 | 안정  |
| 67080 | 장근 | 32.3 | 5.2 | 5.4    | 4.6 | 1051.7 | W    | 33.8 | 23.7 | 130.0 | 안정  |
| 47053 | 단근 | 23.5 | 5.5 | 7.5    | 6.5 | 1096.7 | W    | 38.5 | 23.5 | 233.3 | 바람2 |
| 57048 | 단근 | 21.8 | 6.0 | 7.8    | 6.8 | 1120.0 | W    | 35.0 | 23.5 | 186.7 | 안정  |
| 67120 | 단근 | 22.5 | 5.8 | 7.3    | 6.8 | 1086.7 | W    | 39.2 | 23.5 | 241.7 | 안정  |
| 47147 | 단근 | 20.2 | 5.4 | 7.2    | 6.7 | 1073.3 | W    | 37.3 | 25.7 | 213.3 | 바람2 |

\* 근수색; W-순백색, LG-연한 녹색, G-녹색, DG-진한 녹색

\* 생리장해 : 1 (없거나 조금 있다) ~ 9 (매우 많다) (바람 - 바람들이)



R-301 57024 秋宝






R-301 57026 秋宝 R-301 57027 秋宝



R-301 57023 秋宝



R-301 57149 秋宝 R-301 57148 秋宝 R-301 67080 秋宝 그림 32. 연구소 가을 성능검정 결과\_봄 백수 장근계



R-301 47053 57048 R-301 67120 47147 그림 33. 연구소 가을 성능검정 결과 봄 백수 단근계

# (2) 중국 현지 재배 시험 결과

4차년 중국 현지 시험은 봄 작형 시험만 진행하고 가을 시험은 거래처 및 당사 여건 상 파종 시기를 맞추지 못하여 시험을 진행하지 못하였다. 봄 시험은 예년과 같이 거래처를 통해 시험을 진행(표 38)하였고, 생육 전반적으로 비가 잦았고 비료분이 많아 당사 조합뿐만 아니라 대비품종도 열근이 많이 발생하였다. 또한 흑반병이 전반적으로 발생하여 번졌으며 무름병 발생도 많았다.

표 38. 중국 현지 봄 시험 경종 개요

| 파종  | 2016. 02. 15     | 조사    | 2016. 05. 11 |
|-----|------------------|-------|--------------|
| 대비품 | R-301(북경세농), 汉白玉 | 시험 조합 | 30 조합        |

선발 조합은 54129, 54130으로 15년 가을 중국 현지 시험에서 예비 선발된 조합으로 봄 작형에서 추대성 및 원예적 특성이 우수하여 선발하였다. 2조합 모두 만추대성 조합으로 54129보다 54130이 비대력과 근미맺힘이 우수한 특성을 보였다.

표 39. 중국 현지 봄 시험 결과

|   | BN    | 근장   |     | 근경 (cm | )   | 엽장   | 엽수   | 추대   | 근피 | 열근 | 바람 |
|---|-------|------|-----|--------|-----|------|------|------|----|----|----|
| ı |       | (cm) | 상   | 중      | 하   | (cm) | (매)  | (cm) |    |    | 들이 |
|   | 汉白玉   | 32.8 | 8.2 | 8.8    | 7.3 | 50   | 19   | 0    | 5  | 5  | 3  |
|   | 54129 | 35.7 | 8.3 | 8      | 6.1 | 41.7 | 34.3 | 0    | 3  | 3  | 3  |
|   | 54130 | 32.2 | 8.5 | 8      | 7.1 | 42.7 | 38.3 | 0    | 4  | 3  | 3  |

\* 근피; 1-깨끗, 9-불량

\* 열근/바람들이 : 1-강 ~ 9-약

이번 선발된 2조합은 거래처에서 16년 하반기 광동 지역에서 시험하기로 하여 종자를 6월에 공급하였고 16년 하반기에 시험을 진행하였으나 태풍으로 인해 작황결과를 확인하지 못 하였다. 그래서 17년 봄부터 다시 시험을 진행하기로 협의하고 추후 종자를 전달하기로 하였다.

#### (3) 중국 시범포 결과

국립종자원에서 GSP 사업과 연계하여 중국 시범포 사업을 운영하여 당사에서 2품종 및 1조합을 출품하여 품종 개발 가능성을 검증 받았다. 시범포 사업은 16년 1월 15일 파종하여 4월 7일 조사 및 전시회를 진행하였다. 시범포 조사 결과 당사의 37010(출품번호 DBR-12)이 타 회사 출품 품종에 비해 근장은 다소 짧았으나 근형 및 비대력, 근수색, 근피 등 외관 품질이 우수하고 열근에 강한 특성을 보였으며 추대가 안정되어 품종 가능성을 확인 받았다.



그림 34. 중국 광동 루펑 지역 시범포 결과\_37010

### 4. 내병성 검정

가. 선발 조합 및 신규 조합에 대해서 위황병 저항성 정도를 검정하기 위해 자체적으로 개발된 검정법을 이용하여 위황병 검정을 실시하였다. 위황병 검정에 사용된 균주는 Fusarium oxysporum f. sp. raphani(isolate 임계)를 사용하였고 침지 접종 후 20~30일 사이에 발병률을 이병성 품종과 저항성 품종인 대조구와 비교하여 발병 등급을 1~9단계로 구분하였다. 발병 등급은 지상부와 뿌리 도관부위를 조사하여 각 부위별로 발병 등급을 지수화 하여 저항성과 이병성을 구분하였다. 지상부 잎의 발병지수 표기는 1: 무병징, 3: 떡잎 손상 및 약간의 상엽 황변, 5: 상엽의 황변 및 손상, 7: 대부분 본엽 고사, 9: 고사 이고, 뿌리 도관부위의 발병지수 표기는 1: 무병징, 3: 약한 갈변, 5: 유관속 갈변, 7: 단면의 절반이상 갈변, 9: 전체갈변 또는 고사이다.

나. 3차년 상반기 위황병 검정은 2차년 선발조합 및 시교 조합에 대해서 실시하였다. 위황병병리 검정 결과 대비품종인 R-301은 위황병에 이병성(지상부 평가 5.8, 뿌리 평가 7.3)을 보이고 당사 조합인 RA12-125는 중도 저항성을 보이는 것을 확인하였다(표 40).

표 40. 3차년 위황병 병리 검정 결과

|        | I        | I         |          |
|--------|----------|-----------|----------|
| 파종 No. | 품종 및 조합명 | 지상부 평가 결과 | 뿌리 평가 결과 |
| 7003   | R-301    | 5.8       | 7.3      |
| 7007   | R-501    | 7.3       | 7.2      |
| 7009   | RA12-125 | 4.5       | 5.2      |
| 7015   | 37010    | 4.2       | 5.6      |
| 7039   | 37066    | 4.9       | 4.6      |
| 7042   | 37067    | 5.1       | 4.2      |
| 7068   | 47068    | 4.1       | 5.9      |
| 7073   | 47073    | 4.7       | 7.2      |
| 7075   | 47075    | 3.9       | 7.0      |
| 7143   | 47143    | 7.2       | 7.8      |
| 7147   | 47147    | 6.8       | 7.8      |
| 7175   | 47175    | 4.6       | 4.9      |
| 7186   | 47186    | 5.5       | 7.0      |
| 7197   | 47197    | 4.3       | 5.1      |
| 7255   | 7007     | 4.9       | 4.6      |
| 7256   | 27008    | 5.3       | 5.8      |
| 7258   | 47258    | 4.2       | 4.9      |
| 7270   | 37122    | 4.8       | 5.9      |
| 7306   | 47306    | 5.1       | 4.7      |

다. 4차년도에는 2~3차년 선발 조합과 중국 현지에서 수집한 대비품종을 가지고 위황병 병리 검정을 실시하였다. 병리 검정 결과 RA12-125조합은 3차년과 마찬가지고 위황병 중도 저항성 을 보이는 것을 확인하였고, 3차년 시교 조합인 37010 조합도 위황병 중도 저항성을 보이는 것을 확인하였다. 중국에서 수집한 대비품종인 K1501품종은 지상부 및 뿌리 조사 결과 각각 4.6, 4.8로 중도 이상의 저항성을 보이는 것을 확인하였다(표 41).

표 41. 4차년 위황병 병리 검정 결과

| 파종 No. | 품종 및 조합명 | 지상부 평가 결과 | 뿌리 평가 결과 |
|--------|----------|-----------|----------|
| 7008   | RA12-125 | 3.2       | 5.1      |
|        |          |           |          |
| 7012   | 37010    | 4.1       | 5.6      |
| 7015   | 47058    | 3.3       | 5.5      |
| 7017   | 47073    | 3.3       | 5.3      |
| 7021   | 47075    | 3.2       | 5.5      |
| 7023   | 57023    | 3.3       | 4.9      |
| 7024   | 57024    | 3.4       | 5.1      |
| 7027   | 57027    | 3.1       | 4.8      |
| 7036   | 57036    | 3.6       | 5.6      |
| 7040   | 47153    | 3.1       | 4.5      |
| 7060   | 57060    | 3.0       | 4.3      |
| 7066   | 57066    | 5.4       | 6.1      |
| 7067   | 47186    | 4.6       | 6.9      |
| 7070   | 47185    | 3.4       | 4.7      |
| 7071   | 57071    | 3.2       | 4.6      |
| 7141   | 57141    | 7.2       | 7.6      |
| 7148   | 57148    | 4.9       | 5.4      |
| 7164   | K1501    | 4.6       | 4.8      |

## 4. 품종보호출원 및 생산판매신고

#### 가. 품종보호출원

#### (1) RACS 2125

1차년과 2차년에 국내 재배 시험 및 중국 현지 시험에서 선발되고 중국 확대 시교 사업을 진행한 'RA12-125'에 대해서 품종보호출원을 진행하였다. 품종명을 'RACS 2125'로 변경하여 15년 12월에 신청하였다(출원번호: 출원 2015-733, 그림 35). 이 품종은 15년 시교 결과도 양호하고 거래처에서 판매를 요청하여 생산부에서 채종을 진행하고 16년 8월에 중국 거래처에 판매를 하였다.

#### (2) RACS 3010

1차년 국내 가을 성능검정에서 예비 선발하여 4차년까지 국내 및 중국 현지 재배 시험과 시교 사업을 진행하여 선발한 '37010' 조합에 대해서 품종보호출원을 하였다. '37010' 조합은 'RACS 3010'으로 품종명을 변경하여 16년 10월에 출원 신청하였다(출원번호: 출원 2016-510, 그림 36).

#### 민원인을 가족같이, 민원을 내일같이

통지된 내용에 의문이 있으시면 담당자에게 문의하시기 바랍니다. 담당자: 김민지 전화: (054) 912-0113 FAX: (054) 912-0210 인터넷 홈페이지: www.seed.go.kr

7 4 0 - 2 2 0 경상북도 김천시 혁신8로 119

#### 품종보호출원번호 통지서

품종보호 출원번호 : 출원 2015 - 733 출원일자 : 2015.12.21 품종명칭 출원번호 : 명칭 2015 - 1819

작 물 명 : 무

품종 명칭 : 알에이씨에스2125

출 원 인 : 동부팜한농 주식회사

주 소: 서울특별시 강남구 테헤란로 432(대치동)동부금융센터 18충 동부팝한농(주) 종자사업부

2015년12월21일

민원인을 가족같이, 민원을 내일같이 통지된 내용에 의문이 있으시면 단단자에게 문의하시기 바랍니다.

응지된 내용에 의문이 있으시면 담당자에게 문의하시기 바랍니다. 담당자: 김지유 전화: (054) 912-0113 FAX: (054) 912-0210 인터넷 홈페이지: www.seed.go.kr

3 9 6 6 0 경상북도 집원시 혁신8로 119

## 품종보호출원번호 통지서

품종보호 종원번호 : 출원 2016 - 510 종원일자 : 2016.10.27 풍종명청 출원번호 : 명청 2016 - 1149

작 물 명: 무

품종 명칭 : 알에이씨에스3010

출 원 인: (주)광한농

주 소: 서울특별시 영등포구 여의대로 24천경련회관 5층 (주)관한농 조: 종자사업부

2016년10월27일

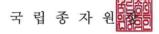





그림 35. RACS2125 품종보호출원 통지서

그림 36. RACS3010 품종보호출원 통지서

## 나. 생산판매신고

1차년 국내 연구소 가을 성능검정에서 선발되어 중국 및 태국 등 동남아시아 지역에 시교 사업을 진행하여 내서성 및 근 비대력이 우수하고 생리장해가 안정적으로 나타나 품종으로 개 발하였다. 품종 신청명은 'CT7008'로 변경 신청하여 신고번호 '02-0001-2016-3'을 부여받았다.



그림 37. CT7008 생산판매신고서

# 제 2 절 만추대 타원형 청수계 품종개발

## 1. 유전자원 수집 및 우수계통 육성

- 가. 중국 수출용 만추대 타원형 청수계 품종개발을 위하여 1,2차년도에 국내외 유전자원을 수집(1차년도 30점, 2차년도 9점), 3점을 등록하였고, 수집된 유전자원은 2차년도 시험포장에서 특성조사 및 평가 완료하여 성숙모본으로 선발, 3차년도 및 4차년도에 자가교배 실시하여 분리하였다.
- 나. 2차년도 가을 차대검정을 통해 선발한 성숙모본 279계통 542주는 3차년도 봄 자가교배를 통해 세대진전하였고, 가을 재배시험(737계통 공시)을 통해 차대검정 실시, 357계통에서 699개체를 선발하여 4차년도 봄 세대진전을 하였다. 또한 4차년도 가을 재배시험(737계통 공시)을 통해 차대검정 실시, 318계통에서 619개체를 선발하였다.
- 다. 3차년도 봄 재배시험에서는 총 229계통을 공시하여 차대검정 완료하였고, 이 중 중국 수 출용 무 품종개발을 위한 조합작성 재료로 가능성이 있는 계통에 대해 가을 재배포장에 공, 차대검정 후 성숙모본으로 선발하였다. 4차년도 봄 재배시험에서는 총 229계통을 공시하여 차대검정 완료하였고, 조합작성 재료로 가능성이 있는 계통에 대해 가을 재배포장에 공시. 차대검정을 진행하여 원예적 형질 평가로 우수한 150계통을 선발하였다.
- 라. 2차년도 12월에 차년도 교배를 위한 미숙모본 643계통을 파종하였고, 월동 저온처리하여 차년 2월에 1,263주를 정식, 4월부터 6월까지 1,101주를 자가교배하여 자가불화합성 검정 및 채종 완료하였다. 3차년도 12월에 차년도 교배를 위한 미숙모본 631계통을 파종하였고, 월동 저온처리하여 차년 2월에 정식, 4월부터 6월까지 1,262주를 자가교배하여 자가불화합성 검정 및 채종 완료하였다.
- 마. 3차년도 7월에 세대단축을 위한 미숙모본 89계통을 파종하여, 8월에 동 계통 총 300주 정식, 교배하여 11월에 채종 완료하였고, 12월에 차년도 교배를 위한 미숙모본 631계통을 파종하여 월동 저온처리하여 세대를 진전하였다. 4차년도 7월에 세대단축을 위한 미숙모 본 38계통을 파종하여, 8월에 동 계통 정식, 교배하여 12월에 채종 완료하였다.

표 42. 계통특성표

|     | 1차년도 |        |        |        |       |    |  |  |  |  |  |
|-----|------|--------|--------|--------|-------|----|--|--|--|--|--|
| No. | B.N  | 엽장(cm) | 근장(cm) | 근경(cm) | 근중(g) | 비고 |  |  |  |  |  |
| 1   | 1905 | 46     | 12.5   | 6.9    | 600   |    |  |  |  |  |  |
| 2   | 1907 | 43     | 10     | 6.9    | 550   |    |  |  |  |  |  |
| 3   | 1908 | 37     | 9.0    | 6.9    | 500   |    |  |  |  |  |  |
| 4   | 1909 | 37     | 6.5    | 8.7    | 450   |    |  |  |  |  |  |
| 5   | 1911 | 26     | 17     | 5.2    | 500   |    |  |  |  |  |  |
| 6   | 1913 | 38     | 12     | 7.2    | 650   |    |  |  |  |  |  |
| 7   | 1916 | 35     | 11     | 6.5    | 500   |    |  |  |  |  |  |
| 8   | 1929 | 43     | 30     | 4.8    | 650   |    |  |  |  |  |  |

| 9  | 1945 | 43   | 13   | 6.8 | 600  |  |
|----|------|------|------|-----|------|--|
| 10 | 1950 | 34   | 17.5 | 4.5 | 350  |  |
|    | 1952 |      | 24   |     | 1100 |  |
| 11 |      | 33   |      | 5.7 |      |  |
| 12 | 1963 | 34   | 11   | 7.1 | 500  |  |
| 13 | 1978 | 43   | 32   | 5.7 | 950  |  |
| 14 | 1982 | 36   | 17   | 3.8 | 500  |  |
| 15 | 1986 | 52   | 33   | 4.9 | 850  |  |
|    | 1980 |      | 00   | 4.3 |      |  |
| 16 | 1988 | 33   | 32   | 5.5 | 950  |  |
| 17 | 1989 | 31   | 26   | 4.6 | 650  |  |
| 18 | 1990 | 36   | 18   | 4.9 | 450  |  |
| 19 | 1991 | 25   | 31   | 3.8 | 600  |  |
| 20 | 1992 | 45   | 32   | 4.6 | 650  |  |
|    |      |      | 31   |     |      |  |
| 21 | 1993 | 43   |      | 4.2 | 620  |  |
| 22 | 1994 | 39   | 27   | 5.2 | 650  |  |
| 23 | 2001 | 54   | 10   | 6.8 | 500  |  |
| 24 | 2005 | 42   | 8.0  | 6.9 | 500  |  |
| 25 | 2010 | 30   | 7.0  | 5.3 | 400  |  |
| 26 | 2014 |      | 27   | 5.7 | 650  |  |
|    |      | 37.5 |      |     |      |  |
| 27 | 2016 | 36   | 24   | 5.3 | 750  |  |
| 28 | 2017 | 45   | 23   | 5.6 | 1000 |  |
| 29 | 2018 | 26   | 18   | 4.6 | 450  |  |
| 30 | 2023 | 44   | 29   | 5.1 | 700  |  |
|    | 2023 |      | 29   |     | 850  |  |
| 31 |      | 40   |      | 5.4 |      |  |
| 32 | 2027 | 33   | 30   | 6.8 | 1000 |  |
| 33 | 2029 | 48   | 31   | 5.1 | 800  |  |
| 34 | 2030 | 36   | 30   | 5.5 | 750  |  |
| 35 | 2032 | 28   | 27   | 4.8 | 650  |  |
| 36 | 2034 | 37   | 28   | 5.7 | 650  |  |
|    |      |      |      |     |      |  |
| 37 | 2035 | 46   | 23   | 5.2 | 650  |  |
| 38 | 2036 | 39   | 20   | 4.8 | 500  |  |
| 36 | 2034 | 37   | 28   | 5.7 | 650  |  |
| 37 | 2035 | 46   | 23   | 5.2 | 650  |  |
| 38 | 2036 | 39   | 20   | 4.8 | 500  |  |
|    |      |      |      |     |      |  |
| 39 | 2037 | 38   | 23   | 4.6 | 600  |  |
| 40 | 2041 | 35   | 15   | 7.4 | 700  |  |
| 41 | 2044 | 41   | 8    | 6   | 400  |  |
| 42 | 2046 | 42   | 16   | 5.5 | 500  |  |
| 43 | 2050 | 40   | 22   | 5.7 | 700  |  |
|    |      |      | 17   | 5   | 600  |  |
| 44 | 2051 | 45   |      |     |      |  |
| 45 | 2062 | 41.5 | 28   | 5.8 | 950  |  |
| 46 | 2063 | 49   | 24   | 5.4 | 700  |  |
| 47 | 2067 | 37   | 19   | 5.6 | 550  |  |
| 48 | 2068 | 44   | 22   | 6.1 | 950  |  |
| 49 | 2073 | 40   | 19   | 5.2 | 750  |  |
|    |      |      |      |     |      |  |
| 50 | 2074 | 28   | 14   | 7.3 | 750  |  |
| 51 | 2076 | 32   | 25   | 5.2 | 600  |  |
| 52 | 2077 | 47   | 31   | 5.5 | 1200 |  |
| 53 | 2079 | 48   | 32   | 4.4 | 650  |  |
| 54 | 2080 | 35   | 30   | 5.1 | 700  |  |
|    |      |      |      |     |      |  |
| 55 | 2085 | 40   | 23   | 5.2 | 750  |  |
| 56 | 2087 | 43   | 26   | 5.2 | 700  |  |
| 57 | 2089 | 48   | 22   | 6.5 | 1100 |  |
| 58 | 2096 | 35   | 26   | 5.8 | 800  |  |
| 59 | 2097 | 42   | 26   | 5.6 | 950  |  |
|    | 2098 | 29   | 23   |     | 500  |  |
| 60 |      |      |      | 5.6 |      |  |
| 61 | 2100 | 33   | 27   | 5.5 | 750  |  |
| 62 | 2106 | 36   | 25   | 5.1 | 550  |  |
| 63 | 2111 | 45   | 23   | 4.5 | 650  |  |
| 64 | 2112 | 38   | 22   | 4.4 | 500  |  |
| 65 |      |      | 18   | 4.4 | 450  |  |
|    | 2114 | 38   |      |     |      |  |
| 66 | 2115 | 48   | 18   | 3.4 | 600  |  |
| 67 | 2120 | 37   | 27   | 5.4 | 750  |  |
| 68 | 2126 | 60   | 18   | 5.4 | 850  |  |
| 69 | 2127 | 31   | 13.5 | 4.5 | 450  |  |
|    |      | 01   | 10.0 | 1.0 | 100  |  |

| 70 | 2136 | 46 | 28 | 4.9 | 700 |   |
|----|------|----|----|-----|-----|---|
| 71 | 2138 | 46 | 22 | 5.5 | 600 |   |
| 72 | 2143 | 37 | 27 | 5.7 | 700 |   |
| 73 | 2144 | 40 | 25 | 5.8 | 700 |   |
| 74 | 2150 | 34 | 21 | 4.8 | 550 |   |
| 76 | 2152 | 31 | 22 | 5.2 | 600 |   |
| 77 | 2170 | 38 | 12 | 7   | 500 |   |
| 78 | 2174 | 50 | 18 | 5.8 | 750 |   |
| 79 | 2175 | 27 | 14 | 4.8 | 250 | · |
| 80 | 2176 | 38 | 25 | 4.9 | 550 |   |

|     |      |        |        | 2      | <br>:차년도 |       |       |       |    |
|-----|------|--------|--------|--------|----------|-------|-------|-------|----|
| No. | B.N  | 엽장(cm) | 근장(cm) | 상경(cm) | 하경(cm)   | 근중(g) | 엽중(g) | 엽수(매) | 비고 |
| 1   | 1605 | 38.0   | 9.0    | 10.0   | 10.4     | 725   | 250   | 16    |    |
| 2   | 1606 | 36.0   | 21.0   | 6.4    | 7.0      | 725   | 150   | 14    |    |
| 3   | 1607 | 32.0   | 15.5   | 7.4    | 8.2      | 775   | 225   | 25    |    |
| 4   | 1609 | 50.0   | 16.0   | 7.7    | 9.4      | 650   | 675   | 33    |    |
| 5   | 1611 | 42.0   | 14.5   | 7.7    | 9.4      | 650   | 675   | 33    |    |
| 6   | 1612 | 52.5   | 20.8   | 7.4    | 8.5      | 863   | 413   | 24    |    |
| 7   | 1613 | 39.0   | 14.0   | 8.5    | 8.7      | 750   | 375   | 34    |    |
| 8   | 1614 | 49.0   | 31.0   | 5.1    | 3.8      | 625   | 425   | 38    |    |
| 9   | 1615 | 39.5   | 33.3   | 6.3    | 5.9      | 1050  | 475   | 33    |    |
| 10  | 1618 | 45.5   | 31.3   | 6.5    | 4.8      | 800   | 500   | 33    |    |
| 11  | 1620 | 36.0   | 19.8   | 5.3    | 5.3      | 450   | 150   | 14    |    |
| 12  | 1621 | 39.0   | 29.8   | 7.2    | 6.7      | 1300  | 425   | 29    |    |
| 13  | 1622 | 47.5   | 25.0   | 8.2    | 5.9      | 950   | 550   | 32    |    |
| 14  | 1623 | 42.3   | 17.0   | 8.6    | 8.4      | 1050  | 350   | 36    |    |
| 15  | 1627 | 47.5   | 31.5   | 5.0    | 4.4      | 750   | 450   | 40    |    |
| 16  | 1628 | 35.0   | 33.0   | 6.7    | 6.0      | 1000  | 250   | 18    |    |
| 17  | 1630 | 33.0   | 21.5   | 5.8    | 5.3      | 650   | 425   | 35    |    |
| 18  | 1631 | 34.5   | 22.5   | 3.8    | 3.7      | 300   | 250   | 36    |    |
| 19  | 1635 | 35.8   | 19.5   | 6.3    | 5.8      | 600   | 125   | 11    |    |
| 20  | 1641 | 51.5   | 29.5   | 6.9    | 4.4      | 750   | 375   | 29    |    |
| 21  | 1642 | 30.5   | 29.5   | 6.4    | 5.5      | 700   | 225   | 31    |    |
| 22  | 1644 | 42.5   | 33.0   | 7.0    | 5.4      | 1000  | 475   | 32    |    |
| 23  | 1645 | 28.0   | 31.5   | 6.1    | 6.1      | 900   | 175   | 29    |    |
| 24  | 1646 | 38.3   | 32.0   | 6.1    | 4.0      | 725   | 325   | 36    |    |
| 25  | 1649 | 47.0   | 24.0   | 6.0    | 5.5      | 650   | 350   | 26    |    |
| 26  | 1653 | 57.0   | 28.0   | 7.5    | 7.5      | 1475  | 600   | 32    |    |
| 27  | 1655 | 48.0   | 34.5   | 7.5    | 6.0      | 1375  | 600   | 36    |    |
| 28  | 1656 | 52.5   | 32.0   | 6.5    | 5.5      | 1025  | 575   | 35    |    |
| 29  | 1657 | 37.0   | 23.0   | 6.7    | 6.6      | 825   | 250   | 22    |    |
| 30  | 1658 | 37.5   | 24.8   | 5.7    | 4.4      | 550   | 225   | 26    |    |
| 31  | 1659 | 51.5   | 20.5   | 7.6    | 7.6      | 1050  | 500   | 22    |    |
| 32  | 1660 | 30.0   | 16.5   | 8.5    | 7.5      | 700   | 225   | 25    |    |
| 33  | 1661 | 37.5   | 25.5   | 6.1    | 5.2      | 625   | 225   | 32    |    |
| 34  | 1664 | 34.3   | 25.5   | 6.1    | 4.7      | 625   | 250   | 39    |    |
| 35  | 1665 | 44.0   | 26.0   | 6.0    | 4.8      | 650   | 300   | 33    |    |
| 36  | 1666 | 54.5   | 31.5   | 7.1    | 4.7      | 1000  | 550   | 31    |    |
| 37  | 1669 | 44.5   | 27.0   | 7.3    | 4.7      | 825   | 400   | 38    |    |
| 38  | 1670 | 33.5   | 30.5   | 7.1    | 5.9      | 950   | 250   | 29    |    |
| 39  | 1671 | 38.5   | 29.5   | 5.8    | 5.4      | 825   | 350   | 42    |    |
| 40  | 1672 | 39.0   | 32.0   | 6.4    | 4.9      | 875   | 525   | 44    |    |
| 41  | 1677 | 44.0   | 34.0   | 7.6    | 6.3      | 1375  | 500   | 34    |    |
| 42  | 1680 | 39.5   | 13.5   | 5.1    | 5.9      | 350   | 200   | 24    |    |
| 43  | 1681 | 53.5   | 23.5   | 5.9    | 5.6      | 700   | 650   | 34    |    |
| 44  | 1682 | 52.0   | 23.5   | 6.6    | 6.8      | 1000  | 675   | 41    |    |
| 45  | 1683 | 42.8   | 29.0   | 6.8    | 6.1      | 1075  | 375   | 34    |    |
| 46  | 1684 | 37.0   | 25.0   | 6.2    | 5.0      | 775   | 450   | 48    |    |
| 47  | 1686 | 39.0   | 23.0   | 6.4    | 5.4      | 650   | 300   | 32    |    |
| 48  | 1687 | 29.0   | 14.5   | 7.9    | 5.5      | 575   | 300   | 26    |    |
| 49  | 1688 | 58.5   | 17.0   | 6.4    | 5.2      | 525   | 275   | 11    |    |
| 50  | 1691 | 43.5   | 37.0   | 7.2    | 5.0      | 1275  | 375   | 29    |    |
| 51  | 1692 | 47.0   | 33.0   | 5.3    | 3.2      | 550   | 350   | 35    |    |

| 1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      | T    |     |      |      |      |    | T |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|-----|------|------|------|----|---|
| Section   1706   465   30.5   66   37   70   49   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     |      |      |      |    |   |
| 1007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     |      |      |      |    |   |
| 1711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     |      |      |      |    |   |
| 1712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     |      |      |      |    |   |
| 1718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     |      |      |      |    |   |
| 1724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     |      |      |      |    |   |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |      |      |     |      |      |      |    |   |
| 1728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     |      |      |      |    |   |
| 1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     |      |      |      |    |   |
| 1747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     |      |      |      |    |   |
| 64   1751   42.5   34.5   6.6   5.2   900   375   40     75   1788   49.5   30.5   6.8   7.3   1275   32.5   32     76   1789   43.5   30.5   6.8   7.3   1275   32.5   32     77   1766   45.5   33.0   6.3   6.7   1100   400   35     88   1767   37.5   32.5   7.9   5.9   122.5   300   33     99   1768   54.5   37.0   7.4   5.8   1450   550   40     70   1769   51.0   37.0   7.4   5.8   1450   550   40     71   1770   37.0   34.5   6.3   5.1   92.5   250   33     72   1771   43.5   37.5   6.1   49   97.5   250   28     73   1774   41.0   24.5   6.5   4.9   700   350   23     74   1782   43.0   35.0   7.3   52   1100   450   35     75   1783   36.0   34.0   5.4   36.6   5.7   27.5   24     76   1786   55.5   25.0   8.0   8.0   1500   62.5   33     77   1787   27.0   16.5   7.9   6.7   630   175   20     81   1791   32.0   29.5   6.6   5.8   950   350   48     99   1792   36.5   30.0   5.7   47.7   67.5   27.5   32     81   1797   35.0   25.0   30.0   6.1   4.6   830   37.5   22     82   1808   5.0   30.0   6.1   4.6   830   37.5   22     83   1809   33.0   13.5   5.4   7.1   45.0   30.0   48     99   1814   44.0   44.5   5.2   30.0   5.7   47.7   67.5   27.5   32     80   1814   44.0   44.5   5.2   5.0   30.0   6.1   4.6   830   37.5   22     80   1818   41.0   19.5   4.9   4.3   37.5   37.5   22     81   1797   35.0   27.0   6.6   5.8   800   17.5   20     82   1808   5.0   30.0   6.1   4.6   830   37.5   22     83   1809   33.0   13.5   5.4   7.1   45.0   250   30     84   1810   38.5   38.5   39.0   6.1   4.6   830   37.5   22     85   1811   41.0   19.5   4.9   4.3   37.5   37.5   28     86   1813   41.0   19.5   4.9   4.3   37.5   37.5   28     87   1814   44.5   24.6   5.6   6.7   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6   |     |      |      |      |     |      |      |      |    |   |
| 66   1738   49.5   30.5   6.6   6.2   9.90   425   32   67   1766   45.5   33.0   6.3   6.7   1100   400   3.5   68   1767   37.5   32.5   7.9   5.5   1225   300   33   70   1768   54.5   37.0   7.4   5.8   1450   350   40   71   1769   51.0   37.0   7.4   5.8   1450   350   40   71   1769   51.0   37.0   7.4   5.8   1450   350   40   71   1770   370   34.5   6.3   5.1   925   250   33   72   1771   43.5   37.5   6.1   49   975   250   33   73   1774   41.0   24.5   6.5   4.9   700   30   23   74   1782   43.0   35.0   7.3   5.2   1100   450   35   75   1783   360   34.0   5.4   3.6   5.75   275   24   76   1786   5.55   28.0   8.0   8.0   1500   6.25   33   77   1787   27.0   16.5   7.9   6.7   6.5   18.9   300   48   79   1782   285   30.0   5.7   4.7   6.75   275   37   80   1785   35.0   36.0   6.4   41   41   800   275   30   81   1797   32.0   27.0   6.6   5.8   9.90   300   48   82   1886   52.0   30.0   6.4   41   44   45   25   25   83   1890   33.0   13.5   5.4   7.1   4.5   8.8   5.2   84   1810   3.85   13.5   5.2   6.6   6.8   8.00   175   25   85   1811   41.0   19.5   5.2   3.9   350   375   32   85   1813   41.0   21.5   5.2   3.9   350   375   32   86   1813   41.0   21.5   5.2   3.9   350   375   32   87   1824   440   31.5   6.6   6.7   6.6   3.8   300   375   32   88   1816   22.0   28.0   5.1   4.3   600   22.5   33   89   1824   440   31.5   6.6   6.7   6.60   325   27   89   1818   33.5   33.5   33.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34.5   34 |     |      |      |      |     |      |      |      |    |   |
| 66         1750         435         30.5         6.8         7.3         1275         325         32           67         1768         435         33.0         6.3         6.7         1100         400         35           68         1767         37.5         32.5         7.9         5.9         1225         300         33           69         1768         54.5         37.0         7.4         5.8         1450         560         40           70         1779         51.0         37.0         34.5         6.3         5.1         925         250         33           71         1770         37.0         34.5         6.3         5.1         925         250         28           73         1771         43.0         24.5         6.5         49         700         350         23           74         1782         43.0         34.0         5.4         36         575         275         24           74         1787         27.0         165         6.5         49         700         350         22         24           75         1782         23.0         29.5         6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |      |      |     |      |      |      |    |   |
| 67   1766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |      |      |     |      |      |      |    |   |
| 68         1767         375         32.5         7.9         5.9         1225         300         33           69         1788         54.5         37.0         7.4         5.8         1450         350         40           70         1769         51.0         37.0         34.5         6.3         5.1         925         230         35           72         1771         43.5         37.5         6.1         4.9         970         380         28           73         1774         41.0         24.5         6.5         4.9         700         380         22           74         1782         43.0         36.0         7.3         3.2         1100         480         35           75         1783         36.0         34.0         5.4         3.6         575         275         24           76         1786         55.5         26.0         8.0         8.0         1500         625         33           77         1787         27.0         16.5         7.9         6.7         660         175         20           78         1791         32.2         29.5         6.6         5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |      |      |     |      |      |      |    |   |
| 1768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     |      |      |      |    |   |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |      |      |     |      |      |      |    |   |
| Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |      |      |     |      |      |      |    |   |
| 1771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     |      |      |      |    |   |
| 73         1774         41.0         24.5         6.5         4.9         700         350         23           74         1782         43.0         35.0         7.3         5.2         1100         450         35           75         1783         36.0         34.0         5.4         3.6         575         275         24           76         1786         55.5         26.0         8.0         8.0         1500         625         33           77         1787         27.0         16.5         7.9         6.7         650         175         20           78         1791         32.0         29.5         6.6         5.8         960         350         48           99         1792         36.5         30.0         5.7         4.7         675         275         37           80         1795         35.0         36.0         6.4         4.1         800         275         30           81         1797         32.0         27.0         6.6         5.8         800         175         22           82         1808         52.0         30.0         6.1         4.6         850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |      |      |     |      |      |      |    |   |
| 74         1782         43.0         35.0         7.3         5.2         1100         450         35           76         1786         55.5         26.0         8.0         8.0         1500         625         33           77         1787         27.0         16.5         7.9         6.7         650         175         20           78         1791         32.0         29.5         6.6         5.8         950         350         48           79         1792         36.5         30.0         5.7         4.7         675         275         37           80         1795         35.0         36.0         6.6         5.8         890         275         37           80         1797         32.0         27.0         6.6         5.8         800         275         30           81         1797         32.0         27.0         6.6         5.8         800         175         22           83         1810         33.0         13.5         5.2         6.6         40         850         375         22           84         1810         38.5         13.5         5.2         6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |      |      |     |      |      |      |    |   |
| 75         1788         36.0         34.0         5.4         3.6         575         275         24           76         1786         55.5         26.0         8.0         8.0         1500         625         33           77         1787         27.0         16.5         7.9         6.7         650         175         20           78         1791         32.0         29.5         6.6         5.8         950         350         48           79         1792         36.5         30.0         5.7         4.7         675         275         37           80         1795         35.0         36.0         6.4         4.1         800         275         30           81         1797         32.0         27.0         6.6         5.8         800         175         25           82         1808         52.0         30.0         6.1         4.6         850         375         22           83         1809         33.0         13.5         5.2         6.6         400         225         25           84         1810         34.1         4.9         4.3         375         375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     |      |      |      |    |   |
| 76         1786         55.5         26.0         8.0         8.0         1500         625         33           77         1787         27.0         16.5         7.9         6.7         630         175         20           78         1791         32.0         29.5         6.6         5.8         960         330         48           79         1792         36.5         30.0         5.7         4.7         675         275         37           80         1795         35.0         36.0         6.4         4.1         800         275         30           81         1797         32.0         27.0         6.6         5.8         800         175         25           82         1808         52.0         30.0         6.1         4.6         850         375         22           83         1809         33.0         13.5         5.4         7.1         460         250         30           84         1810         38.5         13.5         5.2         6.6         400         22.5         25           85         1811         41.0         21.5         5.2         3.9         350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |      |      |     |      |      |      |    |   |
| 77         1787         27.0         16.5         7.9         6.7         650         175         20           78         1791         32.0         29.5         66         5.8         950         350         48           79         1792         36.5         30.0         5.7         4.7         675         275         37           80         1796         35.0         36.0         64         4.1         800         275         30           81         1797         32.0         27.0         66         5.8         800         175         25           82         1808         52.0         30.0         61         4.6         850         375         22           83         1809         33.0         13.5         5.4         7.1         450         250         30           84         1810         38.5         13.5         5.2         66         400         225         25           85         1811         41.0         19.5         4.9         4.3         375         375         32           86         1813         41.0         21.5         5.2         3.9         360 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |      |      |     |      |      |      |    |   |
| 78         1791         32.0         29.5         66         5.8         950         330         48           79         1792         36.5         30.0         5.7         4.7         675         275         37           80         1795         35.0         36.0         64         4.1         800         275         30           81         1797         32.0         27.0         66         5.8         800         175         25           82         1808         52.0         30.0         6.1         4.6         850         375         22           83         1808         52.0         30.0         6.1         4.6         850         375         22           84         1810         33.5         5.4         7.1         450         250         30           84         1810         33.5         5.4         7.1         450         225         25           85         1811         41.0         19.5         4.9         4.3         375         375         32           86         1813         41.0         21.5         5.2         3.9         350         375         32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |      |      |     |      |      |      |    |   |
| 79         1792         36.5         30.0         5.7         4.7         675         275         37           80         1795         35.0         36.0         6.4         4.1         800         275         30           81         1797         32.0         27.0         6.6         5.8         800         175         25           82         1808         52.0         30.0         6.1         4.6         850         375         22           83         1809         33.0         13.5         5.2         6.6         400         225         25           84         1810         38.5         13.5         5.2         6.6         400         225         25           85         1811         41.0         19.5         4.9         4.3         375         375         28           86         1813         41.5         24.0         5.6         6.7         660         325         27           88         1816         22.0         28.0         5.1         4.3         600         225         38           89         1822         48.0         27.5         7.0         6.1         975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77  |      |      |      | 7.9 | 6.7  | 650  |      | 20 |   |
| 80         1795         35.0         36.0         6.4         4.1         800         275         30           81         1797         32.0         27.0         6.6         5.8         800         175         25           82         1808         52.0         30.0         6.1         4.6         850         375         22           83         1809         33.0         13.5         5.4         7.1         450         250         30           84         1810         38.5         13.5         5.2         6.6         400         225         25           85         1811         41.0         19.5         4.9         4.3         375         375         28           86         1813         41.0         21.5         5.2         3.9         350         375         32           87         1814         41.5         24.0         5.6         6.7         600         325         27           88         1818         33.5         28.5         5.9         5.2         700         250         38           89         1822         48.0         27.5         7.0         6.1         975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |      |      |     | 5.8  |      |      |    |   |
| 81         1797         32.0         27.0         6.6         5.8         800         175         25           82         1808         52.0         30.0         6.1         4.6         850         375         22           83         1809         33.0         13.5         5.4         7.1         450         250         30           84         1810         38.5         13.5         5.2         6.6         400         225         25           85         1811         41.0         19.5         4.9         4.3         375         375         28           86         1813         41.0         21.5         5.2         3.9         350         375         32           87         1814         41.5         24.0         5.6         6.7         650         325         27           88         1816         22.0         28.0         5.1         4.3         600         225         38           90         1822         48.0         27.5         7.0         6.1         975         550         30           91         1824         44.0         31.5         6.6         5.6         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 1792 | 36.5 | 30.0 | 5.7 | 4.7  | 675  | 275  |    |   |
| 82         1808         52.0         30.0         6.1         4.6         850         375         22           83         1809         33.0         13.5         5.4         7.1         450         250         30           84         1810         38.5         13.5         5.2         6.6         400         225         25           85         1811         41.0         19.5         4.9         4.3         375         375         28           86         1813         41.0         21.5         5.2         3.9         350         375         32           87         1814         41.5         24.0         5.6         6.7         650         325         27           88         1816         22.0         28.0         5.1         4.3         600         225         38           89         1818         33.5         28.5         5.9         5.2         700         250         38           89         1818         33.5         28.5         5.9         5.2         700         250         38           90         1822         48.0         27.5         7.0         6.1         1125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |      |      |     |      |      |      |    |   |
| 83         1809         33.0         13.5         5.4         7.1         450         250         30           84         1810         38.5         13.5         5.2         6.6         400         225         25           85         1811         41.0         19.5         4.9         4.3         375         375         28           86         1813         41.0         21.5         5.2         3.9         350         375         32           87         1814         41.5         24.0         5.6         6.7         650         325         27           88         1816         22.0         28.0         5.1         4.3         600         225         38           90         1822         48.0         27.5         7.0         6.1         975         550         30           91         1824         44.0         31.5         6.6         5.6         1050         475         33           92         1825         35.5         30.0         7.0         6.1         1125         350         33           93         1826         37.0         19.5         8.5         7.6         1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81  | 1797 | 32.0 | 27.0 | 6.6 | 5.8  | 800  | 175  |    |   |
| 84         1810         38.5         13.5         5.2         6.6         400         225         25           86         1811         41.0         19.5         4.9         4.3         375         375         28           86         1813         41.0         21.5         5.2         3.9         350         375         32           87         1814         41.5         24.0         5.6         6.7         650         325         27           88         1816         22.0         28.0         5.1         4.3         600         225         38           89         1818         33.5         28.5         5.9         5.2         700         250         38           89         1822         48.0         27.5         7.0         6.1         975         550         30           91         1824         44.0         31.5         6.6         5.6         1060         475         33           92         1825         35.5         30.0         7.0         6.1         1125         350         33           93         1826         37.0         19.5         8.5         7.6         102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82  | 1808 |      | 30.0 | 6.1 | 4.6  | 850  | 375  | 22 |   |
| 85         1811         41.0         19.5         4.9         4.3         375         375         28           86         1813         41.0         21.5         5.2         3.9         350         375         32           87         1814         41.5         24.0         5.6         6.7         650         325         27           88         1816         22.0         28.0         5.1         4.3         600         225         38           89         1818         33.5         28.5         5.9         5.2         700         250         38           90         1822         48.0         27.5         7.0         6.1         975         550         30           90         1824         44.0         31.5         6.6         5.6         1050         475         33           92         1825         35.5         30.0         7.0         6.1         1125         350         33           92         1826         37.0         19.5         8.5         7.6         1025         375         23           94         1828         30.0         15.5         6.9         7.0         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83  | 1809 | 33.0 | 13.5 |     | 7.1  | 450  | 250  |    |   |
| 86         1813         41.0         21.5         5.2         3.9         350         375         32           87         1814         41.5         24.0         5.6         6.7         650         325         27           88         1816         22.0         28.0         5.1         4.3         600         225         38           89         1818         33.5         28.5         5.9         5.2         700         250         38           90         1822         48.0         27.5         7.0         6.1         975         550         30           91         1824         44.0         31.5         6.6         5.6         1050         475         33           92         1825         35.5         30.0         7.0         6.1         1125         350         33           93         1826         37.0         19.5         8.5         7.6         1025         375         23           94         1828         30.0         22.0         7.1         5.9         700         200         24           95         1829         38.0         15.5         6.9         6.4         5.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84  | 1810 | 38.5 | 13.5 | 5.2 | 6.6  |      |      | 25 |   |
| 87         1814         41.5         24.0         5.6         6.7         650         325         27           88         1816         22.0         28.0         5.1         4.3         600         225         38           89         1818         33.5         28.5         5.9         5.2         700         250         38           90         1822         48.0         27.5         7.0         6.1         975         550         30           91         1824         44.0         31.5         6.6         5.6         1050         475         33           92         1825         35.5         30.0         7.0         6.1         1125         350         33           93         1826         37.0         19.5         8.5         7.6         1025         375         23           94         1828         30.0         22.0         7.1         5.9         700         200         24           95         1829         38.0         15.5         6.9         6.4         575         350         25           96         1830         33.5         19.5         7.1         7.5         875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 1811 | 41.0 |      |     |      |      |      |    |   |
| 88         1816         22.0         28.0         5.1         4.3         600         225         38           89         1818         33.5         28.5         5.9         5.2         700         250         38           90         1822         48.0         27.5         7.0         6.1         975         550         30           91         1824         44.0         31.5         6.6         5.6         1050         475         33           92         1825         35.5         30.0         7.0         6.1         1125         350         33           93         1826         37.0         19.5         8.5         7.6         1025         375         23           94         1828         30.0         22.0         7.1         5.9         700         200         24           95         1829         38.0         15.5         6.9         6.4         575         350         25           96         1830         33.5         19.5         7.1         7.5         875         325         25           97         1832         40.5         21.0         4.7         4.4         375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 86  | 1813 | 41.0 | 21.5 | 5.2 | 3.9  | 350  |      | 32 |   |
| 89         1818         33.5         28.5         5.9         5.2         700         250         38           90         1822         48.0         27.5         7.0         6.1         975         550         30           91         1824         44.0         31.5         6.6         5.6         1050         475         33           92         1825         35.5         30.0         7.0         6.1         1125         350         33           93         1826         37.0         19.5         8.5         7.6         1025         375         23           94         1828         30.0         22.0         7.1         5.9         700         200         24           95         1829         38.0         15.5         6.9         6.4         575         350         25           96         1830         33.5         19.5         7.1         7.5         875         325         25           97         1832         40.5         21.0         4.7         4.4         375         275         20           98         1834         36.5         21.5         6.9         7.0         850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87  | 1814 | 41.5 | 24.0 | 5.6 | 6.7  | 650  | 325  | 27 |   |
| 90         1822         48.0         27.5         7.0         6.1         975         550         30           91         1824         440         31.5         6.6         5.6         1050         475         33           92         1825         35.5         30.0         7.0         6.1         1125         350         33           93         1826         37.0         19.5         8.5         7.6         1025         375         23           94         1828         30.0         22.0         7.1         5.9         700         200         24           95         1829         38.0         15.5         6.9         6.4         575         350         25           96         1830         33.5         19.5         7.1         7.5         875         325         25           97         1832         40.5         21.0         4.7         4.4         375         275         20           98         1834         36.5         21.5         6.9         7.0         850         250         20           99         1835         40.0         18.0         8.0         7.7         850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88  | 1816 | 22.0 | 28.0 | 5.1 | 4.3  | 600  | 225  | 38 |   |
| 91         1824         44.0         31.5         6.6         5.6         1050         475         33           92         1825         35.5         30.0         7.0         6.1         1125         350         33           93         1826         37.0         19.5         8.5         7.6         1025         375         23           94         1828         30.0         22.0         7.1         5.9         700         200         24           95         1829         38.0         15.5         6.9         6.4         575         350         25           96         1830         33.5         19.5         7.1         7.5         875         325         25           97         1832         40.5         21.0         4.7         4.4         375         275         20           98         1834         36.5         21.5         6.9         7.0         850         250         20           99         1835         40.0         18.0         8.0         7.7         850         375         25           100         1836         38.5         15.0         7.3         7.3         7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89  | 1818 | 33.5 | 28.5 | 5.9 | 5.2  | 700  | 250  | 38 |   |
| 92         1825         35.5         30.0         7.0         6.1         1125         350         33           93         1826         37.0         19.5         8.5         7.6         1025         375         23           94         1828         30.0         22.0         7.1         5.9         700         200         24           95         1829         38.0         15.5         6.9         6.4         575         350         25           96         1830         33.5         19.5         7.1         7.5         875         325         25           97         1832         40.5         21.0         4.7         4.4         375         275         20           98         1834         36.5         21.5         6.9         7.0         850         250         20           99         1835         40.0         18.0         8.0         7.7         850         375         25           100         1836         38.5         15.0         7.3         7.3         700         425         24           101         1839         48.0         18.0         9.1         9.3         1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90  | 1822 | 48.0 | 27.5 | 7.0 | 6.1  | 975  | 550  |    |   |
| 93         1826         37.0         19.5         8.5         7.6         1025         375         23           94         1828         30.0         22.0         7.1         5.9         700         200         24           95         1829         38.0         15.5         6.9         6.4         575         350         25           96         1830         33.5         19.5         7.1         7.5         875         325         25           97         1832         40.5         21.0         4.7         4.4         375         275         20           98         1834         36.5         21.5         6.9         7.0         850         250         20           99         1835         40.0         18.0         8.0         7.7         850         375         25           100         1836         38.5         15.0         7.3         7.3         7.0         425         24           101         1839         48.0         18.0         9.1         9.3         1000         575         26           102         1841         50.0         23.0         8.1         9.0         1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      | 44.0 | 31.5 | 6.6 | 5.6  | 1050 | 475  |    |   |
| 94         1828         30.0         22.0         7.1         5.9         700         200         24           95         1829         38.0         15.5         6.9         6.4         575         350         25           96         1830         33.5         19.5         7.1         7.5         875         325         25           97         1832         40.5         21.0         4.7         4.4         375         275         20           98         1834         36.5         21.5         6.9         7.0         850         250         20           99         1835         40.0         18.0         8.0         7.7         850         375         25           100         1836         38.5         15.0         7.3         7.3         700         425         24           101         1839         48.0         18.0         9.1         9.3         1000         575         26           102         1841         50.0         23.0         8.1         9.0         1500         400         22           103         1843         28.5         16.5         5.7         6.3         475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92  | 1825 | 35.5 | 30.0 | 7.0 | 6.1  | 1125 | 350  | 33 |   |
| 95         1829         38.0         15.5         6.9         6.4         575         350         25           96         1830         33.5         19.5         7.1         7.5         875         325         25           97         1832         40.5         21.0         4.7         4.4         375         275         20           98         1834         36.5         21.5         6.9         7.0         850         250         20           99         1835         40.0         18.0         8.0         7.7         850         375         25           100         1836         38.5         15.0         7.3         7.3         700         425         24           101         1839         48.0         18.0         9.1         9.3         1000         575         26           102         1841         50.0         23.0         8.1         9.0         1500         400         22           103         1843         28.5         16.5         5.7         6.3         475         125         19           104         1848         40.5         22.0         7.3         6.1         850 <td>93</td> <td>1826</td> <td>37.0</td> <td>19.5</td> <td>8.5</td> <td>7.6</td> <td>1025</td> <td>375</td> <td>23</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93  | 1826 | 37.0 | 19.5 | 8.5 | 7.6  | 1025 | 375  | 23 |   |
| 95         1829         38.0         15.5         6.9         6.4         575         350         25           96         1830         33.5         19.5         7.1         7.5         875         325         25           97         1832         40.5         21.0         4.7         4.4         375         275         20           98         1834         36.5         21.5         6.9         7.0         850         250         20           99         1835         40.0         18.0         8.0         7.7         850         375         25           100         1836         38.5         15.0         7.3         7.3         700         425         24           101         1839         48.0         18.0         9.1         9.3         1000         575         26           102         1841         50.0         23.0         8.1         9.0         1500         400         22           103         1843         28.5         16.5         5.7         6.3         475         125         19           104         1848         40.5         22.0         7.3         6.1         850 <td>94</td> <td>1828</td> <td>30.0</td> <td>22.0</td> <td>7.1</td> <td>5.9</td> <td>700</td> <td>200</td> <td>24</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94  | 1828 | 30.0 | 22.0 | 7.1 | 5.9  | 700  | 200  | 24 |   |
| 96         1830         33.5         19.5         7.1         7.5         875         325         25           97         1832         40.5         21.0         4.7         4.4         375         275         20           98         1834         36.5         21.5         6.9         7.0         850         250         20           99         1835         40.0         18.0         8.0         7.7         850         375         25           100         1836         38.5         15.0         7.3         7.3         700         425         24           101         1839         48.0         18.0         9.1         9.3         1000         575         26           102         1841         50.0         23.0         8.1         9.0         1500         400         22           103         1843         28.5         16.5         5.7         6.3         475         125         19           104         1848         40.5         22.0         7.3         6.1         850         375         28           105         1849         38.5         21.0         6.1         4.5         450 <td></td> <td></td> <td></td> <td></td> <td>6.9</td> <td></td> <td></td> <td>350</td> <td>25</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |      |      | 6.9 |      |      | 350  | 25 |   |
| 97         1832         40.5         21.0         4.7         4.4         375         275         20           98         1834         36.5         21.5         6.9         7.0         850         250         20           99         1835         40.0         18.0         8.0         7.7         850         375         25           100         1836         38.5         15.0         7.3         7.3         700         425         24           101         1839         48.0         18.0         9.1         9.3         1000         575         26           102         1841         50.0         23.0         8.1         9.0         1500         400         22           103         1843         28.5         16.5         5.7         6.3         475         125         19           104         1848         40.5         22.0         7.3         6.1         850         375         28           105         1849         38.5         21.0         6.1         4.5         450         200         15           106         1850         37.5         35.5         6.0         4.1         750 </td <td>96</td> <td>1830</td> <td>33.5</td> <td>19.5</td> <td>7.1</td> <td>7.5</td> <td>875</td> <td>325</td> <td>25</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96  | 1830 | 33.5 | 19.5 | 7.1 | 7.5  | 875  | 325  | 25 |   |
| 99         1835         40.0         18.0         8.0         7.7         850         375         25           100         1836         38.5         15.0         7.3         7.3         700         425         24           101         1839         48.0         18.0         9.1         9.3         1000         575         26           102         1841         50.0         23.0         8.1         9.0         1500         400         22           103         1843         28.5         16.5         5.7         6.3         475         125         19           104         1848         40.5         22.0         7.3         6.1         850         375         28           105         1849         38.5         21.0         6.1         4.5         450         200         15           106         1850         37.5         35.5         6.0         4.1         750         325         23           107         1853         39.5         30.0         6.6         5.6         925         400         25           108         1854         39.3         14.4         6.7         6.7         588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |      |      |     |      |      |      |    |   |
| 100         1836         38.5         15.0         7.3         7.3         700         425         24           101         1839         48.0         18.0         9.1         9.3         1000         575         26           102         1841         50.0         23.0         8.1         9.0         1500         400         22           103         1843         28.5         16.5         5.7         6.3         475         125         19           104         1848         40.5         22.0         7.3         6.1         850         375         28           105         1849         38.5         21.0         6.1         4.5         450         200         15           106         1850         37.5         35.5         6.0         4.1         750         325         23           107         1853         39.5         30.0         6.6         5.6         925         400         25           108         1854         39.3         14.4         6.7         6.7         588         300         25           109         1857         35.0         25.5         6.0         6.3         95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      | 36.5 |      |     |      |      |      |    |   |
| 101         1839         48.0         18.0         9.1         9.3         1000         575         26           102         1841         50.0         23.0         8.1         9.0         1500         400         22           103         1843         28.5         16.5         5.7         6.3         475         125         19           104         1848         40.5         22.0         7.3         6.1         850         375         28           105         1849         38.5         21.0         6.1         4.5         450         200         15           106         1850         37.5         35.5         6.0         4.1         750         325         23           107         1853         39.5         30.0         6.6         5.6         925         400         25           108         1854         39.3         14.4         6.7         6.7         588         300         25           109         1857         35.0         25.5         6.0         6.3         950         150         16           110         1858         38.0         26.0         5.4         6.1         75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      | 40.0 |      |     |      |      | 375  |    |   |
| 102         1841         50.0         23.0         8.1         9.0         1500         400         22           103         1843         28.5         16.5         5.7         6.3         475         125         19           104         1848         40.5         22.0         7.3         6.1         850         375         28           105         1849         38.5         21.0         6.1         4.5         450         200         15           106         1850         37.5         35.5         6.0         4.1         750         325         23           107         1853         39.5         30.0         6.6         5.6         925         400         25           108         1854         39.3         14.4         6.7         6.7         588         300         25           109         1857         35.0         25.5         6.0         6.3         950         150         16           110         1858         38.0         26.0         5.4         6.1         750         200         17           111         1861         71.3         10.8         8.4         10.3         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 | 1836 | 38.5 |      | 7.3 |      |      |      |    |   |
| 103         1843         28.5         16.5         5.7         6.3         475         125         19           104         1848         40.5         22.0         7.3         6.1         850         375         28           105         1849         38.5         21.0         6.1         4.5         450         200         15           106         1850         37.5         35.5         6.0         4.1         750         325         23           107         1853         39.5         30.0         6.6         5.6         925         400         25           108         1854         39.3         14.4         6.7         6.7         588         300         25           109         1857         35.0         25.5         6.0         6.3         950         150         16           110         1858         38.0         26.0         5.4         6.1         750         200         17           111         1861         71.3         10.8         8.4         10.3         1000         1075         34           112         1862         45.5         10.8         8.7         725         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1839 | 48.0 |      |     |      |      | 575  |    |   |
| 104         1848         40.5         22.0         7.3         6.1         850         375         28           105         1849         38.5         21.0         6.1         4.5         450         200         15           106         1850         37.5         35.5         6.0         4.1         750         325         23           107         1853         39.5         30.0         6.6         5.6         925         400         25           108         1854         39.3         14.4         6.7         6.7         588         300         25           109         1857         35.0         25.5         6.0         6.3         950         150         16           110         1858         38.0         26.0         5.4         6.1         750         200         17           111         1861         71.3         10.8         8.4         10.3         1000         1075         34           112         1862         45.5         10.8         8.4         8.7         725         300         18           113         1863         45.5         12.0         8.7         9.5         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102 |      |      |      |     |      |      |      | 22 |   |
| 105         1849         38.5         21.0         6.1         4.5         450         200         15           106         1850         37.5         35.5         6.0         4.1         750         325         23           107         1853         39.5         30.0         6.6         5.6         925         400         25           108         1854         39.3         14.4         6.7         6.7         588         300         25           109         1857         35.0         25.5         6.0         6.3         950         150         16           110         1858         38.0         26.0         5.4         6.1         750         200         17           111         1861         71.3         10.8         8.4         10.3         1000         1075         34           112         1862         45.5         10.8         8.4         8.7         725         300         18           113         1863         45.5         12.0         8.7         9.5         825         325         21           114         1864         44.5         27.0         8.2         8.6         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103 |      | 28.5 |      |     |      |      |      |    |   |
| 106         1850         37.5         35.5         6.0         4.1         750         325         23           107         1853         39.5         30.0         6.6         5.6         925         400         25           108         1854         39.3         14.4         6.7         6.7         588         300         25           109         1857         35.0         25.5         6.0         6.3         950         150         16           110         1858         38.0         26.0         5.4         6.1         750         200         17           111         1861         71.3         10.8         8.4         10.3         1000         1075         34           112         1862         45.5         10.8         8.4         8.7         725         300         18           113         1863         45.5         12.0         8.7         9.5         825         325         21           114         1864         44.5         27.0         8.2         8.6         1625         300         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104 | 1848 | 40.5 |      | 7.3 | 6.1  |      | 375  |    |   |
| 106         1850         37.5         35.5         6.0         4.1         750         325         23           107         1853         39.5         30.0         6.6         5.6         925         400         25           108         1854         39.3         14.4         6.7         6.7         588         300         25           109         1857         35.0         25.5         6.0         6.3         950         150         16           110         1858         38.0         26.0         5.4         6.1         750         200         17           111         1861         71.3         10.8         8.4         10.3         1000         1075         34           112         1862         45.5         10.8         8.4         8.7         725         300         18           113         1863         45.5         12.0         8.7         9.5         825         325         21           114         1864         44.5         27.0         8.2         8.6         1625         300         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |      |      |     | 4.5  |      |      |    |   |
| 108         1854         39.3         14.4         6.7         6.7         588         300         25           109         1857         35.0         25.5         6.0         6.3         950         150         16           110         1858         38.0         26.0         5.4         6.1         750         200         17           111         1861         71.3         10.8         8.4         10.3         1000         1075         34           112         1862         45.5         10.8         8.4         8.7         725         300         18           113         1863         45.5         12.0         8.7         9.5         825         325         21           114         1864         44.5         27.0         8.2         8.6         1625         300         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 106 | 1850 | 37.5 | 35.5 | 6.0 | 4.1  |      | 325  | 23 |   |
| 109     1857     35.0     25.5     6.0     6.3     950     150     16       110     1858     38.0     26.0     5.4     6.1     750     200     17       111     1861     71.3     10.8     8.4     10.3     1000     1075     34       112     1862     45.5     10.8     8.4     8.7     725     300     18       113     1863     45.5     12.0     8.7     9.5     825     325     21       114     1864     44.5     27.0     8.2     8.6     1625     300     26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107 |      | 39.5 | 30.0 |     |      |      |      |    |   |
| 110     1858     38.0     26.0     5.4     6.1     750     200     17       111     1861     71.3     10.8     8.4     10.3     1000     1075     34       112     1862     45.5     10.8     8.4     8.7     725     300     18       113     1863     45.5     12.0     8.7     9.5     825     325     21       114     1864     44.5     27.0     8.2     8.6     1625     300     26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108 | 1854 | 39.3 | 14.4 | 6.7 | 6.7  | 588  | 300  | 25 |   |
| 110     1858     38.0     26.0     5.4     6.1     750     200     17       111     1861     71.3     10.8     8.4     10.3     1000     1075     34       112     1862     45.5     10.8     8.4     8.7     725     300     18       113     1863     45.5     12.0     8.7     9.5     825     325     21       114     1864     44.5     27.0     8.2     8.6     1625     300     26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109 | 1857 | 35.0 |      | 6.0 | 6.3  |      | 150  | 16 |   |
| 111     1861     71.3     10.8     8.4     10.3     1000     1075     34       112     1862     45.5     10.8     8.4     8.7     725     300     18       113     1863     45.5     12.0     8.7     9.5     825     325     21       114     1864     44.5     27.0     8.2     8.6     1625     300     26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110 | 1858 | 38.0 | 26.0 | 5.4 |      | 750  | 200  | 17 |   |
| 113     1863     45.5     12.0     8.7     9.5     825     325     21       114     1864     44.5     27.0     8.2     8.6     1625     300     26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111 |      | 71.3 | 10.8 | 8.4 | 10.3 | 1000 | 1075 | 34 |   |
| 114 1864 44.5 27.0 8.2 8.6 1625 300 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 112 | 1862 | 45.5 | 10.8 |     |      |      |      | 18 |   |
| 114 1864 44.5 27.0 8.2 8.6 1625 300 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113 | 1863 | 45.5 | 12.0 | 8.7 | 9.5  | 825  | 325  | 21 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 114 |      | 44.5 | 27.0 |     | 8.6  | 1625 | 300  | 26 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115 | 1865 | 51.0 | 10.5 | 7.2 | 7.4  | 500  | 250  | 17 |   |

| 116 | 1867 | 45.0 | 14.3 | 7.7 | 8.7 | 700  | 400 | 18 |  |
|-----|------|------|------|-----|-----|------|-----|----|--|
| 117 | 1871 | 52.5 | 14.0 | 8.4 | 8.4 | 875  | 400 | 23 |  |
| 118 | 1872 | 51.9 | 11.1 | 7.3 | 7.2 | 613  | 475 | 22 |  |
| 119 | 1875 | 46.8 | 15.3 | 7.6 | 8.2 | 875  | 400 | 26 |  |
| 120 | 1876 | 56.0 | 22.0 | 6.0 | 4.1 | 550  | 300 | 15 |  |
| 121 | 1878 | 40.5 | 11.0 | 7.0 | 8.3 | 575  | 225 | 26 |  |
| 122 | 1879 | 36.0 | 9.0  | 7.8 | 8.9 | 600  | 225 | 14 |  |
| 123 | 1880 | 46.5 | 28.0 | 7.0 | 5.6 | 1150 | 500 | 28 |  |
| 124 | 1883 | 44.0 | 13.5 | 5.2 | 4.5 | 300  | 350 | 26 |  |
| 125 | 1885 | 43.8 | 37.3 | 7.6 | 5.6 | 1500 | 600 | 33 |  |
| 126 | 1886 | 48.1 | 21.8 | 7.3 | 8.7 | 1463 | 650 | 45 |  |
| 127 | 1887 | 37.0 | 19.8 | 7.6 | 8.2 | 1225 | 375 | 24 |  |
| 128 | 1888 | 39.0 | 15.0 | 7.5 | 6.5 | 700  | 400 | 44 |  |
| 129 | 1890 | 50.5 | 14.0 | 7.9 | 7.3 | 750  | 450 | 23 |  |
| 130 | 1892 | 49.0 | 38.5 | 8.7 | 6.1 | 1775 | 400 | 26 |  |
| 131 | 1894 | 44.0 | 32.5 | 7.3 | 6.6 | 1350 | 450 | 34 |  |
| 132 | 1895 | 35.3 | 37.0 | 6.9 | 6.5 | 1375 | 225 | 22 |  |
| 133 | 1901 | 46.0 | 37.8 | 7.2 | 6.2 | 1475 | 625 | 39 |  |

|     | 3차년도 |        |        |        |        |       |       |       |    |  |
|-----|------|--------|--------|--------|--------|-------|-------|-------|----|--|
| No. | B.N  | 엽장(cm) | 근장(cm) | 상경(cm) | 하경(cm) | 근중(g) | 엽중(g) | 엽수(매) | 비고 |  |
| 1   | 1701 | 48     | 17.3   | 7.8    | 8.6    | 1100  | 325   | 23    |    |  |
| 2   | 1702 | 34.3   | 16     | 7.6    | 8.4    | 1075  | 175   | 26    |    |  |
| 3   | 1706 | 31.9   | 14.5   | 6.1    | 7.2    | 663   | 175   | 21    |    |  |
| 4   | 1708 | 26     | 16     | 5.7    | 5.2    | 550   | 225   | 37    |    |  |
| 5   | 1712 | 41.1   | 16.5   | 7.0    | 7.8    | 900   | 425   | 29    |    |  |
| 6   | 1714 | 38     | 13.8   | 6.8    | 6.7    | 650   | 275   | 28    |    |  |
| 7   | 1715 | 54     | 22.5   | 7.3    | 7.9    | 1450  | 400   | 22    |    |  |
| 8   | 1716 | 52.5   | 18     | 7.8    | 7.6    | 1075  | 325   | 21    |    |  |
| 9   | 1717 | 53.3   | 17.8   | 7.6    | 6.6    | 1100  | 425   | 17    |    |  |
| 10  | 1718 | 26.3   | 20     | 5.9    | 5.7    | 725   | 125   | 27    |    |  |
| 11  | 1719 | 35.5   | 14     | 6.6    | 7.4    | 700   | 250   | 23    |    |  |
| 12  | 1721 | 33.5   | 18     | 8      | 5.7    | 950   | 200   | 22    |    |  |
| 13  | 1723 | 41.8   | 27.5   | 7.15   | 5.5    | 1325  | 475   | 67    |    |  |
| 14  | 1724 | 30.5   | 16.5   | 6.6    | 7.4    | 950   | 200   | 20    |    |  |
| 15  | 1725 | 28.8   | 21.8   | 6.1    | 5.8    | 900   | 125   | 21    |    |  |
| 16  | 1726 | 34.5   | 15.3   | 6.9    | 6.7    | 775   | 250   | 25    |    |  |
| 17  | 1727 | 34.3   | 18.3   | 7.3    | 8.3    | 1250  | 125   | 14    |    |  |
| 18  | 1729 | 31.8   | 12     | 8.0    | 9.2    | 925   | 300   | 18    |    |  |
| 19  | 1730 | 42     | 12.5   | 7.3    | 7.0    | 775   | 425   | 25    |    |  |
| 20  | 1731 | 24.8   | 9.3    | 7.1    | 7.9    | 525   | 50    | 10    |    |  |
| 21  | 1732 | 36.3   | 16     | 6.7    | 5.8    | 700   | 250   | 26    |    |  |
| 22  | 1733 | 36     | 15.3   | 6.7    | 7.3    | 900   | 275   | 24    |    |  |
| 23  | 1734 | 38     | 15.5   | 7.1    | 6.6    | 925   | 425   | 35    |    |  |
| 24  | 1735 | 45.8   | 15.3   | 6.6    | 6.9    | 875   | 575   | 28    |    |  |
| 25  | 1736 | 37.3   | 17     | 6.15   | 5.3    | 800   | 325   | 23    |    |  |
| 26  | 1738 | 46.8   | 19.3   | 7.4    | 6.7    | 1100  | 375   | 21    |    |  |
| 27  | 1739 | 25.5   | 16.3   | 5.7    | 5.5    | 700   | 75    | 15    |    |  |
| 28  | 1740 | 30.3   | 14.3   | 6.8    | 5.9    | 650   | 250   | 29    |    |  |
| 29  | 1742 | 45.8   | 14.5   | 7.5    | 7      | 875   | 350   | 32    |    |  |
| 30  | 1743 | 38.8   | 19.3   | 8.4    | 6.5    | 1150  | 250   | 23    |    |  |
| 31  | 1744 | 52.5   | 15.5   | 7.8    | 6.4    | 900   | 375   | 24    |    |  |
| 32  | 1745 | 44.5   | 27.5   | 5.4    | 3.7    | 800   | 325   | 41    |    |  |
| 33  | 1747 | 25.8   | 13.0   | 6.7    | 6.0    | 550   | 175   | 31    |    |  |
| 34  | 1748 | 34.3   | 19.5   | 6.9    | 5.8    | 925   | 250   | 55    |    |  |
| 35  | 1750 | 36.5   | 16.3   | 8.5    | 7.7    | 1300  | 225   | 18    |    |  |
| 36  | 1753 | 47.5   | 17     | 7.1    | 6.5    | 900   | 225   | 20    |    |  |
| 37  | 1754 | 34     | 18     | 6.9    | 8.2    | 875   | 175   | 21    |    |  |
| 38  | 1756 | 39.3   | 14.5   | 6.8    | 5.7    | 725   | 200   | 20    |    |  |
| 39  | 1758 | 42.8   | 41.5   | 7.3    | 4.6    | 1600  | 575   | 44    |    |  |
| 40  | 1767 | 32.3   | 10.8   | 5.5    | 7.8    | 375   | 175   | 16    |    |  |
| 41  | 1768 | 60.5   | 42     | 7.6    | 4.9    | 1875  | 450   | 35    |    |  |
| 42  | 1769 | 34.8   | 18.5   | 5.6    | 6.8    | 1100  | 75    | 10    |    |  |
| 43  | 1771 | 29.5   | 15.8   | 6.9    | 6.5    | 1000  | 225   | 27    |    |  |

| 44  | 1779 | 20.2 | 25   | F 0  | F 4 | 1175  | വെട         | 20 |   |
|-----|------|------|------|------|-----|-------|-------------|----|---|
| 44  | 1772 | 32.3 | 25   | 5.8  | 5.4 | 1175  | 225         | 29 |   |
| 45  | 1773 | 44.3 | 15.3 | 6.8  | 7.3 | 1000  | 550         | 34 |   |
| 46  | 1776 | 41   | 42   | 6.6  | 4.2 | 1425  | 300         | 27 |   |
| 47  | 1779 | 35.3 | 30   | 5.7  | 3.9 | 875   | 225         | 25 |   |
| 48  | 1785 | 36.5 | 46   | 6.5  | 5.4 | 1950  | 425         | 51 |   |
| 49  | 1788 | 42.8 | 14.5 | 6.9  | 5.6 | 775   | 250         | 52 |   |
| 50  | 1791 | 39.8 | 28.5 | 6.0  | 4.9 | 925   | 225         | 22 |   |
| 51  | 1792 | 35.5 | 14.5 | 7    | 7.6 | 950   | 275         | 24 |   |
| 52  | 1793 | 49.5 | 23   | 7.4  | 7.1 | 1725  | 400         | 29 |   |
| 53  | 1794 | 57.8 | 24.3 | 8.2  | 6.9 | 1700  | 525         | 33 |   |
| 54  | 1797 | 61.5 | 30.8 | 6.8  | 5.6 | 1325  | 550         | 56 |   |
| 55  | 1800 | 32.3 | 27.3 | 6.1  | 6.3 | 1350  | 200         | 34 |   |
| 56  | 1801 | 48.5 | 23.3 | 7.4  | 6.7 | 1475  | 375         | 25 |   |
| 57  | 1804 | 29.5 | 18.3 | 5.3  | 5.2 | 600   | 75          | 17 |   |
| 58  | 1807 | 27   | 19.5 | 5.1  | 5.8 | 875   | 150         | 26 |   |
| 59  | 1808 | 26.3 | 21.5 | 5.2  | 5.9 | 875   | 125         | 31 |   |
| 60  | 1811 | 30   | 22   | 6.1  | 6.9 | 1225  | 175         | 25 |   |
| 61  | 1812 | 26.5 | 22   | 5.6  | 6.6 | 1125  | 150         | 27 |   |
| 62  | 1814 | 43.5 | 21.5 | 8.0  | 7.1 | 1300  | 500         | 95 |   |
| 63  | 1815 | 44.5 | 25.3 | 8.5  | 7.1 | 1550  | 500         | 30 |   |
| 64  | 1822 | 36.3 | 43   | 6.5  | 5.0 | 1750  | 325         |    |   |
| 65  | 1824 | 38.5 | 43   | 6.5  | 6.2 | 2050  |             | -  |   |
|     |      |      |      |      |     |       | 300         |    |   |
| 66  | 1827 | 46.5 | 22.5 | 7.3  | 5.9 | 1150  | 250         | -  |   |
| 67  | 1828 | 45   | 16.8 | 7.4  | 6.8 | 900   | 225         | -  |   |
| 68  | 1829 | 42.8 | 15   | 5.7  | 5.8 | 700   | 225         |    |   |
| 69  | 1830 | 37.3 | 22.3 | 7.2  | 8.8 | 1875  | 150         |    |   |
| 70  | 1831 | 32.8 | 20.3 | 5.8  | 6.8 | 1000  | 50          |    |   |
| 71  | 1832 | 26   | 12.3 | 5.7  | 6.0 | 625   | 100         |    |   |
| 72  | 1835 | 32   | 18.8 | 6    | 6.3 | 900   | 325         |    |   |
| 73  | 1836 | 40.8 | 23.3 | 6.15 | 6.7 | 1250  | 400         |    |   |
| 74  | 1838 | 22   | 15   | 5.9  | 5.6 | 600   | 200         |    |   |
| 75  | 1840 | 33.3 | 12.8 | 6.8  | 6.9 | 800   | 275         |    |   |
| 76  | 1841 | 31.5 | 17.8 | 5.2  | 6.7 | 625   | 200         |    |   |
| 77  | 1842 | 45   | 20.5 | 7.5  | 7.4 | 1650  | 250         |    |   |
| 78  | 1848 | 26.8 | 11.8 | 5.3  | 7.1 | 475   | 150         |    |   |
| 79  | 1851 | 27   | 19.5 | 7.9  | 6.8 | 1100  | 150         |    |   |
| 80  | 1852 | 41   | 24   | 7.9  | 8.5 | 2650  | 500         |    |   |
| 81  | 1854 | 26.5 | 18.3 | 5.8  | 5.5 | 900   | 225         |    |   |
| 82  | 1855 | 28   | 18   | 5.4  | 5.6 | 775   | 175         |    |   |
| 83  | 1856 | 39.5 | 21.3 | 8.15 | 7.6 | 1575  | 500         |    |   |
| 84  | 1858 | 31   | 15.5 | 6.6  | 7.1 | 800   | 200         |    |   |
| 85  | 1861 | 26   | 15.5 | 7.6  | 7.4 | 900   | 100         |    |   |
| 86  | 1866 | 37.5 | 14   | 7.0  | 7   | 775   | 275         |    |   |
| 87  | 1870 | 31.5 | 13.3 | 8.2  | 7   | 950   | 200         |    |   |
|     |      |      |      |      |     |       |             |    |   |
| 88  | 1871 | 48.5 | 20.5 | 7.5  | 7.3 | 1600  | 625         | +  |   |
| 89  | 1872 | 50.5 | 18.8 | 6    | 6.1 | 900   | 700         |    |   |
| 90  | 1873 | 38.3 | 12.3 | 8.3  | 8.8 | 1175  | 400         | -  |   |
| 91  | 1874 | 33.0 | 12.8 | 6.5  | 7.3 | 700   | 300         | -  |   |
| 92  | 1876 | 38.3 | 18.5 | 8.4  | 8.6 | 1800  | 375         |    |   |
| 93  | 1878 | 28.0 | 15.8 | 7.5  | 6.7 | 1125  | 100         |    |   |
| 94  | 1888 | 26.5 | 12.0 | 5.8  | 5.7 | 450   | 150         |    |   |
| 95  | 1889 | 28.5 | 15.5 | 6.4  | 5.4 | 625   | 225         |    |   |
| 96  | 1891 | 26.0 | 14.8 | 5.9  | 5.5 | 600   | 200         |    |   |
| 97  | 1892 | 45.0 | 31.8 | 7.0  | 4.7 | 1225  | 425         |    |   |
| 98  | 1896 | 41.0 | 15.5 | 7.6  | 8.1 | 1175  | 625         |    |   |
| 99  | 1906 | 43.0 | 36.0 | 7.0  | 3.8 | 1225  | 525         |    |   |
| 100 | 1914 | 24.0 | 18.0 | 5.3  | 5.7 | 700   | 100         |    |   |
| 101 | 1916 | 49.5 | 17.3 | 7.2  | 6.6 | 975   | 325         |    |   |
| 102 | 1920 | 31.5 | 22.0 | 4.9  | 5.3 | 825   | 150         |    |   |
| 103 | 1922 | 27.0 | 11.0 | 5.3  | 5.8 | 425   | 150         |    |   |
| 104 | 1925 | 30.5 | 23.3 | 5.5  | 5.5 | 1000  | 150         | 1  |   |
| 105 | 1926 | 40.0 | 41.0 | 6.5  | 4.6 | 1125  | 350         |    |   |
| 106 | 1932 | 40.0 | 19.8 | 7.6  | 7.8 | 1250  | 300         | +  |   |
| 107 | 1932 | 30.0 | 14.3 | 7.0  | 5.8 | 650   | 225         | +  |   |
| 107 | 1300 | JU.U | 14.3 | 1.1  | J.O | 1 030 | 44 <b>0</b> |    | l |

| 108 | 1934 | 36.5 | 18.5 | 7.3 | 7.3 | 1100 | 250 |  |
|-----|------|------|------|-----|-----|------|-----|--|
| 109 | 1940 | 40.5 | 21.0 | 6.6 | 6.6 | 1050 | 400 |  |
| 110 | 1941 | 30.0 | 28.5 | 6.7 | 6.2 | 1500 | 200 |  |
| 111 | 1942 | 43.5 | 11.5 | 8.0 | 6.9 | 800  | 350 |  |
| 112 | 1944 | 32.3 | 15.3 | 6.6 | 6.7 | 800  | 150 |  |
| 113 | 1946 | 24.0 | 18.0 | 6.1 | 5.9 | 750  | 75  |  |
| 114 | 1947 | 37.8 | 16.8 | 6.7 | 6.5 | 800  | 225 |  |
| 115 | 1949 | 24.5 | 12.3 | 6.0 | 5.1 | 450  | 200 |  |
| 116 | 1950 | 26.5 | 17.0 | 5.8 | 6.1 | 725  | 150 |  |
| 117 | 1952 | 33.5 | 19.0 | 5.8 | 8.0 | 1150 | 300 |  |
| 118 | 1953 | 28.0 | 18.8 | 5.6 | 5.2 | 550  | 150 |  |
| 119 | 1955 | 39.5 | 20.0 | 5.9 | 6.4 | 925  | 450 |  |
| 120 | 1959 | 21.5 | 16.5 | 5.5 | 6.0 | 600  | 150 |  |
| 121 | 1962 | 24.3 | 19.3 | 5.6 | 4.8 | 600  | 150 |  |
| 122 | 1964 | 42.5 | 14.0 | 7.0 | 8.2 | 1050 | 325 |  |
| 123 | 1970 | 33.8 | 23.5 | 5.6 | 5.6 | 975  | 240 |  |
| 124 | 1971 | 36.5 | 19.0 | 7.3 | 7.9 | 1325 | 340 |  |
| 125 | 1972 | 30.3 | 15.5 | 7.1 | 6.0 | 725  | 275 |  |
| 126 | 1982 | 35.0 | 16.3 | 5.8 | 6.1 | 750  | 300 |  |
| 127 | 1985 | 25.5 | 22.5 | 6.7 | 5.0 | 750  | 175 |  |
| 128 | 1988 | 31.5 | 18.5 | 5.3 | 5.4 | 650  | 250 |  |
| 129 | 1989 | 39.5 | 17.8 | 7.5 | 8.5 | 1250 | 300 |  |
| 130 | 1991 | 28.3 | 12.5 | 7.8 | 8.1 | 725  | 275 |  |
| 131 | 1993 | 48.0 | 27.0 | 9.3 | 9.0 | 3000 | 600 |  |
| 132 | 1994 | 35.5 | 27.3 | 5.6 | 5.4 | 975  | 325 |  |
| 133 | 1996 | 48.8 | 20.5 | 7.7 | 8.1 | 1650 | 475 |  |
| 134 | 1997 | 34.5 | 34.5 | 6.4 | 5.1 | 1300 | 325 |  |
| 135 | 2001 | 47.0 | 18.3 | 8.6 | 9.5 | 2025 | 975 |  |
| 136 | 2002 | 52   | 31.5 | 7.3 | 5.1 | 1350 | 350 |  |
| 137 | 2008 | 24.3 | 18.5 | 6.3 | 6.5 | 875  | 150 |  |
| 138 | 2012 | 23.0 | 13.8 | 5.6 | 5.3 | 500  | 100 |  |
| 139 | 2014 | 29.0 | 9.9  | 7.0 | 7.0 | 600  | 200 |  |
| 140 | 2016 | 37   | 12.3 | 9   | 7.9 | 1150 | 350 |  |
| 141 | 2017 | 43.5 | 16.8 | 6.1 | 6.5 | 1050 | 550 |  |
|     |      |      |      |     |     |      |     |  |

| 111 | 2011 | 10.0   | 10.0   | 0.1    | 0.0    | 1000  |       |       |    |
|-----|------|--------|--------|--------|--------|-------|-------|-------|----|
|     |      |        |        | 4      | !차년도   |       |       |       |    |
| No. | B.N  | 엽장(cm) | 근장(cm) | 상경(cm) | 하경(cm) | 근중(g) | 엽중(g) | 엽수(매) | 비고 |
| 1   | 1231 | 46.0   | 14.5   | 6.2    | 7.0    | 800   | 450   | 20    |    |
| 2   | 1232 | 42.5   | 17.5   | 6.6    | 5.8    | 950   | 300   | 20    |    |
| 3   | 1233 | 40.0   | 15.0   | 5.8    | 5.3    | 600   | 300   | 20    |    |
| 4   | 1234 | 33.0   | 11.0   | 5.9    | 4.7    | 300   | 250   | 26    |    |
| 5   | 1237 | 38.0   | 13.0   | 5.4    | 5.9    | 550   | 300   | 26    |    |
| 6   | 1238 | 45.0   | 17.0   | 5.9    | 4.5    | 750   | 500   | 22    |    |
| 7   | 1239 | 44.0   | 19.5   | 6.5    | 4.7    | 950   | 550   | 24    |    |
| 8   | 1240 | 44.0   | 18.5   | 7.0    | 5.4    | 1100  | 700   | 23    |    |
| 9   | 1241 | 33.0   | 14.5   | 5.7    | 5.4    | 600   | 350   | 20    |    |
| 10  | 1242 | 32.2   | 12.5   | 5.5    | 4.1    | 550   | 400   | 20    |    |
| 11  | 1244 | 41.0   | 19.0   | 5.8    | 3.8    | 650   | 500   | 67    |    |
| 12  | 1245 | 34.0   | 19.0   | 4.7    | 3.2    | 450   | 350   | 53    |    |
| 13  | 1246 | 32.0   | 15.0   | 6.3    | 6.2    | 600   | 250   | 17    |    |
| 14  | 1247 | 32.0   | 16.0   | 6.1    | 6.3    | 650   | 250   | 27    |    |
| 15  | 1248 | 35.0   | 14.5   | 6.4    | 6.4    | 650   | 350   | 32    |    |
| 16  | 1249 | 22.5   | 19.0   | 6.2    | 6.0    | 900   | 200   | 60    |    |
| 17  | 1250 | 39.0   | 19.0   | 6.5    | 5.0    | 950   | 350   | 20    |    |
| 18  | 1251 | 32.0   | 14.0   | 7.3    | 8.0    | 900   | 300   | 24    |    |
| 19  | 1252 | 30.0   | 12.5   | 8.0    | 7.8    | 850   | 300   | 20    |    |
| 20  | 1253 | 40.0   | 12.0   | 6.3    | 7.3    | 700   | 550   | 27    |    |
| 21  | 1254 | 28.0   | 10.5   | 6.3    | 5.8    | 500   | 150   | 15    |    |
| 22  | 1255 | 34.0   | 18.0   | 6.2    | 5.6    | 850   | 350   | 26    |    |
| 23  | 1256 | 32.0   | 13.5   | 6.3    | 6.8    | 750   | 450   | 27    |    |
| 24  | 1257 | 35.0   | 14.5   | 7.1    | 5.3    | 900   | 500   | 32    |    |
| 25  | 1258 | 54.0   | 13.5   | 5.6    | 4.2    | 450   | 700   | 29    |    |
| 26  | 1259 | 32.0   | 13.0   | 5.3    | 3.2    | 350   | 400   | 22    |    |
| 27  | 1260 | 49.0   | 14.5   | 5.7    | 4.4    | 600   | 500   | 20    |    |
| 28  | 1261 | 46.0   | 15.0   | 5.7    | 6.2    | 700   | 500   | 28    |    |
|     |      |        |        |        |        |       |       |       |    |

| 1932   1932   330   210   5.77   6.99   750   1050   47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |      |      |      |     |     |      |      |    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|------|------|-----|-----|------|------|----|--|
| 131   1344   880   150   728   577   620   630   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29            | 1262 | 53.0 | 21.0 | 5.7 | 6.9 | 750  | 1050 | 47 |  |
| 1936   360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |      |      |      |     |     |      |      |    |  |
| 1286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |      |      |      |     |     |      |      |    |  |
| 134   1267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |      |      |      |     |     |      |      |    |  |
| 33   1288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |      | 41.0 |      |     |     |      | 400  |    |  |
| 1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |      | 40.0 |      |     |     |      |      |    |  |
| 1270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1268 |      |      |     |     | 1250 | 550  |    |  |
| 188   1271   340   190   5.5   3.2   5.50   300   28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |      | 28.0 |      |     |     |      |      |    |  |
| 193   1272   440   120   688   6.5   660   900   35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37            |      | 38.0 | 14.5 |     |     |      | 200  |    |  |
| 40   1273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38            | 1271 | 34.0 | 19.0 | 5.5 | 3.2 | 550  | 300  | 28 |  |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39            | 1272 | 44.0 | 12.0 | 6.8 | 6.5 | 650  | 900  | 35 |  |
| 42   1275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40            | 1273 | 45.0 | 39.5 | 6.1 | 2.8 | 1350 | 850  | 48 |  |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41            | 1274 | 45.0 | 12.0 | 7.1 | 6.4 | 700  | 250  | 32 |  |
| 44   1277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42            | 1275 | 46.0 | 15.0 | 8.4 | 3.8 | 850  | 700  | 40 |  |
| 45   1278   35.0   21.5   5.0   4.1   65.0   250   27     46   1279   50.0   40.0   7.0   5.2   2050   555   34     47   1280   38.0   20.0   6.0   5.0   750   300   36     48   1281   27.0   22.0   4.6   4.9   650   150   30     49   1282   23.0   17.5   4.2   5.8   550   100   19     50   1283   31.0   22.5   6.9   6.8   1050   200   29     51   1284   22.0   18.0   5.0   6.2   6.00   150   25     52   1285   52.0   8.5   5.4   4.9   700   500   45     53   1286   50.0   16.0   7.2   5.5   800   600   34     51   1287   34.0   19.0   5.5   6.8   80.0   150   15     55   1288   31.0   15.0   5.7   6.0   550   220   25     56   1289   27.0   12.0   4.7   5.7   4.0   200   25     57   1290   37.0   12.0   6.8   7.3   700   330   25     58   1291   300   15.0   5.3   5.7   6.0   500   24     59   1292   300   15.0   5.3   5.7   6.0   300   24     60   1233   360   20.0   6.7   7.0   1000   450   34     61   1294   42.0   19.0   8.1   5.7   1200   500   30     62   1295   30.0   14.0   7.1   7.4   7.0   150   14     63   1297   305   10.0   7.8   7.6   600   250   25     65   1298   39.0   15.0   5.5   6.6   650   200   15     66   1294   42.0   19.0   8.1   5.7   1200   500   30     62   1295   30.0   14.0   7.1   7.4   7.0   150   14     63   1297   305   10.0   7.8   7.6   600   250   21     64   1288   39.0   16.0   7.3   6.5   900   500   32     65   1298   300   16.0   5.7   5.7   6.00   250   21     66   1298   300   16.0   5.7   5.6   600   250   21     67   1301   34.0   14.0   5.9   4.9   6.50   450   25     68   1302   25.0   16.0   5.7   5.7   5.7   5.0   5.0   5.0     69   1298   300   15.0   5.5   5.5   5.0   5.0   5.0     60   1393   32.0   15.0   5.5   5.6   6.6   6.0   2.0     61   1294   4.0   19.0   4.7   7.8   7.6   6.0   2.5     63   1309   35.0   10.0   7.8   7.6   6.0   2.5     64   1298   300   15.0   5.7   5.4   6.0   2.5     65   1299   300   300   300   300   32     65   1300   300   300   300   300   300   32     65   1300   300   300   300   300   300   300   300   300   300   300 | 43            | 1276 | 30.5 | 12.5 | 6.0 | 6.1 | 500  | 300  | 27 |  |
| 45   1278   35.0   21.5   5.0   4.1   65.0   250   27     46   1279   50.0   40.0   7.0   5.2   2050   555   34     47   1280   38.0   20.0   6.0   5.0   750   300   36     48   1281   27.0   22.0   4.6   4.9   650   150   30     49   1282   23.0   17.5   4.2   5.8   550   100   19     50   1283   31.0   22.5   6.9   6.8   1050   200   29     51   1284   22.0   18.0   5.0   6.2   6.00   150   25     52   1285   52.0   8.5   5.4   4.9   700   500   45     53   1286   50.0   16.0   7.2   5.5   800   600   34     51   1287   34.0   19.0   5.5   6.8   80.0   150   15     55   1288   31.0   15.0   5.7   6.0   550   220   25     56   1289   27.0   12.0   4.7   5.7   4.0   200   25     57   1290   37.0   12.0   6.8   7.3   700   330   25     58   1291   300   15.0   5.3   5.7   6.0   500   24     59   1292   300   15.0   5.3   5.7   6.0   300   24     60   1233   360   20.0   6.7   7.0   1000   450   34     61   1294   42.0   19.0   8.1   5.7   1200   500   30     62   1295   30.0   14.0   7.1   7.4   7.0   150   14     63   1297   305   10.0   7.8   7.6   600   250   25     65   1298   39.0   15.0   5.5   6.6   650   200   15     66   1294   42.0   19.0   8.1   5.7   1200   500   30     62   1295   30.0   14.0   7.1   7.4   7.0   150   14     63   1297   305   10.0   7.8   7.6   600   250   21     64   1288   39.0   16.0   7.3   6.5   900   500   32     65   1298   300   16.0   5.7   5.7   6.00   250   21     66   1298   300   16.0   5.7   5.6   600   250   21     67   1301   34.0   14.0   5.9   4.9   6.50   450   25     68   1302   25.0   16.0   5.7   5.7   5.7   5.0   5.0   5.0     69   1298   300   15.0   5.5   5.5   5.0   5.0   5.0     60   1393   32.0   15.0   5.5   5.6   6.6   6.0   2.0     61   1294   4.0   19.0   4.7   7.8   7.6   6.0   2.5     63   1309   35.0   10.0   7.8   7.6   6.0   2.5     64   1298   300   15.0   5.7   5.4   6.0   2.5     65   1299   300   300   300   300   32     65   1300   300   300   300   300   300   32     65   1300   300   300   300   300   300   300   300   300   300   300 | 44            | 1277 | 41.0 |      | 6.0 | 4.5 | 750  | 250  | 24 |  |
| 46         1279         50.0         40.0         7.0         52         2050         550         34           47         1280         38.0         20.0         6.0         5.0         750         300         36           48         1281         27.0         22.0         4.6         4.9         660         150         30           49         1282         23.0         17.5         4.2         5.8         550         100         19           50         1283         31.0         22.5         6.9         6.8         1050         200         29           51         1284         28.0         18.0         5.0         6.2         600         150         25           52         1288         52.0         18.0         5.0         6.8         800         600         34           55         1288         34.0         15.0         5.7         6.0         550         250         25           56         1289         27.0         12.0         4.7         5.7         450         200         25           57         1290         37.0         12.0         4.7         5.7         450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45            | 1278 | 35.0 | 21.5 | 5.0 | 4.1 | 650  | 250  | 27 |  |
| 47         1280         38.0         20.0         6.0         5.0         750         300         36           48         1281         27.0         22.0         4.6         4.9         650         150         30           49         1282         23.0         17.5         4.2         5.8         550         100         19           50         1283         31.0         22.5         6.9         6.8         1050         200         29           51         1284         28.0         18.0         5.0         6.8         1050         20         25           52         1285         55.0         8.5         5.4         4.9         700         500         45           53         1286         50.0         16.0         7.2         5.5         800         600         34           54         1287         34.0         15.0         5.7         6.0         550         250         25           56         1289         27.0         12.0         6.8         7.3         700         350         25           57         1290         37.0         12.0         6.8         7.3         700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |      |      |      |     |     |      |      |    |  |
| 48         1281         27.0         122.0         4.6         4.9         650         150         30           49         1282         23.0         17.5         4.2         5.8         550         100         19           50         1283         31.0         22.5         6.9         6.8         1050         200         29           51         1284         28.0         18.0         5.0         6.2         600         150         25           52         1285         52.0         8.5         5.4         4.9         700         500         45           53         1286         50.0         16.0         7.2         5.5         800         600         34           54         1287         34.0         19.0         5.5         6.8         800         150         15           55         1288         34.0         15.0         5.7         6.0         550         250         25           56         1289         27.0         12.0         4.7         5.7         450         200         25           57         1290         37.0         12.0         6.8         7.3         7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\overline{}$ |      |      |      |     |     |      |      |    |  |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |      |      |      |     |     |      |      |    |  |
| 50         1283         31.0         22.5         6.9         6.8         1050         200         29           51         1284         28.0         18.0         5.0         6.2         600         150         25           52         1285         52.0         8.5         5.4         4.9         700         500         45           53         1286         50.0         160         7.2         5.5         800         600         34           54         1287         34.0         19.0         5.5         6.8         800         150         15           55         1288         34.0         15.0         5.7         6.0         550         250         25           56         1289         27.0         12.0         6.8         7.3         700         300         25           58         1291         30.0         15.0         5.5         6.6         650         200         18           60         1233         36.0         20.0         6.7         7.0         100         460         34           61         1294         42.0         19.0         8.1         5.7         1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |      |      |      |     |     |      |      |    |  |
| 51         1284         280         180         5.0         6.2         600         150         25           52         1285         52.0         8.5         5.4         4.9         700         500         45           53         1286         50.0         16.0         7.2         5.5         800         600         34           54         1287         34.0         115.0         5.7         6.0         550         250         25           56         1288         24.0         15.0         5.7         6.0         550         250         25           56         1289         27.0         12.0         4.7         5.7         450         200         25           57         1290         37.0         15.0         5.3         5.7         600         300         24           59         1292         30.0         15.0         5.5         6.6         650         200         18           60         1293         30.0         14.0         7.1         7.4         700         150         14           61         1294         42.0         190         8.1         5.7         1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |      |      |      |     |     |      |      |    |  |
| 52         1285         52.0         8.5         5.4         4.9         700         500         45           53         1286         50.0         16.0         7.2         5.5         800         600         34           54         1287         34.0         19.0         5.5         6.8         800         150         15           56         1288         34.0         115.0         5.7         6.0         550         250         25           57         1290         37.0         12.0         6.8         7.3         700         350         25           58         1291         30.0         15.0         5.5         6.6         600         300         24           59         1292         30.0         15.0         5.5         6.6         60         200         18           60         1293         36.0         20.0         6.7         7.0         1000         450         34           61         1294         42.0         19.0         8.1         5.7         1200         500         30           62         1295         30.0         14.0         7.1         7.4         700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |      |      |      |     |     |      |      |    |  |
| 53         1286         50.0         16.0         7.2         5.5         80.0         60.0         34           54         1287         34.0         19.0         5.5         6.8         800         150         15         15           55         1288         34.0         15.0         5.7         6.0         550         250         25           56         1289         27.0         12.0         4.7         5.7         450         200         25           57         1290         37.0         12.0         6.8         7.3         700         350         25           58         1291         30.0         15.0         5.3         5.7         600         300         24           59         1292         30.0         15.0         5.5         6.6         650         200         18           60         1233         38.0         20.0         6.7         7.0         1000         450         34           61         1294         42.0         19.0         8.1         5.7         1200         500         30           62         1295         30.0         14.0         7.1         7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |      |      |      |     |     | _    |      |    |  |
| 54         1287         34.0         19.0         5.5         6.8         80.0         150         15           56         1288         34.0         15.0         5.7         6.0         550         250         25           56         1289         27.0         12.0         4.7         5.7         450         200         25           57         1290         37.0         12.0         6.8         7.3         700         350         25           58         1291         30.0         15.0         5.3         5.7         600         300         24           60         1293         36.0         20.0         6.7         7.0         1000         450         34           61         1294         42.0         19.0         8.1         5.7         1200         500         34           61         1295         30.0         14.0         7.1         7.4         700         150         14           62         1295         30.0         16.0         7.3         6.5         900         500         25         21           63         1297         30.5         10.0         7.8         7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |      |      |     |     |      |      |    |  |
| 55         1288         34.0         15.0         5.7         6.0         550         250         25           56         1289         27.0         12.0         4.7         5.7         450         200         25           57         1290         37.0         12.0         6.8         7.3         700         350         25           58         1291         30.0         15.0         5.3         5.7         600         300         24           60         1293         36.0         20.0         6.7         7.0         1000         450         34           61         1294         42.0         19.0         8.1         5.7         1200         500         30           61         1294         42.0         19.0         8.1         5.7         1200         500         30           61         1294         42.0         19.0         7.8         7.6         600         250         21           63         1297         30.5         10.0         7.8         7.6         600         250         21           64         1298         350         16.0         6.4         3.8         650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |      |      |     |     |      |      |    |  |
| 56         1289         27.0         12.0         4.7         5.7         450         200         25           57         1290         37.0         12.0         6.8         7.3         700         350         25           58         1291         30.0         15.0         5.3         5.7         600         300         24           59         1292         30.0         15.0         5.5         6.6         650         200         18           60         1293         36.0         20.0         6.7         7.0         1000         450         34           61         1294         42.0         19.0         8.1         5.7         1200         500         30           62         1295         30.0         14.0         7.1         7.4         700         150         14           63         1295         30.5         11.0         7.1         7.4         700         150         14           63         1299         46.0         13.0         8.8         7.7         1000         600         32           65         1300         36.0         16.0         6.7         5.4         600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |      |      |      |     |     |      |      |    |  |
| 57         1290         37.0         12.0         6.8         7.3         700         350         25           58         1291         30.0         15.0         5.3         5.7         600         300         24           59         1292         30.0         15.0         5.5         6.6         6650         200         18           60         1293         36.0         20.0         6.7         7.0         1000         450         34           61         1294         42.0         19.0         8.1         5.7         1200         500         30           62         1295         30.0         14.0         7.1         7.4         700         150         14           63         1297         30.5         10.0         7.8         7.6         600         250         21           64         1298         39.0         16.0         7.3         6.5         900         500         25           65         1299         46.0         13.0         8.8         7.7         1000         600         32           66         1300         36.0         16.0         5.7         5.4         600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |      |      |      |     |     |      |      |    |  |
| 58         1291         30.0         15.0         5.3         5.7         600         300         24           59         1292         30.0         15.0         5.5         6.6         650         200         18           60         1293         36.0         20.0         67         7.0         1000         450         34           61         1294         42.0         19.0         8.1         5.7         1200         500         30           62         1295         30.0         14.0         7.1         7.4         700         150         14           63         1297         30.5         10.0         7.8         7.6         600         250         21           64         1298         39.0         16.0         7.3         6.5         900         500         25           65         1299         46.0         13.0         8.8         7.7         1000         600         32           66         1300         36.0         16.0         6.7         3.4         9.0         650         450         25           68         1302         29.0         16.0         5.7         5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |      |      |     |     |      |      |    |  |
| 59         1292         30.0         15.0         5.5         6.6         650         200         18           60         1233         36.0         20.0         6.7         7.0         1000         450         34           61         1294         42.0         19.0         8.1         5.7         1200         500         30           62         1295         30.0         14.0         7.1         7.4         700         150         14           63         1297         30.5         10.0         7.8         7.6         600         250         21           64         1298         39.0         16.0         7.3         6.5         900         500         25           65         1299         46.0         13.0         8.8         7.7         1000         600         32           66         1300         36.0         16.0         6.4         3.8         650         350         50           67         1301         34.0         14.0         5.9         4.9         650         450         25           68         1302         29.0         16.0         5.7         5.4         600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |      |      |      |     |     |      |      |    |  |
| 60         1293         36.0         20.0         6.7         7.0         1000         450         34           61         1294         42.0         19.0         8.1         5.7         1200         500         30           62         1295         30.0         14.0         7.1         7.4         700         150         14           63         1297         30.5         10.0         7.8         7.6         600         250         21           64         1298         39.0         16.0         7.3         6.5         900         500         25           65         1299         46.0         13.0         8.8         7.7         1000         600         32           66         1300         36.0         16.0         6.4         3.8         650         350         50           67         1301         34.0         14.0         5.9         4.9         650         450         25           68         1302         29.0         16.0         5.7         5.4         600         250         17           1301         35.0         17.0         7.7         6.7         1000         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |      |      |      |     |     |      |      |    |  |
| 61         1294         42.0         19.0         8.1         5.7         1200         500         30           62         1295         30.0         14.0         7.1         7.4         700         150         14           63         1297         30.5         10.0         7.8         7.6         60         250         21           64         1298         39.0         16.0         7.3         6.5         900         500         25           65         1299         46.0         13.0         8.8         7.7         1000         600         32           66         1300         36.0         16.0         6.4         3.8         650         350         50           67         1301         34.0         14.0         5.9         4.9         650         450         25           68         1302         29.0         16.0         5.7         5.4         600         250         17           69         1303         32.0         15.0         4.1         2.8         350         250         35           71         1305         40.0         17.0         6.2         5.3         650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |      |      |      |     |     |      |      |    |  |
| 62         1295         30.0         14.0         7.1         7.4         700         150         14           63         1297         30.5         10.0         7.8         7.6         600         250         21           64         1298         39.0         16.0         7.3         6.5         900         500         25           66         1299         46.0         13.0         8.8         7.7         1000         600         32           66         1300         36.0         16.0         6.4         3.8         650         350         50           67         1301         34.0         14.0         5.9         4.9         650         450         25           68         1302         29.0         16.0         5.7         5.4         600         250         17           69         1303         32.0         15.0         4.1         2.8         350         250         35           70         1304         35.0         17.0         7.7         6.7         1000         300         26           71         1305         40.0         17.0         6.2         5.3         650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |      |      |     |     |      |      |    |  |
| 63         1297         30.5         10.0         7.8         7.6         600         250         21           64         1298         39.0         16.0         7.3         6.5         900         500         25           65         1299         46.0         13.0         8.8         7.7         1000         600         32           66         1300         36.0         16.0         6.4         3.8         650         350         50           67         1301         34.0         14.0         5.9         4.9         650         450         25           68         1302         29.0         16.0         5.7         5.4         600         250         17           69         1303         32.0         15.0         4.1         2.8         350         250         35           70         1304         35.0         17.0         7.7         6.7         1000         300         26           71         1305         40.0         17.0         6.2         5.3         650         350         26           72         1306         34.0         21.0         6.4         5.6         850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |      |      |     |     |      |      |    |  |
| 64         1298         39.0         16.0         7.3         6.5         900         500         25           65         1299         46.0         13.0         8.8         7.7         1000         600         32           66         1300         36.0         16.0         6.4         3.8         650         350         50           67         1301         34.0         14.0         5.9         4.9         650         450         25           68         1302         29.0         16.0         5.7         5.4         600         250         17           69         1303         32.0         15.0         4.1         2.8         350         250         35           70         1304         35.0         17.0         7.7         6.7         1000         300         26           71         1305         40.0         17.0         6.2         5.3         650         350         26           72         1306         34.0         21.0         6.4         5.6         850         200         29           73         1307         25.5         16.0         5.0         4.0         550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |      |      |     |     |      |      |    |  |
| 65         1299         46.0         13.0         8.8         7.7         1000         600         32           66         1300         36.0         16.0         6.4         3.8         650         350         50           67         1301         34.0         14.0         5.9         4.9         650         450         25           68         1302         29.0         16.0         5.7         5.4         600         250         17           69         1303         32.0         15.0         4.1         2.8         350         250         35           70         1304         35.0         17.0         7.7         6.7         1000         300         26           71         1305         40.0         17.0         6.2         5.3         650         350         26           71         1306         34.0         21.0         6.4         5.6         850         200         29           73         1307         25.5         16.0         5.0         4.0         550         200         17           74         1308         48.0         11.0         6.9         4.2         550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\overline{}$ |      |      |      |     |     |      |      |    |  |
| 66         1300         36.0         16.0         6.4         3.8         650         350         50           67         1301         34.0         14.0         5.9         4.9         650         450         25           68         1302         29.0         16.0         5.7         5.4         600         250         17           69         1303         32.0         15.0         4.1         2.8         350         250         35           70         1304         35.0         17.0         7.7         6.7         1000         300         26           71         1305         40.0         17.0         6.2         5.3         650         350         26           72         1306         34.0         21.0         6.4         5.6         850         200         29           73         1307         25.5         16.0         5.0         4.0         550         200         17           74         1308         48.0         11.0         6.9         4.2         550         400         26           75         1309         22.0         10.0         4.4         4.0         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |      |      |      |     |     |      |      |    |  |
| 67         1301         34.0         14.0         5.9         4.9         650         450         25           68         1302         29.0         16.0         5.7         5.4         600         250         17           69         1303         32.0         15.0         4.1         2.8         350         250         35           70         1304         35.0         17.0         7.7         6.7         1000         300         26           71         1305         40.0         17.0         6.2         5.3         650         330         26           72         1306         34.0         21.0         6.4         5.6         850         200         29           73         1307         25.5         16.0         5.0         4.0         550         200         17           74         1308         48.0         11.0         6.9         4.2         550         400         26           75         1309         22.0         10.0         4.4         4.0         300         200         35           76         1310         27.0         16.0         5.7         4.4         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |      |      |      |     |     |      |      |    |  |
| 68         1302         29.0         16.0         5.7         5.4         600         250         17           69         1303         32.0         15.0         4.1         2.8         350         250         35           70         1304         35.0         17.0         7.7         6.7         1000         300         26           71         1305         40.0         17.0         6.2         5.3         650         350         26           72         1306         34.0         21.0         6.4         5.6         850         200         29           73         1307         25.5         16.0         5.0         4.0         550         200         17           74         1308         48.0         11.0         6.9         4.2         550         400         26           75         1309         22.0         10.0         4.4         4.0         300         200         35           76         1310         27.0         16.0         5.7         4.4         500         150         20           77         1311         34.0         15.0         6.5         5.7         700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |      |      |      |     |     |      |      |    |  |
| 69         1303         32.0         15.0         4.1         2.8         350         250         35           70         1304         35.0         17.0         7.7         6.7         1000         300         26           71         1305         40.0         17.0         6.2         5.3         650         350         26           72         1306         34.0         21.0         6.4         5.6         850         200         29           73         1307         25.5         16.0         5.0         4.0         550         200         17           74         1308         48.0         11.0         6.9         4.2         550         400         26           75         1309         22.0         10.0         4.4         4.0         300         200         35           76         1310         27.0         16.0         5.7         4.4         500         150         20           77         1311         34.0         15.0         6.5         5.7         700         350         19           78         1312         22.5         10.0         5.4         5.3         350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\overline{}$ |      |      |      |     |     |      |      |    |  |
| 70         1304         35.0         17.0         7.7         6.7         1000         300         26           71         1305         40.0         17.0         6.2         5.3         650         350         26           72         1306         34.0         21.0         6.4         5.6         850         200         29           73         1307         25.5         16.0         5.0         4.0         550         200         17           74         1308         48.0         11.0         6.9         4.2         550         400         26           75         1309         22.0         10.0         4.4         4.0         300         200         35           76         1310         27.0         16.0         5.7         4.4         500         150         20           77         1311         34.0         15.0         6.5         5.7         700         350         19           78         1312         22.5         10.0         5.4         5.3         350         150         21           79         1314         35.0         10.7         7.8         7.1         1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |      |      |     |     |      |      |    |  |
| 71         1305         40.0         17.0         6.2         5.3         650         350         26           72         1306         34.0         21.0         6.4         5.6         850         200         29           73         1307         25.5         16.0         5.0         4.0         550         200         17           74         1308         48.0         11.0         6.9         4.2         550         400         26           75         1309         22.0         10.0         4.4         4.0         300         200         35           76         1310         27.0         16.0         5.7         4.4         500         150         20           77         1311         34.0         15.0         6.5         5.7         700         350         19           78         1312         22.5         10.0         5.4         5.3         350         150         21           79         1314         35.0         10.7         7.8         7.1         1000         300         28           80         1315         30.5         11.0         4.9         5.1         350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\overline{}$ |      |      |      |     |     |      |      |    |  |
| 72         1306         34.0         21.0         6.4         5.6         850         200         29           73         1307         25.5         16.0         5.0         4.0         550         200         17           74         1308         48.0         11.0         6.9         4.2         550         400         26           75         1309         22.0         10.0         4.4         4.0         300         200         35           76         1310         27.0         16.0         5.7         4.4         500         150         20           77         1311         34.0         15.0         6.5         5.7         700         350         19           78         1312         22.5         10.0         5.4         5.3         350         150         21           79         1314         35.0         10.7         7.8         7.1         1000         30         28           80         1315         30.5         11.0         4.9         5.1         350         200         18           81         1316         41.8         18.0         6.2         3.7         700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |      |      |      |     |     |      |      |    |  |
| 73         1307         25.5         16.0         5.0         4.0         550         200         17           74         1308         48.0         11.0         6.9         4.2         550         400         26           75         1309         22.0         10.0         4.4         4.0         300         200         35           76         1310         27.0         16.0         5.7         4.4         500         150         20           77         1311         34.0         15.0         6.5         5.7         700         350         19           78         1312         22.5         10.0         5.4         5.3         350         150         21           79         1314         35.0         10.7         7.8         7.1         1000         300         28           80         1315         30.5         11.0         4.9         5.1         350         200         18           81         1316         41.8         18.0         6.2         3.7         700         350         23           82         1318         30.5         10.0         7.3         6.7         650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |      |      |      |     |     |      |      |    |  |
| 74         1308         48.0         11.0         6.9         4.2         550         400         26           75         1309         22.0         10.0         4.4         4.0         300         200         35           76         1310         27.0         16.0         5.7         4.4         500         150         20           77         1311         34.0         15.0         6.5         5.7         700         350         19           78         1312         22.5         10.0         5.4         5.3         350         150         21           79         1314         35.0         10.7         7.8         7.1         1000         300         28           80         1315         30.5         11.0         4.9         5.1         350         200         18           81         1316         41.8         18.0         6.2         3.7         700         350         23           82         1318         30.5         10.0         7.3         6.7         650         400         35           83         1319         41.0         24.0         7.4         6.3         1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |      |      |     |     |      |      |    |  |
| 75         1309         22.0         10.0         4.4         4.0         300         200         35           76         1310         27.0         16.0         5.7         4.4         500         150         20           77         1311         34.0         15.0         6.5         5.7         700         350         19           78         1312         22.5         10.0         5.4         5.3         350         150         21           79         1314         35.0         10.7         7.8         7.1         1000         300         28           80         1315         30.5         11.0         4.9         5.1         350         200         18           81         1316         41.8         18.0         6.2         3.7         700         350         23           82         1318         30.5         10.0         7.3         6.7         650         400         35           83         1319         41.0         24.0         7.4         6.3         1600         450         18           84         1320         43.0         18.0         4.5         3.6         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |      |      |     |     |      |      |    |  |
| 76         1310         27.0         16.0         5.7         4.4         500         150         20           77         1311         34.0         15.0         6.5         5.7         700         350         19           78         1312         22.5         10.0         5.4         5.3         350         150         21           79         1314         35.0         10.7         7.8         7.1         1000         300         28           80         1315         30.5         11.0         4.9         5.1         350         200         18           81         1316         41.8         18.0         6.2         3.7         700         350         23           82         1318         30.5         10.0         7.3         6.7         650         400         35           83         1319         41.0         24.0         7.4         6.3         1600         450         18           84         1320         43.0         18.0         4.5         3.6         500         400         30           85         1321         52.0         12.0         7.3         2.8         700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |      |      |     |     |      |      |    |  |
| 77         1311         34.0         15.0         6.5         5.7         700         350         19           78         1312         22.5         10.0         5.4         5.3         350         150         21           79         1314         35.0         10.7         7.8         7.1         1000         300         28           80         1315         30.5         11.0         4.9         5.1         350         200         18           81         1316         41.8         18.0         6.2         3.7         700         350         23           82         1318         30.5         10.0         7.3         6.7         650         400         35           83         1319         41.0         24.0         7.4         6.3         1600         450         18           84         1320         43.0         18.0         4.5         3.6         500         400         30           85         1321         52.0         12.0         7.3         2.8         700         600         38           86         1322         34.0         19.0         5.2         2.4         550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |      |      |     |     | _    |      |    |  |
| 78         1312         22.5         10.0         5.4         5.3         350         150         21           79         1314         35.0         10.7         7.8         7.1         1000         300         28           80         1315         30.5         11.0         4.9         5.1         350         200         18           81         1316         41.8         18.0         6.2         3.7         700         350         23           82         1318         30.5         10.0         7.3         6.7         650         400         35           83         1319         41.0         24.0         7.4         6.3         1600         450         18           84         1320         43.0         18.0         4.5         3.6         500         400         30           85         1321         52.0         12.0         7.3         2.8         700         600         38           86         1322         34.0         19.0         5.2         2.4         550         300         40           87         1323         52.5         16.0         7.2         5.0         950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |      |      |     |     |      |      |    |  |
| 79         1314         35.0         10.7         7.8         7.1         1000         300         28           80         1315         30.5         11.0         4.9         5.1         350         200         18           81         1316         41.8         18.0         6.2         3.7         700         350         23           82         1318         30.5         10.0         7.3         6.7         650         400         35           83         1319         41.0         24.0         7.4         6.3         1600         450         18           84         1320         43.0         18.0         4.5         3.6         500         400         30           85         1321         52.0         12.0         7.3         2.8         700         600         38           86         1322         34.0         19.0         5.2         2.4         550         300         40           87         1323         52.5         16.0         7.2         5.0         950         750         29           88         1324         36.0         28.0         7.2         4.4         1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |      |      |      |     |     |      |      |    |  |
| 80         1315         30.5         11.0         4.9         5.1         350         200         18           81         1316         41.8         18.0         6.2         3.7         700         350         23           82         1318         30.5         10.0         7.3         6.7         650         400         35           83         1319         41.0         24.0         7.4         6.3         1600         450         18           84         1320         43.0         18.0         4.5         3.6         500         400         30           85         1321         52.0         12.0         7.3         2.8         700         600         38           86         1322         34.0         19.0         5.2         2.4         550         300         40           87         1323         52.5         16.0         7.2         5.0         950         750         29           88         1324         36.0         28.0         7.2         4.4         1300         450         27           89         1325         29.0         20.0         6.4         5.1         1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |      |      |      |     |     |      |      |    |  |
| 81         1316         41.8         18.0         6.2         3.7         700         350         23           82         1318         30.5         10.0         7.3         6.7         650         400         35           83         1319         41.0         24.0         7.4         6.3         1600         450         18           84         1320         43.0         18.0         4.5         3.6         500         400         30           85         1321         52.0         12.0         7.3         2.8         700         600         38           86         1322         34.0         19.0         5.2         2.4         550         300         40           87         1323         52.5         16.0         7.2         5.0         950         750         29           88         1324         36.0         28.0         7.2         4.4         1300         450         27           89         1325         29.0         20.0         6.4         5.1         1000         200         21           90         1326         27.5         19.0         5.9         4.8         750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |      |      |      |     |     |      |      |    |  |
| 82     1318     30.5     10.0     7.3     6.7     650     400     35       83     1319     41.0     24.0     7.4     6.3     1600     450     18       84     1320     43.0     18.0     4.5     3.6     500     400     30       85     1321     52.0     12.0     7.3     2.8     700     600     38       86     1322     34.0     19.0     5.2     2.4     550     300     40       87     1323     52.5     16.0     7.2     5.0     950     750     29       88     1324     36.0     28.0     7.2     4.4     1300     450     27       89     1325     29.0     20.0     6.4     5.1     1000     200     21       90     1326     27.5     19.0     5.9     4.8     750     200     25       91     1328     33.0     12.0     7.3     8.1     700     200     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |      |      |      |     |     |      |      |    |  |
| 83     1319     41.0     24.0     7.4     6.3     1600     450     18       84     1320     43.0     18.0     4.5     3.6     500     400     30       85     1321     52.0     12.0     7.3     2.8     700     600     38       86     1322     34.0     19.0     5.2     2.4     550     300     40       87     1323     52.5     16.0     7.2     5.0     950     750     29       88     1324     36.0     28.0     7.2     4.4     1300     450     27       89     1325     29.0     20.0     6.4     5.1     1000     200     21       90     1326     27.5     19.0     5.9     4.8     750     200     25       91     1328     33.0     12.0     7.3     8.1     700     200     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |      |      |      |     |     |      |      |    |  |
| 84     1320     43.0     18.0     4.5     3.6     500     400     30       85     1321     52.0     12.0     7.3     2.8     700     600     38       86     1322     34.0     19.0     5.2     2.4     550     300     40       87     1323     52.5     16.0     7.2     5.0     950     750     29       88     1324     36.0     28.0     7.2     4.4     1300     450     27       89     1325     29.0     20.0     6.4     5.1     1000     200     21       90     1326     27.5     19.0     5.9     4.8     750     200     25       91     1328     33.0     12.0     7.3     8.1     700     200     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |      |      |      |     |     |      |      |    |  |
| 85     1321     52.0     12.0     7.3     2.8     700     600     38       86     1322     34.0     19.0     5.2     2.4     550     300     40       87     1323     52.5     16.0     7.2     5.0     950     750     29       88     1324     36.0     28.0     7.2     4.4     1300     450     27       89     1325     29.0     20.0     6.4     5.1     1000     200     21       90     1326     27.5     19.0     5.9     4.8     750     200     25       91     1328     33.0     12.0     7.3     8.1     700     200     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |      |      |      |     |     |      |      |    |  |
| 86     1322     34.0     19.0     5.2     2.4     550     300     40       87     1323     52.5     16.0     7.2     5.0     950     750     29       88     1324     36.0     28.0     7.2     4.4     1300     450     27       89     1325     29.0     20.0     6.4     5.1     1000     200     21       90     1326     27.5     19.0     5.9     4.8     750     200     25       91     1328     33.0     12.0     7.3     8.1     700     200     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\overline{}$ |      |      |      |     |     |      |      |    |  |
| 87     1323     52.5     16.0     7.2     5.0     950     750     29       88     1324     36.0     28.0     7.2     4.4     1300     450     27       89     1325     29.0     20.0     6.4     5.1     1000     200     21       90     1326     27.5     19.0     5.9     4.8     750     200     25       91     1328     33.0     12.0     7.3     8.1     700     200     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |      |      |      |     |     |      |      |    |  |
| 88     1324     36.0     28.0     7.2     4.4     1300     450     27       89     1325     29.0     20.0     6.4     5.1     1000     200     21       90     1326     27.5     19.0     5.9     4.8     750     200     25       91     1328     33.0     12.0     7.3     8.1     700     200     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |      |      |      |     |     |      |      |    |  |
| 89     1325     29.0     20.0     6.4     5.1     1000     200     21       90     1326     27.5     19.0     5.9     4.8     750     200     25       91     1328     33.0     12.0     7.3     8.1     700     200     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |      |      |      |     |     |      |      |    |  |
| 90     1326     27.5     19.0     5.9     4.8     750     200     25       91     1328     33.0     12.0     7.3     8.1     700     200     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |      |      |      |     |     |      |      |    |  |
| 91 1328 33.0 12.0 7.3 8.1 700 200 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |      |      |      |     |     |      |      |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |      |      |      |     |     |      |      |    |  |
| 92   1329   40.0   11.0   8.6   7.2   700   350   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |      | 33.0 | 12.0 |     |     |      | 200  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92            | 1329 | 40.0 | 11.0 | 8.6 | 7.2 | 700  | 350  | 25 |  |

| 93  | 1330 | 43.0 | 16.0 | 5.1  | 6.5        | 700        | 600 | 20 |  |
|-----|------|------|------|------|------------|------------|-----|----|--|
| 94  | 1331 | 46.5 | 16.0 | 6.5  | 6.7        | 500        | 500 | 29 |  |
| 95  | 1332 | 37.0 | 18.0 | 6.4  | 6.8        | 900        | 300 | 25 |  |
| 96  | 1333 | 35.0 | 20.0 | 7.4  | 5.3        | 1000       | 250 | 19 |  |
| 97  | 1334 | 56.0 | 13.0 | 7.3  | 5.0        | 700        | 800 | 32 |  |
| 98  | 1335 | 39.5 | 18.0 | 6.6  | 4.4        | 900        | 500 | 25 |  |
| 99  | 1337 | 39.0 | 13.0 | 7.0  | 5.9        | 600        | 400 | 22 |  |
| 100 | 1339 | 24.0 | 19.0 | 5.5  | 4.6        | 600        | 150 | 21 |  |
| 101 | 1340 | 48.0 | 18.0 | 5.8  | 3.8        | 800        | 500 | 22 |  |
| 102 | 1342 | 24.0 | 17.0 | 5.8  | 5.5        | 700        | 150 | 16 |  |
| 103 | 1343 | 42.0 | 17.0 | 6.2  | 5.0        | 750        | 350 | 23 |  |
| 104 | 1344 | 46.0 | 15.0 | 6.9  | 5.9        | 800        | 350 | 27 |  |
| 105 | 1345 | 34.0 | 15.0 | 4.8  | 5.7        | 500        | 200 | 26 |  |
| 106 | 1346 | 43.0 | 33.0 | 6.8  | 4.7        | 1350       | 400 | 34 |  |
| 107 | 1347 | 27.0 | 19.0 | 6.0  | 4.8        | 700        | 250 | 21 |  |
| 108 | 1348 | 31.0 | 15.0 | 6.8  | 8.6        | 950        | 400 | 23 |  |
| 109 | 1349 | 32.0 | 14.0 | 6.5  | 5.0        | 500        | 250 | 20 |  |
| 110 | 1350 | 46.0 | 25.0 | 7.2  | 4.4        | 650        | 400 | 24 |  |
| 111 | 1351 | 29.0 | 15.0 | 9.5  | 10.0       | 650        | 250 | 21 |  |
| 111 | 1351 | 40.0 | 30.0 | 4.8  | 4.3        | 800        | 500 | 28 |  |
| 113 | 1352 | 32.0 | 22.0 | 6.2  | 5.8        | 600        | 300 | 30 |  |
|     |      | 50.0 |      | 5.5  |            |            | 550 |    |  |
| 114 | 1354 |      | 11.0 |      | 5.4<br>5.6 | 800<br>750 |     | 43 |  |
| 115 | 1355 | 59.0 | 14.0 | 5.9  |            |            | 400 | 40 |  |
| 116 | 1356 | 39.0 | 23.0 | 8.2  | 9.0        | 1350       | 650 | 37 |  |
| 117 | 1357 | 31.5 | 32.0 | 4.5  | 4.5        | 750        | 200 | 32 |  |
| 118 | 1358 | 51.0 | 23.0 | 5.3  | 5.7        | 650        | 450 | 28 |  |
| 119 | 1359 | 27.0 | 15.0 | 5.0  | 5.8        | 500        | 250 | 26 |  |
| 120 | 1360 | 53.0 | 12.0 | 7.0  | 7.1        | 600        | 650 | 23 |  |
| 121 | 1361 | 50.0 | 12.0 | 8.2  | 8.5        | 750        | 300 | 21 |  |
| 122 | 1362 | 39.0 | 20.0 | 5.1  | 6.3        | 600        | 300 | 30 |  |
| 123 | 1363 | 45.0 | 29.0 | 6.8  | 6.9        | 1300       | 400 | 27 |  |
| 124 | 1364 | 45.0 | 24.0 | 6.7  | 7.8        | 1250       | 400 | 21 |  |
| 125 | 1365 | 34.0 | 12.0 | 10.3 | 15.4       | 1500       | 350 | 23 |  |
| 126 | 1366 | 48.0 | 15.0 | 7.0  | 7.3        | 850        | 550 | 34 |  |
| 127 | 1367 | 54.0 | 13.0 | 6.1  | 7.7        | 600        | 550 | 35 |  |
| 128 | 1368 | 35.0 | 18.0 | 7.6  | 9.8        | 1150       | 200 | 28 |  |
| 129 | 1369 | 48.0 | 31.0 | 7.3  | 7.5        | 1700       | 400 | 34 |  |
| 130 | 1370 | 35.0 | 22.0 | 5.4  | 4.3        | 600        | 250 | 35 |  |
| 131 | 1371 | 40.0 | 24.0 | 5.5  | 4.8        | 650        | 350 | 29 |  |
| 132 | 1372 | 26.0 | 16.5 | 4.8  | 4.9        | 350        | 100 | 27 |  |
| 133 | 1373 | 40.0 | 26.5 | 6.0  | 5.9        | 1050       | 300 | 36 |  |
| 134 | 1374 | 33.0 | 21.0 | 5.9  | 5.0        | 650        | 400 | 64 |  |
| 135 | 1375 | 33.0 | 18.0 | 5.5  | 3.6        | 350        | 250 | 34 |  |
| 136 | 1376 | 44.0 | 20.0 | 5.5  | 4.4        | 550        | 350 | 37 |  |
| 137 | 1377 | 49.0 | 14.5 | 6.9  | 6.5        | 700        | 550 | 63 |  |
| 138 | 1378 | 40.0 | 20.0 | 5.5  | 6.3        | 700        | 250 | 31 |  |
| 139 | 1379 | 43.0 | 22.0 | 6.0  | 5.1        | 650        | 350 | 46 |  |
| 140 | 1380 | 55.0 | 16.5 | 4.3  | 5.2        | 400        | 700 | 42 |  |
| 141 | 1381 | 30.0 | 13.0 | 4.8  | 5.5        | 350        | 200 | 31 |  |
| 142 | 1382 | 40.0 | 16.0 | 5.9  | 5.3        | 850        | 400 | 37 |  |
| 143 | 1383 | 40.0 | 21.0 | 5.9  | 5.8        | 750        | 250 | 25 |  |
| 143 | 1384 | 35.0 | 18.5 | 5.0  | 6.0        | 600        | 150 | 26 |  |
| 145 | 1385 | 34.0 | 15.0 | 5.3  | 5.0        | 450        | 350 | 26 |  |
| 143 | 1386 | 41.0 | 12.5 | 8.7  | 8.8        | 1000       | 550 | 29 |  |
| 146 | 1386 | 41.0 | 12.5 | 8.4  | 8.5        | 950        | 400 | 42 |  |
|     |      |      |      |      |            |            | 400 | -  |  |
| 148 | 1388 | 42.0 | 9.5  | 6.8  | 7.4        | 450        |     | 23 |  |
| 149 | 1391 | 43.0 | 13.0 | 8.2  | 6.8        | 1000       | 500 | 41 |  |
| 150 | 1392 | 60.5 | 21.5 | 5.6  | 5.3        | 850        | 850 | 47 |  |





그림 38. 유전자원 수집 및 등록 결과



그림 39. 우수 계통 육성 과정

(상좌: 계통 자가교배, 상중: 계통 차대검정, 상우: 특성조사 및 선발, 하좌: 선발모본 정식, 하우: 미숙모본 파종)

## $2. F_1$ 조합 작성 및 종자생산

가. 자가불화합성이 강한 계통을 이용한 F<sub>1</sub>조합 및 웅성불임성을 이용한 조합(1차년도 55조합, 2차년도 125조합, 3차년도 147조합, 4차년도 132조합)을 작성하고 교배하여 F<sub>1</sub>종자를 채종하였다(그림 40). 각 연차 별 12월에 미숙모본으로 파종, 보온 관리 및 육묘하여 각 차년도 3월 소형 망실에 정식하여 채종시험을 진행하였다. 2차년도 가을 재배시험에서 성숙모본으로 선발한 279계통 중 만추대 청수계 F<sub>1</sub>조합 가능성이 있다고 판단되는 계통 간 155조합을 작성하였고, 3차년도 봄 교배 및 조합임성검정, 채종 실시하여 같은 해 가을 재

배시험에 공시,  $F_1$ 조합 성능검정 실시하였다. 4차년도 역시 봄 교배 및 조합임성검정, 채종 실시하여 같은 해 가을 재배시험에 공시,  $F_1$ 조합 성능검정 실시하였다.

- 나. 2차년도 12월에 차년도 교배를 위한 미숙모본 643계통을 파종하였고, 월동 저온처리 후 만추대 청수계  $F_1$ 조합 가능성이 있다고 판단되는 계통 간 751조합을 작성하여 3차년도 봄 교배 및 조합임성검정, 채종 실시하여 같은 해 가을 재배시험에 공시,  $F_1$ 조합 성능검정 실시하였으며, 4차년도 역시 봄 교배 및 조합임성검정, 채종 실시하여 같은 해 가을 재배시험에 공시,  $F_1$ 조합 성능검정 실시하였다.
- 다. 1차년도와 2차년도 12월에 미숙모본 계통 파종, 저온처리 및 관리하여 1~2월에 교배조합을 작성, 4~6월에 교배 및 채종 실시하였고, 3차년도 12월에 미숙모본 631계통 파종, 월동 저온처리 및 관리하여, 1~2월 교배조합을 작성, 4차년도 4~6월에 교배 및 채종 실시하였다.
- 라. 각 차년도에 중국 수출용으로써의 가능성이 있다고 판단되는  $F_1$ 조합에 대해 채종시험(생산성 검정)을 진행하였고, 생산된 시험교배종자(시교)에 대해 순도검정을 실시하였다.
- 마. 각 차년도에 중국 수출용으로써의 가능성이 있다고 판단되는  $F_1$ 조합의 양친에 대해 소망실에서 원원종 및 원종 증식을 진행, 생산된 종자에 대해 순도검정을 실시하였다.







그림 40. 작성  $F_1$ 조합 교배(좌,중) 및 시험교배종자 순도검정(우)

#### 3. F<sub>1</sub>조합 성능검정 및 선발

- 가. 1,2차년도에 작성된  $F_1$ 조합 중 당해 성능검정을 통해 중국 수출용으로써의 가능성이 높아 연차별 재시험이 필요하다고 판단되는 53조합에 대해 대비종 17품종과 함께 3차년도 봄 성능검정을 실시하였고, 9조합을 예비 선발하였다. 재배는 2반복으로 조간 35cm, 주간 25cm 두 줄 멀칭재배 실시하였으며, 시비 및 관리는 일반 재배관리법에 준하였다(하우스: 파종 2월 5일, 조사 5월 13일, 노지: 파종 4월 10일, 조사 6월 16일, 농협종묘센터 시험포장).
- 나. 1,2차년도에 작성된  $F_1$ 조합 중 장내 성능검정 결과가 좋아 고랭지 지역 적응성 검정이 필요하다고 생각되는 14조합에 대해 대비종 28품종과 함께 3차년도 농가연락시험을 실시

하였고, 이 중 1조합을 예비 선발하였다. 재배는 2반복으로 조간 60cm, 주간 23cm 외줄 무멀칭 재배 실시하였으며, 시비 및 관리는 현지 재배기준에 준하였다(파종: 6월 11일, 조 사: 8월 27일, 강원 정선). 4차년도 농가연락시험 역시 3차년도와 같은 방법과 지역에  $F_1$ 24조합 및 대비종 17품종 실시하였고, 이 중 1조합을 예비 선발하였다.

- 다. 각 차년도에 작성, 교배 및 채종된  $F_1$ 조합 중 중국 수출용으로써의 가능성이 높다고 판단되는 번호를 (1차년도;  $F_1$  50조합, 2차년도;  $F_1$  95조합, 3차년도;  $F_1$  346조합, 4차년도;  $F_1$  393조합)를 농협종묘센터 시험포장에 2반복 파종하여(8월중순) 성능검정, 평가 및 선발을 실시(11월초), 조합을 예비 선발하였다. 재배는 조간 35cm, 주간 25cm로 두 줄 멀칭재배 실시하였고, 시비 및 관리는 일반 재배관리법에 준하였다.
- 라. 각 차년도에 작성된  $F_1$ 조합 및 기존 조합 중 성능검정 결과가 좋아 추가로 추대성 및 내한성, 저온비대력 검정이 필요하다고 생각되는 조합에 대해 대비종과 함께 각 차년도 겨울재배시험을 실시하였고, 9월 중순에 파종, 월동 저온처리 하여 차년 2월 및 4월에 특성조사 및 조합선발을 실시하였다.



그림 41. F<sub>1</sub>조합 성능검정 및 선발시험 (상좌: 봄 하우스, 상중: 봄 노지, 상우: 고랭지 노지, 하좌: 가을 노지, 하우: 월동 노지)



그림 42. 최종선발 F<sub>1</sub>조합

표 43. 최종선발 F<sub>1</sub>조합 특성표

|     | 1차년도 |        |        |        |        |       |       |    |  |  |  |  |
|-----|------|--------|--------|--------|--------|-------|-------|----|--|--|--|--|
| BN  | 엽색   | 엽장(cm) | 근장(cm) | 상경(cm) | 하경(cm) | 근중(g) | 엽중(g) | 비고 |  |  |  |  |
| 790 | 농록   | 33     | 28     | 6.2    | 6.5    | 1,050 | 240   |    |  |  |  |  |
| 791 | 녹    | 40     | 30     | 6.0    | 5.8    | 1,200 | 315   |    |  |  |  |  |

|     | 2차년도 |        |        |        |        |       |       |    |  |  |  |  |
|-----|------|--------|--------|--------|--------|-------|-------|----|--|--|--|--|
| BN  | 엽색   | 엽장(cm) | 근장(cm) | 상경(cm) | 하경(cm) | 근중(g) | 엽중(g) | 비고 |  |  |  |  |
| 874 | 녹    | 41.2   | 27.5   | 7.7    | 8.2    | 1,383 | 317   |    |  |  |  |  |
| 875 | 녹    | 39.5   | 25.5   | 7.9    | 8.2    | 1,333 | 300   |    |  |  |  |  |
| 880 | 녹    | 43.3   | 24.2   | 8.2    | 8.5    | 1,300 | 367   |    |  |  |  |  |

|       | 3차년도 |        |        |        |        |        |       |       |       |  |  |  |  |  |
|-------|------|--------|--------|--------|--------|--------|-------|-------|-------|--|--|--|--|--|
| BN    | 엽색   | 엽장(cm) | 근장(cm) | 상경(cm) | 중경(cm) | 하경(cm) | 근중(g) | 엽중(g) | 엽수(매) |  |  |  |  |  |
| T1505 | 녹    | 62.7   | 30.8   | 8.2    | 11.4   | 6.7    | 2317  | 683   | 35    |  |  |  |  |  |
| T1508 | 녹    | 48     | 27     | 7.6    | 10.7   | 7.5    | 1867  | 350   | 25    |  |  |  |  |  |

|     | 4차년도 |        |        |        |        |       |       |    |  |  |  |
|-----|------|--------|--------|--------|--------|-------|-------|----|--|--|--|
| BN  | 엽색   | 엽장(cm) | 근장(cm) | 상경(cm) | 하경(cm) | 근중(g) | 엽중(g) | 비고 |  |  |  |
| 551 | 녹    | 39.0   | 57.5   | 7.3    | 7.0    | 2600  | 700   |    |  |  |  |
| 583 | 녹    | 53.0   | 54.0   | 7.1    | 7.1    | 2800  | 800   |    |  |  |  |
| 588 | 녹    | 50.0   | 52.0   | 8.0    | 6.8    | 3050  | 650   |    |  |  |  |

### 4. F1조합 현지 적응성 검정 및 선발

- 가. 각 차년도 작성된 조합 중 성능검정 및 농가연락시험에서 대비종 비교시험 결과 중국 현지에서 가능성이 있을 것으로 판단되는 조합과 기존 국내 시판종 중 중국용으로써의 경쟁력이 있다고 판단되는 품종을 각 차년도 최종 후보로 선발하여 중국 현지 적응성 검정을실시하였다(표 44).
- 나. 중국 현지 시험은 농가연락시험과 국립종자원 해외전시포 사업, 박람회 전시포 출품을 통해 실시하였고, 시험결과 성능이 우수하다고 판단되는 번호(F1조합 및 시판종)를 선발하였으며, 선발된 번호 중 조합은 시교종자를 생산, 시판종은 시판품종을 현지에 공시하여 차년도 확대 시험 및 종자 수출을 진행하였다.

표 44. 중국 현지 적응성 검정시험 경종개요

| 시험명               | 즈  | ㅏ 형 | 장 소       | 파종         | 수확, 조사      | 선발조합(품종)     |
|-------------------|----|-----|-----------|------------|-------------|--------------|
| 3차년도              | 봄  | 노지  | 북경 농가     | 15. 4. 5.  | 15. 6. 9.   | T1505, T1506 |
| 현지 적응성 검정         | 여름 | 고랭지 | 하북성 전시포   | 15. 6. 23. | 15. 8. 21.  | 신흥, T1511    |
| (중국)              | 가을 | 노지  | 광동성 종자박람회 | 15. 10. 5. | 15. 12. 12. | T1508, T1511 |
| 4차년도<br>현지 적응성 검정 | 여름 | 고랭지 | 하북성 전시포   | 15. 6. 20. | 15. 8. 17.  | N603, N604   |
| (중국)              | 가을 | 노지  | 광동성 종자박람회 | 16. 10. 5. | 16. 12. 12. | T1508, 신흥    |













그림 43. 중국 현지 적응성 검정시험 선발 조합(품종)

# 5. 병 저항성 검정 및 선발(시들음병, F<sub>1</sub>조합 및 계통)

- 가. 현재 우리나라 뿐 아니라 중국 내에서도 가장 심각한 문제를 야기하는 무 시들음병에 대한 저항성을 검정함으로써 부가가치가 높고 재배 폭이 넓은 무 품종을 개발하고자 하였다. 병원균으로 *Fusarium oxysporum* f. sp. *raphani*를 사용하였고  $1.0\times10^7$  spore 농도로 뿌리 침지 접종하였으며,  $F_1$ 조합 및 계통(1차년도 가을 126 / 2차년도 912 / 3차년도 492 / 4차년도 1023)에 대하여 검정을 실시하였다(그림 44).
- 나. 시험은 각 번호 당 5개체씩 2반복으로 진행하였으며, 봄 시험은 5월~ 6월, 가을 시험은 9월~ 10월, 분기 별 1회 씩 총 2회 실시하였다. 접종 후 약 1개월 간 관찰하여 저항성 결과를 도출하였으며, 시험 결과 1차년도 126번호 중 저항성 27번호, 중도저항성 17번호; 2차년도 912번호 중 저항성 112번호, 중도저항성 115번호; 3차년도 492번호 중 저항성 168번호, 중도저항성 123번호; 4차년도 1023번호 중 저항성 33번호 중도 저항성 163번호가 선발되었다(표45).



그림 44. 무 시들음병 검정 과정

표 45. 무 시들음병 저항성 검정 결과

|     |      |         |      |     |      | 1차년도    |      |     |      |         |      |
|-----|------|---------|------|-----|------|---------|------|-----|------|---------|------|
| No  | B.N  | 교배번호    | 시험결과 | No  | B.N  | 교배번호    | 시험결과 | No  | B.N  | 교배번호    | 시험결과 |
| 1   | f1   | 1304-51 | R    | 43  | f165 | 1691-52 | S    | 85  | f411 | 502-1   | S    |
| 2   | f2   | 1305-51 | R    | 44  | f166 | 1692-51 | S    | 86  | f413 | 504-1   | S    |
| 3   | f7   | 1319-52 | S    | 45  | f171 | 1698-51 | IR   | 87  | f422 | 517-2   | R    |
| 4   | f36  | 1378-52 | IR   | 46  | f187 | 525-51  | S    | 88  | f425 | 521-1   | S    |
| 5   | f48  | 1419-51 | IR   | 47  | f188 | 525-52  | S    | 89  | f427 | 523-2   | IR   |
| 6   | f57  | 1453-51 | IR   | 48  | f189 | 526-51  | S    | 90  | f428 | 524-2   | S    |
| 7   | f58  | 1454-51 | S    | 49  | f192 | 3-4     | IR   | 91  | f432 | 528-2   | IR   |
| 8   | f63  | 1459-51 | S    | 50  | f193 | 3-5     | IR   | 92  | f433 | 529-1   | S    |
| 9   | f65  | 1460-52 | S    | 51  | f197 | 8-2     | S    | 93  | f437 | 533-1   | S    |
| 10  | f67  | 1473-51 | S    | 52  | f204 | 15-1    | S    | 94  | f438 | 534-1   | R    |
| 11  | f68  | 1475-51 | S    | 53  | f207 | 22-1    | S    | 95  | f439 | 535-1   | S    |
| 12  | f69  | 1476-51 | IR   | 54  | f208 | 24-2    | S    | 96  | f448 | 543-1   | S    |
| 13  | f71  | 1479-51 | IR   | 55  | f211 | 27-3    | IR   | 97  | f449 | 544-2   | R    |
| 14  | f76  | 1484-51 | S    | 56  | f212 | 29-2    | S    | 98  | f450 | 545-1   | S    |
| 15  | f78  | 1486-52 | S    | 57  | f223 | 54-2    | S    | 99  | f454 | 549-1   | S    |
| 16  | f87  | 1496-51 | IR   | 58  | f224 | 56-1    | S    | 100 | f456 | 551-1   | S    |
| 17  | f92  | 1501-52 | S    | 59  | f250 | 88-1    | S    | 101 | f458 | 554-1   | S    |
| 18  | f93  | 1502-51 | S    | 60  | f251 | 89-1    | S    | 102 | f463 | 561-1   | S    |
| 19  | f96  | 1504-52 | S    | 61  | f326 | 341-1   | S    | 103 | f467 | 566-1   | S    |
| 20  | f97  | 1505-51 | S    | 62  | f331 | 364-1   | S    | 104 | f468 | 567-1   | S    |
| 21  | f98  | 1506-51 | S    | 63  | f356 | 404-1   | IR   | 105 | f470 | 569-2   | IR   |
| 22  | f101 | 1510-52 | S    | 64  | f363 | 411-1   | R    | 106 | f471 | 570-1   | S    |
| 23  | f107 | 1551-51 | R    | 65  | f366 | 414-1   | S    | 107 | f475 | 575-1   | S    |
| 24  | f109 | 1554-52 | S    | 66  | f368 | 419-1   | R    | 108 | f479 | 580-1   | S    |
| 25  | f110 | 1556-51 | R    | 67  | f370 | 457-1   | S    | 109 | f487 | 593-1   | IR   |
| 26  | f111 | 1562-52 | S    | 68  | f371 | 457-2   | S    | 110 | f488 | 594-2   | IR   |
| 27  | f112 | 1564-51 | IR   | 69  | f372 | 459-1   | S    | 111 | f489 | 595-2   | S    |
| 28  | f113 | 1569-51 | S    | 70  | f374 | 462-1   | IR   | 112 | f490 | 596-1   | R    |
| 29  | f118 | 1588-51 | IR   | 71  | f375 | 463-1   | IR   | 113 | f491 | 598-1   | S    |
| 30  | f125 | 1603-51 | IR   | 72  | f380 | 469-2   | R    | 114 | f492 | 599-1   | S    |
| 31  | f127 | 1606-51 | R    | 73  | f381 | 470-2   | S    | 115 | f497 | 606-2   | S    |
| 32  | f130 | 1609-52 | S    | 74  | f382 | 471-1   | S    | 116 | f502 | 612-2   | IR   |
| 33  | f132 | 1613-51 | S    | 75  | f383 | 472-1   | R    | 117 | f510 | 622-2   | S    |
| 34  | f135 | 1619-52 | S    | 76  | f384 | 475-1   | IR   | 118 | f511 | 624-1   | S    |
| 35  | f139 | 1625-51 | S    | 77  | f391 | 481-2   | R    | 119 | f512 | 625-1   | S    |
| 36  | f140 | 1628-51 | S    | 78  | f398 | 488-1   | IR   | 120 | f516 | 628-1   | S    |
| 37  | f145 | 1640-51 | S    | 79  | f401 | 492-1   | S    | 121 | f534 | 648-2   | IR   |
| 38  | f146 | 1643-51 | S    | 80  | f405 | 496-2   | S    | 122 | f540 | 657-2   | S    |
| 39  | f147 | 1645-51 | S    | 81  | f406 | 497-1   | R    | 123 | f547 | _       | R    |
| 40  | f155 | 1663-51 | S    | 82  | f408 | 499-1   | IR   | 124 | f548 | -       | S    |
| 41  | f158 | 1670-51 | S    | 83  | f409 | 500-1   | S    | 125 | f549 | -       | S    |
| 42  | f162 | 1684-52 | R    | 84  | f410 | 501-1   | S    | 126 | f550 | _       | IR   |
|     |      |         |      |     |      | 2차년도    |      |     |      |         |      |
| No. | B.N  | 교배번호    | 시험결과 | No. | B.N  | 교배번호    | 시험결과 | No. | B.N  | 교배번호    | 시험결과 |
| 1   | f251 | 1902-51 | S    | 305 | f606 | 574-1   | S    | 609 | 1634 | 2001-52 | R    |
| 2   | f252 | 1907-51 | S    | 306 | f607 | 652-2   | S    | 610 | 1635 | 2010-51 | S    |
| 3   | f253 | 1911-52 | S    | 307 | f608 | _       | S    | 611 | 1636 | 2014-51 | S    |
| 4   | f254 | 1928-51 | S    | 308 | f609 | -       | S    | 612 | 1637 | 2016-52 | S    |
| 5   | f255 | 32-2    | S    | 309 | f610 | 1682-51 | S    | 613 | 1638 | 2017-52 | S    |
| 6   | f256 | 56-1    | S    | 310 | f611 | 1951-51 | S    | 614 | 1639 | 2018-51 | S    |
| 7   | f257 | 74-1    | S    | 311 | f612 | 1955-51 | IR   | 615 | 1640 | 2023-51 | S    |
| 8   | f258 | 78-2    | S    | 312 | f613 | 1958-51 | S    | 616 | 1641 | 2024-51 | S    |
| 9   | f259 | 2503-51 | S    | 313 | f614 | 1959-51 | S    | 617 | 1642 | 2027-51 | R    |
| 10  | f260 | 2505-52 | S    | 314 | f615 | 1963-51 | S    | 618 | 1643 | 2029-52 | S    |
| 11  | f261 | 2509-52 | S    | 315 | f616 | 1964-51 | S    | 619 | 1644 | 2030-52 | S    |
| 12  | f262 | 2512-51 | S    | 316 | f617 | 1966-52 | IR   | 620 | 1645 | 2032-52 | S    |
| 13  | f263 | 2523-52 | S    | 317 | f618 | 1967-51 | IR   | 621 | 1646 | 2034-51 | S    |
| 14  | f264 | 2528-51 | S    | 318 | f619 | 1968-51 | S    | 622 | 1647 | 2035-51 | S    |

|          |              |                    | 1      |     |              | Г                  | Г       |            |              | T                  |         |
|----------|--------------|--------------------|--------|-----|--------------|--------------------|---------|------------|--------------|--------------------|---------|
| 15       | f265         | 2546-51            | S      | 319 | f620         | 1978-51            | S       | 623        | 1648         | 2036-51            | S       |
| 16       | f266         | 2561-51            | S      | 320 | f621         | 1989-51            | IR      | 624        | 1649         | 2037-51            | R       |
| 17       | f267         | 2567-52            | S      | 321 | f622         | 1990-51            | S       | 625        | 1650         | 2041-52            | S       |
| 18       | f268         | 2571-51            | S      | 322 | f623         | 1995-51            | R       | 626        | 1651         | 2044-52            | R       |
| 19       | f269         | 909-51             | S      | 323 | f624         | 2005-51            | S       | 627        | 1652         | 2046-52            | S       |
| 20       | f270         | 909-52             | S      | 324 | f625         | 2031-51            | IR      | 628        | 1653         | 2050-52            | IR      |
| 21       | f271         | 251-1              | S      | 325 | f626         | 2046-51            | S       | 629        | 1654         | 2051-52            | S       |
| 22       | f272         | 252-1              | S      | 326 | f627         | 2049-52            | S       | 630        | 1655         | 2062-51            | S       |
| 23       | f273         | 253-1              | S      | 327 | f628         | 2052-52            | S       | 631        | 1656         | 2063-51            | S       |
| 24       | f274         | 255-1              | S      | 328 | f629         | 2058-51            | S       | 632        | 1657         | 2067-51            | S       |
| 25       | f275         | 267-1              | S      | 329 | f630         | 2060-51            | S       | 633        | 1658         | 2068-51            | S       |
| 26       | f276         | 269-1              | S      | 330 | f631         | 2062-52            | IR      | 634        | 1659         | 2073-51            | S       |
| 27       | f277         | 275-1              | S      | 331 | f632         | 2091-52            | S       | 635        | 1660         | 2074-51            | S       |
| 28       | f278         | 276-1              | S<br>S | 332 | f633         | 2144-51            | R       | 636        | 1661         | 2076-52            | S       |
| 29       | f279<br>f280 | 277-1              |        | 333 | f634         | 2147-52            | S       | 637        | 1662<br>1663 | 2077-52            | S       |
| 30       | f281         | 278-1<br>279-1     | R<br>S | 334 | f635<br>f636 | 2149-52<br>2150-52 | IR<br>S | 638<br>639 | 1664         | 2079-51<br>2080-51 | S       |
| 32       | f301         | 1380-51            | S      | 336 | f637         | 2150-52            | S       | 640        |              | 2085-51            | S       |
| 33       | f302         |                    | S      | 337 | f638         |                    |         | -          | 1665<br>1666 | 2085-51            | S       |
| 34       | f303         | 1574-51<br>1663-51 | S      | 338 | 1638<br>f639 | 2156-52<br>602-1   | R<br>S  | 641<br>642 | 1667         | 2087-51            | S       |
| 35       | f304         | 3-1                | S      | 339 | f640         | 613-1              | IR      | 643        | 1668         | 2089-32            | R       |
| 36       | f305         | 21-2               | S      | 340 | f641         | 617-1              | S       | 644        | 1669         | 2090-52            | IR      |
| 37       | f306         | 22-1               | S      | 341 | f642         | 631-1              | S       | 645        | 1670         | 2097-51            | S       |
| 38       | f307         | 27-3               | IR     | 342 | f643         | 632-1              | S       | 646        | 1671         | 2100-51            | S       |
| 39       | f308         | 309-1              | S      | 343 | f644         | 633-1              | R       | 647        | 1672         | 2106-51            | S       |
| 40       | f309         | 317-2              | S      | 344 | f645         | 635-1              | S       | 648        | 1673         | 2111-51            | R       |
| 41       | f310         | 319-1              | S      | 345 | f646         | 639-2              | S       | 649        | 1674         | 2112-52            | R       |
| 42       | f311         | 320-1              | IR     | 346 | f647         | 641-1              | S       | 650        | 1675         | 2114-51            | R       |
| 43       | f312         | 332-2              | S      | 347 | f648         | 642-1              | S       | 651        | 1676         | 2115-51            | R       |
| 44       | f313         | 365-2              | S      | 348 | f649         | 643-1              | S       | 652        | 1677         | 2120-51            | S       |
| 45       | f314         | 455-2              | S      | 349 | f650         | 644-2              | S       | 653        | 1678         | 2126-51            | S       |
| 46       | f315         | 462-1              | IR     | 350 | f651         | 645-1              | S       | 654        | 1679         | 2127-52            | S       |
| 47       | f316         | 463-2              | S      | 351 | f652         | 647-2              | IR      | 655        | 1680         | 2129-51            | S       |
| 48       | f317         | 465-1              | S      | 352 | f653         | 650-2              | S       | 656        | 1681         | 2136-51            | S       |
| 49       | f318         | 480-1              | S      | 353 | f654         | 651-1              | S       | 657        | 1682         | 2138-51            | S       |
| 50       | f319         | 538-2              | S      | 354 | f655         | 652-1              | S       | 658        | 1683         | 2143-52            | S       |
| 51       | f320         | 539-2              | S      | 355 | f656         | 654-1              | S       | 659        | 1684         | 2144-52            | S       |
| 52       | f321         | 541-1              | S      | 356 | f657         | 659-2              | S       | 660        | 1685         | 2150-52            | S       |
| 53       | f322         | 653-1              | S      | 357 | f658         | 665-2              | S       | 661        | 1686         | 2152-52            | IR      |
| 54       | f323         | 21                 | S      | 358 | f659         | 672-1              | S       | 662        | 1687         | 2170-51            | IR      |
| 55       | f324         | 22                 | S      | 359 | f660         | 674-1              | S       | 663        | 1688         | 2174-51            | R       |
| 56       | f325         | 24                 | S      | 360 | f661         | 675-1              | S       | 664        | 1689         | 2175-51            | R       |
| 57<br>58 | f326<br>f327 | 25<br>27           | S      | 361 | f662<br>f663 | 676-1<br>677-1     | S<br>S  | 665<br>666 | 1690<br>1691 | 729-51             | IR<br>S |
| 59       | f328         | 1501-51            | S      | 363 | 1664         | 679-1              | S       | 667        | 1692         | 729-52<br>730-51   | S       |
| 60       | f329         | 1505-51            | S      | 364 | f665         | 682-1              | S       | 668        | 1693         | 730-52             | S       |
| 61       | f330         | 1509-52            | S      | 365 | f666         | 683-1              | S       | 669        | 1694         | 731-51             | R       |
| 62       | f331         | 1516-51            | S      | 366 | f667         | 684-2              | IR      | 670        | 1695         | 731-52             | R       |
| 63       | f332         | 1519-51            | S      | 367 | f668         | 686-1              | IR      | 671        | 1696         | 800-1-51           | IR      |
| 64       | f333         | 1525-51            | IR     | 368 | f669         | 688-1              | S       | 672        | 1697         | 800-2-51           | R       |
| 65       | f334         | 1528-51            | S      | 369 | f670         | 689-2              | S       | 673        | 1698         | 800-4-51           | R       |
| 66       | f335         | 1549-51            | S      | 370 | f671         | 691-2              | IR      | 674        | 1699         | 800-5-51           | R       |
| 67       | f336         | 1550-51            | S      | 371 | f672         | 692-1              | IR      | 675        | 1700         | 800-6-51           | IR      |
| 68       | f337         | 1562-52            | S      | 372 | f673         | 693-2              | R       | 676        | 1701         | 800-7-51           | S       |
| 69       | f338         | 1564-51            | S      | 373 | f674         | 694-2              | S       | 677        | 1702         | 800-8-51           | S       |
| 70       | f339         | 1575-51            | S      | 374 | f675         | 695-2              | IR      | 678        | 1703         | 602-2              | S       |
| 71       | f340         | 1582-52            | S      | 375 | f676         | 695-3              | IR      | 679        | 1704         | 603-1              | R       |
| 72       | f341         | 1586-52            | S      | 376 | f677         | 697-1              | S       | 680        | 1705         | 604-2              | R       |
| 73       | f342         | 1592-51            | S      | 377 | f678         | 699-1              | S       | 681        | 1706         | 605-1              | R       |
| 74       | f343         | 1604-51            | S      | 378 | f679         | 700-1              | IR      | 682        | 1707         | 606-1              | S       |
| 75       | f344         | 1612-52            | S      | 379 | f680         | 700-4              | S       | 683        | 1708         | 607-2              | S       |
| 76       | f345         | 1614-51            | S      | 380 | f681         | 702-1              | S       | 684        | 1709         | 609-2              | IR      |
| 77       | f346         | 1619-51            | S      | 381 | f682         | 702-2              | S       | 685        | 1710         | 610-1              | IR      |
| 78       | f347         | 1622-51            | S      | 382 | f683         | 711-1              | S       | 686        | 1711         | 611-2              | S       |

|            |              |                    |         |            |              |                |        |            | 1            | T              |        |
|------------|--------------|--------------------|---------|------------|--------------|----------------|--------|------------|--------------|----------------|--------|
| 79         | f348         | 1629-52            | S       | 383        | f684         | 712-1          | IR     | 687        | 1712         | 612-1          | S      |
| 80         | f349         | 1634-51            | S       | 384        | f685         | 716-1          | S      | 688        | 1713         | 613-1          | S      |
| 81         | f350         | 1636-52            | S       | 385        | f686         | 717-2          | S      | 689        | 1714         | 614-1          | R      |
| 82         | f351         | 1638-51            | S       | 386        | f687         | 723-2          | S      | 690        | 1715         | 615-1          | R      |
| 83         | f352         | 1639-51            | S       | 387        | f688         | 724-1          | S      | 691        | 1716         | 616-1          | S      |
| 84         | f353         | 1646-51            | S       | 388        | f689         | 726-1          | S      | 692        | 1717         | 617-1          | IR     |
| 85         | f354         | 1651-52            | S       | 389        | f690         | 727-1          | S      | 693        | 1718         | 618-1          | R      |
| 86         | f355         | 1653-51            | IR      | 390        | f691         | 729-2          | S      | 694        | 1719         | 619-1          | R      |
| 87         | f356         | 1654-51            | IR      | 391        | f692         | 730-2          | S      | 695        | 1720         | 621-1          | S      |
| 88         | f357         | 1658-52            | S       | 392        | f693         | 735-2          | S      | 696        | 1721         | 622-1          | S      |
| 89         | f358         | 1663-51            | S       | 393        | f694         | 737-1          | S      | 697        | 1722         | 623-1          | S      |
| 90         | f359         | 1666-52            | IR<br>S | 394<br>395 | f695         | 739-2<br>747-2 | S      | 698        | 1723<br>1724 | 624-2<br>625-2 | S<br>S |
| 91         | f360<br>f361 | 1676-52<br>1678-52 | S       | 396        | f696<br>f697 | 747-2          | R<br>R | 699<br>700 | 1724         | 626-2          | R      |
| 93         | f362         | 1678-52            | S       | 397        | f698         | 740-1          | R      | 700        | 1726         | 627-2          | S      |
| 94         | f363         | 1685-51            | S       | 398        | f699         | 753-2          | IR     | 701        | 1727         | 628-1          | S      |
| 95         | f364         | 1689-51            | S       | 399        | f700         | 759-1          | IR     | 702        | 1728         | 629-1          | R      |
| 96         | f365         | 1693-51            | S       | 400        | f701         | 763-1          | R      | 703        | 1729         | 630-1          | R      |
| 97         | f366         | 1694-52            | S       | 400        | f702         | 765-2          | R      | 704        | 1730         | 631-2          | R      |
| 98         | f367         | 1694-52            | S       | 401        | f703         | 765-2          | S      | 703        | 1731         | 632-1          | S      |
| 99         | f368         | 1696-51            | S       | 402        | f704         | 769-1          | IR     | 700        | 1732         | 633-1          | R      |
| 100        | f369         | 1697-52            | S       | 404        | f705         | 772-2          | S      | 707        | 1733         | 634-1          | S      |
| 101        | f370         | 1702-51            | S       | 405        | f706         | 787-1          | S      | 709        | 1734         | 635-1          | IR     |
| 102        | f371         | 1704-51            | S       | 406        | f707         | 790-1          | S      | 710        | 1735         | 636-1          | S      |
| 103        | f372         | 1708-51            | S       | 407        | f708         | 810-2          | S      | 711        | 1736         | 637-1          | S      |
| 104        | f373         | 1718-51            | S       | 408        | f709         | 811-1          | R      | 712        | 1737         | 638-1          | IR     |
| 105        | f374         | 1721-51            | S       | 409        | f710         | 812-2          | S      | 713        | 1738         | 639-1          | IR     |
| 106        | f375         | 1722-52            | S       | 410        | f711         | 816-1          | S      | 714        | 1739         | 640-2          | R      |
| 107        | f376         | 1724-52            | S       | 411        | f712         | 824-1          | S      | 715        | 1740         | 641-1          | IR     |
| 108        | f377         | 1725-51            | S       | 412        | f713         | 826-1          | IR     | 716        | 1741         | 642-2          | R      |
| 109        | f378         | 1759-51            | S       | 413        | f714         | 829-1          | S      | 717        | 1742         | 643-2          | IR     |
| 110        | f379         | 1763-52            | S       | 414        | f715         | 830-1          | S      | 718        | 1743         | 644-1          | IR     |
| 111        | f380         | 1767-52            | S       | 415        | f716         | 834-2          | R      | 719        | 1744         | 645-2          | S      |
| 112        | f381         | 1771-52            | S       | 416        | f717         | 835-1          | IR     | 720        | 1745         | 646-2          | IR     |
| 113        | f382         | 1773-51            | IR      | 417        | f718         | 842-1          | IR     | 721        | 1746         | 647-1          | S      |
| 114        | f383         | 1774-51            | S       | 418        | f719         | 845-1          | S      | 722        | 1747         | 648-1          | S      |
| 115        | f384         | 1777-51            | S       | 419        | f720         | 875-1          | IR     | 723        | 1748         | 649-2          | S      |
| 116        | f385         | 1779-52            | S       | 420        | f721         | -              | S      | 724        | 1749         | 650-2          | IR     |
| 117        | f386         | 1782-51            | S       | 421        | f722         | -<br>D. 0      | S      | 725        | 1750         | 651-1          | R      |
| 118        | f387         | 1789-51            | S       | 422        | f723         | B-6            | S      | 726        | 1751         | 652-1          | R      |
| 119        | moo.         | 1800-51            | S       | 423        | f724         | 921-1          | R      | 727        | 1752         | 653-2          | S      |
| 120        | f389         | 1802-52            | S       | 424        | f725         | 921-2<br>921-3 | IR     | 728        | 1753         | 654-1          | S      |
| 121<br>122 | f390         | 1808-51<br>1809-51 | S       | 425<br>426 | f726<br>f727 |                | R      | 729<br>730 | 1754<br>1755 | 655-2<br>656-2 | S<br>S |
| 123        | f391<br>f392 | 1812-51            | S       | 420        | f728         | 921-4<br>921-5 | R<br>R | 730        | 1756         | 657-1          | S      |
| 123        | f393         | 1817-51            | IR      | 427        | f729         | 921 3          | IR     | 732        | 1757         | 658-1          | S      |
| 125        | f394         | 1826-52            | S       | 429        | f730         | 922-2          | S      | 733        | 1758         | 659-2          | R      |
| 126        | f395         | 1828-51            | S       | 430        | f731         | 922-3          | S      | 734        | 1759         | 660-1          | IR     |
| 127        | f396         | 1838-51            | S       | 431        | f732         | 922-4          | S      | 735        | 1760         | 661-2          | S      |
| 128        | f397         | 1852-51            | S       | 432        | f733         | 922-5          | S      | 736        | 1761         | 662-1          | S      |
| 129        | f398         | 1855-52            | S       | 433        | f734         | 924-1          | S      | 737        | 1762         | 663-1          | S      |
| 130        | f399         | 1866-51            | S       | 434        | f735         | 924-2          | S      | 738        | 1763         | 664-1          | S      |
| 131        | f400         | 1869-51            | S       | 435        | f736         | 924-3          | S      | 739        | 1764         | 665-1          | S      |
| 132        | f401         | 1873-51            | S       | 436        | f737         | 924-4          | S      | 740        | 1765         | 666-1          | S      |
| 133        | f402         | 1876-51            | S       | 437        | f738         | 924-5          | S      | 741        | 1766         | 667-2          | R      |
| 134        | f403         | 1887-52            | S       | 438        | f739         | _              | S      | 742        | 1767         | 668-1          | IR     |
| 135        | f404         | 1888-51            | S       | 439        | f740         | _              | S      | 743        | 1768         | 669-1          | S      |
| 136        | f405         | 1894-51            | IR      | 440        | f741         | _              | S      | 744        | 1769         | 670-2          | S      |
| 137        | f406         | 1903-51            | S       | 441        | f742         | -              | R      | 745        | 1770         | 671-2          | S      |
| 138        | f407         | 1907-52            | S       |            | 1401         | 1406-51        | IR     | 746        | 1771         | 672-2          | S      |
| 139        | f408         | 1913-51            | S       | 443        |              | 1411-51        | S      | 747        | 1772         | 673-2          | IR     |
| 140        | f409         | 1915-52            | S       | -          | 1403         | 1418-51        | S      | 748        | 1773         | 674-1          | IR     |
| 141        | f410         | 1917-51            | S       | -          | 1404         | 1419-52        | S      | 749        | 1774         | 675-1          | IR     |
| 142        | f411         | 1919-51            | S       | 446        | μ405         | 1423-52        | S      | 750        | 1775         | 676-1          | R      |

| 143        | f412         | 1921-51      | S      | 447 1406             | 6 1426-51 | S      | 751        | 1776         | 677-1          | S      |
|------------|--------------|--------------|--------|----------------------|-----------|--------|------------|--------------|----------------|--------|
| 143        | f413         | 1924-51      | S      | 448 140              |           | S      | 752        | 1777         | 678-1          | S      |
| 145        | f414         | 427-51       | S      | 449 1408             |           | S      | 753        | 1778         | 679-1          | IR     |
| 146        | f415         | 445-51       | S      | 450 1409             |           | S      | 754        | 1779         | 680-1          | IR     |
| 147        | f416         | 451-51       | S      | 451 1410             |           | S      | 755        | 1780         | 681-1          | R      |
| 148        | f417         | 497-51       | S      | 452 141              |           | S      | 756        | 1781         | 682-1          | S      |
| 149        | f418         | 631-52       | S      | 453 1412             |           | S      | 757        | 1782         | 683-2          | S      |
| 150        | f419         | 633-51       | S      | 454 1413             |           | S      | 758        | 1783         | 684-2          | S      |
| 151        | f420         | 656-51       | S      | 455 1414             |           | S      | 759        | 1784         | 685-2          | IR     |
| 152        | f421         | 660-51       | S      | 456 1413             |           | IR     | 760        | 1785         | 686-2          | S      |
| 153        | f422         | 3-1          | S      | 457 1416             | 5 1461-51 | S      | 761        | 1786         | 687-1          | S      |
| 154        | f423         | 4-4          | S      | 458 141'             | 7 1463-52 | S      | 762        | 1787         | 688-2          | S      |
| 155        | f424         | 5-1          | S      | 459 1418             | 3 1465-51 | S      | 763        | 1788         | 689-1          | S      |
| 156        | f425         | 6-1          | S      | 460 1419             | 9 1468-51 | S      | 764        | 1789         | 690-1          | S      |
| 157        | f426         | 7-1          | S      | 461 1420             | 1471-51   | S      | 765        | 1790         | 691-2          | S      |
| 158        | f427         | 8-1          | S      | 462 1423             | 1 1472-51 | IR     | 766        | 1791         | 692-2          | IR     |
| 159        | f428         | 9-1          | S      | 463 1422             |           | R      | 767        | 1792         | 693-1          | IR     |
| 160        | f429         | 10-3         | S      | 464 1423             | 3 1492-52 | S      | 768        | 1793         | 694-1          | S      |
| 161        | f430         | 12-1         | S      | 465 1424             |           | S      | 769        | 1794         | 695-2          | IR     |
| 162        | f431         | 20-1         | S      | 466 1425             |           | S      | 770        | 1795         | 696-1          | R      |
| 163        | f432         | 21-1         | S      | 467 1426             |           | S      | 771        | 1796         | 697-2          | S      |
| 164        | f433         | 22-2         | S      | 468 142              |           | S      | 772        | 1797         | 698-1          | R      |
| 165        | f434         | 23-1         | S      | 469 1428             |           | IR     | 773        | 1798         | 699-1          | IR     |
| 166        | f435         | 24-2         | S      | 470 1429             |           | S      | 774        | 1799         | 700-1          | R      |
| 167        | f436         | 25-3         | S      | 471 1430             |           | S      | 775        | 1800         | 701-1          | R      |
| 168        | f437         | 27-1         | S      | 472 143              |           | S      | 776        | 1801         | 702-2          | R      |
| 169        | f438         | 28-3         | S      | 473 1432             |           | S      | 777        | 1802         | 703-2          | R      |
| 170        | f439         | 29-1         | S      | 474 1433             |           | S      | 778        | 1803         | 704-2          | R      |
| 171        | f440         | 30-2         | S      | 475 1434             |           | S      | 779        | 1804         | 705-2          | S      |
| 172        | f441         | 33-1         | S      | 476 1435             |           | S      | 780        | 1805         | 706-2          | IR     |
| 173        | f442         | 54-1         | S      | 477 1436             |           | S      | 781        | 1806         | 707-2          | S      |
| 174        | f443         | 58-2         | IR     | 478 143              |           | IR     | 782        | 1807         | 708-1          | S      |
| 175        | f444         | 60-2         | S      | 479 1438             |           | S      | 783        | 1808         | 709-1          | S      |
| 176        | f445         | 62-1<br>64-2 | S      | 480 1439             |           | S      | 784        | 1809         | 710-1          | S      |
| 177        | f446         |              | S<br>S | 481 1440             |           | R      | 785        | 1810         | 711-1          | S      |
| 178<br>179 | f447<br>f448 | 69-2<br>71-1 | S      | 482 1442<br>483 1442 |           | S<br>S | 786<br>787 | 1811<br>1812 | 712-1<br>713-2 | S<br>S |
| 180        | f449         | 82-1         | S      | 484 1443             |           | IR     | 788        | 1813         | 713-2          | S      |
| 181        | f450         | 305-1        | S      | 485 144              |           | R      | 789        | 1814         | 714-2          | S      |
| 182        | f450         | 308-1        | S      | 486 1445             |           | S      | 790        | 1815         | 715-1          | IR     |
| 183        | f452         | 309-1        | S      | 487 1446             |           | S      | 791        | 1816         | 717-2          | S      |
| 184        | f453         | 311-1        | S      | 488 144              |           | S      | 792        | 1817         | 718-2          | IR     |
| 185        | f454         | 312-1        | S      | 489 1448             |           | S      | 793        | 1818         | 719-2          | R      |
| 186        | f455         | 316-1        | S      | 490 1449             |           | S      | 794        | 1819         | 720-1          | R      |
| 187        | f456         | 319-1        | S      | 491 1450             |           | S      | 795        | 1820         | 721-2          | S      |
| 188        | f457         | 325-2        | S      | 492 145              |           | S      | 796        | 1821         | 722-1          | R      |
| 189        | f458         | 326-1        | S      | 493 1452             |           | S      | 797        | 1822         | 724-1          | R      |
| 190        | f459         | 329-1        | S      | 494 1453             |           | S      | 798        | 1823         | 725-1          | R      |
| 191        | f460         | 330-1        | S      | 495 1454             |           | S      | 799        | 1824         | 726-1          | S      |
| 192        | f461         | 331-1        | S      | 496 1455             |           | S      | 800        | 1825         | 727-1          | S      |
| 193        | f462         | 333-1        | S      | 497 1456             |           | S      | 801        | 1826         | 728-1          | S      |
| 194        | f463         | 336-1        | S      | 498 145              |           | S      | 802        | 1827         | 730-1          | S      |
| 195        | f464         | 338-1        | S      | 499 1458             |           | S      | 803        | 1828         | 731-1          | S      |
| 196        | f465         | 342-1        | S      | 500 1459             |           | S      | 804        | 1829         | 732-1          | S      |
| 197        | f466         | 343-1        | S      | 501 1460             | ) 1658-51 | S      | 805        | 1830         | 733-1          | S      |
| 198        | f467         | 345-1        | S      | 502 146              |           | S      | 806        | 1831         | 734-1          | R      |
| 199        | f468         | 347-1        | S      | 503 1462             |           | S      | 807        | 1832         | 735-1          | IR     |
| 200        | f469         | 348-1        | S      | 504 1463             |           | IR     | 808        | 1833         | 737-1          | S      |
| 201        | f470         | 351-1        | S      | 505 1464             |           | S      | 809        | 1834         | 740-1          | S      |
| 202        | f471         | 352-1        | S      | 506 1465             |           | S      | 810        | 1835         | 743-1          | S      |
| 203        | f472         | 353-1        | S      | 507 1466             |           | S      | 811        | 1836         | 746-1          | S      |
| 204        | f473         | 354-1        | S      | 508 146              |           | S      | 812        | 1837         | 749-1          | S      |
| 205        | f474         | 355-1        | S      | 509 1468             |           | S      | 813        | 1838         | 751-1          | S      |
| 206        | f475         | 356-1        | S      | 510 1469             | 9 1675-51 | S      | 814        | 1839         | 754-1          | IR     |

| 005        | CATIC        | 057 1          |        | I = | 1.4770       | 1070 51            | TD      | 01-        | 1040         | 750 1          | D       |
|------------|--------------|----------------|--------|-----|--------------|--------------------|---------|------------|--------------|----------------|---------|
| 207        | f476         | 357-1          | S      | -   | 1470         | 1678-51            | IR      | 815        | 1840         | 756-1          | R       |
| 208        | f477         | 359-1          | S      | _   | 1471         | 1686-51            | S       | 816        | 1841         | 759-1          | S<br>S  |
| 209        | f478         | 360-1          | S      | -   | 1472         | 1688-51            | S       | 817        | 1842         | 761-1          |         |
| 210        | f479         | 362-1          | S      |     | 1473         | 1691-51            | S       | 818        | 1843         | 763-1          | S       |
| 211        | f480         | 364-1          | S      | _   | 1474         | 1693-52            | S       | 819        | 1844         | 767-1          | R       |
| 212        | f481         | 368-1          | S      |     | 1475         | 1701-52            | S       | 820        | 1845         | 771-1          | R       |
| 213        | f482         | 370-1          | S      |     | 1476         | 1702-51            | S       | 821        | 1846         | 779-1          | S<br>S  |
| 214        | f483         | 371-1          | S      | #   | 1477         | 1707-51            | S       | 822        | 1847         | 782-1          |         |
| 215        | f484         | 372-1          | IR     | -   | 1478         | 1726-51            | IR      | 823        | 1848         | 784-1          | S       |
| 216        | f485         | 373-1          | IR     | -   | 1479         | 1728-51            | S       | 824        | 1849         | 785-1-1        | S       |
| 217        | f486<br>f487 | 379-1<br>383-1 | S<br>S | -   | 1480<br>1481 | 1730-51<br>1731-51 | S<br>S  | 825<br>826 | 1850<br>1851 | 786-1<br>787-1 | IR<br>S |
| 219        | f488         | 385-1          | S      |     | 1482         | 1731-51            | s<br>S  | 827        | 1852         | 787-1          | S       |
| 220        | f489         | 388-1          | S      |     | 1483         | 1733-51            | S       | 828        | 1853         | 789-1          | IR      |
| 221        | f490         | 390-1          | S      | -   | 1484         | 1733 32            | S       | 829        | 1854         | 789-1-1        | S       |
| 222        | f491         | 392-1          | S      |     | 1485         | 1751-52            | S       | 830        | 1855         | 791-1          | S       |
| 223        | f492         | 393-1          | S      | #   | 1486         | 1751 52            | S       | 831        | 1856         | 792-1          | S       |
| 224        | f493         | 394-1          | S      |     | 1487         | 1759-52            | S       | 832        | 1857         | 792-1-1        | S       |
| 225        | f494         | 395-1          | S      | _   | 1488         | 1760-51            | S       | 833        | 1858         | 792-1-2        | S       |
| 226        | f495         | 398-1          | S      | -   | 1489         | 1771-51            | S       | 834        | 1859         | 793-1          | S       |
| 227        | f496         | 399-1          | S      | -   | 1490         | 1772-51            | S       | 835        | 1860         | 794-2          | S       |
| 228        | f497         | 402-1          | S      | -   | 1491         | 1777-51            | S       | 836        | 1861         | 795-1          | S       |
| 229        | f498         | 404-1          | S      |     | 1492         | 1779-52            | R       | 837        | 1862         | 797-2          | S       |
| 230        | f499         | 408-1          | S      | -   | 1493         | 1811-51            | S       | 838        | 1863         | 798-1          | S       |
| 231        | f500         | 410-1          | S      |     | 1494         | 1815-51            | S       | 839        | 1864         | 801-1          | IR      |
| 232        | f501         | 413-1          | S      |     | 1495         | 1816-52            | S       | 840        | 1865         | 804-2          | S       |
| 233        | f502         | 415-1          | S      | -   | 1496         | 1819-51            | S       | 841        | 1866         | 805-1          | S       |
| 234        | f503         | 416-1          | S      |     | 1497         | 1820-51            | S       | 842        | 1867         | 806-1          | S       |
| 235        | f504         | 420-1          | S      | 539 | 1498         | 1821-52            | IR      | 843        | 1868         | 807-1          | S       |
| 236        | f505         | 422-2          | S      | 540 | 1499         | 1825-51            | S       | 844        | 1869         | 807-2          | S       |
| 237        | f506         | 423-2          | S      | 541 | 1500         | 1828-51            | S       | 845        | 1870         | 810-1          | S       |
| 238        | f507         | 424-2          | IR     | 542 | 1501         | 1832-51            | S       | 846        | 1871         | 810-2          | S       |
| 239        | f508         | 425-1          | S      | 543 | 1502         | 1834-51            | S       | 847        | 1872         | 811-1          | S       |
| 240        | f509         | 426-1          | S      | #   | 1503         | 1835-51            | S       | 848        | 1873         | 815-1          | S       |
| 241        | f510         | 433-2          | S      | 545 | 1504         | 1836-51            | S       | 849        | 1874         | 816-2          | S       |
| 242        | f511         | 434-1          | S      | #   | 1505         | 1839-51            | S       | 850        | 1875         | 818-1          | S       |
| 243        | f512         | 437-2          | S      |     | 1506         | 1844-51            | S       | 851        | 1876         | 824-1          | S       |
| 244        | f513         | 444-1          | S      | _   | 1507         | 1852-52            | S       | 852        | 1877         | 828-2          | S       |
| 245        | f514         | 445-1          | S      |     | 1508         | 1853-51            | S       | 853        | 1878         | 845-2          | S       |
| 246        | f515         | 446-1          | S      |     | 1509         | 545-51             | S       | 854        | 1879         | 466-3          | S       |
| 247        | f516         | 448-1          | R      | +   | 1510         | 545-52             | S       | 855        | 1880         | 34-2           | S       |
| 248        | f517         | 451-2          | S      | 552 |              | 573-51             | S       | 856        | 1881         | 36-2           | R       |
| 249        | f518         | 452-1          | IR     | -   | 1512         | 573-52             | S       | 857        | 1882         | 37-1           | S       |
| 250        | f519         | 457-1          | S      |     | 1513         | 552-2              | S       | 858        | 1883         | 38-2           | S       |
| 251        | f520         | 458-1          | S      |     | 1514         | 553-2              | S       | 859        | 1884         | 39-1           | R       |
| 252        | f521         | 459-2          | S      | -   | 1515         | 554-2              | S       | 860        | 1885         | 40-1           | R       |
| 253        | f522         | 462-1          | S      |     | 1516         | 555-2              | S       | 861        | 1886         | 1 x 2          | S       |
| 254        | f523         | 465-1<br>466-1 | S      |     | 1517         | 556-1<br>557-1     | IR      | 862        | 1887         | 30<br>22       | S       |
| 255        | f524         |                | S<br>S |     | 1518         | 557-1<br>558-2     | S<br>S  | 863        | 1888         |                | S<br>S  |
| 256<br>257 | f525<br>f526 | 469-1<br>470-1 | S      |     | 1519<br>1520 |                    |         | 864<br>865 | 1889<br>1890 | 23<br>24       | S       |
| 258        | f527         | 470-1<br>475-1 | S      |     | 1520<br>1521 | 559-1<br>546-1     | IR<br>S | 866        | 1890         | 24             | R       |
| 259        | f528         | 475-1<br>477-1 | S      |     | 1521<br>1522 | 546-1              | IR      | 867        | 1891         | 26             | S       |
| 260        | f529         | 477-1          | S      | 564 |              | 568-1              | S       | 868        | 1893         | 21             | R       |
| 261        | f530         | 478-1          | S      |     | 1523<br>1524 | 569-1              | IR      | 869        | 1893         | 3              | S       |
| 262        | f531         | 483-2          | R      |     | 1525         | 569-2              | IR      | 870        | 1895         | 37             | S       |
| 263        | f532         | 484-1          | R      | -   | 1526         | 509-2              | S       | 871        | 1896         | 38             | S       |
| 264        | f533         | 491-1          | S      | -   | 1527         | 6                  | S       | 872        | 1897         | 39             | R       |
| 265        | f534         | 491-1          | S      |     | 1528         | 7                  | S       | 873        | 1898         | 37 x 38        | S       |
| 266        | f535         | 496-2          | S      | -   | 1529         | 8                  | S       | 874        | 1899         | 38 x 37        | S       |
| 267        | f536         | 498-1          | R      | _   | 1530         | 9                  | S       | 875        | 1900         | 39 x 40        | R       |
| 268        | f537         | 505-2          | S      | -   | 1531         | 40 x 8             | IR      | 876        | 1901         | 40 x 39        | IR      |
| 269        | f538         | 508-1          | S      |     | 1532         | 24                 | S       | 877        | 1902         | 921-1          | R       |
| 270        | f539         | 512-1          | S      | 574 |              | 22                 | S       | 878        | 1903         | 921-2          | R       |
|            |              |                |        | 11  |              |                    | -       |            |              |                |         |

| 271 | f540 | 513-1   | S  | 575 1534 | 21 x 3  | R  | 879 | 1904 | 921-3 | R  |
|-----|------|---------|----|----------|---------|----|-----|------|-------|----|
| 272 | f541 | 516-1   | S  | 576 1601 | 1905-51 | S  | 880 | 1905 | 921-4 | R  |
| 273 | f542 | 517-1   | S  | 577 1602 | 1906-51 | S  | 881 | 1906 | 921-5 | IR |
| 274 | f543 | 518-2   | S  | 578 1603 | 1907-52 | R  | 882 | 1907 | 922-1 | IR |
| 275 | f544 | 522-1   | S  | 579 1604 | 1908-52 | S  | 883 | 1908 | 922-2 | R  |
| 276 | f545 | 525-1   | S  | 580 1605 | 1909-51 | S  | 884 | 1909 | 922-3 | R  |
| 277 | f546 | 526-2   | S  | 581 1606 | 1911-51 | IR | 885 | 1910 | 922-4 | R  |
| 278 | f547 | 529-1   | S  | 582 1607 | 1912-51 | IR | 886 | 1911 | 922-5 | R  |
| 279 | f548 | 531-1   | S  | 583 1608 | 1916-52 | S  | 887 | 1912 | 924-1 | IR |
| 280 | f549 | 532-1   | S  | 584 1609 | 1919-51 | R  | 888 | 1913 | 924-2 | IR |
| 281 | f550 | 533-1   | S  | 585 1610 | 1920-51 | S  | 889 | 1914 | 924-3 | IR |
| 282 | f551 | 535-1   | S  | 586 1611 | 1921-51 | S  | 890 | 1915 | 924-4 | S  |
| 283 | f552 | 536-1   | R  | 587 1612 | 1923-51 | IR | 891 | 1916 | 924-5 | S  |
| 284 | f553 | 541-2   | S  | 588 1613 | 1928-51 | IR | 892 | 1917 | =     | S  |
| 285 | f554 | 543-1   | S  | 589 1614 | 1929-51 | R  | 893 | 1918 | -     | S  |
| 286 | f555 | 551-1   | S  | 590 1615 | 1931-51 | S  | 894 | 1919 | -     | R  |
| 287 | f556 | 561-2   | S  | 591 1616 | 1934-51 | R  | 895 | 1920 | -     | R  |
| 288 | f557 | 563-1   | IR | 592 1617 | 1935-51 | R  | 896 | 1921 | -     | S  |
| 289 | f558 | T-5     | S  | 593 1618 | 1936-52 | R  | 897 | 1922 | -     | IR |
| 290 | f559 | T-8     | S  | 594 1619 | 1945-51 | R  | 898 | 1923 | -     | R  |
| 291 | f560 | A-2     | S  | 595 1620 | 1950-52 | S  | 899 | 1924 | -     | IR |
| 292 | f561 | A-4     | S  | 596 1621 | 1952-52 | S  | 900 | 1925 | İ     | S  |
| 293 | f562 | A-5     | S  | 597 1622 | 1953-51 | R  | 901 | 1926 | I     | S  |
| 294 | f563 | B-1     | S  | 598 1623 | 1963-52 | R  | 902 | 1927 | ı     | S  |
| 295 | f564 | B-8     | S  | 599 1624 | 1978-51 | S  | 903 | 1928 | -     | R  |
| 296 | f565 | A-7     | S  | 600 1625 | 1979-51 | IR | 904 | 1929 | -     | R  |
| 297 | f566 | -       | S  | 601 1626 | 1982-51 | S  | 905 | 1930 | -     | R  |
| 298 | f567 | -       | S  | 602 1627 | 1986-52 | R  | 906 | 1931 | -     | R  |
| 299 | f568 | ı       | S  | 603 1628 | 1988-52 | S  | 907 | 1932 | ı     | S  |
| 300 | f601 | 1407-51 | S  | 604 1629 | 1989-52 | S  | 908 | 1933 | -     | R  |
| 301 | f602 | 1409-51 | S  | 605 1630 | 1990-52 | S  | 909 | 1934 | _     | IR |
| 302 | f603 | 1475-51 | IR | 606 1631 | 1991-52 | S  | 910 | 1935 | -     | S  |
| 303 | f604 | 1476-51 | S  | 607 1632 | 1992-51 | IR | 911 | 1936 | -     | S  |
| 304 | f605 | 528-2   | R  | 608 1633 | 1994-51 | R  | 912 | 1937 | -     | S  |

3차년도

| No. | BN  | 교배No.    | 시험결과 | No. | BN   | 교배No. | 시험결과 | No. | BN   | 교배No.   | 시험결과 |
|-----|-----|----------|------|-----|------|-------|------|-----|------|---------|------|
| 1   | F1  | 3-7      | S    | 165 | F174 | 373-1 | IR   | 329 | F347 | 2129-51 | S    |
| 2   | F2  | 2        | IR   | 166 | F175 | 374-1 | IR   | 330 | F348 | 2136-51 | S    |
| 3   | F3  | SS       | IR   | 167 | F176 | 375-1 | R    | 331 | F349 | 2138-51 | S    |
| 4   | F4  | R18      | S    | 168 | F177 | 376-2 | R    | 332 | F350 | 2143-52 | R    |
| 5   | F5  | RO13-1-1 | R    | 169 | F178 | 377-1 | S    | 333 | F351 | 2144-52 | R    |
| 6   | F6  | RO13-1-2 | R    | 170 | F179 | 378-1 | S    | 334 | F352 | 2150-52 | IR   |
| 7   | F7  | 5        | R    | 171 | F180 | 379-1 | S    | 335 | F353 | 2152-52 | R    |
| 8   | F8  | 7        | R    | 172 | F181 | 380-1 | R    | 336 | F354 | 2170-51 | R    |
| 9   | F9  | FS       | R    | 173 | F182 | 381-1 | IR   | 337 | F355 | 2174-51 | IR   |
| 10  | F10 | FS       | IR   | 174 | F183 | 382-2 | R    | 338 | F356 | 2175-51 | R    |
| 11  | F11 | 24       | IR   | 175 | F184 | 383-2 | R    | 339 | F357 | 603-1   | IR   |
| 12  | F12 | 37       | R    | 176 | F185 | 384-2 | IR   | 340 | F358 | 605-1   | IR   |
| 13  | F13 | 38       | R    | 177 | F186 | 385-2 | IR   | 341 | F359 | 606-1   | S    |
| 14  | F14 | 39       | R    | 178 | F187 | 386-2 | R    | 342 | F360 | 607-2   | R    |
| 15  | F15 | 40       | R    | 179 | F188 | 388-1 | S    | 343 | F362 | 611-2   | S    |
| 16  | F16 | 473-1    | R    | 180 | F189 | 389-1 | S    | 344 | F363 | 612-1   | IR   |
| 17  | F17 | 375-2    | IR   | 181 | F190 | 390-2 | S    | 345 | F364 | 622-1   | R    |
| 18  | F18 | 354-1    | IR   | 182 | F191 | 392-2 | R    | 346 | F365 | 625-2   | R    |
| 19  | F19 | T-25     | R    | 183 | F192 | 394-2 | R    | 347 | F366 | 626-2   | R    |
| 20  | F21 | 421-1    | R    | 184 | F193 | 399-2 | S    | 348 | F367 | 627-2   | S    |
| 21  | F22 | T-12     | S    | 185 | F194 | 400-1 | IR   | 349 | F368 | 628-1   | IR   |
| 22  | F23 | T-3      | S    | 186 | F195 | 401-1 | IR   | 350 | F369 | 629-1   | IR   |

| 23 | F24 | 546-1   | s  | 187 | F196         | 402-2 | l R      | 351 | F370 | 630-1 | l R |
|----|-----|---------|----|-----|--------------|-------|----------|-----|------|-------|-----|
| 24 | F25 | 428-1   | S  | 188 | F197         | 403-1 | R        | 352 | F371 | 631-2 | R   |
| 25 | F27 | 198-1   | S  | 189 | F198         | 404-1 | S        | 353 | F372 | 646-2 | R   |
| 26 | F29 | 392-2   | S  | 190 | F199         | 405-1 | R        | 354 | F373 | 647-1 | S   |
| 27 | F31 | 845-2   | S  | 191 | F200         | 406-1 | IR       | 355 | F374 | 651-1 | S   |
| 28 | F35 | 658-1   | S  | 192 | F201         | 414-1 | IR       | 356 | F375 | 652-1 | IR  |
| 29 | F36 | 459-2   | S  | 193 | F202         | 415-1 | IR       | 357 | F376 | 656-2 | S   |
| 30 | F37 | 1406-51 | S  | 194 | F203         | 416-1 | IR       | 358 | F377 | 657-1 | S   |
| 31 | F38 | 1423-52 | IR | 195 | F204         | 417-1 | S        | 359 | F378 | 659-2 | IR  |
| 32 | F39 | 1430-51 | IR | 196 | F205         | 418-1 | S        | 360 | F379 | 660-1 | S   |
| 33 | F40 | 1432-51 | S  | 197 | F206         | 419-1 | R        | 361 | F380 | 667-2 | IR  |
| 34 | F41 | 1436-52 | IR | 198 | F207         | 420-2 | IR       | 362 | F381 | 668-1 | IR  |
| 35 | F42 | 1443-52 | S  | 199 | F208         | 421-1 | IR       | 363 | F382 | 669-1 | S   |
| 36 | F43 | 1454-52 | IR | 200 | F209         | 434-2 | S        | 364 | F383 | 670-2 | S   |
| 37 | F44 | 1461-51 | R  | 200 | F210         | 435-1 | S        | 365 | F384 | 671-2 | R   |
| 38 | F45 | 1461 51 | R  | 201 | F210         | 436-2 | IR       | 366 | F385 | 672-2 | IR  |
| 39 | F46 | 1465-51 | S  | 203 | F211         | 438-2 | IR       | 367 | F386 | 674-1 | R   |
| 40 | F47 | 1468-51 | IR | 203 | F212<br>F213 | 440-2 | IR IR    | 368 | F387 | 675-1 | S   |
| 41 | F48 | 1472-51 | S  | 204 | F213         | 443-2 | R        | 369 | F388 | 683-2 | S   |
| 42 | F49 | 1472-51 | R  | 203 | F214<br>F215 | 445-2 | R        | 370 | F389 | 684-2 | R   |
| 43 | F50 | 1492-52 | IR | 200 | F213         | 445-2 | S        | 370 | F390 | 686-2 | S   |
|    |     |         |    |     |              | 453-2 |          |     |      | -     |     |
| 44 | F51 | 1496-52 | R  | 208 | F217         |       | S        | 372 | F391 | 687-1 | S   |
| 45 | F52 | 1498-51 | R  | 209 | F218         | 455-1 | S        | 373 | F392 | 688-2 |     |
| 46 | F53 | 1506-51 | R  | 210 | F219         | 456-2 | R        | 374 | F393 | 692-2 | R   |
| 47 | F54 | 1542-51 | R  | 211 | F220         | 457-1 | IR       | 375 | F394 | 693-1 | S   |
| 48 | F55 | 1547-52 | R  | 212 | F221         | 461-1 | R        | 376 | F395 | 696-1 | IR  |
| 49 | F56 | 1556-52 | S  | 213 | F222         | 462-1 | R        | 377 | F397 | 700-1 | R   |
| 50 | F57 | 1564-51 | R  | 214 | F223         | 465-1 | R        | 378 | F398 | 702-2 | R   |
| 51 | F58 | 1566-52 | S  | 215 | F224         | 466-1 | IR<br>ID | 379 | F399 | 703-2 | S   |
| 52 | F59 | 1567-51 | R  | 216 | F225         | 469-1 | IR       | 380 | F400 | 708-1 | S   |
| 53 | F60 | 1568-52 | S  | 217 | F226         | 470-1 | R        | 381 | F401 | 709-1 | S   |
| 54 | F61 | 1572-52 | R  | 218 | F227         | 473-1 | S        | 382 | F402 | 710-1 | S   |
| 55 | F62 | 1616-52 | IR | 219 | F228         | 474-1 | R        | 383 | F403 | 711-1 | IR  |
| 56 | F63 | 1623-52 | S  | 220 | F229         | 476-1 | S        | 384 | F404 | 712-1 | S   |
| 57 | F64 | 1626-51 | S  | 221 | F230         | 479-2 | R        | 385 | F405 | 714-2 | S   |
| 58 | F65 | 1628-52 | R  | 222 | F231         | 480-1 | R        | 386 | F406 | 715-1 | S   |
| 59 | F66 | 1634-52 | S  | 223 | F232         | 481-2 | R        | 387 | F407 | 717-2 | IR  |
| 60 | F67 | 1636-52 | R  | 224 | F233         | 482-1 | R        | 388 | F408 | 721-2 | S   |
| 61 | F68 | 1638-52 | S  | 225 | F234         | 483-1 | IR       | 389 | F409 | 722-1 | R   |
| 62 | F69 | 1640-52 | S  | 226 | F235         | 484-1 | IR       | 390 | F410 | 724-1 | IR  |
| 63 | F70 | 1643-52 | S  | 227 | F236         | 485-1 | R        | 391 | F411 | 725-1 | R   |
| 64 | F71 | 1645-52 | S  | 228 | F237         | 486-1 | R        | 392 | F412 | 726-1 | S   |
| 65 | F72 | 1649-51 | R  | 229 | F238         | 487-1 | R        | 393 | F413 | 727-1 | R   |
| 66 | F73 | 1649-53 | IR | 230 | F239         | 488-2 | R        | 394 | F414 | 728-1 | S   |
| 67 | F74 | 1650-52 | S  | 231 | F240         | 489-1 | S        | 395 | F415 | 730-1 | S   |
| 68 | F75 | 1654-51 | IR | 232 | F241         | 490-2 | R        | 396 | F416 | 733-1 | R   |
| 69 | F76 | 1655-51 | S  | 233 | F242         | 491-1 | IR       | 397 | F417 | 735-1 | IR  |
| 70 | F77 | 1658-51 | R  | 234 | F243         | 493-1 | R        | 398 | F418 | 737-1 | S   |
| 71 | F78 | 1660-52 | S  | 235 | F244         | 494-2 | R        | 399 | F419 | 743-1 | R   |
| 72 | F79 | 1661-51 | IR | 236 | F245         | 495-2 | IR       | 400 | F420 | 746-1 | IR  |
| 73 | F80 | 1662-51 | R  | 237 | F246         | 496-2 | IR       | 401 | F421 | 754-1 | R   |

| 74  | F81        | 1663-51 | S  | 238        | F247         | 497-1   | $ $ $_{ m IR}$ | 402 | F422 | 756-1   | l R |
|-----|------------|---------|----|------------|--------------|---------|----------------|-----|------|---------|-----|
| 75  | F82        | 1664-52 | S  | 239        | F248         | 498-2   | S              | 403 | F423 | 763-1   | R   |
| 76  | F83        | 1675-51 | R  | 240        | F249         | 500-2   | R              | 404 | F424 | 771-1   | IR  |
| 77  | F84        | 1686-51 | R  | 241        | F250         | 503-2   | R              | 405 | F426 | 785-1-1 | S   |
| 78  | F85        | 1688-51 | R  | 242        | F251         | 506-1   | R              | 406 | F428 | 789-1   | IR  |
| 79  | F86        | 1691-51 | S  | 243        | F252         | 507-2   | IR             | 407 | F429 | 789-1-1 | S   |
| 80  | F87        | 1701-52 | S  | 243        | F253         | 509-2   | S              | 407 | F430 | 791-1   | S   |
| 81  | F88        | 1701 52 | S  | 245        | F253         | 510-1   | S              | 409 | F431 | 791 1   | IR  |
| 82  | F89        | 1707-51 | R  | 246        | F255         | 510-2   | S              | 410 | F432 | 792-1-1 | S   |
| 83  | F90        | 1730-51 | IR | 247        | F256         | 510-2   | R              | 411 | F433 | 792-1-2 | S   |
| 84  | F91        | 1730-51 | R  | 247        | F257         | 512-2   | S              | 411 | F435 | 792-1-2 | S   |
| 85  | F91<br>F92 | 1731-51 | S  | -          | F257<br>F258 | 513-2   | IR             |     | F436 | 794-2   | S   |
|     |            |         |    | 249<br>250 |              |         |                | 413 |      |         | R   |
| 86  | F93        | 1753-51 | IR | <b> </b>   | F259         | 516-2   | R              | 414 | F437 | 797-2   | R   |
| 87  | F94        | 1759-52 | S  | 251        | F260         | 517-2   | IR             | 415 | F438 | 798-1   |     |
| 88  | F95        | 1760-51 | S  | 252        | F261         | 518-2   | R              | 416 | F439 | 801-1   | IR  |
| 89  | F96        | 1771-51 | S  | 253        | F262         | 519-1   | R              | 417 | F440 | 804-2   | R   |
| 90  | F97        | 1772-51 | IR | 254        | F263         | 521-2   | S              | 418 | F441 | 805-1   | IR  |
| 91  | F98        | 1779-52 | R  | 255        | F264         | 522-2   | S              | 419 | F442 | 806-1   | R   |
| 92  | F99        | 1811-51 | S  | 256        | F265         | 523-1   | IR<br>IR       | 420 | F443 | 807-2   | R   |
| 93  | F100       | 1816-52 | R  | 257        | F266         | 525-1   | IR             | 421 | F444 | 810-1   | S   |
| 94  | F101       | 1819-51 | S  | 258        | F267         | 526-1   | S              | 422 | F445 | 810-2   | S   |
| 95  | F102       | 1820-51 | R  | 259        | F268         | 528-2   | R              | 423 | F446 | 811-1   | IR  |
| 96  | F103       | 1821-52 | IR | 260        | F269         | 530-1   | S              | 424 | F447 | 815-1   | S   |
| 97  | F104       | 1834-51 | IR | 261        | F270         | 531-2   | R              | 425 | F448 | 816-2   | S   |
| 98  | F105       | 1836-51 | S  | 262        | F271         | 532-2   | R              | 426 | F449 | 818-1   | R   |
| 99  | F106       | 1839-51 | R  | 263        | F272         | 535-1   | R              | 427 | F450 | 824-1   | S   |
| 100 | F107       | 1844-51 | R  | 264        | F273         | 536-1   | R              | 428 | F451 | 828-2   | IR  |
| 101 | F108       | 1852-52 | S  | 265        | F274         | 537-1   | IR             | 429 | F452 | 845-2   | S   |
| 102 | F109       | 573-51  | S  | 266        | F275         | 538-2   | IR             | 430 | F453 | 466-3   | S   |
| 103 | F110       | 552-2   | IR | 267        | F276         | 539-1   | R              | 431 | F454 | 34-2    | S   |
| 104 | F111       | 553-2   | R  | 268        | F277         | 540-2   | IR             | 432 | F455 | 36-2    | R   |
| 105 | F112       | 554-2   | S  | 269        | F278         | 541-2   | S              | 433 | F456 | 37-1    | S   |
| 106 | F113       | 555-2   | S  | 270        | F279         | 542-2   | IR             | 434 | F457 | 38-2    | S   |
| 107 | F114       | 564-1   | S  | 271        | F280         | 543-2   | IR             | 435 | F458 | 39-1    | S   |
| 108 | F115       | 568-1   | S  | 272        | F281         | 544-1   | S              | 436 | F459 | 40-1    | R   |
| 109 | F116       | 569-2   | R  | 273        | F282         | 545-1   | R              | 437 | F460 | 1 x 2   | S   |
| 110 | F117       | 5       | R  | 274        | F283         | 547-1   | R              | 438 | F461 | 30      | R   |
| 111 | F118       | 6       | R  | 275        | F284         | 548-1   | R              | 439 | F462 | 22      | S   |
| 112 | F119       | 7       | S  | 276        | F285         | 549-2   | S              | 440 | F464 | 24      | R   |
| 113 | F120       | 8       | IR | 277        | F286         | 550-1   | IR             | 441 | F465 | 26      | IR  |
| 114 | F121       | 9       | S  | 278        | F287         | 552-2   | R              | 442 | F466 | 27      | IR  |
| 115 | F122       | 24      | IR | 279        | F288         | 555-1   | S              | 443 | F467 | 21      | R   |
| 116 | F123       | 22      | S  | 280        | F289         | 555-2   | S              | 444 | F468 | 3       | IR  |
| 117 | F124       | 21      | R  | 281        | F291         | 557-1   | R              | 445 | F469 | 37      | S   |
| 118 | F125       | 301-1   | S  | 282        | F292         | 564-1   | S              | 446 | F470 | 38      | S   |
| 119 | F126       | 302-1   | IR | 283        | F293         | 564-2   | S              | 447 | F471 | 39      | R   |
| 120 | F127       | 305-2   | S  | 284        | F294         | 567-1   | IR             | 448 | F472 | 37 x 38 | S   |
| 121 | F128       | 306-1   | S  | 285        | F295         | 568-1   | S              | 449 | F473 | 38 x 37 | S   |
| 122 | F129       | 307-2   | R  | 286        | F296         | 569-1   | R              | 450 | F474 | 39 x 40 | R   |
| 123 | F130       | 308-1   | R  | 287        | F297         | 1908-52 | R              | 451 | F475 | 40 x 39 | R   |
| 124 | F131       | 309-1   | R  | 288        | F298         | 1909-51 | S              | 452 | F477 | T-15    | S   |

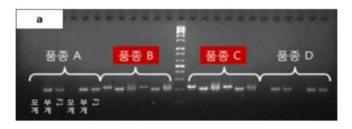
| 125 | F132     | 311-1 | R  | 289 | F299         | 1911-51         | R  | 453 | F480         | T-12  | R  |
|-----|----------|-------|----|-----|--------------|-----------------|----|-----|--------------|-------|----|
| 126 | F133     | 312-1 | S  | 290 | F300         | 1912-51         | R  | 454 | F481         | T-13  | S  |
| 127 | F134     | 313-2 | R  | 291 | F301         | 1919-51         | S  | 455 | F483         | T-6   | R  |
| 128 | F135     | 314-1 | IR | 292 | F302         | 1921-51         | IR | 456 | F484         | T-12  | R  |
| 129 | F136     | 315-2 | R  | 293 | F303         | 1923-51         | S  | 457 | F485         | T-13  | S  |
| 130 | F137     | 319-2 | S  | 294 | F304         | 1928-51         | R  | 458 | F486         | -     | S  |
| 131 | F138     | 320-2 | S  | 295 | F305         | 1929-51         | R  | 459 | F493         | 921-1 | IR |
| 132 | F139     | 321-1 | IR | 296 | F306         | 1931-51         | IR | 460 | F494         | 921-2 | IR |
| 133 | F140     | 325-2 | S  | 297 | F307         | 1936-52         | S  | 461 | F495         | 921-3 | IR |
| 134 | F141     | 327-2 | IR | 298 | F308         | 1950-52         | S  | 462 | F496         | 921-4 | R  |
| 135 | F142     | 328-1 | R  | 299 | F310         | 1953-51         | R  | 463 | F497         | 921-5 | S  |
| 136 | F143     | 329-1 | R  | 300 | F311         | 1963-52         | R  | 464 | F498         | 922-1 | S  |
| 137 | F144     | 330-1 | R  | 301 | F312         | 1979-51         | S  | 465 | F499         | 922-2 | S  |
| 138 | F146     | 333-1 | IR | 302 | F313         | 1982-51         | S  | 466 | F500         | 922-3 | IR |
| 139 | F147     | 334-1 | S  | 303 | F314         | 1986-52         | S  | 467 | F501         | 922-4 | S  |
| 140 | F148     | 335-1 | R  | 304 | F315         | 1988-52         | S  | 468 | F502         | 922-5 | S  |
| 141 | F149     | 340-1 | IR | 305 | F317         | 1991-52         | S  | 469 | F503         | 924-1 | S  |
| 142 | F150     | 342-1 | IR | 306 | F318         | 1992-51         | IR | 470 | F504         | 924-2 | S  |
| 143 | F151     | 343-1 | R  | 307 | F319         | 1994-51         | S  | 471 | F505         | 924-3 | S  |
| 144 | F152     | 344-1 | S  | 308 | F320         | 2010-51         | S  | 472 | F506         | 924-4 | S  |
| 145 | F153     | 345-1 | R  | 309 | F321         | 2024-51         | S  | 473 | F507         | 924-5 | S  |
| 146 | F154     | 346-1 | S  | 310 | F322         | 2027-51         | R  | 474 | F508         | _     | IR |
| 147 | F155     | 347-1 | S  | 311 | F323         | 2030-52         | S  | 475 | F509         | _     | S  |
| 148 | F156     | 351-2 | R  | 312 | F326         | 2037-51         | R  | 476 | F510         | =.    | R  |
| 149 | F157     | 352-1 | R  | 313 | F327         | 2050-52         | IR | 477 | F512         | _     | S  |
| 150 | F158     | 353-1 | IR | 314 | F328         | 2062-51         | S  | 478 | F513         | _     | S  |
| 151 | F159     | 354-1 | R  | 315 | F330         | 2067-51         | IR | 479 | F514         | _     | IR |
| 152 | F160     | 355-1 | S  | 316 | F332         | 2073-51         | IR | 480 | F516         | _     | S  |
| 153 | F161     | 357-1 | S  | 317 | F333         | 2074-51         | S  | 481 | F517         | _     | S  |
| 154 | F162     | 358-1 | R  | 318 | F335         | 2080-51         | IR | 482 | F518         | _     | S  |
| 155 | F163     | 359-2 | S  | 319 | F336         | 2085-51         | R  | 483 | F519         | _     | IR |
| 156 | F164     | 360-2 | S  | 320 | F337         | 2087-51         | S  | 484 | F520         | _     | S  |
| 157 | F165     | 361-1 | S  | 321 | F338         | 2097-51         | IR | 485 | F521         | -     | S  |
| 158 | F166     | 362-2 | R  | 322 | F339         | 2098-51         | IR | 486 | F522         | -     | IR |
| 159 | F167     | 363-1 | R  | 323 | F340         | 2100-51         | IR | 487 | F523         | =     | IR |
| 160 | F168     | 363-2 | IR | 324 | F342         | 2111-51         | IR | 488 | F524         | -     | IR |
| 161 | F169     | 364-2 | S  | 325 | F343         | 2112-52         | S  | 489 | F525         | _     | IR |
| 162 | F171     | 367-1 | IR | 326 | F344         | 2114-51         | R  | 490 | F526         | -     | S  |
| 163 | F172     | 368-2 | R  | 327 | F345         | 2115-51         | IR | 491 | F527         | -     | S  |
| 164 | F173     | 369-2 | S  | 328 | F346         | 2120-51         | IR | 492 | F528         | _     | S  |
| '   |          |       | "  | ,   | 3차년          | 도 16년 봄         |    |     |              |       |    |
| No. | BN       | 교배No. | 시험 | No. | BN           | 교배No.           | 시험 | No. | BN           | 교배No. | 시험 |
|     |          |       | 결과 |     |              |                 | 결과 |     |              |       | 결과 |
| 1   | F1       | 1 x 2 | S  | 200 | F200         | 1751-51         | S  | 399 | F399         | 430-1 | S  |
| 3   | F2<br>F3 | SS SS | S  | 201 | F201<br>F202 | 1810-51<br>12-2 | S  | 400 | F400<br>F401 | 434-1 | S  |
| 4   | F4       | SS    | S  | 202 | F202         | 13-2            | S  | 401 | F401         | 437-2 | IR |
| 5   | F5       | SS    | S  | 204 | F204         | 14-2            | S  | 403 | F403         | 439-1 | IR |
| 6   | F6       | 14. 7 | S  | 205 | F205         | 21-2            | IR | 404 | F404         | 445-1 | S  |
| 7   | F7       | 8     | S  | 206 | F206         | 34-2            | S  | 405 | F405         | 446-2 | IR |
| 8   | F8       | FS    | S  | 207 | F207         | 42-2            | S  | 406 | F406         | 447-1 | S  |
| 9   | F9       | 7     | S  | 208 | F208         | 396-2           | S  | 407 | F407         | 457-1 | IR |

| 10 | F10 | 14. 16 x 17              | S  | 209 | F209 | 397       | IR | 408 | F408   | 463-2 | S  |
|----|-----|--------------------------|----|-----|------|-----------|----|-----|--------|-------|----|
| 11 | F10 | 14. 16 x 17<br>804 x 796 | S  | 210 | F210 | 565-1     | S  | 409 | F408   | 464-1 | S  |
| 12 | F12 | 42                       | S  | 211 | F210 | 611-1     | S  | 410 | F410   | 465-1 | S  |
| 13 | F13 | 1612-52                  | S  | 212 | F211 | 618-2     | S  | 411 | F410   | 466-1 | S  |
| 14 | F13 | 46                       | S  | 213 | F213 | 623-1     | S  | 411 | F411   | 468-1 | S  |
| 15 | F15 | 14. 4                    | IR | 214 | F213 | 658-2     | S  | 413 | F413   | 469-1 | S  |
| 16 | F16 | 629-1                    | S  | 215 | F215 | 677-1     | S  | 414 | F414   | 471-1 | S  |
| 17 | F17 | 668-1                    | IR | 216 | F216 | 679-2     | S  | 415 | F415   | 472-1 | S  |
| 18 | F18 | 39                       | S  | 217 | F217 | 680-2     | S  | 416 | F416   | 476-2 | S  |
| 19 | F19 | 1622-52                  | S  | 218 | F218 | 681-1     | IR | 417 | F417   | 477-2 | IR |
| 20 | F20 | 14. 23                   | S  | 219 | F219 | 718-1     | S  | 418 | F418   | 479-2 | S  |
| 21 | F21 | 14. 40                   | IR | 220 | F220 | 720-2     | S  | 419 | F419   | 483-1 | S  |
| 22 | F22 | 1630-52                  | S  | 221 | F221 | 732-1     | S  | 420 | F420   | 484-1 | S  |
| 23 | F23 | 444-2                    | S  | 222 | F222 | 750-1     | S  | 421 | F421   | 485-2 | S  |
| 24 | F24 | 32-1                     | S  | 223 | F223 | 768-2     | S  | 422 | F422   | 486-2 | S  |
| 25 | F25 | 615-1                    | IR | 224 | F224 | 770-1     | S  | 423 | F423   | 487-2 | S  |
| 26 | F26 | 491-1                    | S  | 225 | F225 | 787-2     | S  | 424 | F424   | 489-2 | S  |
| 07 | D07 | 10 00                    | C  | 000 | D006 | 14.       | C  | 405 | T) 405 | 401 0 | ID |
| 27 | F27 | 13. 26                   | S  | 226 | F226 | 1779-52   | S  | 425 | F425   | 491-2 | IR |
|    |     |                          |    |     |      | 14.       |    |     |        |       |    |
| 28 | F28 | 14. 24                   | S  | 227 | F227 | 2115-51   | S  | 426 | F426   | 492-1 | S  |
| 29 | F29 | 26                       | S  | 228 | F228 | 14. 23-1  | S  | 427 | F427   | 496-1 | IR |
| 30 | F30 | 47                       | S  | 229 | F229 | 14. 28-1  | S  | 428 | F428   | 499-2 | IR |
| 31 | F31 | 31                       | IR | 230 | F230 | 14. 617-1 | S  | 429 | F429   | 502-1 | S  |
| 32 | F32 | 1878-52                  | S  | 231 | F231 | 14. 645-2 | S  | 430 | F430   | 503-1 | IR |
| 33 | F33 | 1070 02                  | S  | 232 | F232 | 14. 705-2 | S  | 431 | F431   | 506-1 | IR |
| 34 | F34 |                          | S  | 233 | F233 | 11        | S  | 432 | F432   | 507-1 | S  |
| 35 | F35 | 23-2                     | S  | 234 | F234 | 25        | S  | 433 | F433   | 509-1 | S  |
| 36 | F36 | FS                       | S  | 235 | F235 | 26        | S  | 434 | F434   | 510-1 | S  |
| 37 | F37 | FS                       | S  | 236 | F236 | 28        | S  | 435 | F435   | 511-2 | S  |
| 38 | F38 | 928-3 x<br>930-2         | S  | 237 | F237 | 29        | S  | 436 | F436   | 513-2 | S  |
| 39 | F39 | 930-1                    | S  | 238 | F238 | 32        | S  | 437 | F437   | 514-1 | S  |
| 40 | F40 | 86-2 x 33                | S  | 239 | F239 | 1401-51   | S  | 438 | F438   | 525-1 | S  |
| 41 | F41 | 33                       | S  | 240 | F240 | 1411-52   | S  | 439 | F439   | 531-2 | S  |
| 42 | F42 | 888-1 x<br>889-1         | S  | 241 | F241 | 1416-52   | S  | 440 | F440   | 534-2 | S  |
| 43 | F43 | 889-1                    | S  | 242 | F242 | 1421-51   | S  | 441 | F441   | 536-1 | IR |
| 44 | F44 | 923-2 x<br>924-1         | S  | 243 | F243 | 1424-51   | S  | 442 | F442   | 537-2 | IR |
| 45 | F45 | 924-1                    | S  | 244 | F244 | 1425-52   | S  | 443 | F443   | 539-1 | S  |
| 46 | F46 | 920-1 x<br>922-1         | IR | 245 | F245 | 1426-51   | S  | 444 | F444   | 542-2 | S  |
| 47 | F47 | 922-1                    | IR | 246 | F246 | 1428-51   | S  | 445 | F445   | 546-1 | S  |
| 48 | F48 | 84-1 x 628               | S  | 247 | F247 | 1431-52   | S  | 446 | F446   | 549-1 | S  |
| 49 | F49 | 628-1                    | S  | 248 | F248 | 1432-52   | S  | 447 | F447   | 550-2 | IR |
| 50 | F50 | 917-3 x<br>919-2         | S  | 249 | F249 | 1436-52   | S  | 448 | F448   | 551-1 | S  |
| 51 | F51 | 919-2                    | S  | 250 | F250 | 1438-52   | S  | 449 | F449   | 555-1 | S  |
| 52 | F52 | 940-3 x<br>941-1         | S  | 251 | F251 | 1439-51   | S  | 450 | F450   | 556-1 | IR |
| 53 | F53 | 941-1                    | S  | 252 | F252 | 1443-52   | S  | 451 | F451   | 562-1 | S  |
| 54 | F54 | 942-1 x<br>943-1         | S  | 253 | F253 | 1444-51   | S  | 452 | F452   | 563-2 | S  |
| 55 | F55 | 943-1                    | S  | 254 | F254 | 1446-52   | S  | 453 | F453   | 606-1 | IR |
| 56 | F56 | 869-1 x<br>870-1         | S  | 255 | F255 | 1452-51   | S  | 454 | F454   | 607-1 | S  |
| 57 | F57 | 870-1                    | S  | 256 | F256 | 1453-52   | S  | 455 | F455   | 626-2 | S  |
| 58 | F58 | 885-1 x<br>886-1         | S  | 257 | F257 | 1455-52   | S  | 456 | F456   | 631-1 | IR |

| EO  | DEO  | 879-1 x          | C  | 950 | Pole | 1.457 50 | C . | 1E77 | D4E7 | GDD 1 |    |
|-----|------|------------------|----|-----|------|----------|-----|------|------|-------|----|
| 59  | F59  | 886-1<br>883-1 x | S  | 258 | F258 | 1457-52  | S   | 457  | F457 | 633-1 | S  |
| 60  | F60  | 886-1            | S  | 259 | F259 | 1459-52  | S   | 458  | F458 | 634-1 | S  |
| 61  | F61  | 884-1 x<br>886-1 | S  | 260 | F260 | 1461-51  | S   | 459  | F459 | 635-1 | S  |
| 62  | F62  | 881-1 x<br>886-1 | S  | 261 | F261 | 1462-52  | S   | 460  | F460 | 636-1 | IR |
| 63  | F63  | 886-1            | S  | 262 | F262 | 1463-51  | IR  | 461  | F461 | 637-1 | IR |
| 64  | F64  | 94-1 x 95        | IR | 263 | F263 | 1469-52  | S   | 462  | F462 | 639-1 | IR |
| 65  | F65  | 95-1             | IR | 264 | F264 | 1471-52  | S   | 463  | F463 | 642-1 | IR |
| 66  | F66  | 925-2 x<br>927-1 | S  | 265 | F265 | 1472-52  | S   | 464  | F464 | 643-1 | IR |
| 67  | F67  | 927-1            | S  | 266 | F266 | 1478-51  | S   | 465  | F465 | 644-1 | IR |
| 68  | F68  | 55-2 x 56        | S  | 267 | F267 | 1480-52  | S   | 466  | F466 | 652-2 | S  |
| 69  | F69  | 56-1             | S  | 268 | F268 | 1481-52  | S   | 467  | F467 | 654-1 | S  |
| 70  | F70  | 874-1 x<br>876-1 | S  | 269 | F269 | 1482-51  | S   | 468  | F468 | 656-2 | S  |
| 71  | F71  | 876-1            | S  | 270 | F270 | 1486-51  | S   | 469  | F469 | 657-1 | IR |
| 72  | F72  | 871-1 x<br>873-1 | S  | 271 | F271 | 1489-52  | S   | 470  | F470 | 659-1 | S  |
| 73  | F73  | 873-2            | S  | 272 | F272 | 1490-51  | S   | 471  | F471 | 672-2 | S  |
| 74  | F74  | 93-2 x 796       | S  | 273 | F273 | 1498-51  | S   | 472  | F472 | 673-1 | S  |
| 75  | F75  | 934-1 x<br>936-1 | S  | 274 | F274 | 1506-51  | S   | 473  | F473 | 682-1 | S  |
| 76  | F76  | 936-1            | S  | 275 | F275 | 1511-51  | S   | 474  | F474 | 691-2 | S  |
| 77  | F77  | 72-1 x 73        | S  | 276 | F276 | 1514-51  | S   | 475  | F475 | 692-1 | S  |
| 78  | F78  | 73-1             | S  | 277 | F277 | 1525-51  | IR  | 476  | F476 | 693-2 | S  |
| 79  | F79  | 911-3 x<br>913-2 | S  | 278 | F278 | 1604-51  | S   | 477  | F477 | 694-1 | S  |
| 80  | F80  | 912-3 x<br>913-1 | S  | 279 | F279 | 1605-52  | S   | 478  | F478 | 695-2 | IR |
| 81  | F81  | 914-2 x<br>913-2 | S  | 280 | F280 | 1609-51  | S   | 479  | F479 | 696-2 | S  |
| 82  | F82  | 913-2            | S  | 281 | F281 | 1611-52  | IR  | 480  | F480 | 698-2 | S  |
| 83  | F83  | 944-2 x<br>945-2 | S  | 282 | F282 | 1623-51  | IR  | 481  | F481 | 700-1 | IR |
| 84  | F84  | 945-1            | IR | 283 | F283 | 1635-51  | S   | 482  | F482 | 702-1 | S  |
| 85  | F85  | 91-1 x 92        | S  | 284 | F284 | 1641-51  | S   | 483  | F483 | 703-2 | S  |
| 86  | F86  | 92-1             | S  | 285 | F285 | 1644-51  | S   | 484  | F484 | 704-2 | S  |
| 87  | F87  | 931-2 x<br>933-1 | S  | 286 | F286 | 1645-51  | S   | 485  | F485 | 705-1 | S  |
| 88  | F88  | 932-2 x<br>933-1 | S  | 287 | F287 | 1649-51  | IR  | 486  | F486 | 710-1 | S  |
| 89  | F89  | 933-1            | IR | 288 | F288 | 1657-51  | S   | 487  | F487 | 711-2 | S  |
| 90  | F90  | 891-1 x<br>892-1 | S  | 289 | F289 | 1658-52  | S   | 488  | F488 | 716-2 | S  |
| 91  | F91  | 892-1            | S  | 290 | F290 | 1659-51  | S   | 489  | F489 | 722-2 | S  |
| 92  | F92  | 902-1 x<br>904-1 | S  | 291 | F291 | 1660-52  | S   | 490  | F490 | 723-1 | S  |
| 93  | F93  | 904-1            | S  | 292 | F292 | 1661-52  | S   | 491  | F491 | 726-1 | IR |
| 94  | F94  | 893-1 x<br>895-2 | S  | 293 | F293 | 1664-51  | S   | 492  | F492 | 727-1 | S  |
| 95  | F95  | 895-2            | S  | 294 | F294 | 1666-52  | S   | 493  | F493 | 730-1 | S  |
| 96  | F96  | 65-1 x 66        | S  | 295 | F295 | 1670-51  | IR  | 494  | F494 | 731-1 | S  |
| 97  | F97  | 66-1             | S  | 296 | F296 | 1683-51  | IR  | 495  | F495 | 735-1 | IR |
| 98  | F98  | 896-1 x<br>898-1 | S  | 297 | F297 | 1684-51  | IR  | 496  | F496 | 736-1 | IR |
| 99  | F99  | 897-1 x<br>898-1 | S  | 298 | F298 | 1686-51  | S   | 497  | F497 | 737-1 | S  |
| 100 | F100 | 898-1            | S  | 299 | F299 | 1707-51  | S   | 498  | F498 | 737-2 | IR |
| 101 | F101 | 899-1 x<br>901-1 | S  | 300 | F300 | 1712-52  | S   | 499  | F499 | 739-2 | S  |

|     |      |                      |    | 11  |      |         |    | 1   |      |                |    |
|-----|------|----------------------|----|-----|------|---------|----|-----|------|----------------|----|
| 102 | F102 | 900-1 x<br>901-1     | S  | 301 | F301 | 1758-51 | S  | 500 | F500 | 745-2          | IR |
| 103 | F103 | 901-1                | S  | 302 | F302 | 1766-51 | IR | 501 | F501 | 746-2          | S  |
| 104 | F104 | 69-1 x 70            | S  | 303 | F303 | 1768-51 | S  | 502 | F502 | 755-2          | IR |
| 105 | F105 | 70-1                 | IR | 304 | F304 | 1769-52 | S  | 503 | F503 | 757-1          | S  |
| 106 | F106 | 907-2 x<br>910-2     | S  | 305 | F305 | 1770-51 | IR | 504 | F504 | 759-1          | IR |
| 107 | F107 | 908-4 x<br>910-2     | S  | 306 | F306 | 1782-51 | S  | 505 | F505 | 780-1          | S  |
| 108 | F108 | 909-2 x<br>910-2     | IR | 307 | F307 | 1795-51 | IR | 506 | F506 | 785-1          | IR |
| 109 | F109 | 910-2                | S  | 308 | F308 | 1808-51 | S  | 507 | F507 | 786-2          | S  |
| 110 | F110 | 2099-52 x<br>2089-52 | S  | 309 | F309 | 1811-52 | S  | 508 | F508 | 794-1          | S  |
| 111 | F111 | 183-1 x 154          | S  | 310 | F310 | 1824-52 | S  | 509 | F509 | 795-1          | S  |
| 112 | F112 | 14. 10 x 11          | S  | 311 | F311 | 1829-51 | S  | 510 | F510 | 806-2          | S  |
| 113 | F113 | 14. 12 x 13          | S  | 312 | F312 | 1834-51 | S  | 511 | F511 | 14.<br>1772–51 | S  |
| 114 | F114 | 14. 14 x 15          | S  | 313 | F313 | 1839-52 | S  | 512 | F512 | 14.<br>1816-52 | IR |
| 115 | F115 | RP-519               | S  | 314 | F314 | 1854-52 | S  | 513 | F513 | 14.<br>2018-51 | S  |
| 116 | F116 | 38                   | S  | 315 | F315 | 1862-51 | S  | 514 | F514 | 14.<br>2027-51 | S  |
| 117 | F117 | 2062-52              | S  | 316 | F316 | 1863-51 | S  | 515 | F515 | 14.<br>2068-52 | S  |
| 118 | F118 | 2076                 | S  | 317 | F317 | 1872-53 | S  | 516 | F516 | 14.<br>2080-51 | IR |
| 119 | F119 | 2084-51              | S  | 318 | F318 | 1890-51 | S  | 517 | F517 | 14.<br>2096-52 | IR |
| 120 | F120 | 2091-51              | S  | 319 | F319 | 1902-51 | S  | 518 | F518 | 14.<br>2098-52 | S  |
| 121 | F121 | 2099-52              | S  | 320 | F320 | 7-1     | S  | 519 | F519 | 14.<br>2100-51 | S  |
| 122 | F122 | 2114-51              | S  | 321 | F321 | 22-1    | S  | 520 | F520 | 14.<br>2126-51 | S  |
| 123 | F123 | 2127-51              | S  | 322 | F322 | 23-1    | S  | 521 | F521 | 14.<br>2143-52 | S  |
| 124 | F124 | 2128-52              | S  | 323 | F323 | 24-1    | S  | 522 | F522 | 14.<br>2144-52 | IR |
| 125 | F125 | 2136-51              | S  | 324 | F324 | 25-1    | S  | 523 | F523 | 14.<br>2150-52 | IR |
| 126 | F126 | 2141-51              | S  | 325 | F325 | 26-1    | S  | 524 | F524 | 14.<br>2152-51 | IR |
| 127 | F127 | 2158-51              | S  | 326 | F326 | 27-3    | S  | 525 | F525 | 14.<br>2174-51 | S  |
| 128 | F128 | 2182-51              | S  | 327 | F327 | 28-1    | S  | 526 | F526 | 14. 21-3       | IR |
| 129 | F129 | 2251-51              | S  | 328 | F328 | 29-3    | S  | 527 | F527 | 14. 88-2       | S  |
| 130 | F130 | 2252-52              | S  | 329 | F329 | 30-1    | IR | 528 | F528 | 14. 308-2      | S  |
| 131 | F131 | 2253-51              | S  | 330 | F330 | 39-2    | S  | 529 | F529 | 14. 310-2      | S  |
| 132 | F132 | 2266-51              | S  | 331 | F331 | 46-1    | S  | 530 | F530 | 14. 312-1      | S  |
| 133 | F133 | 132-1                | S  | 332 | F332 | 47-3    | S  | 531 | F531 | 14. 314-1      | S  |
| 134 | F134 | 133-1                | S  | 333 | F333 | 52-1    | S  | 532 | F532 | 14. 315-2      | S  |
| 135 | F135 | 150-1                | S  | 334 | F334 | 57-2    | S  | 533 | F533 | 14. 417-1      | S  |
| 136 | F136 | 160-1                | IR | 335 | F335 | 62-1    | S  | 534 | F534 | 14. 418-1      | S  |
| 137 | F137 | 165-1                | S  | 336 | F336 | 302-2   | S  | 535 | F535 | 14. 420-1      | S  |
| 138 | F138 | 168-1                | S  | 337 | F337 | 304-2   | S  | 536 | F536 | 14. 433-1      | S  |

|     |              |                            |    | "      |              |       |    |            |              |           |    |
|-----|--------------|----------------------------|----|--------|--------------|-------|----|------------|--------------|-----------|----|
| 139 | F139         | 169-1                      | S  | 338    | F338         | 305-2 | S  | 537        | F537         | 14. 509-1 | S  |
| 140 | F140         | 175-1                      | S  | 339    | F339         | 308-1 | S  | 538        | F538         | 14. 529-1 | S  |
| 141 | F141         | 194-1                      | S  | 340    | F340         | 309-1 | S  | 539        | F539         | 14. 569-1 | IR |
| 142 | F142         | 208-1                      | S  | 341    | F341         | 310-2 | S  | 540        | F540         | 14. 605-1 | S  |
| 143 | F143         | 210-1                      | S  | 342    | F342         | 311-1 | S  | 541        | F541         | 14. 634-1 | S  |
| 144 | F144         | 213-2                      | S  | 343    | F343         | 313-1 | S  | 542        | F542         | 14. 635-1 | S  |
| 145 | F145         | 214-2                      | S  | 344    | F344         | 314-1 | S  | 543        | F543         | 14. 639-1 | S  |
| 146 | F146         | 14. 13 x 12                | S  | 345    | F345         | 315-1 | S  | 544        | F544         | 14. 644-1 | S  |
| 147 | F147         | 14. 17                     | S  | 346    | F346         | 316-1 | S  | 545        | F545         | 14. 659-2 | IR |
| 148 | F148         | 14. 33                     | S  | 347    | F347         | 319-1 | S  | 546        | F546         | 14. 662-1 | S  |
| 149 | F149         | 14. 2244-52                | S  | 348    | F348         | 320-1 | S  | 547        | F547         | 14. 668-1 | S  |
| 150 | F150         | 14. 2264-52                | S  | 349    | F349         | 322-1 | S  | 548        | F548         | 14. 671-2 | IR |
| 151 | F151         | 14. 2275-52                | S  | 350    | F350         | 323-1 | S  | 549        | F549         | 14. 673-2 | IR |
| 152 | F152         | 14. 2279-51                | S  | 351    | F351         | 325-1 | S  | 550        | F550         | 14. 685-1 | S  |
| 153 | F153         | 14. 2280-52                | S  | 352    | F352         | 326-2 | S  | 551        | F551         | 14. 689-1 | S  |
| 154 | F154         | 14. 2281-52                | S  | 353    | F353         | 327-1 | S  | 552        | F552         | 14. 696-1 | IR |
| 155 | F155         | 14. 2308-51                | S  | 354    | F354         | 332-2 | S  | 553        | F553         | 14. 713-2 | IR |
| 156 | F156         | 14. 2341-51                | S  | 355    | F355         | 337-2 | S  | 554        | F554         | 14. 716-1 | IR |
| 157 | F157         | 14. 2349-51                | S  | 356    | F356         | 341-1 | S  | 555        | F555         | 14. 717-2 | S  |
|     | F157         |                            | S  | 357    | F357         | 342-1 | S  |            |              |           | S  |
| 158 | F158<br>F159 |                            | S  | 358    | F357<br>F358 | 342-1 | S  | 556<br>557 | F556<br>F557 |           | S  |
| 159 | F159<br>F160 |                            | S  | 359    | F358<br>F359 | 345-1 | IR |            |              |           | S  |
| 160 |              | 14. 2365-52<br>14. 2370-52 | S  | 360    | F360         |       | S  | 558        | F558         |           | S  |
| 161 | F161         |                            |    |        |              | 347-1 |    | 559        | F559         |           |    |
| 162 | F162         | 14. 2376-52                | S  | 361    | F361         | 350-2 | S  | 560        | F560         | 14. 727-1 | IR |
| 163 | F163         | 14. 2381-51                | S  | 362    | F362         | 354-1 | IR | 561        | F561         | 14. 786-1 | S  |
| 164 | F164         | 14. 2402-52                | S  | 363    | F363         | 361-2 | S  | 562        | F562         | 13. 5802  | IR |
| 165 | F165         | 14. 2420-52                | S  | 364    | F364         | 362-2 | S  | 563        | F563         | 13. 5804  | IR |
| 166 | F166         | 14. 2443-51                | S  | 365    | F365         | 364-2 | S  | 564        | F564         | 13. 5806  | IR |
| 167 | F167         | 14. 13-1                   | S  | 366    | F366         | 365   | IR | 565        | F565         | 13. 5808  | S  |
| 168 | F168         | 14. 33-1                   | S  | 367    | F367         | 369-2 | IR | 566        | F566         | 13. 5810  | S  |
| 169 | F169         | 14. 132-1                  | S  | 368    | F368         | 373-2 | S  | 567        | F567         | 13. 5812  | S  |
| 170 | F170         | 14. 148-1                  | S  | 369    | F369         | 378-2 | S  | 568        | F568         | 13. 5814  | S  |
| 171 | F171         | 14. 150-1                  | S  | 370    | F370         | 379-1 | S  | 569        | F569         | 13. 5816  | S  |
| 172 | F172         | 14. 152-1                  | S  | 371    | F371         | 381-1 | IR | 570        | F570         | 13. 5818  | S  |
| 173 | F173         | 14. 154-1                  | S  | 372    | F372         | 382   | S  | 571        | F571         | 13. 5820  | S  |
| 174 | F174         | 14. 155-1                  | S  | 373    | F373         | 383-1 | S  | 572        | F572         | 13. 5832  | S  |
| 175 | F175         | 14. 158-1                  | S  | 374    | F374         | 384-1 | IR | 573        | F573         | 13. 5834  | S  |
| 176 | F176         | 14. 167-1                  | S  | 375    | F375         | 385-1 | S  | 574        | F574         | 13. 5836  | S  |
| 177 | F177         | 14. 176-1                  | IR | 376    | F376         | 386-2 | S  | 575        | F575         | 13. 5838  | S  |
| 178 | F178         | 14. 178-1                  | S  | 377    | F377         | 387-1 | S  | 576        | F576         | 13. 5840  | S  |
| 179 | F179         | 14. 179-1                  | S  | 378    | F378         | 388-2 | S  | 577        | F577         | -         | S  |
| 180 | F180         | 14. 193-1                  | S  | 379    | F379         | 389-1 | S  | 578        | F578         | -         | S  |
| 181 | F181         | 14. 200-1                  | S  | 380    | F380         | 391-1 | IR | 579        | F579         | -         | IR |
| 182 | F182         | 14. 201-1                  | S  | 381    | F381         | 395-1 | S  | 580        | F580         | -         | S  |
| 183 | F183         | 14. 203-1                  | S  | 382    | F382         | 400-2 | S  | 581        | F581         | -         | S  |
| 184 | F184         | 14. 205-1                  | S  | 383    | F383         | 401-1 | IR | 582        | F582         | -         | S  |
| 185 | F185         | 14. 208-1                  | S  | 384    | F384         | 405   | IR | 583        | F583         | -         | S  |
| 186 | F186         | 14. 212-1                  | S  | 385    | F385         | 407-1 | IR | 584        | F584         | _         | S  |
| 187 | F187         | 14. 215-1                  | S  | 386    | F386         | 408   | S  | 585        | F585         | -         | S  |
| 188 | F188         | 14. 221-1                  | S  | 387    | F387         | 409-2 | IR | 586        | F586         |           | S  |
| 189 | F189         | 14. 225-1                  | S  | 388    | F388         | 415-2 | S  | 587        | F587         | -         | S  |
| 190 | F190         | 14. 277-1                  | S  | 389    | F389         | 416-2 | S  | 588        | F588         | -         | S  |
| 191 | F191         | 15 x 14                    | IR | 390    | F390         | 417-2 | S  | 589        | F589         | -         | S  |
| 192 | F192         | 12 x 13                    | S  | 391    | F391         | 419-1 | S  | 590        | F590         | -         | S  |
| 193 | F193         | 15                         | S  | 392    | F392         | 421-1 | IR | 591        | F591         | _         | S  |
| 194 | F194         | 1615-52                    | S  | 393    | F393         | 422-1 | IR | 592        | F592         | _         | S  |
| 195 | F195         | 1618-51                    | S  | 394    | F394         | 424-1 | S  | 593        | F593         | _         | S  |
| 196 | F196         | 1621-51                    | S  | 395    | F395         | 425-1 | S  | 594        | F594         | _         | S  |
| 197 | F197         | 1628-51                    | S  | 396    | F396         | 427-1 | S  | 595        | F595         | _         | S  |
|     |              |                            |    | , ,,,, |              |       |    |            | _ 550        | I         |    |


| 198      | F198           | 1630-51            | S        | 397        | F397           | 428-1              | S          |              |                |                |          |
|----------|----------------|--------------------|----------|------------|----------------|--------------------|------------|--------------|----------------|----------------|----------|
| 199      | F199           | 1747-51            | S        | 398        | F398           | 429-1              | S          |              |                |                |          |
|          |                |                    |          |            | 4차년.           | 도 하반기              | •          |              |                |                |          |
| No.      | BN             | 교배No.              | 시험결<br>과 | No.        | BN             | 교배No.              | 시험<br>결과   | No.          | BN             | 교배No.          | 시험<br>결과 |
| 1        | F6001          | 1702-51            | S        | 141        | F6141          | 2211-52            | S          | 281          | F6281          | 437-2          | IR       |
| 2        | F6002          | 1706-54            | S        | 142        | F6142          | 2214-51            | S          | 282          | F6282          | 438-1          | S        |
| 3        | F6003          | 1708-51            | S        | 143        | F6143          | 2215-52            | S          | 283          | F6283          | 441-1          | S        |
| 4        | F6004          | 1712-51            | S        | 144        | F6144          | 2220-51            | S          | 284          | F6284          | 442-1          | S        |
| 5        | F6005          | 1714-51            | S        | 145        | F6145          | 2225-52            | S          | 285          | F6285          | 444-1          | S        |
| 6        | F6006          | 1715-51            | S        | 146        | F6146          | 2226-51            | S          | 286          | F6286          | 446-1          | S        |
| 7        | F6007          | 1716-51            | S        | 147        | F6147          | 2235-51            | S          | 287          | F6287          | 448-1          | S        |
| 8        | F6008          | 1717-52            | S        | 148        | F6148          | 2258-51            | S          | 288          | F6288          | 451-1          | S        |
| 9        | F6009          | 1719-51            | S        | 149        | F6149          | 2258-52            | R          | 289          | F6289          | 457-1          | S        |
| 10       | F6010          | 1719-53            | S        | 150        | F6150          | 2271-51            | S          | 290          | F6290          | 472-1          | S        |
| 11       | F6011          | 1721-51            | S        | 151        | F6151          | 2279-51            | S          | 291          | F6291          | 473-1          | S        |
| 12       | F6012          | 1723-51            | S        | 152        | F6152          | 2284-51            | S          | 292          | F6292          | 498-1          | S        |
| 13       | F6013          | 1723-52            | S        | 153        | F6153          | 2285-52            | S          | 293          | F6293          | 504-1          | S        |
| 14       | F6014          | 1724-52            | S        | 154        | F6154          | 2286-51            | R          | 294          | F6294          | 509-1          | S        |
| 15       | F6015          | 1725-51            | S        | 155        | F6155          | 2293-51            | S          | 295          | F6295          | 510-1          | S        |
| 16       | F6016          | 1726-52            | IR       | 156        | F6156          | 2294-51            | S          | 296          | F6296          | 511-1          | IR       |
| 17       | F6017          | 1727-51            | S        | 157        | F6157          | 2299-52            | S          | 297          | F6297          | 512-1          | S        |
| 18       | F6018          | 1729-51            | S        | 158        | F6158          | 2300-52            | S          | 298          | F6298          | 515-1          | R        |
| 19       | F6019          | 1730-51            | S        | 159        | F6159          | 2301-52            | R          | 299          | F6299          | 516-1          | S        |
| 20       | F6020          | 1731-52            | S        | 160        | F6160          | 2302-51            | R          | 300          | F6300          | 520-1          | S        |
| 21       | F6021          | 1732-51            | S        | 161        | F6161          | 2308-51            | S          | 301          | F6301          | 522-1          | S        |
| 22       | F6022          | 1733-52            | S        | 162        | F6162          | 2309-51            | S          | 302          | F6302          | 523-1          | S        |
| 23       | F6023          | 1735-51            | S        | 163        | F6163          | 2311-52            | S          | 303          | F6303          | 532-1          | S        |
| 24       | F6024          | 1738-51            | S        | 164        | F6164          | 2312-52            | IR         | 304          | F6304          | 535-1          | IR       |
| 25       | F6025          | 1742-51            | S        | 165        | F6165          | 2315-51            | S          | 305          | F6305          | 536-2          | S        |
| 26       | F6026          | 1745-51            | S        | 166        | F6166          | 2318-51            | R          | 306          | F6306          | 539-2          | IR       |
| 27       | F6027          | 1748-51            | S        | 167        | F6167          | 2321-52            | S          | 307          | F6307          | 542-2          | IR       |
| 28       | F6028          | 1750-52            | S        | 168        | F6168          | 2326-52            | IR         | 308          | F6308          | 543-2          | IR       |
| 29       | F6029          | 1753-51            | S        | 169        | F6169          | 2334-51            | S          | 309          | F6309          | 552-1          | S        |
| 30       | F6030          | 1754-51            | S        | 170        | F6170          | 2335-51            | S          | 310          | F6310          | 555-1          | IR       |
| 31       | F6031          | 1756-51            | S        | 171        | F6171          | 2337-52            | S          | 311          | F6311          | 556-1          | S        |
| 32       | F6032          | 1767-52            | R        | 172        | F6172          | 2341-51            | R          | 312          | F6312          | 557-1          | S        |
| 33       | F6033          | 1771-52            | IR       | 173        | F6173          | 2343-52            | S          | 313          | F6313          | 558-1          | IR       |
| 34       | F6034          | 1772-51            | S        | 174        | F6174          | 2345-52            | S          | 314          | F6314          | 559-2          | S        |
| 35       | F6035          | 1773-51            | S        | 175        | F6175          | 2349-52            | IR         | 315          | F6315          | 560-1          | S        |
| 36       | F6036          | 1788-52            | S        | 176        | F6176          | 2350-52            | IR         | 316          | F6316          | 563-2          | S        |
| 37       | F6037          | 1791-52            | S        | 177        | F6177          | 2354-51            | S          | 317          | F6317          | 566-1          | S        |
| 38       | F6038          | 1792-51            | S        | 178        | F6178          | 2359-52            | S          | 318          | F6318          | 567-1          | S        |
| 39       | F6039          | 1793-51            | S        | 179        | F6179          | 2366-52            | S          | 319          | F6319          | 569-1<br>570-2 | IR       |
| 40       | F6040          | 1793-52            | S        | 180        | F6180          | 2367-51            | S          | 320          | F6320          | 570-2<br>571-2 | S        |
| 41       | F6041          | 1794-51            | S        | 181        | F6181          | 2369-51            | S<br>S     | 321          | F6321          | 571-2<br>572-2 | IR       |
| 42       | F6042<br>F6043 | 1800-51            | S        | 182        | F6182          | 2371-51<br>2378-51 | S          | 322          | F6322          | 572-2<br>572-1 | S<br>S   |
| 43       |                | 1800-52            | S<br>S   | 183        | F6183          | 2378-51            | S          | 323          | F6323          | 573-1<br>574-1 | S        |
| 44       | F6044<br>F6045 | 1804-51<br>1808-52 | S        | 184<br>185 | F6184<br>F6185 | 2380-51            | S          | 325          | F6324<br>F6325 | 574-1<br>575-1 | S        |
| 45<br>46 | F6045          | 1812-52            | S        | 186        | F6186          | 2386-52            | S          | 326          | F6326          | 576-1          | S        |
| 47       | F6047          | 1815-51            | S        | 187        | F6187          | 2387-52            | S          | 327          | F6327          | 577-1          | S        |
| 48       | F6047          | 1828-52            | S        | 188        | F6188          | 2388-51            | S          | 328          | F6328          | 580-1          | S        |
| 49       | F6049          | 1831-51            | R        | 189        | F6189          | 2389-51            | S          | 329          | F6329          | 583-1          | S        |
| 50       | F6050          | 1832-51            | S        | 190        | F6190          | 2504-52            | S          | 330          | F6330          | 586-1          | IR       |
| 51       | F6050          | 1838-51            | S        | 190        | F6191          | 323-51             | S          | 331          | F6331          | 592-2          | S        |
| 52       | F6051          | 1840-51            | S        | 191        | F6191          | 326-51             | S          | 332          | F6332          | 592-2<br>597-2 | S        |
| 53       | F6053          | 1841-51            | S        | 193        | F6193          | 336-51             | S          | 333          | F6333          | 600-1          | IR       |
| JJ       | 1.0000         | 1041 91            | ು        | 139        | 1.0139         | 230 31             | _ <u> </u> | <sub> </sub> | 1.0000         | 000 1          | 111      |


| 54    | F6054          | 1854-51 | S       | 194 | F6194 | 403-51 | S       | 334 | F6334 | 603-1        | R  |
|-------|----------------|---------|---------|-----|-------|--------|---------|-----|-------|--------------|----|
| 55    | F6055          | 1856-52 | S       | 195 | F6195 | 409-51 | S       | 335 | F6335 | 604-2        | S  |
| 56    | F6056          | 1861-51 | S       | 196 | F6196 | 420-51 | S       | 336 | F6336 | 605-1        | S  |
| 57    | F6057          | 1866-52 | S       | 197 | F6197 | 426-52 | S       | 337 | F6337 | 606-1        | IR |
| 58    | F6058          | 1870-51 | IR      | 198 | F6198 | 477-51 | S       | 338 | F6338 | 609-2        | IR |
| 59    | F6059          | 1871-52 | S       | 199 | F6199 | 477-52 | S       | 339 | F6339 | 611-1        | IR |
| 60    | F6060          | 1873-52 | S       | 200 | F6200 | 491-52 | S       | 340 | F6340 | 617-2        | R  |
| 61    | F6061          | 1889-52 | S       | 201 | F6201 | 493-51 | IR      | 341 | F6341 | 619-1        | IR |
| 62    | F6062          | 1891-51 | S       | 202 | F6202 | 516-51 | S       | 342 | F6342 | 620-1        | IR |
| 63    | F6063          | 1900-51 | S       | 203 | F6203 | 517-51 | S       | 343 | F6343 | 623-2        | IR |
| 64    | F6064          | 1925-52 | IR      | 204 | F6204 | 606-51 | S       | 344 | F6344 | 624-1        | S  |
| 65    | F6065          | 1932-51 | IR      | 205 | F6205 | 607-52 | R       | 345 | F6345 | 631-2        | S  |
| 66    | F6066          | 1940-52 | S       | 206 | F6206 | 615-52 | S       | 346 | F6346 | 634-1        | IR |
| 67    | F6067          | 1941-52 | S       | 207 | F6207 | 20-1   | S       | 347 | F6347 | 645-1        | S  |
| 68    | F6068          | 1946-51 | S       | 208 | F6208 | 21-2   | S       | 348 | F6348 | 650-2        | IR |
| 69    | F6069          | 1949-51 | S       | 209 | F6209 | 22-1   | S       | 349 | F6349 | 665-1        | S  |
| 70    | F6070          | 1950-51 | S       | 210 | F6210 | 24-3   | IR      | 350 | F6350 | 671-1        | S  |
| 71    | F6071          | 1959-51 | S       | 211 | F6211 | 25-3   | IR      | 351 | F6351 | 674-2        | S  |
| 72    | F6072          | 1964-52 | S       | 212 | F6212 | 26-3   | S       | 352 | F6352 | 688-1        | S  |
| 73    | F6073          | 1904 52 | IR      | 213 | F6213 | 28-1   | IR      | 353 | F6353 | 698-2        | R  |
| 74    | F6074          | 1971-51 | S       | 213 | F6214 | 31-1   | S       | 354 | F6354 | 5            | S  |
| 75    | F6075          | 1972-51 | S       | 214 | F6215 | 32-1   | S       | 355 | F6355 | 1 x 5        | S  |
| 76    | F6076          | 1989-51 | S       | 216 | F6216 | 33-1   | IR      | 356 | F6356 | $2 \times 5$ | S  |
| 77    | F6077          | 1993-51 | S       | 217 | F6217 | 34-1   | IR      | 357 | F6357 | 7            | IR |
| 78    | F6077          | 1993-51 | S       | 217 | F6218 | 35-2   | S       | 358 | F6358 | 6 x 7        | IR |
| 79    | F6079          | 1994-52 | S       | 219 | F6219 | 37-3   | S       | 359 | F6359 | 12           | S  |
|       |                | 1990-51 |         | 220 | F6220 | 38-1   | S       | 360 | F6360 | 13           | S  |
| 80    | F6080<br>F6081 | 2001-52 | IR<br>S | 221 | F6221 | 39-2   | S       | 361 | F6361 | 14           | IR |
| 82    | F6082          | 2001-52 | S       | 222 | F6222 | 40-2   | S       | 362 | F6362 | 15           | S  |
| 83    | F6083          | 2002-51 | S       | 223 | F6223 | 40-2   | S       | 363 | F6363 | 16           | S  |
|       |                | 2004-51 | S       | 224 | F6224 | 62-1   | S       |     |       | 35           | S  |
| 84    | F6084          | 2008-52 |         |     |       |        |         | 364 | F6364 |              | S  |
| 85    | F6085          |         | S       | 225 | F6225 | 68-1   | IR<br>S | 365 | F6365 | 40<br>42     | S  |
| 86    | F6086          | 2016-51 |         | 226 | F6226 | 70-1   |         | 366 | F6366 |              |    |
| 87    | F6087          | 2017-52 | S       | 227 | F6227 | 76-1   | S       | 367 | F6367 | 43           | S  |
| 88    | F6088          | 2021-51 | R       | 228 | F6228 | 80-1   | S       | 368 | F6368 | 19           | S  |
| 89    | F6089          | 2021-52 | IR      | 229 | F6229 | 95-1   | S       | 369 | F6369 | 33           | IR |
| 90    | F6090          | 2024-51 | S       | 230 | F6230 | 108-1  | IR      | 370 | F6370 | 34           | S  |
| 91    | F6091          | 2027-51 | S       | 231 | F6231 | 110-1  | S       | 371 | F6371 | 38           | S  |
| 92    | F6092          | 2028-51 | IR      | 232 | F6232 | 113-1  | S       | 372 | F6372 | 374-A6       | S  |
| 93    | F6093          | 2031-52 | S       | 233 | F6233 | 284-1  | IR      | 373 | F6373 | 374-A11      | S  |
| 94    | F6094          | 2035-51 | S       | 234 | F6234 | 287-1  | IR      | 374 | F6374 | 374-A15      | S  |
| 95    | F6095          | 2036-52 | S       | 235 | F6235 | 296-1  | S       | 375 | F6375 | 374-A16      | S  |
| 96    | F6096          | 2038-51 | S       | 236 | F6236 | 303-1  | S       | 376 | F6376 | 374-A17      | S  |
| 97    | F6097          | 2041-51 | S       | 237 | F6237 | 305-3  | IR      | 377 | F6377 | 374-A21      | S  |
| 98    | F6098          | 2046-52 | S       | 238 | F6238 | 309-1  | IR      | 378 | F6378 | 403-A6       | S  |
| 99    | F6099          | 2047-51 | IR      | 239 | F6239 | 312-1  | S       | 379 | F6379 | 669-A1       | S  |
| 100   | F6100          | 2054-51 | R       | 240 | F6240 | 317-1  | S       | 380 | F6380 | 730-A1       | S  |
| 101   | F6101          | 2055-51 | S       | 241 | F6241 | 320-1  | IR      | 381 | F6381 | 730-A2       | S  |
| 102   | F6102          | 2057-52 | S       | 242 | F6242 | 325-1  | IR      | 382 | F6382 | 866-A2       | S  |
| 103   | F6103          | 2060-51 | S       | 243 | F6243 | 352-1  | IR      | 383 | F6383 | 867-A3       | S  |
| 104   | F6104          | 2064-52 | S       | 244 | F6244 | 353-1  | S       | 384 | F6384 | 867-A4       | S  |
| 105   | F6105          | 2067-51 | S       | 245 | F6245 | 355-1  | S       | 385 | F6385 | 867-A5       | IR |
| 106   | F6106          | 2068-51 | S       | 246 | F6246 | 359-1  | S       | 386 | F6386 | 867-A6       | S  |
| 107   | F6107          | 2074-52 | S       | 247 | F6247 | 360-1  | S       | 387 | F6387 | 867-A7       | R  |
| 108   | F6108          | 2075-51 | S       | 248 | F6248 | 361-1  | S       | 388 | F6388 | 867-A15      | S  |
| 109   | F6109          | 2079-51 | S       | 249 | F6249 | 362-1  | S       | 389 | F6390 | 867-A22      | IR |
| 110   | F6110          | 2081-51 | R       | 250 | F6250 | 365-1  | S       | 390 | F6391 | 867-A24      | S  |
| 1 111 | F6111          | 2082-51 | S       | 251 | F6251 | 366-2  | S       | 391 | F6392 | 867-A25      | IR |
| 111   | F6112          | 2082-52 | S       | 252 | F6252 | 367-1  |         | 392 | F6393 | 867-A29      | R  |

| 113 | F6113 | 2083-52 | S  | 253 | F6253 | 368-1 | S  | 393 | F6394 | 867-A30 | S  |
|-----|-------|---------|----|-----|-------|-------|----|-----|-------|---------|----|
| 114 | F6114 | 2084-51 | S  | 254 | F6254 | 369-1 | S  | 394 | F6395 | 867-A34 | IR |
| 115 | F6115 | 2085-51 | S  | 255 | F6255 | 370-1 | S  | 395 | F6396 | 867A-38 | R  |
| 116 | F6116 | 2093-52 | S  | 256 | F6256 | 371-2 | IR | 396 | F6397 | 867A-40 | IR |
| 117 | F6117 | 2095-52 | S  | 257 | F6257 | 372-1 | R  | 397 | F6398 | -       | S  |
| 118 | F6118 | 2096-51 | S  | 258 | F6258 | 373-1 | S  | 398 | F6399 | -       | S  |
| 119 | F6119 | 2100-52 | S  | 259 | F6259 | 375-1 | S  | 399 | F6400 | _       | S  |
| 120 | F6120 | 2104-51 | S  | 260 | F6260 | 377-1 | S  | 400 | F6401 | _       | S  |
| 121 | F6121 | 2105-52 | S  | 261 | F6261 | 380-1 | S  | 401 | F6402 | -       | S  |
| 122 | F6122 | 2108-51 | S  | 262 | F6262 | 383-1 | S  | 402 | F6403 | _       | S  |
| 123 | F6123 | 2113-51 | S  | 263 | F6263 | 385-1 | S  | 403 | F6404 | -       | S  |
| 124 | F6124 | 2122-51 | R  | 264 | F6264 | 392-1 | S  | 404 | F6405 | _       | S  |
| 125 | F6125 | 2128-51 | S  | 265 | F6265 | 395-1 | R  | 405 | F6406 | _       | S  |
| 126 | F6126 | 2130-51 | S  | 266 | F6266 | 400-1 | IR | 406 | F6407 | _       | S  |
| 127 | F6127 | 2132-51 | R  | 267 | F6267 | 403-1 | S  | 407 | F6408 | 2089-51 | S  |
| 128 | F6128 | 2135-51 | S  | 268 | F6268 | 404-1 | S  | 408 | F6409 | 2089-52 | S  |
| 129 | F6129 | 2136-51 | S  | 269 | F6269 | 406-1 | R  | 409 | F6410 | 2092-51 | IR |
| 130 | F6130 | 2140-51 | S  | 270 | F6270 | 408-2 | S  | 410 | F6411 | 2121-51 | S  |
| 131 | F6131 | 2143-51 | R  | 271 | F6271 | 412-2 | IR | 411 | F6412 | 2124-52 | S  |
| 132 | F6132 | 2152-51 | S  | 272 | F6272 | 416-2 | S  | 412 | F6413 | 2157-52 | S  |
| 133 | F6133 | 2162-51 | S  | 273 | F6273 | 417-1 | S  | 413 | F6414 | 2159-52 | IR |
| 134 | F6134 | 2170-52 | S  | 274 | F6274 | 420-2 | S  | 414 | F6415 | 691-51  | S  |
| 135 | F6135 | 2171-52 | IR | 275 | F6275 | 421-1 | R  | 415 | F6416 | 691-52  | IR |
| 136 | F6136 | 2184-51 | IR | 276 | F6276 | 422-1 | IR | 416 | F6417 | 30-2    | S  |
| 137 | F6137 | 2188-51 | S  | 277 | F6277 | 429-2 | S  | 417 | F6418 | 274-2   | S  |
| 138 | F6138 | 2194-51 | S  | 278 | F6278 | 430-1 | S  | 418 | F6419 | 276-2   | S  |
| 139 | F6139 | 2199-51 | S  | 279 | F6279 | 433-1 | S  |     |       |         |    |
| 140 | F6140 | 2201-52 | S  | 280 | F6280 | 435-2 | S  |     |       |         |    |

#### 6. 무 분자마커 개발 및 적용(F<sub>1</sub> 순도검정, 계통 자가불화합성 및 웅성불임성 판별)

- 가. 무 종자생산을 위해 현재까지 자가불화합성(SI)을 이용한 채종법이 많이 이용되고 있으나 고온 등의 환경적 요인 등에 의해 자가불화합성이 타파된 자식 종자가 발생해 F<sub>1</sub>종자의 순도가 나빠 상품성이 낮아지는 경우가 많다. 따라서 생산종자에 대한 순도검정은 중요한 과정으로써 일차적으로 포장검정을 통한 자식률을 검정하고 있으나 시간 및 노력이많이 들기 때문에 분자마커를 이용한 검정기술을 개발, 활용하여 조기에 순도를 검정하는 것은 시간적, 비용적 측면에서도 상당히 효율적이다.
- 나. <표 46>에서 보는 바와 같이 일본 연구진에 의해 EST 서열 내에 존재하는 SSR motif를 확인 후 해당 집단 내에 다형성을 보이는 SSR 마커 중 다형성을 보일 가능성이 높은 non-coding region내에 존재하는 SSR 서열을 포함하는 분자표지를 선발하였고, 이를 통해 무 5품종에 대해 각 품종에 다형성을 보이는 분자마커를 개발하였다. 표에서 표현한 대로 모, 부계 간 PCR product의 크기 차이가 큰 순서대로 O(L)> O(M)> O(N)로 표시하였고, □의 경우는 모, 부계 간의 다형성은 없으나 F₁의 경우에 다형성(모, 부의 fragment에 새로운 fragment)을 보이는 경우를 표시하였다.





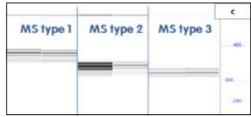



그림45. 무  $F_1$ 순도검정용(a), 계통 자가불화합성(b) 및 웅성불임성 판별용(c) 분자마커 개발

표 46. 무 순도검정용 분자표지 리스트

| No. | Marker<br>name | EST name  | Motif      | Motif<br>length | SSR<br>position | Estimated amplicon size | 품종A  | 품종B  | 품종C  | 품종D  | 품종E  |
|-----|----------------|-----------|------------|-----------------|-----------------|-------------------------|------|------|------|------|------|
| 1   | KYS            |           |            |                 |                 |                         |      | O(W) | O(W) |      |      |
| 2   | RSS0031        | RSCS09G17 | AG         | 28              | 5' UTR          | 240                     | O(N) | O(N) | O(N) | O(N) |      |
| 3   | RSS0033        | RSCS12L18 | AG         | 28              | 5' UTR          | 204                     |      |      |      |      |      |
| 4   | RSS0067        | RSCS04J05 | AG         | 24              | 5' UTR          | 171                     |      |      |      |      |      |
| 5   | RSS0092        | RSCS07G20 | AG         | 22              | 5' UTR          | 253                     |      |      |      |      |      |
| 6   | RSS0139        | RSCS12G22 | AG         | 20              | 5' UTR          | 299                     |      |      |      |      |      |
| 7   | RSS0198        | RSCS09D20 | AG(mis1)   | 22              | 5' UTR          | 268                     |      |      |      |      |      |
| 8   | RSS0225        | RSCS08E21 | ATC(mis1)  | 21              | 5' UTR          | 226                     |      | O(W) | O(W) |      |      |
| 9   | RSS0361        | RSCS14N04 | AG(mis1)   | 18              | 5' UTR          | 292                     |      | O(W) | O(W) |      |      |
| 10  | RSS0486        | RSCS02C24 | AAT(mis2)  | 18              | 5' UTR          | 227                     |      |      |      |      |      |
| 11  | RSS0675        | RSCS13F03 | AATC(mic2) | 16              | 5' UTR          | 195                     |      |      |      |      |      |
| 12  | RSS0679        | RSCS13P05 | AG(mis2)   | 16              | 5' UTR          | 185                     |      |      |      |      |      |
| 13  | RSS0692        | RSCS16I10 | AATC(mis2) | 16              | 5' UTR          | 297                     |      |      |      |      |      |
| 14  | RSS0727        | RSCS02D09 | AAG(mis2)  | 15              | 5' UTR          | 171                     |      |      |      | Δ    | Δ    |
| 15  | RSS1018        | RSCS13A11 | AAG(mis2)  | 15              | 5' UTR          | 207                     |      |      |      |      | O(W) |
| 16  | RSS1127        | RSCL03F02 | AG         | 24              | 5' UTR          | 236                     |      |      |      |      |      |
| 17  | RSS1273        | RSCL05H02 | AAG(mis1)  | 15              | 5' UTR          | 214                     |      |      | O(N) | O(N) | O(N) |
| 18  | RSS1301        | RSCL01N20 | AAAG(mis2) | 20              | 5' UTR          | 229                     |      |      |      |      |      |
| 19  | RSS1374        | RSCL01B17 | AAAC(mis2) | 16              | 5' UTR          | 152                     |      | O(M) |      |      |      |
| 20  | RSS1421        | RSCL09C22 | AG(mis2)   | 16              | 5' UTR          | 241                     | O(M) | O(M) | O(M) |      |      |
| 21  | RSS1425        | RSCL10A19 | AG(mis2)   | 16              | 5' UTR          | 283                     |      |      |      |      |      |
| 22  | RSS1640        | RSCL10A05 | AAG(mis2)  | 15              | 5' UTR          | 199                     |      |      |      |      |      |
| 23  | RSS1674        | RSCL16E07 | AG         | 26              | 5' UTR          | 197                     |      |      |      |      |      |
| 24  | RSS1870        | RSCL20I16 | ACG(mis2)  | 18              | 5' UTR          | 233                     |      |      |      |      |      |

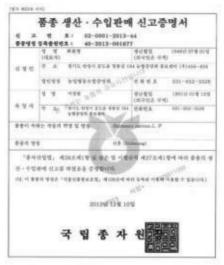
## 7. 조직배양을 통한 계통 세대단축(소포자배양)

- 가. 2차년도 소포자배양한 9계통 56개체(DH0)를 월동 저온처리 후 3차년도 봄에 자가교배하여 세대 진전하였고(DH1), 채종종자를 4차년도 봄 및 가을에 차대검정, 고정계통 선발하여  $F_1$ 조합의 한쪽 친 또는 중간모본으로 활용하였다.
- 나. 3차년도에 반수체 배가(doubled-haploid)를 통한 계통 고정화를 통해 세대단축이 필요하다고 생각되는 30계통에 대해 봄(23계통) 및 가을(7계통)에 소포자 배양을 실시하였다(그림8). 공시 계통 중 15계통에서 437개의 배상체가 형성되었고, 280개체의 식물체로 발달시켜 현재 기내순화 중이며, 향후 정식 및 자가교배하여 세대진전 하였다(표 47).
- 다. 4차년도 봄 1차 17, 2차 14 계통을 소포자 배양을 실시하여, 1차 13개 계통에서 185개 배상체가 형성되었으며, 2차 6개 계통에서 465개의 배상체가 유도되었다. 현재 250개의 식물체를 생장 유지하고 있다(표 47).

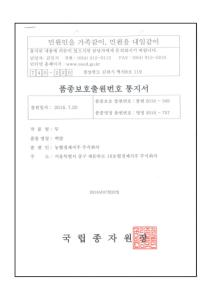


그림 46. 소포자배양 시험

표 47. 소포자배양을 통한 반수체배가 고정계통 육성


| 시험명   | 계통명     | 배상체 수 | 식물체 수 | 식물체 형성률 |  |
|-------|---------|-------|-------|---------|--|
|       | 466     | 1     | _     | _       |  |
|       | 473     | 13    | 10    | 76.9    |  |
|       | 545     | 1     | 1     | 100     |  |
|       | 573     | 33    | 30    | 90.9    |  |
| 2차년도  | 800-5   | 1     | -     | 35.6    |  |
| 소포자배양 | 824     | 73    | 26    |         |  |
| 시험    | 923     | 12    | 9     | 75.0    |  |
|       | 1564    | 2     | 1     | 50.0    |  |
|       | 1567    | 46    | 33    | 71.7    |  |
|       | 2041    | 1     | -     | -       |  |
|       | 13-KR-9 | 75    | 20    | 26.7    |  |

|           | 13-KR-10   | 49  | 30  | 61.2  |
|-----------|------------|-----|-----|-------|
| _         | 13-KR-19   | 14  | 8   | 57.1  |
| _         | <br>2차년도 계 | 321 | 168 | 52.3  |
|           | BN374      | 128 | 71  | 55.5  |
| _         | BN403      | 11  | 11  | 100   |
| _         | BN438      | 2   | 2   | 100   |
| _         |            | 4   |     |       |
| 3차년도 봄    | BN500      |     | 4   | 100   |
| 소포자배양 -   | BN591      | 3   | 1   | 33.3  |
| 시험        | BN665      | 5   | 4   | 80.0  |
| _         | BN669      | 24  | 20  | 83.3  |
|           | BN730      | 7   | 4   | 57.1  |
| _         | BN732      | 8   | 6   | 75.0  |
|           | BN768      | 15  | 8   | 53.3  |
|           | BN855      | 23  | 15  | 65.2  |
| 3차년도 가을   | BN861      | 1   | 1   | 100   |
| 소포자배양     | BN865      | 1   | 1   | 100   |
| 시험        | BN866      | 12  | 8   | 66.7  |
|           | BN867      | 193 | 124 | 64.2  |
|           | 3차년도 계     | 770 | 407 | 50.19 |
|           | 323        | 1   |     | 0     |
|           | 326        | 13  | 2   | 15.4  |
|           | 336        | =   |     |       |
|           | 403        | 2   |     | 0     |
|           | 409        | 1   |     | 0     |
|           | 420        | 69  | 50  | 72.5  |
|           | 477        | 11  |     | 0     |
| 4차년도 봄 1차 | 493        | 6   | 1   | 16.7  |
| 소포자배양     | 516        | 44  | 11  | 25    |
| 시험        | 517        | 24  | 10  | 41.7  |
|           | 606        | _   |     |       |
|           | 607        | 5   |     | 0     |
|           | 671        | _   |     |       |
|           | 672        | _   |     |       |
|           | 675        | 3   |     | 0     |
|           | 688        | 3   |     | 0     |
|           | 691        | 3   |     | 0     |
|           | 396        | _   |     |       |
|           | 398        | _   |     |       |
|           | 462        | 20  | 8   | 40    |
| 4차년도 봄 2차 | 463        | _   |     |       |
| 소포자배양     | 474        | 28  | 16  | 57.1  |
| 시험        | 476        | _   |     |       |
|           | 482        | _   |     |       |
|           | 483        | 1   |     | 0     |
|           |            |     |     |       |


| 485    | -   |     |       |
|--------|-----|-----|-------|
| 496    | 401 | 148 | 36.9  |
| 586    | 13  | 4   | 30.8  |
| 670    | -   |     |       |
| 671    | -   |     |       |
| 676    | 2   |     | 0     |
| 4차년도 계 | 650 | 250 | 38.46 |

## 8. 품종생산판매신고, 품종보호출원・등록 및 수상

- 가. 신흥: 1차년도에 품종생산판매신고한 만추대 청수계 품종으로 근형과 근피가 좋고 근수색이 진하며 추대에 강하여  $F_1$ 조합 선발, 생산판매 신고하였으며, 2차년도 및 3차년도에국내 재배시험 및 중국 현지 적응성 검정시험을 실시하였고, 3차년도 국내 재배시험 중국립종자원 여름무 품평회에서 무 재배농민 및 채소종자업계 관계자가 선정한 인기품종상을 수상하였다. 4차년도 현지 연락시험 및 현지 업체에 시교종자를 추가로 공급하였으며, 가능성 있는 시장 개척 및 종자 수출을 진행할 계획이다.
- 나. 청경: 1차년도에 품종생산판매신고한 청수계 타원형 품종으로 추대에는 민감한 편이나 근수색이 진하고 비대력이 좋으며 육질이 치밀하고 맛이 좋아  $F_1$ 조합 선발, 생산판매 신고하였으며, 2차년도에 국내 재배시험 및 중국 현지 적응성 검정시험 실시하였다. 시험 결과 중국 현지 작황이 기대만큼 좋지 않아 3차년도 및 4차년도에 주로 국내에서 판매되었으며, 향후 적용 가능한 중국 시장 개척 및 개량을 통한 수출을 목표로 하고 있다.
- 다. 멋진알타리, 백상단무지 : 3차년도에 품종생산판매신고한 품종으로 GSP과제 수행 중 수집한 유전자원과 기존 계통을 이용하여 조합 작성하였으며, 재배시험을 거쳐 품종화하였다.
- 라. 백랑 : 4차년도에 품종보호 출원한 품종으로 GSP과제 수행 중 수집한 유전자원과 기존 계통을 이용하여 조합 작성하였으며, 재배시험을 거쳐 품종화하였다.







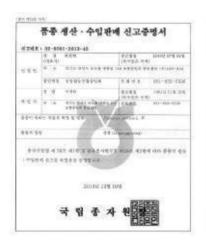







그림 47. 품종생산판매신고 증명서, 상장 및 품종보호출원 통지서 (1차년도: 신흥(상좌), 청경(하좌), 3차년도: 멋진알타리(하중), 백상단무지(하우), 4차년도: 백랑 (상우))

#### 9. 종자 수출 및 국내 판매 실적

- 가. GSP사업 1,2차년도에 작성된 F<sub>1</sub>조합 및 국내 시판종에 대해 3차년도까지 현지 재배시험 및 마케팅을 실시한 결과, 중국 현지에서 경쟁력이 있을 것으로 판단, 현지 업체 관계자들에 의한 구매 의사가 있는 만추대 청수계 1품종에 대해 3차년도 5.2천불, 4차년도 9.8천불 수출 계약 및 종자 수출 완료하였으며, 향후 지속적인 종자수출을 위한 협의를 진행 중이다.
- 나. GSP사업 1차년도에 품종생산판매신고한 <청경>의 경우 중국 수출용으로  $F_1$ 조합 작성, 조합 성능검정 실시하여 우수한 성적을 나타내었으나 중국 현지 적응성 시험 결과 작황이 좋지 않아 수출 계약은 어려웠고 국내 판매가 주로 이루어졌다. 국내매출액 기준 3차년도 에 1.6억, 4차년도에 2.3억 판매 완료하였다.



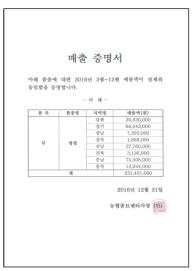



그림 48. 종자수출 증명서(수출신고필증)[좌], 국내 매출증명서 [우]

# 제 3 절 중국 재래종을 이용한 무 품종개발

#### 1. 유전자원 수집 및 특성평가

#### 가. 유전자원 수집

중국 OP종을 활용한 품종을 육성하기 위하여 중국 현지 출장을 통하여 프로젝트에 맞는 육성소재를 수집 하였다. 1차년도에 홍보석 무, 화엽청무, 홍구릉대근, 덕일2호, 덕일3호, 덕일4호, 덕일5호, 민권791, 민권홍, 십근미옥, RA3001,RA3002, RA3003, RA3004 등 30품종을 수집하여특성조사를 통하여 성숙모본을 선발(그림 49)하였으며 2차년도 또한, 47점의 유전자원을 수집 및 재배시험 하여 특성을 조사 하였으며 국립원예특작과학원에서 백수계 3점(성숙모본), 단무지 무 자식계 6점(성숙모본)을 수집하였다(그림 50). 이는 봄, 가을 재배 시험을 통하여 중국 소비자 기호에 맞는 만추대성 및 내서성, 바람들이에 강한 품종을 육성하기 위하여 성숙모본을 선발하였다.



그림 49. 유전자원 수집 및 특성조사



그림 50. 국립원예특작과학원 수집 백수계 계통

# 나. 유전자원 평가 및 모본 선발 결과

중국에서 수집한 소재를 2013년 가을, 대일바이오종묘(주) 전북 김제 농장 포장에 공시하여 2차에 걸쳐 수량조사와 특성 조사를 수행하여 청피계, 백수계, 홍피계로 분류하였으며, 백수계의 경우 근장이 긴 것과 소형무로 구분하고 청피계의 경우 청피백심, 청피청심. 홍피계는 홍피백심, 홍피홍심으로 구분하였다. 1차년도 결과를 바탕으로 2차년도 가을, 전북 김제 포장에 파종

및 재배하여 추대가 늦고 저온기 비대성이 좋으며 수량성이 많은 유전자원, 바이러스에 강하고 수송성, 저장성이 뛰어난 유전자원 등을 구분하여 모본을 선발하여 세대진전 및 교배조합에 활용하였다(그림 51).



그림 51. 성숙모본선발

#### 2. 우수계통 육성

대일바이오종묘(주)에서 기보유하고 있는 계통을 공시하여 특성조사 및 세대진전을 수행하였다. 전북김제 연구포장에 일반 관행재배 기준으로 재배하였다. 1차년도 899계통의 특성을 검정하여 육성재료로 이용할 계통을 백수계 소형무, 백수계 긴 무, 청수계 등으로 구분하여 11월 중순 특성조사 후 백육이면서 청수가 좋고 근비대가 빠르며 표피가 매끈하고 뿌리 맺힘이 좋은 계통 등 우수한 500계통을 선발하여 교배조합을 작성하고 육성 및 세대진전 하였다. 매년 같은 방법으로 선발된 유망조합 계통을 가을과 봄에 재배하여 근형 및 근피 등의 상품성을 조사하고 추대성, 비대력 등을 검정하였다(그림 52, 53). 또한, 방사선을 이용한 변이를 유도하기 위하여 3차년도에 기 보유 계통 중 백수계 3계통의 종자에 감마선(200Gy 24hr)을 조사하여 파종 후 성숙모본을 선발하여 현재 세대진전을 진행중이다(그림 54). 이는 과제 종료 후에도 계속적으로 이용하여 품종을 육성할 예정이다.



그림 52. 계통육성 및 모본선발 (1차년도)



그림 53. 계통육성 및 모본선발(2차년도)



그림 54. 방사선처리(Gy200, 24hr), 무처리 비교

#### 3. 교배조합

연구 목적에 부합되고 중국시장에 적합한 백수계, 청수계, 재래형 무 품종 개발을 위하여 기보 유계통 및 수집된 유전자원 중 선발계통을 이용하여 백수계는 만추대이며 비대가 빠르고 근형이 좋은 조합, 청수계는 근피색이 진하고 육색도 청수이며, 근형이 H형, 근장 25cm내외로 매 끈하고 상품성이 좋은 조합, 청피청수계, 청피홍심계, 홍피백심계 조합 등 다양한 조합을 매년 작성 하고 봄, 가을 재배를 통해 계통의 성능을 비교하였으며 중국 수출용 무 품종개발을 위한 점을 고려하여 여러 가지 환경적 요인에 따른 차이를 줄이고자 중국 북경에 파종하여 우수한 조합을 선발 및 우수계통을 세대진전과 함께 MS화 하였다.



그림 55. 중국 북경 조합시험 (3차년도)



그림 56. 세대진전을 위한 교배육성

## 4. 국내 및 현지 재배를 통한 성능검정

#### 가. 국내 재배 시험

기보유 계통 중 1차년도 45조합, 2차년도 봄 76조합, 가을 47조합 등 매년 시험조합을 가을 파종하여 근형 및 근피 등 상품성을 조사하고, 봄 재배를 통하여 추대성, 비대력을 검정하고자 전북김제 연구농장에 파종하여 60일 후, 70일 후 2차 조사를 통해 기존 품종과 비교하여 우수 계통을 선발하였다.

#### (1). 1차년도 재배시험

1차년도 국내 재배 F1 성능 검정결과 다양한 우수계통을 선발하였으며 특히, 청피색이 진하고 육색도 청색이며, 근형이 H형이고 근장이 25cm내외로 근피가 매끈하며 비대력이 좋은 조합을 선발하여 현지시험 하였다.



그림 57. 1차년도 F1 조합 성능검정

### (2). 2차년도 재배시험

특성을 검정하여 육성재료로 이용하기 위해 김제 포장에 파종 및 재배시험 하였으며, 근장 26cm, 근경이 8cm, 육색은 녹색과 흰색 섞인 청수무인 RA3001(파종번호:1301), 근장이 20cm, 근경 6.5cm, 바람들이가 강한 RA3003(파종번호:1303) 등 비교시험(그림 59)을 통해 우수한 조합을 선발하였다.







그림 58. 재배 및 성숙모본 선발









그림 59. 성능 비교시험

### (3). 3차년도 재배시험

유망조합을 하우스, 노지로 나누어 일반 관행재배하면서 근형, 근피 등 상품성을 조사하고 추대성, 비대력 등을 검정(표 48)하였으며 1, 2차년도와 같이 우수한 조합을 선발하였다.







그림 60. 성숙모본 선발 및 교배

표 48. 2015년 가을 무 특성조사 결과

| 파종<br>번호 | 근장(cm) | 근경(cm) | 근중(g) | 엽장(cm) | 엽수(ea) | 엽형        | 근피색 | 바람들이 |
|----------|--------|--------|-------|--------|--------|-----------|-----|------|
| 1        | 33     | 7.5    | 1100  | 45     | 21     | 절엽        | 백수  | 無    |
| 2        | 28     | 7      | 840   | 44     | 18     | <u>절엽</u> | 백수  | 有    |
| 3        | 33     | 8.4    | 1400  | 52     | 23     | 절엽        | 백수  | 有    |
| 4        | 35     | 8.5    | 1400  | 46     | 23     | 절엽        | 백수  | 無    |
| 5        | 35     | 6      | 840   | 53     | 38     | 절엽        | 백수  | 無    |
| 6        | 46     | 7      | 1400  | 59     | 21     | 절엽        | 백수  | 有    |
| 7        | 29     | 7.5    | 960   | 56.5   | 27     | 판엽        | 백수  | 無    |
| 8        | 33     | 7      | 1100  | 59     | 31     | 판엽        | 백수  | 無    |
| 9        | 32     | 6.5    | 900   | 65     | 30     | 판엽        | 백수  | 無    |
| 10       | 31     | 7      | 1000  | 56     | 28     | 절엽        | 백수  | 有    |
| 11       | 30     | 8      | 1140  | 59     | 21     | 절엽        | 청수  | 無    |
| 12       | 33     | 8.5    | 1340  | 56     | 24     | 절엽        | 청수  | 無    |
| 13       | 35     | 8      | 1500  | 44     | 22     | 절엽        | 청수  | 無    |
| 14       | 32     | 10     | 1580  | 47     | 25     | 절엽        | 청수  | 無    |
| 15       | 33.5   | 8.3    | 1240  | 46     | 22     | 절엽        | 청수  | 無    |
| 16       | 26     | 9.6    | 1400  | 37     | 28     | 절엽        | 청수  | 無    |
| 17       | 28     | 10     | 1480  | 42     | 23     | 절엽        | 청수  | 有    |
| 18       | 29     | 9.5    | 1500  | 46     | 23     | 절엽        | 청수  | 有    |
| 19       | 29     | 8.5    | 1400  | 52     | 23     | 절엽        | 청수  | 有    |
| 20       | 36     | 7.9    | 1200  | 46     | 23     | 절엽        | 청수  | 無    |
| 21       | 26     | 10     | 1440  | 47     | 18     | 절엽        | 청수  | 有    |
| 21-1     | 25     | 10     | 1380  | 45     | 14     | 절엽        | 청수  | 有    |
| 27       | 23     | 8.6    | 1080  | 47.5   | 19     | 절엽        | 청수  | 無    |
| 27-1     | 21     | 8.5    | 1000  | 47     | 18     | 절엽        | 청수  | 無    |
| 29       | 27     | 7.5    | 900   | 39     | 32     | 절엽        | 청수  | 無    |
| 30       | 12.5   | 9      | 600   | 34     | 25     | 판엽        | 백수  | 無    |
| 31       | 13.5   | 8.7    | 600   | 39     | 28     | 판엽        | 백수  | 無    |
| 33       | 28     | 7.7    | 1100  | 52     | 21     | 절엽        | 백수  | 無    |
| 34       | 36     | 7      | 1000  | 42     | 30     | 절엽        | 청수  | 有    |
| 35       | 23     | 7      | 640   | 39     | 31     | 절엽        | 청수  | 無    |
| 36       | 19     | 6      | 48    | 33     | 27     | 절엽        | 청수  | 無    |
| 40       | 25     | 7.5    | 900   | 44     | 19     | 절엽        | 청수  | 無    |
| 41       | 28     | 8      | 1100  | 48     | 28     | 절엽        | 청수  | 無    |
| 42       | 40     | 7      | 1300  | 53     | 22     | 절엽        | 백수  | 無    |
| 43       | 26     | 6.5    | 800   | 39     | 22     | 절엽        | 백수  | 無    |
| 44       | 32     | 6.7    | 900   | 46     | 26     | 절엽        | 백수  | 無    |
| 45       | 37     | 6.4    | 900   | 58     | 25     | 절엽        | 백수  | 無    |
| 46       | 32     | 7.5    | 1200  | 42     | 28     | 판엽        | 백수  | 有    |
| 47       | 13     | 5.5    | 300   | 41     | 18     | 판엽        | 백수  | 有    |
| 48       | 29     | 7.3    | 900   | 43     | 29     | 절엽        | 백수  | 有    |
| 49       | 39     | 6      | 1080  | 53     | 25     | 절엽        | 백수  | 無    |
| 50       | 33     | 8.5    | 1500  | 52     | 23     | 절엽        | 청수  | 無    |
| 51       | 31     | 8      | 1200  | 53     | 22     | 절엽        | 청수  | 無    |
| 53       | 42     | 6.5    | 1300  | 53     | 42     | 절엽        | 백수  | 無    |
| 55       | 26     | 10     | 1650  | 51     | 34     | 절엽        | 청수  | 無    |
| 56       | 32     | 8      | 1300  | 65     | 34     | 절엽        | 청수  | 有    |

### (4). 4차년도 재배시험

3차년도 까지의 우수한 계통과 새로운 조합을 시험하기 위해 4월 말 총 100계통 이상을 파종하였으며, 6월 중순 이후 생육조사 결과 수출전용품종으로 백수계이면서 조생종이고 H형의 좁은 직사각형이며 근장과 근형이 중국 및 아시아국가 소비시장에 적합한 3품종을 선발하여 생산판매신고를 하였다(그림 62). 또한, 8월 말 전북김제 연구농장에 백수계 230계통, 청수계 90계통, 백수단형계 90계통, 소형무 18계통, 백수 남방계 F1 60계통, 청수만추계 F1 18계통 등을 파종하여 생육특성을 조사하였으며, 성능이 우수한 280 계통, 700개체 이상을 선발하여 교배육성하우스에 정식하여 육성 진행중이며 이는 추후 신품종개발 연구에 이용할 예정이다.



그림 61. 4차년도 봄 F1 차대검정

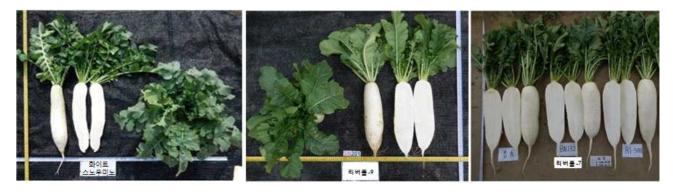



그림 62. 생산판매신고 3품종 (화이스스노우미노, 리버풀-9, 리버풀-7)



그림 63. 4차년도 가을 모본 선발 및 성능 비교

# 표 49. 가을 백수계 계통 특성조사 결과

| 파종  | 엽중  | 엽장   | 엽수   | 내심고  | 엽병<br>굵기 | 근장   | 근   | 경(cı | m)  | 근중   | 근피<br>두께 | 육질 | 바람 | 추대  | 흑심 |
|-----|-----|------|------|------|----------|------|-----|------|-----|------|----------|----|----|-----|----|
| 번호  | (g) | (cm) | (ea) | (mm) | (mm)     | (cm) | 상   | 중    | 하   | (kg) | (mm)     | 강도 | 들이 | 741 | 70 |
| 251 | 370 | 41.5 | 26   | 1.7  | 7.67     | 25.2 | 6.6 | 8.2  | 7.8 | 1000 | 3.23     | 중  | 0  | 0   | 0  |
| 252 | 430 | 50.0 | 30   | 1.7  | 6.50     | 35.0 | 7.6 | 9.4  | 7.2 | 1200 | 2.18     | 중  | 0  | 0   | 0  |
| 253 | 450 | 50.0 | 33   | 1.1  | 5.60     | 23.0 | 6.8 | 7.8  | 6.3 | 800  | 2.01     | 중  | 1  | 0   | 0  |
| 254 | 345 | 41.0 | 24   | 1.5  | 7.00     | 27.0 | 6.8 | 8.0  | 6.0 | 800  | 2.22     | 중  | 0  | 0   | 0  |
| 255 | 300 | 40.0 | 27   | 1.2  | 5.80     | 24.5 | 7.0 | 8.5  | 7.8 | 800  | 1.82     | 중  | 0  | 0   | 0  |
| 256 | 610 | 59.0 | 28   | 1.5  | 7.70     | 24.0 | 7.5 | 9.0  | 7.0 | 1000 | 1.98     | 약  | 1  | 0   | 0  |
| 257 | 465 | 45.5 | 36   | 1.0  | 5.30     | 25.5 | 7.5 | 7.7  | 6.0 | 720  | 2.72     | 중  | 0  | 0   | 0  |
| 258 | 590 | 54.0 | 40   | 1.9  | 4.40     | 23.0 | 8.0 | 7.0  | 4.4 | 600  | 2.79     | 약  | 1  | 0   | 황심 |
| 259 | 350 | 42.0 | 29   | 0.9  | 5.50     | 23.0 | 7.7 | 8.2  | 6.5 | 800  | 2.74     | 약  | 0  | 0   | 1  |
| 260 | 480 | 48.0 | 35   | 1.0  | 5.60     | 21.5 | 7.5 | 7.5  | 6.0 | 700  | 2.34     | 중  | 0  | 0   | 2  |
| 261 | 315 | 38.0 | 25   | 0.6  | 6.20     | 20.0 | 8.0 | 8.2  | 7.4 | 780  | 2.86     | 중  | 0  | 0   | 0  |
| 262 | 625 | 51.0 | 38   | 1.6  | 5.80     | 18.5 | 7.0 | 7.5  | 6.8 | 520  | 2.60     | 약  | 0  | 0   | 0  |
| 263 | 345 | 40.0 | 34   | 0.9  | 4.80     | 21.5 | 7.5 | 9.0  | 7.4 | 900  | 2.73     | 중  | 0  | 0   | 0  |
| 264 | 750 | 51.0 | 40   | 1.9  | 6.20     | 24.0 | 7.4 | 7.3  | 5.3 | 700  | 2.23     | 강  | 0  | 0   | 0  |
| 265 | 390 | 48.0 | 25   | 0.8  | 6.00     | 28.0 | 7.0 | 6.6  | 5.3 | 700  | 2.34     | 강  | 1  | 0   | 0  |
| 266 | 800 | 66.0 | 28   | 1.5  | 7.90     | 24.5 | 6.8 | 7.0  | 5.5 | 600  | 1.97     | 중  | 0  | 0   | 1  |
| 267 | 370 | 60.0 | 20   | 0.3  | 7.00     | 27.0 | 8.5 | 9.5  | 8.4 | 1200 | 3.07     | 중  | 0  | 0   | 0  |
| 268 | 525 | 54.0 | 29   | 0.8  | 7.40     | 26.0 | 8.0 | 9.2  | 7.9 | 1100 | 2.68     | 약  | 0  | 0   | 0  |
| 269 | 430 | 49.0 | 27   | 0.7  | 5.80     | 35.5 | 7.6 | 8.5  | 7.0 | 1300 | 1.89     | 약  | 0  | 0   | 0  |
| 270 | 345 | 44.0 | 24   | 1.8  | 5.80     | 32.5 | 7.1 | 7.4  | 6.4 | 1000 | 2.23     | 약  | 0  | 0   | 0  |

### 나. 현지 시교 시험

육종 목표에 부합하는 품종을 얻고자 매년 작성된 조합을 북경, 산동성, 복건성 등에 각기 작형별 현지시험을 실시하였다. 국내시험과 현지시험을 병행하여 검정한 결과 중국 및 아시아국 가의 소비시장에 적합한 품종을 육성하여 생산판매 5품종, 품종보호출원 1품종을 등록하였다.

### (1) 1차년도 시교 성능검정

1차년도 현지시교시험을 위해 북경, 산동성, 절강성, 광동성에 파종하였다(표 50). F1 조합 계통을 검정하기 위해 기존 품종과 비교시험 한 결과 북경에서는 백수계 조합 중 근형이 H형이고 근피가 매끈하고 바람들이가 적으며 근미 맺힘이 우수한 30조합을 선발하였고, 청수계조합중 청수가 진하고 뚜렷하며 육색도 청색을 띠며 H형에 근장이 25cm내외로 상품성이 뛰어난 20조합을 선발하였다. 이중 국내시험과 북경시험에서 좋은 결과를 나타낸 2품종을 2014년 2월 생산판매신고를 하였다.

표 50. 현지 시교 시험 개요

| 재배지역 | 공시품종수 | 파종일   | 재식거리(cm) | 시험구배치 | 재배방법   | 수확 및 조사     |
|------|-------|-------|----------|-------|--------|-------------|
| 북경   | 346   | 8.23  | 25 X 28  | 단구법   | 현지관행농법 | 10.30~11.5  |
| 산동성  | 30    | 8.26  | 25 X 28  | 2반복   | 현지관행농법 | 10.25~10.30 |
| 절강성  | 21    | 10.14 | 25 X 28  | 2반복   | 현지관행농법 | 12.19       |
| 광동성  | 100   | 10.10 | 25 X 28  | 2반복   | 현지관행농법 | 12.8        |







그림 64. 북경, 산동성, 절강성, 광동성 성능 비교시험

### (2) 2차년도 시교 성능검정

2차년도 시교 시험 결과 북경에서 백수계 RJA-5, RJA-6, RJA-7, RJA-8계통이 근형이 좋고 H형이며 청두현상이 없는 우수한 계통의 결과를 보였으며, 청수계의 경우 RIA-256, 14R-2×13R-10, 14R-2N×13R-10 계통이 근장이 24~26cm이면서 외피가 광택이나고 근미가 좋으며 청두가 깊고 잎이 크고 내추대성의 우수한 특성을 보였다. 또한, 운남성에서는 RA-1427, R-933, 절강성에서는 RQ-1, RA-1407, 호북성에서는 R-506, SR-40,SR-44 등에서 각 지역에 적응성이 높으며, 우수한 성능을 나타내 선발하였다.

표 51. 현지 시교 시험 개요

| 재배지역 | 공시품종수   | 파종일        | 재식거리(cm) | 시험구배치 | 재배방법   | 수확 및 조사     |
|------|---------|------------|----------|-------|--------|-------------|
| 북경   | 274     | 8. 11~15   | 25 × 28  | 단구법   | 현지관행농법 | 10. 12~15   |
| 운남성  | 75      | 7. 28      | 20 × 18  | 2반복   | 현지관행농법 | 9. 25       |
| 절강성  | 37      | 8. 23~26   | 25 × 28  | 2반복   | 현지관행농법 | 10. 23      |
| 호북성  | 리천: 40  | 리천: 6. 22  |          |       |        | 리천: 8.21    |
| (리천, |         | 고냉지: 5. 6, | 20 × 18  | 2반복   | 현지관행농법 | 고냉지: 7. 13, |
| 고냉지) | 고냉지: 65 | 8. 3       |          |       |        | 10. 10      |



그림 65. 북경, 운남성, 절강성,호북성(리천),호북성(고랭지) 현지 시교 시험

### (3) 3차년도 시교 성능검정

중국 복건성 복주시에서는 근장 26cm, 근경 7.0cm로 비대속도가 빠르며 조형이 우수하고 청수가 없는 계통인 HB-45를, 호북성 의창시에서는 H형이며 수미가 둥그스름하여 상품성이 우수한 BN151, HB-125계통을 호북성 은시에서는, HB-125, 광동성 산미시에서는 호북성 의창시에서 선발된 BN151계통이 각각 우수한 성능을 보여 선발되었으며, 품종개발을 위해 진행중이다.



그림 66. 복건성, 호북성, 광동성 현지 시교 시험

### (4) 4차년도 시교 성능검정

3차년도 까지의 우수한 계통 및 새로운 조합을 국내시험 뿐만 아니라 현지 적응성 및 성능을 시험하기 위해 중국 광동, 산동, 북경, 호북성 등의 현지에 시교를 시험한 결과 백수계의 외피가 매끈하고 H형의 직사각형이며 내병성인 기존 품종보다 우수한 특성을 보이는 조합이 선발되었으며 품종육성을 위해 연구개발이 진행중이다.



그림 67. 중국 광동, 산동, 북경, 호북성 현지 시교 시험

### 5. SI인자형 분석

채종의 효율 및 품질증진에 이용하기 위하여 무의 자가불화합성 인자형 분석을 국립원예특작 과학원에 의뢰하여 분석(표 52)하였으며, 그 결과에 따라 SI 인자형을 고려하여 교배조합을 작 성 후 우수한 계통을 육성 진행중이다.

표 52. 자가불화합 인자형 결과

| No. | Sample<br>name | 종자번호      | SI 인자형 |
|-----|----------------|-----------|--------|
| 1   | 16-D01         | 9N 471-F3 | S10    |
| 2   | 16-D02         | 9N 472-F3 |        |
| 3   | 16-D03         | 9N 473-F3 | S10    |
| 4   | 16-D04         | 9N 474-F3 | S10    |
| 5   | 16-D05         | 9N 468-F3 |        |
| 6   | 16-D06         | 9N 469-F3 | S18    |
| 7   | 16-D07         | 9N 470-F3 | S10    |
| 8   | 16-D08         | 9N 452-F3 |        |
| 9   | 16-D09         | 9N 453-F3 |        |
| 10  | 16-D10         | 9N 454-F3 | S4     |
| 11  | 16-D11         | 9N 455-F3 | S4     |
| 12  | 16-D12         | 9N 456-F3 | S4     |
| 13  | 16-D13         | 9N 457-F3 | S4     |
| 14  | 16-D14         | 9N 458-F3 |        |

| 15 | 16-D15 | 9N 459-F3 |    |
|----|--------|-----------|----|
| 16 | 16-D16 | 9N 460-F3 | S7 |
| 17 | 16-D17 | 9N 461-F3 |    |
| 18 | 16-D18 | 9N 463-F3 | S4 |
| 19 | 16-D19 | 9N 466-F3 |    |
| 20 | 16-D20 | 9N 467-F3 | S4 |

### 6. 소포자 배양

계통육성 기간을 단축하고 순도 높은 계통을 육성하고자 중국 유전자원을 도입하여 F2종자를 채종 후 10계통을 국립원예특작과학원에 소포자 배양을 의뢰하였다. 1차년도 10품종, 2차년도 10품종을 의뢰하여 14-KR7에서 41LINE 123개체, 15-KR11에서 16LINE 48개체, 15-KR15에서 44LINE 132개체를 순화하였으나 세 개 번호에서 101LINE 303개체의 식물이 생장 유지되어 월동 저온처리 후 자가교배하여 세대를 진전한 후 고정계통 선발 및 F1조합 등에 활용하였다.

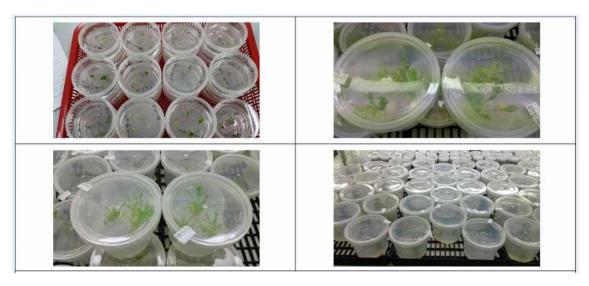



그림 68. 소포자배양 시험

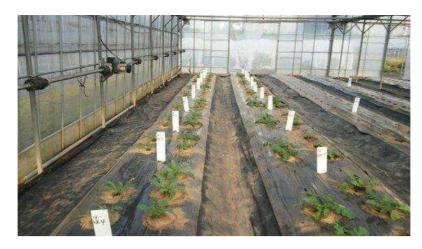



그림 69. 소포자 배양체 정식

### 7. 국유품종 통상실시

품종육성을 단축하고자 국립원예특작과학원에서 육성한 원교 10033(품종보호권2010-364)을 국유 품종 통상 실시권을 하였다. 원교 1003 품종의 특성은 청수가 짙고 뚜렷하며, 근장은 26cm, H형이다.

### 8. 생산 판매 신고 및 품종보호출원

가. 생산판매 신고

대일바이오종묘(주)에서 기보유하고 있는 계통 중 F1 조합을 전북김제 연구농장 및 중국 현지에 파종하여 일반 관행재배법에 따라 재배하여 특성을 조사하였다. 특성조사결과 청피색이 진하고 육색도 청색이며 근형이 H형이고 근장이 25cm 내외로 근피가 매끈하며 비대력이 좋은 2개 조합을 선발하여 생산판매를 하였다. 또한, 파종 후 55일~60일 이내에 수확하며 종자생산량이 높은 수출전용 품종으로 개발된 '화이트스노우 미노'와 내병성이 있으며 근장과 근형이중국 중부지역의 소비시장에 적합한 조합 등을 '리버풀-7', '리버풀-9'로 각각 명명하여 생산판매신고를 하였다.











그림 70. 생산판매 신고증명서

### 나. 품종보호출원

청수계 봄 재배형으로 내추대성이며 조숙, 근맺힘이 좋고 육색이 투명한 청수계통을 육성하여 중국 시장 산서, 섬서, 청해, 영하 등에서 소비 가능한 우수한 조합을 선발하여 품종명을 '청춘하무'로 품종보호출원 하였다.



그림 71. 품종보호출원 품종 및 통지서

### 9. 연구성과물 (생물자원) 기탁

한국생명공학연구원 미생물자원센터에 연구성과물(생물자원) 무 종자 12종을 기탁함.



그림 72. 연구성과물(생물자원) 기탁

# 10. 판매종자 생산 및 수출

중국에 종자수출을 하고자 국내에선 국내채종전환 사업과 함께 전북김제 연구농장에서, 해외에선 뉴질랜드에서 종자생산을 진행하여 총 331,084달러를 수출하였다(표 53).

표 53. 종자 수출 목록

| 순번 | 품종명      | 수출대상국가 | 수출일        | 수출액(\$) |  |  |  |  |
|----|----------|--------|------------|---------|--|--|--|--|
| 1  | 무 F1 종자  | 중국     | 2014.07.30 | 100     |  |  |  |  |
| 2  | 무 F1 종자  | 중국     | 2014.10.10 | 100     |  |  |  |  |
| 3  | 무 F1 종자  | 중국     | 2015.02.12 | 9,750   |  |  |  |  |
| 4  | 무 F1 종자  | 중국     | 2015.05.28 | 26,250  |  |  |  |  |
| 5  | 무 F1 종자  | 중국     | 2015.09.14 | 400     |  |  |  |  |
| 6  | 강남청수     | 중국     | 2016.04.27 | 85,500  |  |  |  |  |
| 7  | 리버풀-9    | 중국     | 2016.05.17 | 52,800  |  |  |  |  |
| 8  | 리버풀-9    | 중국     | 2016.05.18 | 71,984  |  |  |  |  |
| 9  | 화이트스노우미노 | 파키스탄   | 2016.07.21 | 56,000  |  |  |  |  |
| 10 | 리버풀-7 중국 |        | 2016.09.07 | 28,200  |  |  |  |  |
|    | 합계       |        |            |         |  |  |  |  |

|      | 2015년위탁채종계약서    | on Antonion extensive on excess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (52) | "라" "요" "요" "요" | 대한 대한 학생 등 기업을 하는 기업을 받는 기업을 받는 기업을 하는 기업을 |

그림 73. 국내 채종 계약서









# 그림 74. 전북김제 연구농장 채종

# South Pacific Seeds (NZ) Ltd- Contract Pending Customer: Daell Bio Seed Co. Address: 102 Seeam BID, 28 Jungang-Ro, Glingle-St.Jeollabuk-Do, 576-120, Kones Tel: +812-85-84-1617 Kind: Variety: Ratio: Harvest: Aves: Quantity: Price: Currency: Type: Tangethe: HYD RADISSH RQ-5300 4:2 Female only 5.0 2.269 \$ 2.5.00 USD White radish/Early Boiting type) 450 Minimum Germination: 50% Defrey after harvest: Defrey: Fraght: F.O.B. 2015 Max Molitane: 7.00% Defrey: After harvest: AC Multiplier By Special Conditions: 7.00% Peocing: Tit Well Boxes with Poly Liner or Bags. AC Multiplier 1. N. THE CASE OF CASE PROJUCTION: 1. UP TO 1280 OF THE TARGET QUANTITY ACCEPTED WITH 1280 DISCOUNT: 1. This environ with the dayle of the castiment of time of leader or certificated government officer for list of diseases an supplied by the customer. 1. This environ with the dayle of the continued of the list of diseases an supplied by the customer. 1. This environ with the dayle of the boxes of the lists of the continued profession of the list of diseases an supplied by the customer. 1. This environ with the dayle of the boxes of the lists of the continued profession of the list of diseases an supplied by the customer. 1. This environ with the dayle of the boxes of the lists of the list of diseases an supplied by the customer. 1. This environ with the dayle of the boxes of the lists of the list of diseases an supplied by the customer. 1. This environ with the dayle of the boxes of the lists of the list of diseases and supplied by the customer. 1. This environ with the dayle of the lists of the lists of the lists of diseases and supplied by the customer. 1. This environ with the dayle of the lists of the list of diseases and supplied by the customer. 1. This environ with the dayle of the lists of the lists of diseases and supplied by the customer. 1. This environ with the dayle of the lists of the list of diseases and supplied by the customer. 1. This environ with the dayle of the lists of the lists of the lists of the lists of

# 그림 75. 뉴질랜드 채종 계약서



그림 76. 샘플 종자 수출 계약서 및 수출필증

# 제 4 절 중국 남방계 재래종 품종 개발

### 1. 유전자원 수집 및 특성 평가

가. 유전자원 수집, 기탁 및 성능검정

중국의 무는 크게 북방계무와 남방계무로 구분된다. 북방계무는 산동성 일부 지역과 동북3성 지역을 비롯한 중국의 북부지역에서 주로 재배되는 청피계무로 요리용이 아닌 생식용으로 이용되고 있으며 품종의 개발 없이 일반종이 대부분이고 가을에 많이 재배되고 있다. 최근에는 한국의 여름무가 북방계무의 자리를 매김하고 있다. 남방계무는 장강 유역과 남쪽의 광동, 광서, 복건성등에서 주로 재배되는 백수계무로 주로 탕용으로 이용되며 엽형이 판엽으로 내서성에 강한 특성을 가지고 있으며 대부분 일반종으로 단엽13, 마귀, 하항40천등이 재배되어지고 있으나 최근에는 한국의 R301로 많이 전환 되어지고 있다.

유전자원 수집은 중국 현지 무 재배지역 및 협력 업체를 방문하여 자가 채종 재배되는 OP종, 종자 시판점에서 많이 판매되는 우수품종 수집 및 현지 협력업체를 통해 분양 받은 다양한 소재(1차년도 10점, 2차년도 3점, 3차년도 2점, 4차년 8점)를 이용하여 유전자원의 성능을 검정하여 육성 재료로 사용코자 한다.

유관기관인 충남대학교로부터 유용유전자원을 28점을 분양받아 소재의 특성을 조사하여 본 과제의 품종육성에 적극적으로 활용하고자 한다.(표 54).

표 54. 충남대학교 무 유전자원 분양 내역

| HD No. | 분양 No. | 품종명            | 수집장소           |
|--------|--------|----------------|----------------|
| 1      | 27251  | 秋白二号(F1)       | 中国农业科学院蔬菜花卉研究所 |
| 2      | 27255  | 满堂红(F1)        | 中国农业科学院蔬菜花卉研究所 |
| 3      | 27286  | 501水萝卜         | 中国农业科学院蔬菜花卉研究所 |
| 4      | 27288  | 北京满堂红F1        | 中国农业科学院蔬菜花卉研究所 |
| 5      | 27289  | 象牙白萝卜(F1)      | 中国农业科学院蔬菜花卉研究所 |
| 6      | 27290  | 德国特萝卜(F1)      | 中国农业科学院蔬菜花卉研究所 |
| 7      | 27291  | 小五樱水萝卜         | 中国农业科学院蔬菜花卉研究所 |
| 8      | 27296  | 板叶卫青萝卜         | 中国农业科学院蔬菜花卉研究所 |
| 9      | 27316  | 春红一号Kemeng(F1) | 中国农业科学院蔬菜花卉研究所 |
| 10     | 27317  | 良繁种业           | 中国农业科学院蔬菜花卉研究所 |
| 11     | 29021  | 沈春红冠萝卜         | 중국 심양 구매       |
| 12     | 29022  | 沈春青萝卜          | 중국 심양 구매       |
| 13     | 29024  | 兴运白玉萝卜         | 중국 심양 구매       |

| 14       | 29025 | 大连翘头青                          | 중국 심양 구매                       |  |  |  |  |
|----------|-------|--------------------------------|--------------------------------|--|--|--|--|
| 15       | 29026 | 富友大红                           | 중국 심양 구매                       |  |  |  |  |
| 16       | 29029 | 双增青萝卜                          | 중국 심양 구매                       |  |  |  |  |
| 17       | 29030 | 连研一号                           | 중국 심양 구매                       |  |  |  |  |
| 18       | 29031 | 大青萝卜                           | 중국 심양 구매                       |  |  |  |  |
| 19       | 29032 | 沈青一号                           | 중국 심양 구매                       |  |  |  |  |
| 20       | 10008 | CyrosF1 Hybride, SPERLING's    | 독일 구매                          |  |  |  |  |
| 21       | 10010 | Colosseo F1-Hybride            | 독일 구매                          |  |  |  |  |
| 22       | 10013 | white radish                   | 독일 구매                          |  |  |  |  |
| 23       | 10014 | Hilds blauer Herbst ubd Winter | 독일 구매                          |  |  |  |  |
| 24       | 10017 | Radish Long white lcicle       | 독일 구매                          |  |  |  |  |
| 25       | 12005 | F1 Hyb. Every White            | UJJWAL seeds PVT.LTD           |  |  |  |  |
| 26       | 12006 |                                | North East seeds               |  |  |  |  |
| 27       | 12012 | Pusa Chetki                    | Punjab agricultural university |  |  |  |  |
| 28       | 12041 | BOMBAY RED                     | 인도                             |  |  |  |  |
| 20 12041 |       | KHASIKATTA(AUSH)               | [上                             |  |  |  |  |

특성조사를 위해 현대종묘(주) 육종연구소(경기도 여주시 소재)의 포장에서 봄, 가을 파종을 하였다. 파종립 수는 파구당 2~3립, 공시주수는 14주 2반복으로 재배방법은 현대종묘(주)의 관행 재배법으로 실시하였다.

유전자원 성능검정 결과 1차년도는 무 청피색의 종류별로 보면 청수계가 5점(그림 76, 표 55), 백수계가 5점(그림 77, 표 56).으로 분류되었고, 백수계 중 판엽계가 2점, 절엽계가 2점, 청피청 심이 1점으로 조사되었다.

2차년에 수집된 '초월홍라복'은 조생품종으로 근장이 짧고 근피가 홍색이며 육색이 백색인 절엽계였고, '성도만신홍라복'은 만생품종으로 근장이 길고 근피가 홍색이면서 육색이 백색인 판엽계종이며, '화엽'은 조생으로 근장이 길고 근피가 깨끗하고 추대 및 바람들이가 빠른 품종이었다(그림 78).

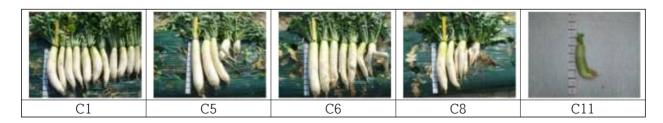



그림 76. 청수계 유전자원 수확 조사

표 55. 청수계 유전자원 성능검정

| N0. | 품종명     | 균일도<br>1好~5 | 초자<br>1입-5개 | 엽장<br>1~5長 | 엽병<br>ant | 엽색<br>밝기 | 근장<br>1~5長 | 밑둥<br>1~5 | 측근<br>1多~5 | 곡근<br>1심~5 | 횡선<br>1심~5 | 열근<br>1심~5 |
|-----|---------|-------------|-------------|------------|-----------|----------|------------|-----------|------------|------------|------------|------------|
| C1  | 梅花春晚萝卜  | 3           | 3           | 5          | X         | 녹        | 4          | 3         | 3          | 3          | 4          | 5          |
| C5  | 华夏春     | 4           | 3           | 4          | X         | 녹        | 5          | 5         | 4          | 4          | 4          | 5          |
| C6  | 백청봄무    | 4           | 3           | 5          | X         | 녹        | 5          | 5         | 3          | 4          | 4          | 5          |
| C8  | 春秋白玉萝卜  | 2           | 4           | 5          | X         | 농록       | 4          | 3         | 3          | 3          | 3          | 5          |
| C11 | 特级马耳早萝卜 | 2           | 4           | 3          | х         | 농록       | 3          | 3         | 3          | 3          | 3          | 5          |

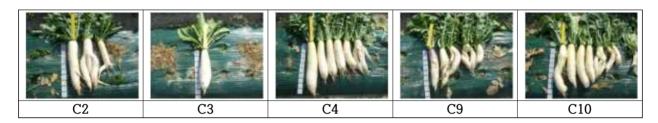



그림 77. 백수계 유전자원 수확 조사

표 56. 백수계 유전자원 성능검정

| N0. | 품종명    | 균일도<br>1好~5 | 초자<br>1입-5<br>개 | 엽장<br>1~5<br>長 | 엽병<br>ant | 엽색<br>밝기 | 근장<br>1~5<br>長 | 밑둥<br>1~5 | 측근<br>1多<br>~5 | 곡근<br>1심<br>~5 | 횡선<br>1심~<br>5 | 열근<br>1심~<br>5 |
|-----|--------|-------------|-----------------|----------------|-----------|----------|----------------|-----------|----------------|----------------|----------------|----------------|
| C2  | 夏美浓    | 3           | 3               | 4              | X         | 녹        | 4              | 3         | 2              | 3              | 5              | 5              |
| C3  | 抗熱40   | 3           | 3               | 3              | X         | 녹        | 4              | 4         | 4              | 4              | 4              | 5              |
| C4  | 昻达翰白玉  | 4           | 3               | 4              | X         | 녹        | 4              | 4         | 2              | 4              | 4              | 5              |
| C9  | 雪白大根   | 2           | 4               | 5              | X         | 농록       | 3              | 2         | 2              | 2              | 3              | 5              |
| C10 | 马桩水果萝卜 | 2           | 3               | 5              | X         | 녹        | 4              | 3         | 2              | 3              | 4              | 4              |



그림 78. 2차년도 수집 유전자원의 성능검정 및 기탁 품종

3차년도 봄 연구소 포장에서 특성조사는 2015년 4월 15일 파종, 6월 15일 수확조사 하였다 (그림 79, 표 57). 재배방법은 당사의 관행 재배법으로 실시하였다.

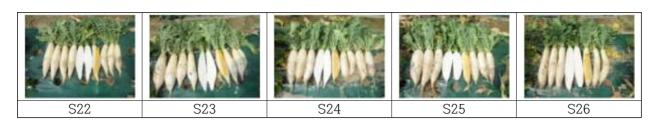



그림 79. 수집유전자원

표 57. 유전자원 특성표

| NO. | 균일도<br>1-5好 | 초자<br>1-5개 | 엽장<br>1-5長 | 내병성<br>1-5强 | 근장<br>1-5長 | 근미<br>1-5好 | 측근<br>1-5少 | 곡근<br>1심-5 | 횡선<br>1심-5 | 숙기<br>1만-5 | 바람<br>1심-5 | 비고 |
|-----|-------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|----|
| S22 | 5           | 2          | 4          | 5           | 4          | 3          | 4          | 4          | 3          | 4          | 4          |    |
| S23 | 4           | 3          | 4          | 5           | 4          | 3          | 4          | 4          | 4          | 3          | 3          |    |
| S24 | 4           | 3          | 3          | 4           | 3          | 3          | 4          | 4          | 4          | 3          | 2          |    |
| S25 | 4           | 3          | 3          | 4           | 3          | 4          | 4          | 4          | 4          | 4          | 2          |    |
| S26 | 5           | 4          | 3          | 5           | 4          | 3          | 4          | 4          | 4          | 3          | 3          |    |

BN.S22, S23은 중국 협력업체에서 3차년에 분양받은 재료로 BN.S22는 균일도가 높고, 초자는 입성형이었고 엽장이 길며 횡선이 많았으며 바람들이에 강하였고, BN.S23은 엽장이 길고 내병성이 강하며 숙기가 조금 늦은 것으로 조사되었다. BN.S24는 초자는 반개장형이고 근장이 조금 짧고 숙기가 늦고 바람들이가 심하였고, BN.S25는 균일도가 떨어지고 근장이 짧고 숙기가 빠르며 바람들이가 심하였으며, BN.S26은 H형으로 근이 균일하고 초자는 개장형으로 내병성이 강하였으나 숙기가 빨라 발람들이가 시작되었다.

상기의 유전자원중 BN.S22, S23, S26은 연구목적에 부합되는 내병성이 강한 소재로의 활용 가치가 클 것으로 판단되어 자식하여 고정하고자 한다.

가을 연구소 포장에서 특성조사는 2015년 8월 27일 파종, 11월 6일 수확조사 하였다(그림 80, 표 58). 재배방법은 당사의 관행 재배법으로 실시하였다.

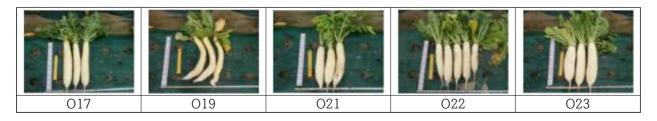



그림 80. 수집유전자원

표 58. 유전자원 특성표

| NO  | 균일도  | 초자   | 엽장   | 내병성  | 근장   | 근미   | 측근   | 곡근   | 횡선   | 숙기   | 바람   | 비고 |
|-----|------|------|------|------|------|------|------|------|------|------|------|----|
| NO. | 1-5好 | 1-5개 | 1-5長 | 1-5强 | 1-5長 | 1-5好 | 1-5少 | 1심-5 | 1심-5 | 1만-5 | 1심-5 | 미끄 |
| 017 | 3    | 3    | 3+   | 5    | 4    | 4    | 5    | 4    | 4    | 5    | 3    |    |
| 019 | 2    | 3    | 2    | 3    | 5    | 3    | 5    | 1    | 3    | 5    | 2    |    |
| O21 | 4    | 4    | 4    | 4    | 3    | 4    | 5    | 3    | 4    | 4    | 4    |    |
| O22 | 4    | 3    | 3    | 4    | 3    | 3    | 5    | 4    | 3    | 3    | 4    |    |
| O23 | 3    | 2    | 3-   | 4    | 4    | 5    | 5    | 5    | 5    | 5    | 4    |    |

가을 유전자원 성능검정에서 BN.O17은 봄 유전자원 성능검정의 BN.S26과 같은 자원으로 가을재배에서 균일도가 떨어지고 숙기는 빨라 재배시기에 따라 다소 차이가 있으나 전체적인특성은 동일하게 유지하는 것으로 판단된다. BN.O19는 판엽으로 근의 길이가 길고 곡근이 많이 발생하였으며 바람들이가 심하였다. BN.O21은 엽수가 적었고 엽장이 길며 근장이 짧은 편이며, BN.O22는 H형이나 근장이 짧고 근미 맺힘이 느리고 횡선이 다소 발생하였다. BN.O23은 초자가 개장형이고 근미 맺힘이 빠르고 근피가 깨끗하였다.

수집된 유전자원중 내병성이 강한 3품종은 한국생명광학연구원 바이오인프라 총괄본부 미생 물자원센터에 세부프로젝트 책임기관인 "대일바이오종묘"로 기탁하였으며 기탁자는 위탁연구 기관인 농업회사법인 현대종묘(주)로 등록하였다(표 59).

표 59. 유전자원 기탁 품종 특성 조사

| 품종명                | 균일도<br>1好~5 | 초자<br>1입<br>-5개 | 엽장<br>1~5<br>長 | 엽병<br>ant | 엽색<br>밝기 | 근장<br>1~5<br>長 | 밑둥<br>1~5 | 측근<br>1多~<br>5 | 곡근<br>1심~<br>5 | 횡선<br>1심~<br>5 | 열근<br>1심<br>~5 | 추대<br>1早<br>~5 |
|--------------------|-------------|-----------------|----------------|-----------|----------|----------------|-----------|----------------|----------------|----------------|----------------|----------------|
| 초월홍라복<br>超越紅蘿卜     | 2           | 3               | 4              | 0         | 녹        | 1              | 5         | 3              | 5              | 3              | 5              | 3              |
| 성도만신홍라복<br>成都滿身紅蘿卜 | 4           | 4               | 2              | 0         | 녹        | 3              | 2         | 4              | 3              | 2              | 5              | 2              |
| 화엽<br>花叶           | 3           | 4               | 3              | X         | 농녹       | 3              | 1         | 4              | 3              | 4              | 5              | 5              |

### 2. 계통육성

1차년도 계통육성은 기 보유 계통을 공시하여 특성을 검정 하였으며 특성조사를 위해 현대종 묘 육종연구소(경기도 여주 소재)에서 2013년 8월 22일 파종하였다. 시험구 배치는 14파구 2반복으로 재식거리는 25\*27cm로 2줄로 재배하였으며, 파종은 파구당 2립씩 직파하여 솎음작업을 실시하였고 재배는 일반관행을 기준으로 하였다.

매년 육성 목적에 부합되는 순도가 고정된 모본들을 개체 선발하여 성숙모본으로 포트에 정식하여 난방하우스에 2개월 정도 저온기간을 거쳐 추대되어 개화하면 2월부터 4월말까지 뇌수분하여 6월에 종자가 성숙되면 예취를 하여 7월 종자를 조제한다.



그림 81. 도입유전자원 및 계통 개체 선발

신품종 개발을 위해 그동안 현대종묘(주)에서 기 보유 계통의 특성을 검정하여 본 연구의 OP 종 무 품종 개발에 사용할 육성재료로 계통을 선발하였다. 기 보유 30계통과 도입종을 이용하여 새로운 계통을 육성하기 위해 5개체를 선발하였다(그림 81). OP종 무 계통의 특성은 추대의 안정성이 떨어지고 곡근 발생이 심하며 또한 재배환경에 따라 지근 및 생리장해가 발생한다.

품종육성을 위하여 내서성, 내습성이 강한 단엽13호의 특성을 가지면서 무 품질이 우수한 계통을 육성하며, 남방계 OP종의 단점인 곡근의 보완을 위한 근형이 균일한 계통, 장기간의 운송 및 저장을 위하여 육질이 단단해 무르지 않은 조생계통을 선발하였다.

2차년도 계통육성은 기 보유 계통을 공시하여 특성을 검정하였으며 특성조사를 위해 2014년 8월 20일 연구소(경기도 여주시 소재)에서 파종하였다. 재식거리는 25cm × 27cm, 파종립 수는 파구당 2~3립, 공시주수는 14주 2반복으로 직파하여 솎음작업을 실시하였고 재배는 일반관행에 준하였다.

조사항목은 수량조사(근장, 엽장, 엽수, 근중, 엽중), 특성조사(배축색, 모용, 지근, 곡근, 숙기, 추대)등으로 분류하여 파종 63일 후인 2014년 10월 22일에 조사하였으며, 상품성은 육안조사하였다.

본 연구과제 육성 목표에 부합되는 순도가 고정된 모본들의 개체 선발 후 포트에 정식하여 난방하우스에서 월동재배 하였으며, 1월말 추대가 진행되었으며 개화가 시작 된 2월부터 4월 말까지 계통유지를 위하여 뇌수분 하였으며, 자가불화합성 정도를 파악코자 개화수분을 실시하 였으며, 성숙된 종자들은 6월경 예취하여 불순물을 제거하고 자가불화합성 검정을 위하여 각 개체들의 종자수를 조사하였다.

본 연구 목표에 맞는 OP종 무 품종 개발을 위해 기 보유 계통 및 도입육성 소재들의 특성을 검정하여 육성재료로 사용할 우수 계통을 선발하였다. 판엽계, OP종 무 품종 개발에 필요한다양한 소재를 확보하기 위해서 근피, 추대, 근 맺힘, 바람들이 등의 원예적 형질이 우수한 계통 및 조합을 선발·분리하여, OP종 무의 단점인 추대 안정성이 낮고 곡근이 심하며 재배환경에 따라 지근 및 생리적 장해가 많이 발생하는 문제점을 개선하고자 하였다(그림 82).

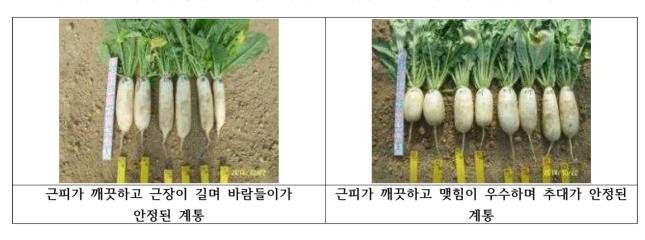



그림 82. 다양한 소재 개발을 위해 선발된 계통

기 보유 소재를 이용하여 내서성, 내습성이 우수한 백수 판엽계인 계통과 근형이 균일하고 육질이 단단 계통, 장기간 운송 중에도 무르지 않고 저장이 가능한 조생 계통을 선발(그림 83)하여 남방계 OP종 단점인 곡근, 저장성, 바람들이 등을 보완하고자 한다.



그림 83. 기보유 계통

본 연구 목표에 맞는 품종 육성하기 위해 1차년도에 선발된 계통을 세대진전하여 가을 작형에 파종(2014년 8월 20일), 계통성능검정을 실시하였다.



그림 84. 도태되는 계통

표 60. 도태 계통의 성능

| N0.  | 균일도<br>1好~5 | 초자<br>1입-5개 | 바람들이<br>1심~5 | 공 동<br>1심~5 | 적흑심<br>1심~5 | 흑반<br>1심~5 | 밑둥<br>1~5 | 측근<br>1多~5 | 곡근<br>1심~5 | 횡선<br>1심~5 | 열근<br>1심~5 |
|------|-------------|-------------|--------------|-------------|-------------|------------|-----------|------------|------------|------------|------------|
| 8564 | 2           | 3           | 1            | 5           | 5           | 5          | 2         | 3          | 3          | 4          | 5          |
| 8534 | 3           | 3           | 4            | 1           | 5           | 5          | 3         | 3          | 3          | 4          | 5          |
| 8545 | 1           | 2           | 2            | 5           | 5           | 5          | 2         | 4          | 4          | 5          | 1          |

근형이 균일하고 근미 맺힘이 우수하지만 바람들이가 심한 계통(8564), 근미 맺힘이 적당하고 근피가 깨끗하나 공동이 심한 계통(8534), 숙기가 빠르고 근장이 균일하며 근미 맺힘이 우수하지만 열피 및 바람들이가 심한 계통(8545)들은 도태를 시켜 나가며(그림 84, 표 60), 새로운 유전자원을 이용하여 선발하고 세대진전하여 원예적형질이 우수한 다양한 계통을 확보하고자 한다.

3차년도 계통육성은 기 보유 계통을 공시하여 특성을 검정하였으며 특성조사를 위해 2015년 8월 27일 연구소(경기도 여주시 소재)에서 파종하였다. 재배는 일반관행에 준하였다.

조사항목은 수량조사(근장, 엽장, 엽수, 근중, 엽중), 특성조사(배축색, 모용, 지근, 곡근, 숙기, 추대)등으로 분류하여 파종 69일 후에 조사하였으며, 상품성은 육안조사 하였다.

본 연구 목표에 맞는 OP종 무 품종 개발을 위해 기 보유 계통 및 도입육성 소재들을 2015 년 8월 27일 파종하여 특성 검정을 통해 연구목적에 부합되는 우수 계통들을 선발하였다(그림 85).이는 판엽계, OP종 무 품종 개발에 필요한 다양한 소재를 확보를 위해서 근피, 추대, 근 맺힘 및 바람들이 등의 원예적 형질이 우수한 계통과 중국에서 재배되고 있는 우수품종들을 세대진전 시켜 선발을 실시하였다.

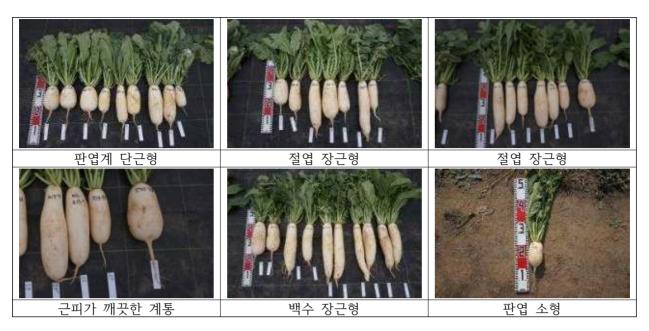



그림 85. 다양한 소재 개발을 위해 선발된 계통

내서성, 내습성이 우수한 백수 판엽계인 계통과 근형이 균일하고 육질이 단단한 계통, 장기간 운송 중에도 무르지 않고 저장이 가능한 조생계통을 선발(그림 85)하여 남방계 OP종 단점인 추대 안정성이 낮고 곡근이 심하며 재배환경에 따른 지근 및 생리적 장해가 많이 발생하는 문제점 등을 보완하고자 하였다.

바람들이, 공동, 열피가 심한 계통들은 도태를 시켜 나가며 새로운 유전자원을 이용하여 교배, 선발하여 세대진전 시켜 원예적형질이 우수한 다양한 계통을 확보 하였다.

순도가 고정된 모본들은 개체 선발 후 포트에 정식하여 난방하우스에서 월동시켜, 1월말부터 추대를 진행시켜 개화가 시작 되면 2월부터 4월말까지 계통유지를 위하여 뇌수분하여, 자가불화합성 정도를 파악코자 개화수분을 실시할 계획이며 성숙된 종자들은 2016년 6월경 예취하여 불순물을 제거하고 자가불화합성 검정을 위하여 각 개체들의 종자수를 조사하고자 한다.

4차년도 계통 육성은 봄, 가을로 구분하였으며 봄 성능검정에서는 수집 유전자원, 기 보유 계통들을 분류하여 봄용 소재 120점을 공시하였으며 2016년 4월 15일 파종하였다.

계통의 선발에는 2016년 영입된 무 육성 전문가에 의해 진행되었으며, 선발된 계통(그림86)은 2016년 10월부터 익년 1월까지 미숙모본으로 파종하여 계통육성 및 조합작성에 활용된다.



그림 86. 봄 재배 주요 선발 계통

가을 계통 성능검정에서는 추대에 비교적 민감한 계통 위주로 186계통이 공시되어 2016년 8월 19일 파종하였으나 고온 건조로 발아되지 않거나 발아되어도 고온으로 고사하여 8월 26일 재파하여 성능을 검정 하였으며, 고정된 계통(그림 87)은 미숙모본으로 10월부터 익년 1월까지

미숙모본으로 파종하여 계통육성 및 조합작성에 이용되고, 분리계통은 성숙모본(그림 88)으로 선발하여 저온 처리후 가온하우스에서 익년 3-4월 인공교배하여 계통을 육성한다.



그림 87. 가을 선발 주요 고정계통



그림 88. 가을 선발 성숙모본

### 3. SI 인자형 분석 및 내병성검정

### (1) SI 인자형 분석

무의 자가불화합 인자형 분류는 국내기술이 국제적으로 앞서있는 분야로 농업기술실용화재단에 의뢰하여 기존의 결과와 대비하여 시험을 하였다.

고정된 20계통의 자가불화합 인자 분석 결과(표 61). 10개 type로 분류 되었으며, 분류된 유전 자형은 교배조합작성 및 채종효율 증진에 이용될 것이다.

표 61. SI SCAR 마커를 이용한 무 유전자형 판별

| SI<br>type | 1 | 5 | 7 | 9 | 11 | 17 | 20 | 36 | 38 | 41 | 총<br>시료량 |
|------------|---|---|---|---|----|----|----|----|----|----|----------|
| 계통수        | 5 | 2 | 1 | 2 | 2  | 2  | 3  | 1  | 1  | 1  | 20       |

<농업기술실용화재단 분석>

2차년 자가불화합성 검정을 위해 고정된 계통의 개화된 수술 꽃가루를 암술머리에 개화수분 시켜 착협된 꼬투리의 종자수를 조사하였으며, 자가불화합성이 강한 계통은 504, 507, 516, 약한 계통은 506, 512, 517으로 나타났다. 자가불화합성이 너무 강하면 착협율이 낮아 원종증식이 어려우며 자가불화합이 약하면 품종 생산에서 채종포의 재배환경에 따라 자식율이 높아 종자의 상품성이 낮아지므로 향후채종 효율을 증진코자 이용할 예정이다.(표 60,그림 89).

표 62. 자가불화합성 검정

| 계통 NO. | 501        | 502        | 503        | 504        | 505        | 506        | 507        | 508        | 509        | 510        | 511        | 512        | 513        |
|--------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 자가불화합성 | 중<br>(0.7) | 중<br>(0.7) | 중<br>(0.6) | 강<br>(0.1) | 중<br>(0.4) | 약<br>(1.3) | 강<br>(0)   | 중<br>(0.4) | 중<br>(0.8) | 중<br>(0.9) | 중<br>(0.5) | 약<br>(1.5) | 중<br>(0.4) |
| 계통 NO. | 514        | 515        | 516        | 517        | 518        | 519        | 520        | 521        | 522        | 523        | 524        | 525        |            |
| 자가불화합성 | 중<br>(0.5) | 중<br>(0.4) | 강<br>(0.2) | 약<br>(1.2) | 중<br>(0.9) | 중<br>(0.4) | 중<br>(0.7) | 중<br>(0.8) | 중<br>(0.6) | 중<br>(0.5) | 중<br>(0.9) | 중<br>(1.0) |            |

(자가불화합 정도 : 강 0.3립이하/협, 중 0.4~1.0립/협, 약 1립이상/협)



그림 89. 착협율 조사 무 꼬투리

3차년도 자가불화합성 검정을 위해 고정된 계통의 만개된 수술 꽃가루를 암술머리에 개화 수 분시켜 착협된 꼬투리와 종자수를 조사하였다. 그 결과 5527-31, 5528-32, 5533-31번 3계통은 자가불화합성이 강하였으나, 69-32, 83-32, 86-36, 86-32, 86-36, 88-35, 88-36, 520-35, 5516-31, 5520-31번등 10계통은 자가불화합성이 약하게 나타났다.

자가불화합성이 너무 강하면 착협율이 낮아 원종증식이 어려우며 자가불화합이 약하면 품종 생산에서 채종포의 재배환경에 따라 자식율이 높아 종자의 상품성이 낮아지므로 향후 조합작 성의 참고자료로 활용할 계획이다(표 63).

표 63. 자가불화합성 검정

| 계통NO.  | SI      | 계통NO.   | SI      | 계통NO.   | SI      | 계통NO.   | SI      |
|--------|---------|---------|---------|---------|---------|---------|---------|
| 69-31  | 중약(1.0) | 100-32  | 약(1.3)  | 5522-31 | 중약(1.1) | 5526-33 | 중약(1.1) |
| 69-32  | 약(1.5)  | 509-31  | 중약(1.0) | 5522-32 | 중약(1.1) | 5527-31 | 강(0.1)  |
| 75-31  | 중약(1.1) | 509-32  | 중약(1.0) | 5524-31 | 중약(1.1) | 5528-31 | 중(1.0)  |
| 775-32 | 중약(1.1) | 520-35  | 약(1.4)  | 5524-32 | 중약(1.0) | 5528-32 | 강(0.2)  |
| 79-31  | 중약(1.0) | 520-36  | 중약(1.1) | 5525-31 | 중약(1.1) | 5532-31 | 중약(1.0) |
| 83-32  | 약(1.6)  | 521-31  | 중약(1.0) | 5525-32 | 중약(1.1) | 5532-32 | 중(0.6)  |
| 86-32  | 약(1.4)  | 521-32  | 중약(1.0) | 5525-33 | 중약(1.0) | 5533-31 | 강(0.1)  |
| 86-36  | 약(1.2)  | 5516-31 | 약(1.6)  | 5525-34 | 중(0.5)  | 5538-32 | 중(1.1)  |
| 88-35  | 약(1.5)  | 5520-31 | 약(1.5)  | 5526-31 | 중(0.6)  | 5539-31 | 중(1.1)  |
| 88-36  | 약(1.5)  | 5520-32 | 중약(1.1) | 5526-32 | 중(0.4)  | 5539-32 | 중(1.0)  |

(자가불화합 정도 : 강 0.3립이하/협, 중 0.4~1.0립/협, 약 1립이상/협)

### (2) 내병성 검정

무 재배기간 중 많은 병에 노출되기 때문에 재배시 발생 할 수 있는 무름병, 검은썩은병, 뿌리혹병, 바이러스병들에 대하여 저항성을 가질 수 있는 계통을 육성코자 내병성 검정을 실시하였다.

### 가) 무름병 저항성 검정

### (가) 재료 및 방법

### A. 식물체 준비

- 12.01.02 수발아 → 14.01.06 포트에 품종당 건강하고 균일한 6개체씩 옮겨 심음 → 14.01.29 접종 약 4주 생육 (5개체 접종, 1개체 무처리구)

### B. 병원균 농도

- OD<sub>600</sub> = 0.214 ( 약 1x10<sup>8</sup> cfu/ml) 로 맞춘 후, 생리식염수로 희석하여 1x10<sup>6</sup> cfu/ml 로 조정

### C. 접종

- 희석된 병원균 현탁액 : 100% glycerol (4:1) 로 10 ml 씩 뿌리에 관주

### D. 생육조건

- 명 16시간, 25℃ 암 8시간,18℃

# E. 발병도

- 0, 전체 식물체 병징 발현 없음(R)
- 1, 25% 이하의 발병(MR)
- 2, 25-50% 이하의 발병(M)
- 3, 50-75% 이하의 발병
- 4, 75% 이상 발병- 식물체 고사

### (나) 결과 및 고찰

무름병에 강한 계통 선발을 위하여 13계통 65주를 채소병리지원사업단에 의뢰하였다. 무름병발병도는 저항성(R) 1계통, 중도저항성(MR) 1계통, 나머지 11계통은 감수성(S)으로 검정되었다.(표 64, 그림 90). 저항성 및 중도저항성은 2차년도 교배조합에 이용되어 무름병 저항성 품종육성에 이용될 것이다.

표 64. 무름병 발병도

| 시료<br>N0. | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|-----------|---|---|---|---|---|----|---|---|---|----|----|----|----|
| 발병<br>도   | S | S | S | S | S | MR | S | S | S | S  | S  | R  | S  |

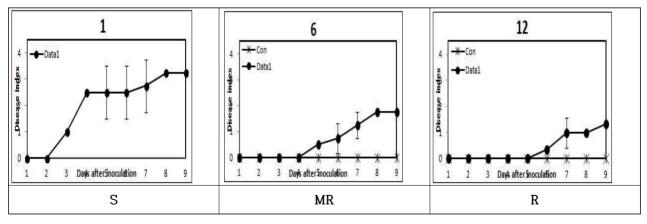



그림 90. 접종 9일 후 결과

### 나) 검은썩은병 저항성 검정

### (가) 재료 및 방법

### A. 식물체 준비

- Petri dish에 14~26품종 및 금메달 수발아(1월2일) -> 포트에 건강하고 균일한 식물옮겨심기 (1월6일)

품종당 3 포트

- 품종당 5개체 식물 접종, 1개체 식물 무접종 대조구

### B. 접종원 준비

- GW-7 균주를 YDC 배지에 streak 하여 24hr 배양(1월24일)
- PSB 액체배지에 30℃ 24hr 전배양(1월25일)
- PSB 300ml 액체배지에 본 배양 (1월26일)

### C. 접종 (1월 26일)

- 세균 배양액을 생리식염수에 현탁하여  $10^{7}$ ~ $10^{8}$  CFU/mL 농도로 세균 현탁액 조정한다.
- 식물체의 잎 가장자리 두 곳을 쥐이빨이 핀셋으로 집어서 접종한다. (한 개체당 두 개의 잎에 접종, Control로 멸균수 접종)
- 2주일 가량 키우면서 병의 진행 상황을 관찰한다.

### D. 생육조건

- 명 16시간, 25℃ 암 8시간,18℃

### (나) 결과 및 고찰

검은썩은병 저항성 계통 선발을 위하여 13계통 65주를 검정하였다. 발병도는 저항성(R) 2계통, 중도저항성(MR) 0계통, 나머지 11계통은 감수성(S)으로 검정되었다.(표 65, 그림 91). 계통 16번과 24번이 GW-7 균주에 대하여는 저항성을 보였으나 다른 race의 병원균에 대하여 감수성일 수 있으며, 국내의 균주들의 race 결정은 현재 어려운 상태이다. 저항성으로 검정된 계통은 2차년도 교배조합에 이용되어 검은썩음병 저항성 품종육성에 이용될 것이다.

표 65. 검은썩은병 발병도

| 시료<br>N0. | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
|-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 발병도       | S  | S  | R  | S  | S  | S  | S  | S  | S  | S  | R  | S  | S  |

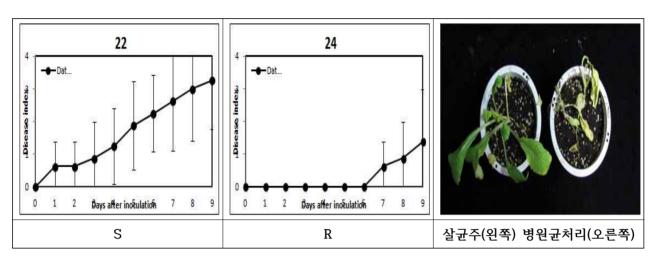



그림 91. 접종 9일 후 결과 및 처리구

### 4. 교배조합 작성 및 조합성능검정

### 가. 교배조합 작성

F1 조합 성능검정을 위하여 2012년 선발된 기 보유 우수계통을 본 과제의 품종개발에 필요한 형질의 유전적인 정보를 바탕으로 육종의 규모와 체계를 효율적으로 운영하는 것이다. 선발된 계통(그림 92).을 만추대이며 비대가 우수한 계통의 조합 작성, 고랭지에 파종하여 내재해성을 가진 계통의 조합 작성, 자가불화합 인자 분석과 병저항성 검정을 이용하여 이용하여 2월 초부터 내서성에 강한 남방계 판엽 30조합의 교배조합을 작성하였다.



그림 92. 선발된 계통을 이용한 교배 조합 작성

2차년 F<sub>1</sub> 조합작성은 1차년 성능검정에서 선발된 우수계통과 무름병 및 검은썩은병 저항성,

우수한 원예적 형질 등이 있을 것으로 판단되는 계통을 이용하여 조합을 작성하는 것이다. 선발된 계통들은 만추대이고 근피가 깨끗하며 근미 맺힘이 우수한 계통, 근피가 백수이고 비대가 빠르며 내재해성을 가진 계통, 1차년 SI SCAR 마커를 이용한 유전인자형 분석 결과(표 61)를 바탕으로 자가불화합 인자형과 무름병 저항성 계통 및 검은썩은병 저항성 계통(표 66)을 이용하며 근피가 백수이고 깨끗하며 추대가 안정되고 바람들이가 늦을 것으로 판단되는 교배조합을 40여점 작성하였다(그림 93.).

표 66. 1차년에 검정한 무름병 및 검은썩은병 저항성 계통

| 계통<br>N0.     | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|---------------|---|---|---|---|---|----|---|---|---|----|----|----|----|
| 무름병<br>발병도    | S | S | S | S | S | MR | S | S | S | S  | S  | R  | S  |
| 검은썩은<br>병 발병도 | S | S | R | S | S | S  | S | S | S | S  | R  | S  | S  |

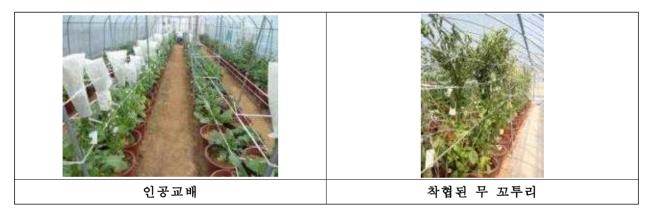



그림 93. 인공 교배 전경

3차년 교배조합작성은 1,2차년도의 SI, 내병성 검정자료를 바탕으로 전년도에 선발된 계통을 성숙모본으로 10월 하순-11월 상순 선발하여 포트에 정식하여 가온하우스에 월동시켰으며, 미숙모본은 추대의 조만에 따라 10월 하순-2월 상순 파종하여 저온 육묘하여 3월 상순에 정식하여 개화시켜 교배하였다(그림 94).



그림 94. 인공 교배 전경

4차년 교배조합작성은 년 2회 교배로 가을교배를 위하여 2016년 6월 15일 파종하여 본엽 출현시기에 4℃에서 40일간 저온처리하여 9월초에 인공교배하고, 2016년 선발된 계통을 성숙모본으로 10월 하순 선발하여 포트에 정식하여 저온 처리 후 가온하우스에 월동시켜 익년 3-4월에 인공교배하며, 미숙모본은 추대의 조만에 따라 10월 하순-2월 상순 파종하여 저온 육묘하여 3월 상순에 정식하여 익년 4-5월에 개화시켜 교배하여 계통육성 및 조합작성에 이용된다(그림 95).



그림 95 교배조합 작성용 모본

### 나. 조합성능검정

### (1) 고랭지 성능검정

1차년도에 선발된 두 개의 조합 BN7번, 19번은 대비종 보다 근형, 근피, 바람들이, 근미 맺힘 등의 우수한 특성을 갖고 있다.(그림96, 표 67). BN7은 백수계 판엽으로 근형이 우수하고 숙기가 빠르며 근미 맺힘이 우수하며, BN19는 백수계 판엽으로 근장이 짧고 엽장이 길며 근미 맺힘이 우수한 조합이다. 또한 7월~8월의 장마 및 고온기에 육질이 무르고 무름병 발생이 많으나 선발된 조합은 내서성 및 내습성에 강하게 나타났다.

2차년 고랭지 성능검정은 근비대, 추대 및 내서성 성능검정 목적으로 강원도 정선군 임계면에 위치한 고랭지 시험포에 6월 5일 파종하여 8월 22일 수확 조사하였다. 선발된 조합은 만추대 품종으로 개발한 HL1이며 백수계 판엽으로 국내용 여름무 보다 추대가 약간 빠르거나 비슷한 수준이었고, 자갈 및 수분이 많은 토질임을 감안하면 균일도가 양호하였다. 외관은 근피가 깨 끗하였으며 근미 맺힘이 적당하였지만 대비종인 단엽13호(HL2)는 조기 추대 및 무름병으로 조사를 할 수 없었다. 그리고 선발된 HL1 조합은 1차년도 채소병지원사업단에 무름병 저항성 검정결과 우수했던 계통(표 67)을 이용한 조합으로 무름병 저항성을 갖는 것으로 판단되며 향후 계통을 고정, 품종육성에 이용할 것이다(그림 97.).



그림 96. 1차년도 고랭지 선발 조합

표 67. 1차년도 선발 조합 수량조사

| BN    | 근장<br>(cm) | 상경<br>(mm) | 중경<br>(mm) | 하경<br>(mm) | 엽장<br>(cm) | 엽수<br>(매) | 근중<br>(g) | 엽중<br>(g) | 바람들이<br>(1심~5) |
|-------|------------|------------|------------|------------|------------|-----------|-----------|-----------|----------------|
| 7     | 34         | 27         | 69         | 46         | 24         | 24        | 826       | 100       | 2              |
| 19    | 31         | 37         | 70         | 48         | 35         | 18        | 1026      | 160       | 4              |
| 단엽13호 | 36         | 26         | 61         | 23         | 25         | 18        | 680       | 93        | 1              |

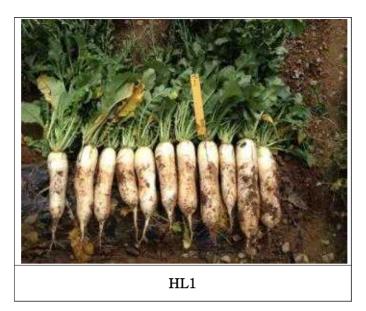



그림 97. 고랭지 HL1 성능검정

3차년도에는 해발 700m정도에 위치한 평창군 방림면 계촌지역에서 근비대, 추대, 내습성 및 내서성 성능검정 목적으로 5월 23일 파종하여 8월 조사 계획이었으나 2015년 봄 가뭄으로 파종 후 계속적인 건조한 날씨로 인하여 발아가 저조하였고 생육도 불량하여 정상 관리를 포기하여 성능검정을 할 수 없었다. 차후 조합성능검정을 실시할 계획이다.

### (2) 평지 성능검정

연구소 성능검정은 1차년도에 8월22일 27조합을 파종하였으며, 10월 17일 조합 성능검정하여 원예적 형질이 우수한 3조합을 선발하였다.(그림 98, 표 68). BN527번, 528번, 530번이 대비종보다 균일성이 우수하고 근피가 깨끗며 근미 맺힘이 우수하였다. BN527번은 근형이 우수하고 근장이 균일하며 근미 맺힘이 우수하였으며, BN528은 곡근 발생이 적고 바람들이가 늦으며 육질이 치밀하고, BN530은 비대가 빠르고 곡근 발생이 적으며 근미 맺힘이 우수한 조합이다.

2차년도에는 8월20일 40조합을 파종하였으며, 숙기가 빠른 조생종은 10월 12일 1차 수확조사를 실시하였고, 만추대 판엽계는 10월 22일 수확, 조사하여 원예적 형질이 우수한 4조합을 선발하였다.

1차 수확 조사에서는 2조합을 선발 할 수 있었으며 선발된 조합 BN802는 대비종(단엽13호) 보다 근장이 균일하고 근미 맺힘이 우수하였으며 엽장은 길고 엽수가 많았고, BN826은 근형 및 근미 맺힘이 우수하고 근비대가 빠르며 근피가 깨끗하였다(그림 99, 표 68, 표 69.).



그림 98. 1차년도 선발 조합

표 68. 1차년도 선발 조합 수량조사

| BN    | 근장<br>(cm) | 상경<br>(mm) | 중경<br>(mm) | 하경<br>(mm) | 엽장<br>(cm) | 엽수<br>(매) | 근중<br>(g) | 엽중<br>(g) | 바람들이<br>(1심~5) |
|-------|------------|------------|------------|------------|------------|-----------|-----------|-----------|----------------|
| 527   | 39         | 35         | 71         | 31         | 35         | 22        | 1033      | 200       | 2              |
| 528   | 35         | 45         | 69         | 34         | 44         | 23        | 1100      | 313       | 3              |
| 530   | 40         | 45         | 72         | 34         | 42         | 15        | 1133      | 220       | 2              |
| 단엽13호 | 42         | 29         | 69         | 29         | 44         | 23        | 1100      | 273       | 1              |



그림 99. 조생종 품종

# 표 69. 조생종 선발 조합 성능검정

| NO.   | 균일도<br>1好~5 | 초자<br>1 <b>입-</b> 5개 | 엽장<br>1~5長 | 엽병<br>ant | 엽색<br>밝기 | 근장<br>1~5長 | 밑둥<br>1~5 | 측근<br>1 <b>多~</b> 5 | 곡근<br>1심~5 | 횡선<br>1심~5 | 열근<br>1심~5 |
|-------|-------------|----------------------|------------|-----------|----------|------------|-----------|---------------------|------------|------------|------------|
| 802   | 2           | 3                    | 4          | Х         | 녹        | 4          | 2         | 3                   | 3          | 4          | 5          |
| 826   | 1           | 3                    | 4          | Х         | 녹        | 4.5        | 3         | 3                   | 3          | 4          | 5          |
| 단엽13호 | 3           | 4                    | 3.5        | Х         | 녹        | 5.5        | 2         | 4                   | 4          | 5          | 5          |

표 70. 조생종 선발 조합 수량조사

| NO.   | 근장<br>(cm) | 상경<br>(mm) | 중경<br>(mm) | 하경<br>(mm) | 엽장<br>(cm) | 엽수<br>(매) | 근중<br>(g) | 엽중<br>(g) | 바람들이<br>1심~5 |
|-------|------------|------------|------------|------------|------------|-----------|-----------|-----------|--------------|
| 802   | 32         | 57         | 58         | 38         | 47         | 20        | 800       | 270       | 3            |
| 826   | 37         | 66         | 70         | 34         | 47         | 22        | 1160      | 330       | 3            |
| 단엽13호 | 41         | 40         | 60         | 25         | 32         | 19        | 730       | 170       | 2            |

2차로 수확 조사한 만추대 판엽계인 BN508은 근비대가 빠르고 근수부가 두꺼우며 근미 맺힘이 우수하고 바람들이가 늦으며 육질이 치밀하였고, BN521은 상경, 중경, 하경이 비슷하여 포장 작업 및 운송에 유리 할 것이라 생각하였으며, 근피가 깨끗하고 육질이 치밀하여 맛이 우수하였다. 선발된 조합은 2015년 추대 및 내서성 검정 후 시교생산 및 채종시험을 거쳐 중국현지지역 적응성 시험을 할 예정이다(그림 100, 표 71, 표 72).

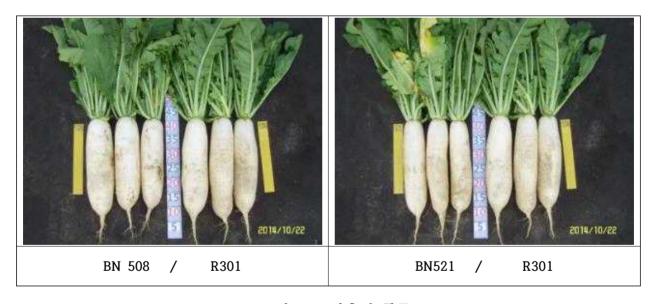



그림 100. 만추대 품종

표 71. 만추대 선발 조합 성능검정

| N0.  | 균일도<br>1好~5 | 초자<br>1입-5개 | 엽장<br>1~5長 | 엽병<br>ant | 엽색<br>밝기 | 근장<br>1~5長 | 밑둥<br>1~5 | 측근<br>1多~5 | 곡근<br>1심~5 | 횡선<br>1심~5 | 열근<br>1심~5 |
|------|-------------|-------------|------------|-----------|----------|------------|-----------|------------|------------|------------|------------|
| 508  | 1           | 3           | 4          | X         | 녹        | 3.2        | 2         | 4          | 4          | 3          | 4          |
| 521  | 2           | 3           | 4          | X         | 녹        | 3.3        | 3         | 4          | 4          | 4          | 5          |
| R301 | 2           | 3           | 5          | X         | 녹        | 3.1        | 2         | 4          | 4          | 4          | 5          |

표 72. 만추대 선발 조합 수량조사

| NO.  | 근장<br>(cm) | 상경<br>(mm) | 중경<br>(mm) | 하경<br>(mm) | 엽장<br>(cm) | 엽수<br>(매) | 근중<br>(g) | 엽중<br>(g) | 바람들이<br>1심~5 |
|------|------------|------------|------------|------------|------------|-----------|-----------|-----------|--------------|
| 508  | 32         | 62         | 84         | 53         | 48         | 27        | 1500      | 400       | 4            |
| 521  | 32         | 55         | 77         | 50         | 52         | 31        | 1200      | 500       | 4            |
| R301 | 33         | 62         | 79         | 54         | 45         | 26        | 1400      | 413       | 4            |

3차년도에는 평지 성능검정을 봄, 가을로 나누어 진행하였으며 봄재배는 2차년도에 작성된 40 조합을 4월 15일 22조합을 파종하였으며, 6월 10일 수확조사를 실시했다. 여기서는 내병성이 강하고 근미 맺힘이 좋고 측근과 곡근이 없으며 근피가 깨끗하고 숙기가 빠르며 바람들이가 적은 조합을 선발하고자 하였으며 만족할 수준은 아니지만 3조합을 선발하였다.(그림 101, 표 73). BN.607은 대비종 단엽13호에 비하여 근형이 우수하고 근장이 균일하며 측근 및 곡근의 발생이 없으며, 근피가 깨끗하였다. BN. 601, 608번은 조생이면서 추대가 비교적 안정된 판엽 계 조합이었다. 그 외 조합에서는 단엽13호보다는 원예적 형질이 우수하였으나 곡근, 추대로 인하여 상품성은 없는 것으로 판단되었다(그림 101, 표 73).



그림 101. 연구소 봄 노지 선발 조합

선발된 조합들은 무름병 및 검은썩은병 저항성 계통을 이용하여 작성된 조합들로서 병저항성이 우수하였다. 미 선발된 조합들도 병저항성 계통들을 이용한 조합들은 대부분 무름병 및 검은썩은병에 감염되지 않았으나 중도저항성 및 저항성이 없는 계통을 활용한 조합들과는 확연한 차이가 나는 것으로 조사되었다.

2차년도에 작성된 조합성능검정 결과 BN. 607번은 근미, 측근, 곡근, 횡선, 바람들이 등이 대비품종인 단엽13호 보다 우수하였고 숙기는 대비품종보다 빠른 반면에 바람들이가 늦어 중국현지 지역적응성검정에서도 우수할 것이라 판단된다.

표 73. 연구소 봄 노지 선발 조합 특성표

|     | 균일   | 초자     | 엽장    | 내병   | 근장          | 근미    | 측근            | 곡근    | 횡선           | 숙기   | 바람    |      |
|-----|------|--------|-------|------|-------------|-------|---------------|-------|--------------|------|-------|------|
| NO. | 도    | 1-5개   | 1-5長  | 성    | L 。<br>1-5長 | 1-5好  | ¬ L<br>  1-5少 | 1심-5  | - 8년<br>1심-5 | 1만-5 | 1심-5  | 비고   |
|     | 1-5好 | 1 0/11 | 1 512 | 1-5强 | 1 012       | 1 041 | 1 09          | 1 8 3 | 1 8 3        | 16.0 | 1 1 3 |      |
| 601 | 4    | 3      | 3     | 5    | 4           | 2     | 5             | 3     | 4            | 3    | 1     |      |
| 607 | 4    | 3      | 3     | 5    | 3           | 4     | 5             | 5     | 5            | 4    | 4     |      |
| 608 | 4    | 2      | 4     | 4    | 3           | 4     | 5             | 4     | 2            | 5    | 3     |      |
| 622 | 4    | 3      | 2     | 5    | 4           | 2     | 4             | 4     | 4            | 2    | 3     | 단엽13 |

연구소 가을 노지 성능검정은 2차년도에 선발된 계통 및 기 보유 우수계통을 이용하여 작성된 조합을 8월 27일 23조합을 파종하였으며, 11월 6일 성능검정하여 원예적 형질이 우수한 3조합을 선발하였다.(그림 102, 표 74). 대비종은 R301로 하였으며 BN.508은 판엽계로 입성이며 근비대가 빠르고 근미 맺힘이 좋으나 바람들이에 조금 약했다. BN.509는 판엽계로 균일도가 높고 근피가 깨끗하고 바람들이가 없으나 근미 맺힘이 조금 늦었다. 이 조합은 차년도 중국 현지 성능검정을 실시하고자 한다. BN.511은 숙기가 빠르고 근미 맺힘이 좋고 다수성이여서 협력업체에서 중국현지 성능검정이 필요하다고 하여 진행할 예정이다.

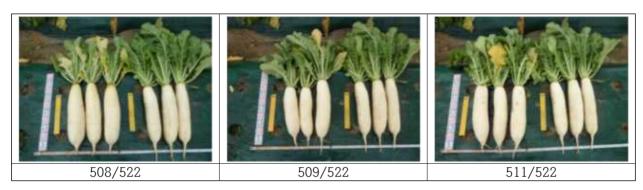



그림 102. 연구소 가을 노지 선발 조합

표 74. 연구소 가을 노지 선발 조합 특성표

| NO. | 균일<br>도<br>1-5好 | 초자<br>1-5<br>개 | 엽장<br>1-5<br>長 | 내병<br>성<br>1-5强 | 근장<br>1-5長 | 근미<br>1-5好 | 측근<br>1-5<br>少 | 곡근<br>1심<br>-5 | 횡선<br>1심-5 | 숙기<br>1만-5 | 바람<br>1심-5 | 비고   |
|-----|-----------------|----------------|----------------|-----------------|------------|------------|----------------|----------------|------------|------------|------------|------|
| 508 | 4               | 1              | 2              | 4               | 4          | 5          | 5              | 5              | 4          | 5          | 3          |      |
| 509 | 5               | 2              | 3              | 5               | 4+         | 3          | 5              | 4              | 5          | 4          | 5          | 현지검정 |
| 511 | 3               | 2              | 3              | 5               | 4          | 4          | 5              | 5              | 4          | 5          | 5          | 현지검검 |
| 522 | 4               | 3              | 3              | 5               | 5          | 3          | 5              | 5              | 4          | 4          | 4          | R301 |

4차년도에는 평지 성능검정을 2016년 8월 26일 파종하여 10월 24일 성능검정 하였다. 1,2,3차년도에 성능이 우수하다고 판단된 17조합을 공시 하였으며, 선발된 조합은 판엽으로 백수인 BN. 605번이며 대비종 301에 비하여 근미맺힘이 좋은 H형이며 근피에 피목이 가늘고 측근이적으며 초형이 입성이고 노균병에 강하고 엽병이 청색으로 포전매매에 유리한 조합이였다.(그

림 103).

선발된 조합은 2017년 시교생산 및 현지 적응성 검정으로 시장접근이 가능할 것으로 판단된다.



그림 103. 가을 선발 BN. 605

#### 5. 현지 성능 검정

1차년도 지역적응성 검정은 중국 광동성 육봉시 남당진에 2개의 시교를 1월, 10월 2차에 걸쳐 실시하였다. 2012년 10월 10일 파종하여 1차 시험이 완료 되었으며, 1월 말 파종한 시교는 성 능검정을 완료하였다. 시교 91번은 근장이 짧고 근미 맺힘이 빠르고 바람들이가 늦고 추대가 안정된 품종이며, 시교 92번은 내재해성에 강하고 비대가 빠르며 육질이 치밀하고 맛이 우수한 품종이다(그림 104).

2차년도 지역적응성 검정은 중국 호북성 장양시 고랭지(해발 1,700m)에 공시된 "14T9-1(HL1)"과 "14T23-1"은 1차(2013)년 가을 연구소 포장에서 조합성능검정 결과 판엽이면서 근비대력이 우수하고 근피가 깨끗하면서 근미 맺힘이 좋아 선발된 조합으로 topping에서시교 채종하여 7월17일 파종하여 10월 10일 수확 조사를 실시하였다.



그림 104. 중국 광동성 지역 적응성 시험

14T9-1은 근장이 길고 고온기 비대력이 조금 늦으며 청수 발현이 적어 가을 저온기 작형으로 우수하며, 14T23-1은 근피가 깨끗하고 비대력이 좋으며 내병성 및 바람들이가 안정되나, 근장이 짧고 청수가 발현되는 분리개체가 출현하였으므로 계통을 고정해야 될 것으로 보여지며 (그림 105), 두 시교 모두 2015년에 2차 적응성 시험을 실시할 예정이다.



그림 105. 시교 현지 적응성 시험

3차년 공시 조합은 "14T6-1"과 "14T7-1"로 1차(2013)년 가을 연구소 포장에서 조합성능검정 결과 근비대력이 우수하고 근피가 깨끗하면서 근미 맺힘이 좋아 선발된 조합으로 topping에서 시교 채종하여 3월15일 파종하여 5월 22일 수확조사를 실시하였다(그림 106, 표 75). 동시에 연구소에서도 같은 조합을 4월 15일 파종하여 6월 15일 수확조사 하였다(그림 107, 표 75).

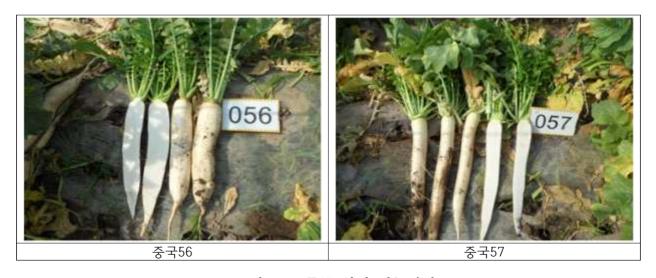



그림 106. 중국 현지 성능검정

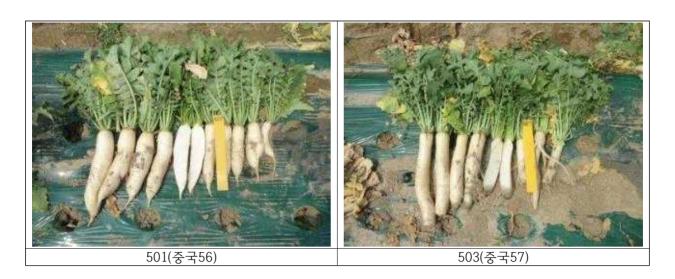



그림 107. 연구소 봄 성능검정

BN.56(501)은 중국현지에서 근장이 길고 근미 맺힘이 좋으며 숙기가 빨랐고, 연구소에서는 내병성이 강하고 근피가 깨끗하였으며 전체적인 특성은 유사한 것으로 판단된다. BN.57(503)은 중국에서 초자가 개장형으로 근장이 길며 측근의 발생이 적고 바람들이가 없는 반면 연구소에서는 근이 조금 더 굵은 정도이며 형태는 유사하였다.

표75. 중국 현지 성능검정(연구소 봄 노지와 비교)

| NO.   | 균일<br>도<br>1-5好 | 초자<br>1-5<br>개 | 엽장<br>1-5<br>長 | 내병<br>성<br>1-5强 | 근장<br>1-5長 | 근미<br>1-5好 | 측근<br>1-5<br>少 | 곡근<br>1심<br>-5 | 횡선<br>1심-5 | 숙기<br>1만-5 | 바람<br>1심-5 | 비고  |
|-------|-----------------|----------------|----------------|-----------------|------------|------------|----------------|----------------|------------|------------|------------|-----|
| 56    | 4               | 4              | 3              | 3               | 4          | 4          | 5              | 4              | 2          | 5          | 4          | 중국  |
| (501) | 4               | 4              | 3              | 5               | 3          | 2          | 4              | 4              | 4          | 2          | 3          | 연구소 |
| 57    | 4+              | 4              | 2              | 5               | 5          | 1          | 5              | 4              | 5          | 3          | 5          | 중국  |
| (503) | 4               | 3              | 3              | 5               | 4          | 1          | 3              | 4              | 4          | 3          | 4          | 연구소 |

3차년 7월 호북성 장양현지역에 DHR151품종의 지역적응성 검정을 위하여 1무 파종하여(그림 108) 성능검정을 실시한 결과 육성목표에 부합되는 내서성 및 내습성이 강하였으며 근형이 아주 균일하였고 곡근발생이 적어 상품율이 높았다. 그리고 조생종으로 근미 맺힘은 우수하였고 비대가 빨랐으나 바람들이가 늦어 육질이 치밀하였다.



그림 108. 호북성 적응성검정

협력업체 및 재배농민의 평가는 근형이 H형으로 근장이 30cm정도로 아주 상품성이 우수한 형태를 지니고 있고 조생종이면서 바람들이가 늦어 수확 시기를 어느 정도 조절할 수 있어 가격 결정에 유리하다는 평가를 하였다. 이는 호북성 고랭지 가을무 단지에서 중도매인들이 일시수확하여 경매장으로 출하하기 때문에 근 비대력이 우수하면서 바람들이가 늦은 품종들은 출하시기 조절이 가능하기 때문에 물량조절을 통해 출하하면 농가소득에 도움이 되어 재배에 있어 바람들이가 아주 중요한 점으로 고려되었다.

호북성 성능검정 결과 DHR151품종이 우수하다고 판단하여 중국 협력업체에서 호북성 및 운남성지역에 확대시교용 종자를 요청하였다. 확대시교용 종자 생산을 위하여 미숙모본을 12월 파종하였으며 3월 topping에 정식하여 시교 채종을 계획하였다. 채종한 종자는 7월초에 공시할 예정이며 협력업체에서는 4차년 확대시교를 통해 홍보에 집중할 계획이다.

4차년 현지 적응성 시험은 3차년 연구소에서 1차 선발된 조합을 중국 협력업체인 대일국제종묘 연구소 포장에서 진행하였으며, 파종은 2016년 3월 28일(1차)과 4월 9일(2차), 성능검정은 2016년 6월 3일(1차)과 6월 8일(2차)에 하였다. BN. 078은 대비종 세농 벽옥(BN. 095)에 비해균일도가 좋으며, 근미맺힘이 우수하고 숙기가 5일정도 빨랐다(그림 109). 포장에서의 추대에둔감하며 입모상태도 우수하고 엽장이 짧고 엽색이 진하며 입성이므로 중국 협력업체에서 지역적응성 시험 및 확대시교사업을 요청하여 준비 중이다.



그림 109. 북경 성능검정

### 6. 품종등록

지역적응성 시험에서 시교 91번이 상품성이 우수하여 생산판매신고를 하였다.

(1) 생산판매신고

- 품 종 명 : HDR151

- 신고번호 : 02-0001-2014-1

- 특 성 : 내서성, 내습성에 강하며 근형이 균일하고 곡근 발생이 적고 비대가 빠르고 근 미 맺힘이 우수하며 바람들이가 늦고 육질이 치밀하다.

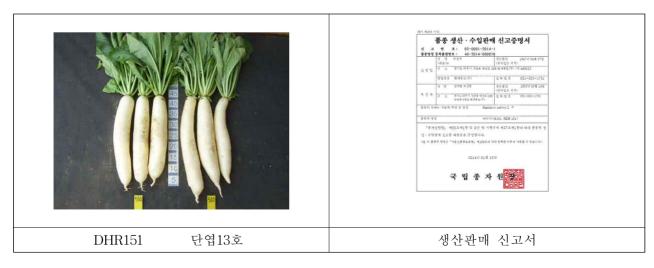



그림 110. 생산판매신고 품종

### 7. 유전자원등록

현국영명리학연구원 이생활지원센터 (http://kgfc.kt/bb.fe.kt) 연구성공월 (http://biorp.kr/bb.re.kr) 미단권학자 유성구 교학로 125 Tel: 042-600-4602, FAK: 042-600-4025

#### 연구성과물(생물자원) 기탁 필증

|            |             |                                      | 기탁번호           | 881         | 88371-8P1188373 |  |
|------------|-------------|--------------------------------------|----------------|-------------|-----------------|--|
| 연구개발사업명    | Goldenseed3 | 프로젝트                                 |                | -           |                 |  |
|            | 연구과제멮       | 응국 제리                                | 명종을 이용한 두 분증개발 |             |                 |  |
| 本产证据       | 연구기관명       | 대일바이오종묘(주)                           | 연구확인           | 발자          | 강남점             |  |
| THE MAIL   | 연구기간        | 2013.07~2017.05 (협약기간 치수 : 총 4년 중 2차 |                |             |                 |  |
|            | 기탁명         | 무 중자 3중                              |                |             |                 |  |
| 센투과됐       | 연구과제명       |                                      |                |             |                 |  |
|            | 연구기관명       |                                      | 연구박당           | (X)         |                 |  |
| 세무과세       | 연구기간        |                                      |                |             |                 |  |
|            | 21 탁 명      |                                      |                |             |                 |  |
|            | 연구과제명       |                                      |                |             |                 |  |
| M 學 TEN    | 연구기관명       |                                      | 연구확인           | 4.23        |                 |  |
| VE ALTE VE | 연구기건        |                                      |                |             |                 |  |
|            | 기탁명         |                                      |                |             |                 |  |
| 기탁소재 구분    |             | 6.7                                  | 3-             |             |                 |  |
| 刀型母等       |             | 기탁일                                  | T)             | 2014, 9, 29 |                 |  |

귀 기관에서 기막하신 상기 연구성과들(생물자원)을 국가연구개발사업의 관리 등에 관한 규정(대통 영향) 개경(2008.5.27 공포) 및 등 규정 시청구작 개경(2008.7.8 공포)에 따라 상기와 같이 기탁 받았 응용 확인합니다.

2014년 11월 19일

생물자원 성과물전답기관 한국생명공학연구원 미생물자원센터장 [인]/

타국생명공학연구등 미래활지원랜터(http://kctc.krlbb.re.kr) 연구성과을 (http://biorp.krlbb.re.kr) 대관광역시 유연구 과학로 125 Tel: 042-860-4802, FAX: 042-860-4625 연구성과물[생물자원] 기탁 목록

| 可能能量      |                     |               |                    |         |      |
|-----------|---------------------|---------------|--------------------|---------|------|
| (BP)      | 생월자본명               | 본리면호          | 연구교체정              | 연구책임자   | # 1  |
| BP1188371 | Rephanus sativus L. | 1             | 保利益部 平 地形の 資金的料 万利 | 2767.00 | 香用   |
| BP1188372 | Raphanus sativus L. | 2             | 중국 과려증별 이용한 두 분들개발 | Rich    | - 南京 |
| 6P1186375 | Raphanus sativus L. | 3             | 要号 取得最佳 の景色 早 務直測室 | 9.64    | 5.1  |
|           |                     |               |                    |         |      |
|           |                     |               |                    |         |      |
|           |                     |               |                    |         |      |
|           |                     |               |                    |         |      |
|           |                     |               |                    |         |      |
|           |                     |               |                    |         |      |
|           |                     |               |                    |         |      |
|           |                     |               |                    |         |      |
|           |                     | _             |                    | -       |      |
|           |                     | _             |                    | -       |      |
| _         |                     | -             |                    |         |      |
|           |                     |               |                    | _       |      |
|           |                     | $\rightarrow$ |                    |         |      |
| _         |                     | _             |                    |         |      |
|           |                     |               |                    |         |      |
|           |                     |               |                    |         |      |
|           |                     | _             |                    |         |      |
|           |                     | _             |                    |         | _    |
|           |                     | _             |                    |         | _    |
|           |                     | _             |                    |         |      |
|           |                     | -             |                    |         |      |
|           |                     | _             |                    |         |      |
|           |                     |               |                    | _       |      |
|           |                     | _             |                    |         |      |
|           |                     | _             |                    | 1       | -    |
|           |                     | _             |                    | _       |      |
| _         |                     | _             |                    |         |      |
|           |                     | _             |                    | _       |      |
|           |                     | _             |                    | _       |      |
|           |                     | -             |                    | _       |      |
|           |                     | _             |                    | _       |      |
| _         |                     | _             |                    |         |      |
|           |                     | _             |                    |         |      |

그림 111. 유전자원 기탁 필증 및 목록

## 제 4 장 목표달성도 및 관련분야에의 기여도

본 과제의 목표는 품종 개발을 통해 중국 종자 시장을 겨냥한 상업화 과제로 본 과제를 통해 중국용 무 신품종을 개발하고 중국 무 종자 시장 전반에 걸쳐 수출 경쟁력을 강화하고자 한다. 본 과제를 통해 중국 무의 주요 타입인 백수계/청수계/OP종 무의 고품질 F1 종자를 개발하고, 중국 현지 네트워크 구축을 통해 향후에도 안정적으로 중국 수출이 가능한 체계를 구축하여, 국내 종자 업계의 중국 수출 증대를 이루고자 한다. 따라서 제1세부 연구과제는 중국 전 지역에 걸쳐 재배되고, 가장 선호하는 백수계 무 품종 육성 연구를 수행하여 신품종을 개발하고 종자를 수출하여 국내 종자 산업 발전에 기여하였다.

### 제 1 절 연구목표 달성도

- 1. 연구개발 수행 결과의 기준 및 달성도
- 가. 만추대 타원형 백수계 품종개발

|                 | 리크시 티시크 이 기다                    |        |         |
|-----------------|---------------------------------|--------|---------|
| 구분              | 평가의 착안점 및 척도                    |        |         |
| 1 1 1           | 착안사항                            | 척도(점수) | 달성도 (%) |
|                 | ○ 유전자원의 수집 및 계통육성 얼마나 이루어졌는지 여부 | 20%    | 100     |
| 1차년도            | ○ 교배조합 수의 목표 달성 여부              | 20%    | 100     |
| (2013년)         | ○ 작성된 F1조합은 성능비교시험에 공시되었는지의 여부  | 30%    | 100     |
|                 | ○ 유망한 우수조합의 선발                  | 20%    | 100     |
|                 | ○ 현지 시교 진행 사항 및 결과 공지           | 10%    | 100     |
|                 | ○ 교배조합 수의 목표 달성 여부              | 10%    | 100     |
| 2차년도<br>(2014년) | ○ 작성된 F1조합은 성능비교시험에 공시되었는지의 여부  | 20%    | 100     |
|                 | ○ 유망한 우수조합의 선발                  | 30%    | 100     |
|                 | ○ 현지 시교 진행 사항 및 결과 공지           | 20%    | 100     |
|                 | ○ 현지 네트워크 구축에 대한 보고서            | 20%    | 100     |
|                 | ○ 수집된 유전자원 등록이 얼마나 이루어졌는지 여부    | 5%     | 0       |
|                 | ○ 작성된 F1조합은 성능비교시험에 공시되었는지의 여부  | 10%    | 100     |
| 3차년도            | ○ 유망한 우수조합의 선발                  | 10%    | 100     |
| (2015년)         | ○ 현지 시교 진행 사항 및 결과 공지           | 20%    | 100     |
|                 | ○ 생산 판매 신고 및 품종 보호 출원 여부        | 25%    | 100     |
|                 | ○ 종자 판매액의 목표 대비 달성 여부           | 30%    | 100     |
|                 | ○ 작성된 F1조합은 성능비교시험에 공시되었는지의 여부  | 10%    | 100     |
| 4차년도            | ○ 유망한 우수조합의 선발                  | 10%    | 100     |
| (2016년)         | ○ 현지 시교 진행 사항 및 결과 공지           | 20%    | 100     |
| (2010년)         | ○ 품종 보호 출원 여부                   | 30%    | 100     |
|                 | ○ 종자 판매액의 목표 대비 달성 여부           | 30%    | 90      |

#### 나. 만추대 타원형 청수계 품종개발

| 그ㅂ | 평가의 착안점 및 척도 |        |         |
|----|--------------|--------|---------|
|    | 착안사항         | 척도(점수) | 달성도 (%) |

|         | ○ 유전자원의 수집 및 계통육성 얼마나 이루어졌는지 여부 | 20% | 100 |
|---------|---------------------------------|-----|-----|
| 1차년도    | ○ 교배조합 수의 목표 달성 여부              | 20% | 100 |
| I ' I   | ○ 작성된 F1조합은 성능비교시험에 공시되었는지의 여부  | 30% | 100 |
| (2013년) | ○ 유망한 우수조합의 선발                  | 20% | 100 |
|         | ○ 현지 시교 진행 사항 및 결과 공지           | 10% | 100 |
|         | ○ 교배조합 수의 목표 달성 여부              | 10% | 100 |
| 2차년도    | ○ 작성된 F1조합은 성능비교시험에 공시되었는지의 여부  | 20% | 100 |
| (2014년) | ○ 유망한 우수조합의 선발                  | 30% | 100 |
| (2014년) | ○ 현지 시교 진행 사항 및 결과 공지           | 20% | 100 |
|         | ○ 현지 네트워크 구축에 대한 보고서            | 20% | 100 |
|         | ○ 작성된 F1조합은 성능비교시험에 공시되었는지의 여부  | 10% | 100 |
| 3차년도    | ○ 유망한 우수조합의 선발                  | 10% | 100 |
| (2015년) | ○ 현지 시교 진행 사항 및 결과 공지           | 20% | 100 |
| (2013년) | ○ 생산 판매 신고 및 품종 보호 출원 여부        | 30% | 100 |
|         | ○ 종자 판매액의 목표 대비 달성 여부           | 30% | 100 |
|         | ○ 작성된 F1조합은 성능비교시험에 공시되었는지의 여부  | 10% | 100 |
| 451111  | ○ 유망한 우수조합의 선발                  | 10% | 100 |
| 4차년도    | ○ 현지 시교 진행 사항 및 결과 공지           | 20% | 100 |
| (2016년) | ○ 품종 보호 출원 여부                   | 30% | 100 |
|         | ○ 종자 판매액의 목표 대비 달성 여부           | 30% | 20  |

### 다. 중국 재래종을 이용한 무 품종개발

| 구분<br>(연도)     | 세부연구목표                     | 달성도<br>(%) | 연구개발 수행내용                      |
|----------------|----------------------------|------------|--------------------------------|
| ( ( 4 4 )      |                            |            |                                |
|                | 1. 유전자원 수집 및 특성평가          | 100        | -중국 유전자원 30점 특성평가              |
|                | 2. 우수계통 육성 400계통(북경)       | 100        | -기 보유 400계통 세대진전               |
|                | 2. +1/1/8 4/8 400/1/8(4/8) | 100        | -유전자원 30개체 성숙모본 선발 세대진전(김제)    |
|                | 3. SI 인자 분석                | 100        | -SI인자 신규 동정 49점 분석             |
| <br> <br> 1차년도 | 4. 교배조합 작성 200조합(북경)       | 100        | -상품성, 만추대성 200조합 작성            |
|                | 5. 국내 재배시험 45조합            | 100        | -가을 45조합 검정                    |
| (2013)         |                            |            | -346조합 검정(북경)                  |
|                |                            | 100        | -50조합 검정(산동성)                  |
|                | 6. 현지 시교 시험 조합(중국)         | 100        | -21조합 검정(절강성)                  |
|                |                            |            | -100조합 검정(광동성)                 |
|                | 7. 생산판매신고 2품종              | 200        | -품종명 : 강남청수, 대청수               |
|                | 1. 유전자원 수집 및 특성평가          | 100        | -유전자원 특성조사                     |
|                | 2. 우수계통 육성                 | 100        | -기 보유 계통 세대진전(북경), 계통 세대진전(김제) |
|                | 3. SI인자 분석 및 순도검정          | 100        | -자가불화합 인자분석, 종자순도검정            |
| 2차년도           | 4. 교배조합 작성-80조합            | 100        | -김제, 북경에서 조합 작성                |
| (2014)         | 5. 국내 재배시험-60조합            | 100        | -봄 76조합, 가을 47조합               |
|                | 6. 현지 시교시험-10품종            | 100        | -북경, 절강성, 운남성, 호북성             |
|                | 7. 생산판매 신고-1품종             | 0          |                                |
|                | 8. 종자 판매-1만불               | 99.5       | -9,950불 수출                     |

|        | 1. 유전자원 수집 및 특성 평가 | 100  | -중국현지에서 유전자원 수집 및 특성조사(쨔샤이:<br>줄기 갓, 순무 등 포함) |
|--------|--------------------|------|-----------------------------------------------|
|        | 2. 우수계통 육성         | 100  | -기 보유 계통에서 선발하여 세대진전, MS화                     |
| 1      | 3. 교배조합 작성-160조합   | 100  | -김제, 북경에서 조합작성                                |
| 3차년도   | 4. 국내 재배시험-140조합   | 100  | -하우스, 노지로 나눠 가을재배시험                           |
| (2015) | 5. 현지 시교시험-20품종    | 100  | -북경, 복건성, 광동성, 호북성                            |
|        | 6. 품종보호출원-1품종      | 100  | -품종명: 청춘하무                                    |
|        | 7. 종자 판매-12만불      | 22.2 | -26,650불 수출                                   |
|        | 8. 국내 판매           | 100  | -국내 판매 3,000만원 달성                             |
|        | 1. 우수계통 육성         | 100  | -기 보유 계통에서 선발하여 세대진전, MS화                     |
|        | 2. 교배조합 작성-220 조합  | 100  | -김제 북경에서 조합작성                                 |
| 4차년도   | 3. 국내 재배시험-170 조합  | 100  | -전북 김제에서 봄, 가을 재배시험                           |
|        | 4. 현지 시교시험-25 품종   | 100  | -중국 북경 현지 시험                                  |
|        | 5. 생산판매 신고-2품종     | 150  | -품종명 : 화이트스노우미노, 리버풀-7,리버풀-9                  |
|        | 6. 종자 판매-25만불      | 116  | - 29만불 수출                                     |

#### 라. 중국 남방계 재래종 품종 개발

| 과제명       | 세부연구목표                   | 달성도<br>(%) | 연구개발 수행 결과 내용                                                     |
|-----------|--------------------------|------------|-------------------------------------------------------------------|
| 중국 남방계    | ○ 유전자원 수집<br>○ 생산판매 신고 및 | 75         | • 중국 유전자원 수집<br>(계획_누적 4점, 실적_누적 3점)<br>• 시교 사업을 통해 선발한 우수조합에 대해서 |
| 재래종 품종 개발 | 품종보호 출원                  | 100        | 생산판매 신고(계획 1건-실적 1건)<br>• 중국 및 기타 국가에 종자 수출                       |
|           | ° 중사 구물<br>              | 0          | (계획_누적 3만불, 실적_누적 0만불)                                            |

### 제 2 절 관련 분야 기여도

1. 만추대 타원형 백수계 품종개발

가. 재료 개발 및 품종 개발

본 과제에서는 중국 백수무/청수무/OP종으로 무를 구분하여 각 특성에 적합한 계통 및 품종을 개발하였다. 기존 특정 형질의 수출 품종 개발이 아닌 중국 전체 시장을 세분화하여 연구과제를 수행하였고, 이는 보다 효과적으로 시장에 접근하기 위한 연구 전략이라 생각된다. 따라서 중국과 같이 매우 큰 시장에 접근하기 위한 수출 품종 과제의 좋은 모델이라고 생각한다. 본 연구팀은 이러한 전략으로, 각 세부 과제 목표에 맞는 계통을 확보하였고 품종 개발을 진행중이다. 본 연구 과제를 통해, 제 1세부과제에서는 중국 백수계 무 품종 개발에 필요한 계통을

다수 확보하였고, 미래의 품종육성 기반을 마련하였다. 향후 추가로 진행되는 연구 과제를 통해 개발된 품종은 종자 수출 증대 및 국내 종자 산업 발전에 기여할 수 있을 것으로 기대된다.

#### 2. 만추대 타원형 청수계 품종개발

#### 가. 정책적 기여도

본 과제를 통해 채소 종자 산업 강국으로의 도약의 발판을 마련하고 종자 산업 분야에 대한 다양한 정보제공을 통한 산업발전에 기여하는 것이 기대되며 국내 종자 산업의 활성화로 고용 이 증대되고 세계 종자 시장 진출로 국제 경쟁력을 확보할 수 있다.

#### 나. 기술적 기여도

분자표지를 이용하여 육종연한을 단축시키고 중국 무 시장에 적합한 다양한 유전자원을 확보하였다. 내병성 품종의 개발로 농약 사용을 줄여 친환경 농업에 기여하며 마커검정, 소포자 배양 기술 등의 이용으로 품종 육성의 과학화 및 효율화를 추구하였다. 이러한 기술을 활용하여 중국 시장에 적합한 무 품종을 개발하면 농가소득 향상 및 종자 수출이 기대된다.

#### 다. 경제적 기여도

본 과제의 수행으로 중국지역에 적합한 품종이 개발되어 과제 종료 시점인 2016년에 9,800불의 종자를 수출하게 되었으며 과제 종료 이후의 종자 수출의 발판을 마련하였다.

#### 3. 중국 재래종을 이용한 무 품종개발

본 연구 과제를 통해, 제 3세부과제에서는 중국 OP종을 이용하여 중국 현지에 보다 적합한 교배종 품종 개발에 필요한 계통을 확보하였고, 현지 영업망을 확대하였다. 향후 추가로 진행되는 연구 과제를 통해 개발된 품종은 중국뿐만 아니라 동남아시아 시장도 개척하여 국내 종자 수출 산업에 기여할 수 있을 것으로 기대된다.

### 4. 중국 남방계 재래종 품종 개발

중국 유전자원의 특성을 검정하고 우수 유전자원을 수집하여 중국 수출용 품종 개발에 유용한 자원으로 활용가능하며 향후 중국 시장에 진출할 품종개발이 기대된다.

# 제 5 장 연구개

# 제 1 절 연구 개발 성과

### 1. 만추대 타원형 백수계 품종개발

### 가. 품종보호출원 및 생산판매신고

| 구분          | 건수               | 출원명       | 출원 번호          | 출원국가 |
|-------------|------------------|-----------|----------------|------|
| 품종보호출원      | 9                | RACS 2125 | 출원2015-733     | 한국   |
| - B 등 도오돌 전 | 2                | RACS 3010 | 출원2016-510     | 한국   |
| 생산판매신고      | 생산판매신고 1 CT 7008 |           | 02-0001-2016-3 | 한국   |

### 나. 종자 수출

본 과제를 통해 개발된 품종은 상업화하여 판매 진행 중이며 기존 수출 품종은 수출 확대를 위해 시장 개발 중이다.

| 종자수출액( | 종자수출액(USD)           |              |       |         |  |  |  |  |  |  |
|--------|----------------------|--------------|-------|---------|--|--|--|--|--|--|
| н) ÷   | 入支亚口                 |              | 수출액   |         |  |  |  |  |  |  |
| 번호     | 수출품목                 | 수출일          | 수출국   | 수출금액    |  |  |  |  |  |  |
| 1      | 무-SNOW TOWER         | 2014. 01 .21 | 중국    | 46,113  |  |  |  |  |  |  |
| 2      | 무-WHITE JADE         | 2014. 03. 25 | 중국    | 7,200   |  |  |  |  |  |  |
|        | 1차년도 합계              |              |       | 53,313  |  |  |  |  |  |  |
| 1      | 무-SNOW TOWER         | 2014. 09. 04 | 대만    | 3,600   |  |  |  |  |  |  |
| 2      | 무-SPRING LIGHT       | 2014. 09. 25 | 미국    | 20,000  |  |  |  |  |  |  |
| 3      | 무-SPRING LIGHT       | 2014. 10. 27 | 미국    | 10,896  |  |  |  |  |  |  |
| 4      | 무-NEPTUN             | 2014. 10. 30 | 독일    | 25,000  |  |  |  |  |  |  |
| 5      | 무-SPRING LIGHT       | 2014. 12. 19 | 홍콩    | 2,400   |  |  |  |  |  |  |
| 6      | 무-NEW TROPICAL SWEET | 2014. 11. 12 | 방글라데시 | 500     |  |  |  |  |  |  |
| 7      | 무-GANGNAM            | 2014. 12. 19 | 태국    | 4,000   |  |  |  |  |  |  |
| 8      | 무-SPRING-LIGHT       | 2015. 01. 15 | 홍콩    | 1,600   |  |  |  |  |  |  |
| 9      | 무-VOLRAP200          | 2015. 01. 23 | 독일    | 7,650   |  |  |  |  |  |  |
| 10     | 무-SPRING-LIGHT       | 2015. 01. 26 | 네덜란드  | 400     |  |  |  |  |  |  |
| 11     | 무-LONG WHITE MINO    | 2015. 01. 28 | 인도    | 175,000 |  |  |  |  |  |  |
| 12     | 무-VOLRAP200          | 2015. 02. 26 | 독일    | 3,825   |  |  |  |  |  |  |
| 13     | 무-VOLRAP200          | 2015. 03. 11 | 독일    | 3,825   |  |  |  |  |  |  |
| 14     | 무-BAIFENG            | 2015. 03. 13 | 중국    | 30,000  |  |  |  |  |  |  |

| 15       | 무-DBR-02                               | 2015. 04. 07                 | 중국                                     | 9,000            |
|----------|----------------------------------------|------------------------------|----------------------------------------|------------------|
| 16       | 무-SPRING-LIGHT                         | 2015. 04. 07                 | 네덜란드                                   | 2,000            |
|          | 2차년도 합계                                | 2010. 01. 1.                 | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | 299,696          |
| 1        | 무-BN91602                              | 2015. 05. 26                 | 일본                                     | 30,000           |
| 2        | 무-MINO EARLY LONG WHITE                | 2015. 06. 11                 | 인도                                     | 22,500           |
| 3        | 무-LONG WHITE MINO                      | 2015. 06. 11                 | 인도                                     | 4,750            |
| 4        | 무-MINO-EARLY                           | 2015. 06. 16                 | 방글라데시                                  | 18,000           |
| 5        | 무-MINO-EARLY                           | 2015. 06. 16                 | 방글라데시                                  | 9,000            |
| 6        | 무-BN97766                              | 2015. 06. 24                 | 일본                                     | 23,200           |
| 7        | 무-BN97766                              | 2015. 06. 24                 | 일본                                     | 11,742           |
| 8        | 무-MINO-EARLY                           | 2015. 07. 02                 | 파키스탄                                   | 24,000           |
| 9        | 무-ELITE MODEL                          | 2015. 08. 13                 | 대만                                     | 200              |
| 10       | 무-NEW TROPICAL SWEET                   | 2015. 08. 13                 | 대만                                     | 700              |
| 11       | 무-VOLRAP200                            | 2015. 08. 25                 | 독일                                     | 5,100            |
| 12       | 무-GANGNAM                              | 2015. 09. 22                 | 태국                                     | 14,528           |
| 13       | 무-GANGNAM                              | 2015. 09. 22                 | 태국                                     | 1,600            |
| 14       | 무-NEW TROPICAL SWEET                   | 2015. 09. 22                 | 방글라데시                                  | 9,000            |
| 15       | 무-SPRING ELITE                         | 2015. 09. 23                 | 일본                                     | 21,000           |
| 16       | 무-SPRING VICTORY                       | 2015. 09. 23                 | 일본                                     | 3,500            |
| 17       | 무-SPRING SUN                           | 2015. 09. 23                 | 일본                                     | 9,000            |
| 18       | 무-VOLRAP200                            | 2015. 10. 14                 | 독일                                     | 3,825            |
| 19<br>20 | 무-HNS13659809<br>무-HNS13621018         | 2015. 11. 24<br>2015. 11. 24 | 일본<br>일본                               | 17,640<br>73,500 |
| 20 21    | 무-NEPTUN                               | 2015. 11. 27                 | 독일                                     | 35,000           |
| 22       | 무-SWEET SLENDER                        | 2016. 01. 05                 | 말레이시아                                  | 2,000            |
| 23       | 무-HOUSE KING                           | 2016. 01. 15                 | 네덜란드                                   | 1,000            |
|          | 3차년도 합계                                | 2010. 01. 10                 | ,, E.C.—                               | 340,785          |
| 1        | 무-SPRING LIGHT                         | 2016-03-04                   | 이탈리아                                   | 360              |
| 2        | 무-SPRING LIGHT                         | 2016-03-14                   | 미국                                     | 6,750            |
| 3        | 무-SPRING LIGHT                         | 2016-03-25                   | 뉴질랜드                                   | 1,100            |
| 4        | 무-NEW TROPICAL SWEET                   | 2016-04-05                   | 베트남                                    | 400              |
| 5        | 무-CHEONGUN                             | 2016-04-05                   | 중국                                     | 2,750            |
| 6        | 무-GWANDONG                             | 2016-04-05                   | 중국                                     | 3,250            |
| 7        | 무-SWEET ACRE F1                        | 2016-04-25                   | 스페인                                    | 12,000           |
| 8        | 무-BN91602                              | 2016-06-16                   | 일본                                     | 15,000           |
| 9        | 무-HIGHLAND BEST                        | 2016-06-28                   | 중국                                     | 6,500            |
| 10       | 무-LONG WHITE MINO                      | 2016-07-14                   | 인도                                     | 5,700            |
| 11       | 무-SPRING LIGHT                         | 2016-07-15                   | 홍콩                                     | 1,600            |
| 12       | 무-NEW TROPICAL SWEET                   | 2016-07-19                   | 베트남                                    | 1,200            |
| 13       | 무-NEW TROPICAL SWEET                   | 2016-07-19                   | 방글라데시                                  | 9,000            |
| 14       | 무-DBR-02                               | 2016-07-27                   | 중국                                     | 6,000            |
| 15       | 무-SWEET ACRE                           | 2016-07-27                   | 스페인                                    | 13,200           |
| 16       | 무-LONG WHITE MINO                      | 2016-07-27                   | 파키스탄                                   | 700              |
| 17       | 무-BAIFENG                              | 2016-08-08                   | 중국<br>일본                               | 45,000           |
| 18<br>19 | 무-MS DONGCHEON<br>무-NEW TROPICAL SWEET | 2016-08-23                   | 일본<br>베트남                              | 3 060            |
|          | 무-NEW TROPICAL SWEET 무-RACS3010        |                              |                                        | 3,960            |
| 20       | T-UYC22010                             | 2016-08-25                   | 중국                                     | 5,800            |

| 21      | 무-RACS2125           | 2016-08-25 | 중국   | 1,100  |  |  |
|---------|----------------------|------------|------|--------|--|--|
| 22      | 무-SPRING LIGHT       | 2016-09-12 | 이탈리아 | 1,800  |  |  |
| 23      | 무-LONG WHITE MINO    | 2016-09-21 | 이탈리아 | 8,000  |  |  |
| 24      | 무-SPRING ELITE       | 2016-09-23 | 일본   | 7,000  |  |  |
| 25      | 무-SPRING SUN         | 2016-09-23 | 일본   | 19,000 |  |  |
| 26      | 무-SPRING VICTORY     | 2016-09-23 | 일본   | 7,000  |  |  |
| 27      | 무-SUNSHINE ALTARI    | 2016-09-23 | 일본   | 3,000  |  |  |
| 28      | 무-SWEET ACRE         | 2016-10-05 | 스페인  | 17,400 |  |  |
| 29      | 무-NEPTUN             | 2016.11.17 | 독일   | 13,975 |  |  |
| 30      | 무-YR-MAJIME          | 2016.11.23 | 일본   | 19,500 |  |  |
| 31      | 무-ELITE MODEL        | 2016.11.24 | 대만   | 800    |  |  |
| 32      | 무-NEW TROPICAL SWEET | 2016.11.24 | 대만   | 400    |  |  |
| 33      | 무-SHINCHUNGILPUM     | 2016.11.28 | 일본   | 4,650  |  |  |
| 34      | 무-SPRING LIGHT       | 2016.12.06 | 미국   | 360    |  |  |
| 35      | 무-HOUSE KING         | 2016.12.07 | 일본   | 28,000 |  |  |
| 36      | 무-HIGHLAND BEST      | 2016.12.12 | 중국   | 13,000 |  |  |
| 37      | 무-YR MAJIME          | 2016.12.19 | 일본   | 6,500  |  |  |
| 38      | 무-YR MAJIME          | 2016.12.19 | 일본   | 24,000 |  |  |
| 4차년도 합계 |                      |            |      |        |  |  |
|         | 총 합계                 |            |      |        |  |  |

## 2. 만추대 타원형 청수계 품종개발

### 가. 연차별 목표

| 세부             | 0140707                  | 목표   |      |      |      |  |  |
|----------------|--------------------------|------|------|------|------|--|--|
| 프로젝트명          | 세부연구목표                   | 1차년도 | 2차년도 | 3차년도 | 4차년도 |  |  |
|                | ○ 우수 계통 육성               | 1차   | 2차   | 3차   | 4차   |  |  |
|                | ○ F <sub>1</sub> 조합작성    | 50   | 70   | 100  | 120  |  |  |
|                | ○ F <sub>1</sub> 조합 성능검정 | 40   | 50   | 80   | 100  |  |  |
| 만추대 타원형<br>청수계 | ○ 우수조합 선발                | 2    | 2    | 2    | 2    |  |  |
| 품종개발           | ○ 중국 현지 적응성 시험           | _    | 1    | 1    | 3    |  |  |
|                | ○ 생산판매신고                 | 1    | _    | 1    | _    |  |  |
|                | ○ 품종보호출원                 | _    | -    | _    | 1    |  |  |
|                | ○ 종자수출액 (만불)             | _    | 0.2  | 0.5  | 5    |  |  |

### 나. 연차별 연구성과 목표 및 달성

| 세부             | 게보서그모코                   | 1차1 | 년도 | 2차년도 |     | 3차년도 |      | 4차년도 |      |
|----------------|--------------------------|-----|----|------|-----|------|------|------|------|
| 프로젝트명          | 세부연구목표                   | 목표  | 성과 | 목표   | 성과  | 목표   | 성과   | 목표   | 성과   |
|                | ○ 우수 계통 육성               | 1차  | 80 | 2차   | 133 | 3차   | 150  | 4차   | 150  |
|                | ○ F <sub>1</sub> 조합작성    | 50  | 55 | 70   | 125 | 100  | 147  | 120  | 132  |
|                | ○ F <sub>1</sub> 조합 성능검정 | 40  | 50 | 50   | 95  | 80   | 346  | 100  | 393  |
| 만추대 타원형<br>청수계 | ○ 우수조합 선발                | 2   | 2  | 2    | 3   | 2    | 3    | 2    | 3    |
| 장무세<br>품종개발    | ○ 중국 현지 적응성 시험           | -   | 3  | 1    | 2   | 1    | 2    | 3    | 4    |
|                | ○ 생산판매신고                 | 1   | 2  | -    | -   | 1    | 2    | -    | -    |
|                | ○ 품종보호출원                 | _   | _  | _    | _   | _    | _    | 1    | 1    |
|                | ○ 종자수출액 (만불)             | -   | -  | 0.2  | ı   | 0.5  | 0.52 | 5    | 0.98 |

### 다. 특허, 품종, 논문 등 성과

| 순번 | 구분     | 연도   | 명칭    | 출원인<br>(신고인)   | 육성자      | 출원번호<br>(신고번호)  |
|----|--------|------|-------|----------------|----------|-----------------|
| 1  | 생산판매신고 | 2013 | 신흥    | 최원병            | 서정팔      | 02-0001-2013-44 |
| 2  | 생산판매신고 | 2013 | 청경    | 최원병            | 서정팔      | 02-0001-2013-43 |
| 3  | 생산판매신고 | 2015 | 멋진알타리 | 이상욱            | 서정팔 외 1명 | 02-0001-2015-22 |
| 4  | 생산판매신고 | 2015 | 백상단무지 | 이상욱            | 서정팔 외 1명 | 02-0001-2015-21 |
| 5  | 품종보호출원 | 2016 | 백랑    | 농협경제지주<br>주식회사 | 서정팔      | 출원 2016-349     |

### 라.사업화 현황

| ال ال | 사업화   | NA 크리-NA       | 사업화 업체 개요 (2016년 기준) |     |      |                    | -1 -1 - All | 개발제품 (기술)  |
|-------|-------|----------------|----------------------|-----|------|--------------------|-------------|------------|
| 순번    | 년도    | 사업화내용          | 업체명                  | 대표자 | 종업원수 | 사업화<br>형태          | 기매출액        | 매출액        |
| 1     | 2013~ | 청경무<br>종자판매    | 농협종묘<br>센터           | 강호성 | 61   | 임업,<br>농업,<br>도소매업 | -           | 391,752천 원 |
| 2     | 2016  | 백랑무 종자<br>중국수출 | 농협종묘<br>센터           | 강호성 | 61   | 수출                 | _           | 1.5만불      |

### 3. 중국 재래종을 이용한 무 품종개발

가. 품종보호출원, 생산판매신고

| 구분     | 건수  | 출원명      | 출원 번호           | 출원국가 |
|--------|-----|----------|-----------------|------|
| 품종보호출원 | 1   | 청춘하      | 출원-2015-63      | 한국   |
|        |     | 강남청수     | 02-0001-2014-7  | 한국   |
|        | 대청수 |          | 02-0001-2014-8  | 한국   |
| 생산판매신고 | 5   | 화이트스노우미노 | 02-0001-2016-25 | 한국   |
|        |     | 리버풀-7    | 02-0001-2016-30 | 한국   |
|        |     | 리버풀-9    | 02-0001-2016-29 | 한국   |

### 나. 종자 수출

본 과제를 통해 개발된 품종은 중국 현지에 상업화하여 판매 중이며 동남아시아 시장도 개척하고 있다.

| 종자수출액(U | 종자수출액(USD) |              |      |               |  |  |  |  |  |  |
|---------|------------|--------------|------|---------------|--|--|--|--|--|--|
|         |            |              | 수출액  |               |  |  |  |  |  |  |
| 번호      | 품종명        | 수출일          | 수출국  | 수출금액<br>(USD) |  |  |  |  |  |  |
| 1       | 무 F1 종자    | 2014. 07. 30 | 중국   | 100           |  |  |  |  |  |  |
| 2       | 무 F1 종자    | 2014. 10. 10 | 중국   | 100           |  |  |  |  |  |  |
| 3       | 무 F1 종자    | 2015. 02. 12 | 중국   | 9,750         |  |  |  |  |  |  |
| 4       | 무 F1 종자    | 2015. 05. 28 | 중국   | 26,250        |  |  |  |  |  |  |
| 5       | 무 F1 종자    | 2015. 09. 14 | 중국   | 400           |  |  |  |  |  |  |
| 6       | 강남청수       | 2016. 04. 27 | 중국   | 85,500        |  |  |  |  |  |  |
| 7       | 리버풀-9      | 2016. 05. 17 | 중국   | 52,800        |  |  |  |  |  |  |
| 8       | 리버풀-9      | 2016. 05. 18 | 중국   | 71,984        |  |  |  |  |  |  |
| 9       | 화이트스노우미노   | 2016. 07. 21 | 파키스탄 | 56,000        |  |  |  |  |  |  |
| 10      | 리버풀-7      | 2016. 09. 07 | 중국   | 28,200        |  |  |  |  |  |  |
|         | 1~4차년도 총합계 |              |      | 331,084       |  |  |  |  |  |  |

### 다. 유전자원 등록

|    |                                        |          | 1   |              | <del></del> 1 |
|----|----------------------------------------|----------|-----|--------------|---------------|
| 번호 | -<br>특성                                | 수집       |     | 등록인          |               |
| "  |                                        |          | 등록인 | 등록일          | 등록번호          |
| 1  | 녹피, 홍심, 판엽, 내서성                        | 중국<br>북경 | 강남희 | 2014. 11. 27 | BP1188888     |
| 2  | 녹피,홍심,판엽,                              | 중국<br>천진 | 강남희 | 2014. 11. 27 | BP1188889     |
| 3  | 잎 반직립, 자색외피, 백육, 내병성,<br>내서성, 단맛       | 중국<br>천진 | 강남희 | 2014. 11. 27 | BP1188890     |
| 4  | 수과형 무(생식), 내추대성,근형<br>장원통형             | 중국<br>천진 | 강남희 | 2014. 11. 27 | BP1188891     |
| 5  | 엽색 농록색, 근형 원주형, 염적용                    | 중국<br>요녕 | 강남희 | 2014. 11. 27 | BP1188892     |
| 6  | 근형 원주형, 지상부 청녹생, 지하부<br>백색, 과육 백색      | 중국<br>하남 | 강남희 | 2014. 11. 27 | BP1188893     |
| 7  | 근형 원주형, 지상부 청녹색, 지하부<br>백색, 과육 백색      | 중국<br>하남 | 강남희 | 2014. 11. 27 | BP1188894     |
| 8  | 근형 장원주형, 조숙성, 근피 청녹색,<br>육색 백색         | 중국<br>하남 | 강남희 | 2014. 11. 27 | BP1188895     |
| 9  | 소형무, 원형, 홍피백육                          | 중국<br>북경 | 강남희 | 2014. 11. 27 | BP1188896     |
| 10 | 조숙, 내병, 내한성, 만추대, 외피 홍색,<br>생식, 단맛     | 중국<br>북경 | 강남희 | 2014. 11. 27 | BP1188897     |
| 11 | 소형무, 원형, 백피백육, 내추대,<br>내한성             | 중국<br>북경 | 강남희 | 2014. 11. 27 | BP1188898     |
| 12 | 조숙, 내병, 내한성, 만추대, 외피 홍색,<br>백육, 생식, 단맛 | 중국<br>하북 | 강남희 | 2014. 11. 27 | BP1188899     |

### 4. 중국 남방계 재래종 품종 개발

### 가. 생산판매신고

| 구분     | 건수 | 출원명    | 출원 번호          | 출원국가 |
|--------|----|--------|----------------|------|
| 생산판매신고 | 1  | HDR151 | 02-0001-2014-1 | 한국   |

### 다. 유전자원 등록

| 번호 | 특성                     | 수집         |     |            |           |
|----|------------------------|------------|-----|------------|-----------|
|    | <u>-</u> +             |            | 등록인 | 등록일        | 등록번호      |
| 1  | 조생, 근피홍색, 육색백, 절엽      | 중국,<br>호북성 | 김덕현 | 2014.09.29 | BP1188371 |
| 2  | 만생, 50~60일 후 수확, 근피홍색, | 중국,        | 김덕현 | 2014.09.29 | BP1188372 |

|   | 판엽       | 호북성        |     |            |           |
|---|----------|------------|-----|------------|-----------|
| 3 | 조생, 백수판엽 | 중국,<br>관동성 | 김덕현 | 2014.09.29 | BP1188373 |

### 제 2절 연구 성과활용 계획

#### 1. 만추대 타원형 백수계 품종개발

본 과제를 통해서 중국용 만추대 백수계 2품종, 남방 백수계 1품종이 개발되었다. 중국용 만추대 백수계인 RACS 2125와 RACS 3010은 추대성이 기존 우점품종 보다 안정적인 특성이 있으며, 근 비대력과 근미맺힘 등 근형이 우수하고 껍질이 두꺼워 세척 시 깨지는 현상이 적어 상품성이 높은 품종이다. 그 중 RACS 2125는 중국 북부 지역인 하얼빈 지역의 거래처를 통해확대 시교 사업을 진행 중이며 16년 소량 판매를 진행하였다. RACS 3010은 재배 폭이 넓은 장점이 있어 호북성 거래처에서 중국 중부지역과 남부지역에 걸쳐 품종 개발 중이며, 17년 판매가 확대 될 것으로 기대되는 품종이다. 남방 백수계 무로 개발된 CT 7008 품종은 중국 남부지역의 남방계 타입의 품종으로 시장을 개발 중이며, 이 품종은 중국뿐만 아니라 태국 등 동남아 지역도 연계하여 개발을 확대 중이다. 현재 중국보다 동남아 지역 개발이 더 활발히 이루어지고 있는 상황으로 향후 동남아 지역 판매가 확대될 것으로 기대하고 있다.

#### 2. 만추대 타원형 청수계 품종개발

#### (1) 개발 품종 활용 계획

품종생산판매신고, 품종보호출원 및 수상을 한 개발 품종으로 1차년도에 품종생산판매신고한 만추대 청수계 품종인 신흥무, 청수계 타원형 품종으로 추대에는 민감한 편이나 근수색이 진하고 비대력이 좋으며 육질이 치밀하고 맛이 좋은 청경무, 3차년도에 품종생산판매신고한 품종으로 GSP과제 수행 중 수집한 유전자원과 기존 계통을 이용하여 조합 작성하였으며, 재배시험을 거쳐 품종화한 멋진알타리, 백상단무지, 4차년도에 품종보호 출원한 품종으로 GSP과제 수행중 수집한 유전자원과 기존 계통을 이용하여 조합 작성하였으며, 재배시험을 거쳐 품종화한 백 랑무를 활용하여 채소 종자 산업 강국으로의 도약의 발판을 마련하고, 종자 산업 분야에 대한 다양한 정보제공을 통안 산업발전 기여하며, 국내 종자 산업의 활성화로 고용 증대, 세계 종자시장 진출로 국제 경쟁력 확보, 전문가에게 품종개발 기술에 대한 연구개발 활용자료를 제공하고자 한다.

#### (2) 개발 과정 기술 활용 계획

품종의 개발 과정에서 축적한 기술들을 활용하여, 분자표지를 이용한 무 육종연한 단축, 내병 성 품종의 개발, 마커검정, 약배양 및 소포자 배양 기술 이용으로 품종 육성의 과학화 및 효율화, 해외 시장에 적합한 무 품종 개발, 고부가가치 품종 개발 농가소득 향상 및 종자 수출 증대에 활용하고자 한다.

#### 3. 중국 재래종을 이용한 무 품종개발

본 과제를 통한 품종개발과정에서 축적한 기술들을 활용하여 품종 육성의 과학화 및 효율화, 해외 시장에 적합한 무 품종개발로 종자수출을 위한 품종육성에 박차를 가하고자 한다. 중국수출용으로 육성된 품종은 중국 현지 평가 후 중국 종자 회사에 수출하여 종자 수출을 확대하였다. 또한 차년도 종자수출을 위하여 현재 국내에서 대량 위탁 채종중이거나 해외 위탁채종중이며 종자수출의 다변화를 위하여 APSA, 국제종자박람회 등에 참석해 해외 바이어를 직접 만나 동남아시아, 서남아시아 시장도 개척할 예정이다. 중저가 SI 품종과 고품질 MS 품종을 육성하기 위해 기존에 보유하고 있는 다양한 계통으로 조합을 작성하고 우수 조합 선발 및 현지시교를 통해 신규 시장 진입 및 기존 시장 점유율을 확대하고자 한다.

#### 4. 중국 남방계 재래종 품종 개발

생산판매신고 된 품종과 육성계통들을 이용한 추가적인 중국 남방계 OP종을 육성개발하여 중국 현지적응성을 검토하고 종자 수출을 진행하고자 한다.

## 제 6 장 연구개발과정에서 수집한 해외과학기술정보

#### 1. 산지재배 정보 수집

가. 宜昌 火燒坪 (Yichang Huoshaoping) 무 재배 현황

해발 1,800m(최고 1,950m), 연평균기온 7.6℃(최저 -20.1℃, 최고 29℃), 무상기일 194일로 한국의 강원도 고랭지와 유사한 환경 조건 중국 고랭지 재배 지역이다. 면적은 약 4.5만~6만畝 (9백만평~12백만평)이며, 대부분 백수계 무가 재배되고 있다. 과거 무와 배추 주산단지로 면적이 1:1 이였으나 뿌리혹병이 심하게 발병하게 되어 현재는 모두 무로 전환되었다. 火燒坪 지역의 백수계 무 시장은 각 회사 품종 별 차이가 없는 '汉白玉'류 타입의 품종이며, 소매가 RMB 1,000/kg (17만원/kg)이고 1년 2기작(4월 말 파종~7월 초 수확, 7월 말 파종~9월 초 수확)으로 재배되고 있다.

#### <火燒坪 지역 무 세척 전경>



무 출하는 세척 후 선별 작업하여 1봉투에 약 40개의 무를 담아 비닐에 포장하며, 총 무게는 약 30kg정도이다. 세척기로 세척 시 열피 증상이 심하게 나타나 일반적으로 5%정도 폐기하나비가 많이 오는 경우는 생산량의 40%까지 폐기된다고 한다. 또한 뿌리노균병, 근부병 등이 나타나고 있어 병에 강하고 근피가 두꺼워 열피 증상이 없는 품종을 요구하고 있다.

#### 나. 云南 大理 (Yunnan Dali) 무 재배 현황

大理지역의 총 면적은 5,000畝 정도로 大理시를 중심으로, 洱海(Erhai) 호수와 蒼山 (Cangshan) 사이 평지에서 무 외에도 당근, 파, 옥수수 등을 재배하고 있다. 이 지역은 백수무보다 청수무 재배면적이 더 넓으며 주 파종 시기는 1~4월(숙기 60일)과 8~10월(숙기 100일)로 년 2회 재배되고 있다. 청수무의 주 판매 품종은 白鳳(140~150RMB/120g 1봉), 幸福 (20RMB/1,000립, 북경세농)가 주를 이루고 있고 天鳳(대일) 등도 판매되고 있다. 10년 전부터 개발되었으나, 2009년부터 白鳳 품종의 종자 공급이 원활하지 않아 幸福 품종이 주로 심기기시작하고 있으며, 현재 대부분 북경세농의 품종이 판매되고 있다. 저온기 1월 파종 시 추대는되나 잎을 잘라버리고 판매하고 있으며, 4~5월 수확 물량 가격이 제일 좋은 시세를 받는다고한다. 농작업의 기계화가 되어 있지 않고 대부분 인력으로 밭을 준비하고, 재배 방식은 2m 두둑에 가로 26cm, 세로 22cm 간격으로 7주를 파종하여 재배하고 있다. 무 소비는 대부분 현지소비이며 청수무의 경우 엽수가 적어 청수부위가 짙고 길어야 하고 H 근형으로 근미맺힘이 좋은 품종을 요구하고 있으며 매운맛이 없고 내부 육색이 백색인 품종을 선호하고 있다.

#### <大理지역 재배 전경>



다. 武汉 建设乡지역 무 재배 현황

과거 대규모 산지가 있던 곳이나, 현재 도시 개발로 무 재배면적은 줄어들고 있고 봄/가을로 년 2회 재배 되고 있으며, 여름에는 멜론이나 두과 작물을 재배하고 있다. 1畝(200평)당 재배 주수는 약 10,000주이며 평당 50주로 매우 밀식 재배하고 있다. 재식 간격은 22cm로 1이랑에

4줄 파종하며 파구당 1립씩 파종하여 종자 발아가 좋은 품종을 요구하고 있다. 과거 汉白玉(대일종묘) 품종이 주로 심겨졌던 지역이나, 최근 R-501의 재배면적이 급속히 늘어나 현재는 약70%정도가 R-501품종이 재배되고 있다. 종자 가격은 R-501, 1can 당 90~100RMB으로, 汉白玉대비 3배 이상 비싸지만, 수확물로 환산하면 3,000RMB 정도의 이익을 가져다 준다고 하여 R-501 품종의 재배 면적이 급속히 늘어나고 있다. R-501의 재배 적기는 3월 20일~4월 10일의 춘작과 8월 20일~9월 10일의 추작으로 재배되고 있다. 3월 중순 이전 파종 시에는 추대가 약하여 R-501의 근 품질에 추대성이 안정된 품종을 요구하고 있다.

<建设乡 지역 백수무 재배 전경>



- ① 4월 초순 파종, 재배 중인 R-501
- ② 3월 초순 파종, 재배 중인 무 (좌 : R-501 추대된 상황임, 우 : 汉白玉 정상 생육 중)
- ③ 3월 중순 파종 및 재배 중인 R-501

#### 라. 福建 长乐 무 재배 현황

福建 长乐 지역은 주로 汉白玉 타입의 무를 재배하는 지역으로 추계와 월동 작형에 무를 재배 하고 있으며, 추계 작형 면적은 월동 작형의 1/10 규모로 작고, 8월 파종, 10월 수확하는 작형이다. 월동 작형 면적은 3萬亩로 10~12월 파종, 12월~차년도 4월까지 수확하는 작형으로 무 생산량이 많다. 토질이 매우 고운 모래로, 이랑을 높게 하고 매우 밀식하여 재배(이랑간 폭130cm, 주간 10~11cm, 조간 35~40cm)하고, 재배가 끝난 후 수박을 재배하는 등 윤작을 하고 있다. 무 품종 요구 사항으로는 추대성이 汉白玉과 유사하거나 만추대성인 품종을 요구하고 있으며 비대력과 재포력(열피 및 열근 등)이 우수하고 근피가 깨끗한 백수무를 요구하고 있다.

<长乐 지역 무 재배 및 수확 전경>





마. 四川 백수무 시장 현황

사천 지역 백수무 시장 면적은 약 4만畝로, 평원지대와 고산지대로 구분되고 평원 지대는 약 3만畝로, 8월부터 12월까지 파종이 계속 이어지며 파종시기에 따라 연내 수확 및 월동 작형으로 구분한다. 8월~9월 파종 작형은 百幕田의 '抗病博士' 품종이 우점으로, 이 품종은 '汉白玉'의 정역 교배 품종으로 종자 립도가 큰 편이고, 기존 '汉白玉' 종자보다 발아세 및 초기 초세가 좋아 발아 초기 고온에 잘 버티는 특성이 있다고 한다. '抗病博士' 품종은 근미 맺힘이 좋지 않고, 근장이 길어지는 단점이 있으나, 11월 월동 재배 시 이 특성이 장점이 된다고 한다. 10월 파종부터는 大一种苗의 '天鴻春'을 주로 재배되는데 이 품종 또한 '汉白玉' 류의 품종이다. 4월 이후 봄무 시장은 없고 봄 이후에는 다른 작물을 재배하거나 벼를 재배한다. 북경세농의 R-301은 종자 공급량이 적어 재배 면적이 적고 Takii의 '白雪公主'는 중국 전역에서 약 1만畝 정도 재배 되나 숙기 지연 시 근장이 너무 길어지는 단점이 나타난다고 한다. 사천 지역 백수 무 요구 특성은 근피는 순백색으로 근피가 깨끗하고 광택이 있는 품종, 11월~12월 파종(월동 작형)이 중요한 작형으로 저온 신장력이 좋은 품종, 숙기가 지나도 근형이 유지되며 근장이 길어지기 않는 품종(근장 30cm)을 요구하고 있다.

<四川 지역 天鴻春 수확 전경>





바. 山東 백수무 시장 현황

山東 萊西 지역 전체 무 종자 판매량은 약 10,000캔 (500kg)으로, 춘계 파종 기간은 3월 중순부터 5월 상순까지, 추계 파종 기간은 8월 상순부터 9월 하순까지이고, 이후 보리 등 타 작물이 재배되고 있다. 실제 춘계 시장의 비율이 추계 시장보다 크며, 추계 작형의 경우에도 9월 파종 재배는 거의 없다고 한다. 북경세농의 R-301의 경우 추대성이 약하기 때문에 4월 15일이후 주로 파종 되고 있으며, 그 전 파종은 북경세농의 '春秀'(Chunxiu) 품종이 재배되나, 이품종은 R-301과 유사한 품종으로 추대성이 조금 더 안정적이라고 한다. 萊西 지역 백수무 요구 특성으로는 근장 30cm정도로 'R-301'보다 조금 길고, '漢白玉'보다 조금 짧으면 적당하고, 근피 두께가 두꺼워 세척 시 깨지지 않는 품종으로 운반성이 좋은 품종을 요구하고 있다.

<萊西 지역 R-301 재배 전경>





## <붙임 1> 특허・논문・제품(시장) 분석보고서

## 특허, 논문, 제품(시장) 분석보고서

| 프로젝트명    | 중국 수출용 무 품종개발 |              |         |
|----------|---------------|--------------|---------|
| 프로젝트 책임자 | 강 남 희         | 프로젝트<br>연구기관 | 대일바이오종묘 |

### 1. 본 연구관련 국내외 기술수준 비교

| 개발기술명              | 관련기술                    | 현재 기술 |       | 기술개발    | 비고 |
|--------------------|-------------------------|-------|-------|---------|----|
| ,, , , , , ,       | 최고보유국                   | 우리나라  | 연구신청팀 | 목표수준(%) | ,  |
| 유전자원 보유            | 일본(タキイ)                 | 100   | 70    | 80      |    |
| 유전자원기초<br>및 안정성 연구 | 일본(タキイ)                 | 80    | 60    | 70      |    |
| 전통육종               | 일본(タキイ)                 | 100   | 80    | 90      |    |
| 분자육종               | 미국(Monsanto)            | 50    | 20    | 30      |    |
| 품종평가               | 일본(タキイ),<br>네덜란드(Baejo) | 100   | 80    | 90      |    |
| 종자생산               | 일본(タキイ),<br>미국(몬산토)     | 70    | 70    | 80      |    |
| 종자가공처리             | 네델란드(Baejo)<br>미국(몬산토)  | 80    | 80    | 90      |    |
| 현지시험               | 일본(タキイ),<br>미국(몬산토)     | 90    | 90    | 100     | _  |

- 1) 개발기술명은 본 연구과제 최종 연구개발 목표기술을 의미
- 2) 현재 기술수준은 선진국 100% 대비 우리나라 및 신청한 연구팀의 기술수준 표시
- 3) 기술개발 목표수준은 당해과제 완료 후 선진국 100% 대비 목표수준 제시
- 4) 부가설명이 필요한 경우 비고란에 작성

### 2. 특허분석

### 가. 특허분석 범위

| 대상국가  | 국내, 국외(미국, 일본, 유럽) |  |  |
|-------|--------------------|--|--|
| 특허 DB | 특허정보원 DB           |  |  |
| 검색기간  | 전 기간               |  |  |
| 검색범위  | 제목 및 초록            |  |  |

### 나. 특허분석에 따른 본 연구과제와의 관련성

| 개발기    | 기술명    | 무 육종 관련 기술                                                                                                                                                         | F1 육종                                                                                                                                                                  |  |
|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Key    | word   | Radish*Breeding                                                                                                                                                    | Radish Breeding                                                                                                                                                        |  |
| 검색     | 건수     | 2,022                                                                                                                                                              | 5,709                                                                                                                                                                  |  |
| 유효특허건수 |        | 5                                                                                                                                                                  | 57                                                                                                                                                                     |  |
|        |        | PRIMER SET FOR BINDING                                                                                                                                             |                                                                                                                                                                        |  |
|        |        | MARKER INVOLVING IN                                                                                                                                                | New Variety of Radish,                                                                                                                                                 |  |
|        | 특허명    | FUSARIUM WILT                                                                                                                                                      | BORDAUX, and a Method for                                                                                                                                              |  |
|        |        | RESISTANCE AND SELECTION                                                                                                                                           | Breeding the Same                                                                                                                                                      |  |
|        |        | METHOD USING THEM                                                                                                                                                  |                                                                                                                                                                        |  |
|        | 보유국    | 대한민국                                                                                                                                                               | 대한민국                                                                                                                                                                   |  |
|        | 등록년도   | 2014                                                                                                                                                               | 2012년                                                                                                                                                                  |  |
|        | 관련성(%) | 20%                                                                                                                                                                | 40%                                                                                                                                                                    |  |
|        |        | 무 위황병 저항성 품종 선발 관련                                                                                                                                                 | 무 F1 육종 방법에 대한 특허로 무                                                                                                                                                   |  |
| 핵심특허   | 유사점    | 특허로 내병성 품종을 선발하는                                                                                                                                                   | F1 종자를 생산하는 것에 유사성이                                                                                                                                                    |  |
| 및 관련성  |        | 것에 유사성이 있음                                                                                                                                                         | 있음                                                                                                                                                                     |  |
| 关 包包含  | 차이점    | 본 특허는 무 위황병 저항성 품종<br>선발과 관련된 특허로 직접적인<br>품종 개발이 아닌 품종 개발에<br>활용할 수 있는 분자 마커 개발과<br>관련된 것임. 본 연구는 품종을<br>직접적으로 개발하는 과제이고<br>마커 개발이 목적이 아닌 과제이기<br>때문에 특허 침해 요소가 없음 | 본 특허는 무 F1 육종 방법에 관한<br>특허이기는 하나 청구항에 있어서<br>자색무 F1 품종 개발에 대한<br>권리를 행사함. 본 연구에서는<br>근피가 백색인 백수무와 근피가<br>청색인 청수무 및 근피는 청색이고<br>육색은 적색인 청피홍심무에 대한<br>과제이기 때문에 특허 침해 요소가 |  |

- 1) 개발기술명은 본 연구과제 최종 연구개발 목표기술을 의미
- 2) keyword는 검색어를 의미하며, 검색건수는 keyword에 의한 총 검색건수를, 유효특허건수는 검색한 특허 중 핵심(세부)개발기술과 관련성이 있는 특허를 의미
- 3) 핵심특허는 개발기술과의 관련성이 높고 인용도가 높은 특허를 기준으로 분석

### 3. 논문분석

### 가. 논문분석 범위

| 대상국가  | 미국, 일본, 유럽, 국내 |  |
|-------|----------------|--|
| 논문 DB | pubmed DB      |  |
| 검색기간  | 전 기간           |  |
| 검색범위  | 제목, 초록 및 키워드   |  |

## 나. 논문분석에 따른 본 연구과제와의 관련성

| 개발기    | 기술명    | 무 육종/분자육종 관련 기술                                                                                                                                    | 무 웅성불임 자원이용 기술                                                                                                                                                                                                           |  |
|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Key    | word   | Radish, Breeding, DNA marker                                                                                                                       | Radish, male sterility                                                                                                                                                                                                   |  |
| 검색     | 건수     | 56                                                                                                                                                 | 12                                                                                                                                                                                                                       |  |
| 유효논문건수 |        | 20                                                                                                                                                 | 9                                                                                                                                                                                                                        |  |
|        | 논문명    | An EST-SSR Linkage Map of<br>Raphanus sativus and<br>Comparative Genomics of the<br>Brassicaceae                                                   | Comprehensive<br>transcriptome-based<br>characterization of differentially<br>expressed genes involved in<br>microsporogenesis of radish CMS<br>line and its maintainer.                                                 |  |
|        | 학술지명   | DNA research                                                                                                                                       | Functional & integrative genomics                                                                                                                                                                                        |  |
|        | 저 자    | Kenta Shirasawa 외 16명                                                                                                                              | Xie Y 외 7                                                                                                                                                                                                                |  |
|        | 게재년도   | 2011년                                                                                                                                              | 2016                                                                                                                                                                                                                     |  |
|        | 관련성(%) | 50%                                                                                                                                                | 30%                                                                                                                                                                                                                      |  |
| 핵심논문   | 유사점    | 무 유전자 지도를 작성하여 이를<br>육종에 활용할 수 있는 기술이<br>유사함                                                                                                       | 웅성불임이 고 품질의 F1 육성에<br>필요함을 언급하고 있는 것이<br>유사함                                                                                                                                                                             |  |
| 및 관련성  | 차이점    | 본 과제는 분자육종을 이용하여<br>품종을 만드는 과제로 상기<br>논문과 목적이 틀림. 상기 논문은<br>육종의 효율화를 가져오기 위한<br>무 유전자 지도를 개발하는<br>내용이고, 본 과제는 오히려 상기<br>논문의 내용을 품종 개발에<br>활용할 수 있음 | 상기 논문은 무의 웅성불임을<br>유발시키는 기작과 소포자 배양을<br>보다 용이하게 하기 위한 방법을<br>연구하는 논문임. 본 과제는 상기<br>논문에 제시된 웅성불임 자원을<br>이용하지 않고, 특허 제약이 없고<br>기존에 많이 활용 되고 있는 Ogura<br>웅성불임 자원을 이용하여 아시아<br>수출 무를 개발할 예정이기 때문에<br>활용에 있어서 근본적인 차이점이<br>있음 |  |

- 1) 개발기술명은 본 연구과제 최종 연구개발 목표기술을 의미
- 2) keyword는 검색어를 의미하며, 검색건수는 keyword에 의한 총검색건수를, 유효논문건수는 검색한 논문 중 핵심(세부)개발기술과 관련성이 있는 논문을 의미
- 3) 핵심논문은 개발기술과의 관련성이 높고 인용도가 높은 논문을 기준으로 분석

#### 4. 제품 및 시장 분석

#### 가. 종자 수출입 현황

1) 무 종자의 수출입현황(한국종자협회 자료)

○ 무 종자 매출액 : 45.926백만원(국내판매액: 30.480백만원, 수출액: 15.446백만원)

수입량: ('05년) 3,804천불 → ('10) 3,881천불 → ('15) 9,604천불 수출량: ('05년) 4,391천불 → ('10) 3,835천불 → ('15) 13,644천불

2) 중국 종자생산 및 시장 현황(중국 종자업계 추산)

○ 재배 면적 : 110만ha

판엽계 교배종 종자 : 70톤, 약 336억 절엽계 교배종·고정종 종자 : 약 1,300억

### 나. 개발기술의 산업화 방향 및 기대효과

1) 산업화 방향

- 대일바이오종묘의 협력회사인 북경 대일국제종묘유한공사는 중국내에서 전국적인 판매망을 가지고 있으며 각성(各省)별 영업주재원이 주재하고 있어 우수성이 입증된 품종은 단시일 내에 시장진입이 용이하며 상품화 및 사업화가 매우 유리하게 되어있음
- 해외종자사업팀 임직원이 현지 출장하거나 일정기간 상주하여 현지 바이어와 밀접하 게 관계를 유지하며 현지시험포장을 운영하고 결과물에 대한 품종홍보 및 판촉을 통 하여 종자수출을 기대함.
- 화교들이 거주하는 아시아지역은 Chinese radish가 대부분의 국가에서 우점품종이며 중국 OP종인 남방계무가 대부분으로 본 과제를 통해 국내 강점 기술인 계통육성 기 술과 분자육종기술을 활용하여 우수한 품종을 신속히 개발하고, 지역별 현지 적응시 험을 통해 동남아, 서남아시아에 수출경쟁력 있는 품종을 육성하여 수출능력 제고가 기대됨
- 2) 산업화를 통한 기대효과

(단위: 백만원)

| 산업화 기준<br>항 목 | 1차년도 | 2차년도 | 3차년도  | 4차년도  | 5차년도  | 계     |
|---------------|------|------|-------|-------|-------|-------|
| 직접 경제효과       | 0    | 0    | 170   | 550   | 600   | 1,320 |
| 경제적 파급효과      | 0    | 0    | 300   | 500   | 700   | 1,500 |
| 부가가치 창출액      | 0    | 0    | 600   | 800   | 1000  | 2,400 |
| 합 계           | 0    | 0    | 1,070 | 1,850 | 2,300 | 5,220 |

- 1) 직접 경제효과 : 본 연구과제 개발기술의 산업화를 통해 기대되는 제품의 매출액 추정치
- 2) 경제적 파급효과 : 본 연구과제 개발기술의 산업화를 통한 농가소득효과, 비용절감효과 등 추정치
- 3) 부가가치 창출액 : 본 연구과제 개발기술의 산업화를 통해 기대되는 수출효과, 브랜드가치 등 추정치

#### 5. 3P(특허,논문,제품)분석을 통한 연구추진계획

### 가. 분석결과 향후 연구계획(특허, 논문, 제품 측면에서 연구방향 제시)

#### 1) 특허분석 측면

- 기존 특허는 분자마커 분야의 기초 연구분야에 치중되어 있으므로, 본 연구과제에서는 기초 연구분야를 활용한 품종 육성 및 계통 육성방향으로 연구를 추진하고자 함
- 과제 특성 상 수출용 품종 육성이 주요 연구 분야가 되기 때문에 특허 보다는 품종 보호 출원에 초점을 두고 연구를 진행하고자 하나, 차별화된 우수 계통이 육성된다면 별도의 특허로서 보호를 받을 예정임

#### 2) 논문분석 측면

○ 기존 논문은 분자육종에 관한 육종 기반 기술 분야에 치중되어 있으므로, 본 연구과제에 서는 실제 상용화가 가능한 품종 육성방향으로 연구를 추진하여 논문, 포스터 등을 한국 원예과학학술지 등에 게재할 계획임

#### 3) 제품 및 시장분석 측면

○ 국내 및 국외시장 분석결과 아직까지 저품질의 F1 품종 또는 저가의 OP제품 등의 생산 및 판매가 이루어지고 있으나, 현재 쇠퇴기에 접어들었으므로, 본 연구과제에서는 기존 제품 대비 차별화된 품종 육성 연구를 추진하여 고부가가치 제품 등을 생산하여 중국에 판매하고 시장을 리딩 할 수 있는 기반을 마련할 계획임.

## 주 의

- 1. 이 보고서는 농림축산식품부에서 시행한 Golden Seed Project사업의 연구보고서입니다.
- 2. 이 보고서 내용을 발표할 때에는 반드시 농림축산식품부에서 시 행한 Golden Seed Project 사업의 연구결과임을 밝혀야 합니다.
- 3. 국가과학기술 기밀유지에 필요한 내용은 대외적으로 발표 또는 공개하여서는 아니 됩니다.