918008-4 보안 과제(), 일반 과제(이) / 공개(이), 비공개()발간등록번호(이) 포스트게놈 다부처 유전체사업 2021년도 최종보고서

발간등록번호

11-1543000-004048-01

방선균 유전체 기반의 농작물 진균 제어용 미생물 제제 개발

방선균 유전체 기반의 농작물 진균 제어용 미생물 제제 개발

2022. 04. 01.

주관연구기관 / 인하대학교 산학협력단 공동연구기관 / 한국생산기술연구원 공동연구기관 / 에스티알바이오텍

2021

농림식품기술기획평가원

농 림 축 산 식 품 부 (전문기관)농림식품기술기획평가원

제 출 문

농림축산식품부 장관 귀하

본 보고서를 "방선균 유전체 기반의 농작물 진균 제어용 미생물 제제 개발"(개발기간: 2018. 04. 25. ~ 2021. 12. 31.)과제의 최종보고서로 제출합니다.

2022. 04. 01.

주관연구기관명 : 인하대학교 산학협력단 (대표자) 유 창

공동연구기관명 : 한국생산기술연구원 (대표자) 이 낙 규 (인)

공동연구기관명 : 에스티알바이오텍 (대표자) 이 상

주관연구책임자 김 응 수 공동연구책임자 이 도 훈 공동연구책임자 이 상 종

국가연구개발사업의 관리 등에 관한 규정 제18조에 따라 보고서 열람에 동의합니다.

< 요 약 문 >

※ 요약문은 5쪽 이내로 작성합니다.

※ 요약문은 5	쪽 이내	로 작성	합니다.							
사업명		포스트	게놈 대	가부처	유전치	체사업	총괄연구개발 (해당 시	. — —	Ž	
	내역사업명 (해당 시 작성)						연구개발괴	-제번호	918008-	-4
기 국가과학:	기 국가과학기술		LB0401		50%		LB0404	30%	LA0801	20%
분 농림식	분 농림식품		RA0303		60%		RA0305	30%	RA0301	10%
총괄연구개 ************************************	<u></u> 발명									
연구개발과자		방선균	 · 유전ㅊ		·의 농	 작물 진	 균 제어용 미선	생물 제저	 개발	
전체 연구개빌	날기간			20	18. 0	4. 01.	~ 2021. 12.	31. (45	 개월)	
총 연구개빝	<u></u> 날비		001,00 지원연 ⁻			0,000	천원, 기관부	담연구개	발비 : 251,000) 천원)
연구개발단	·계	· ·	[] 등 3가지에	_	-		기술성 [:] (해당 시	•	착수시점 기준 종료시점 목표	
연구개발과제 (해당 시 작· 연구개발과제 (해당 시 작·	_{성)} 특성		021-1-1				(-1)	- 1 11/		
연구개발 목표 및 내용	7	년 체 내용		선균 - 서울 - 스 이 하시 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	물 문 S 규칙 하는 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	전	시 기술을 활용 세포독성, 토양 위한 배양공 가가치 방선균 질을 개발 하대학교) 대술연구원) 위한 배지-배양 타알바이오텍) 방선균의 균주 하대학교) 구 유전체 해독 gicide 활성이 로 2차 연도 1	하여 선별	에제 및 신규 항의 NGS 기반의 업 공정 최적화 악 및 고농도 포 공기술 개발 2종의 NGS 기빈 연도 1종에 대한	전체 특 5 검증 진균 폴 유전체 자형성,

		목표	○주관연구기관(인하대학교) 항진균제 생합성 및 조절 유전자 특성 규명 및 유전자군 분리 ○참여기관 1(생산기술연구원) 항진균제 최적 생산을 위한 방선균 배양공정 최적화 ○참여기관 2(에스티알바이오텍) 선별된 후보균주의 제형화 및 다양한 조건에서의 항진균력검증
	2차년도	내용	○주관연구기관(인하대학교) 1) 미생물 제제 후보 방선균의 특성 분석 및 유전자 조작 기술 시스템 구축 2) 방선균 BAC vector system을 이용한 폴리엔 항진균 생합성유전자군 분리 3) 생리활성을 나타내는 물질의 특성 규명 4) 여러 종류의 진균에 대한 항진균 활성 확인 ○참여기관 1(생산기술연구원)
			미생물 제제 방선균의 발효 조건 최적화 ○참여기관 2(에스티알바이오텍) 1) 선별된 후보균주의 안정화, 제형화 2) 다양한 조건에서의 방선균 포자 미생물 제제의 토양적응력, 항진균력 검증
	3차년도	목표	○주관연구기관(인하대학교) 항진균 폴리엔 생합성 유전자군의 유전체 재설계를 통한 신규유 도체 도출 ○참여기관 1(생산기술연구원) 항진균제 최적 생산을 위한 스케일업 최적화 ○참여기관 2(에스티알바이오텍) 친환경 미생물 제제을 위한 작물 진균 제어능 및 안정성 검증
연구개발 목표 및 내용		내용	○주관연구기관(인하대학교) 1) 거대 생합성 유전자군을 스트렙토마이세스 BAC system을 이용한 분리 및 유전정보 습득 2) 확보한 BAC vector을 이용하여 생리활성물질의 생산성 증대유도 및 다양한 생리활성물질의 유도체 발굴 3) 유전체 분석 및 이를 통한 유용 생합성유전자군의 파악
			○참여기관 1(생산기술연구원) 1) 발효 스케일업을 통한 50L 발효기 최적화 2) 폴리엔 물질의 분리정제 시스템 확립 3) 폴리엔 물질 고생산 균주제작과 고순도 분리공정 시스템 개발 ○참여기관 2(에스티알바이오텍)
			1) 친환경 미생물 제제를 위한 작물 진균 제어능 및 안정성 검증 2) Metagenome 분석 시스템을 응용한 미생물군집의 변화 확인 ○주관연구기관(인하대학교)
	4차년도	목표	합성생물학 및 유전체 공학 기반의 신규 방선균 미생물 제제 및 활성물질 개발 ○참여기관 1(생산기술연구원) 사업화-실용화를 위한 배지-배양-스케일업 공정 최적화 ○참여기관 2(에스티알바이오텍) 시제품의 독성 및 안전성 조사
	4시단 <u>工</u>		○주관연구기관(인하대학교) 합성생물학 기반의 항진균제 고생산 균주개발
		내용	○참여기관 1(생산기술연구원) 사업화-실용화를 위한 배지-배양-스케일업 공정 최적화 ○참여기관 2(에스티알바이오텍)
			유기농자재 등록 진행

- (생명정보자원) 방선균 유전체 해독 4건
- 스크리닝을 통해 선별한 항진균 활성이 우수한 방선균 4종의 유전체 해독 igem-0000408(*S. rubrisoli* Inha501), igem-0000409(*S. morookaense* Inha502), igem-0000867(*S. javensis* Inha503), igem-0001654(*S. collinus* Inha504)
- (생명정보자원) 유용 방선균 유전자원 확보 2건
- S. rubrisoli Inha501의 BAC library 구축을 통해 유용한 생합성유전자군이 포함된 BAC vector 확보(tautomycetin-like BGC(82kb), neotetrafibricin-like BGC(170kb))
- (지적재산권) 특허 등록 2건 , 특허 출원 4건 특허 등록
- 다양한 생리활성을 갖는 신규 방선균 및 이의 용도. 10-2313936. 2021년
- ├- 농작물 병원성 진균 제어용 신규 방선균 및 이의 용도, 10-2313937, 2021년

특허 출원

- 다양한 생리활성을 갖는 신규 방선균 및 이의 용도, 10-2019-0141882, 2019년
- ├- 농작물 병원성 진균 제어용 신규 방선균 및 이의 용도, 10-2019-0141883, 2019년
- 식물 병원성 진균 제어용 신규 균주 스트렙토마이세스 자벤시스 Inha503 및 이의 용도, 10-2021-0177641, 2021년
- 식물 병원성 진균 제어용 신규 균주 스트렙토마이세스 콜리너스 Inha504 및 이의 용도, 10-2021-0177642, 2021년

○ (학술) SCI급 논문 6건

연구개발성과

- "Pseudonocardia strain improvement for stimulation of the di-sugarheptaene Nystatin-like Pseudonocardia Polyene B1 biosynthesis "Journal of Industrial Microbiology and Biotechnology 46:649-655. 2019.
- "Cell Factory Design and Culture Process Optimization for Dehydroshikimate Biosynthesis in *Escherichia coll*" Frontiers in Bioengineering and Biotechnology. 7:241. 2019.
- "Enantioselective chemoenzymatic synthesis of (R)-γ-valerolactone from levulinic acid" Process Biochemistry 90:113-117. 2019.
- "Stimulated Biosynthesis of an C10-Deoxy Heptaene NPP B2 via Regulatory Genes Overexpression in *Pseudonocardia autotrophica*" Frontiers in Microbiology. 11:19. 2020.
- "Recent advances in heterologous expression of natural product biosynthetic gene clusters in Streptomyces hosts" Current Opinion in Biotechnology. 69:118-127. 2021.
- "Screening and isolation of a novel polyene-producing Streptomyces strain inhibiting phytopathogenic fungi in the soil environment" Frontiers in Bioengineering and Biotechnology. 9:692340. 2021.
- (사업화) 기술이전 2건 및 실용화 1건 기술이전
- 방선균 기반의 항진균 미생물제제 대량생산 및 실용화 기술, 에스티알바이오텍, 250만원, 2019.
- 방선균 기반의 항진균 미생물제제 대량생산 및 실용화 기술, 에스티알바이오텍, 1750만원, 2021.

유기농자재(상품명 팡스탑) 등록 신청 토마토, 고추 시들음병에 대한 병해관리용 유기농자재 제품등록 (진행 중)

	○ 마이	○ 마이크로바이옴 기반 폴리엔 특이적인 유전체 스크리닝 전략 확대 적용											
연구개발성과	○ 유전체 해독을 통한 방선균 유래 잠재적 유용경로 및 생리활성물질 개발												
활용계획 및	○ 기능성 유전자/물질 및 개량공정 최적화를 통한 신약 후보물질 발굴												
기대 효과	○ 구출	축된 유	용성,	안정성	, 안전성	성 등 평가	-검증	시스	:템의 지적	덕재신	ŀ 창칉	출	
	○ 고효	○ 고효율 친환경 미생물제제 제품 등록을 통한 방선균 산업화의 다각화 모색											
연구개발성과의 비공개여부 및 사유	공개												
								,	생명자원			신품	뚴종
연구개발성과의 등록·기탁 건수	논문	특허	보고/ 원문	시꺽	요약		표준	생 (정 <u></u>	_	화합	강물	정보	실물
	6	4 (등록2)	_	-	_	-	_	4	-	_	-	-	_
연구시설 • 장비	구입 기관	연구· · 장	. —	규격 (모델명)	수량	구입 연월일	구입: (천:		구입처 (전화)		미고 티장소)		ZEUS 록번호
종합정보시스템 등록 현황													
국문핵심어 (5개 이내)	н0	t선균		유전체	분석	폴리	엔	식들	물병원성	진균	유	-기농7	다재
영문핵심어 (5개 이내)	actin	omyce	es	geno analy		polye	ne	phy	topathog fungus	jenic	b	biocontrol agent	

															보안등	급	
				-	죄꽁	보고/	4							일년	<u> </u>]
	중	 앙행정기곤	 ŀ명			·림축산식	 중부				사	업명	포	스트	게놈다부:	처유전치	네사업
		전문기관명 해당 시 작성			농림식품기술기획평						내역사업명 (해당 시 작성)						
		공고번호							총	발연구기 (해당	l발 식법 시 작성		2				
									(연구개팀	발과제빈	보호			918008	8-4	
기 술		국가과학기 표준분			LB04	01	50%		LE	80404		30	%		LA0801		20%
분 류	농림	심식품과학기	기술분류		RA03	03	60%		RA	0305		30	%		RA0301		10%
	총	괄연구개빝	남명	국문													
	(7	해당 시 작성	4)	영문													
				국문											제제 개발		
	연	구개발과저	l명	영문	De	velopment	of mic		_		_			nts i	using acti	nomyce	etes
			-1-1	기관망	genomics-drive 기관명 인하대학교 산학협력단						등록번호						
	수선	반연구개발:	기관	주소									록번호				
					성망			김	응수			직					
		연구책임지	ŀ	연락기	연락처 직장전화 전자우편							휴대	전화 구자번호				
				전체 전자구원				20.	18 04	25 -					(개원)		
	연구개념	구개반기가 1다:		2018. 04. 25 - 2021. 12. 31 1단계 2018. 04. 25 - 2019. 12. 31													
			단기	-	2단계							. 12.	31 (2	년 C)개월)		
		개발비	I	·지원 개발비	지원 기·			그 외 기관 등의 지원금 지방자치단체 기타()			합계						
	(단위	: 천원)		금	현금	현물	현금		<u> </u>	· 현금	<u>현</u>	물	현금	1	현물	합	·계
	-	총계		,000	25,100								775,1		225,900		1,000
1	단계	1년차		,000	5,000		_						155,0	_	45,000		,000
-	- "	2년차		,000	6,700								206,7		60,300		,000
2	2단계	3년차 4년차		,000,	6,700 6,700		_						206,7 206,7		60,300		,000,
ᆜ	공동연구	개발기관		,						TJ =-I		TJ TI	,			고	,000
	(해당 시 작성)		기관망	3	책임자	직위			전화		전자	우펀		역할	기관	유형	
				산기술인	년구원	이도훈									공동	정부출	들연연
	ㅎㅎ연	!구개발기관	- 1	티알바	이오텍	이상종									공동	중소	기업
	여구기	ㅐ발담당자			성명			최	시선			직					
		『르ㅁᆼ시 P담당자	l l	년락처		직장전화							전화				
	_	. – – .	1 .		1 ?	서자우편					. 국	가연 =	구자버호	ī			

실무담당자 연락처 전자우편 국가연구자번호 국가연구자번호 이 최종보고서에 기재된 내용이 사실임을 확인하며, 만약 사실이 아닌 경우 관련 법령 및 규정에 따라 제재처분 등의 불이익도 감수하겠습니다.

2022 년 4월 1일

연구책임자:

주관연구개발기관의 장: 인하대학교 산학협력단장 유

공동연구개발기관의 장. 한국생산기술연구원 원장 이

공동연구개발기관의 창: 에스티알바이오텍

〈 목 차 〉

- 1. 연구개발과제의 개요
- 2. 연구개발과제의 수행 과정 및 수행내용
- 3. 연구개발과제의 수행 결과 및 목표 달성 정도
- 4. 목표 미달 시 원인분석(해당 시 작성)
- 5. 연구개발성과 및 관련 분야에 대한 기여 정도
- 6. 연구개발성과의 관리 및 활용 계획

별첨 자료 (참고 문헌 등)

1. 연구개발과제의 개요

○ 연구개발 개요

- 미생물 기반 친환경 생물농약의 필요성은 더 이상의 설명 이 필요 없을 정도로 절실하다 (아래 연구개발의 중요성 참 조). 현재 생물농약으로는, Bacillus Bt기반의 살충제를 포 함한 다양한 미생물 종이 사용되고 있으나, 농업용 작물에 대한 항진균 생물농약으로는 방선균 (특히 Streptomyces) 종이 다수를 차지하고 있다.

- 국내 생물농약 (일명 천연식물보호제) 등록현황 (2012년 12월말 현재)에 따르면, 방선균 기반의 생물 농약으로는 (주)케이아이비씨의 방선균 2종 (스트렙토마이세스고시키 엔시스더블유와이이324 액제, 스트렙토마이세스콜롬비엔 시스더블유와이이20 액제)이 등록되어 사용되고 있다. <농림부 워크샵 세미나 자료(방선균 유래 살균제)>

품목수	용도	구분	농약 품목명	등록규격		
1			바실루스서브틸리스화이1866수화제	1X10^9cfu/g		
2			바실루스서브틸리스716수화제	5 X10^9cfu/g		
3			바실루스서브틸리스716액상수화제	1X10^9cfu/g		
4		수입	바실루스푸밑루스큐에스티2303액상수화제	1X10^9cfu/g		
5			바실루스서브틸리스디비비1501수화제	1X10^9cfu/g		
6					바실루스서브틸리스1501입제	1×10^8cfu/g
7			바실루스서브틸리스제이케이케이288액상제	5X10~7cfu/ml		
8	살균			바실루스서브틸리스지비365수화제	6 X 10^7cfu/g	
9			바실루스서브틸리스지비365액상수화제	1X10^7cfu/ml		
10			바실루스서브틸리스케이비시1010수화제	1X10^5cfu/g		
11		제조	스트렙토마이세스고시키엔시스더블유와이이524액제	1X10^5cfu/ml		
12			스트렙토마이세스고시키엔시스터블유와이이20액제	1×10^4cfu/ml		
13			암펠로마이세스퀴스콸리스에이큐94013수화제	1 X 10^7 cfu/g		
14			패니바실루스톨리막사에이시-1액상수화제	5 X 10^8cfu/ml		

- 국외에서는 더욱 활발하게 방선균 기반 생물농약이 사용되 고 있으며, 특히 미국 노보자임의 Streptomyces lydicus WYEC108 (상품명 Actinovate)와 핀란드 Verdera의 Streptomyces K61 (상품명 Mycostop)은 방선균을 주성분으 로 하고 있다. 중국의 경우에도 폴리엔계 켄디시신 및 나타마 이신을 생산하는 방선균 Streptomyces를 생물농약으로 활용 하여 작물의 진균 감염 및 진균공생해충을 친환경적으로 제어 하고 있다.

Commercial Product Name	Organism as Active Substance	Registered as Microbial Pesticide
Actinovate, Novozymes BioAg Inc., USA	S. lydicus WYEC 108	Canada, USA
Mycostop, Verdera Oy, Finland	Streptomyces K61	EU, Canada, USA

<대표적인 해외 방선균 생물농약 2종>

< Novozyme의 Streptomyces lydicus 생물농약 (왼쪽)과 Verdera사의 Streptomyces K61 생물농약 (오른쪽) >

- 따라서 본 연구에서는 항진균 활성이 우수한 폴리엔 화합물을 생산하는 방선균을 유전체 검색기술로 선 별한 후, NGS 기반으로 유전체를 해독하여 해당 생리활성물질의 특성을 분자수준에서 규명하고, 이들 유 용 방선균 (혹은 방선균 유래 생리활성물질)을 생물농약으로 실용화하기 위한 배양공정 최적화 연구를 수 행하고자 한다. 보다 구체적인 과제구성은 다음과 같다.

1세부	(주관기관, 인하대)	폴리엔 항진균제를 생산하는 미생물 제제 개발을 위한 NGS기반의 방선균 유전체 분석 및 생합성 유전자군 규명.
2세부	(협동기관, 한국생산기술연구 소)	산업용 방선균 배양조건 최적화 및 대량생산을 위한 스케일업 공정 최적화.
3세부	(참여기업, STR바이오텍)	미생물 제제으로 사용이 용이하면서도 고활성을 유 지하는 방선균 배양공정 및 포자공정 최적화.

○ 연구개발 대상의 국내·외 현황

- 국내 기술 수준 및 시장 현황

<기술현황>

- 다양한 자연환경에 존재하는 미생물을 이용한 미생물농약 (혹은 미생물 유래 생리활성물질)에 대한 국내의 연구개발은 선진국에 비해 30~50년 뒤늦은 1980년대부터 시작되었고, 환경오염 문제에 대한 인식이 바뀌는 2000년대 들어서 본격적으로 연구수준이 많이 향상되었다. 국내 대학 및 연구기관을 주축으로 다양한 농작물 질환 (즉, 담배 모자이크병, 세균성 마름병, 오이의 시들음병, 고추의 역병, 딸기의 시들음병, 눈마름병, 사탕무우의 입고병, 벼의 도열병, 문고병)에 대한 병해방제용 미생물 연구가 보고되었다.

구분	પ ી 8	평가
숫자	* 상품화 35종(살관:14종, 살충:21종) (수입:13종, 개발:22종)	* 국내투자(예산 연구, 인력, 기간)고려 시 적지 않은 제 품개발 성과
기술	* 미생물의 선발 및 대량 생산 * 약효 및 제형화 기술 * 안정성(인축 및 환경)확보	* 바실러스는선진국수준이나곰팡이배양수준은부족 * 선진국도 초보단계로 경쟁 가능 * 선진국 대비 초보 단계
시장	* 주요 제품: BT 실충제 * 기타 제품: 살균제 * 해외 수출: 없음 * 시장 규모: 고속 성장 중	* 해외제품 모방/도입 단계 * 독자성/시장 규모가 작음 * 해외제품의 국내시장 진출 가속화 * 선진국 중심으로 고속증가 추세 (미/영/일: 82%, 매출액 15~25%/선)
사업 환경	 등록관련 법규 정비단계 미생물농약 등록규정(2001년) 생화학농약 등록규정(2005년) 친환경 농산물의 사회적 요구 증가 친환경 농업육성과 농산물 안정성 확보대책 발표(2004, 농림부) 	* 화학농약보다 안전성 확보용이 - 국가별로 등록권장 추세 (개발비용및 기간단속 효과) * '미래의 작물 보호제'에 대한 사회적 요구 증가 및 선진국 수용 추세

< 농림부워크샵 세미나 자료(국내 생물농약의 현황 분석) >

- 국내의 생물농약 (미생물농약과 생화학농약을 포함)에 대한 연구는 1970년대 후반부터 대학교 및 정부 연구기관에서 산발적으로 시작되었으나 1990년대에 들면서부터 연구개발이 어느 정도 활성화되기 시작하 였고, 1997년도 친환경농업육성법이 제정되고 정부의 화학농약 사용량 감소를 위한 친환경농업에 대한 지 원이 추진되면서 생물농약 (미생물제제) 개발이 본격적으로 진행되었다.
- 1990년대 중반까지 항생작용에 기초했던 생물농약은 뿌리에 사는 생육촉진근권세균에 대한 새로운 사실이 밝혀지면서 그동안 생물농약의 단점인 적용범위가 한정된다는 문제점을 해결하였다.
- 2011년 12월 기준, 등록된 생물농약 (천연식물보호제)은 살충제 13 품목, 살균제 21 품목, 제초제 1 품목 등 총 35 품목으로 살균제가 살충제보다 1.6배 정도 높은 개발 현황을 보였다.
- 현재 생물농약으로는 Bacillus thuringiensis (Bt toxin)와 Baculovirus 등이 사용되고 있으나, 작물의 다양한 진균성 감염을 억제하는 효과적인 Biofungcide의 연구개발은 매우 미흡한 실정이다.
- 2012년 기준 국내 생물농약 살균제로 등록 된 것은 총 21 품목으로 최근 그 수가 많이 증가 하였고, 거의 대부분이 Bacillus subtilis, Streptomyces sp. 등 세균이며 곰팡이는 Trichoderma harzianum 등 3 품목으로 되어 있다.
- 수년 전만 해도 국내 대형 제조사 연구소에서 생물농약과 관련해 비공식적으로 전한 약효는 40%를 조금 넘는 수준이었으나, 불과 몇 년 사이에 생물농약의 약효는 90%를 넘어섰다.

- 생물농약이 자연계에 존재하는 미생물이나 선충 등의 천적관계를 기반으로 하는 만큼 이들을 배양해 살아있는 상태로 오래 유지·보존하는 것이 기술의 핵심이 됐으며 이를 위한 제형기술이 진보했다.
- 2000년대 들어와서 본격적으로 방선균을 대상으로 한 생리활성물질 생합성 연구가 진행중이며, 그 대표적인 예로 선문대와 GeneChem의 neocarzinostatin과 gentamicin, 생명공학연구소 이정준 박사팀과 선문대의 Rubradirin, 명지대 서주원 박사팀의 Spectinomycin과 Bluensomycin을 포함한 5개의 aminoglycoside 계열 항생제 생합성에 대한 연구가 진행중인 것으로 알려져 있다.

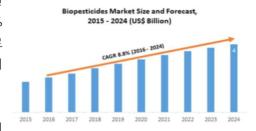
< 국내 생물농약제조사 케이아이비씨 (왼쪽) 및 경상대 방선균 생물농약 특허증 (오른쪽) >

<시장현황>

- 국내의 경우 2000년대, 생물농약 사용비중은 전체 농약시장의 1% 내외 수준이었지만 2010년에는 전체 농약시장의 10% (1천2백20억원)를 차지했다.
- 현재 국내 생물농약 시장은 약 800억 원의 시장을 형성하고 있으며, 친환경농산물 시장규모는 2009년 기준 3조7,355억 원으로 증가 하였고, 2013년에는 5조 955억 원으로 성장했다.

<지식재산권현황>

- 2000년 이후 생물농약의 출원 비율이 급속히 증가해 1990년대 초반 전체 농약특허출원 중 8.9%였던 비중이 2000년대 들어서는 18%로 2배가량 증가했다.
- 2004년 기준 세균, 곰팡이, 바이러스 등 5종의 생물농약에 대한 국내 특허가 등록되었다.

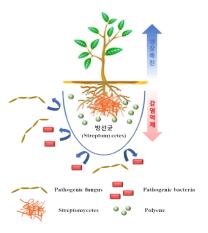

- 국외 기술 수준 및 시장 현황

<기술현황>

- 외국의 생물농약에 대한 연구는 1930년대의 해충의 병원성 미생물 및 식물병원균 길항 미생물에 대한 기초 연구 이후로 꾸준히 진행되어 왔으며, 1970년대 초부터 토양전염 식물병의 생물학적 방제 심포지엄을 기점으로 연구가 활발하게 진행 중이다.
- 생물농약의 개발은 비교적 소규모 회사들을 중심으로 이루어지고 있다는 점과 대부분 미생물에 근간한 미생물 농약 개발이라는 점이 주요 특징이다.
- 선진국에서는 미생물 또는 동·식물유래 생리활성 물질의 분리 및 동정과 같은 대량자동화 시스템 확보를 발판으로 다양한 신규 천연 생물소재의 탐색과 이를 이용한 대량생산 및 제형화 기술 등 산업화 기술을 축적하였다. 특히 산업화가 용이한 미생물, 천연 활성물질을 대상으로 화학적인 방법을 통한 신규 소재 확보, 생산, 제형화에 대한 연구 성과 및 특허가 전체적으로 균형 있게 개발, 진행 중이다.

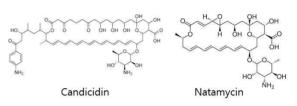
<시장현황>

- 전 세계 생물농약 시장은 2003년 468 million US\$, 2005년 672 million US\$, 2011년 1.320 million US\$로 연평균 약 10% 의 성장을 나타내었으며, 2017년 까지 약 3,200 million US\$로 연평균 15%이상 성장하였고 2024년까지 4.000million US\$의 시장을 점유할 것으로 예측 된다.
- 2000년대, 생물농약은 세계 농약시장규모 (2백51억달러)의 3%에 불과했으나 2010년대에는 4백50억달러로 전체 농약시장 < 2015년 이후 생물농약 시장 성장 예측 > 의 10%를 차지했다.


- 2014년 기준 전세계 작물보호제 시장 규모는 510억달러로 추산되며 연 평균 3.6% 가량 신장되고 있다. 이중 화학농약 시장은 480억달러로 매년 3%대의 성장세를 보인 반면 생물농약 시장은 33억달러 규모로 아직 화학농약에 비해서는 7%가 채 되지 않지만 매년 15%이상 신장하며 가파른 성장세를 보인다.
- 세계 생물농약 시장은 2005년 전체 농약시장의 약 2.5% 수준에 머물었지만, 최근 연평균 증가율이 9.9%로 계속해서 고성장세를 기록하고 있다. 전세계 약 110개 회사에서 생물농약 사업을 추진하고 있으 며, 대표적으로 Agra Quest, Verdera OY, 및 Certis USA, 상기 세 회사가 생물농약 시장의 약 5% 씩을 차지하고 있다. 특히 방선균 유래 생물농약 및 생물비료 회사 및 시장은 꾸준히 증가하고 있는 추세이다.

<지식재산권현황>

- 선진국을 중심으로 생물농약에 대한 연구가 활발하게 진행 중이다. 지난 2013년 농림수산식품교육문화 정보원이 발표한 자료에 따르면 관련 연구 건수는 미국 266건(16%), 인도 136건(8%), 중국 123건(7%)으 로 나타나는 등 글로벌 작물보호제 업계는 앞다퉈 생물농약 개발 중이다.
- 미국에서 1백80여종에 이르는 성분들이 생물농약으로 등록된 상태며 제품 가지수만 해도 7백종에 이르 는 것으로 집계 되었다. (http://dl.dongascience.com/magazine/view/S200407N032)


○ 연구개발의 중요성

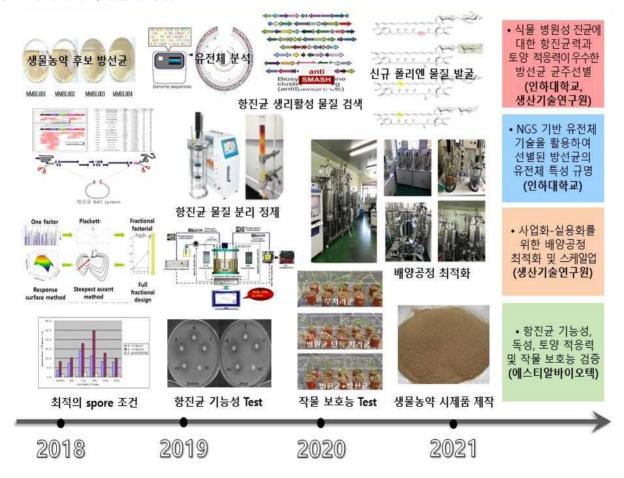
- 92년 리우 국제환경회의에서 전 세계 농약의 20%를 생물농약으로 대체하자고 결의한 이후. 기존 화학농 약에 대한 규제가 점점 심해지고 있어 화학농약의 소비가 유럽과 일본의 경우 해마다 5% 감소하고 있고 이를 대치할 생물농약의 시장규모는 급속히 성장하고 있어 앞으로 크게 주목할 시장으로 관련 기업의 관심 을 끌고 있다.
- 기존 화학농약의 독성을 줄이고 환경에 미치는 부작용을 최소화하려 는 경향은 농약 개발의 세계적인 추세다. Markets and Markets에서 발 간한 생물농약시장 보고서에 의하면 2001년 세계 농약시장의 약 2%인 5.8억 달러에 불과했던 생물농약시장의 가치는 성장률 17.4%를 보이며 지속적인 성장 추세에 있다. 2016년 33억 6000만 달러에 달했고 2022 년이면 88억 2000만 달러에 이를 것으로 추산된다. 연구개발 비용이 화 학농약에 비해 저렴한 것도 생물농약이 갖는 장점과 함께 기술 개발을 이끄는 주요인이 된다. 현재 생물농약으로는 Bacillus thuringiensis (Bt toxin)와 Baculovirus 등이 주로 사용되고 있으나, 작물의 다양한 진균성 감염을 억제하는 효과적인 Biofungcide의 연구개발은 매우 미흡한 실정 이다.

< 방선균 유래 미생물 제제 활성 예시 >

- 생물농약에 대한 연구는 선진국을 중심으로 활발하게 진행 중이다. 농림수산식품교육문화정보원에 따르 면 2013년 기준 관련 연구건수는 미국 266건(16%), 인도 136건(8%), 중국 123건(7%)으로 나타났다. 이 에 반해 우리나라는 인도와 브라질, 독일, 스페인보다 낮은 54건(3%)의 실적을 보였다. 세계 시장에 견줘 국내업체의 생물농약 개발은 미약한 수준이라고 할 수 있다. 그렇지만 우리나라는 바이오분야에 강세를 지 니고 있어 생물농약 분야의 시장 성장이 연구 발전에도 탄력을 줄 수 있을 것으로 기대된다.
- 생물농약에 대한 연구는 선진국을 중심으로 활발하게 진행 중이다. 농림수산식품교육문화정보원에 따르 면 2013년 기준 관련 연구건수는 미국 266건(16%), 인도 136건(8%), 중국 123건(7%)으로 나타났다. 이 에 반해 우리나라는 인도와 브라질, 독일, 스페인보다 낮은 54건(3%)의 실적을 보였다. 세계 시장에 견줘 국내업체의 생물농약 개발은 미약한 수준이라고 할 수 있다. 그렇지만 우리나라는 바이오분야에 강세를 지 니고 있어 생물농약 분야의 시장 성장이 연구 발전에도 탄력을 줄 수 있을 것으로 기대된다.
- 방선균이 생산하는 카디시딘-나타마이신 등의 폴리엔 화합물은 항진균 활성이 가장 높은 생리활성물질로서, 이미 국외에서는 다양한 농작물 진균감염을 예방하는 생 물농약으로 사용되고 있는 실정이다. 하지만 국내에선 폴리엔 생산 방선균을 이용한 생물농약의 개발이 전혀 이루지지 않고 있는 실정이다. 다만, 본 연구진이 (선행 연구를 통하여) 폴리엔 생산 방선균 포자를이용하여 마 < 대표적인 방선균 유래 항진균 생물농약 성분 늘 흑색썩음균핵병과 고추 역병에 효과가 있음을 입증하 였다.

칸디시딘과 나타마이신 >

- 따라서 본 과제에서는 항진균 활성이 우수한 폴리엔 화합물을 생산하는 방선균을 유전체 검색기술로 선 별한 후, NGS 기반으로 유전체를 해독하여 해당 생리활성물질의 특성을 분자수준에서 규명하고, 이들 유 용 방선균 (혹은 방선균 유래 생리활성물질)을 생물농약으로 실용화하기 위한 배양공정 최적화 연구를 수 행하고자 한다. 본 과제에서 제안하는 토양 방선균들을 생물농약으로 산업화 한다면. 농약에 의한 환경오 염 문제를 해결하기 위한 대안으로서 유용할 것으로 생각된다.


2. 연구개발과제의 수행 과정 및 수행 내용

2-1. 연구개발 목표

최종목표	방선균 유전체 기반의 농작물 진균 제어용 미생물제제 및 생리활성물질 개발
세부목표	1) 식물 병원성 진균에 대한 항진균력과 토양 적응력이 우수한 방선균 균주선별 2) NGS 기반 유전체 기술을 활용하여 선별된 방선균의 유전체 특성 규명 3) 항진균 기능성, 세포독성, 토양 적응력 및 작물 보호능 검증 4) 사업화-실용화를 위한 배양공정 최적화 및 스케일업

2-2. 연구개발의 추진전략·방법 및 추진체계

○ 연구개발의 추진전략·방법

<1차년도>

- 주 관 연 구 기 관 (인 하 대 학 교) : 항진균 유래 fungicide 활성이 우수한 2종의 NGS 기반의 유전체 분석 (추 가적으로 2차 연도 1종, 3차 연도 1종에 대한 유전체분석실시)
- 참여기관 1(생산기술연구원) : 항진균제 최적 생산을 위한 방선균 배지성분 최적화
- 참여기관 2(에스티알바이오텍) : 미생물제제 후보 방선균의 균주 특성 파악 및 고농도 포자형성, 수확조건 확립

<2차년도>

- 주관연구기관(인하대학교): 항진균제 생합성 및 조절 유전자 특성 규명 및 유전자군 분리
- 참여기관 1(생산기술연구원) : 항진균제 최적 생산을 위한 방선균 배양공정 최적화
- 참여기관 2(에스티알바이오텍) : 선별된 후보균주의 제형화 및 다양한 조건에서의 항진균력 검증

<3차년도>

- 주관연구기관(인하대학교) : 항진균 폴리엔 생합성 유전자군의 유전체 재설계를 통한 신규유 도체 도출

- 참여기관 1(생산기술연구원) : 항진균제 최적 생산을 위한 스케일업 최적화

- 참여기관 2(에스티알바이오텍) : 친환경 미생물제제를 위한 작물 진균 제어능 및 안정성 검증

<4차년도>

- 주관연구기관(인하대학교) : 합성 생물학 및 유전체 공학 기반의 신규 방선균 미생물제제 및

활성물질 개발

- 참여기관 1(생산기술연구원) : 사업화-실용화를 위한 배지-배양-스케일업 공정 최적화

- 참여기관 2(에스티알바이오텍) : 시제품의 독성 및 안전성 조사

○ 연구개발 추진체계

	연구개		총 참 여 연 구 원			
과제명	방선균의 유전체	∥ 활용기반의 미생물제제		단위연구책임자		
4세명	사업	화 기술 개발		(김응수)외 총 3명		
Final Property of the Property	인하대학교 S기반의 방선균 구전체 해독 및 활용 기술 개발 김응수외 7명 당기술개발내용 방선균 4종 유전체 정보 획득 및 분석	화 기술 개발 - 생산기술연구 실용화를 위한 배지-배양-스 일업 공정 최적화 이도훈외 1명 - 당신균 생신 폴리엔 생리활성물을 의 배양 기술확보	한 케 H 용	(김응주)외 총 3명 (김응구)외 총 3명 방선균 미생물제제 실용화 연구 이상종외 6명 담당기술개발내용 • 미생물제제 후보 방선균의 균주 특성 파악 및 배양 형태학적 특성분석 • 고농도 포자		
•	폴리엔 생합성 유전자군의 폴리엔 천연물 특성규명 새로운 폴리엔 화합물	 배양 스케일 기술 구축 폴리엔 고생 시스템 구축 폴리엔 분리정제 시스템 확보 	산	형성조건과 포자 형성 배지 개발		

2-3. 당해연도 연구개발 목표 및 결과

○ 1차년도(2018)

구분 (연도)	세부과제명	세부연구목표	연구개발 수행내용	연구결과
1차 년도 (2018)	NGS 기반의	항진균 유래 fungicide 활성이 우수한 2종의 NGS기반의 유전체 분석	방선균 항진균 활성이 우수한 후보균 선정	- 선행연구에서 <i>C. albicans</i> 에 대해 항진균력이 우수했던 방선균 MMBL001, MMBL002, MMBL003, MMBL004, 및 <i>P. autotrophica</i> 의 잎마름병 유발 원인 곰팡이 Fusarium 계열의 <i>Fusarium oxysporum</i> 에 대한 항진균 활성을 확인하여 벼의 잎마름병을 유발하는 진균에 대한 활성을 비교한 결과, 산업적인 미생물제제로 이용하기에는 방선균 MMBL001, MMBL002, MMBL003, MMBL004의 항진균 활성보다 높은 활성의 균주가 필요하여 강력한 항진균 활성을 나타내는 방선균 균주 스크리닝 및 선정과정을 진행함 - 한국생명공학연구원 (KRIBB)(산업바이오소재 연구센터)으로부터 스크리닝 된 약 2500여종의 방선균 배양액을 분양받아 acetone을 이용하여 compound를 추출하여 진행함 - 추출한 총 2500여종의 compound를 <i>F. oxysporum</i> 과 <i>C. albicans</i> 를 이용하여 항진균 활성 테스트 완료하였으며 항진균 미생물제재로 사용 가능한 후보군 선정 완료함 (항진균 활성을 나타내는 148중 선별 완료) 2419 samples 10 58 10 138 samples 2419 samples 2419 samples 11 2500종의 방선균을 이용한 항진균력을 나타내는 방선균 스크리닝 결과 - <i>F. oxysporum</i> 대한 항진균 활성을 나타낸 방선균 건희당을 나타낸 방선균 결과 - <i>F. oxysporum</i> 대한 항진균 활성을 나타낸 방선균 전 활성을 나타낸 방선균 관 활성을 나타낸 망 환경을 가 하는 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관

- *F. oxysporum* 대한 항진균 활성을 나타낸 방선균 138 종 298 305 742 NGS 기반의 방선균 중 방선균 항진균 유래 항진균 유전체 fungicide 1차 활성이 해독 및 활성이 년도 우수한 우수한 2종의 활용 기술 (2018)후보균주 개발 NGS기반의 그림 2. F. oxysporum에 대한 항진균력 테스트 선정 (인하대학 유전체 분석 - C. albicans 대한 항진균 활성을 나타낸 방선균 68종 亚) against *C. albicans* 그림 3. C. albicans에 대한 항진균력 테스트 - F. oxysporum과 C. albicans에 대해 동시에 항진균 활 성을 나타낸 방선균- 58종

1차 년도 (2018)	NGS 기반의 방선균 해독 및 활용 개발 (인하대학 교)	항진균 유래 fungicide 활성이 우수한 2종의 NGS기반의 유전체 분석	HPLC 분석을 통해 polyene compound를 생산하면서 항진균활성 이 우수한 후 선정	- F. oxysporum, C. albicans에 대해 항진균 활성을 나타 내는 148종의 방선균으로부터 생산되는 compound 성 질을 파악하여 폴리엔(Polyene) compound를 생산하며 항진균 활성을 나타내는 후보군을 선별하기 위해 폴리엔 compound detection method를 이용한 HPLC 분석실시 - ** 51종의 방선균의 배양액의 이용한 폴리엔 HPLC 분석 상 폴리엔 compound를 확인하였으며 Triene 1종, Tetraene 3종, Pentaene 13종, Methylpentaene 25종, Hexaene 1종, Heptaene 7종, Octaene 1종 분석 완료
--------------------	--	---	--	--

1차	NGS 기반의 방선균 유전체 채도 미	항진균 유래 fungicide 화서이	항진균활성 이 우수한 2개이 최조	- 항진균 활성이 확인된 148종의 방선균 후보군 중 항진 균력이 우수하며 HPLC 분석을 통해 폴리엔 compound 를 생산하는 것으로 확인된 51종의 방선균의 16s rRNA sequencing 과 rpoB (RNA polymerase subunit β) 및 특정 CYP sequencing(본 연구진의 폴리엔 특이적인 PCR primer 이용) 염기서열 분석을 수행하였고, 이를 바탕으로 기존에 보고된 방선균들과 비교한 결과 신 규성을 가지며 항진균력을 나타내고, 폴리엔 compound를 생산하는 2종의 후보균주 선정
년도 (2018)	년도 해녹 및 활성이 2개의 최 년도 확용 기숙 우수한 2종의 후보규	후보균주	1311 1311 1311 against Amb 5µg MeOH	
				그림 5. 선정된 2종 후보균주의 <i>C. albicans</i> 에 대한 항진균 활성 확인
				30 306 399 536 614
				623 (726) 799 827 838
				858 863 1031 1043 1069 1098
			1158 1264 1297 1301 1310 1319	
				1311 b 1311 against Amb 5µg MeOH
				그림 6. 선정된 2종 후보균주의 <i>F. oxysporum</i> 에 대한 항진균 활성 확인

		Description Streptomyces rubrisoli strain FXJ1.725 Streptomyces rubrisoli strain FXJ1.725 Streptomyces ferralitis strain SFOp68 Streptomyces sparsogenes strain NBRC 13086 Streptomyces subjidosporus strain NBRC 12378 Streptomyces abikoensis strain NBRC 13360 Streptomyces thioluteus strain NBRC 13341 Streptomyces thioluteus strain NBRC 13341 Streptomyces thioluteus strain NBRC 13360 ANO90726 Description Streptomyces abikoensis strain NBRC 13360 ANO90726 Description Streptomyces morookaense strain LMG 200 Streptomyces lavenduligriseus strain NRRC 133 Streptomyces lavenduligriseus strain NRRC 133 Streptomyces thioluteus strain NBRC 133 Streptomyces thioluteus strain NBRC 133 Streptomyces thioluteus strain NBRC 336 Streptomyces thioluteus strain NBRC 336 Streptomyces lavenduligriseus strain NBRC 336 Streptomyces strain NBRC 336 Streptomyces strain NBRC 336 Streptomyces strain NBRC 336	416 074 -3173 41 4 435	Total 1446 1445 1446 1435 1440 1430 1446 1448 1441 1447 Matcl 132 1442 1444 1443 1441 1447 1443 1443 1443 1443	2 1447 2 1448 2 1449 0 1451 7 1449 0 1443 4 1449	Pct(%) 99 99 99 99 99 99
NGS 기반의 방선균 항진균 유럽 유전체 fungicide 해독 및 활성이 활용 기술 우수한 2종. 개발 NGS기반의 (인하대학 유전체 분설	균수이면서항진균활성이 우수한2개의 최종호보균주	### 10.11.09(TIME) (2011.09) ### 10.00 ### 10	대한 16s F) ATCGGCGACC R) (T(/A)A(G/C)A 3 4 776 1042 Lane 1 Lane 2 2 한 폴리	GACCG(G/C) AG(G/C)A(T/ I: template tD I: the plate tD I: the plate tD II: template tD II: template tD II: template tD II: template tD	AN09: AN09: sequenci ()(A/G/C)(T/C) ()(G/C)CCGT (NA – AN090726 (NA – AN091042	ng 결과 CGT -3' CGTACTT-3'

1차 년도 (2018)	NGS 기반의 방선균 유전체 및 활용 개발 (인하대학	항진균 유래 fungicide 활성이 우수한 2종의 NGS기반의 유전체 분석	신규성이 있는 균주이면서 항진균활성 이 우수한 후보균 및 whole genome sequencing 실시	Primer design for identifying AN090728 PC
	사업화-실 용화를 위한 배지-배양 -스케일업 공정 최적화 (한국생산 기술연구 원)	항진균제 생산을 위한 최적 배양조건 확립	포자형성 배지와 성장 배양 최적화	- ISP2 배지를 SPL사의 plant plate에서 4일간 배양한 경우 1.2 * 10 ⁸ (spores/ml) 포자를 회수함. <i>P. autotrophica</i> 의 균사 성장 형태를 확인하기 위해서 ISP2 배지에서 회수된 포자를 3% 이상에서 접종한 경우 filamentous 균사 유도 고림 12. 96시간 배양 된 생산 배양에서 세포의 morphology

1차 년도 (2018)	사업화-실 용화를 위한 배지-배양 -스케일업 최적화 (한국생산 기술연구 원)	항진균제 생산을 위한 최적 배양조건 확립	성장 배양 최적화 배양 최적화 수행	- Trpytic Soy Broth가 40 (g/L)로 첨가된 경우에 약 16 (g/L)의 DCW로 최적화 되었으나, 기존 20 (g/L)의 TSB가 참가된 경우에는 약 11 (g/L)의 DCW가 생산되어 약 30% 가까이 감소하는 경향을 확인 그림 13. 성장 배지 조성에 따른 건조세포중세량 비교 그림 14. 성장 배지 조건에서 건조세포 측정 사건(40g/L TSB: 왼쪽에서 아래 3번째) - 폴리엔의 최종 생산성을 극대화하고자 생산 배지에 관한 최적화를 수행하고자 현재 사용되고 있는 YEME 생산 배지를 중점(기본 배지)로 하여 실험을 수행하였으나 YEME 생산 배지에 phosphate가 무첨가 상태이기 때문에 factor로써 phosphate를 첨가하였으며, 빠른 배지 최적화를 고려하여 Plakett-Burmann과 같은 배지 함께는 되는 일험 방법은 배제 effect를 테스트할 수 있는 실험 방법은 배제
--------------------	--	------------------------------------	---------------------------	--

				- Fractional factorial design으로 실험의 채택을 통해
				서 yeast와 phosphate factor의 effect와 배지 간
				interaction 그래프를 통하여 추가 배지 최적화 방향
				설정
				Name Units Type Low High
				B [Numeric] Glucose g/L Numeric 0 10 C [Numeric] Peptone g/L Numeric 0 2
				D [Numeric] Yeast g/L Numeric 0 3
				F [Numeric] MgCt2 g/L Numeric 0.24 0.72
				G[Numeric] p Phosphate gf. Numeric 1 3 그림 15. Fractional factorial design(2 ⁷⁻²)
				THE IO. IT actional factorial design(2)
				TO Sld Run Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Response 1 Drivest Ellat FlagCIZ GS Phosph Polyene 95. 91. 91. 91. 91. 91. 91. 91. 91. 91. 91
				17 1 -1.000 -1.000 -1.000 -1.000 1.000 1.000 1.000 -1.000 1.000 -1.000 1
	사업화-실			6 4 1 000 1.000 1.000 -
	용화를			3 7 -1.000 1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
	위한	항진균제		22 9 1.000 -1.000 1.000 -1.000 1.000 1.000 1.000 -1.000 1.000 -1.000 1.0
1차	배지-배양	생산을 위한	성장 배양	15 12 -1.000 1.000 1.000 1.000 -1.000 -1.000 -1.000 1.000 11 13 -1.000 1.000 -1.000 1.000 -1.000 -1.000 -1.000 -1.000 5 14 -1.000 -1.000 1.000 -1.000 -1.000 -1.000 -1.000
년도	-스케일업	최저	최적화 및	6 15 1.000 -1.000 1.000 -1.000 1.000
(2018)	공정 최적화	매장조신	생산 배양 최적화 수행	26 18 1 000 -1.000 -1.000 1.00
	(한국생산	확립	의식와 下생	14 21 1.000 -1.000 1.000 1.000 -1.000 -1.000 1.000 1.000 23 22 -1.000 1.000 1.000 -1.000 1.000 1.000 -1.000
	기술연구			19 23 -1.000 1.000 -1.000 -1.000 1.000 -1.000 1.000 12 24 1.000 1.000 -1.000 1.000 -1.000 -1.000 -1.000 1.000 32 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000
	원)			9 26 -1.000 -1.000 -1.000 1.000 -1.000 -1.000 -1.000 20 27 1.000 1.000 -1.000 -1.000 1.000 1.000 -1.000 30 28 1.000 -1.000 1.000 1.000 1.000 -1.000 -1.000
				31 29 -1.000 1.000 1.000 1.000 1.000 -1.000
				그림 16. Fractional factorial design 실험 테이블
				그림 10. Fractional factorial design 실험 데이글
				- 폴리엔의 상대적 생산량 분석을 통하여 실험 결과를
				분석한 결과 최초에 제시된 모델에 대한 유의성은
				(Prob>F 값) 0.0008로써 매우 높은 결과 값을 나타내
				었으며, 따라서 모델 분석 신뢰 가능
				- Factorial design을 통하여 폴리엔 생산에 대한 모델
				방정식 폴리엔 = +284.97+35.97* A-39.84* B+0.28*
				C+228.53* D+6.72* E+124.84* G-1.84* AD+36.84*
				AE+7.59* AG+1.97* BD-38.59* BE+13.22* CD+12.41*
				CG-10.22* DE+68.41* DG+9.28* ADE30.22* ADG-7.03*
				BDE
	I	I	I.	

1차 년도 (2018)	사업화- 실용화를 위한 배지-버 일업 최적화 (한기술원)	항진균제 생산을 위한 최적 배양조건 확립	성장 배양 최적화 및 생산 배양 최적화 수행	Response 1 Polyene Hiterarchical terms added after manual regression A.B.C.D.E.O.A.D.AE.AG.BO.BE.CO.CO.DE.DG
	방선균 생물농약 실용화 연구 (에스티 알바이오 텍)	미생물제제 후보 방선균의 균주 특성 파악	후보균주의 특성파악	- 항진균제의 액상 배양을 통한 대량 생산을 위하여 최적 배양 조건을 확립하고자 하였으며, 이를 위해서일차적으로 플라스크 배양에서의 배양 환경을 조사하여 균주의 특성을 파악하고 특성을 규명 7 days 7 days 7 days Production(YEME) 그림 18. 액상 배양을 위한 실험 설계 - 스크리닝을 통해 선정된 균주에 대한 항진균력, 토양적응력, 안정성 비교를 위한 필드 테스트 수행 전 배지 활성 비교

1차 년도 (2018)	방선균 생물용화 연구티오 에스티오	미생물제제 후보 방선균의 균주 파악	후보균주의 특성파악	GSS GSS Amb Spg 1042 726 NC YEME YEME against C. albicans GSS GSS GSS Amb Spg 201042 726 NC YEME YEME against F. oxysporum 그림 19. 필드 테스트 수행 전 배지에서의 활성 비교 - 선정된 균주 2종의 미생물 제재로써의 가능성을 검증하기 위해 필드 테스트를 수행할 수 있는 한국식물환 경연구소에 의뢰하여, 곰팡이에 감염된 배추, 딸기, 고추, 토마토에 대한 항진균, 항미생물에 대한 효능을 검증 중 (겨울철이라 여러 작물에 대한 모종을 구하기 가 힘든 상황이다. 봄철이 되면 여러 작물에 대한 필드테스트를 진행하고 활성이 좋은 작물을 target으로 선정할 예정) WA THANGI ARECTRINATE SECON 2008 2009 2008 200 2008 200 2008 200 2008 200 200
--------------------	-----------------------------	------------------------------	---------------	---

1차 년도 (2018)	방선궁약 생물용화구 티오 에 알 텍 텍	미생물제제 후보 방선균의 균주 파악	후보균주의 특성파악	- Pseudonocardia autotrophica의 배양 최적화를 위해 서 우선 포자 형성 배지에서의 배양 형태를 관찰한 결과 2~3일 이후 포자 형성이 급격히 높아지나 그 이후에서는 포자의 형성이 낮게 관찰되며 이와 같은 현상은 일반적인 PDA agar배지에서도 동일하게 관찰됨 - ISP2 medium에서는 약 1.2 x 10 ⁸ (spores/ml)을 회수하였으며, PDA 배지에서는 좀 더 놓은 2 x 10 ⁸ (spores/ml)의 포자를 회수(A) (B) - 스크리닝을 통해 선정된 2종의 균주에 대한 다양한 배지를 통해 포자형성 및 수확 조건 확인 - 선정된 2종의 균주의 경우 5종의 배지에서 포자가 형성되지 않아 배양액 동결건조를 통한 수확 조건 재정립
--------------------	-----------------------------	------------------------------	------------	--

○ 2차년도(2019)

구분 (연도)	세부과제명	세부연구목표	연구개발 수행내용	연구결과
2차 년도 (2019)	항진균제 생합 조 전 및 자리 대학 인 교 이 교 이 교 이 교 이 교 이 교 이 교 이 교 이 교 이 교	항진균 유래 fungicide 활성이 우수한 3종의 NGS기반 유전정보 분석	전략미생물 의 전체 하독	(1) Inha501의 whole genome sequencing - PacBio RSII, Illumina platform and De novo assembly를 이용하여 유전체 분석(마크로젠 수행) - Contig Name Length (bp) CDS EBNA TEBNA (contig Bill RS) 2200 7,389 75 18 (contig Bill RS) 2250 7,389 75 18 (contig Bill RS) 2250 7,388 75 18 (contig Bill RS) 2250 18 (contig Bill

				- Inha501의 16s rRNA sequence 기부 phylogenetic tree
2차 년도 (2019)	항진균성 모조절 유전자 무성 및 자근리 이 교이 의교이 의교이 의교이 의교이 의교이 의교이 의교이 의교이 의교	항진균 유래 fungicide 활성이 우수한 3종의 NGS기반 유전정보 분석	전략미생물 의 전체해독	- Inha501의 16s rRNA sequence 기반 phylogenetic tree 전체 유전체 정보를 바탕으로 예상 BGC region의 분석 과 균주에 대한 동정을 실시하여 Inha501의 신규 균주 임을 확인 - ***********************************
				그럼 28. InhabO2의 contig 1 (chromosomal DNA map)
				- <u>Inha502의 16s rRNA sequence기반 phylogenetic tree</u>
				전체 유전체 정보를 바탕으로 예상 BGC region의 분 석과 균주에 대한 동정을 실시하여 Inha502이 신규

2차 년도 (2019)	항진균제 생합성 조절 유전자 특 성 및 자리 (인 교)	항진균 유래 fungicide 활성이 우수한 3종의 NGS기반 유전정보 분석	전략미생물 의 전체 유전체해독	## 1812/50-18 nonecomen stan MRCIAMS ## 1812/50
--------------------	---	--	------------------------	---

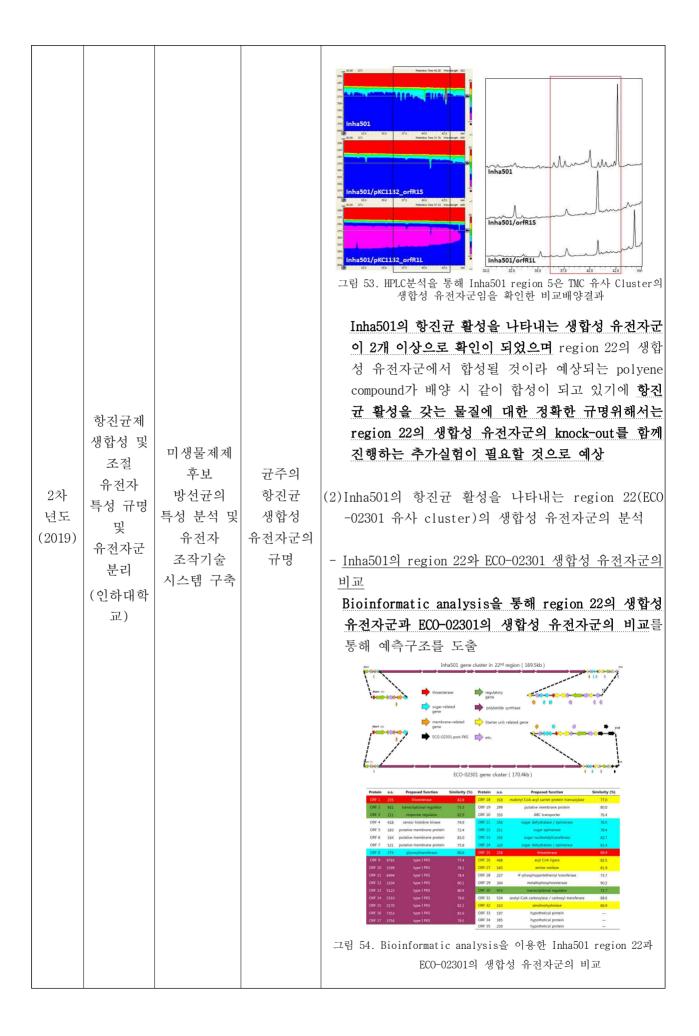
Г

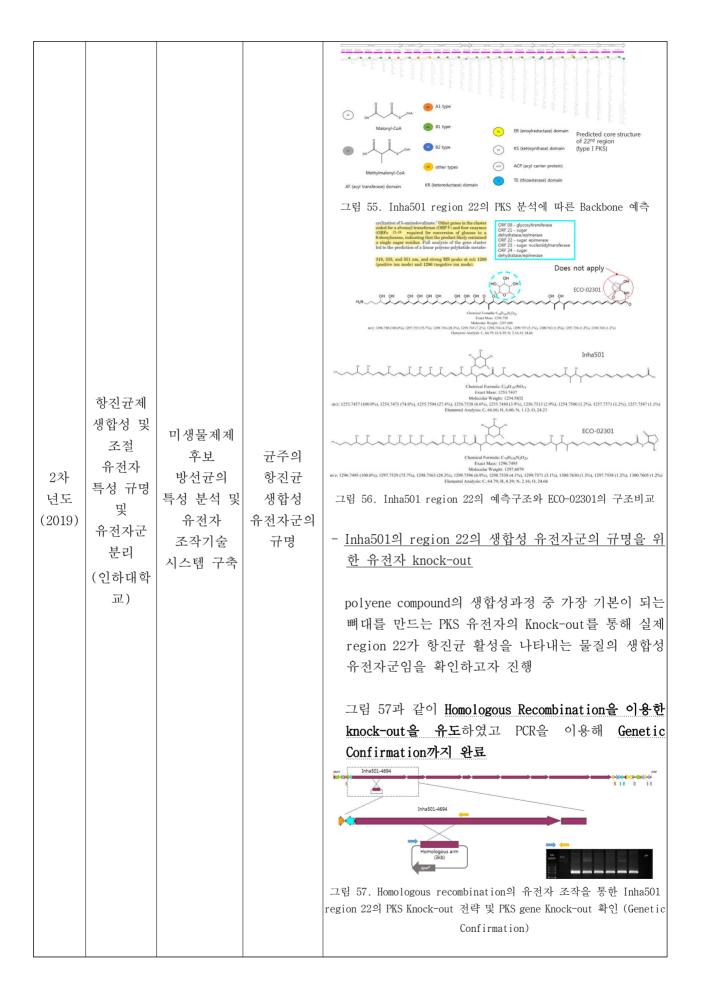
2차 년도 (2019)	항진균제 생합성 조절 유전자 특성 및 자근 인하대학 인교)	항진균 유래 fungicide 활성이 우수한 3종의 NGS기반 유전정보 분석	전략미생물 의 전체 유전체해독	GSS broth, 30 °C, 7일간 진탕배양 이후 Acetone 추출법을 이용한 항진균 활성테스트를 진행하여 항진균 활성이 우수하며 non-polyene antifungal compound을 생산하는 균주를 Inha503 후보균주로 선정 Against C. albicans Against A. niger 그림 31. 후보균주 선정을 위한 항진균 활성테스트 (Acetone 추출물) Against F. oxsporum 그림 32의 노란색원으로 표시된 AN100585균주를 Inha503으로 선정을 하고 16s rRNA sequence, rpoB sequence의 비교를 통해 기존의 database와 일치하는 정보가 없음을 확인하고 whole genomce sequencing을 수행 3차연도의 전략미생물해독을 위한 Inha504 선정은 항진균활성이 우수하면서 polyene compound를 생산하는 AN090291균주(그림 32의 파란색원)로 결정하였고 16s rRNA sequence, rpoB sequence, specific CYP sequence의 비교를 통해 일치하는 정보가 없음을 확인하여 whole genome sequencing을 진행할 예정
				AmB Sug MeOH Against A. niger Against F. oxsporum 그림 32. Inha503, Inha504 항진균활성 테스트

				- PacBio RSII, Illumina platform and De novo assembly
				를 이용하여 유전체 분석(마크로젠 수행)
				Contig name Length GC (%) Depth
				contig! 1,643,023 70.81 81 contig2 1,034,350 71.34 68
				contig3 971,262 71,15 67 contig4 686,930 68,70 53
				contig5 574,675 71.88 55 contig6 555,997 71.37 82
				contig7 528,262 71.45 76 contig8 349,907 71.53 53
				contig9 343,176 72.25 45 contig10 340,308 71.24 46
				Contigil 316,067 71,68 55 Contigil 229,948 71,57 48
				contigl3 173,196 72.44 45
				contigl5 124,600 71.25 52
				contigl6 120,445 71.69 41 contigl7 113,772 72.26 56
				contigt8 99,492 70.55 43 contigt9 98,691 70.07 37
			전략미생물	contig20 97,317 72,93 40 contig21 83,732 71,33 40
			의 전체	contig22 82,742 69.06 37 contig23 78,186 71.11 45
			유전체해독	contig24 78,095 72,35 36 contig25 76,060 72,73 43
			규신세애국	
				그림 33. Inha503의 whole genome 정보
				천게 1.1[020] 1(4)
	항진균제 생합성 및 조절 유전자 특성 규명			현재 Inha503의 draft genome sequence는 확보하였
				고 sequencing 과정에서 universal primer의
				binding이 불안정한 문제가 발생하여 보다 큰 크기
		항진균 유래		의 contig 확보를 위해 추가 분석을 진행 중
				7 55315 18 77 18 77 18 78 78 78 78 78 78 78 78 78 78 78 78 78
0.=1		fungicide		sequencing된 유전체 정보를 바탕으로 예상 BGC
2차		활성이		
년도	및	우수한 3종의		region의 분석과 균주에 대한 동정 작업을 실시하여
(2019)		l NGSフレリト		Inha503도 신규 균주임을 확인
	유전자군	유전정보		
	분리	분석		
	(인하대학	正省	활성을 나타내는	(1) antiSMASH ver5.0 프로그램을 이용하여 이차대사산
	亚)			물과 관련된 예상 BGC region을 분석하여 항진균 활성을
				_
				나타내는 BGC 예측 선별
				I 1 E01이 4:0MVOII 남 점 - 4-의
				- <u>Inha501의 antiSMASH 분석 결과</u>
				0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				Region 1 T1PKS df , terpene df 108,813 189,889 Ebelactone df polyketide 8% Region 2 NRFS like df 332,522 373,596 Paromonycin df sacchanide 5% Region 1 Section 1 417,599 426,599
				Region 4 T2PKS 0ff , bullyrolactone 0ff 546,571 615,648 Spore pigment 0ff 12pks 75% Region 5 NRPS-like 0ff , T3PKS 0
			예상 BGC	
			-	Region 9 terpene of 1,466,015 1,485,963 Region 10 anybolyene of 1,500,727 1,541,860 Pristinantycin of nrps-t1pks+transatpks 6%
			region의	Region 11 Bacteriscin di
			유전분석	Region 14 terpene @" 2,028,841 2,053,841 Hopene @" terpene @" 78%
				Region 16 Tayks of Land of 3,043,912 3,116,45 Dutomycin of Cryls 32%
				Region 19 terpene @ 4 230,559 4 251,205 2-methylisoborneol @ terpene 75% Region 20 thiopeptide @1, LAP @ 4,313,201 4,357,019 Thiopeptin @ thiopeptide 100%
				Region 21 Bulymakarbone of
				Region 24 ectoine of 6,196,289 6,209,687 Ectoine of other 100% Region 25 NRPS-like of nucleoside of 6,629,029 6,671,188 Toyocamycin of other 40%
				Region 27 terpene @* siderophore @* 7,107,767 7,138,557 Natamycin @* 11pks 9% Region 28 terpene @* 7,271,199 7,295,826 Geosmin @* terpene 100%
				Region 20 NRPS-like of 7,309.98 7,310.98 Meridamycin of rips-41 pils 10% Region 30 NRPS-like of 7,370.515 7,421,045 Region 31 NRPS-like of 7,530.976 7,820,077 Semethins of NRPS 13%
				Region 32 InglE-KS of .T1PKS of .7,720,606 7,772,205 Sanglifehrin A of .nrps-t1pks 4% Region 33 lassopeptide of .7,776,144 7,800,763 SSV-2083 of .nnthipeptide .25% lanthipeptide .25%
				Region 34 NRPS of 7,995,052 8,073,713 Specialise of mps-t1pks 4% Region 86 COPPS of 8,101,096 8,121,794
				그림 34. Inha501의 antiSMASH 분석결과

				(2) 선행 연구내용결과와 항진균 활성 특성을 이용하여 가장 가능성이 높은 예상 생합성 유전자군 선별
				가장 가능성이 높은 예상 생합성 규진사고 신물
2차 년도 (2019)	항진균제 생합성 및 조절 유전자 특성 규명 및	항진균 유래 fungicide 활성이 우수한 3종의 NGS기반	전략미생물 의 전체 유전체해독	- Inha501의 항진균 활성과 관련있는 생합성 유전자군 예측
				Region 5에서 그림 37에서 Tautomycetin (TMC)의 BGC와 매우 유사한 생합성 유전자군을 갖는 것으로 확인
				Tautomycetin은 기존 문헌에 보고된 화합물로서, 항 진균 활성과 면역억제 활성을 갖는 것으로 알려져 있음
				HPLC분석 결과 및 HPLC peak별 항진균활성 테스트 결과를 바탕으로 region 5에서 합성되는 이 물질이 Inha501의 항진균 활성을 나타낼 것이라 판단됨
				Tautomycetin
	유전자군 분리	유전정보		그림 37. Inha501 region 5의 분석결과 및 Tautimycetin의 구조
	(인하대학 교)	분석		Region 22에서 그림 38과 같은 ECO-02301의 생합성 유전자군과 유사한 생합성 유전자군을 갖는 것으로 확인
				ECO-02301은 polyene compound 계열의 pentaene이 기본 골격으로 가지고 있고 환형 구조가 아닌 선형 구조의 polyene compound로 발견된 최초의 물질임
				HPLC분석 결과 및 HPLC peak별 항진균활성 테스트 결과를 바탕으로 pentaene의 구조이면서 ECO-02301 와 비슷한 생합성 유전자군을 갖는 region 22에서 Inha501의 항진균 활성을 나타낼 것이라 판단됨
				Region 22 T1PKS & NRPS & 5,156,089 5,405,079 ECO-02301 & 11pks 88%
				그림 38. Inha501 region 22의 분석결과 및 ECO-02301의 구조

				- <u>Inha502의 항진균 활성과 관련있는 생합성 유전자군</u>
				예측
			전략미생물 의 전체 유전체해독	
				Region 1에서 그림 39와 같은 FR-008의 생합성 유전
				자군과 유사한 BGC를 갖는 것으로 확인
				FR-008은 polyene compound계열의 heptaene을 기본
				골격으로 가지고 있고 환형 구조의 polyene
				compound이며 candicidin이라는 이름의 강력한 항
				진균물질로 알려져 있음
		항진균 유래 fungicide 활성이 우수한 3종의 NGS기반 유전정보 분석		HPLC분석 결과 및 HPLC peak별 항진균활성 테스트 결과를 바탕으로 pentaene의 구조이면서 FR-008과
				비슷한 생합성 유전자군을 갖는 region 1에서
	항진균제 생합성 및 유전자 특성 및 자건리 (인하대)			Inha502의 항진균 활성을 나타낼 것이라 판단됨
				Region TIPKS NRPS-like butyrolactore NRPS LAP 68,462 272,161 FR.006 11pks 66% 860000061
				O OH HIS ON TRACE V III VI
				R ₁ R ₂ O R ₃ OH R ₄ O COOH R ₁ OH
				FR-008/candicidin
2차				구조
년도				
(2019)				- <u>Inha503의 항진균 활성과 관련있는 생합성 유전자군</u> 예측
				<u> </u>
				Draft genome sequencing만 완료된 상태이기에 전체
				유전체 분석이 완료되면 추가적인 BGC 분석을 할 예
				정
				현재 가지고 있는 정보에서는 contig 9의 Region 2
				에서 그림 40과 같은 Elaiophylin의 생합성 유전자
				군과 유사한 생합성 유전자군을 갖는 것으로 확인
				Elaiophylin은 항진균 작용을 하는 물질로 알려져
				있으며 autophagy inhibitor로써 암치료를 위한
				chemotherapy의 효능을 증진시키는 역할
				Region Type From To Most similar known cluster Similarity Region 1 hseriactone 6 11.048 31.803 Deptomycin 6 NRPS 3%
				HO OH OH OH
				нө 시 * 그림 40. Inha503 contig 9 region 2의 분석결과 및 Elaiophylin의
				그림 40. Innabus contig 9 region 2의 군식설과 및 Etatophylin의 구조
	•			


2차 년도 (2019)	항진균 생합성 모 유전 모 자리 (인 교)	미생물제제 후보 방선균의 특성 분석 및 조작기술 시스템 구축	배지, 항생제별 모자화립	- ISP2, ISP4, MS, R2YE 등 여러 방선균용 배지테스트 통해 포자화가 잘되는 배지를 선정 Inha501의 경우에는 ISP4 medium에서 포자화(4-5일) 가 잘 일어났으며 ISP2 medium에서 가장 생장속도 (3~4일)가 빠른 것을 확인 Inha502의 경우에는 ISP2, ISP4 medium에서 포자화 (4일)가 잘 일어났으며 Inha501보다 모든 배지에서 전반적으로 하루정도 빠르게 생장하는 것을 확인 MS
--------------------	----------------------------	---	---------------------	--


2차 년도 (2019)	항진균제 생합성 주전자 무 등 전전 및 자리 (인 교)	미생물제제 후보 방선균의 특성 분석 및 조작기술 시스템 구축	시스템	- 확립된 포자화 조건으로 포자로 구성된 stock 구축 포자화를 잘 하는 colony의 선별과정과 여러 배지 테스트를 통해 포자화 조건을 확립 (ISP4 medium, 30° C, 4~5 days 정지배양) 구축된 유전자조작 시스템을 이용하기 편한 spore 형태의 stock 대량제작 완료 (20% glycerol 상태로 -80° C에서 stock 보관) Inha501/ISP4, 5days 그림 43. Inha501, Inha502의 정지배양이후 포자화 plate - 후보균주의 유전자 조작기술 조건 확립 Chromosomal Integration을 하는 공벡터 (pSET152)을 이용하여 Inha501, Inha502의 Chromosomal DNA로 Integration하는지 확인과 함께 유전자 조작기술의 조건을 확립하고자 진행 3번의 계대배양 이후 Genetic Confirmation (PCR의 용)을 통해 Chromosomal DNA로 Integration 하는 것을 확인하였고 유전자 조작기술의 조건을 확립 그림 44. 구축된 유전자 조작기술 시스템을 이용한 Chromosomal DNA로의 Integration 확인 PCR (Genetic confirmation)
--------------------	---	--	-----	---

2차 년도 (2019)	조절 유전자 특성 규명 및 유전자구	미생물제제 후보 방선균의 특성 분석 유전자 조작기술 시스템 구축	항진균 생합성 유전자군의	(1) Inha501의 항진균 활성을 나타내는 region 5(TMC 유사cluster)의 생합성 유전자군의 분석 - Inha501의 region 5와 TMC 생합성 유전자군의 비교 Bioinformatic analysis을 통해 region 5의 생합성 유전자군의 비교를 통해 예측구조를 도출 ***********************************
--------------------	---------------------------------	---	---------------------	---

년도 (2019)	항진균제 진균성 절 유전자 규 문 전 문 전 대 학	미생물제제 후보 방선균의 특성 분석 및 조작기술 시스템 구축	균주이 균 성 전 자 균 이 가 보이	고립 46. Inha501 region 5의 PKS 분석에 따른 Backbone 예측 *** *** *** *** *** *** *** *** *** *
--------------	---------------------------------------	--	--	--

2차 년도 (2019)	항진균성 및 자리 대학 문성 및 자리 대학	미생물제제 후보 방선균의 특성 분석 주작기술 지스템 구축	생합성 유전자군의	고림 49. Inha501 region 5의 PKS gene Knock-out (Genetic Confirmation) Knock-out 이후 비교배양을 진행하기 전 region 5에서 TMC와 유사한 물질이 생성될 것이라 판단하여 TMC 생산배지를 조사하여 그 중 어떤 배지에서 가장 많이 생산되는지 확인하는 실험을 진행하였고 R5 medium에서 가장 생산이 잘되는 것을 확인 ***Extraction with Acctions & thyly acctions (Concentration with Acctions & thyl acctions (Concentration with Acctions & thyly acctions (Concentration with Acctions & thyl acctions & thyl acctions (Concentration with Acctions & thyl acctions
--------------------	----------------------------	--	--------------	--

비교 배양을 통해 region 22가 항진균 활성을 나타내 는 물질과 관련된 생합성 유전자군임을 확인 at 332nm Inha501 - Inha501 △4694 mutant #2 _ Inha501 *△4694* mutant #3 그림 58. HPLC분석을 통해 Inha501 region 22은 ECO-02301 유사 Cluster의 생합성 유전자군임을 확인한 비교배양결과 Inha501의 항진균 활성을 나타내는 생합성 유전자군 이 2개 이상으로 확인이 되었으며 region 5의 생합성 유전자군에서 합성될 것이라 예상되는 polyene compound가 배양 시 같이 합성이 되고 있기에 항진균 활성을 갖는 물질에 대한 정확한 규명위해서는 region 5의 생합성유전자군의 knock-out를 함께 진행 항진균제 하는 추가실험이 필요할 것으로 예상 생합성 및 미생물제제 조절 (3) Inha502의 항진균 활성을 가질 것이라 예상하는 균주의 후보 유전자 region 1 (FR-008 유사 cluster)의 생합성 유전자군 2차 방선균의 항진균 특성 규명 의 분석 년도 특성 분석 및 생합성 및 유전자군의 (2019)유전자 유전자군 - Inha502의 region 1와 FR-008 생합성 유전자군의 비교 규명 조작기술 분리 시스템 구축 (인하대학 Bioinformatic analysis을 통해 region 1의 생합성 유 亚) 전자군과 FR-008의 생합성 유전자군의 비교를 통해 예 측구조를 도출 Inha502 gene cluster in 1st region (96.8kb) Starter unit related gene FR-008 gene cluster (138.2kb) Similar gene Similarity (%) Protein a.a. Proposed function Similar gene Similarity (%) post-PKS regulatory gene sugar-related gene polyketide synthase starter unit related gene 그림 59. Bioinformatic analysis을 이용한 Inha502 region 1과 FR-008의 생합성 유전자군의 비교

2차 년도 (2019)	항진균제 생합성 절 유전자 등 생합적 유전자 명 유전 대학 인하대학	미생물제제 후보 방선균의 특성 분석 및 유전자 조작기술 시스템 구축	균주의 장진 전 사전자 규명	### Predicted over through a Thick Predicted over through a T
--------------------	---	---	-----------------------	---

- 확인된 Inha501 region 5 (약 80kb)와 Inha502 region 22 (약 170kb)의 생합성 유전자군을 분리 생합성 유전자군을 분리하고자 BAC library 구축 후 그림 63과 같은 3곳에 Check Primer를 제작하여 PCR 을 이용한 Genetic Confirmation을 진행하였고 원하 는 cluster가 온전히 포함된 Positive Colony 확보 그림 63. Inha501 region 5, region 22의 생합성 유전자군과 3곳의 항진균제 방선균 BAC Check Primer 생합성 및 미생물제제 vector 조절 PCR result 후보 system을 유전자 CHtmc 501 Down (CK3) 2차 방선균의 이용한 거대 210 (1 fragment) 특성 규명 5876 plate02 4N 년도 특성 분석 및 항진균 및 PCR result 유전자 물질의 (2019)501 region22 Down (CK6) 유전자군 조작기술 생합성 185 (1 fragment) 5876 plate06 2K 분리 시스템 구축 유전자군 210 (2 fragments) 5876 plate06 10P (인하대학 분리 210 (2 fragments) 5876 plate05 22N 亚) 5876 plate02 24A 그림 64. BAC library 구축 후 Check Primer를 이용한 genetic confirmation 결과 M CK1 CK2 CK3 Lanes 1, 2, 3 = Clone 5876 plate02 4N PCR results with CK 1, 2 3 respectively , z, 3 = Clone 5876 plate02 4N PCR results with CR 1, 23 res CK1= positive control with genomic DNA + CHtmc 501up CK2= positive control with genomic DNA + CHtmc 501Middle CK3= positive control with genomic DNA + CHtmc 501down M=Bio ST 200bp marker (Cat. M200-8R) 그림 65. Inha501 region 5 모든 생합성 유전자군이 있는 colony(5876 plate 02 4N)의 Genetic Confirmation

		미생물제제 후보 방선균의 특성 분석 및 유전자 조작기술 시스템 구축	방선균 BAC vector system을 이용한 거대 항진균 물질의 생합성 유전자군 분리	Lane 1= Clone 5876 plate06 2K, Lane 2= Clone 5876 plate06 10P Lane 3= Clone 5876 plate05 22N4, Lane= 5876 plate02 24A CK4= positive control with genomic DNA 501 region22 up CK5= positive control with genomic DNA 501 region22 down M=Bio ST 200bp marker (Cat. M200-8R) 그림 66. Inha501 region 22 모든 생합성 유전자군이 있는 colony(5876 plate 05 22N, 5876 plate 02 24A)의 Genetic Confirmation Inha501 chromosomal DNA안 region 5, region 22의 생합성 유전자군을 포함한 vector와 유전자 조작기술 을 이용하여 확보된 생합성 유전자군의 이종숙주발현 을 통해 관련유전자의 더 정확한 규명을 할 예정이며 cell factory 균주에 도입을 시켜 고생산 균주 확보 를 위한 실험을 실시할 예정
2차 년도 (2019)	항진균생합성조절유전자무선및자리대대당시교교교	활성을 나타내는 신규물질의 구조 및 특성 규명	예측된	(1) Inha501의 region 5의 분석 - Bioinformatic analysis를 통해 그림 67의 왼쪽과 같이 예측이 되었고 염기서열상으로 비슷한 TMC의 구조는 그림 67의 오른쪽으로 규명 (예측된 구조의 분자량은 590.74이며 TMC의 분자량은 606.34로 확인) - 아마네티 (무무너는 50.74 (모르는 50.95) (모르는

2차 년도 (2019)	항진균제 생합성 및 유전자 특성 및 자리 (인하대학	활성을 나타내는 신규물질의 구조 및 특성 규명	예측된	그림 69와 같이 positive ion mode에서는 분자량이 607.35정도로 분석되었고 negative ion mode에서는 분자량이 605.29정도로 분석됨을 확인하여 예측된 구조의 분자량보다는 TMC의 분자량과 일치하는 것을 확인 Positive Recording Positive
--------------------	---------------------------------------	---------------------------------------	-----	---

[has50] ***********************************
Face ####
m2: 1233,7407 (100,0%), 1254,7471 (74,9%), 1255,7384 (127%), 1255,7384 (127%), 1257,7374 (12%), 1257,7374 (
Chemical Formulas Co. Hugh No. Og. Blooked Weight 1297.7529 (75.7%), 1297.7529 (75.7%), 1297.7530 (12.5%),
Fluend Market 1980,7485 Milescall Weight 1970,6799 mile 1290,7485 (100,093), 1297,7599 (15.7%), 1298,7530 (12.9%), 1299,7550 (12.9%), 1299,7550 (12.9%), 1299,7550 (12.9%), 1299,7550 (12.9%), 1290,7565 (12.9%), 1290,7665 (12.9%) 그림 70. Inha501 region 22의 예측 구조와 ECO-02301의 구조 및 분자량 비교 - High Resolution Mass analysis의 결과 예측된 구조 와 분자량이 일치하지 않음을 확인
1296.7495 (100.09%), 1297.7599 (75.7%), 1296.7503 (28.7%), 1296.7503 (28.7%), 1296.7503 (28.7%), 1296.7503 (28.7%), 1296.7503 (28.7%), 1296.7503 (28.7%), 1296.7503 (28.7%), 1296.7503 (12.7%), 1296.7
그림 70. Inha501 region 22의 예측 구조와 ECO-02301의 구조 및 분자량 비교 - <u>High Resolution Mass analysis의 결과 예측된 구조</u> 와 분자량이 일치하지 않음을 확인
분자량 비교 - <u>High Resolution Mass analysis의 결과 예측된 구조</u> 와 분자량이 일치하지 않음을 확인
와 분자량이 일치하지 않음을 확인
와 분자량이 일치하지 않음을 확인
m,AL) Max Harrolly (86,72)
200-
그림 71. Inha501 region 22의 생합성 유전자군에서 생산되는 항진된 활성 물질의 2차 정체 후 HPLC 분석결과
항진균제 (표시된 peak를 정제하여 mass analysis 진행)
생합성 및
조절 Chemical Formulas Capil yn Noy Earth Mass (2537,2147 Molecular Weight: 1254,5832
환성을 측정된 "
2차 나타내는 분자량과 부가 전 1226.7386 1226.7386 1226.7386 1226.7386 1226.7386
년도 및 신규물질의 예측된 및 그림 72. Inha501 region 22의 생합성 유전자군에서
[(2019)] 유저자구 T소 쏫 득'8 T소의 [##] 생산되는 항지규 확성 목적의
분리 규명 분자량 비교 예측 구조와 Mass analysis의
(인하대학 ^{407,08} 후정된 결과
型)
예측된 구조의 분자량과 측정된 분자량은 일치하지
않는 것을 확인하였고 정확한 구조분석을 위해 ¹ H고
¹³ C NMR분석 진행 중
- ¹ H과 ¹³ C NMR분석을 위한 compound의 정제
NMR분석을 위해 (중국 상하이 교통대의 Shuangju
Lin 교수님 연구팀과 협력하여) 순수한 compound만을
얻기 위한 여러 정제과정을 진행하면서 확인 작업 전
행 중
TLC
그림 73. Inha501 region 22의 생합성 유전자군에서 생산되는
그님 73. Innabl1 region 22의 생밥성 유전사군에서 생산되는 항진균 활성 물질의 정제 후 TLC 결과 및 물질 별 HPLC 분석 결과
0 TH 2 0 EE 1 0 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

*** *** *** *** *** *** *** *** *** **					
환진균제 생합성 및 조전 유건자 등성 규명 무성을 어떤 보고 및 특성 구장의 무성 및 무성 구장의 무성 및 무성 구장의 구조의 및 무성 구장의 구조의 문자량 비교 10 (인하대학교) 11 (인하대학교) 12 (인하대학교) 13 Inha502의 region 1의 분석 14 등이 되었고 업기서일상으로 비슷한 FR-008의 구조는 그림의 아래쪽으로 규명 (예측된 구조의 문자량은 852,44이며 FR-008의 분자량은 1110.59로 확인) 15 Inha502 region 1의 예측 구조와 FR-008의 구조 비교 및 분자량 비교 16 대학원 구조의 문자량은 852,44이며 FR-008의 구조 비교 및 분자량 비교 17 Inha502 region 1의 예측 구조와 FR-008의 구조 비교 및 분자량 비교 17 Inha502 region 1의 예측 구조와 FR-008의 구조 비교 및 분자량 비교 18 대학원 구조의 문자량은 852,44이며 FR-008의 구조 비교 및 분자량 비교					¹ H NMR분석은 아래의 그림과 같이 데이터 값은 도출을
환진균제 생합성 및 조전 유건자 등성 규명 무성을 어떤 보고 및 특성 구장의 무성 및 무성 구장의 무성 및 무성 구장의 구조의 및 무성 구장의 구조의 문자량 비교 10 (인하대학교) 11 (인하대학교) 12 (인하대학교) 13 Inha502의 region 1의 분석 14 등이 되었고 업기서일상으로 비슷한 FR-008의 구조는 그림의 아래쪽으로 규명 (예측된 구조의 문자량은 852,44이며 FR-008의 분자량은 1110.59로 확인) 15 Inha502 region 1의 예측 구조와 FR-008의 구조 비교 및 분자량 비교 16 대학원 구조의 문자량은 852,44이며 FR-008의 구조 비교 및 분자량 비교 17 Inha502 region 1의 예측 구조와 FR-008의 구조 비교 및 분자량 비교 17 Inha502 region 1의 예측 구조와 FR-008의 구조 비교 및 분자량 비교 18 대학원 구조의 문자량은 852,44이며 FR-008의 구조 비교 및 분자량 비교					하였고 이 값을 이용하여 정확한 구조를 밝히기 위해
** 항진균제 생합성 및 조건 유전자 당시 나타내는 신규물질의 구조 및 특성 구조의 등이 무선 한국 및 특성 규전자 분리 (인하대학 교)** ** 보디 (인하대학 교)** ** 보고 및 특성 규정의 분자량 비교 ** ** 보고 분자량은 852.44이며 FR-008의 문자량은 1110.59로 확인)** ** ** ** ** ** ** ** ** ** ** ** **					
한진균제 생합성 및 조절 유전자 특성 규명 및 유건자군 분리 (인하대학 교) 2차 명명 유건자군 분리 (인하대학 교) 1					
*** 항진균제 생합성 및 조절 유전자 특성 규명 및 유전자급 분리 (2019)*** *** 변도 보리 (인한대학교)*** *** *** *** *** *** *** *** *** **					7) 10 0/4-10 11 4 0 mm. 0 1 mm. 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
그림 76. Inha502 region 1의 생합성 유전자군에서 생산되는 항진균 활성 물질의 2차 정체 후 HPLC 분석결과	2차 년도 (2019)	생합성 및 조절 유전자 특성 규명 및 유전자군 분리 (인하대학	나타내는 신규물질의 구조 및 특성	분자량과 예측된 구조의	고립 74. Inha501 region 22의 생합성 유전자군에서 생산되는 항진균 활성 물질의 'H NMR 분석 결과 (3) Inha502의 region 1의 분석 - Bioinformatic analysis를 통해 아래 그림과 같이 예측이 되었고 엽기서열상으로 비슷한 FR-008의 구조는 그림의 아래쪽으로 규명 (예측된 구조의 분자량은 852.44이며 FR-008의 분자량은 1110.59로 확인) Inha502 Commod French Callab Observe Weight 113.1912 제

2차 년도 (2019)	항진균제 생합성 절 유전자 무 영 민 하대학 (인 교)	활성을 나타물질의 신규물일 특성 구조 및	예측된	고립 77. Inha502 region 1의 생합성 유전자군에서 생산되는 항진균 활성 물질의 예측 구조의 분자량과 측정된 분자량은 일치하지 않는 것을 확인하였고 정확한 구조분석을 위해 'H과 13'C NMR 분석 진행 - 'H과 13'C NMR 분석은 위한 compound의 정제 NMR 분석을 위해 (한국 선문대 송재경 교수님 연구팀과 협력하여) 순수한 compound만을 얻기 위한 여러 정제과정을 진행하면서 확인 작업 진행 중 - 'H과 13'C NMR 분석 함의 하면서 확인 작업 진행 중 - 'H과 13'C NMR 분석 가장 조용 전체 가장 조용 전체 전체 가장을 진행하면서 함인 작업 진행 중 - 'H과 13'C NMR 분석 가장 조용 전체 전체 전체 전체 전체 전체 전체 함께
				그림 79. Inha502 region 1의 생합성 유전자군에서 생산되는 항진균 활성 물질의 ¹ H NMR과 ¹³ C NMR 분석 결과

				다양한 식물병원성 진균에 대한 항진균 활성 테스트를 통해 미생물 제제로의 가능성을 확인하는 실험을 진행 - 항진균 활성을 확인하고자 하는 다양한 식물병원성 진균 - 한지로 활성을 확인하고자 하는 다양한 식물병원성 진균 - 한원성 진균 10종과 KCTC, ATCC을 통해 식물병원성 진균 3종을 선정하여 기존과 합쳐 총 15종의 진균에 대한 항진균 활성을 확인하고자 계획하고 진행함 Fusarium oxysporum (KCTC 46453, KACC 40051, KACC
2차 년도 (2019)	항진균제 생합성 및 유전자 특성 및 자리 (인하대학 이 교)	여러 종류의 진균에 대한 항진균 활성 확인	항진균 활성을 확인하고자 하는 식물병원성 진균의 선별	### A2795), Fusarium solani (KACC 44891), Fusarium graminearum (KACC 47495), Fusarium verticillioides (KCTC 16672). Fusarium semitectum (KCTC 6065), Alternaria alternate (KACC 40019), Botrytis cinereal (KACC 40019), Phytophthora cactorum (KACC 40166), Rhizoctonia cerealis (KACC 40163), Colletotrichum gloeosporioides (KACC 4003), Curvularia lunata (KACC 40861), Aspergillus niger (ATCC 9642), Candida albicans (ATCC 14053) KACC 40053 42795 44891 47495 40003

2차 년도 (2019)	항진균제 및 제 및 유전자 무 용전 및 자리 (인하대)	여러 종류의 진균에 대한 항진균 활성 확인	진균에 대한	- Inha501, Inha502으로 대한 활성 확인 left Inha501 right Inha P.C AmB 10ug, N.C. M Against C. albicans Against F. oxy Against F. semitectum Against F. oxy Inha501 Inha602 AmB 10µg MeOH Against A. niger Inha501 Inha602 OR Phyt ophthora cact cereal is (KACC 401) 트를 진행한 모든 경 Inha501, Inha502 가능하다는 연구결3 으로 예상됨	Scientific name Candida albicans Fusarium oxysporum Fusarium yerticilliodes Fusarium semileetum Fusarium solani Aspergillus niger Alternaria alternata Colletotrichum gloeosporioides Curvularia lunata (The antifungal a the active ring s 원정 진균에 대 Botrytis c orum (KACC 53)을 제외 진균에서 활	on 10ul (1 F. graminearun wit st A. niger disease fusarium wilt fusarium head blight bakanae disease fusarium rot black mold rot leaf spot bitter rot ear blight ctivity was de ize (++) of in inereal 40166) 하고 항 성을 보	Against Ag	x dilution) F. verticillioides al activity Inha502 + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
				으도 예상됨				

2차 년도 (2019)	방선균 진균제어 대량 생산 기술연구 (한국생산 기술연구	항진균제 최적 생산을 위한 방선균 배양공정 최적화	Inha501, Inha502 균주의 배양 최적화	의 고체 배지 조각을 1조건 배양을 30 mL 플라스크에서 3일 동안 진행 M3 plate composition Starch soluble Agar Soytone Glucose CaCO3 FeSO4 · 7H ₂ O 표 1. M3 pl. - 각각의 배양액으로 건조권성장을 비교 - 각각의 배양액으로 건조권성장을 비교 - 각각의 태양액으로 건조권성장을 비교 - 각각의 태양액으로 건조권 3501-1 501-2 501-2 501-3 501-4 501-4 502-1 502-2 502-2 502-2 502-2 502-3 502-4 502-4 표 2. 고체배지 접종학 - 그 결과 고체배지로부터 502-1	상으로 생산성 향상을 위한 수행 : 수행 : 으로의 접종량 최적화 nha502 균주를 5일 정도 배양으로 접종할 때 M3 plate 하부터 4조각까지 각각 성장 서 30℃, 200 rpm의 조건에 on g/L 20 20 10 10 10 3 0.2 ate 조성 전치중량을 측정하여 세포의 건조균체중량(g/L) 0.33 3.33 3.33 3.33 5.67 4.33 5 4.67 4 4.33 5 5 4.67 4 4.33 5 5 4.67 4 5 4.67 4 5 5 4.67 4 5 5 4.67 4 5 5 4.67 4 5 5 5 4.67 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
				질량 농도가 정비례하는	것은 아니지만 대체로 접종
				당이 글수록 건조균체중 - 이 실험 이후의 모든 성정	
				가로 × 세로 = 약 1 cm	

				(2) 배양 플라스크 종류 최적화
				 - 성장 배양을 할 때 플라스크의 모양에 따라서 공기가
				배양액 중의 세포에 노출시키는 양이 달라져서 배양
				조건이 변화
				그러므로 일반적인 모양의 플라스크와 보다 원활한
				기체 전달을 위해 비교적 작은 홈이 파여 있는 플라
				스크, 또 큰 홈이 있는 플라스크로 3개의 플라스크를
				가지고 실험을 진행
				(1)번 실험과 마찬가지로 M3 plate에 있는 501, 502
				균주로부터 고체 배지를 잘라서 성장 배양을 진행
				균주+플라스크 종류 건조균체증량(g/L) 501 일반 3.33
				501 일반 3.33 501 작은 홈 7.33
				501 큰 홈 7
				502 일반 2.33
				502 작은 홈 10.7 502 큰 홈 4.33
	방선균			표 3. 배양 플라스크별 건조균체중량
	유래	호 기 기 제		표 0. 세 0 필위프로된 인도현제 0 0
0.=1	진균제어	항진균제	Inha501,	- 일반 플라스크보다 홈이 있는 플라스크에서 세포의
	미생물제제		Inha502	성장이 훨씬 높게 이루어졌다고 판단
년도	대량 생산	위한 방선균	균주의 배양	본 실험 이후 모든 성장배양은 작은 홈이 달린 플라스
(2019)		배양공정	최적화	크에 바깥과 공기가 비교적 잘 통하는 스토퍼
	(한국생산	최적화		(stopper) 뚜껑을 이용하여 진행
	기술연구원			이 결과는 추후 scale-up 과정에서도 산소 전달 효율
)			이 주요한 인자로 고려되어야 함을 확인
				(3) 성장배양액에서 생산배양으로의 접종량 최적화
				- 성장배양액으로부터 생산배양을 할 때 각 플라스크별
				로 부피 30 mL로 배양
				그 과정에서 접종량을 1%와 5%, 그리고 10%(v/v)로
				변화시키며 실험을 진행하고 그 후 배양액으로 건조
				균체중량을 측정
				501균주 건조균체중 502균주 건조균체중
				(g/L) (g/L) (g/L) 성장배양 1% 4 1% 7
				성장배양 5% 6.3 5% 5.3
				성장배양 10% 7 10% 6.7 생산배양 1% 17 1% 21.3
				생산배양 5% 14 5% 17.7
				생산배양 10% 14.3 10% 18.7

표 4. 성장배양액의 접종량별 건조균체중량

2차 년도 (2019)		Inha501, Inha502 균주의 배양 최적화	- 성장 및 생산 배양 모두에서 접종량에 따른 세포 성장량에 있어 뚜렷한 경향성을 확인할 수는 없었고 적 접종량을 10%로 정하고 이후 실험들을 진행 G.S.S broth composition
			그림 83. 다양한 색을 띠는 Inha502 균주의 콜로니

전 2차 미 년도 대 (2019) 공 (현	방선균 아래 생물제 어 생물 제 제 '정 생산 할 연구)	항진균제 최적 생산을 위한 방선균 배양공정 최적화	Inha501, Inha502 균주의 배양 최적화	- 502 균주로부터 파생된 4가지 색의 균주가 존재한다고 가정하여 검정색(원래 502균주), 갈색, 회색, 그리고 흰색의 502 균주를 각각 구분하여 계대배양을 진행 - 원래 콜로니가 지니고 있는 색이 그대로 다음 세대에서 도 확인되었고 각 균주별 특성을 확인하고자 성장 배양을 진행하고 건조균체증량을 측정 - 전조균체등도 명균(L) 사용으로 검정 10.3 등 10.9 등 10.3 등 10.2 점정 10.9 등 10.9 등 10.2 점정 10.3 등 10.2 점정 10.9 등 10.9 등 10.2 점정 10.3 등 10.9 등 10.9 등 10.2 점정 10.3 등 10.2 관색 6.3 등 10.3 등 10.2 관색 11 등 12.8 7.49 등 10.3 등 10.2 관색 11 등 12.8 7.49 등 10.3 등 10.2 관색 11 등 10.2 관색 10.7 등 10.2 화색 27.3 등 10.2 화색 27.3 등 10.2 화색 27.3 등 10.3 화색 27.3 등 10.3 화색 27.3 등 10.3
-------------------------------------	--	---	--------------------------------------	---

(5) 발효기 배양 - 플라스크 수준에서 최적화 된 균주의 배양을 스케일업 하고 작물 테스트 및 미생물제제 제형화에 필요한 cell 및 product의 확보를 위해 Inha501, Inha502 균 주를 대상으로 발효기(6L) 배양을 수행 - 주요 배양 변수인 온도가 생산배양시 폴리엔 생산성에 미치는 영향을 확인하는 실험을 수행 아래 그림 85에 도시된 바와 같이 플라스크에서 2단계 성장배양을 거친 후 발효기에서 생산배양을 진행 (G.S.S broth, 접종량 3%(v/v), 1 vvm 교반 속도는 DO를 모니터링하며 적절히 조절 pH는 5N NaOH를 이용하여 6.6-7.3 범위에서 조절 온도는 각각 25, 30, 33 °C 배양을 진행) 방선균 유래 항진균제 진균제어 Inha501. 2차 미생물제제 최적 생산을 Inha502 대량 생산 위한 방선균 년도 균주의 배양 (2019) 공정 개발 배양공정 최적화 (한국생산 최적화 그림 85. Inha502 균주의 발효기 배양 과정 기술연구원) - 실험 결과 Inha502 균주의 경우 25°C에서 가장 높은 폴리엔 생산성을 나타내었으며 온도가 높아질수록 폴 리엔 생산성은 감소하는 경향 나타냄 (최종 세포 농도는 10⁵~10⁶ cfu/mL 수준) 배양 온도별 polyene 생산성 비교 그림 86. 배양 온도에 따른 Inha502 균주의 폴리엔 생산

			- 다음으로 배양 중 산소의 전달 및 균주 morphology에 영향을 줄 수 있는 변수로서 impeller 종류에 따른 폴리엔 생산성 차이를 확인하는 실험을 수행 (G.S.S broth, 접종량 4%(v/v), 1 vvm 교반속도는 DO를 모니터링하며 적절히 조절 pH는 5N NaOH를 이용하여 6.7-7.3 범위에서 조절) - 실험 결과 impeller 종류에 따른 polyene 생산성 차이는 크지 않음을 확인			
2차	방선균 유래 진균제어 미생물제제		Inha501, Inha502			Paddle turbine(자체제작) #1 Fermentor Disc-mounted flat-blade turbine #2 Fermentor
년도 대량 생산 위한 방 (2019) 공정 개발 배양공	배양공정	·선균 균주의 배양 최적하	Production of polyene			
			- 성장 배양을 통해 확보한 균주 자체를 미생물제제의 원료로 활용할 가능성을 고려하여 발효기를 이용한 성장배양을 수행 (TSB broth, 접종량 4%(v/v), 1 vvm 교반 속도는 DO를 모니터링하며 적절히 조절 5N NaOH, 1M HC1을 이용하여 pH 6.2-7.3으로 조절) - 예상대로 성장배양 과정에서는 폴리엔이 생산되지 않았으며 세포 농도는 3.7×10 ⁵ cfu/mL(Inha501) 및			
				6×10 ⁵ cfu/mL(Inha502)로 각각 확인		

2차 년도 (2019)	방선균 유래 진균제어 미생물제제 대량 생산 공정 개발 (한국생산 기술연구원		Inha501, Inha502 균주의 배양 최적화	- 상기 발. 래 표 7- 경연구2 관리용기 교주 Inha501 Inha501 Inha502	효기 배과 같은 >)에 전 가재 등 배양액 성장 생산 성장	일정에 따라 달하여 미성 록실험에 활 배양 종류 Fermenter (5L) Flask (3L) Fermenter (5L) Fermenter (5L)	확보한 균 나 협력업 생물제제의 용 용 4L 4L 4L 1차: 4L 2차: 2L	장 배양 실험 주 및 배양액은 아 에((주)한국식물환 유기농자재 병해 날짜 2019.7.9. 2019.7.2. 1차: 2019.6.19. 2차: 2019.7.2. 샘플제공 현황
		폴리엔 분석 조건 확립	- 배양 조 방법의 - 이에 주 균주에 위한 통 (1) 샘플 - 기존 Ind 액을 원 후 상등	작립이 확립이 *관기관 서 생산 상법의 ^후 전처리 1a502 ^균 식분리 ⁷ 액 부분	의적화를 위 전제 과 공동으로 되는 폴리연 확립을 진행 및 HPLC 분- 구주의 접종택 기에 넣고 12	해서는 정 로 Inha501 덴을 정성 ² 석 방법 ³ 량 별 배양 2,000 rpm 취하여 3	확한 분석 . 및 Inha502 적으로 분석하기	

2차 년도 (2019)	방선균 유래 진균제어 미생물제제 대량 생산 공정 개발 (한국생산 기술연구원	항진균제 최적 생산을 위한 방선균 배양공정 최적화	폴리엔 분석 조건 확립	을 이루 40℃의 40℃의 40℃의 40℃의 40℃의 40℃의 40℃의 40의 40의 40의 40의 40의 40의 40의 40	게 되며 생산된 폴리에 되고 butanol 층에 heat block에 넣고 면서 butanol을 증별 각의 샘플에 넣고 I는 최종 샘플로 사용 '은 일련의 과정을 석 조건: Zorbax SB-C18 / (te: 1 mL/min / In phase: A=0.05M an B=methano 전처리 과정이 폴리워한 실험을 진행 대전처리를 거지 않다는다며을 각각 1/4, hdard 방정식 작성 나을 이용하여 전체로 가지 함께 동도를 역한다면 있으로 현재 사동안 폴리엔이 분하여 있음을 확인하였으면 기 있음을 작은 판단 Concentration (ppm=mg/L) 7.8 15.6	전처리 과정이라고 Column temperature let temperature: 2 nmonium acetate l (A:B=40:60) 엔 분석에 미치는 영 지 않은 250 ppm 1/8, 1/16, 1/32로 (표 8, 그림 89) 러리 과정을 거친 산한 결과 6.3 ppm의 용하고 있는 전처리 해되거나 타 물질로 고 보다 온건한 조건 Total area 48000 604000	로 녹아 추출하여를 nol 200 LC 분석 : 60℃ : 60℃ : 5℃ - 향을 확 의어 전한된 전한된
					31.2	2062000	
					62.5	4367000	
			i .				

방선균 유래 진균제어 항진균제 2차 미생물제제 최적 생산을 폴리역 년도 대량 생산 위한 방선균 분석 조 학립 (한국생산 최적화 기술연구원)	
--	--

				Polyene Maxima macrolides (nm)
				Trienes 260–262 270–272 282–285 Tetraenes 290–293 300–305 317–322 Pentaenes 317–320 330–335 348–353 Methylpentaenes 320–324 338–342 355–360 Hexaenes 336–340 355–359 375–380 Heptaenes 358–366 377–388 399–410 Octaenes 372–378 395–405 420–425
				丑 9. UV/Vis absorption maxima of different polyene macrolides
				- 그렇기 때문에 amphotericin의 405 nm 파장대의 peak
				면적과 생성물의 350 nm 또는 330 nm 대의 peak 면적을 비교하여 농도 분석을 진행
				550 50- 500 00- 450 00- 8-60 00- 300 0
	방선균			335 336 338 339 329
	유래	취리고기		₹ 0.20-1 0.19-1 0.09-1 0.00-2.50 ±60 6.60 8.50 12.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 28.00 28.00 30.00 8.50 2.50 ±60 6.60 8.50 12.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 28.00 30.00
2차		항진균제 최적 생산을	폴리엔	¹⁶¹ Monutes 0-4138 AU 그림 90. Amphotericin의 405 nm 파장에서의 chromatogram
년도 (2019)	대량 생산 공정 개발	위한 방선균 배양공정	분석 조건 확립	- Inha502 균주 배양액의 분석 결과 350 nm 파장에서 폴
	(한국생산 기술연구원	최적화		리엔 peak를 확인(그림 91)
)			500.00 E +00.00
				43 HALON 455 DEE :::: 455 DEE :::: 455 DEE :::: 455 DEE ::: 455 DEE :: 455 DEE ::: 455 DEE :: 455 DEE ::: 455 DEE :: 455
				200 200 200 200 200 200
				그림 91. 502_1%의 350 nm 파장에서의 chromatogram
				Sample name Concentration of polyene (mg/L)
				502_1% 347
				502_1% 328 502_5% 366
				502_5% 403
				502_5% 257
				502_10% 298
				502_10% 292
				표 10. Inha502 샘플의 접종량별 polyene 농도

			폴리엔 분석 조건 확립	- 나아가 원심농축 기술을 사용하여 폴리엔 추출 후 용매제거 시간을 크게 단축시키고(하루 이상 → 2시간 30분) 보다 낮은 온도조건을 사용함으로써(40℃ → 30℃) 전처리시 폴리엔의 변성을 최소화전처리 효과를 고려한 검량선(그림 92)을 분석에 활용하여 정확도를 높이고자 하였음 Standard Curve 1 y = 68530x + 5327.3 R² = 0.9874 그림 92. 전처리 손실을 고려한 standard curve
2차 년도 (2019)	방선균 유래 진균제어 미생물제제 대량 생산 공정 개발 (한국생산 기술연구원)	항진균제 최적 생산을 위한 방선균 배양공정 최적화		(1) 5L 발효조에서의 산소전달계수 측정 호기성 생산균주로부터 세포 또는 대사물질의 생산을 위해서는 배양액 내로의 효율적인 산소전달을 통해 고농도로 세포를 배양함과 동시에 활발한 이차대사유도가 가장 중요한 것으로 판명 그러나 배지 내에서 산소의 용해도는 매우 낮고, 기체산소가 용존산소로 되어 세포에 의해 이용될 때까지 여러 단계의 제한단계 (limiting step)를 거치게되어 외부에서 많은 양의 산소를 공급할지라도 실제적으로 세포가 이용할 수 있는 용존산소의 양은 극히적을 수밖에 없어 용존산소가 발효시 마다 항상 문제점으로 대두
	50L 대량 배양을 위한 5L 발효기에서 의 산소전달 속도 측정	이동하기 위해서는 극복해야 할 저항들이 있는데 그 중에서 가장 고려해야 할 단계는 기체 방울을 둘러싸		

- 또한 상기의 식을 적절히 정리하여 미분하게 되면 교반 속도나. 공기공급량에 따라 산소공급속도를 측정할 수 있으며 실험은 질소 가스를 배양액 내로 공급하여 용 존 산소를 모두 제거한 후(약 900~1600초) 각 조건들 에 따라 산소를 공급하면서(1600초 이후) 정밀한 DO probe를 이용하여 시간당 변화하는 용존산소의 변화경 향을 측정 이와 같은 방법을 통하여 0.5vvm, 1.0vvm, 1.5vvm에 서 rpm을 조절하여 산소전달속도를 측정하였으며 그 결과를 그림 93과 표 11에 제시 즉, 같은 산소 공급속도에서는 교반속도에 따라 산소 전달계수 값이 증가하였으며 0.5vvm, 100rpm에서는 약 0.002(1/sec), 1.5vvm, 300rpm에서는 0.032(1/sec)의 값을 갖는 것을 확인 이 결과는 산소전달계수를 토대로 산소 공급속도와 교반속도를 정확하게 조절할 수 있음을 제시 방선균 0.035 유래 50L 대량 0.030 진균제어 항진균제 배양을 위한 (K_a, 1 0.025 미생물제제 최적 생산을 2차 5L rate (대량 생산 위한 방선균 년도 0.020 발효기에서 공정 개발 배양공정 (2019)0.015 의 산소전달 (한국생산 최적화 속도 측정 0.010 기술연구원 0.5 (vvm) 1.0 (vvm) 1.5(vvm) 0.005) 0.000 Agitation speed (rpm) 그림 93. 5L 발효조에서 산소전달속도의 측정 Oxygen transfer rate (K_La, hr⁻¹) 0.5vvm 1.0vvm 1.5vvm 100 0.0019 0.0036 0.0059 0.0081 0.0160 0.0202 250 0.0202 0.0259 0.0305 표 11. 5L 발효조에서 산소전달속도의 측정 측정된 5L 발효조에서의 산소전달속도를 기준으로 추 후 50L에서도 동일한 실험을 진행할 예정이며, 정확 한 산소전달속도를 측정을 비교함으로써 수월하고 경 제적인 50L 로의 scale-up이 이뤄질 것으로 판단

자원기관에서 스크리닝한 우수 폴리앤 생산 Inha501 및 Inha502를 대상으로 배양최최화를 배양액을 이용한 제정화 수행 - 미생물제제 제조를 위한 최적 제형 선정을 위하 양후 확보한 균체 및 배양액을 이용하여 아래 조성(표 12)에 따라 제형화 실험을 진행 - 균체 및 기타 formulating agent를 혼합한 후 분들 통해 최중적으로 분발 형태의 제제 시료를 기한 30% 10% (Cell 20% Silica 25% Milk powder 15% 7% CMC 15% Cell 46% Silica 25% Milk powder 14% 7% CMC 3% Ascorbic acid 3% Sucrose 20% Mar 제품화를 위한 제정화 선택인 바이오텍) ***********************************	진 생 시 경 본 후 보 보 수 정 한 배 된 조 한 바 된 보 수 있 하 한 바 된 보 수 있 하 한 바 된 보 수 있 하 한 바 된 보 수 있 하 한 바 된 한 바 된 한 바 된 한 바 된 한 바 된 한 바 된 한 바 된 한 바 된 한 바 된 한 바 된 한 바 된 한 바 된 한 바 된 한 바 된 한 바 된 한 바 된 된 한 바
--	---

		선별된 후보균주의 제형화	Inha501, Inha502 균주의 제품화를 위한 제형화	- 실험결 높은 인 - 제형화 정성 형	과 Inha 한정성을 조성 중 강상을 유	502균주가 I 나타냄을 ^호 1과 7이 적 1한 조성 최	^{확인} 합한 것으로 적화가 필요	보다 상대적으로 보 이나 보존 안
2차 년도 (2019)	방선균 유래 진균제어 미생물제제 대량 생산 공정 개발 (에스티알 바이오텍)	다양한 조건에서의 항진균력 검증	Inha501, Inha502 균주의 제품화를 위한 실내검정 시험 진행	주관기: Inha501 의 실내 4종의 3 위적인 (KP18F4 - 고추 및 제율을 최대 병 Inha Inha Inha Inha Inha Inha Inha Inha	판에서 L 및 Inll Inll Inll Inll Inll Inll Inll In	스크리닝한 na502의 배양 - 행 기, 토마토, l원성 진균 경우 미생- 4.1% (고추, 의석사용론 액 1배 액 1배 대 1배 대 1배 대 1배 대 1배 대 1배 대 1배	우수 폴리(당액을 이용한 고추, 배추, 감염 후 감염 후 Inha502 배 약효시 약효시 정식전 1: 정식전 1: () 항진균력 검 () () () () () () () () () ()	형 시기 및 방법 회 토양관주처리 (11/14) " " " - 18F45) 증 결과 m carotovorum vorum) 진균이 아닌 박 님에 의한 선별과 hha502의 테스트

			- <u>딸기에 대한 화분수준의 항진균력 검증 결과</u> 가. 대상병해 : 시들음병(Fusarium oxysporium) 나. 시험작물: 딸기(설향) 다. 조사방법 및 판정기준 약효시험 : 최종 약제처리 7일 후 작물별 병발생 정도를 조사 (0: 무발병 ~ 100: 작물고사) 약효시험 : 약제처리 3, 5, 7일 후 외관상 약해유무 달관조사 라. 딸기 시들음병에 대한 약제방제 효과	
2차 년도 (2019)	방선균 유래 진균제어 대량 생산 공정 개발 (에스티알 바이오텍)	다양한 조건에서의 항진균력 검증	Inha501, Inha502 균주의 제품화를 위한 실내검정 시험 진행	사협약제

				- 토마토에 대한 화분수준의 항진균력 검증 결과
2차 년도 (2019)	방선균 유래 진균제어 대량 생산 기발 (에스티알 바이오텍)	다양한 조건에서의 항진균력 검증	Inha501, Inha502 균주의 제품화 실내검정 시험 진행	가. 대상병해 : 시들음병(Fusarium oxysporium) 나. 시험작물: 토마토(호용) 다. 조사방법 및 관정기준 약효시험 : 최종 약제처리 7일 후 작물별 병발생 정도를 조사 (0: 무발병 ~ 100: 작물고사) 약효시험 : 약제처리 3, 5, 7일 후 외관상 약해유무 달관조사 라. 토마토 시들음병에 대한 약제방제 효과
1				

				그츠레 대취 취보스즈이 참가그러 거즈 거고
				- 고추에 대한 화분수준의 항진균력 검증 결과
				가. 대상병해 : 시들음병(Fusarium oxysporium)
				나. 시험작물: 고추(PR마니따)
				다. 조사방법 및 판정기준
				약효시험 : 최종 약제처리 7일 후 작물별 병발생
				정도를 조사
				(0: 무발병 ~ 100: 작물고사)
				약효시험 : 약제처리 3, 5, 7일 후 외관상 약해유무
				달관조사
				라. 고추 시들음병에 대한 약제방제 효과
				변병도(%) 시험약제 I 반 II 반 III 반 IV 반 V 반 V II 반 VI 반 VI
				보 복 복 복 복 복 복 복
				상등액 20.0 30.0 20.0 30.0 20.0 30.0 30.0 30.0
				Inha501 배양택 20.0 20.0 15.0 35.0 30.0 20.0 25.0 20.0 23.1 bc 70.6
				Inha502 25.0 15.0 10.0 20.0 20.0 15.0 20.0 10.0 16.9 cd 78.6
				상등액 Inha502 0.0 10.0 10.0 20.0 20.0 10.0 20.0 10.0 1
	방선균 방선균			상능액
	유래 진균제어 미생물제제 대량 생산 공정 개발 (에스티알		Inha501,	무처리 70.0 80.0 80.0 70.0 100 70.0 80.0 80.0 78.8 a -
		다양한	Inha502	C.V.(%)
2차		조건에서의	균주의	마. 고추에 대한 약해시험(약제처리 후 3, 5, 7일)
년도 (2019)		조선에서 기 항진균력 검증	제품화를 위한	시험약제 시험작물 약해정도 (0~5) 비고 기준 량 배 량
(2013)			위안 실내검정 시험 진행	모드싸 고추 0 0 야체 어으
				[(PR마니따)
	바이오텍)			바. 시험결과
				고추 시들음병 방제효과
				- 공시물질의 고추 시들음병에 대한 방제 효과를 확
				인하기 위하여 작물 정식 후 토양 관주처리하고 병원 균을 접종하여 시들음병 발병을 유도한 결과, 공시
				물질 4종 모두 높은 방제효과를 보였고, Inha502 배
				양액처리구에서 가장 좋은 방제 효과를 보였음. 배
				양액과 cell을 혼합처리 한 구에서는 폿트상단에 잔
				여물이 남아 있어 실제 포장 처리 시 제제 및 제형을
				개선해야 할 것으로 판단됨.
				고추 시들음병 약해확인
				- 공시물질 4종의 약해 확인 결과, 고추의 잎 및 신초
				에서 외관상 약해중상은 확인되지 않았음.
				NOE NOE NOE
				고추 시들음병 초기 고추 시들음병 후기 건전개체
				- 1000 조기 후 1 기인이 이 1기 전엔세세

Inha501, Inha502의 배양액을 이용한 화분수준에서의 실내검정 수행한 결과 미생물제제로서 가능성을 확인 추가적인 화분수준의 실내검증을 통해 배양최적화의 방향이 폴리엔을 더 많이 생산하는 배양 최적화 방향 으로 선정할지 균의 수를 증가시키는 배양 최적화 방 향으로 선정할지에 대한 확인시험을 진행 (토마토를 대상으로 인위적인 식물병원성 진균 감염 후 방제효율 확인 (KP18F47)) 주성분 함량 약 효 시 험 약 해 시 험 시험약제 희석 배수 및 사용량 처리시기 및 방법 기준량 배 량 (%) 정식직후 토양 Inha501 성장배양액 1×10⁶ 원액살포 관주처리 (50m1/주) (TSB 배양) cfu (9/9)Inha501 성장배양액 (GSS 배양) Inha502 성장배양액 (TSB 배양) Inha501. 방선균 Inha502 성장배양액 Inha502 (GSS 배양) 유래 GSS 배지(무배양) 균주의 진균제어 다양한 무처리 배양최적화 2차 미생물제제 조건에서의 표 15. 처리내용 (시료관리번호 : KP18F47) 년도 방향을 대량 생산 항진균력 (2019)선정하기 공정 개발 가. 대상병해 : 시들음병(Fusarium oxvsporium) 검증 위한 나. 시험작물: 토마토(호용) (에스티알 실내검정 바이오텍) 다. 조사방법 및 판정기준 시험 진행 약효시험 : 최종 약제처리 7일 후 작물별 병발생 정도를 조사 (0: 무발병 ~ 100: 작물고사) 약효시험: 약제처리 3, 5, 7일 후 외관상 약해유무 달관조사 라. 시험구 배치 501균주 성장배양액 501균주 생산배양액 502균주 성장배양액 GSS 배지(무배양) 502균주 생산배양액

				마. 토마토 시들음병	에 대한 역	 약제방제 효	그과 (최종역	 후제처리 후
				10일차)				
				시험약제	전체주수	이병주수	이병주율(%)	방제가 (%)
				Inha501 성장배양액 (TSB 배양)	20	7	35	63.2
				Inha501 성장배양액 (GSS 배양)	20	8	40	57.9
				Inha502 성장배양액 (TSB 배양)	20	6	30	68.4
				Inha502 성장배양액 (GSS 배양)	20	7	35	63.2
				GSS 배지(무배양)	20	19	95	0.0
				무처리	20	19	95	-
	방선균 유래 진균제어 미생물제제 대량 생산 공정 개발 (에스티알 바이오텍)	유래 균제어 다양한 생물제제 조건에서의 당 생산 항진균력 성 개발 검증 스티알	Inha501,Inha502균주의배양최적화성정하기실내검정시험진행	바. 토마토에 대한	약해시험	(약제처리	후 3, 5,	7일)
				시험약제	시험작	물 약해 ² 기 준 i	정도 (0~5) 량 배 량	비고
				Inha501 성장배양액 (TSB 배양)		0	0	약해 없음
				Inha501 성장배양액 (GSS 배양)	성장배양액	0	0	약해 없음
0.73				Inha502 성장배양액 (TSB 배양)			0	약해 없음
2차 년도				Inha502 성장배양액 (GSS 배양)		0	0	약해 없음
(2019)				GSS 배지(무배양)		0	0	약해 없음
				ો પાસ્ત્રીઓનો				
				사. 시험결과 토마토 시들음 ¹	병 방제효	과		
				- 시험 약제의			대한 방	제 효과를
				확인하기 위하여				
				병원균을 접종한				
				시험 약제 중 I				
				의 가장 좋은 병				양액과 생
				산 배양액 간의 차이는 거의 없음 토마토 시들음병 약해확인				
				- 시험 약제 5종				
				신초에서 외관	상 약해중	상는 확인	·보기 않	以 告
				토마토 시들음병	EDE	시들음병		KYMR
				조마도 시宣금병 초기		시宣급명 -기	건전	개체

			Inha501, Inha502 균주의 배양최적화 방향을 선정하기 위한 실내검정 시험 진행	아. 결론 - Inha501, Inha502의 성장배양액(TSB)과 생산배양액(GSS broth)을 이용한 화분수준에서의 실내검정 수행한 결과 이차대사산물을 만들기 위한 생산배지를 이용한 생산배양액과 균만을 배양하기 위한 성장배지를 이용한 성장배양액의 방제율 차이는 비슷한 것으로 확인 - Inha501, Inha502 기반 미생물제제의 제품화를 위한 공정 최적화의 방향은 비싼 재료가 들어가는 생산배지를 이용한 배양보다는 값싼 재료로 균주의 수를 증가하기 위한 성장배지를 이용한 배양이 사업화에 유리할 것으로 판단되기에 이번에 실시한 실내검증을 토대로 균의 수를 늘리기 위한 배양최적화를 실시
2차 년도 (2019)	방선균 유래 진균제어 미생물제제 대량 생산 의스티일 바이오텍)	다양한 조건에서의 항진균력 검증	Inha501, Inha502 균주의 포장실험을 통한 항진균력 검증시험 진행	Inha501, Inha502 기반 미생물제제의 제품등록에 필요한 기초자료를 얻기 위해 온실에서 포장실험을 실시 Inha501, Inha502의 성장배양액을 이용하여 약효약해시험을 진행하고 있으며 11월말까지 완료예정 지형약제 주성분 약 효 시 협 약 해 시험 시험 기준량 배 량 년차 (CFU) 및사용량 및 방법 기준량 배 량 년차 Inha501 성장배양액 무체리 기 기준량 배 량 년차 Inha502 성장배양액 무체리 기 기준량 배 량 년차 1 시험 기계 기준량 배 량 년차 1 기준량 대 기준량 대 기준량 대 기준 기계 기준량 배 량 년차 1 시험 기계 기준량 대 기준량 대 기준량 대 기계 기준량 대 기준량 대 기준 기계 기준량 배 량 본자 기준 이 기계 기준량 대 기준 기준 대 기준 기준 대 기준 기준 대 기준 기계 기준량 대 기준 기준 대 기준 기준 대 기준 기준 대 기준 기계 기준량 대 기준 기준 대 기준 기준 대 기준 기계 기준량 대 기준 기준 대 기준 기계 기준량 대 기준 기준 대 기준 기계 기준량 대 기준 기준 대 기준 기계 기준 기준 대 기준 기계 기계 기준 기계 기계 기준 기계 기준 기계 기준 기계 기계 기준 기계 기준 기계 기계 기계 기준 기계 기계 기계 기준 기계 기계 기계 기계 기준 기계 기계 기계 기계 기계 기계 기계 기준 기계 기계 기계 기준 기계 기준 기계 기계 기계 기준 기계

2차 년도 (2019)	방선균 유래 진균제어 미생물제제 대량 생산 공정 개발 (에스티알 바이오텍)	다양한 조건에서의 항진균력 검증	Inha501, Inha502 균주의 포장실험을 통한 항진균력 검증시험 진행	마. 시험포장 전경
--------------------	--	----------------------------	---	------------

○ 3차년도(2020)

구분 (연도)	세부과제명	세부연구 목표	연구개발 수행내용	연구결과
3차 년도 (2020)	항진균 생합성 유전자군의 유전체 투하	genetic engineer ing을 통한 생리활성 물질의	기대성 사항 사항 수 나이 BAC 등 보기 사항 사항 사항 사항 <td>(1) Inha501의 SBAC library 구축 - 강력한 항진균 활성을 나타내는 천연물인 INP1, INP2의 생합성 유전자군을 인공염색체 운반체인 SBAC library system을 이용하여 분리 Inha 501 균주의 genomic DNA를 분리하여 200kb의 insert를 가지는 SBAC library 제작하였고 PCR based screening 방법을 이용하여 INP1 BGC와 INP2 BGC를 분리(그림 3-1) (2) pINP1의 이중숙주발현 - INP1 BGC을 포함하는 SBAC 벡터인 pINP1을 방선균 모델균주인 Streptomyces lividans TK21 균주와 Streptomyces coelicolor M511 균주에 형질전환 분리된 pINP1이 이중숙주에서 효율적으로 발현될 수 있도록 불필요한 DNA 부분을 제거한 pINPs 벡터를 구축(그림 3-2) INP1 BGC가 클로닝된 SBAC 벡터 pINP1s을 이종숙주에서 발현하었으나, Inha501 wild type과 비교하었을 때 INP1으로 추정되는 피크를 확인하지 못함(그림 3-3) INP1 이종숙주발현 균주인 S. lividans TK21/pINP1s와 Inha501 wild type간의 RNA 발현량 비교를 통해 INP1 BGC내 일부 유전자(inp1A, inp1B, inp1M, inp1R, inp1E)의 발현량이 낮음을 확인(그림 3-4) 이를 해결하고자 우선적으로 발현량이 적은 유전자(inp1A, inp1B)의 프로모터 engineering을 진행하고자 construct를 구축하였고 이중숙주발현을 진행 중(그림 3-5) (3) pINP2의 이중숙주발현 - INP2 BGC을 포함하는 SBAC vector인 pINP2을 방선균 모델균주인 Streptomyces lividans TK21 strain과 Streptomyces coelicolor M511 strain으로의 형질전환 분리한 pINP2의 엽기서열분석을 통한 확인 결과 필요한 INP2 BGC만을 보유한 pINP2을 확보하는데 성공하여 추가적인 유전자면집 작업 없이 S. lividans TK21과 S. coelicolor M511과의 이중숙주발현 진행</td>	(1) Inha501의 SBAC library 구축 - 강력한 항진균 활성을 나타내는 천연물인 INP1, INP2의 생합성 유전자군을 인공염색체 운반체인 SBAC library system을 이용하여 분리 Inha 501 균주의 genomic DNA를 분리하여 200kb의 insert를 가지는 SBAC library 제작하였고 PCR based screening 방법을 이용하여 INP1 BGC와 INP2 BGC를 분리(그림 3-1) (2) pINP1의 이중숙주발현 - INP1 BGC을 포함하는 SBAC 벡터인 pINP1을 방선균 모델균주인 Streptomyces lividans TK21 균주와 Streptomyces coelicolor M511 균주에 형질전환 분리된 pINP1이 이중숙주에서 효율적으로 발현될 수 있도록 불필요한 DNA 부분을 제거한 pINPs 벡터를 구축(그림 3-2) INP1 BGC가 클로닝된 SBAC 벡터 pINP1s을 이종숙주에서 발현하었으나, Inha501 wild type과 비교하었을 때 INP1으로 추정되는 피크를 확인하지 못함(그림 3-3) INP1 이종숙주발현 균주인 S. lividans TK21/pINP1s와 Inha501 wild type간의 RNA 발현량 비교를 통해 INP1 BGC내 일부 유전자(inp1A, inp1B, inp1M, inp1R, inp1E)의 발현량이 낮음을 확인(그림 3-4) 이를 해결하고자 우선적으로 발현량이 적은 유전자(inp1A, inp1B)의 프로모터 engineering을 진행하고자 construct를 구축하였고 이중숙주발현을 진행 중(그림 3-5) (3) pINP2의 이중숙주발현 - INP2 BGC을 포함하는 SBAC vector인 pINP2을 방선균 모델균주인 Streptomyces lividans TK21 strain과 Streptomyces coelicolor M511 strain으로의 형질전환 분리한 pINP2의 엽기서열분석을 통한 확인 결과 필요한 INP2 BGC만을 보유한 pINP2을 확보하는데 성공하여 추가적인 유전자면집 작업 없이 S. lividans TK21과 S. coelicolor M511과의 이중숙주발현 진행

			거대	
			생합성 유전자군 을 스트렙토 마이세스 BAC system을 이용한 분리 및 유전정보 습득	항진균 활성이 전혀 없는 이종숙주 <i>S. lividans</i> 와는 달리, pINP2를 포함하는 재조합 <i>S. lidivans</i> 에서는 항진균 활성이 증가함을 확인하였으며 HPLC분석을 통해 동일한 pantaene peak과 retention time을 확인(그림 3-6, 3-7) 이종숙주 <i>S. coelicolor</i> 와 pINP2를 포함하는 재조합 <i>S. coelicolor</i> 와 비교 하였을 때 항진균 활성이 관찰할 수 없었지만, HPLC분석을 통해 동일한 pantaene peak과 retention time을 확인하였으며 생성되는 양이 적은 것으로 판단됨(그림 3-7) pINP2를 포함하는 재조합 <i>S. coelicolor</i> 에서 생산되는 pantaene을 분리정제 후 항진균 활성을 확인
				(1) genetic engineering을 통한 고생산균주 개발
				- pINP1s의 추가적 도입을 통한 INP1 고생산균주개발
3차 년도 (2020)	항진균 생합성 유전자군의 재설계를 통한 도출 (인하대학	genetic engineer ing을 통한 생리활성 유출 및 가생산과 가발	BAC 벡분항생유(INP2)하활의성 등도양활의체물자(INP2)하황의성대 및한성물자를 기계되고 되었다.	Inha501 wild type strain에 pINP1s의 도입을 통해 INP1 BGC가 2 copy로 늘어나게 되었고 이로 인해 생산량이 18 mg/L에서 108 mg/L으로 6배 증가한 INP1 고생산 균주를 개발함(그림 3-8) - pINP2의 도입을 통한 INP2 고생산균주개발 같은 방법으로 Inha501 wild type strain에 pINP2의 도입을 통해 사본수를 늘리는 방법을 사용한 결과 생산량을 121 mg/L에서 325 mg/L으로 2.7배 증가한 균주를 개발함(그림 3-7) S. 1ividans TK21 strain에 pINP2의 도입을 통해 얻어진 형진 전환 균주들의 항진균활성을 비교분석하여 생산량이 높은 colony selection 진행하였음. 그 결과 INP2의 생산량이 wild type보다 3배 높은 336 mg/L로 생산성이 높아진 고생산 균주가 개발되었고, 이 균주에 wild type에 시도했던 방식으로 2 copy 이상의 BGC를 도입할 경우 g/L 수준에 근접한 고생산 균주가 개발될 것으로 예상됨.(그림 3-7) (2) 생리활성물질의 유도체 생산을 위한 균주개량 - INP2 H (glycosyltransferase)의 gene knock-out을 통한 INP2 유도체 생산 및 활성변화 확인 polyene계 compound는 sugar group이 생리활성에서 중요한 영향을 준다는 선행연구결과를 바탕으로, sugar로 인한 INP2의 활성변화를 확인하고자 균주개량 실시

3차 년도 (2020)	항전자군의 유전자세를 신규도출 (인교)	genetic engineer ing을 생리활성 기계및 고장 기반	BAC 에 된 균 성 유 (INP2)를 여성 등 도 양활의 체 물 유 발로 가 보고 함께 된 그 생물 수 발표 하는데 된 그 생물 수 발표 하는데 된 되는데 된 하는데 된 되는데 된데 된 되는데 된데 된 되는데 되는데 된 되는데	INP2 합성 시 post-PKS modification 과정에서 sugar attachment 기작에 관여하는 glycosyltransferase로 예상되는 inp2-H이 제거된 pINP2스H construct를 제작하였고 aglycone상 태의 INP2 유도제를 생산하는 군주를 확보(그림 3-9, 3-17B) INP2 aglycone 생산균주 중에서는 S. coelicolor M511/pINP2스H 관주에서 160 mg/L로 가장 많은 양이 생산되었고 S. 1idivans TK21/pINP2스H에서는 생산되지 않는 현상을 확인(그림 3-7) INP2와 INP2 aglycone간의 항진균 활성 확인 시험을 통해 INP2 의 sugar부분이 생리활성에서 중요한 역할을 하는 것을 확인(그림 3-6) - INP4 D(sulfurtransferase)의 gene knock-in을 통한 INP2 유도체 생산 및 활성변화 확인 Inha503의 whole genome sequence 비교를 통해 INP2 BGC와 유사한 linear polyene계열의 INP4 BGC sequence를 확보할 수 있었으며 In silico analysis 결과 INP4 BGC는 Mediomycin BGC와 상당한 유사성을 확인(그림 3-10) INP4와 INP2간의 비교를 통해 INP2는 INP2 H에 의해 sugar group으로 치환되는 부분이 INP4에서는 INP4 D에 의해 sulfur group으로 지환되는 것으로 예측이 되었으며 이를 응용하여 sulfur group이 포함된 INP2 derivative 1 생산균주를 개발하고자 함(그림 3-9, 3-10, 3-17B) S. coelicolor M511/pINP2스H에서 INP4 D를 발현시키고자 방선균과 대장균에서 동시 발현할 수 있는 pSE34 발현 벡터를 구축하었고 이중숙주발현을 진행 중이며 생리활성의 변화를 확인 중(4) Inha502의 항진균 활성을 갖는 BGC 검증 INP3의 첫 번째 PKS gene인 INP3 A를 knock-out을 위해 homologous recombination 진행(그림 3-11A) HPLC 분석결과 예상한 knock-out의 결과가 아닌 knock-down의 형태로 이뤄진 것으로 관단되며 INP3 A의 변화로 인해 INP3의 생산량이 감소한 것을 확인(그림 3-11B) 추가적인 실험을 통해 INP3 BGC의을 증명할 예정
--------------------	-----------------------------	---	--	---

			새므노아	(1) 생물농약 후보 방선균 특성 파악 - 추가적인 항진균 활성 테스트를 통하여 항진균 활성이 우수하면서 신규성을 갖는 생물농약 후보 방선균 Inha504를 선별 polyene이 검출되지 않고 항진균 활성이 우수하였던 AN100585균주를 Inha503, polyene계열의 compound가 검출되면서 활성이우수하였던 AN090291균주를 Inha504로 선정(그림 3-12A)포자상태의 stock 제작을 위해 spore 형성이 잘 이뤄지는 배지를 찾는 테스트 결과 Inha503은 MS plate에서 Inha504는 ISP4, MS, R2YE plate등 여러 배지에서 sporulation이 잘 형성됨을 확인(그림 3-12B) - 생물농약 후보 방선균의 특성 파악을 위한 16s rRNA sequence기
3차 년도 (2020)	항진균 생합성 유전자군의 유전체 쟁설계를 통한 신규유도체 도출 (인하대학 교)	생물농약 후보 방선균의 투성 및 생합성유 전자군의 파악	파악과 whole genome sequence 분석 및 이를 통한 유용 생항성유	반 phylogenetic tree 작성 종의 특성을 파악하고 유기농미생물제제의 등록이 원활하게 수행되기 위하여 유전적으로 가까운 종을 찾아 strain의 종속명을 부여하기 위하여 Inha501, Inha502, Inha503, Inha504의 phylogenetic tree을 작성(그림 3-13) 새롭게 명명한 종속명 Streptomyces rubrisoli Inha501(그림 3-13A, 표 3-1A) Streptomyces morookaense Inha502(그림 3-13B, 표 3-1B) Streptomyces javensis Inha503(그림 3-13C, 표 3-1C) Streptomyces collinus Inha504(그림 3-13D, 표 3-1D) (2) Inha503의 whole genome sequencing - PacBio RSII, Illumina platform and De novo assembly를 이용하여 유전체 분석
				2차년도(2019) Inha503의 whole genome sequencing 수행 시 정확한 sequence 확보가 되지 않아 재반응 진행 재반응 결과 Inha503은 다른 streptomyces계열의 평균적인 chromosome size인 8~9 Mbp를 훨씬 넘는 12 Mbp정도이며 chromosome내에 존재하는 이차대사산물 BGC의 개수는 46개로 평균적인 33개보다 많은 것으로 판단됨(표 3-2A, 그림 3-14) polyene계열의 화합물은 아니나 항진균 활성을 낼 수 있는 region 2(NRP 계열), region 8(PKS), region 9(PKS), region 11(PKS), region 14(NRP), region 34(PKS), region 39 (PKS) 등의 BGC를 보유하고 있음을 확인하였고 region 29 (PKS, INP4) linear polyene계열의 BGC가 내재하는 것을 확인(그림 3-14B)

3차 년도 (2020)	항진균 생합성군의 유전자전계를 신규도하다 (인하대학	생 후 보 균 성 및 부성 자 과 악 의 및 유 유 의	생물 후보균 방선장과 e genome sequence 및 한용성군 생업자 파악	(3) Inha504의 whole genome sequencing - PacBio RSII, Illumina platform and De novo assembly를 이용하여 유전체 분석 Inha504는 9.2 Mbp정도의 chromosome size이며 plasmid를 보유하지 않음을 확인하였으며 이차대사산물 BGC의 개수는 33개로 평균적인 수준으로 판단됨(표 3-2B, 그림 3-15) 우선적으로 polyene계열의 화합물에 의해 Inha504가 항진균 활성을 갖는 것으로 판단하고 Inha504 chromosomes내에 준제하는 BGC 중 PKS로 합성되는 BGC를 분석 그 중 region 31에서 natamycin(tetraene)과 유사한 BGC가 존재하는 것을 확인하였고 기존의 natamycin과 구조적으로 유사하나 신규유도체를 생성하는 것으로 예상되는 INP5 BGC를 확보하였고 Knock-out방법을 이용하여 예측한 것을 확인할 예정(그림 3-15B) (4) 후보 방선균내에 내재되어 있는 유용한 생리활성유전자군의 bioinformatic analysis - Inha501균주의 In silico analysis를 통한 INP2의 생합성 과정예측 Bioinformatic analysis을 통해 S. neyagawaensis에서 생합성되는 neotetrafibricin A와 Inha501에서 생합성되는 INP2간의 유사성 및 차이점을 확인했으며 그 결과 KR domain에 의해 chiral이 다른 이성질체로 판단됨(그림 3-16)이 사실을 바탕으로 Inha501의 whole genome sequence내에서 INP2 생합성에 판여하는 유진자를 분석 및 정확한 생합성을 예측 (그림 3-17) a) polyketide synthase내에 존재하는 27개의 module 분석을 통하여 INP2의 aglycone 합성 과정을 예측(그림 3-17B) b) starter unit을 합성에 판여하는 ORF-1049는 분리된 INP2 BGC가 아닌 4 Mbp 떨어진 chromosome에 위치해 있는 것을 밝혀 범(그림 3-17B, C). 또한 이중숙주발현을 위해 사용한 S. lividans TK21과 S. coelicolor M511의 chromosome에에 이와 유사한 유진자가 존재함을 확인 c) starter unit의 guanidino기를 amine기로 치원하는 guanidinobutyrase가 INP2 BGC네에 하나(imp2-#) 존재하며 이와 유사한 기능을 갖는 orf-4663의 Inah501 chromosome에 위치해 있는 것을 확인(그림 3-17B, C)

해 Glucose에서 rhamnose을 합성하는데 월요한 유전 (imp2-iMM7)이 INP2 BGC내에 존재함을 확인(그림 3-17B) e) 합성된 rhamnose는 post-PKS modification 과정 glycosyltransferase(imp2-if)에 의해 참가된 것이며, 이은 IMP2의 항진균 활성과 밀접한 연관을 가질 것으로 판 (그림 3-17B) - Imha502균수의 In silico analysis를 통한 INP3의 생합성 에속 변호 확인하였고 기준의 FR-008와 구조적으로 유사하나 신규유 물생하는 것으로 예상되는 INP3의 생합성경로 예측(표 그림 3-18) - Imha502균수의 In silico analysis를 통한 INP3의 생합성 기존을 생하는 것으로 예상되는 INP3의 생합성경로 예측(표 그림 3-18) - Imha502균수의 In silico analysis를 통한 INP3의 생합성 기존을 생하는 것으로 예상되는 INP3의 생합성경로 예측(표 그림 3-18) - Imha502균수의 Inpa Inpa Inpa Inpa Inpa Inpa Inpa Inpa

	항진균 생합성 유전자군의 유전체 통한 신규유도체 도출 (인하대학 교)	생물농약 후보 방선균의 분석 및 생합성유 전자군의 파악	파악과 whole genome sequence 분석 및 이를	- Inha504 균주의 In silico analysis를 통한 INP5의 생합성 과정예측 Inha504 균주에서 항진균 활성과 관련된 폴리엔계열의 물질의 생합성유전자군을 INP5으로 선정하고 생합성 경로를 예측(그림 3-15B, 그림 3-19) a) Post-PKS modification과정에서 INP5 G, INP3 F에 의해 - COOH로 치환될 것으로 예상(그림 3-19B) b) INP5 J, INP5 C에 의해 합성된 GDP-mycosamin(sugar)이 INP5 K(glycosyltranseferase)에 의해 첨가될 것으로 예상됨(그림 3-19B) c) INP5 D에 의해 epoxidation이 일어나 최종적으로 INP5가 생합성될 것으로 예상(그림 3-19B) Natamycin BGC와 비교 시 PKS gene과 post-PKS modification과 정에 관여하는 gene간의 긴밀한 유사성을 보이나 PKS module의 수에서 INP5 BGC가 하나 더 존재하기에 -methyl(-CH3)기 대신에 -propyl(C3H7)기가 존재할 것으로 예상됨(그림 3-19B, C)
3차 년도 (2020)	항진균제 최적 생산을 위한 스케일업 최적화 (생산기술 연구원)	발효 스케일업 을 통한 50L 발효기 최적화	미 성 배 배 조 척 및 발 수 발 수	(1) Inha502 균주의 50 L 발효조 배양 수행 - 미생물 제제의 원료인 균체의 대량 확보를 위해 50L 발효조 배양을 수행 조건이 최적화되지 않은 상태에서 3일간 시험적인 배양을 수행한 결과 최종적으로 6.4×10 ⁵ cfu/mL의 균체를 획득하였으며 이는 5L 발효기 배양 결과와 유사발효기의 parameter를 결과로 나타낼 경우 Dry cell weight는 최종 약 20(g/L)를 나타내며 배양 36시간에서 거의 세포성장이완료됨을 확인(그림 3-20)이는 공급된 YPD 배지를 36시간쯤에 모두 소모함으로써 배지고깔로 판단되며 이때 D0의 레벨도 동시에 상승하는 것을 확인할 수 있음. 따라서 36시간정도에서 적절한 추가 배지의 공급이가능한 유가식 배양방법을 도입할 시 높은 농도의 세포배양 공정을 확립할 수 있을 것으로 기대됨(그림 3-20)

3차 년도 (2020)	항진균제	발효 스케일업 통한 발 최적화	미 성 배 배 조 적 및 발 수 물 50 L	(2) 배양 배지 조성 최적화 수행 - 배지의 최적 탄소원 선정 2차년도 연구개발 결과 미생물 제제 제조를 위한 제형화 과정에서 초기 CFU 증가를 위해 보다 다량의 균체 투입이 필요함을확인 50 L 배양에서 보다 다량의 균체를 효과적으로 확보하기 위해배양 배지 조성의 최적화를 수행성장 배양에 사용되는 기본 배지는 YPD broth(dextrose 20g/L, yeast extract 10g/L, peptone 20g/L)이며, 다양한 탄소원과 질소원 그리고 인산염 등의 성분 보충을 통해 균체 성장을촉진할 수 있으리라 기대우선 다양한 탄소원들이 세포성장에 미치는 영향을 확인하기위한 실험을 수행해당 실험에 사용된 탄소원은 glucose, potato dextrose, galactose, mannose, fructose, xylose, ribose, arabinose, sucrose, maltose, lactose, dextrin, sorbitol, myo-inositol, glycerol YPD broth의 탄소원은 dextrose 20g/L로, 상기 탄소원들을 각각고(40g/L), 저농도(20g/L)로 추가하고 배양을 진행 a. 구체적인 배양 방법은 Inha502 균주 stock을 YPD agar에 200μ L spreading하여 30℃에서 이틀간 배양 b. 배양이 끝난 plate는 punching을 하여 30 mL의 YPD broth가답긴 멸균된 300 mL baffled flask에 4조각을 넣고 30℃, 150 rpm으로 설정된 shaker에서 2일간 액상 배양 진행 c. 배양된 broth를 준비된 배양액이 담긴 300 mL 플라스크에 5%접종하여 같은 조건에서 4일간 배양 d. 배양이 끝난 broth를 준비된 배양액이 담긴 300 mL 플라스크에 5%접종하여 같은 조건에서 4일간 배양 d. 배양이 끝난 broth를 준비된 배양액이 담긴 300 mL 플라스크에 5%접종하여 같은 조건에서 4일간 배양 d. 배양이 끝난 broth를 준비된 배양액이 담긴 300 mL 플라스크에 5%접종하여 같은 조건에서 4일간 배양 d. 배양이 끝난 broth는 filtration을 통해 cell을 회수하여 60℃로 설정된 dry oven에서 2일간 건조한 후 증량을 측정 Control인 dextrose 20g/L 조건과 비교하여 xylose 및 sucrose가 20g/L 농도에서 균체 생성량을 증가시키는 효과가 있음을 확인(표 3-4) 대부분의 탄소원에 대해 고농도(40g/L) 조건에서는 오히려 최종 균체량이 감소하는 경향이 확인되어 고농도 탄소원에 의한
				Control인 dextrose 20 g/L 조건과 비교하여 xylose 및 sucrose가 20 g/L 농도에서 균체 생성량을 증가시키는 효과가 있음을 확인(표 3-4) 대부분의 탄소원에 대해 고농도(40 g/L) 조건에서는 오히려 최

				- <u>배지의 최적 질소원 선정</u>
3차 년도 (2020)	항진균제 생산을 위한 스케 절화 (생산기울)	발효 스케 일업 등 50L 기 최 적화	旧 성 배 배 丕 적 및 발 수 製 サ 수	앞서 선정한 탄소원인 sucrose 20 g/L를 고정하고 질소원 선정 실험을 추가적으로 진행 질소원은 크게 complex 성분과 synthetic 성분으로 구분할 수 있는데, 각각의 종류가 다양하기 때문에 본 실험에서는 대표적인 complex 질소원인 tryptone, casitone, yeast extract, tryptic soy both, brain heart infusion, bacto peptone, corn steep solid, cotton seed flour, molasses를 대상으로 고(30 g/L), 저농도(15 g/L) 조건을 설정하고 비교 실험을 진행 Peptone 20 g/L 및 yeast extract 10 g/L를 이용하는 control 배양을 동시에 진행하였으며 추가적으로 인산염의 효과를 확인하기 위해 KHgPO, 2 g/L를 추가 또는 제외하고 상기 탄소원 선정실험과 동일한 방법으로 실험을 진행 실험 결과에서 알 수 있는 바와 같이 대부분의 경우 인산염 추가 시 세포 생산량이 증가함을 확인(표 3-5A) Corn steep solid, cotton seed flour 이용 시 높은 세포 생산량을 확인하였으나 이들은 불용성 성분으로 최종 건조 균체양측정 시에 오류가 발생할 가능성을 고려하여 30 g/L의 yeast extract를 최적 질소원으로 선정(표 3-5) - 질소원 추가 투입을 통한 균체 생산성 항상 상기 실험에서 종류에 관계없이 질소원 농도가 높아질 경우 최종 균체 생성량이 증가하는 경향을 확인(표 3-5) 배양 중 질소원을 추가 투입함으로서 균체 성장을 촉진할 수 있는 가능성을 확인하는 시험을 수해 추가 투입에 적절한 질소원을 선정하기 위해 기본 배지(조성: sucrose 20 g/L, yeast extract 30 g/L, KHbO, 2 g/L)에 synthetic 질소원과 앞서 수행한 질소원 선정 실험에서 좋은 효과를 보였던 complex 질소원 몇 가지를 선정해 배양 중 추가투입 실험을 진행 실험에 사용한 synthetic N 성분은 ammonium sulfate, ammonium phosphate dibasic, ammonium tartrate dibasic, ammonium hydroxide, urea 이 머, complex N 성분은 peptone, tryptic soy broth, tryptone 추가 농도는 5 g/L로 설정하고 실험을 진행 대부분 질소원의 추가 투입은 control과 비교하여 대부분이 상 승된 근체 생산성을 보였고 그중 ammonium phosphate monobasic 을 5 g/L 추가했을 때 가장 좋은 효과를 확인하고 이후 실험에서 중은 토과를 확인하고 이후 실험에서 해당 조건을 사용(표 3-6)

3차 위한 지스템 년도 스케일업 고수도	폴리엔 화합물의 순수분리 지스템을 시구축	(1) INP2의 extraction 최적화 - extraction과정에서 효율이 높은 방법을 선정하고자 사용하는 용매 최적화 진행 추출하는 용매와 관련해서는 Methanol과 butanol이 주로 사용되었고 HPLC 분석 결과 효율은 큰 차이를 보이지 않음(그림 3-21A) - 21A) - 21A) - 출章 후 open column을 이용한 정제 시 추출물의 점성에 따른 효율의 차이가 존재하는데 불 증과 혼합되는 methanol보다는 친수성과 충 분리되는 n-butanol을 사용(그림 3-21B) - extraction과정에서 효율이 높은 방법을 선정하고자 pH 최적화진행 낮은 pH상태에서 추출할 경우 더 많은 cell의 lysis와 INP2와 INP2 유도체간의 분리를 기대하고 시험을 수행하였으나 pH가 많이 낮아지면 INP2 degradation으로 인해 수율이 낮아지는 문제를 확인(그림 3-22) 약산정상태인 pH 6에서 extraction을 진행할 경우 가장 높은 수율이 확인 (2) INP2 생산균주의 배양기간 최적화 INP2의 활성을 확인하거나 구조를 과악하기 위해서는 INP2의 순수분리를 진행하여야 하는데 이를 위한 INP2 생산균주의 최적배양기간 선정생산태지는 INP2의 가장 많은 생산량을 보였던 R5 배지를 사용하였고 5L fermentor(working volume 2L)을 이용한 배양기간 최적화를 진행배양기간 별 INP2의 생산량 및 순도를 확인한 결과 3일차에서는 INP2 생합성과정에서의 중간체가 보였으며 5일차로 넘어갈 때 INP2의 생산량이 큰 폭으로 상승 하였고 7일차 이후로는 불순물과 INP2의 유도체들이 쌓이는 것을 관찰(그림 3-23) 직접한 배양기간은 5-7일 사이로 판단됨
--------------------------------------	------------------------------------	---

3차 년도 (2020)	생산을 위한 스케일업 최적화	폴물리 시학 고 분 시 개인의 제 및 도 정 템 및 도 정 템	폴리엔 화합물리 시구 기계 의 기계	(3) INP2의 HPLC 분석 method 최적화 - HPLC 분석 시 사용할 mobile phase 최적화 기존에 사용하고 있는 polyene 분석 method로는 INP2 분석이 어려운 것을 확인(MS/MS analysis 결과 순수하게 분리했다고 생각했던 INP2 fraction이 mixture임을 확인)(그림 3-24A, B) INP2의 구조 특성 상 다른 polyene계열의 물질들 보다 친수성으로 판단되어 더 친수성이 있는 acetonitrile을 이용한 HPLC method 최적화를 진행(그림 3-9) 여러 method 중 acetonitrile 40% isocratic method(0.05M ammonium acetate, pH6.5)에서 2개의 peak으로 분리됨을 확인(그림 3-24C) 항진균 활성테스트를 통해 구간 2에서 항진균 활성이 나타나는 INP2 compound를 확인하였고 Mass analysis을 통해 검증(그림 3-24D, E) - HPLC 분석 시 사용할 method 최적화 HPLC에 사용되는 column의 변화나 column 온도의 변화를 주었으나 긍정적인 결과는 관찰되지 않았으나 Iml/min에서 0.5ml/min로 flow rate를 낮춰 안정적인 분리가 가능하도록 최적화를 진행(그림 3-24F) 기존의 polyene method는 40분이였으나 추출방법의 최적화와 method의 최적화를 통해 분석 method를 20분으로 최적화함 (4) INP2의 MPLC 분석 method 최적화 INP2의 HPLC method 방법을 참고하여 대량 분리를 위한 MPLC method 최적화 진행 사용할 column의 수(길이)와 적절한 flow rate에 대한 최적화와 고순도의 INP2 fraction 구간을 확인(그림 3-25, 표 3-7)
--------------------	--------------------------	------------------------------------	---	---

	항진균제 최적 생산을 위한 스케일업 최적화 (생산기술 연구원)	폴리엔 물질의 분리정제 시스템 확립 도 분리공정 시스템 개발	폴리엔 화합물의 순수분리 정제 시스템을 구축	MPLC method flow rate: 20ml/min, pressure: 10bar, column 2개 연결 a) Column만 연결 / MeOH / 100% (10min), 100% -> 30% (30min), 30% (10min) b) Column, sample loading 연결 / MeOH / 30% (20min) c) Column만 연결 / Acetonitrile / 40% (20min) d) Column, sample loading 연결 / Acetonitrile / 40% (60min), mAU 20이상 30s마다 fraction e) Column, sample 연결 / MeOH / 30% (10min), 30% -> 100% (40min), 100% (10min) 10분에서 25분까지 retention time이 8.7분대 고순도 INP2가 분리되는 것을 확인(그림 3-25A, B) 폴리엔 화합물의 순수분리정제를 위해 MPLC을 이용한 대량 고 순도 분리정제 시스템을 구축 (1) 최적 제형화 조건 확인 및 랩 스케일 제형화 수행
3차 년도 (2020)	친환경 농약을 위한 작균 이 신청성 (에스티알)	선별된 후보균주 의 최적화 진행	미 제조제 전등 안확 위형 술 발물	- 최적 제형화를 선정 2차년도 연구개발 과정에서 확인된 후보 제형 조성들의 최적화를 통해 균주 생존율, 장기 보관 안정성 등의 측면에서 다음과같은 최적 제형화 조성을 선정: cell:mixture:cone:starch = 50:40:5:5 대용량 동결건조 및 제형화에 앞서 상기 최적 조성 및 랩 스케일 동결건조기를 이용하여 제형화를 수행한 결과 1×10 ⁷ cfu/g 이상의 균체수 확보가 가능함을 확인(그림 3-26) (2) 대용량 배양 및 제형화 수행 - 대용량 제형화에 필요한 균체 확보를 위해 Inha501, Inha502 30 L 배양을 수행(그림 3-27A) a) 균주 stock을 YPD agar에 200 μL spreading 하여 30℃에서이틀간 배양 b) 배양이 끝난 plate는 punching을 하여 30 mL의 YPD broth가담긴 멸균된 300 mL baffled flask에 4조각을 넣어 30℃, 150 rpm 조건으로 설정된 shaker에 2일간 액상배양 진행 c) 배양된 broth를 준비된 배양액이 담긴 5 L flask에 5% 농도로 접종하여 동일한 조건에서 2일간 배양 d) 배양 후 해당 broth를 이용하여 50 L 발효기의 최적화된 액체배지(조성: sucrose 20 g/L, yeast extract 30 g/L, KH₂PO₄ 2 g/L)에 5% 농도로 접종하여 동일조건에서 2일간 배양

3차	친환경 농약을 위한 작물 진균 및	선별된 후보균주 의 안정화, 제형화	제제 제조시 균체수 증대 및 안정성	- 30L 배양한 Inha501, Inha502의 제형화 실시 배양 종료 후 filtration과 원심분리를 통해 cell을 회수하고 설정된 조성에 따라 제형제와 혼합 후 대용량 장치(20 kg batch type)에서 동결건조 진행(그림 3-27B) - 대용량 제형화에 필요한 균체 확보를 위해 상업 배양 배지(TSB) 를 이용하여 Inha501의 300 L 배양을 수행 후 제형화 실시(그 림 3-28A) a) 균주 stock을 YPD agar에 200 µL spreading 하여 30℃에서 이틀간 배양 b) 배양이 끝난 plate는 punching을 하여 150 mL의 TSB broth가 담긴 멸균된 500 mL baffled flask에 4조각을 넣어 30℃, 200 rpm 조건으로 설정된 shaker에 2일간 액상배양 진행 c) 배양된 broth를 준비된 배양액이 담긴 50 L 발효기에 2% 농 도로 접종하여 동일한 조건에서 2일간 배양 d) 배양 후 해당 broth를 이용하여 500 L 발효기의 최적화된 액 채배지(조성: sucrose 20 g/L, yeast extract 30 g/L, KH₂PO₄ 2 g/L)에 5% 농도로 접종하여 동일조건에서 2일간 배양 배양 종료 후 원심분리를 통해 cell을 회수하고 설정된 조성에
년도 (2020)	제어능 및 안정성 검증 (에스티알 바이오텍)	다양한 조건에서 의 항진균력 안전성 검증	Inha504	배양 종료 후 원심분리를 통해 cell을 회수하고 설정된 조성에 따라 제형제와 혼합 후 대용량 장치(20 kg batch type)에서 동결건조 진행(그림 3-28B, C) (1) Inha503, Inha504 균주의 약효·약해를 조사하기 위한 실내 검정시험 - Inha503, Inha504 균주의 시들음병에 대한 항진균력 검증을 위한 약효시험결과 새롭게 선별된 Inha503, Inha504의 배양액을 이용하여 실제 작물에 적용하는 약효확인실험을 통해 생물농약으로서의 가능성을 확인하기 위한 실내검정 시험을 진행 시험작물은 고추(독약청정), 토마토(슈퍼도태랑), 딸기(설향)을 사용하였고 시들음병(Fusarium oxysporum)대한 항진균 활성을 확인(그림 3-29, 표 3-8) 약효시험평가는 최종약제처리 10일 후 구당 전체주수에 대한 이병주율을 조사하였고, 처리구 간 유의차 검정은 Duncan 's multiple range test(DMRT)로 95% 수준에서 유의성을 검정이병주율(%) = 이병주수 총 조사주수 × 100

3차 년도 (2020)	친환경 농약을 지한 지어 한정성 에스티알 바이오텍)	다양한 조건에서 의 균력 안전 의 안 검증	Inha503, Inha504 균주의 실내검정 시험	Inha503, Inha504를 시험작물에 기준량(500배 희석액)과 배량 (250배 희석액)으로 처리한 후 약해유무를 달관조사를 진행하
			Inha501, Inha502 제형화 제품의 안전성 검증 및 항진균 활성 검증	(1) Inha501, Inha502 제형화 제품의 약해시험결과 - Inha501, Inha502 제형화 제품의 약해시험결과(시험보고서 KPER-19-0-123, KPER-19-0-124) Inha501, Inha502 제형화 제품의 유기농 자재 제품등록을 위한 유식물 5종에 대한 약해시험을 진행 사용한 작물은 오이(조은백다다기), 토마토(호용), 호박(농우애호박), 상추(선풍), 배추(불암3호)을 사용하였고 시설재배 작물에 적용하였으며, Inha501, Inha502 제형화 제품을 시험작물에 기준량(500배 희석)과 배량(250배 희석)으로 처리한 후 약해유무 달과조사를 진행

약해시험결과 Inha501, Inha502 제형화 제품은 오이, 토마토, 호박, 상추, 배추에 대하여 약해가 없어 유기농 자재 공시용으 로 적합할 것으로 판단됨(그림 3-30) 이러한 사실을 바탕으로 제형화 제품의 유기농 자재 등록을 위 한 유효 미생물 균수 및 균 동정분석, 병원성 미생물 5종 분석, 잔류농약검사의 과정을 "강원대 친환경농산물안전성센터"에 서 진행 중이며 분석시험이 완료되면 독성검사(인축독성시험-급성경구독성, 급성경피독성시험, 안점막자극성시험, 피부자극 성시험, 피부감작시험 / 생태독성시험 - 담수어영향시험)를 "에이비솔루션"에서 실시할 예정 (2) Inha501, Inha502 제형화 제품의 약효시험결과 - Inha501, Inha502 제형화 제품의 토마토 시들음병에 대한 약효 시험결과(시험보고서 KPER-19-0-119, KPER-19-0-120) 친환경 Inha501. 농약을 다양한 Inha501, Inha502 제형화 제품의 토마토 시들음병에 대한 항진 Inha502 위한 작물 조건에서 제형화 균 활성을 확인하고자 시설 재배 작물에 대한 포장실험을 진행 3차 시험장소는 경기도 수원시 권선구, 강원도 화전군 사내면에서 진균 의 제품의 년도 제어능 및 항진균력 항진균 진행하였으며 사용한 작물은 토마토(슈퍼도태랑, 슈퍼스타)이 며 시들음병(Fusarium oxysporum)대한 항진균 활성을 확인 (2020) 안정성 과 활성 시험 방법은 난괴법 3반복 및 완전임의배치법 3반복으로 진행 검증 안전성 검증 및 검증 안전성 을 하였고 약효시험은 7, 14, 21일 약제 처리가 끝나고 10일 후 (에스티앜 이병주수를 조사함 검증 바이오텍) 시험장소는 경기도 수원시 권선구, 강원도 화전군 사내면에서 진행하였으며 사용한 작물은 토마토(슈퍼도태랑, 슈퍼스타)이 며 시들음병(Fusarium oxysporum)대한 항진균 활성을 확인(그 림 3-31) a. 경기도 수원시 권선구에서의 약해시험 결과 토마토 시들음병의 무처리구 평균 발병율이 13.1%로 약제를 평 가하기에 충분한 조건 Inha501 제형화 제품은 51.5%, Inha502 제형화 제품은 54.8%의 방제 효과를 보였으며 처리구별 통계적 유의성을 검정한 결과 무처리구와 대비하여 통계적으로 유의성이 인정(표 3-10A) 작물의 약해시험을 위해 공시자재의 기준량과 배량을 토마토 및 방울토마토에 살포 후 약해증상을 관찰한 결과, 약해증상은 관찰되지 않음 b. 강원도 화전군 사내면에서의 약해시험 결과 토마토 시들음병의 무처리구 평균 발병율이 15.4%로 약제를 평 가하기에 충분한 조건

	친환경 노야으	다양한 조건에서 의 항진균력 과 안전성 검증	Inha501, Inha502 제형화 제품의 항진균 활성 검증 및 안전성 검증	Inha501 제형화 제품은 65.0%, Inha502 제형화 제품은 65.7%의 방제 효과를 보였으며 처리구별 통계적 유의성을 검정한 결과무처리구와 대비하여 통계적으로 유의성이 인정(표 3-10B) 작물의 약해시험을 위해 공시자재의 기준량과 배량을 토마토및 방울토마토에 살포 후 약해증상을 관찰한 결과, 약해증상은 관찰되지 않음(표 3-11C) 종합적인 전문가의 의견으로 Inha501, Inha502 제형 제품은 약해증상은 관찰되지 않았고 방제가 50%이상의 악효가 입증되었기에 토마토 시들음병에 대한 실용성이 있다고 판단 - Inha501, Inha502 제형화 제품의 고추 시들음병에 대한 약효시 험결과 현재 시험은 완료 하였고 결과보고서를 기다리는 중이며 고추에서도 방제가 50%이상으로 약효가 입증되었고 약해시험 또한약해없음이 관찰되었기에 고추 시들음병에 대한 실용성이 있다고 판단됨
3차 년도 (2020)	농약을 위한 작물 제어 당정성 건 점증 (에스티알)	Inha501, Inha502 제품으로 인한 모양의 민생물의 변화 분석	Met ageno me 분석 시스템을 응용한 물군집의 변화 확인	(1) Inha501, Inha502 제형화 제품으로 인한 토양 미생물군집의 변화 확인 - Metagenome 분석 시스템을 응용한 Inha501, Inha502 제형화 제품으로 인한 토양미생물군집의 변화관찰 미생물과 토양(환경)간의 상호작용을 관찰하고자 Inha501, Inha502 제형화 제품으로 인한 토양의 변화를 Metagenome 분석시스템을 응용하여 관찰하고자 하였으며 Inha501, Inha502 균주가 토양에 잘 정착하였는지 확인하고자 함 Inha501, Inha502 제형화 제품의 약해시험을 진행한 고추농가의 토양을 채취하여 total DNA 추출 진행 중추출한 토양 sample의 total DNA을 이용하여 16s rRNA sequence기반의 종 분류를 위한 metagenome 분석이 진행 중이며 채취한 토양은 control(생존한 작물의 토양), 무처리군(시들음병으로 인해 고사한 작물의 토양), Inha501처리군, Inha502처리군에서 각각 2개를 무작위 선별하여 진행함 분석한 결과를 바탕으로 Inha501, Inha502의 투입으로 인한 토양 미생물군집의 변화를 관찰하고 무처리군과의 비교를 통해 미생물간의 상호작용 및 식물간의 상호작용을 밝히는데 연구 자료로 활용할 예정 또한 추출한 토양 sample의 total DNA을 이용하여 Inha501, Inha502의 specific primer을 이용한 qRT-PCR을 진행하여 대략적인 토양에서의 분포율을 확인하여 토양 적응력을 검증할 예정

※ 3차연도 연구결과 그림 및 표

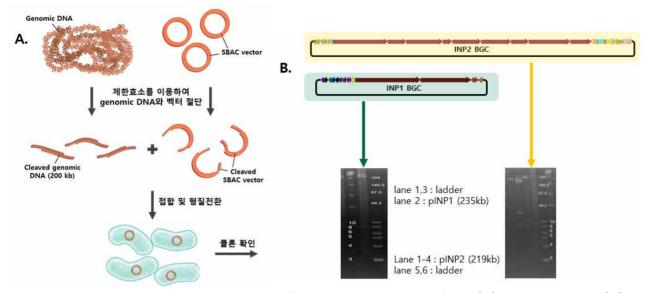


그림 3-1A. INP1, INP2 BGC의 Streptomyces^그림 3-1B. INP1, INP2 BGC을 포함하는 SBAC vector 확인 BAC library 구축 (scheme) (INP1 BGC (81kb)를 포함하는 pINP1, INP2 BGC (170kb)를 포함하는 pINP2)

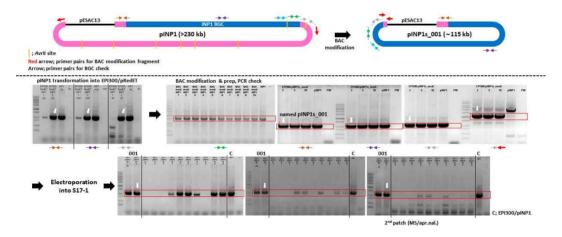


그림 3-2. partial digestion을 이용한 self ligation 방법으로 필요 없는 부분이 제거된 pINPls vector 구축

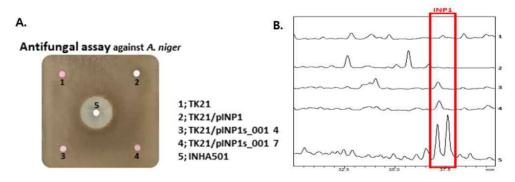


그림 3-3. INP1 BGC의 S.~lividans~TK21에 이종숙주발현 후 항진균 활성 확인 및 HPLC 분석

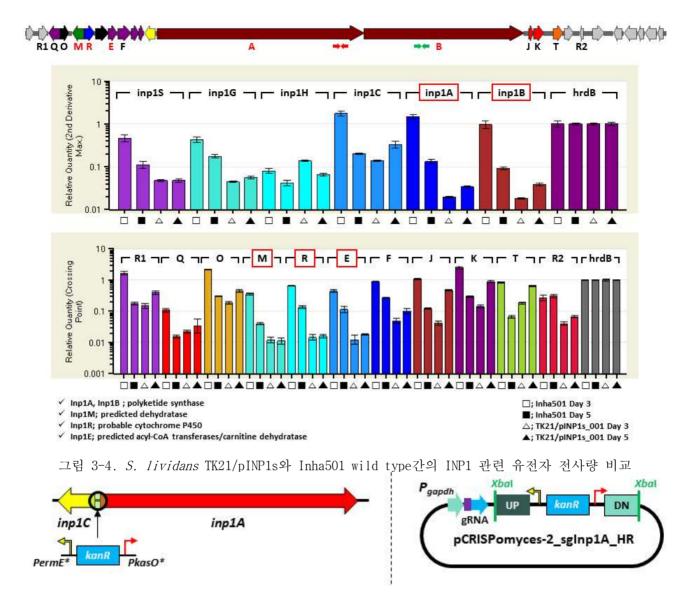


그림 3-5. CRISPER-Cas9 system기반의 프로모터 engineering construct 구축

그림 3-6. INP2, INP2 aglycone 이종숙주발현 균주인 *S. lividans* TK21/pINP2, *S. lividans* TK21/pINP2△H (colony 1 ~ 6)의 항진균활성테스트

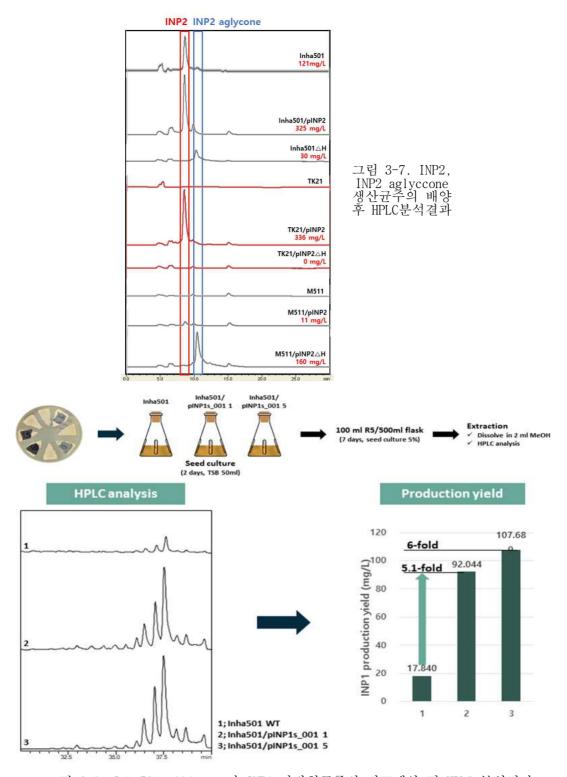


그림 3-8. Inha501 wild type과 INP1 과발현균주의 비교배양 및 HPLC 분석결과

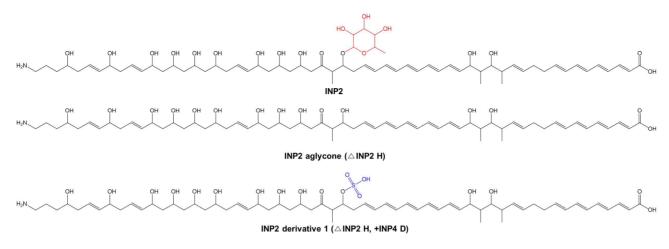


그림 3-9. INP2와 INP2 유도체의 예상 구조

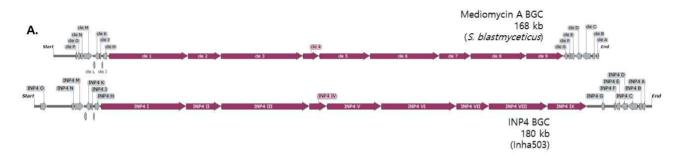


그림 3-10. Mediomycin A BGC와 INP4 BGC간의 비교

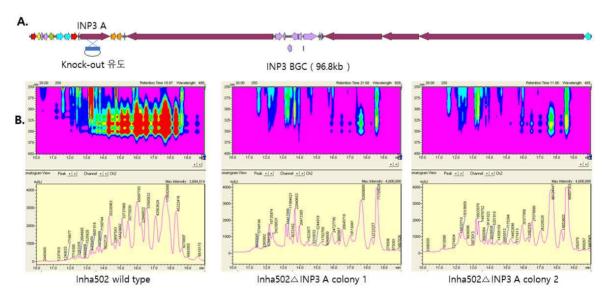


그림 3-11. INP3 A knock-out scheme(A) 및 Inha502 wild type과 Inha502△INP3 strain의 비교배양 후 HPLC분석결과(B)

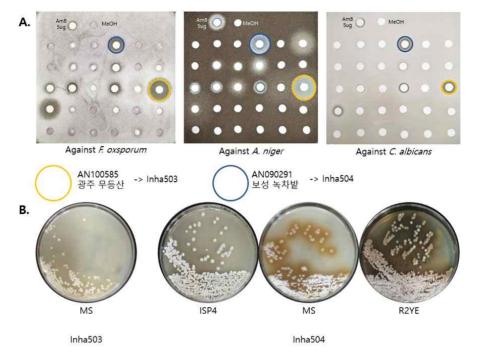


그림 3-12. Inha503, Inha504를 선정한 항진균 활성테스트 결과(A) 및 Inha503, Inha504의 배지테스트 결과(B)

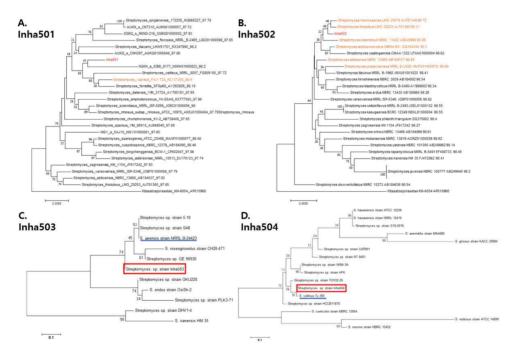
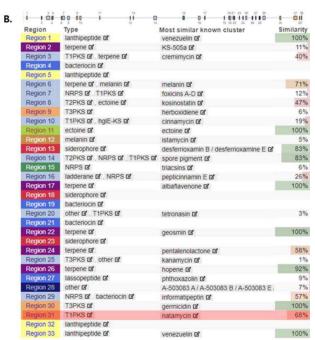



그림 3-13. 생물농약 후보 균주들의 16s rRNA sequence기반 phylogenetic tree

A. Consign

그림 3-14. Inha503의 contig 1(chromosomal DNA map)(A)과 antiSMASH 분석결과(B)

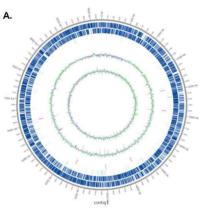


그림 3-15. Inha504의 contig 1(chromosomal DNA map)(A)과 antiSMASH 분석결과(B)

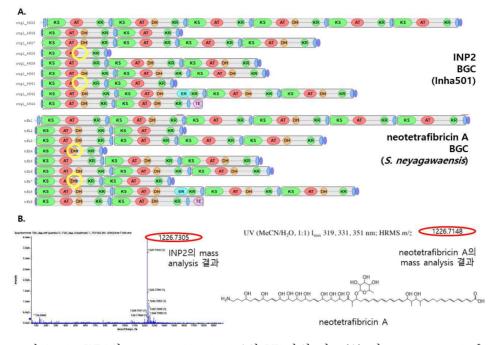


그림 3-16. INP2와 neotetrafibricin A의 PKS간의 비교(A) 및 mass analysis을 통한 동일한 분자량 확인(B)

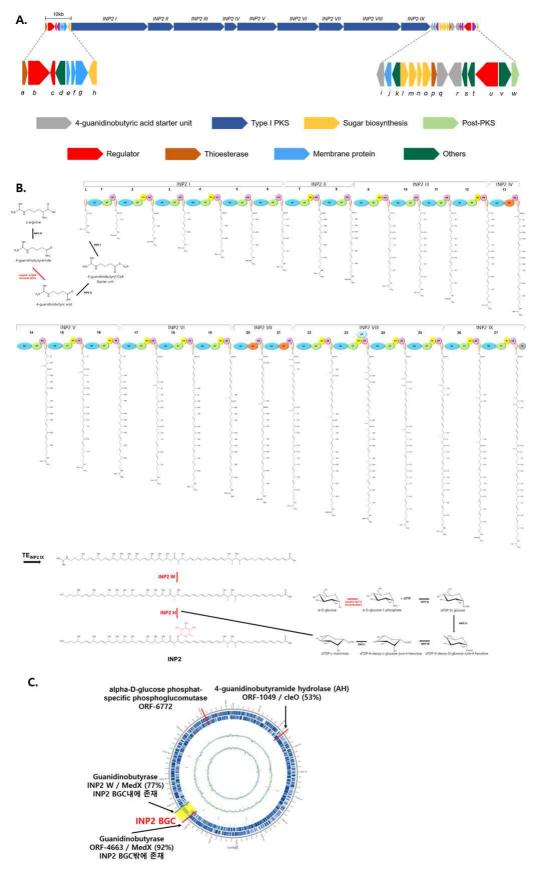


그림 3-17. INP2의 전체 BGC(A)와 생합성 경로 예측(B) 및 INP2 BGC밖에서 합성에 관여하는 유전자의 위치(C)

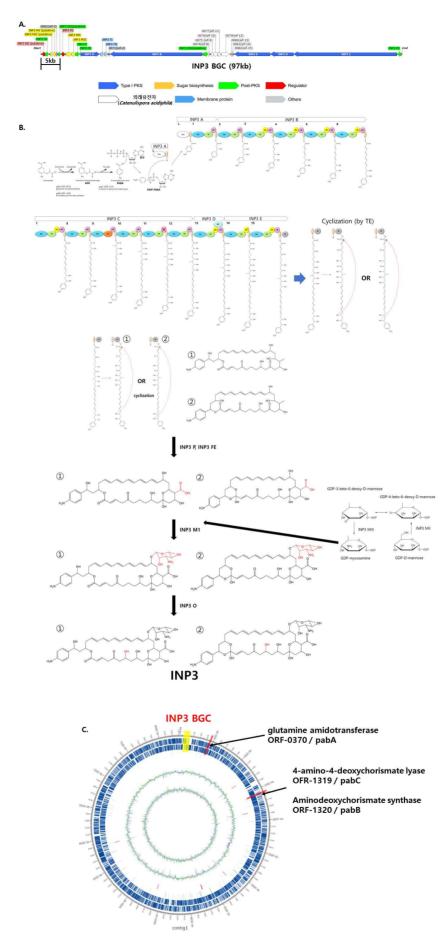


그림 3-18. INP3의 전체 BGC(A)와 생합성 경로 예측(B) 및 INP3 BGC밖에서 합성에 관여하는 유전자의 위치(C)

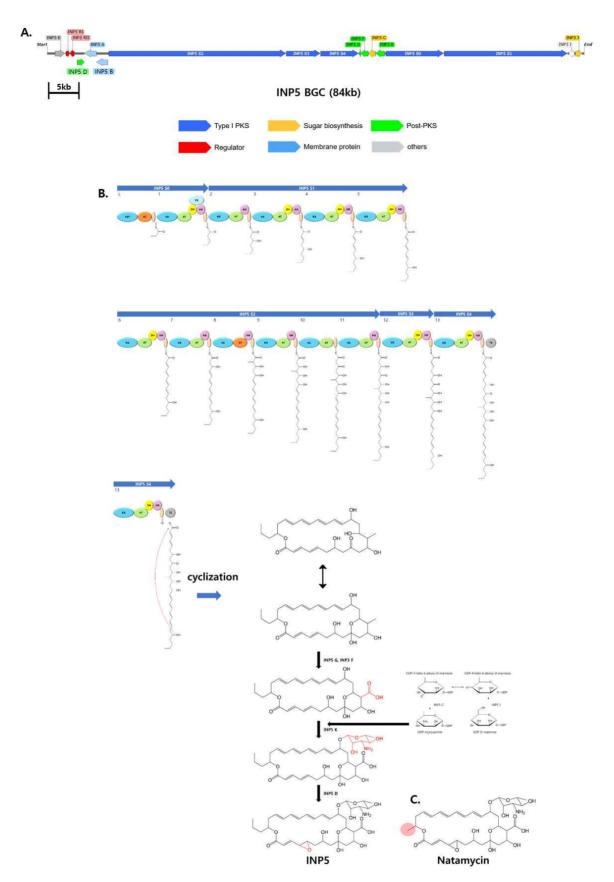


그림 3-19. INP5의 전체 BGC(A)와 생합성 경로 예측(B) 및 Natamycin의 구조(C)

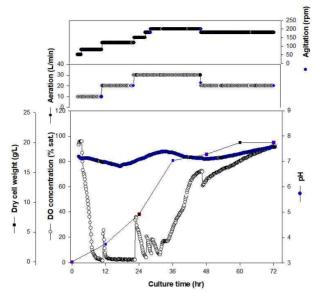


그림 3-20. 50 L 발효기를 이용한 Inha502 균주의 배양 결과

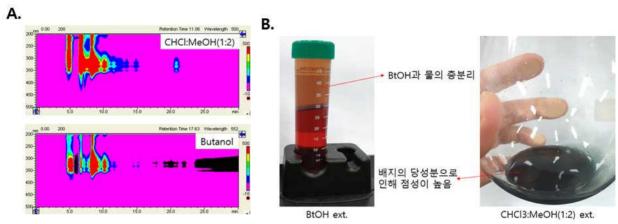


그림 3-21A. INP2 추출 용매 간의 효율 비교 그림 3-21B. INP2 추출 용매 간의 층분리 비교

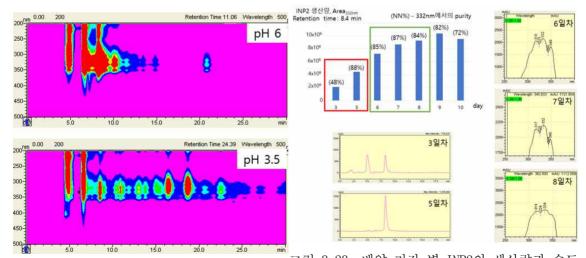



그림 3-22. INP2 추출 pH에 따른 효율 비교 그림 3-23. 배양 기간 별 INP2의 생산량과 순도

method를 통한 INP2 HPLC 분석결과

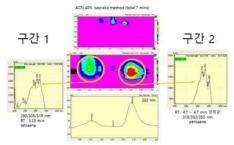
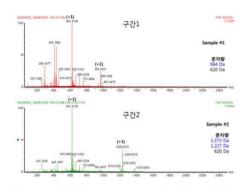



그림 3-24C. Acetonitrile 40% isocratic method를 통한 INP2 HPLC 분석결과

그림 3-24D. 구간 별 항진균 활성 확인

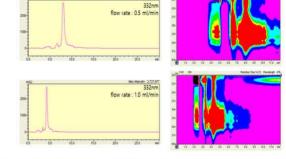


그림 3-24E. 구간별 Mass analysis (구간2 - INP2) 그림 3-24F. flow rate 변화를 통한 INP2의 HPLC 분석 method 최적화

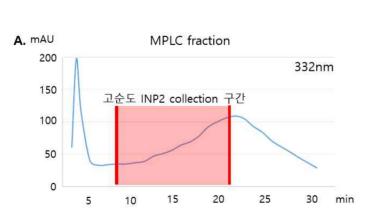
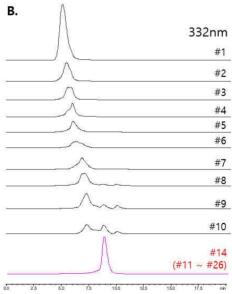



그림 3-25. MPLC fraction 별 mAU_{332nm} 측정(A) 및 fraction 별 HPLC 분석결과(B)

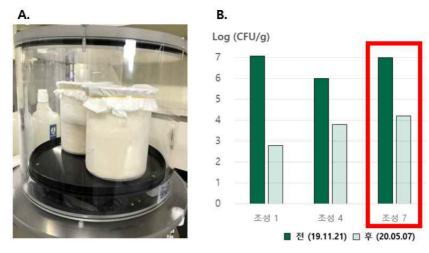


그림 3-26. 제형화 제작(A) 이후 기간 별 CFU 비교실험(B)

그림 3-27A. 시제품 제작을 위한 30 L 배양

50L fermenter 접종

그림 3-28A. Inha501 시제품 제작을 위한 그림 3-28B. Inha501 시제품 제작을 위한 cell 그림 3-28C. Inha501 시제품 300 L 배양 회수 제작

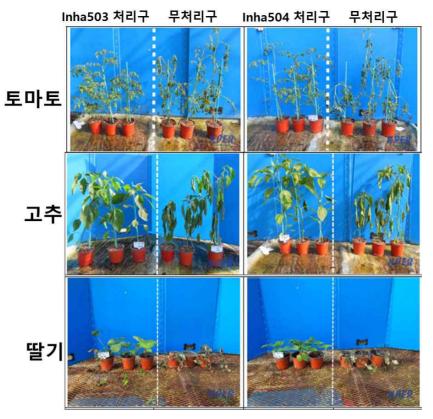


그림 3-29. Inha503, Inha504의 시들음병에 대한 실내검증결과

그림 3-31. Inha501, Inha502 제형화 제품의 약효시험

Hit Taxon name	Hit strain name	accession	Similarity (%)	Variation ratio (bp)
S. rubrisoli	FXJ1.725(T)	KC137300.1	98.30	16/1448
S. sparsogenes	ATCC 25498	MAXF01000077.1	98.48	22/1445
S. cuspidosporus	NBRC 12378	AB184090.1	98.46	22/1424
S. diacami	LHW51701	KX347890.1	98.20	26/1448
S. ferralitis	SFOp68	AY262826.1	98.19	26/1438

Hit Taxon name	Hit strain name	accession	Similarity (%)	Variation ratio (bp)
S. morookaene	LMG 20074	AJ81349.1	99.72	4/1446
S. thioluteus	LMG 20259	AJ81360.1	99.31	10/1445
S. lacticiproducens	GIMN4.001	CG184344.1	99.30	10/1420
S. luteireticuli	NBRC 13422	AB249969.1	98.89	16/1446
S. abikoensis	NBRC 13860	AB184537.1	98.89	16/1441

A. Inha501

Hit Taxon name	Hit strain name	accession	Similarity (%)	Variation ratio (bp)
S. javensis	NRRL B-24423	DQ445793.1	99.80	3/1503
Streptomyces sp.	GKU220	KY923054.1	99.47	8/1514
S. endus	OsiSh-2	KU324469.1	99.41	9/1515
Streptomyces sp.	PLK3-71	MN116537.1	99.40	9/1512
Streptomyces sp.	5-10	MK356358.1	99.87	2/1491

B. Inha502

Hit Taxon name	Hit strain name	accession	Similarity (%)	Variation ratio (bp)
S. collinus	Tu 365	CP006259.1	99.93	1/1514
Streptomyces sp.	WI04-3A	EU080961.1	99.08	14/1518
Streptomyces sp.	CdTB01	CP013743.1	98.75	19/1516
Streptomyces sp.	NT 0401	DQ985808.1	98.75	19/1516
Streptomyces sp.	TCH32-26	MH598364.1	99.66	5/1470

C. Inha503

D. Inha504

표 3-1. 생물농약 후보 균주들과 유사한 strain들 간의 16s rRNA sequence 비교

Contig name	Length	CDS	tRNA	rRNA
contig1	11,278,619	9,113	87	18
contig2	353,968	330	1	0
contig3	351,144	310	0	0
contig4	133,023	122	0	0
contig5	82,224	93	0	0
contig6	6,443	7	0	0
Total	12,205,421	9,975	88	18

표 3-2A. Inha503의 whole genome 정보

Contig name	Length	CDS	tRNA	rRNA
contig1	9,194,571	8,072	90	18
Total	9,194,571	8,072	90	18

표 3-2B. Inha504의 whole genome 정보

Protein	a.a.	Proposed function	Similar gene	Similarity (%)	Protein	a.a.	Proposed function	Similar gene	Similarity (%
FscO	459	monooxygenenase	Inha502-59	52.2	PabAB	724	isochorismate synthase	-	51
PabC	258	aminotransferase	Inha502-60	62.5	FscA	1744	type II PKS	Inha502-68	79.5
FscRI	223		Inha502-63	83.1	FscTI	336	ABC transporter	Inha502-69	86.0
FscRII	943	LuxR family			FscTII	240	ABC transporter	Inha502-70	91.2
FscRIII	1015	transcriptional regulator	*	•	FscC	10626	type II PKS	Inha502-72	76.5
FscRVI	1006				FscB	5542	type II PKS		
FscMI	459	glycosyltransferase	Inha502-64	88.4	FscF	2050	type II PKS	Inha502-83	77.1
FscMII	353	aminotransferase	Inha502-65	93.2	FscE		type II PKS	Inha502-84	78.9
FscP	394	cytochrome P450	Inha502-66	89.0	FscD	9551	type II PKS	Inha502-85	72.7
FscFE		ferredoxin	Inha502-67	84.4	FscMIII	403	GDP-mannose 4,6-dehydratase	Inha502-86	94.2
FscTE	304	thioesterase (type II)							

표 3-3. Bioinformatic analysis을 이용한 INP3 BGC와 FR-008 BGC의 비교

Carl	bon source	ŗ	Low (20g/L)	High (40g/L)
		Glucose	10.989	10.323
	Hexose	Galactose	9.324	3.663
	пехозе	Mannose	9.657	5.994
Monosaccharide		Fructose	10.323	6.993
	Pentose	Xylose	14.652	5.661
		Ribose	12.321	7.659
		Arabinose	12.987	4.995
		Sucrose	14.652	4.995
Oligosaccha	rides	Maltose	13.986	6.327
		Lactose	4.662	13.32
Polysacchar	ides	Dextrin	10.989	5.328
Sugar alcoh	ools	Myo-inositol	10.656	5.328
Sugar alcor	1015	Glycerol	9.99	9.99

표 3-4. 탄소원 비교 실험 결과

w/P	nitrogen source	15g	30g				
1	tryptone	2.997	5.328	w/o P	nitrogen source	15g	30g
2	casitone	3.663	5.661	1	tryptone	1.998	4.995
3	yeast extract	4.662	7.992	2	casitone	2.331	3.663
4	tryptic soy broth	4.329	6.66	3	yeast extract	4.662	6.993
5	brain heart infusion	2.997	3.996	4	tryptic soy broth	3.996	5.661
6	bacto peptone	1.332	2.331	5	brain heart infusion	2.331	3.663
7	corn steep solid	1.998	6.993	6	bacto peptone	1.332	1.665
8	cotton seed flour	7.659	19.314	7	corn steep solid	0.333	0.666
9	molasses	0.666	2.331	8	cotton seed flour	9.324	15.318
10	control(pep20 + yeast10)	2.331	5.994	9	molasses	1.332	2.331
10	control(pep20 i yeast10)	2.551	5.554	10	control(pep20 + yeast10)	4.662	8.658

 표 3-5A.
 질산염 비교 실험 결과 (인산염 추가)
 표 3-5B.
 질산염 비교 실험 결과 (인산염 미추가)

	Nitrogen source	DCW (g/L)
1	Ammonium sulfate	36.963
2	Ammonium phosphate monobasic	39.294
3	Ammonium phosphate dibasic	38.628
4	Ammonium tartrate dibasic	37.629
5	Ammonium chloride	37.296
6	Ammonium carbonate	38.295
7	Ammonium hydroxide	37.629
8	Urea	38.628
9	Peptone	37.296
10	Tryptic soy broth	37.962
11	Tryptone	37.962
12	Control	37.296

표 3-6 질소원 추가 투입 실험 결과

#	1	2	3	4	5	6
RT (min)	5.00	5.32	5.45, 5.71	5.84	5.90	6.25
7	8	9	10	11 ~ 26	27	28
6.79	7.08	7.14	7.18, 8.69	8.71~8.75	8.63	8.61

표 3-7 MPLC를 이용한 INP2 분리정제 후 fraction별 retention time 결과

	al whol-all		이병주	유의차	방제가		
	시험약제	I 반복	Ⅱ반복	Ⅲ반복	평 균	(DMRT)	(%)
	Inha503	20.0	20.0	20.0	20.0	Ъ	72.2
토마토	Inha504	40.0	20.0	20.0	26.7	ь	63.9
	무처리	80.0	60.0	80.0	73.3	а	-
	C.V.(%)				23.6		
	시험약제		이병주	유의차	방제가		
고추	시원작제	I 반복	Ⅱ반복	Ⅲ반복	평 균	(DMRT)	(%)
	Inha503	20.0	40.0	20.0	26.7	Ъ	61.1
	Inha504	40.0	40.0	20.0	33.3	ъ	50.0
	무처리	60.0	80.0	60.0	66.7	а	300
	C.V.(%)				27.3		
	में खेले जी		이병주	유의차	방제가		
딸기	시험약제	I 반복	Ⅱ반복	Ⅲ반복	평 균	(DMRT)	(%)
	Inha503	40.0	40.0	40.0	40.0	b	53.3
	Inha504	40.0	60.0	20.0	40.0	b	55.0
	무처리	80.0	100.0	80.0	86.7	а	-

표 3-8. 작물 시들음병에 대한 Inha503, Inha504의 약효시험결과

ા જો ભો-ગો	시험작물	약해정도	비고	
시험약제	(품종)	기 준 량	배 량	비고
	토마토 (슈퍼도태랑)	0	0	약해 없음
	방울토마토 (미니마루)	0	0	약해 없음
Inha503	고추 (독야청청)	0	0	약해 없음
	단고추 (옐로우 스위트)	0	0	약해 없음
	딸기 (설향)	0	0	약해 없음
	토마토 (슈퍼도태랑)	0	0	약해 없음
	방울토마토 (미니마루)	0	0	약해 없음
Inha504	고추 (독야청청)	0	0	약해 없음
	단고추 (옐로우 스위트)	0	0	약해 없음
	딸기 (설향)	0	0	약해 없음

표 3-9. 작물에 대한 Inha503, Inha504의 약해시험결과

A. 수원에서의 결과

시험약제		이병주	유의차	방제가		
시합약세	I 반복	Ⅱ반복	Ⅲ반복	평 균	(DMRT)	방제가 (%)
Inha501	6.8	5.4	6.8	6.3	b	51.5
Inha502	5.4	5.4	6.8	5.9	ь	54.8
무처리	13.5	10.8	14.9	13.1	а	

C.V.(%) ----- 10.7

B. 화천에서의 결과

시험약제		이병주	유의차	방제가 (%)			
시합력제	I 반복	Ⅱ반복	Ⅲ반복	평 균	(DMRT)	(%)	
Inha501	4.4	5.7	5.7	5.3	Ъ	65.0	
Inha502	5.9	5.7	4.3	5.3	ъ	65.7	
무처리	16.2	17.1	12.9	15.4	a	=	

C.V.(%) ----- 15.5

표 3-10. 토마토 시들음병에 대한 Inha501, Inha502 제형화 제품의 약효시험 결과

○ 4차년도(2021)


	차년도(2021			
구분 (연도)	세부과제명	세부연구 목표	연구개발 수행내용	연구결과
4차 년도 (2021)	식물 병원성 진균에 대한 항진균력과 토양 적응력이	여러의에 자신 한 환 이 환성 인 학자 이 한 전 생 이 한 전	수영대용 여류에 한 균 항 활 익	다양한 식물병원성 진군에 대한 항진군 활성 테스트를 통해 미생 전 제제로 Inha503, Inha504의 agar plug을 이용한 진군에 대한 활성 확 인 - Inha503, Inha504의 agar plug을 이용한 진군에 대한 활성 확 인 - Inha503, Inha504의 agar plug을 이용한 진군에 대한 활성 확 인 - Inha503, Inha504의 agar plug을 이용한 진군에 대한 환성 확 인 - Inha503

4차 년도 (2021)	유전체 기술을 활용하여 선별된 방선균의 유전체	생물후보균성 및 유성자과	whole genome sequence 및 하용성자간 의 장업자간	Inha504 군주의 In silico analysis를 통한 INP5의 생합성 과정 예측 Inha504 군주에서 항진군 활성과 관련된 폴리엔계열의 물질의 생합성유전자군을 INP5으로 선정하였고 bioinformatic analysis을 통해 lucensomycin과 유사함을 확인 Length:
--------------------	--	---------------	--	---

Inha504 균주에서 생산되는 INP5의 분자량 측정을 위해 배양 및 물질정제 실시 BtOH ext. (total 배양액 2L, 1:1) 생산량 약 70mg/L 구간 1 MeOH 30% 구간 4 100% washing 구간 2 504 wt 30% washing 100% elution GSS 2L, 450rpm, 30°C, 4days (sugar) (250ml) 그림 4-4. Inha504의 배양 및 INP5의 정제 NGS 기반 whole 생물농약 **DOH** 유전체 genome 303nm 후보 NH₂ Natamycin 기술을 sequence 0.1mg/ml RT 13.2 min 방선균의 분석 및 활용하여 4차 특성 선별된 이를 분석 및 년도 Chemical Formula: C₃₃H₄₇NO₁₃ Molecular Weight: 665.7252 방선균의 통한 (2021)유용 유전체 유용 INP5 생합성유 RT 16.8 min 특성 규명 생합성유 전자군의 전자군의 (인하대학 파악 파악 교) Chemical Formula: C₃₆H₅₃NO₁₃ Molecular Weight: 707.8049 그림 4-5. Natamycin과 INP5의 HPLC 분석 결과 및 구조 LC-MS 분석을 통해 INP5의 분자량은 707g/mol로 lucensomycin 와 유사함을 확인 20210930_INP5 (MeOH) 131 (7.026) 1: TOF MS ES+ 3.21e6 708.4575 545.3561 708.4575 m/z (+1) → 707 Da 690.4485 545.3561 m/z (+1) → 544 Da 709.4571 509.3350 527.3420 546.3657 547.3661 -18 Da (H₂0) 710.4689 540 560 580 600 620 640 660 680 700 720 740 760 480 500 520 그림 4-6. INP5의 LC-MS 분석결과 Inha504에서 생산되고 항진균활성을 갖는 polyene compound인 INP5는 lucensomycin의 생합성유전자군의 유사성과 거의 동일 한 분자량으로 측정되기에 거의 유사한 구조를 갖을 것으로 판 단됨

INP2와 Neotetrafibricn사이의 유사성을 확인하여 INP2를 I-NTF(Inha-Neotetrafibricn)이라 재명명하고 개발한 I-NTF 고 생산균주의 발현량 확인과 유전자 조작을 통해 확보한 유도체 I-NTF aglycone과의 생리활성비교 진행 (1) I-NTF 또는 I-NTF 유도체 생산균주의 구축 및 생산량 비교 - BAC library 구축을 통해 분리한 I-NTF BGC를 이용하여 I-NTF 생산균주 및 I-NTF 유도체 생산균주을 구축한 후 생산량 비교 BAC I-NTF BGC S. rubrosoli Inha501 벡터에 분리된 항진균 항진균 Ligation pESAC-13 genetic 폴리에 생합성 pl-NTF engineer 생합성 유전자를 ing을 BAC modification i-ntf h deletion 유전자군의 이용하여 Chromosoma integration 통한 pl-NTF∆i-ntf H 4차 유전체 생리활성 생리활성 년도 재설계를 물질의 물질의 (2021)통하 생산성 유도체 신규유도체 증대 창출 및 도출 유도 및 그림 4-7. I-NTF 생합성유전자군의 분리 및 I-NTF 또는 I-NTF 유도체생산균주 고생산균 다양한 구축을 위한 모식도 (인하대학 주 개발 생리활성 교) 물질의 유도체 발굴 TK21/pl-NTF TK21/pl-NTF i-ntf h M511/pl-NTF i-ntf h 그림 4-8. I-NTF 생산균주와 I-NTF aglycone 생산균주의 생산량 비교그래프 I-NTF 생산균주 중 S. lividans TK21에 이종숙주발현한 균주 에서 가장 많은 생산량을 보였고 I-NTF aglycone 생산균주 중 S. coelicolor M511에 이종숙주발현한 균주에서 가장 많은 생 산량을 보였음. 고생산균주구축을 통해 I-NTF와 I-NTF aglycone간의 생리활성비교가 가능해짐

항진균 폴리엔 생합성 유전자군의 4차 유전체 년도 재설계를 (2021) 통한	genetic engineer ing을 생리활성 문질의 차출 및 자상한	BAC 벡터에 분리된 항집성 유전자학 이용하여 생리활성 물질의	(2) I-NTF 생산균주의 발현량비교 I-NTF 생산균주의 발현량비교 I-NTF 생산균주 중 가장 많은 생산량을 보였던 S. lividans TK21/pI-NTF에서 가장 많은 발현량을 보임 I-NTF BGC내에 있는 유전자들은 Inha501내의 조절시스템보다 S. lividans TK21에서 더 많이 발현되는 것으로 판단되며 다른 고생산 Host를 이용하여 이종숙주발현한다면 더 높은 생산량의 고생산균주를 개발할 것으로 생각됨 ****
(인하대학 교)	주 개발	다양한 생리활성 물질의 유도체 발굴	I-NTF와 I-NTF aglycone을 이용하여 2가지 진균에 대한 항진균 활성비교실험을 통해 I-NTF내에 존재하는 sugar modif가 항진 균활성에 중요한 역할을 하는 것을 확인 추가적인 식물병원선진균에 대한 항진균 활성을 진행하였고 여 러 진균에서 polyene에 존재하는 sugar modif는 활성과 밀접한 관계가 있음을 증명 ***********************************

- Inha501 chromosome내에 유용 생합성 유전자군 분리 Inha501의 whole genome sequencing 이후 bioinformatic analysis를 통해 I-TMC(INP1), I-NTF(IPN2)뿐만 아니라 유용 한 생합성 유전자군이 chromosome상에 존재함을 확인 I-TMC, I-NTF 생합성 유전자군을 분리하기 위해 구축하였던 BAC librarv를 이용하여 추가적인 생합성 유전자군을 확보하 고자 함 1 3 5 7 41.075 미생물 방선균 항진균제 제제 BAC 생합성 및 그림 4-12. Inha501의 생합성유전자군 분석 및 발현가능성이 높은 region 후보 vector 조절 방선균 system을 Check primer를 제작하고 BAC library 스크리닝을 진행하여 유전자 4차 의 특성 이용한 region 8, 12, 16, 25, 31, 34를 포함하는 positive colony 확 특성 규명 년도 분석 및 거대 및 (2021)유전자 항진균 유전자군 HindIII HindIII 조작기 물질의 분리 생합성 술 BAC sequencing primer (vector에 위치) (인하대학 시스템 유전자군 교) 구축 분리 Manual prep. 후 sequencing 대량으로 manual prep. -> prep. Kit를 이용한 정제 후 sequencing Feb. of Exponents and Exponent (note an alliquities and alliquities and an alliquities (note and alliquities and alliquities and alliquities and alliquities are an alliquities are an alliquities and alliquities are alliquities are an alliquities and alliquities are all alliquities are 그림 4-13. 스크리닝 후 sequencing을 통해 확보한 BAC vector의 map

500L급 대규모 배양공정 - 500리터 생산배<u>양(1차 수행)</u> 발효 조건 배지:TSB 40g/L, 온도: 37℃, Aeration: 0.5(vvm), Agitation speed: 50~130(rpm), pH control: pH 6.8~7.3, 배양시간:2.5일 Condition 2 Condition 3 Condition 1 pH control pH6.8~7.3 100-130 100-130 50-80 rpm **TSB** 40 (g/L) 40 (g/L) 40 (g/L) 37℃ 37℃ 37°C Temp. 0.5(vvm) 0.5(vvm) Aeration 0.5(vvm)표 4-1. 500리터 발효조 배양 조건 (1차 수행) 항진균제 최적 발효 스케일업 미생물 생산을 4차 위하 을 통한 500L 년도 스케일업 500L 배양 그림 4-14. 500리터 생산배양 모식도 (2021)최적화 발효기 최적화 500리터 생산배양은 상기의 모식도와 같이 연속적인 배양공정 최적화 (생산기술 을 통하여 수행하였다(그림 4-14). 생산 균주 (501 또는 502)균 연구원) 주의 stock을 기재발된 YPD agar에 200 μL spreading하여 3 0℃에서 5~7일간 배양하였다. 배양이 끝난 plate는 punching을 하여 30 mL의 YPD broth가 담 긴 멸균된 300 mL baffled flask에 4조각을 넣고 30℃, 150 rpm 으로 설정된 shaker에서 2일간 액상 배양(1st growth culture) 한후, 다음으로 3L 플라스크에 600ml의 YPD 배지가 멸균된 플라 스크에 5% 접종량으로 1차성장과 동일한 조건에서 2차 플라스크 실험을 수행하며 단, 이때 플라스크의 rpm은 120~150rpm으로 수 행하였다. 1차 접종은 총 50리터 발효조로의 5% 접종을 위해서 3개이상을 진행한 후, 최종적으로 1.5L seed를 50L 발효조(조업 량: 30L)로 접종하였다. 이 때에는 성장배양 배지를 YPD배지로 진행하였고, 배양기간은 1.5일로 진행하였고 최종적으로 500리 터 발효기 배양은 5% 접종으로하여 TSB배지에서 수행하였으며, 배양 조건은 상기에 제시하였다(표 4-1).

4자 위한 을 통한 년도 스케일업 500L	미생물 500L 배양 최적화
---	--------------------------

500리터 생산배양결과

500리터 발효결과 배양 70시간 건조세포중체량은 약 10g/L를 획득하였다(그림 4-15). 배양 기간 동안 pH는 계속적으로 증가하기 때문에 다량의 산 버퍼가 계속적으로 공급되어야 한다. 이는 TSB배지내의 탄소원이 포도당 단일로 소량 함유하고 있기 때문에 유기산의 생산이 낮고 반면 과량의 질소원을 이용하여 세포성장이 일어남에 따라 배양액내의 pH가 증가하는 것으로 판단된다. 배양액내의 성장한 균사를 고체배지에 도말한 경우 약 1*10⁶(CFU/ml)를 획득하였다. 이는 배양 사진을 현미경으로 관찰한 결과 매우 긴 형태의 균사로 성장이 이뤄지고 있기 때문에건조세포충체량 대비 낮은 CFU를 보이는 것으로 판단된다(그림4-16). 반면, 3가지 조건에서 500리터급 발효조의 배양을 수행한 결과 건조세포중체량은 유사한 성장패턴을 보였으며 최종적으로 약 10 g/L를 획득함에 따라 500리터 발효조 배양의 안정성과 재현성은 매우 높은 것으로 판단된다.

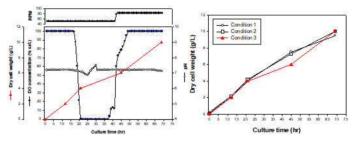


그림 4-15. Condition 3의 500리터 발효조 배양결과 (왼쪽 그래프)와 3가지 조건에서 건조세포중체량의 비교(오른쪽 그래프)

그림 4-16. 500리터 condition3 발효종료후 균사 현미경 사진

4차 년도 (2021)	항 최 생 시 의 한 의 의 선 수 최 선 가 원) (생 연구원)	발효 스케일업 을 500L 발효기 최적화	미생물 500L 배양 최적화	- 500리터 생산배양(2차 수행) 발효 조건 배지:TSB 40(g/L)+glucose 20(g/L), 온도: 37℃, Aeration: 0.5(vvm), Agitation speed: 50~130(ppm), pH control: pH6.8~7.3, 배양시간:2.5일 본 실험에서는 생산배지의 조건을 기존 TSB에 글투코오즈를 참 가함으로써 세포성장을 촉진하고 동시에 첨가된 글투코오즈에의해서 균사의 길이를 짧게 유도함으로써 배양 종료후, 균사의 CFU를 증가시키고자 하였다. 50L 발효조의 실험은 기존의 발효실험과 동일하게 TSB 배지를 이용하였다. 이때의 파라미터를 그림에 나타낸 결과 기존 배양과 유사하게 pH(보라색)의 경우에는 초기 pH7정도에서 지속적으로 증가여배양발기에는 약 pH8정도로 유지됨을 확인하였다. 반면 용존산소(굵은 붉은색)의 경우에는 초기 급속히 하락한 후 rpm의 조정에 의해서 30% 이상을 계속 유지함으로써 발효조내로의 산소공급은 충분히 공급되고 있음을 확인하였다.그림 4~17). 500리터 발효결과 글루코오즈가 첨가된 현재의 배양에서는 배양 60시간에 약 12(g/L)의 건조세포증체량을 획득하였다. 배양 동안의 pH는 기존과 유사하게 산과 알칼리의 지속적 공급으로 일정하게 유지되었으며, 용존산소의 경우에는 rpm의 지속적 조절로 최종 100rpm을 20시간에 도달시킨후 이후 배양종료까지는 그대로 유지되었다. 반면, 배양액내의 성장한 균사를 고체배지에 도말한 경우 약 1*10*(CFU/m1)를 획득함에 따라 글루코오즈가 첨가되었을 경우 건조세포량의 20%증가와 10배높은 CFU를 획득할 수 있는 500리터규모 발효기 배양 공정을 수립할 수 있었다(그림 4~18, 4~19).
--------------------	--	------------------------------------	--------------------------	---

4차 년도 (2021)	항진균제 최적 생산을 위한 스케일업 최적화 (생산기술 연구원)	발효 스케일업 을 통한 500L 발효기 최적화	미생물 500L 배양 최적화	그림 4-18. 500리터 발효조 배양모니터링과 발효조사진(위의 왼쪽), 500리터 발효조 배양액사진(위의 오른쪽)50리터 발효조(아래 왼쪽), 500리터 발효조 (아래 오른쪽)
				14

기존 3차년도 50리터 발효조 공정에서 TSB배지를 통한 생산배 양의 결과 접종후 용존산소의 급격한 하락을 통해 초기 지속적 인 통기량과 교반속도의 제어가 중요한 배양학적 요소임을 확인 함과 동시에 배양 30시간 이후로 발효조내의 용존산소가 꾸준히 증가하면서 48시간 이후에는 용존산소의 농도가 70%~80%에 도 달하는 것을 관찰함(그림 4-20). 이 같은 현상은 배양액에 존재 하는 다양한 성분중 특성 성분의 고갈에 따른 세포성장의 제한 이 일어나고 있음을 의미하며 따라서 적절한 배지의 공급은 지 속적인 세포성장을 유도할 수 있는 공정의 개발이 가능함을 나 타내는 결과로 판단된다. 120 100 sat) concentration (%. 항진균제 60 고농도세 최적 埾 미생물 생산을 40 4차 배양을 50L 위한 년도 위한 유가식 20 스케일업 (2021)유가식 배양공정 최적화 배양공정 최적화 12 36 48 72 (생산기술 의 개발 Culture time (hr) 연구원) • time vs DO 그림 4-20. 50리터 회분식배양 공정의 용존산소 파라미터 비교 상기와 같은 문제를 해결하고자 50리터규모 유가식배양 공정의 모식도를 하기와 같이 설계하였다(그림 4-21).

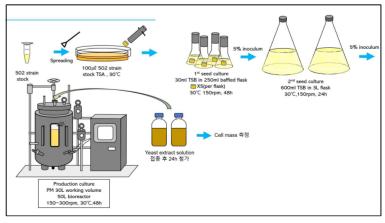


그림 4-21. 제품생산을 위한 전체 배양공정과 분리정제 공정의 모식도

50리터 규모에서 유가식 배양 최적화를 위해서 기존에 사용한 TSB 생산배지를 control 기준으로하였고, 표12에 의해서 최적 화된 생산 배지를 유가식 배양의 회분식 배양용 생산배지로 실 험을 수행하였다. fed-batch는 기존 고농도의 질소원 배지에서 높은 생산성을 나타냄에따라 15(g/L)의 yeast extract를 배양 24시간에 pulse feeding 하였다. 실험결과 TSB control 배지의 batch culture에서는 20시간이후 세포농도가 선형으로 일정하게 증가하여 최종 11(g/L)의 건조 세포중체량을 나타내었다(그림 4-22). 반면, 신규 생산배지의 경우 같은 20시간까지 매우빠른 성장속도를 보이며 배양 20시간 에 거의 8(g/L)의 건조세포중체량을 확인할 수 있었다. DO 프로 파일을 비교하였을 때도 yeast extract의 fed-batch의 경우에 는 용존산소의 농도가 control조건에서보다 더 오랬동안 계속 하여 낮은 상태를 보임에 따라 첨가된 yeast extract에 의해서 세포성장이 계속적으로 이뤄짐을 확인할 수 있다(그림 4-23) 항진균제 고농도세 20 최적 미생물 玊 Control 18 생산을 - Fed-batch 4차 배양을 50L Fed-batch(pH control) 위한 16 년도 위한 유가식 스케일업 14 (2021)유가식 배양공정 cell weight (g/L) 최적화 12 배양공정 최적화 (생산기술 10 의 개발 연구원) 8 P 6 4 12 18 30 36 42 Culture time (hr) 그림 4-22. 50리터 발효조에 배양방식에 따른 건조세포중체량의 비교 그림 4-23. 50리터 배양(왼쪽:control, 오른쪽:유가식배양)의 DO 프로파일

하지만 fed-batch의 경우 feeding이후 지속으로 pH가 증가하여 저농도의 산으로는 pH의 유지가 힘들었으며, 장착된 염산 버퍼 가 모두 소진되어 pH가 지속적으로 증가함을 확인하였다. 이와 같은 상황은 40시간이후 세포성장에 악영향을 미쳐 건조중체량 이 증가하지 않는 현상을 확인하였으며, 이때는 pH는 약 7.8임 을 고려할 때 장기적인 fed-batch를 위해서는 pH7.8이하의 조절 이 중요함을 확인할 수 있었다(그림4-24). PH 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 Time of cultivation(hr) 그림 4-24. 50리터 회분식 배양의 pH 프로파일 항진균제 고농도세 최적 상기와 같은 문제를 해결하고자 5N HC1을 이용하여 pH를 일정 미생물 玊 생산을 하게 유지하면서 동일한 시간에 yeast extract를 동일하게 공급 4차 배양을 50L 위한 하는 유가식 배양을 수행하였다(그림 4-25). 실험결과 발효조 년도 위한 유가식 스케일업 의 pH는 초기 7.0에서 조금 증가하여 pH7.3에서 배양종료시까지 (2021)유가식 배양공정 최적화 일정하게 유지됨을 확인할 수 있었다. 건조세포중체량을 비교 배양공정 최적화 (생산기술 의 개발 하였을 때, pH control된 경우 기존 유가식배양과 동일하게 배 연구원) 양 18~20시간까지 급속한 세포성장이 이뤄졌으며 이후 약 24시 간에 yeast extract의 첨가가 이뤄진 이후에도 세포건조중체량 이 꾸준하게 증가하여 배양 말기에는 약 17.3(g/L)의 높은 생산 성을 확인할 수 있었다(그림 4-22). 더불어 약 42시간에 세포성 장속도가 억제됨에 따라 추가적인 배지의 공급이 필요하며 이 경우 현재보다 높은 고농도의 유가식 배양이 가능할 것으로 판 단된다. PΗ 7.5 7.4 7.3 규 7.2 7.1 6.9 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 Time of cultivation(hr) 그림 4-25. 50리터 유가식 배양의 pH 프로파일

친환경 농약을 위한 작물 4차 제어능 및 의 제형 년도 (2021)안정성 (에스티알 바이오텍)

분리정제 및 동결건조

미생물제제 제조를 위한 최적 제형 선정을 위해 STR바이오텍과 공동연구를 통해서 아래 제시된 조성에 따라 제형화 실험을 진 행하였다(표 4-2). 균주로는 Inha502를 사용하였으며, 생산배 양 후 확보한 균체 및 배양액을 이용하여 제형화 연구를 진행하 였다.

동결건조 제	형화 (%)
Wet cell	50
Water	18
동결보호제	25
corn starch	7

미생생물

제제

제조시

균체수

증대 및

안정성

확보를

위한

제형화

기술

개발

선별된

후보균주

최적화

진행

진균

검증

동결보호제 (g/L)	
Trehalose	500
NaCl	2
KH₂PO4	11.2
K ₂ HPO ₄	15
Xanthan gum	2
Carboxymethylcellulose Sodium	2

표 4-2. 동결건조 제형화 조건과 동결보호제 성분

실험결과 동결건조후 확보된 미생물제제에서 CFU를 측정해본 결과 약 1*10³(CFU/g)으로 비교적 저조하게 나타났다. 이는 500 리터 발효조에서 세포를 회수하는 공정에서 대량의 세포를 빠른 시간에 회수하기 위해서 연속식 원심분리기를 사용한 결과 세포 대비 다량의 배양액이 동시에 회수된 것으로 나타났다. 따라서 동결건조 제형화 조건에서 높은 비율로 배양액이 유입됨과 동시 에 반대로 동결보호제의 양이 상대적으로 낮은 농도로 첨가된 결과로 사료된다(그림 4-26).

그림 4-26. 500리터 발효액의 연속식 원심분리(왼쪽)와 동결보호제 첨가후 사진(오른쪽)

친환경 농약을 위한 작물 선별된 후보균주 4차 진균 제어능 및 의 제형 년도 (2021)안정성 최적화 검증 진행 (에스티알 바이오텍)

미생생물 제제 제조시 균체수 증대 및 안정성 확보를 위한 제형화 기술

개발

상기의 실험결과 실험실 조건과 다르게 세포회수 공정에서 연속식 원심분리기의 문제점을 보완하고 초기 세포의 수를 증대시킨 500리터 발효조의 실험을 토대로 분리정제 공정 및 동결보존 공정의 최적화를 수행하였다. 실험에 사용된 동결건조의 조건은 상기의 실험과 동일하며 water의 비율을 세포회수후 존재하는 배양액의 양을 고려하여 동결보호제와 corn starch의 성분비율을 조절하였다. 세포의 회수공정에서 연속식 원심분리기의경우 빠른 시간 회수할 수 있는 장점에 비해 일정량의 배양액이동시에 회수되는 상황을 고려하였으며, 이를 통해 최종적으로 동결보호제와 corn starch의 양을 조절하여 실험을 수행하였다(그림 4-27, 4-28). 따라서 기존보다 높은 점성을 갖는 혼합액을 제조하였으며, 이를 동결건조기 이동하여 추후 실험을 수행하였다.

그림 4-27. 동결건조기 실험(왼쪽)와 동결건조후 사진(가운데) 및 분쇄과정(오른쪽)

그림 4-28. 동결건조기 실험조건

동결건조를 위한 조건은 하기에 제시된 그림과 같고 완전건조 를 위해 2.5일동안 수행하였다. 이를 추가실험을 위해 (재)농축 산용 미생물산업육성지원센터에 의뢰하여 미세분말로 분쇄하여 보관하였다. 실험 결과 기존과 다르게 1*10⁵(CFU/g)를 획득할 수 있었으며 100배가까이 향상된 조건을 확보할 수 있었다. 단, 세포의 회수에서 사용되는 원심분리기에 존재하는 기존의 박테 리아와 동결건조시의 오픈된 공간에서 생성되는 세포의 오염에 따라 일부 오염된 세포가 재생됨을 확인할 수 있었으나, 이는 추후 시제품 제작을 위한 독성등의 실험에는 영향이 없음을 확 인하였다. 따라서 최종적으로 500리터 발효조 배양공정을 위해 서 세포의 agar plate 배양에서부터 일련의 up-stream공정을 최 적화하였으며, 이어지는 down-stream의 분리정제 공정 및 동결 공정의 최적화를 통해 제품의 생산을 위한 공정을 확립하였다 (그림 4-29). 미생생물 친환경 제제 (2) 배양최적화 (50L 배양기 (1) 배지최적화 (5L 배양기) (3) 배양최적화 및 워싱분리 (500L 배양기) 농약을 제조시 위한 작물 선별된 균체수 후보균주 4차 진균 증대 및 제어능 및 의 제형 년도 안정성

최적화

진행

확보를

위하

제형화

기술

개발

(2021)

안정성

검증

(에스티알

바이오텍)

그림 4-29. 제품생산을 위한 전체 배양공정과 분리정제 공정의 모식도

Inha502기반으로 제작한 유기농자재(상품명 : 팡스탑) 등록을 위 한 시험진행 - 균동정시험, 병원성미생물시험, 잔류농약검사 유기농자재 등록을 위해 필요한 균동정시험, 병원성미생물시 험, 잔류농약검사를 실시 균동정시험결과 10⁶ CFU/g으로 측정되었고 병원성미생물, 잔 류농약은 검출되지 않음을 확인 제 EFAP-20-1149-M-1호 미생물제제 분석성적서 ① 성 명 ② 주민등록번호 ㈜에스티알바이오텍 (법인등록번호) (법인명) 타 가 ③ 子生 3 ④ 성상 분상 4 ⑤ 상표명 Streptomyces morookaense Inha502 (유효미생물) (Streptomyces morookaense) ⑥ 제조회사 ㈜에스티알바이오텐 ② 검사방법 1. 유전자 염기서열 상동성 검색을 통한 균주 확인 유기농자재 시제품의 시제품의 4차 (8) 용 도 등록/인증용(신규) 등록 진행 | 독성 및 | 독성 및 년도 유효미생물 분석치 [cfu/mL(g)] (에스티알 안전성 안전성 (2021) 4.0×10^{6} Streptomyces morookaense 조사 조사 바이오텍) (9) 분석항목 그림 4-30. 팡스탑의 균동정시험서 제 EFAP-20-1149-M-2호 병원성미생물 검사성적서 ② 주민등목번호 (법인등록번호) ****** ① 성 ㈜에스티알바이오텍 (법인명) 타 ③ 추 소 자 팏 ④ 성 상 AT: ⑤ 상표 병 Streptomyces morookaense Inha502 ⑥ 제조회사 ㈜에스티알바이오텍 o 병원성미생물 선택배지를 이용한 검정 (f) 검사방법 (8) 용 도 등록/인증용(신규) 병원성미생물 검사결과 봉건축 병원성 대장균(Escherichia coli O157:H7) (9) 병원성 살모델라(Salmonella spp.) 불검출 불검출 황색포도상구균(Staphylococcus aureus) 리스테리아 모노사이토제네스(Listeria monocytogenes) 불검출 바실러스 세레우스(Bacillus cereus) 불검출 그림 4-31. 팡스탑의 병원성미생물 검사성적서

							잔류	루농약	시호	성(검사)성적	H				
				1. 검사시	ie		0.03	900 - 100 -							
				T. BAYA						받급	2020	0. 11, 19.			
				발	급변호	ž	제 EFAP-20)-1149-P	호	시험책임기	() 항원	P L	4-		
					성	명	㈜에스티알!	바이오텍		사업자등록번	호	10			
				의뢰인		소									
					대상품		Streptomyc			Lot, No.	20,0	9.25			
				의뢰	V 04	개요	morookaense Inna502								
				ua	내용		유기농업자기	재 공사용	0	NAI	1				
				* 74.1179	74		/			-	2				
				2. 검사결 No.	- IN		검출성분명				검출치				
				(0.0.83)			(Pesticide Nar	me)			(mg kg	')			
				1			U	1		ABB	×				
				_ 도/	લે અંદ્રો	ı	그림 4-32.	. 팡스팉	날의 ?	잔류농약 시험	성적서				
					농자?	- 재 등				독성검사인 부자극시험					
				수행	수행 (담수어류영향시험의 방법이 관련 법규의 변화로 인해 당										
				초	초 예상보다 3~4개월 뒤에 실시)										
				- 11417									#7412#EXOV		
4차	유기농자재		시제품의	2. 시험	협정보 (해당항목에 체크(☑)해 주십시오) 협 분 야 □ 농약 ☑ 유기농업자재 □ 비료 □ 기타										
년도	등록 진행	독성 및	독성 및				류급성독성시험	6	☑ 80	(Cyprinus carpio) 라피쉬 (Danio rerio	□ 송사리	(Oryzias latij	oes)		
(2021)	(에스티알	안전성	안전성			170		(미생물) [그 미꾸	리 (Misgumus aug	uilicaudatus)		8		
	바이오텍)	조사	조사	시	목성 □ 골벌급성접촉독성시험(Apismellifera) □ 꿀벌영향시험(Apismellifera) □생물 □ 골버록 독성시험(Daphnia magna)								a		
				험 항			발엽상잔류독성 생경고시험 D) 피부자극시험, 🗆 인	·전마자근시	si	6		
				목	- 2	Ø o	[생물재재 (☑ 경	병구병원성시	협. 🗸	경피시험, 🕢 피부	자극시험, 🖸		(혐)		
						□ 약해 ■ 시험작물: □고추, □상추, □오이, □배추, □콩 □ 비해 ■ 기타작물:									
					생물	-	효 ■ 시험 배 ■ 대싱						e e e e e e e e e e e e e e e e e e e		
				의뢰	목적	₩ 5	목시험용(☑ 국	내 🗆 국외	0	□ 친환경유기원			(l)		
				시험의	뢰일	□ 2	2021 년		3 일) □ 스크리닝(독선 보고서완료희망일	8, 약효) 🗆 2021 년		31 일		
				3. 시험	물질 정보	보									
				제 품	명		팡스틸	1		색상	- 1	인한 노란색			
				주 원		Strep	otomyces moroo	7	a502	유효성분	2 2	생물(방선균)			
				주원료투 사용(57		50%	N Deputyda tytotobor		유효성분 함량	11	0^6 CFU/g	8		
				(회석배수/표	준사용농도)		50	200g 관주처리					8		
				사용	26 - 6		에스티알바		-1	Lot No.	2	021.04.02	Ç.		
				보관	The state of the s		상온	1		유효기간		6개월			
				시험물질 첨부기	DETACE OF THE		2kg		□MSI	잔여량 처리방법 DS □안정	OF STATE OF	한환 □폐기타	71		
				시험물질 사용시 유	조제 및		2,780.	(400 K)		LL9					
				기타	Service - Servic								i i		
				그림 4-33. 독성검사시험 의뢰서								16			
				독성	검사((담-	수어류영호	향시험	, 경	구병원성시	험, 경	피시험	, 피부		
				자극	시험,	안	·점막자극	시험)	수천	챙결과 유기	농자재	등록어	문제		
				없음	을 확	(ဂု)									

5.4. 자극성의 판정 (Table 4.)

초기시험과 확인시험을 [표 2. 피부반응 평가표]에 의해 개체별 평균값을 산출한 결과, 각 개체의 24, 48 및 72 시간의 홍반 및 가피, 부종의 평균점수 모두 "0.00" 이었고 [표 3. 피부 1차 자극표]에 의해 자극성을 구분하면 "없음"이었다. 이상의 결과로부터 팡스탑은 New Zealand White계 토끼의 피부에 처리 시 자극성이 없는 물질로 구분되었다.

Table 3. Evaluation of skin irritation

Citar	Obsesse	Number of		Days after	treatment	
Sites	Phases	animals	0 (1hr)	1	2	3
On ion		1	0	0	0	0
	Erythema & Eschar	2	0	0	0	0
Control	-	3	0	0	0	0
sites		1	0	0	0	0
	Edema	2	0 0	0	0	
		3	0	0	0	0
	la w e	1	0	0	0	0
	Erythema & Eschar	2	0	0	0	0
		3	0	0	0	0
Test sites		1	0	0	0	0
	Edema	2	0	0	0	0
		3	0	0	0	0

그림 4-34. New Zealand White계 토끼를 이용한 팡스탑의 피부자극성시험

Table 3. No eyes washed evaluation of eye irritation (Non-treatment)

_		MANAGE DA HATOLOGICA ANTA		Conju	nctiva
Time	Number of animals	Corneal opacity : degree of density	Iris	Redness	Edema
	1	0	0	0	0
1 hr	2	0	0	0	0
	3	0	0	0	0
	1	0	0	0	0
24 hr	2	0	0	0	0
	3	0	0	0	0
	1	0	0	0	0
48 hr	2	0	0	0	0
	3	0	0	0	0
	1	0	0	0	0
72 hr	2	0	0	0	0
	3	0	0	0	0
	1	0	0	0	0
7 d	2	0	0	0	0
	3	0	0	0	0

5.4. 자극성의 판정 (Table 3.)

초기시험과 확인시험을 [표 3. 안반응 평가표]에 의해 24, 48 및 72시간의 개체별 평균값을 산출한 결과, 각 개체의 각막혼탁, 홍채반응의 평균점수는 모두 "0.00"이었고, 결막 발적의 평균점수는 "1.67", "0.00" 및 "0.00" 이었으며 부종의 평균점수는 "1.67", "1.00" 및 "0.33"이다. 이상의 시험결과, New Zealand White계 토끼를 이용한 팡스탑의 안점막자극성시험에서 자극성은 [표 4. 안점막 자극표]에 의거 "없음"으로 구분되었다.

그림 4-35. New Zealand White계 토끼를 이용한 팡스탑의 안점막자극성시험

유기농자재 시제품의 시제품의 등록 진행 독성 및 독성 및 (에스티알 안전성 안전성 바이오텍) 조사 조사

4차

년도

(2021)

				미생물이 팡스탑의 장기 (위 보아 급	l 검출도 l 5.2×10 l)에서 진 성독성으	디지 않았) ⁵ cfu 단 난존하지 로 인한	의 랫드를 았으며, 누 위에 해당 않고 시험 영향은 없 시험생물 차	l검 하는 종료 는 것	시 (미성 로 시 [으로	이상경 행물을 까지 판딘	증상이 랫드 중독: 된다.	관철 에 E 증상	알되지 산회	il 경구	않았다 나 투이	라. 디 계 시	가라서 주요
					구분		성	췯	ر	니험생선	물수	,	치사수		ŧ	중독증	상
				/E 2 - 1	시험군	에 투여군)	수 <u>*</u>			12			0			N.D.	
				(3.2×1		16 St 7,055	암: 수:		_	12			0	_		N.D.	-
					대조군 (비투여군			35 T		8			0	-		N.D.	
				a : Not I	그림 4	-36. 팡=	스탑의 랫 ats	드를	이용	한 급	구성경	구독	성/병	원/	성시후	<u>d</u>	
	유기농자재	시제품의	시제품의		Dose	-	Number		·		ays aft	ter adr	minist	ratio	n		
4차 년도	등록 진행			Group	(cfu)	Sex	of animals	30	1hr	0 2hr	3hr	4hr	1	2	3	4	5
(2021)	(에스티알		안전성	1	6.5×10 ⁵	Male	5	min 0ª	0	0	0	0	0	0	0	0	0
	바이오텍)	조사	조사	2	6.5×10 ⁵	Female	5	0	0	0	0	0	0	0	0	0	0
				C	Dose	Carr	Number of			D	ays aft	ter adı	minist	ratio	n		
				Group	(cfu)	Sex	animals	6	7	8	9	10	1	1	12	13	14
				1	6.5×10 ⁵	Male	5	0	0	0	0	0	0		0	0	0
				2	6.5×10 ⁵ ber of dead	Female	5	0	0	0	0	0	0		0	0	0
				5.1. 일빈 팡스 특이 5.2. 체중 모든 5.3. 반수 랫드	*중독증상 *탑을 개차 *한 일반경 *변화 (Tal * 시험동물 *치사약량 를 이용함 시 영향	및 치사: 테당 처리' 중독증상은 ble 2., Ap 물의 체중: (LD ₅₀) 한 팡스탑 이 없는 :	동물 (Table 약량 6.5× 약 관찰되지 ppendix 3.) 은 약제투여 의 급성경 것으로 판단 랫드를 여	10 ⁵ cf 않았 여 후 피독성 단된다	u로 으며 경과 성시험	경피 치사 [:] 일에 결괴	노출한 개체도 따라 사, 개차	· 관찰 증가격	·되지 추세를 .5×1(않? 를 보 0 ⁵ c	았다. .였다. fu씩		

				9.5×10 ²		30	• •	0					
				9.5×10²		1.558		0					
						20	_			> 1.7×1	10²,	4.7	102
				1.7×10 ³		50	li a	30		< 9.5×	10 ²	1.7×	10-
						30		30					
				Nominal concentration (cfu/mL)	Number of fish	Oday	1day	Cu 2day	ımulativ 3day	e mortal 4day	ity 5day	6day	7day
				Control	10	0	0	0	0	0	0	0	0
				1.7×10 ²	30	0	0	0	0	0	0	0	0
				9.5×10 ²	30	0	2	30	30	30	30	30	30
4차	유기농자재			1.7×10 ³	30	0	30	30	30	30	30	30	30
	등록 진행			Nominal	Number			CL	ımulativ	e mortal	ity		
2021)	(에스티알	안전성	안전성	concentration (cfu/mL)	of fish	8day	9day	10	11	12	13	14	15 days
1021)	바이오텍)	조사	조사	Control	10	0	0	day 0	day 0	day 0	day 0	day 0	day 0
				1.7×10 ²	30	0	0	0	0	0	0	0	0
				9.5×10 ²	30	30	30	30	30	30	30	30	30
				1.7×10 ³	30	30	30	30	30	30	30	30	30
					573810			-	mar datis	re morta	litre		
				Nominal concentration (cfu/mL)	Number of fish	16 day	17 day	18 day	19 day	20 day	21 day	22 day	23 day
				Control	10	0	0	0	0	0	0	0	0
				1.7×10 ²	30	0	0	0	0	0	0	0	0
				9.5×10 ²	30	30	30	30	30	30	30	30	30
				1.7×10 ³	30	30	30	30	30	30	30	30	30
								-	umulatio	ve morta	lity	-	
				Nominal concentration (cfu/mL)	Number of fish	24 day	25 day	26 day	27 day	28 day	29 day	30 day	
				Control	10	0	0	0	0	0	0	0	
				1.7×10 ²	30	0	0	0	0	0	0	0	
				9.5×10 ²	30	30	30	30	30	30	30	30	
				1.7×10³ 그림 4-3	30 8. 팡스탑	30 의 담수	30 어류 양	30 I어 (<i>C</i>	yprinu	30 is carp	jo) 영	30 향 시현]

		시제품의 독성 및 안전성 조사	시제품의 독성 및 안전성 조사	유기농기 품등록을	을 위해 현재 수 유기 학원을 함고 작성하시기 바라 전 점수일시 업체명 : 에스티알바이 대표자 성명 : 이상종 본 사 : 조수소 제조장 및 5	장을 하여 등· 농업자재 공시 . []에는 해답되는 곳에 √표 20택 관창고 관창고 수입국: 제조회사명: 제조회사명: 제조회사명: 인증기관: 배양액, 블론모스나트를 영소, 1, 7 평소탑 []로양 개량. []작물 [0]변해 굄리. []충해	신청서 ■ 합니다. (요폰) 처리기간 3개월 사업자등록번호 생년월일 대상액 급리골산염, 콘스타치 생육, []토양 개량 및 작물 생육,
4차 년도 (2021)	유기농자재 등록 진행 (에스티알 바이오텍)	미생물제 인한의 토생물 한의 분선 변분선	Met ageno me 분석 이 응용한 문양미생 토군집의 변화 학인	변화 - Metagen 품과 I 미생물과 Inha502 하여 관 정착하였 능성을 추출한 sequenc 채취한 변수자리는 모두처리는 모두처리는 모두하여 또한 추	# 1001, Inha502 2 확인 # 100me 분석 시스 nha503, Inha5 과 토양(환경) 로 인한 토양의 찰하고자 하였 찾는지 확인하고 확인하고자 동 E양 sample e기반의 종 분의 E양은 contro 인해 고사한 2 inha503처리군, 역 진행함 결과를 바탕으 관과의 비교를 - 관과의 비교를 - 감소한 두치를 함한 토양 sa 의 specific pa	#####################################	#####################################

			(1) Inha502기반의 제형화 제품의] ㅇ기노어기게 드로
			(1) Inna5U2기반의 세영화 세둠의	H 뉴기중입사세 등록
			- <u>Inha502기반의 제형화 제품인</u> <u>관련 서류 재발급</u>	"팡스탑"을 등록하기 위하여
			Inha502로 발급 받았던 악해, 약	약효시험 보고서 및 관련 문서들
			의 재발급 진행 (Inha502 -> 팡	7.
			시험결과보고서_	시험결과보고서_
			과제명: 토마토 시들음병 약제방제 효과시험 (상표명: [<u>nhe</u> 501, <mark>광스탑</mark>)	과제명: 토마토 시들음병 약제병제 효과시험 (상표명: [nha501, 광스탑)
				시험의회자 기 관 명: ㈜에스타알바이오데 소 재 지: 대 포 자: 이상종
			발행일 2020년 10월 20일	발행일 2020년 10월 20일
4차	유기농자재 등록 진행		<u>시험기관</u> (주)한 국 식 를 환 경 연 구 소	<u>시험기관</u> (주)한 국 식 물 환 경 연 구 소
년도 (2021	(4) 3 = 101	약해	<u>시엄변호</u> (KPER-19-0-119	시험번호 KPER-19-0-120
			시험결과보고서	시험결과보고서_
			과제명: 고추 시들음병 약제방제 효과시험 (상표명: [nha501, 광스탑)	과제명: 고추 시들음병 약제방제 효과시험 (상표명: [nhe501, 광스탑)
			시험의회자 기 관 명: ㈜에스티얼바이오테 소 재 시: 대 표 자: 있상종	시험의되자 기 판 명: 주에스티얼바이오테 소 제 지: 대 표 자: 있상종
			<u>발행일</u> 2020년 11월 6일	<u>발행일</u> 2020년 11월 6일
			<u>시험기관</u> (주)한 국 식 물 환 경 연 구 소	<u>시험기관</u> (주)한 국 최 물 환 경 연 구 소
			<u>시엄번호</u> ############# KPER-19-0-121	시 엄번호 WINTER KPER-19-0-122
			그림 4-40. 유기농자재 공시 신청을	을 위한 악효시험보고서 (팡스탑)

Г

3. 연구개발과제의 수행 결과 및 목표 달성 정도

1) 연구수행 결과

(1) 정성적 연구개발성과

다양하고 유용한 생리활성을 만들어내는 방선균을 이용하여 식물 병원성 진균에 대한 항진균력을 검증하고 포장실험을 통해 실제 작물에 대한 적용이 가능하다는 것을 확인하여 미생물제제로서 가능성을 증명하였다. 또한 NGS 기술을 활용하여 방선균의 유전체 정보를 확보하고 유용한 생합성유전자군을 분석할 수 있었고 유전자조작을 통해 큰 크기의 유전정보를 성공적으로 분리하고 유도체 생산균주 제작을하였기에 향후 유용 생합성유전자군 분리 및 응용할 수 있는 기술을 얻게 되었다.

우수한 방선균 선별하고 이 선별된 균주를 기반으로 미생물 제제를 개발하고자 산학연이 긴밀한 협조를 통해 제품화-사업화를 수행한 사례로 평가하며 이러한 결과들을 응용하여 항생제, 항암제, 면역억제제, 항진균제, 농약 등 바이오 산업에서 중요한 부분을 차지하고 있으므로 식품, 의약 및 농업 등의 산업에서 널리 이용될 수 있을 것으로 사료된다.

(2) 정량적 연구개발성과(해당 시 작성하며, 연구개발과제의 특성에 따라 수정이 가능합니다)

○ 가. 미생물 유전체사업의 성과목표

성기	라목표	전략 미생물 해독	유용 유전 자원 확보	표준 유전체 해독	메타 유전체 분석	유전체 분석 기술 개발	NABIC 등록	병원성 미생물 진단마 커개발	병원성 미생물 정보 완성	미생물 병발생 기작 규명
최공	종목표	4	1	0	0	0	4	0	0	0
1차	목표	2	0	0	0	0	2	0	0	0
년도	실적	2	0	0	0	0	0	0	0	0
2차	목표	1	0	0	0	0	1	0	0	0
년도	실적	1	0	0	0	0	3	0	0	0
3차	목표	1	0	0	0	0	1	0	0	0
년도	실적	1	0	0	0	0	1	0	0	0
4차	목표	0	1	0	0	0	0	0	0	0
년도	실적	0	2	0	0	0	0	0	0	0
 계	목표	4	1	0	0	0	4	0	0	0
711	실적	4	2	0	0	0	4	0	0	0

○ 나. 기타 성과목표

		ı											1								
						사	업화자	<u> 표</u>								연ㄱ	건기빈	표[지			
			지식		フ	술													정	책	기
			시크 대신군	.l	실	시)	나업회	-				학술	성과				활	용홍	타
			4722	1	(0	[전)						기					교	인	Ė	Ž.	(타
	과 표	특 허 출 원	뿌 허 등 록	품 종 비이 택	건 수	기 술 료	제 품 화	매 출 액	수 출 액	고 용 창 출	투 자 유 치	술 인 증	SC I	문 비 SC I	光 문 평 균 느	하 술 발 병	육 지 도	력 양 성	정 책 활 용	홍 보 전 시	연구활용등
딘	·위	건	건	건	건	백 만 원	백 만 원	백 만 원	백 만 원	명	백 만 원	건	건	건		건		명	건	건	
가	중치	5	20		5	30	30									5		5			
최종	동목표	4	2		2	20	1				_		4		2.75	8		4			
1	목	0	0		0	0	0						1		2	2		1			

	#													
년 도	실 적	0	0	 0	0	0	 	 	0	 0	2	 0		
2 차	목 표	1	0	0	0	0			1	2	2	1		
년 도	실 적	2	0	1	2.5	0			3	3.69	3	3		
3 차	목 표	1	1	1	0	0			1	3	2	1		
년 도	실 적	0	0	0	0	0			1	4.19	2	2		
4 차	목 표	2	1	1	20	1			1	4	2	1		
년 도	실 적	2	2	1	17.5	0 진행중			2	7.82	2	2		
ト	목 표	4	2	2	20	1			4	2.75	8	4		
계 	실 적	4	2	2	20	O 진행중			6	5.15	9	7		
1차	료 년도	0	0	0	0	0			0	0	2	0		
2차	료 년도	2	0	1	2.5	0			3	3.69	3	3		
3차	료 년도	0	0	0	0	0			1	4.19	3	2		
	료 년도	2	2	1	17.5	O 진행중			2	5.15	2	2		
소 —	계	2	0	2	20	O 진행중			6	5.15	9	4		
합	계	2	0	2	20	0 진행중			6	5.15	9	6		

(3) 세부 정량적 연구개발성과(해당되는 항목만 선택하여 작성하되, 증빙자료를 별도 첨부해야 합니다) [미생물유전체사업 성과]

□ 전략미생물 해독

번호	분석대상 (유전체,유전자원 명칭)	분석내용	등록일자	등록번호	크기 (Mbp)
1	Streptomyces sp. Inha501	whole genome sequencing	2019.8.13. ~ 2020. 10. 1	igem-0000408	8.25
2	Streptomyces sp. Inha502	whole genome sequencing	2019. 9. 2 ~ 2020. 10. 1	igem-0000409	8.32
3	Streptomyces sp. Inha503	whole genome sequencing	2019. 10. 31 ~ 2020. 10. 1	igem-0000867	11.46
4	Streptomyces sp. Inha504	whole genome sequencing	2020. 10. 19 ~ 2021. 10. 1	igem-0001654	9.20

□ 유용 유전자원 확보

번호	분석대상 (유전체,유전자원 명칭)	분석내용	위치	크기 (Kbp)
1	Streptomyces sp. Inha501 I-TMC BGC	I-TMC 생합성유전자군	533,757 ~ 749,118	215
2	Streptomyces sp. Inha501 I-NTF BGC	I-NTF 생합성유전자군	5,159,828 ~ 5,359,034	199

□ NABIC 등록 (추후에 사업단에서 등록 예정)

번호	분석대상 (유전체,유전자원 명칭)	분석내용	등록일자	등록번호	크기 (Mbp)
1	Streptomyces sp. Inha501	whole genome sequencing	2019.8.13. ~ 2020. 10. 1	igem-0000408	8.25
2	Streptomyces sp. Inha502	whole genome sequencing	2019. 9. 2 ~ 2020. 10. 1	igem-0000409	8.32
3	Streptomyces sp. Inha503	whole genome sequencing	2019. 10. 31 ~ 2020. 10. 1	igem-0000867	11.46
4	Streptomyces sp. Inha504	whole genome sequencing	2020. 10. 19 ~ 2021. 10. 1	igem-0001654	9.20

[과학적 성과]

□ 논문(국내외 전문 학술지) 게재

번호	논문명	학술지명	주저자명	호	국명	발행기관	SCIE 여부 (SCIE/비SCIE)	게재일	등록번호 (ISSN)	기여율
1	Pseudonoc ardia strain improveme nt for stimulati on of the di-sugar heptaene Nystatin-like Pseudonoc ardia polyene B1 biosynthe sis	Journal of Industria l Microbiol ogy & Biotechno logy	Jin-Young Jang,Hye- Jin Kim,Sisun Choi, Eung-Soo Kim	46, pp649-6 55	스위스	Spriner	SCIE (2.993)	2019.05	1367–5435	50
2	Cell Factory Design and Culture Process Optimizat ion for Dehydrosh ikimate Biosynthe sis in Escherich ia coli	Frontiers in Bioengine ering and Biotechno logy	Si-Sun Choi, Seung-Yeu I Seo, Sun-Ok Park, Han-Na Lee, Ji-soo Song, Ji-yeon Kim, Ji-Hoon Park, Sangyong Kim, Sang Joung Lee, Gie-Taek Chun, Eung-Soo Kim	7, article 241	스위스	Frontiers	SCIE (5.112)	2019.10	2296-4185	33
3	Stimulate d Biosynthe sis of an C10-Deoxy Heptaene NPP B2 via Regulator y Genes Overexpre ssion in Pseudonoc ardia autotroph ica	frontiers in microbiol ogy	Heung Soon Park, Hye Jin Kim, Chi Youung Han, Hee Ju Nah, Sisun Choi, Eung-Soo Kim	Volume 11, article 19	스위스	Frontiers	SCIE (4.190)	2020.01	1664-302X	100
4	Enantiose lective chemoenzy matic synthesis of (R)- y-va lerolacto ne from levulinic acid	Process Biochemis try	Dohoon Lee, Young Joo Yeon	90, pp 113–117	네덜란드	Elsevier	SCIE (2.952)	2020.03	1359–5113	50

번호	논문명	학술지명	주저자명	호	국명	발행기관	SCIE 여부 (SCIE/비SCIE)	게재일	등록번호 (ISSN)	기여율
5	Screening and isolation of a novel polyene-p roducing Streptomy ces strain inhibitin g phytopath ogenic fungi in the soil environme nt	_	Heung Soon Park, Hee Ju Nah, Seung -Hoon Kang, Sisun Choi, Eung-Soo Kim	9:69234 0	스위스	Frontiers	SCIE (5.890)	2021. 07	2296-4185	33
6	Recent advances in heterolog ous expressio n of natural product biosynthe tic gene clusters in Streptomy ces hosts	current opinion in biotechno logy	Hahk-Soo Kang, Eung-Soo Kim	Volume 69, pp 118-127	네덜란드	Elsevier	SCIE (9.740)	2021. 06	1879-0429	33

□ 국내 및 국제 학술회의 발표

번호	회의 명칭	발표자	발표 일시	장소	국명
1	The 9th Japan-Korea Chemical Biology Symposium	한치영	2018. 05. 23	인천, central park hotel	대한민국
2	KMB 2018 45th Annual Meeting & International Symposium	한치영	2018. 06. 29	여수, EXPO convention center	대한민국
3	KMB 2019 46th Annual Meeting & International Symposium	이도훈	2019. 06. 24	제주, ICC	대한민국
4	KMB 2019 46th Annual Meeting & International Symposium	박흥순	2019. 06. 24	제주, ICC	대한민국
5	The 4th A3 Foresight Symposium on Chemical Synthetic Biology of Natural Products	박흥순	2019. 07. 07	상하이, Shanghai Jiao Tong University	중국
6	The 3rd International Conference on Natural Products Discovery & Development in the Genomic Era	최시선	2020. 01. 12	샌디에고, Wyndham San Diego Bayside Hotel	미국
7	The 3rd International Conference on Natural Products Discovery & Development in the Genomic Era	박흥순	2020. 01. 12	샌디에고, Wyndham San Diego Bayside Hotel	미국
8	KMB 2021 48th Annual Meeting & International Symposium	박흥순	2021. 06. 24	부산, BEXCO	대한민국
9	The 6th mBiome International Conference	김응수	2021. 12. 10	서울, Yonsei University	대한민국

□ 생명자원(생물자원, 생명정보)/화합물

번호	생명자원(생물자원, 생명정보)/화합물 명	등록/기탁 번호	등록/기탁 기관	발생 연도
1	Streptomyces sp. AN090726(Inha501)	KCTC13999BP	한국생명공학연구원	2019년
2	Streptomyces sp. ANO91042(Inha502)	KCTC14000BP	한국생명공학연구원	2019년
3	Streptomyces javensis Inha503	KCTC14682BP	한국생명공학연구원	2021년
4	Streptomyces collinus Inha504	KCTC14683BP	한국생명공학연구원	2021년

[기술적 성과]

□ 지식재산권(특허, 실용신안, 의장, 디자인, 상표, 규격, 신품종, 프로그램)

=	지식재산권	식재산권 그리		출원 및 등록							
번호 명칭		국명	출원인	출원일	출원 번호	등록일	등록 번호	기여율 (%)	활용 여부		
1	특허	다양한 생리활성을 갖는 신규 방선균 및 이의 용도	인하대학교 산학협력단	2019. 11.07.	10-2019-0141882	2021. 10.12.	10-2313936	100			
2	특허	농작물 병원성 진균 제어용 신규 방선균 및 이의 용도	인하대학교 산학협력단	2019. 11.07	10-2019-0141883	2021. 10.12.	10-2313937	100	1		
3	특허	식물 병원성 진균 제어용 신규 균주 스트렙토마이세스 자벤시스 Inha503 및 이의 용도	인하대학교 산학협력단	2021. 12.13.	10-2021-0177641			100			
4	특허	식물 병원성 진균 제어용 신규 균주 스트렙토마이세스 콜리너스 Inha504 및 이의 용도	인하대학교 산학협력단	2021. 12.13.	10-2021-0177642			100			

ㅇ 지식재산권 활용 유형

※ 활용의 경우 현재 활용 유형에 √ 표시, 미활용의 경우 향후 활용 예정 유형에 √ 표시합니다(최대 3개 중복선택 가능).

번호	제품화	방어	전용실시	통상실시	무상실시	매매/양도	상호실시	담보대출	투자	기타
1	√									

[경제적 성과]

□ 시제품 제작

번호	시제품명	출시/제작일	제작 업체명	목적	인증기관 (해당 시)
1	팡스탑	2021.04.02	에스티알바이오텍	유기농자재 제품등록	한국식물환경연구소, 친환경농산물안전성센터, 한국생물안전성연구소

□ 기술 실시(이전)

번호	기술 이전 유형	기술 실시 계약명	기술 실시 대상 기관	기술 실시 발생일	기술료 (천원)	누적 징수 현황
1	노하우	방선균 기반의 항진균 미생물제제 대량생산 및 실용화 기술	㈜에스티알바이오텍	2019.11	2,500	2,500
2	특허	다양한 생리활성을 갖는 신규 방선균 및 이의 용도농작물 병원성 진균 제어용 신규 방선균 및 이의용도	(조)에 소디아비리 이테	2021.11	17,500	17,500

^{*} 내부 자금, 신용 대출, 담보 대출, 투자 유치, 기타 등

[사회적 성과]

□ 전문 연구 인력 양성

번호	분류	기준 연도		현황									
민오	正市	기군 연포		학위	l별		성	별			지역별		
	취업	2021	박사	석사	학사	기타	남	여	수도권	충청권	영남권	호남권	기타
'	ᅱᆸ	2021		2			1	1		1			1
2	취업	2020	박사	석사	학사	기타	남	여	수도권	충청권	영남권	호남권	기타
	커ㅂ	2020		2				2	1	1			
2	3 취업	취업 2019	박사	석사	학사	기타	남	여	수도권	충청권	영남권	호남권	기타
3				2		1	3		2	1			

2) 목표 달성 수준

추 진 목 표	달 성 내 용	달성도(%)
○ 전략미생물 해독 4건	○ 항진균활성이 우수한 4종의 신규 방선균의 whole genome sequencing 완료	O 100
○ 유용유전자원확보 1건	○ S. rubrisoli Inha501의 BAC library 구축을 통해 유용한 생합성유전자군이 포함된 BAC vector 확보 (tautomycetin-like BGC (82kb), neotetrafibric in-like BGC(170kb))	
○ 지식재산권 (특허 출원 4건과 특허 등록 2건)	○ 특허 출원 4건과 특허 등록 2건 완료	O 100
○ 기술실시 (기술이전 2건 및 기술료 2000만원)	○ 기술이전 - 방선균 기반의 항진균 미생물제제 대량생산 및 실용 화 기술, 에스티알바이오텍, 250만원, 2019. - 방선균 기반의 항진균 미생물제제 대량생산 및 실용 화 기술, 에스티알바이오텍, 1750만원, 2021.	
○ 사업화 (제품등록 1건)	○ 유기농자재 등록 신청 토마토, 고추 시들음병에 대한 병해관리용 유기농자재 제품등록 (진행 중)	○ 80 (진행 중)
○ 논문 (SCI급 4편 및 평균 IF 2.75 이상)	○ SCI급 논문 6편(평균 IF 5.15)	○ 150 (187)
○ 학술발표 (구두발표 및 포스터발표 8건)	○ 구두발표 및 포스터발표 9건	O 112
○ 인력양성 (5명)	○ 인력양성 6명	O 120

4. 목표 미달 시 원인분석(해당 시 작성합니다	4	목표	미달	시	워인분석(해당	시	작성 한니	디	-)
----------------------------	---	----	----	---	---------	---	-------	---	----

1) 목표 미달 원인(사유) 자체분석 내용

- 사업화를 위한 방선균 유기농자재 제품 (제품명 팡스탑) 등록 신청하여, 현재 심사 진행 중
- 시제품 준비과정 (e.g. 대용량 발효 시 방선균 포자 오염문제) 및 독성시험 (e.g. 독성검사 중 어독성 관련 기준이 강화됨에 따라 검사기관의 시설보완 관련해서 검사시작이 늦어짐) 진행이 다소 지연되어, 등록 신청이 계획보다 2-3개월 지연됨

2) 자체 보완활동

현재 심사 중인 제품 등록이 조속히 완료될 수 있도록, 참여기업 및 공동연구기관과 지속적인 연구 협력 체제 유지

3) 연구개발 과정의 성실성

5. 연구개발성과의 관련 분야에 대한 기여 정도

- 유용 미생물 유전체 스크리닝 전략 확대 적용을 통한 마이크로바이옴 기반 기술 구축
- 방선균 유래 유용 생리활성 물질 생합성 경로 규명을 통한 신약 후보물질 발굴 시스템 구축
- 기능성 유전자/물질 및 개량공정 최적화를 통한 유용 미생물의 실용화-산업화에 기여
- 구축된 유용성, 안정성, 안전성 등 평가-검증 시스템의 지적재산 창출에 기여

6. 연구개발성과의 관리 및 활용 계획

- 고효율 친환경 미생물제제 제품 등록을 통한 방선균 실용화-산업화의 다각화 모색
- 확보한 방선균 유전체 정보를 활용한 추가적인 유용 유전자원 발굴
- 확보한 방선균의 다양한 생리활성 스크리닝을 통한 신약 후보물질 발굴

구분(정량 및	정성적 성과 항목)	연구개발 종료 후 5년 이내				
		CIE	2			
국외논문	비(SCIE	0			
	;	계	2			
	SC	CIE	-			
국내논문	비(SCIE	-			
		계	-			
		구내	-			
특허출원		급외	-			
		계	-			
		구내	=			
특허등록		구외	=			
		계	-			
		낚사	0			
인력양성		부사	2			
2 100		낚사	1			
		계	3			
		등출시 -	1			
사업화		하이전	-			
		성개발	-			
제품개발	시제-	-				
비임	상시험 실시		-			
		1상	-			
임상시험 실시	의약품	2상	-			
(IND 승인)		3상	-			
		로기기 	-			
	로지침개발 크리스레비	-				
	료기술개발	-				
	성과홍보		-			
	및 수상실적		-			
선정석 선	성과 주요 내용	=				

주 의

- 1. 이 보고서는 농림축산식품부에서 시행한 포스트게놈유전체 다부처 연구개발사업 방선균 유전체 기반의 농작물 진균 제어용 미생물 제제 개발연구개발과제 최종보고서이다.
- 2. 이 연구개발내용을 대외적으로 발표할 때에는 반드시 농림축산식품부에서 시행한 포스트 게놈 유전체 다부처 연구개발사업의 결과임을 밝혀야 한다.
- 3. 국가과학기술 기밀 유지에 필요한 내용은 대외적으로 발표 또는 공개하여서는 안 된다.