RS-2022-IP122039

> 사 과 병 해 방 제 및 작 물 생 장 촉 진 미 생 물 제 제 산 업 화

보안 과제(), 일반 과제(O) / 공개(O), 비공개()발간등록번호(O) 기술사업화지원사업 2023년도 최종보고서

발간등록번호

11-1543000-004761-01

사과병해 방제 및 작물 생장촉진 미생물제제 산업화

2024.07.29.

주관연구기관 / 고려바이오 주식회사 공동연구기관 / 안동대학교 산학협력단

2024

농림식품기술기획평가원

농 림 축 산 식 품 부 (전문기관)농림식품기술기획평가원

제 출 문

농림축산식품부 장관 귀하

본 보고서를 "사과병해 방제 및 작물 생장촉진 미생물제제 산업화"(개발기간: 2022.04.01. ~ 2023.12.31.)과제의 최종보고서로 제출합니다.

2024. 07. 29.

주관연구기관명 : 고려바이오 주식회사

김 영 권

공동연구기관명 : 안동대학교 산학협력단

임 우 택

주관연구책임자 : 윤 여 준

공동연구책임자: 전용호

국가연구개발사업의 관리 등에 관한 규정 제18조에 따라 보고서 열람에 동의합니다.

< 요 약 문 >

※ 요약문은 5쪽 이내로 작성합니다.

	# 1EE 0	<u> </u>	도 직정합니다. 				* 교육 그 개 H	- L A I	HH ul =			
	사업명		기술	사업화	-지원		총괄연구개 (해당 시			_		
	내역사업당 (해당 시 작		민간중심 R	1&D 4	나업회	시원	연구개발	과제	번호	122039-0	2	
기 술	국가과학: 표준분-		1순위 LB03	304	50 %	2순위	LB0302	50 %	3순위	소분류 코드명	%	
분 류	농림식 과학기술		 1순위 RA03	304	70 %	2순위	RA0305	30 %	3순위	소분류 코드명	%	
	총괄연구개팀	발명					_					
	(해당 시 작성			기기대에 비제 다 된다 까지수지 때까다면 보였다.								
	연구개발과제		,	사과병해 방제 및 작물 생장촉진 미생물제제 산업화 2022. 04. 01 - 2023. 12. 31 (1년 9개월)								
전체 연구개발기간			_		22.	04. 01 –	2023. 12.	31 ((1년 97	내월) 		
총 연구개발비		[비	총 535,000전 (정부지원연 지방자치단체	구개 발					구개발	비 : 71,000천원	실,	
	연구개발딘	계	기초[] 등 기타(위 3가지에		-		기술성 (해당 시			착수시점 기준(! 종료시점 목표(!		
연구개발과제 유형 (해당 시 작성)							_					
	연구개발과제	특성					_					
	(해당 시 작	성)										
목	연구개발 표 및 내용		보종 목표	산업: - 사업: - 기 이 - 기 이 - 기 이 - 기 이 - 기 이 기 이 기 이 기	화생과화 생생제 사과화과요 생생생 사생생생 보물성 출 그 분건 팀 농 물물기 가 물물기	사업화 대명	생산공정 기상에 용 미생들 생산공정 기상 최적화 기술 배용 미생물제 대용 미생물제 보기 물 기술개발 화 기술개발	술물제 기술량 물저 기술량 물지 물 물건 물	립 및 기에 현장	활용기술 개발 개발 활용기술 개발 성균에 대한 미성 해 확대 제작 화 효과검정	및 사	
Ş	연구개발성과	- 특히 - 기류 - 제류 - 매류 - 고유	구개발성과 허출원 1건 술이전 1건, 기 품화 1건 출액 20,000천 용창출 1명 술인증 1건 문(SCI) 1건, 된 술발표 5건	원								

- 홍보	홍보전시 4건													
○ 안전 ○ PLS ○ 농산	미생물제제 대량생산공정기술 개발을 통한 시장경쟁력 강화 안전한 농산물 생산을 위한 친환경 관리방법 정착 PLS제도에 자유로운 안전한 농산물로 소비자 만족지수 향상 농산물 수입 시장 개방에 대응하는 국가 경쟁력 제고 탄소배출 저감 및 농업환경 보호 실현													
생명자원 신품종										품종				
논문	특허			연구 시설 •장비	기술 요약 정보	소프트 웨어	표준	생명 정보	생물 자원	화합	물	정보	실물	
1	1	-		_		_	_	-		_		_		
구입 기관					수량	구입 연월일							ZEUS 록번호	
_	-	-	_		-	_	_		-		_		_	
미생들	룰 살균	세	세			미생	물			제	에 유기		기농업자재	
			Crop growth promoting		ng	Microorg	anism	of microbial agri			ricult	ural		
	○ 미성 ○ 안전 ○ PLS ○ 당선 ○ 탄설 - 1 - 미생들	○ 미생물제/ ○ 안전한 농 ○ PLS제도0 ○ 농산물 수 ○ 탄소배출 논문 특허 1 1 구입 연구 기관 ・장 	○ 안전한 농산물 ○ PLS제도에 자 ○ 농산물 수입 / ○ 탄소배출 저김 - - - - - - - - - - - - - - - - - - -	○ 미생물제제 대량성 ○ 안전한 농산물 생 ○ PLS제도에 자유로 ○ 농산물 수입 시장 ○ 탄소배출 저감 및 - 특허 보고서 원문 1 1	○ 미생물제제 대량생산공정 ○ 안전한 농산물 생산을 우 ○ PLS제도에 자유로운 안전 ○ 농산물 수입 시장 개방에 ○ 탄소배출 저감 및 농업혼 본문 특히 보고서 원문 연구시설 규격 기관 1 1 시설 안정 기관 연구시설 규격 (모델명)	○ 미생물제제 대량생산공정기술 : ○ 안전한 농산물 생산을 위한 친. ○ PLS제도에 자유로운 안전한 농 ○ 농산물 수입 시장 개방에 대응 ○ 탄소배출 저감 및 농업환경 보 - 무입 연구시설 구경 기술 요약 가장비명 (모델명) 수량	○ 미생물제제 대량생산공정기술 개발을 통 ○ 안전한 농산물 생산을 위한 친환경 관리 ○ PLS제도에 자유로운 안전한 농산물로 소 ○ 농산물 수입 시장 개방에 대응하는 국가 ○ 탄소배출 저감 및 농업환경 보호 실현 -	○ 미생물제제 대량생산공정기술 개발을 통한 시경 ○ 안전한 농산물 생산을 위한 친환경 관리방법 경 ○ PLS제도에 자유로운 안전한 농산물로 소비자 ○ 농산물 수입 시장 개방에 대응하는 국가 경쟁력 ○ 탄소배출 저감 및 농업환경 보호 실현 -	○ 미생물제제 대량생산공정기술 개발을 통한 시장경쟁력 ○ 안전한 농산물 생산을 위한 친환경 관리방법 정착 ○ PLS제도에 자유로운 안전한 농산물로 소비자 만족지 ○ 농산물 수입 시장 개방에 대응하는 국가 경쟁력 제고 ○ 탄소배출 저감 및 농업환경 보호 실현 -	○ 미생물제제 대량생산공정기술 개발을 통한 시장경쟁력 강회 ○ 안전한 농산물 생산을 위한 친환경 관리방법 정착 ○ PLS제도에 자유로운 안전한 농산물로 소비자 만족지수 향상 ○ 농산물 수입 시장 개방에 대응하는 국가 경쟁력 제고 ○ 탄소배출 저감 및 농업환경 보호 실현 논문 특히 보고서 원문 약정보 약정보 약정보 1 1 1	○ 미생물제제 대량생산공정기술 개발을 통한 시장경쟁력 강화 ○ 안전한 농산물 생산을 위한 친환경 관리방법 정착 ○ PLS제도에 자유로운 안전한 농산물로 소비자 만족지수 향상 ○ 농산물 수입 시장 개방에 대응하는 국가 경쟁력 제고 ○ 탄소배출 저감 및 농업환경 보호 실현 -	○ 미생물제제 대량생산공정기술 개발을 통한 시장경쟁력 강화 ○ 안전한 농산물 생산을 위한 친환경 관리방법 정착 ○ PLS제도에 자유로운 안전한 농산물로 소비자 만족지수 향상 ○ 농산물 수입 시장 개방에 대응하는 국가 경쟁력 제고 ○ 탄소배출 저감 및 농업환경 보호 실현 본문 특허 보고서 원문 시설 연구 시설 가장 시설 원문 사원 사실 원문 사원 사실 원문 사원 사실 사실 수량 정보 지원 보조 보호 설환 1 1	○ 미생물제제 대량생산공정기술 개발을 통한 시장경쟁력 강화 ○ 안전한 농산물 생산을 위한 친환경 관리방법 정착 ○ PLS제도에 자유로운 안전한 농산물로 소비자 만족지수 향상 ○ 농산물 수입 시장 개방에 대응하는 국가 경쟁력 제고 ○ 탄소배출 저감 및 농업환경 보호 실현 본문 특허 보고서 원문 사실 요약 사실 요약 장보 사실 요약 사실 요약 장보 사원 사실 사실 요약 장보 사원 사실 사실 사실 사실 사실 요약 사원 사실	

〈 목 차 〉

1.	. 연구개발과제의 개요	7
2.	. 연구개발과제의 수행 과정 및 수행내용	10
3.	. 연구개발과제의 수행 결과 및 목표 달성 정도	64
4.	. 목표 미달 시 원인분석	70
5.	. 연구개발성과 및 관련 분야에 대한 기여 정도	71
6.	. 연구개발성과의 관리 및 활용 계획	71
Ę	별첨 자료	73

	3	· · ·	보고	H						일반	보안등 [], 5		1
조이테 되고 기대								사업	명		<u>[], </u>		
중앙행정기관명		중담:	축산식품	하구	사업	101		역사			<u> </u>		
전 문기 관명 (해당 시 작성)	-	농림기:	술기획평	경 가원	\\ =	0		당시			사업화		
(예당 시 극장)		누리초	= 111 ==	н	총괼	연-			별번호				
공고번호	_		투산식품 2022-3			(8	해당 시	작성)					
	-	2 Tr M	2022-3		2	연구	개발고	<u> 가제</u> 빈	년호		122039	-02	
기 국가과학기술 술 표준분류	1순	위 LBO	304	50 %	2순위	LBC	302	5 %	32	음위 소	분류 코	드명	%
분 농림식품과학기술분 류 류	1순	위 RAO	303	70 %	2순위	RAG	0304	3	3-	음위 소	분류 코.	드명	%
총괄연구개발명	국	문						_					
(해당 시 작성)	영	문						_					
	국	문									세제 산업		
연구개발과제명	영문 Inc			dustrialization of microbial agent management and promoting								ease	
						nt					growth		
주관연구개발기관	기곤			려바이의	고(수)				등록번				
	주소 성명			·여준					_	여구	2소장		
연구책임자	017171	지지	전화		- C				내전화				
	연락처		가우편			국가연구자반			구자번	호			
연구개발기간	전체			2022	2. 04.	01	- 20	23.	12. 31	(1년	9개월)		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	시원	기곤	부담	그 외	기관	등의	의 지원	실금		-1 71		연구가	발
연구개발비 연구: (단위: 천원)	개발비	연구기	개발비	지방자	치단체	7	기타(	)		합계		오	
(단취· 신권) - 현	년금	현금	현물	현금	현물	현	금형	현물	현금	현물	합계	지원	금
	,000	4,380	66,620		_	-	-	-			0 535,000	_	
	0,000	-	27,250		_			_			0 226,250		
2년차 265	5,000	4,380	39,370	_	_			_	269,380	39,37	0 308,750	)] -  고	
공동연구개발기관 등	기곤		책임	자	직위		휴대진	현화	전자유	으편		기관위	우형
공동연구개발기관	안동디 산학합		전용	호	교수						공동	대호	<b>*</b>
연구개발담당자		성명		윤	여준				<b>딕위</b>		연구	2소장	
실무담당자	연락처		전화			휴대전화							
이 최종보고서에 기재되		선 시	우편 임을 획	rol =1 =1	마얀	, 1			구자번 경우		법령 및	! 규정	101

이 최종보고서에 기재된 내용이 사실임을 확인하며, 만약 사실이 아닌 경우 관련 법령 및 규정에 따라 제재처분 등의 불이익도 감수하겠습니다.

2024 년 02 월 29 일

연구책임자: 윤 여 준

주관연구개발기관의 장: 고려바이오(주) 대표이사

공동연구개발기관의 장: 안동대학교 산학협력단장



#### 1. 연구개발과제의 개요

#### 1-1. 연구개발과제의 필요성

- 사과의 생물학적 방제 시도는 2000년대 전에는 미미하였으나 최근 미국을 비롯한 외국에서 많은 연구가 이루어지고 있으며, 과수의 병 발생은 다른 작물에 비해 화학농약 의존도가 매우 높음. 최근 친환경 사과의 수요가 증가함에 따라 화학농약을 대체할 수 있는 생물학적 방제의 필요성이 대두되고 있으며, 화학농약의 연용 및 남용으로 인한 약제 저항성균의 출현으로 인해 관행의 사과 병해 방제에 어려움이 발생하고 있어 기존의 사과 병해 방제력이나 체계를 개선할 필요가 있음.
- 최근에는 그동안 발생하지 않았던 과수 화상병이 우리나라에도 발생하여 병이 발생한 농가는 과수원을 폐원하고 있으며 사과 주산지인 경북과 충북지역에 큰 위협이 되어 개화기를 전후하여 농용 항생제를 살포하는 농가가 늘어나고 있음. 농업 현장에서 항생제의 사용은 이미 알려져 있듯이 국제적인 규제 및 항생제 내성균 출현 등의 제약이 있어 국제 규제에 적용되지 않으며 내성균 출현 가능성이 매우 낮은 미생물제제가 그 대안이라고 할 수 있음.
- 미생물은 근권 및 엽권에서의 경쟁력 우점, 병원균의 생장 억제, 생장촉진, 저항성 등이 유도되어 작물의 생육을 돕는 역할을 하지만 다양한 환경에 미생물이 적응하지 못하여 충분 한 효과를 발휘하지 못하는 경우가 대부분임. 따라서 이러한 특성에 관한 연구가 필요하며 궁극적으로 미생물-식물-병해충 간의 상호작용에 대한 이해와 다양한 환경에서의 상호작용 을 연구하는 것이 매우 중요함.
- 농업의 환경보전 기능을 증대시키고, 농업으로 인한 환경오염을 줄이며 친환경농업을 실천하는 농업인을 육성하기 위해 1997년 제정된 환경농업육성법이 현재는 친환경 농어업육성 및 유기식품 등의 관리·지원에 관한 법률로 개정되어 시행되고 있으며, 이를 기반으로 유기농업자재의 이용이나 개발에 대한 근거가 마련됨.
- 2007년 고시된 '친환경유기농업자재 목록 공시제도'는 법적 기준(약효, 약해, 독성 등) 마련을 통하여 부정·불량 자재의 시장 퇴출 및 친환경농업 활성화에 크게 이바지하였으며, 최근 '유기농업자재 공시제도'로 변경되어 친환경농업에 사용 가능한 자재를 공시 및 사후관리를 시행하고 있음.
- 농림축산식품부에서 발표(2018.2)한 '농업·농촌 및 식품산업 발전계획'은 4차 산업 혁명시대 신성장산업의 한 분야인 미생물 등의 농생명 소재를 발굴·육성하여 농업·농촌 일자리 창출 및 지속 가능한 농식품산업 기반 강화하고자 하였음.
- PLS(Positive List System) 도입으로 농업인 준수 의무를 강화하는 정책(식품의약품안전처 고시 제2018-8호, 식품의 기준 및 규격) 수립에 따른 대체 친환경 식물보호제에 대한 요구가 증가하여 과거 친환경인증 농가에서만 사용하던 유기농업자재에 대한 수요가 관행농가로 확대되고 있음.
- 우리나라는 친환경인증 농가수(2018년 57,261호→2020년 59,249호)와 면적비율(2018년 4.9%→2020년 5.2%)이 증가하고 있으며, 친환경농산물 시장규모는 2006년부터 매년 5.8%씩 성장하고 있음. 최근 건강과 환경에 대한 소비자의 관심이 높아져 친환경농산물 소비가 증가할 것으로 예상됨에 따라 친환경농업의 환경가치 인식과 친환경농업 인증면적비율을 증가시키고 화학농약과 화학비료의 사용을 감축하기 위해 '2021년~2025년 제5차 친환경농업육성 5개년 계획'을 시행하고 있음.

○ 2020년 7월, 정부의 '그린뉴딜' 발표, 2020년 10월 '2050 탄소중립' 목표 선언을 통하여 국제적 이슈에 부합하는 정책을 내놓고 있으며 이로 인하여 환경오염이 없이 농업환경에 사용 가능한 생물자원 활용 생물농약 개발 및 바이오 신산업 육성이 핵심 해결과제로 떠오르고 있음.

○ 최근 EU 연합은 유러피안 그린딜(The European Green Deal)의 세부 전략 중 하나로 팜투포크전략(A Farm to Fork Strategy)을 통해 식품의 지속가능성을 확보하기 위한 종합계획으로 지속가능한 형태의 생산, 건강한 식품에 대한 접근성 및 안전성 확보를 목표로 하여농약 사용과 위험도 50% 감축, 비료 사용량 최소 20% 감축, 가축과 양식 수산물 항생제판매량 50%, 감축, 농경지의 25%까지 유기농업 실시를 핵심지표로 정책을 추진하고 있음. 또한 미국, 중국, EU 등 세계 120여 개국 국가는 탄소중립선언을 통하여 2050년까지 탄소중립을 위한 화학농약 및 화학비료 사용규제 강화 및 정책지원 축소를 실행하기로 하였음.



[그림] EU 연합 팜투포크 전략 모식도]

- 개발도상국의 식량 확보 문제를 해결하기 위해 설립된 FAO(유엔식량농업기구)는 개발 도상국 내 농산물 수확 증대를 위하여 절대적으로 화학농약 및 화학비료가 필요하지만 지속 적인 농업을 위해서는 화학농약 및 화학비료 사용 감축이 필요하다고 강조하고 있음.
- 환경친화적인 작물보호제 및 효과적인 생산공정의 개발은 차세대 생물 산업의 핵심 분야이며, 21세기형 작물보호제 개발은 국제경쟁력을 확보하고 과학기술선진국으로 도약해야할 우리나라의 현시점에 있어서 매우 중요한 과제임. 최근 화학농약이나 화학비료의 사용 감축 및 환경친화적인 재배에 대한 전세계적인 농업정책과 소비자의 니즈가 급증함에 따라환경친화형 소재로서 각광받고 있는 미생물을 이용한 친환경 방제제 개발을 통해 화학농약 잔류 문제로부터 해방되고 농산물 수출에 걸림돌을 제거할 수 있을 것으로 기대됨.
- 본 연구진은 포스트게놈 다부처유전체사업 추진을 위해 출범된 농림축산식품부 미생물 유전체전략연구사업단의 연구과제를 수행하여 사과 탄저병 방제용 미생물제제, 작물 생장촉 진 미생물제제 기술을 개발하였으며, 본 연구를 통해 사과 탄저병 방제용 미생물제제의 적 용병해 확대 및 사과 병해 방제력 개발을 통해 해당 기술의 현장적용 방법을 다양화하고 미 생물 대량배양 최적화 및 유효활성물질 생산증대기술 개발, 제형화 기술개발을 통한 대량생 산공정 기술 표준화 및 제품화하여 개발기술을 산업화 및 사업화하고자 함.

#### 1-2. 연구개발과제의 목표 및 내용

- 1) 연구개발과제의 최종 목표
- 포스트게놈 다부처 유전체사업을 통해 개발된 미생물제제의 산업화 및 사업화
  - 미생물제제 대량생산공정 기술 확립 및 제품화
  - 사과 주요 병해 방제용 미생물제제 현장활용기술 개발 및 사업화
- 2) 연구개발과제의 내용
- 가) 1차년도
- 미생물제제 대량생산공정 기술 확립
  - 미생물 대량배양 최적화 기술 개발
  - 경제성 기반 미생물제제 대량생산 공정 개발
- 사과 주요병해 방제용 미생물제제의 현장활용기술 개발
  - 사과 병원균 약제 저항성 검정 및 저항성균에 대한 미생물제 효과 검정
  - 사과 탄저병 방제용 미생물제제 적용병해 확대
  - 주요 농약과의 혼용성 평가
- 나) 2차년도
- 미생물제제 제형화 기술개발 및 제품화
  - 미생물제제 제형화 기술개발 및 시제품 제작
  - 미생물제제 제품화
- 사과 주요병해 방제용 미생물제제 사업화
  - 미생물제제 조합별 사과 주요병해 억제 효과검정
  - 미생물제제의 포장 효과검증
  - 미생물제제를 이용한 사과 병해 종합방제력 개발

#### 1-3. 연구개발과제 수행일정 및 주요 결과물

연도	연구개발 목표	연구개발 내용	주요 결과물	
	[주관: 고려바이	오(주)] 미생물제제 대량생산공정 기술확립 및 제품화		
	미생물제제 대량생산공정 기술확립	■ 미생물 대량배양 최적화기술개발 ■ 경제성 기반 미생물제제 대량생산 공정 개발	<ul><li>● 미생물 배양 생물공정 기술확립</li><li>◆ Pilot scale 배양 최적화</li></ul>	
2022	[공동: 안동대흐	발 및 사업화		
(1차년도)	방제용	<ul> <li>사과 탄저병 약제 저항성 검정 및 저항성균에 대한 미생물제제 효과검정</li> <li>사과 탄저병 방제용 미생물제제 적용병해 확대</li> <li>주요 농약과의 혼용성 평가</li> </ul>	◆ 겹무늬병, 점무늬낙엽병 등 사과 주요병해 적용 확대 ◆ 미생물제제 농약혼용 가 부표	

	[주관: 고려바이	오(주)] 미생물제제 대량생산공정 기술확립 및 제품화	
2023 (2차년도)		■ 미생물제제 제형화 기술개발 및 시제품 제작 ■ 미생물제제 제품화	◆ 시제품(Pilot scale) ◆ 시제품 유통기간 확립 ◆ 유기농업자재 공시 1건
	[공동: 안동대학	r교] 사과 주요병해 방제용 미생물제제 현장활용기술 개	발 및 사업화
	사과		
	주요병해	■ 미생물제제 조합별 사과 주요병해 억제 효과검정	◆ 살균제 저항성 지도
	방제용	■ 미생물제제의 포장 효과검증	◆ 살균제와 미생물 혼용
	미생물제제	■ 미생물제제를 이용한 사과 병해 종합방제력 개발	종합방제력
	사업화		

#### 2. 연구개발과제의 수행 과정 및 수행 내용

#### 2-1. 주관과제(고려바이오(주)): 미생물제제 대량생산공정 기술확립 및 제품화

#### (1) 미생물 대량배양 최적화 기술개발

○ 선행과제를 통해 작물생장 촉진효과가 확인된 미생물인 *Paenibacillus polymyxa* 균주의 대량배양 최적화를 위해 배양배지와 배양조건 확립 연구를 수행함.

#### 1) Paenibacillus polymyxa 균주의 산업용 배지원 선발

- 배양배지의 탄소원, 질소원을 선발하기 위해 탄소원으로는 Glucose, Sucrose, Lactose, Fructose, Galactose를 활용하였으며, 질소원으로는 Soybean meal, Beef extract, Yeast extract, Soy powder, Peptone을 활용하였음. 무기원은 선행연구를 통해 확인된 황산마그네슘 0.04%, 황산망간 0.02%, 탄산칼슘 0.1%를 사용함.
- 1/10 TSB배지에 각각의 탄소원과 질소원을 첨가한 생산배지를 500ml 삼각플라스크에 200ml 분주하고 121℃에 15분간 멸균한 후, 멸균수에 1.0 × 10⁹ CFU/mL로 희석한 *P. polymyxa* 균주 배양액을 1%(v/v) 접종하여 32℃, 150rpm의 조건으로 48시간 동안 진탕배양을 실시한 배양액을 단계희석하여 TSA배지에 평판도말법을 활용하여 32℃에서 24시간동안 배양하여 미생물 군집의 수를 계수함.
- 연구결과, *P. polymyxa* 균주는 탄소원으로 glucose를 사용 시 대조구인 TSB 대비 약 3.2배 증가한  $1.08 \times 10^9$  CFU/mL의 균체 생육을 보였으며, 다당류는  $6.40 \times 10^8$  CFU/mL 이하로 균체 생육이 저조하였음. 따라서 최적 탄소원으로 Glucose를 선발함[그림 1]. 또한, 질소원으로 Soybean meal 사용 시 가장 높은  $1.12 \times 10^9$  CFU/mL의 균체 생육을 보였으며 이는 대조구인 TSB 대비 약 3.3배 증가한 수치임. 따라서 최적 질소원으로 Soybean meal을 선발함[그림 2].

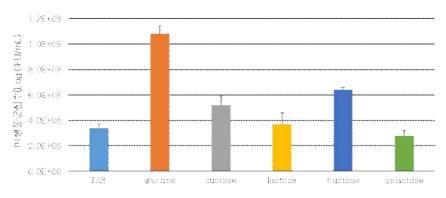



그림 1. 탄소원에 따른 P. polymyxa 균주의 균체 생육.

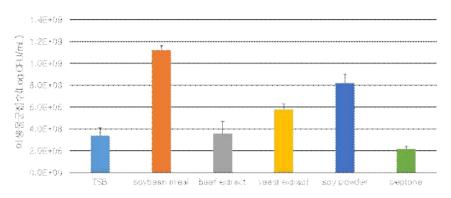



그림 2. 질소원에 따른 P. polymyxa 균주의 균체 생육.

○ 상기의 연구를 통해 선발한 Glucose와 Soybean meal을 농도별(0.5~2.0%)로 조합하여 균체 생육을 비교함. 무기원은 황산마그네슘 0.04%, 황산망간 0.02%, 탄산칼슘 0.1%로고정함.

○ Glucose와 Soybean meal을 농도별로 첨가한 생산배지를 2L 삼각플라스크에 1L 분주하고 121℃에 15분간 멸균한 후, 멸균수에 1.0 × 10⁹ CFU/mL로 희석한 *P. polymyxa* 균주 배양액을 1%(v/v) 접종하여 32℃, 150rpm의 조건으로 48시간 동안 진탕배양을 실시한 배양액을 단계희석하여 TSA배지에 평판도말법을 활용하여 32℃에서 24시간 동안 배양하여 미생물 군집의 수를 계수함.

○ 연구결과, *P. polymyxa* 균주는 전반적으로 Glucose와 Soybean meal의 농도가 증가함에 따라 균체 생육이 증가하는 경향을 보임였으며, Glucose 1.0%와 Soybean meal 1.0% 이상인 경우 균체가 1.0 × 10⁹ CFU/mL 이상 생산되어, 1.81 × 10⁹ CFU/mL로 가장 높은 균체 생육을 보인 탄소원 2.0%, 질소원 2.0%를 선정함[그림 3].

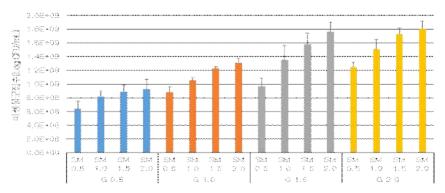



그림 3. Glucose(G)와 Soybean meal(SM)의 농도별 조합에 따른 *P. polymyxa* 균주의 균체 생육.

#### 2) Paenibacillus polymyxa 균주의 배양조건 확립

- *P. polymyxa* 균주의 대량배양을 위한 배양조건을 선발하기 위해 배양온도, 교반속도, 배양시간에 따른 균체 생육을 확인함.
- 상기의 연구를 통해 선발한 최적배지를 2L 삼각플라스크에 1L 분주하고 121 ℃에 15분간 멸균한 후, 멸균수에 1.0 × 10⁹ CFU/mL로 희석한 *P. polymyxa* 균주 배양액을 1%(v/v) 접종하여 150rpm의 조건에서 배양온도를 28℃, 30℃, 32℃, 34℃, 36℃로 달리하여 48시간 동안 진탕배양을 실시한 배양액을 단계희석하여 TSA배지에 평판도말법을 활용하여 32℃에서 24시간 동안 배양하여 미생물 군집의 수를 계수함.
- 연구결과, *P. polymyxa* 균주는 32℃의 온도에서 가장 높은 1.76 × 10⁹ CFU/mL의 균체 생육을 보여 최적 배양온도를 32℃로 결정함[그림 4].

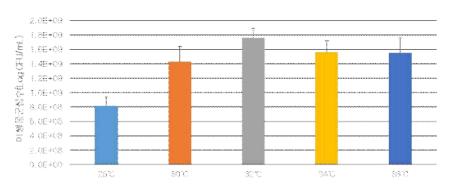



그림 4. 배양온도에 따른 P. polymyxa 균주의 균체 생육.

- 상기의 연구를 통해 선발한 최적배지를 2L 삼각플라스크에 1L 분주하고 121 ℃에 15분간 멸균한 후, 멸균수에 1.0 × 10⁹ CFU/mL로 희석한 *P. polymyxa* 균주 배양액을 1%(v/v) 접종하여 32℃의 조건에서 교반속도를 90rpm, 120rpm, 150rpm, 180rpm으로 달리하여 48시간 동안 진탕배양을 실시한 배양액을 단계희석하여 TSA배지에 평판도말법을 활용하여 32℃에서 24시간 동안 배양하여 미생물 군집의 수를 계수함.
- 연구결과, *P. polymyxa* 균주는 교반속도가 높을수록 균체 생육이 증가하는 경향을 보였으며 180rpm의 교반속도에서 가장 높은 2.14 × 10⁹ CFU/mL의 균체 생육을 보여 최적 교반속도를 180rpm으로 결정함[그림 5].

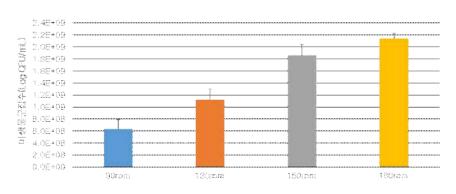



그림 5. 교반속도에 따른 P. polymyxa 균주의 균체 생육.

○ 상기의 연구를 통해 선발한 최적배지를 2L 삼각플라스크에 1L 분주하고 121 [°]C에 15분 간 멸균한 후, 멸균수에 1.0 × 10⁹ CFU/mL로 희석한 *P. polymyxa* 균주 배양액을 1%(v/v) 접종하여 32℃, 180rpm의 조건에서 배양시간을 12시간, 18시간, 24시간, 30시간, 36시간, 42시간, 48시간, 54시간으로 달리하여 진탕배양을 실시한 배양액을 단계희석하여 TSA배지에 평판도말법을 활용하여 32℃에서 24시간 동안 배양하여 미생물 군집의 수를 계수함.

○ 연구결과, *P. polymyxa* 균주는 42시간까지 균체 생육이 증가하다 42시간 이후 소폭 감소하는 경향을 보였으며 42시간에서 가장 높은 2.43 × 10⁹ CFU/mL의 균체 생육을 보였으나 대량배양 시 경제성을 감안하여 2.04 × 10⁹ CFU/mL의 균체 생육을 보인 30시간을 최적 배양시간으로 결정함[그림 6].

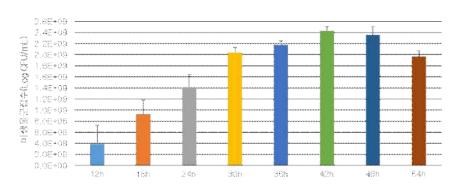



그림 6. 배양시간에 따른 P. polymyxa 균주의 균체 생육.

#### (2) 경제성 기반 미생물제제 대량생산 공정 개발

#### 1) *Paenibacillus polymyxa* 균주의 배양 scale-up

○ 7L jar fermenter에 최적배지를 4.2L 분주하고 121°C에 15분간 멸균한 후, 멸균수에 1.0 × 10° CFU/mL로 희석한 *Paenibacillus polymyxa* 균주 배양액을 1%(v/v) 접종하여 3 2°C, 180rpm의 조건으로 0.25vvm, 0.50vvm, 0.75vvm, 1.00vvm, 1.25vvm, 1.50vvm으로 산소투입량을 달리하여 30시간 동안 진탕배양을 실시한 배양액을 단계희석하여 TSA배지에 평판도말법을 활용하여 32°C에서 24시간 동안 배양하여 미생물 군집의 수를 계수함.

○ 연구결과, *P. polymyxa* 균주는 산소투입량 0.50vvm 이상의 조건에서 2.0 × 10⁹ CFU/mL의 균체 생육을 보였으며, 이를 통해 상기의 flask-scale의 결과와 유의차가 없음이 확인됨. 1.25vvm에서 2.67 × 10⁹ CFU/mL로 가장 높은 균체 생육을 보였으나최적 0.50vvm과 비교하여 큰 유의차를 보이지 않아, 대량배양 시 최적 산소투입량은 0.50vvm으로 선정함[그림 7].

○ 상기의 연구결과를 토대로 P. polymyxa 균주의 1차 대량배양조건을 결정함[표 1].



3.0E-03 2.EE-03 2.EE-04 2.E

그림 7. 산소투입량에 따른 P. polymyxa 균주의 균체 생육.

표 1. P. polymyxa 균주의 1차 대량배양조건.

	배양 조건
	최적배지
Medium	(Glucose 2.0%, Soybean meal 2.0%, MgSO $_4\cdot 7H_2O$
	0.04%, MnSO ₄ ·H ₂ O 0.02%, CaCO ₃ 0.1%)
Working volume	70% (210L)
Temperature	32℃
Agitation	180rpm
Incubation time	30시간
Aeration	0.50vvm
Pressure	0.4bar
Inoculum volume	1.0% (최적배지, 32℃, 180rpm, 30시간)

- Scale-up 과정의 최종단계로 300L fermenter에서 *P. polymyxa* 균주의 대량배양 연구를 수행하였으며, 상기의 연구를 통해 선정된 최적배지와 최적 배양조건으로 배양을 진행하였으며, 6시간 마다 수거한 배양액을 단계희석하여 TSA배지에 평판도말법을 활용하여 32℃에서 24시간 동안 배양하여 미생물 군집의 수를 계수함.
- 연구결과, 300L fermenter에서 30시간 배양한 배양액의 균체 생육이 2.28 × 10⁹ CFU/mL로 flask 및 jar fermenter의 결과와 큰 유의차가 없는 것을 확인함[그림 8].



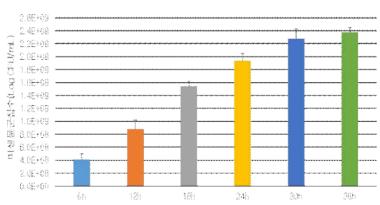



그림 8. 300L fermenter를 이용한 P. polymyxa 균주의 대량배양.

#### 2) Paenibacillus polymyxa 균주의 대량배양 최적조건 확립

- 대량배양 시 경제성 확보를 위해 경제성 판단의 가장 큰 지표인 배양시간을 단축하기 위한 연구를 추가로 수행함.
- 상기의 연구를 통해 선발한 최적배지와 배양조건으로 300L fermenter에서 종균투입량을 1.0%, 1.5%, 2.0%, 2.5%, 3.0%(v/v)로 달리하여 배양을 진행하였으며, 배양 시작 12시간 후부터 33시간까지 3시간 마다 수거한 배양액을 단계희석하여 TSA배지에 평판도말법을 활용하여 32℃에서 24시간 동안 배양하여 미생물 군집의 수를 계수함.
- 연구결과, 종균 투입량과 비례하여 최고 균체 생장에 도달하는 배양시간이 단축됨이 확인되었으며, 종균 1.5%(v/v) 이상 투입 시 24시간 후부터 최고 균체 생장에 도달하였음. 24시간 배양 후 종균 2.5%(v/v) 투입 시 2.67 × 10⁹ CFU/mL로 가장 빠르게 최고 균체 생장에 도달하였으나, 1.5%(v/v) 투입 시에도 2.45 × 10⁹ CFU/mL로 큰 유의차를 보이지 않

아 최적 종균 투입량은 1.5%(v/v)로 결정함[그림 9].

○ 상기의 연구결과를 토대로 *P. polymyxa* 균주의 대량배양 최적조건을 확립함[표 2].

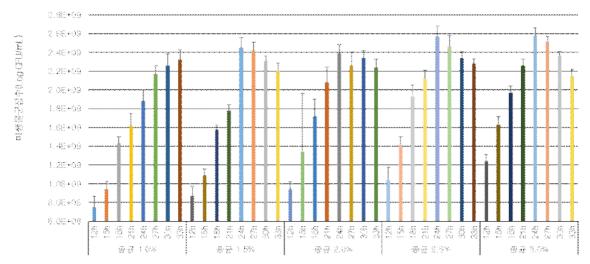



그림 9. 종균투입량에 따른 P. polymyxa 균주의 배양시간.

표 2. P. polymyxa 균주의 최종 대량배양 최적조건.

	배양 조건
	최적배지
Medium	(Glucose 2.0%, Soybean meal 2.0%, MgSO $_4\cdot 7H_2O$
	0.04%, MnSO ₄ ·H ₂ O 0.02%, CaCO ₃ 0.1%)
Working volume	70% (210L)
Temperature	32℃
Agitation	180rpm
Incubation time	24시간
Aeration	0.50vvm
Pressure	0.4bar
Inoculum volume	1.5% (최적배지, 32℃, 180rpm, 30시간)

#### (3) 미생물제제 제형화 기술개발 및 시제품 제작

#### 1) 작물 생장 촉진 미생물제제의 보조제 선발

- 농가에서 사용이 편리한 입상 제형의 미생물제제 개발을 위해 Carrier와 Coating agent 를 선발하기 위한 시험을 수행함.
- 토양 개량과 작물 생육을 위해 사용 가능한 유기농업자재 허용물질 중 입상제형의 Carrier로서 사용할 수 있는 4종(제올라이트, 석영반암, 입상규산, 부식산)을 선정하여 *Paenibacillus polymyxa* 배양액(2.62 × 10⁹ CFU/mL)을 비율별로 입상혼합기(working vol. 10kg)에서 30분간 혼합하여 시제품을 제조함. 시제품 1g을 단계희석하여 TSA배지에 평판도말법을 활용하여 32℃에서 24시간 동안 배양하여 미생물 군집의 수를 계수함.
- 연구결과, 석영반암 + *P. polymyxa* 배양액 5% 투입 시 1.58 × 10⁸ CFU/g으로 가장 많은 미생물이 보존됨이 확인되어[그림 10] Carrier로 석영반암을 선정함. 또한, 미생물 배양액의 투입비율이 5%를 초과할 시, 수분 과다로 추가 건조공정이 필요하여 경제성이 떨어질 것으로 판단되어 *P. polymyxa* 배양액의 최적 투입비율을 5%로 결정함.

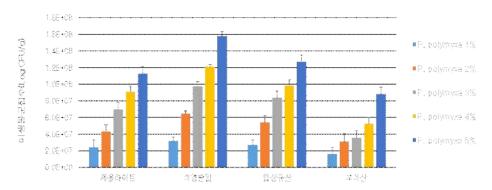



그림 10. Carrier별 P. polymyxa 균주의 투입비율에 따른 시제품의 유용미생물 밀도.

○ 시제품에 투입된 미생물의 보존기간 확보를 위한 Coating agent를 선발하기 위해 4종의 천연유래 식물성 오일(남오일, 피마자유, 채종유, 유칼립투스오일) 1%를 투입하여 입상혼합기(working vol. 10kg)에서 30분간 혼합하여 시제품을 제조함. 상온(25℃)에 1~4주 동안 보관하며 1주일 간격으로 미생물 군집의 수를 확인함.

○ 연구결과, 무처리는 경시적으로 미생물 안정성이 확보되지 않음이 확인되었으며, 유칼립투스오일과 피마자유 투입 시 미생물의 보존에 오히려 악영향을 미치는 것이 확인됨. 남오일은 무처리 대비 효과가 없었으며, 채종유 투입 시 4주차에 1.46 × 10⁸ CFU/g으로 미생물이 보존됨을 확인하여[그림 11] Coating agent로 채종유를 선정함.

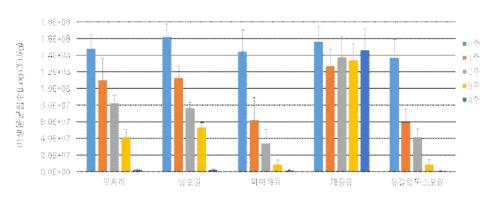



그림 11. Coating agent별 시제품의 유용미생물 밀도.

○ Coating agent로 선발된 채종유의 최적 투입비율을 확인하기 위해 채종유 0.5~5%를 투입하여 입상혼합기(working vol. 10kg)에서 30분간 혼합하여 시제품을 제조함. 상온(25°C)에 1~4주 동안 보관하며 1주일 간격으로 미생물 군집의 수를 확인함.

○ 연구결과, 채종유 1% 이상 투입 시 1.42 × 10⁸ CFU/g으로 미생물의 보존에 충분한 효과가 있음이 확인되었으며[그림 12], 경제성을 고려하여 채종유의 최적 투입비율은 1%로 결정함.

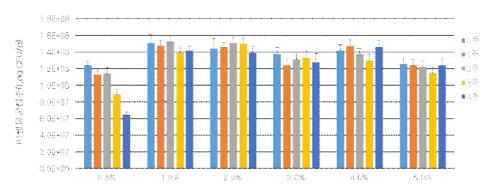



그림 12. 채종유 투입비율에 따른 시제품의 유용미생물 밀도.

#### 2) 작물 생장 촉진 미생물제제 시제품 제작

○ 상기의 연구결과를 토대로 작물 생장 촉진 미생물제제의 시제품 배합[표 3]을 확정하였으며, 대형 입상혼합기에서 300kg 시양산을 통해 대량생산 공정[그림 13]을 확립함.

표 3. 작물 생작 촉진 미생물제제 시제품 배합.

원료명	물질명	투입비율(%)
미생물배양액	Paenibacillus polymyxa	5
Carrier	석영반암	94
Coating agent	채종유	1
	합계	100



그림 13. 작물 생장 촉진 미생물제제 시제품 대량생산 공정(좌) 및 시제품(우).

#### 3) 시제품의 경시적 안정성 확인을 통한 유통기간 확립

○ 시제품의 경시적 안정성 확인을 위해 시양산한 시제품을 [농촌진흥청 고시 제2023-25호, 농약 및 원제의 등록기준, 별표 9. 이화학 분석 기준과 방법]에 따라 40±2℃에서 보관하며 1주일 간격으로 미생물 군집의 수를 확인함.

○ 연구결과, 시제품 내 유효 미생물의 초기 밀도는  $1.64 \times 10^8$  CFU/g이었으며, 10주차 까지 물리적 특성의 변화는 없었고 유효 미생물의 밀도는  $1.61 \times 10^8$  CFU/g으로 1년의 약효보증기간을 확보하였으며, 지속적으로 확인 중임[그림 14].

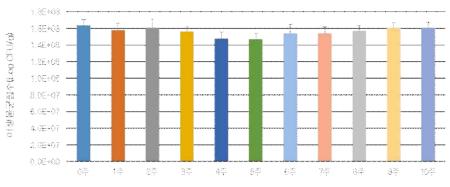



그림 14. 시제품 내 유효미생물의 경시적 안정성.

#### (4) 미생물제제 제품화

○ 시양산한 시제품을 토양개량 및 작물생육용 유기농업자재로 공시하기 위해 [국립농산물 품질관리원 고시 제2020-20호, 유기농업자재 공시기준]에 따른 시험을 유기농업자재 시험 연구기관에 의뢰하여 수행하였으며, 각각의 시험결과 유기농업자재 공시기준에 적합함을 확 인함. 해당 시험성적서를 기초자료로 활용하여 유기농업자재 공시기관인 강원대학교 산학협 력단에 토양개량 및 작물생육용 유기농업자재로 공시 신청함.

#### 1) 시제품의 주성분 분석

○ 시제품의 주성분인 *Paenibacillus polymyxa*의 동정을 위해 유전자 염기서열(16S rRNA)을 분석하고 상동성을 비교한 결과, *Paenibacillus polymyxa*에 99% 유사성을 가지는 균주로 확인됨[그림 15, 16, 17].

#### > Strain EFAP-23-1690-M(1473bp)

TAACACGTAGGCAACCTGCCCACAAGACAGGGATAACTACCGGAAACGGTAGCTAATACCCGATACATCCTTTTCCTGCATGGG GCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTA AGGGAÄGAACGTCTTGTAGAGTAACTGCTACAAGAGTGACGGTACCTGAGAAAGACCCCGGCTAACTACGTGCCAGCAGCCG TGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGGCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCA AACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAATGCTAGGTGTTAGGGGTTTCGATACCCTTGGTGCCGAAGTT AACACATTAAGCATTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCAGTGGAG TATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCCTCTGACCGGTCTAGAGATAGACCTTTCCTTC GGGACAGAGGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTGGGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCT TATGCTTAGTTGCCAGCAGGTCAAGCTGGGCACTCTAAGCAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAA GCAAGGAGCCAGCCGCCGAAGGTGGGGTAGATGATTGGGGTGAAG

그림 15. 시제품 내 미생물의 16rRNA 유전자 염기서열 분석.

	Sequences producing significant alignments									
Accession	Description	Max score	Total score	Query	E value	ident				
NR 114810.1	Paenibacillus polymyxa strain DSM 36 16S ribosomal RNA, partial sequence	2693	2693	100%	0.0	99.66%				

그림 16. 시제품 내 미생물의 NCBI BLAST 상동성 검색. (NCBI BLASTSearch: http://blast.ncbi.nlm.nih.gov/Blast.cgi)

#### > Strain EFAP-23-1690-M(1473bp)

Paenibacillus polymyxa strain DSM 36 16S ribosomal RNA, partial sequence Sequence ID: NR_114810.1 Length: 1521 Number of Matches: 1

Range	e 1: 13	to 1486 G	enBank G	raphics		W Next Mate
Score 2693	bits(14	158)	Expect 0.0	Identities 1469/1474(99%)	Gaps 1/1474(0%)	Strand Plus/Plus
Query	1	ACGCT-G	ceecetecc.	TAATAÇATGÇAAGTÇGA	GCGGGGTTATTTAGGAGCTTGCT	TCTA 59
Sbjct	13	ACGCTGG	CGGCGTGCC	TAATACATGCAAGTCGA	GCGGGGTTAGTTAGAAGCTTGCT	TCTA 72
Query	60	ATTAACC	r A GCGGCGG/	ACGGGTGAGTAACACGT	AGGCAACCTGCCCACAAGACAGG	GATA 119
Sbjct	73	ATTAACC	TAGCGGCGG/	ACGGGTGAGT ACACGT	AGGCAACCTGCCCACAAGACAGG LIILIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	GATA 132
Query Sbjct	120	ACTACCGG	GAAACGGTAG	GCTAATACCCGATACAT	CCTTTTCCTGCATGGGAGAAGGA	GGAA 179 IIII GGAA 192
Query	180	AGGCGGAG	CAATCTGTC	ACTIGIGGATGGGCCT	GCGGCGCATTAGCTAGTTGGTGG	
Sbjct	193	AGGCGGAG          AGGCGGAG				
Query	240 253	AAGGCCTA	CCAAGGCGA	CGATGCGTAGCCGACCT	TGAGAGGGTGATCGGCCACACTG 	GGAC 299
Query	300	TGAGACAC				
Sbjct	313	TGAGACAC	GGCCCAGAC	TCCTACGGGAGGCAGC	AGTAGGGAATCTTCCGCAATGGG 	IIII CGAA 372
Query	360	AGCCTGAC	GGAGCAACG	CCGCGTGAGTGATGAAG	GGTTTTCGGATCGTAAAGCTCTG 	TIGC 419
Sbjct	373					TTGC 432
Query	420	IIIIIIIII CAGGGAAG	I I I I I I I I I I I I I I I I I I I	II A GA GT A A CT GCT A CA A	AGAGTGACGGTACCTGAGAAGAA 	AGCC 479      AGCC 492
Query	480					
Sbjct	493	CCGGCTAA	CTACGTGCC	CAGCAGCCGCGGTAATAC	CGTAGGGGCAAGCGTTGTCCGG 	AATT 552
Query	540	ATTGGGCG	TAAAGCGCG	CGCAGGCGGCTCTTAA 	AGTCTGGTGTTTAATCCCGAGGC 	TCAA 599
Sbjct	553 600	ATTGGGCG				TCAA 612 CACG 659
Sbjct	613	TITITI	CGCACTGGA	AACT GGGGAGCT T GAGT	GCAGAAGAGGAGAGTGGAATTC 	IIII CACG 672
Query	660	TGTAGCGG	TGAAATGCG	TAGAGATGTGGAGGAAG	CACCAGTGGCGAAGGCGACTCTC	
Sbjct	673					
Query Sbjct	720	CTGTAACT          CTGTAACT	GACGCTGAG          GACGCTGAG	GCGCGAAAGCGTGGGGA 	AGCAAACAGGATTAGATACCCTG 	GTAG 779      GTAG 792
Query Sbjct	780 793	TCCACGCC	GTAAACGAT	GAATGCTAGGTGTTAGG	GGTTTCGATACCCTTGGTGCCG	AAGT 839
Query	840	TAACACAT	TAAGGATTC		CGCAAGACTGAAACTCAAAGGA	
Sbjct	853					
Query	900	ACGGGGACG	CCCCACAG	CAGTGGAGTATGTGGTT 	TAATTCGAAGCAACGCGAAGAA 	CCTT 959             CCTT 972
Query	960			CTCTGACCGGTCTAGAG		
Sbjct	973					
Query	1020	GACAGGTGG []]]]]]] GACAGGTGG	I I I I I I I I I I I I I I I I I I I	TGTCGTCAGCTCGTGTC 	GTGAGATGTTGGGTTAAGTCCC	GCAA 1079       GCAA 1092
Query	1000	CGAGCGCAA			CAAGCTGGGCACTCTAAGCAGA	
SbJct	1093					
Query	1153	CGGTGACAA	ACCGGAGG ACCGGAGG	AAGGT GGGGAT GACGT C 	CAAATCATCATGCCCTTATGAC	CTGG 1199       CTGG 1212
Query	1200	GCTACACAC	GTACTACA.		AAGCGAAGGCGCGATGTGGAGC	
Sbjct	1213	GCTACACAC	GIACIACA	ATGGCCGGTACAACGGG	IAAGCGAAGGAGCGATGTGGAGC	CAAT 1272
Query	1260	CCTAGAAAA	GCCGGTCT	CAGIICGGATIGIAGGC 	TGCAACTCGCCTACATGAAGTC	GGAA 1319      
Query	1320			TCAGCATGCCGCGGTGA		
Sbjct	1333					CACC 1392
Sbjct	1380	GCCCGTCAC	LACCACGAGA CACCACGAGA	AGTTTACAACACCCGAA	GTCGGTGAGGTAACCGCAAGGA 	GCCA 1439       GCCA 1452
Query	1440			AGATGATTGGGGTGAAG AGATGATTGGGGTGAAG		The state of the s
			and the state of t	JELLIGHE		

그림 17. 시제품 내 미생물과 미생물과 동일 형태의 미생물의 유전자 상동성 비교.

○ 시제품의 주성분인 *Paenibacillus polymyxa*의 균수를 측정하기 위해 희석평판법에 의거하여 3반복으로 수행한 후, 유효미생물 콜로니와 동일한 형태의 콜로니를 유효미생물로 판정하고 계수하여 평균값을 산출한 결과, 생균수는 8.3 × 10⁶ CFU/g으로 확인됨[그림 18].







그림 18. 시제품 내 생균수 측정.

○ 시제품의 비료성분 10종(질소전량, 수용성인산, 수용성칼리, 수용성규산, 수용성석회, 수용성고토, 수용성망간, 수용성붕소, 수용성몰리브덴, 수용성철)과 중금속 8종(비소, 카드 뮴, 수은, 납, 크롬, 구리, 니켈, 아연)에 대한 검사를 수행한 결과, 중금속 8종 모두 기준치이하로 확인됨[그림 19].

발행번:	호 제 EFAF	2-23-1690-F	±			시험책임자 한 호	철			
			검 사	성 적	서	L	(서명			
위 ①	상 호	고	려바이오㈜	124-86-3702	0					
자 ③	주 소	경기도 화성시	경기도 화성시 정남면 정남동로 346							
	종 및 명칭	자연토 골드								
	수 량	1점								
	) 번 호 자 성명	EFAP-23-169 고려바이오@								
· "	생산연월일	12 15 15 15	r)							
집		2023년	2023년							
	수 량 - 방법	공정분석법								
m					⑩ 성 적					
	11) 5	- ,	단위		부석치	기준치				
		소전량	% 1		0.09	H				
		성인산	0 %		.0018	<u> </u>				
		성칼리	%		.0033	-				
	수용성규산 수용성석회		%		0.127					
		성고토	%		.0049					
	, -	수용성망간			.0005					
검 사		성붕소 ~	%		.0037					
		몰리브덴 스	%		00023	2				
성 적		용성철	%	0	.0062	-				
		비소	mg/kg		6.26	20				
		카 드 뮴	mg/kg		- 검출·	2				
		수 은	mg/kg	네 발	불검출	1				
	건물중에	납	mg/kg		3.74	50				
	대하여	크롬	mg/kg		0.59	90				
		구 리	mg/kg		3.92	120				
		아 연	mg/kg		0.45 57.95	20 300				
2) 본 성 3) 본 성 농	적서는 고객 적서의 결과	내연구기관: 제 4 이 제공한 시료 는 광고, 전단, 비료의 품질검	를 시험한 길 홍보 및 소송	결과로써 전기 등 등의 수민	에제품에 대한 품질을 으로 사용하실 수 없 기준 제10조 제1형	을 보증하지는 않음 없음.				
		Z	;원대학 <b>;</b>		024. 01. <b>西</b> <b>百有七 万</b> 斯	11. ]				
		친혼	경농신	물안전	선성센턴					

그림 19. 시제품의 비료성분, 중금속 검사 결과.

#### 2) 시제품의 안정성 평가

○ 시제품의 병원성미생물에 대한 검출여부를 확인하기 위해 시제품 25g을 취하여 증균배지 225ml에 가한 후 35~37℃에서 24±2시간 증균배양하여 각각의 선택배지에 증균배양액을 접종하여 확인한 결과, 병원성 대장균(*Escherichia coli* O157:H7), 병원성 살모넬라 (*Salmonella* spp.), 황색포도상구균(*Staphylococcus aureus*), 리스테리아 모노사이토제네스 (*Listeria monocytogenes*), 바실러스 세레우스(*Bacillus cereus*)가 불검출로 확인됨[그림 20].

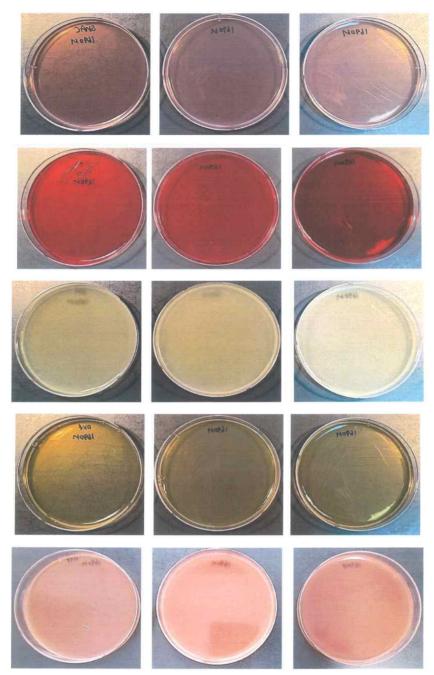



그림 20. 시제품 내 병원성미생물 검사.

(E. coli 0157:H7, Salmonella spp., S. aureus, L. monocytogenes, B. cereus)

○ 시제품의 비료피해를 평가하기 위해 고추(신와매워), 배추(휘모리골드), 상추(청치마), 오이(신아시아은천), 콩(선풍) 유식물을 정식 전 시제품을 기준량과 배량으로 처리하고 7, 14, 21일 후에 육안으로 관찰하여 비료피해의 판정기준에 따라 비료피해 여부를 판단함[표 4]. 시험기간 동안 기준량과 배량에서 비료피해는 발견되지 않았으며, 무처리와 비교하여도 비료피해로 판단될 만한 특이한 증상은 관찰되지 않음[표 5].

표 4. 비료피해의 판정기준.

정도	판정기준
0	육안으로 비료피해가 인정되지 않음
1	아주 가벼운 비료피해로서 작은 약반이 약간 인정됨
2	처리된 잎의 소부분에서 비료피해가 인정됨
3	처리된 잎의 50퍼센트 정도 비료피해가 인정됨
4	상당한 피해를 받고 있으나 아직 건전한 부분이 남아 있음

표 5. 시제품의 비료피해 조사 결과(7, 14, 21일차).

자모머	÷1=1=7		비료피해(0~4)			
작물명	처리구 —	7일차	14일차	21일차	증상	
	무처리	_	_	_	_	
고추	기준량	0	0	0	없음	
·	배량	0	0	0	없음	
	무처리	_	_	_	_	
배추	기준량	0	0	0	없음	
	배량	0	0	0	없음	
	무처리	_	_	_	_	
상추	기준량	0	0	0	없음	
	배량	0	0	0	없음	
	무처리	_	_	_	_	
오이	기준량	0	0	0	없음	
	배량	0	0	0	없음	
	무처리	_	_	_	_	
콩	기준량	0	0	0	없음	
	배량	0	0	0	없음	

[○] 시제품의 잔류농약 463종에 대한 검출여부를 확인하기 위해 LC-MS/MS와 GC-MS/MS 를 이용하여 분석한 결과, 463종의 잔류농약에 대해 불검출로 확인됨[그림 21].

#### 잔류농약 시험(검사)성적서

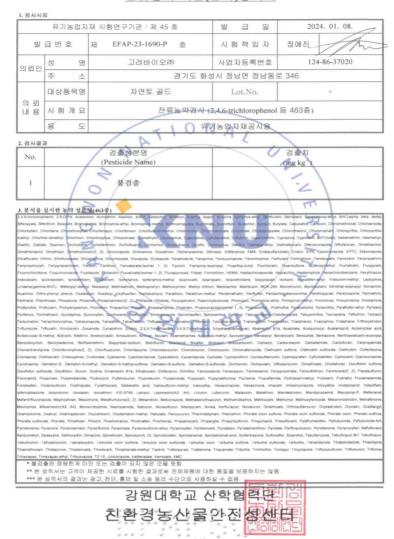



그림 21. 시제품의 잔류농약 463종 검사 결과.

#### 3) 시제품의 농가실증시험

○ 시제품을 안동시에 소재한 딸기 재배농가와 화성시에 소재한 오이 재배농가에서 포장시험을 수행하였음[그림 22].



그림 22. 포장시험 전경(좌: 딸기, 우: 오이).

○ 딸기 정식 전 시제품 기준량(30kg/10a)과 배량(60kg/10a)을 혼합유박(200kg/10a)과 함께 토양혼화처리하고 정식 70일 후, 딸기의 수확량을 조사함. 무처리구에는 혼합유박만 처리함.

○ 정식 후, 7, 14, 21일 후에 육안으로 관찰하여 비료피해의 판정기준에 따라 비료피해 여부를 판단함[표 6]. 시험기간 동안 시제품 기준량, 배량 처리구에서 비료피해는 발견되지 않았으며, 무처리구와 비교하여도 비료피해로 판단될 만한 특이한 증상은 관찰되지 않음[표 7].

표 6. 비료피해의 판정기준.

정도	판정기준
0	육안으로 비료피해가 인정되지 않음
1	아주 가벼운 비료피해로서 작은 약반이 약간 인정됨
2	처리된 잎의 소부분에서 비료피해가 인정됨
3	처리된 잎의 50퍼센트 정도 비료피해가 인정됨
4	상당한 피해를 받고 있으나 아직 건전한 부분이 남아 있음

표 7. 시제품의 비료피해 조사 결과.

처리구		비료피해(0~4)		비료피해
서디ㅜ	7일차	14일차	21일차	증상
무처리	_	_	_	_
기준량	0	0	0	없음
 배량	0	0	0	 없음

○ 시제품 처리구는 3.44kg/m²로 무처리구 2.87kg/m² 보다 높은 수확량을 나타내어 무처리구 대비 119.72%의 수확량 증대 효과를 확인함[표 8].

표 8. 시제품의 딸기에 대한 수확량 증대 효과.

처리구		수확량	(kg/m²)		지수
저디ㅜ	l 반복	반복	Ⅲ반복	평균	(%)
시제품	3.32	3.54	3.46	3.44	119.7
무처리	2.58	2.87	3.17	2.87	_

○ 오이 정식 전 시제품 기준량(30kg/10a)과 배량(60kg/10a)을 혼합유박(200kg/10a)과 함께 토양혼화처리하고 정식 65일 후, 딸기의 수확량을 조사함. 무처리구에는 혼합유박만 처리함.

○ 정식 7, 14, 21일 후에 육안으로 관찰하여 비료피해의 판정기준에 따라 비료피해 여부를 판단함[표 9]. 시험기간 동안 시제품 기준량, 배량 처리구에서 비료피해는 발견되지 않았으며, 무처리구와 비교하여도 비료피해로 판단될 만한 특이한 증상은 관찰되지 않음[표 10].

표 9. 비료피해의 판정기준.

정도	판정기준
0	육안으로 비료피해가 인정되지 않음
1	아주 가벼운 비료피해로서 작은 약반이 약간 인정됨
2	처리된 잎의 소부분에서 비료피해가 인정됨
3	처리된 잎의 50퍼센트 정도 비료피해가 인정됨
4	상당한 피해를 받고 있으나 아직 건전한 부분이 남아 있음

표 10. 시제품의 비료피해 조사 결과.

뉘미그		비료피해(0~4)	1	비료피해
처리구	7일차	14일차	21일차	증상
무처리	_	_	_	_
기준량	0	0	0	 없음
배량	0	0	0	없음

○ 시제품 처리구는 8.45kg/0㎡로 무처리구 7.63kg/㎡ 보다 높은 수확량을 나타내어 무처리구 대비 110.75%의 수확량 증대 효과를 확인함[표 11].

표 11. 시제품의 오이에 대한 수확량 증대 효과.

처리구		수확량	(kg/m²)		지수
지니ㅜ	l 반복	반복	Ⅲ반복	평균	(%)
시제품	8.24	8.26	8.85	8.45	110.75
무처리	7.51	7.66	7.72	7.63	_

2-2. 공동과제(안동대학교) : 사과 주요병해 방제용 미생물제제 현장활용기술 개발 및 사업화

- (1) 사과 탄저병 약제 저항성 검정 및 저항성 균에 대한 미생물 제제 효과검정
- 1) 사과 탄저병 병원균 조사
- □ 사과 탄저병 이병과 채집 및 병원균 분포 분석
- 선행 연구 기간을 포함하여 2020년부터 2023년 4년간 사과 탄저병 이병과를 경상북도, 경상남도, 충청북도 강원특별자치도의 사과 재배지역에 직접 방문하여 이병과를 채집하였다. 그 결과 총 783개의 사과 탄저병 병원균을 채집하였고, 이를 실험실 내로 가져와 병반으로부터 PDA배지에 병원균을 순수 분리하여 핵산을 토대로 염기서열 분석을 수행하였고, 분석된 염기서열은 NCBI(National Center for Biotechnology Information)의 BLAST를 이용하여 Genbank에 등록되어 있는 미생물과 비교분석 하였다. 이때 상기 염기서열 분석을 위해, 프라이머로써 GDF 프라이머 (5'- GCC GTC AAC GAC CCC TTC ATT GA -3') 및 GDR 프라이머 (5'- GGG TGG AGT CGT ACT TGA GCA TGT -3')를 사용하여 최종 선발된 미생물의 16S rDNA 유전자 부분을 PCR로 증폭하였고, PCR 반응 조건은 Predenaturation (95℃, 2분), Denaturation (95℃, 1분), Annealing (60℃, 1분), Extension (72℃, 1분 30초), Total cycle (35 cycle), Final extension (72℃, 5분)으로 수행하였다. 증폭된 PCR 산물은 1% Agarose gel, 0.5× TBE buffer (0.045 M Tris-borate, 0.001 M EDTA)에서 100 V, 25mA로 40분 전기영동 후 UV 하에서 확인하였다. 이후 PCR 산물을 정제하여 염기서열 분석 전문업체 (Solgent, Daejeon, Korea)에 의뢰하였으며, Seqman (DNASTAR, USA) 프로그램을 이용하여 분석하였다.
- 동정결과를 기초로 분포도를 조사하였을 때, *Colletotrichum siamense*가 441개 (56.21%)로 가장 이 분리가 되었고 두 번째로 *C. fructicola*가 322개 (41.23%)로 많이 분리 되었다. 이 두 종이 합쳐 97.44%를 형성하였으며, 국내 사과 탄저병의 우점종은 이 *C. siamense*와, *C. fructicola*두 종으로 판단된다. 이외의 종으로는 *C. gloeosporioides* (10개, 1.28%), *C. aenigma* (2개 0.26%), *C. conoides* (2개, 0.26%), *C. nymphaeae* (2개, 0.26%), *C. fioriniae* (2개 0.26%)로 총 7종의 사과탄저병원균을 동정하였다. *C. conoides* 는 본 연구팀이 국내에서 최초로 발견된 사과탄저병 종으로 동정되었다[그림 1, 2].
- 종 분포도에서 보면 경북 북부지역을 기준으로, 경북 북부지역과, 강원특별자치도의 경우 *C. siamense*가 많은 분포를 나타내며, 경북 남부를 기준으로 경북 남부지역과, 경남 지역은 *C. fructicola*가 우세한 분포를 보여주었다. 이는 현재까지 분석된 결과로 2종이 우점하고 있지만, 위도에 따른 일부 기상 조건이 이 우점종을 나타내는 기준점이 된다고 생각된다.

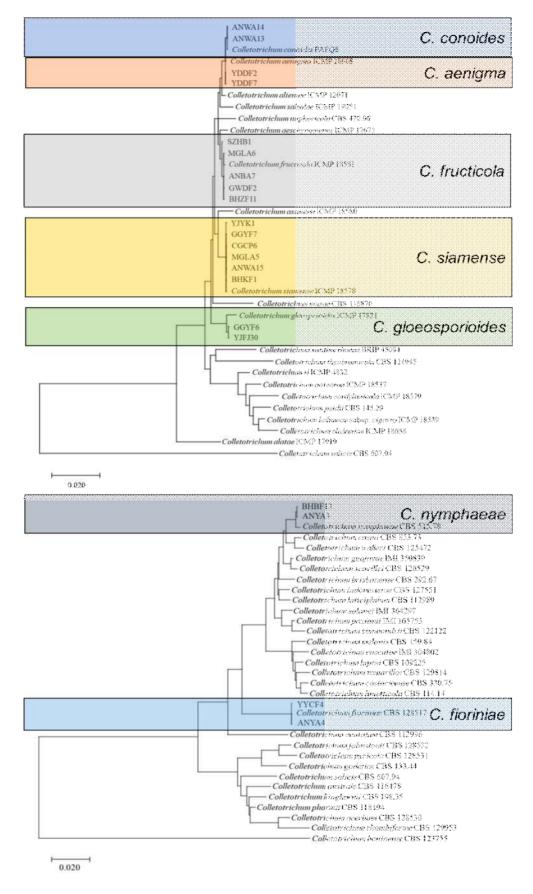



그림 1. Maximum Likeilhood Tree. 경북, 경남 22개 시/군, 39개 과원에서 채집한 대표 사과탄저병균주에 대한 근연관계.

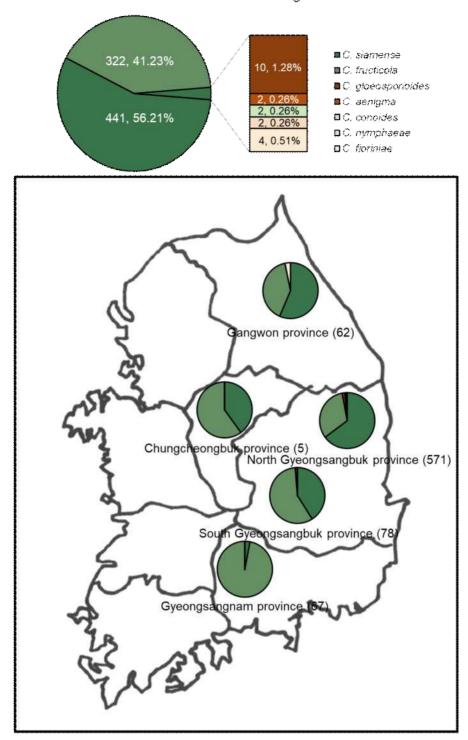



그림 2. 국내 사과 재배지역에서 채집한 사과탄저병원균의 분포도. 총 7종 동정되었으며, *C. siamense* 411균주, *C. fructicola* 322균주, *C. gloeosporioides* 10균주, *C. aenigma* 2균주, *C. conoides* 2균주, *C. nymphaeae* 2균주, *C. fioriniae* 2균주로 동정되었다.

#### 2) 병원균의 균학적 연구

#### □ 대표균주의 선발

○ 균학적 연구를 진행하기 위하여 분리된 사과 탄저병 병원균들 중 *C. siamense* GGYF7, *C. fructicola* YYCF3, *C. aenigma* YDDF7, *C. gloeosporioides* YJFJ30, *C. conoides* ANWA13, *C. fioriniae* ANYA4, *C. nymphaeae* BHBF13 균주를 선발하여 진행하

였다.

- □ 대표균주의 형태학적 연구
- 사과탄저병균 7종의 형태학적 연구를 위하여 PDA배지에 3 mm 직경의 병원균을 접종하여 25℃ 배양기에서 7일간 배양한 후, 배지위의 생육 모양을 관찰, 이후 배지위의 분생포자를 수확하여, 현미경을 이용하여 분생포자의 모양을 관찰하고, 부착기 형성을 유도하여, 부착기 모양을 관찰하였다.
- □ 사과 탄저병의 온도별 균사생장, 포자발아, 부착기 형성 차이
- 사과 탄저병의 병원균의 우점종이 기온에 연관이 있다고 생각되어 이에 대한 기초 연구를 수행하였음. 사과 탄저병 병원균 7종을 1 mm 균사 플러그를 제작하여 PDA 배지에 접종한 후 각각 20, 25 30 35℃ 배양기에 넣어 7일간 배양한 후 1일 마다 길이를 재 균사생장률을 조사하였다.
- 이후 이 7개 균주의 분생포자를 1 × 10⁴ conidia/ml만큼 희석하여 포자 현탁액을 제조하였다. 제조된 포자 현탁액을 멸균된 슬라이드 글라스에 10 μl 분주하여 커버글라스로 덮은 뒤 12시간 뒤에 관찰하여 분생포자 발아 여부와 부착기 형성여부를 관찰하였다. 분생포자 발아의 경우 발아된 균사가 분생포자 보다 길게 발아한 경우만 세었고, 부착기의 형성은 부착기와 분생포자가 연결되어 하나로 보이는 것들만 세어서 결과를 내었다.
- 온도별 균사생장률 증감여부를 실험한 결과 모든 온도에서 *Colletotrichum acutatum* species complex의 생장 속도가 *Colletotrichum gloeosporioides* species complex에 비해 현저히 느린 것을 확인 할 수 있었다. 이는 종 복합체 간의 기본적인 차이로 보이며, 35℃에서는 전혀 성장하지 않는 것을 보여주었다. *Colletotrichum acutatum* species complex에 속하는 *C. nymphaeae*와 *C. fioriniae*는 고온에 약하며 25℃에서 최적의 생장률이 보여진다. *Colletotrichum gloeosporioides* species complex에 속하는 5종의 경우역시 25℃에서 최적의 생장률이 보이나 *C. fructicola*의 경우 20℃에서 다른 종보다 가장 생장률이 높았으며, 35℃에서 낮은 생장률을 보였다. *C. siamense*의 경우 *C. fructicola* 다음으로 온도에 덜 민감하게 생장하였다.
- 분생포자 발아률에서 이 둘의 차이가 극명하게 갈라졌는데. 상대적으로 *C. fructicola*의 경우 35°C에서 균사 생장 속도가 상대적으로 느렸으나, 분생포자 발아률에서는 가장 높은 발아률을 기록하였다. *C. siamense*의 경우 35°C에서 높은 균사생장률을 보였으나 분생포자 발아률에서 거의 발아를 하지 못하였다. 이 실험으로 미루어 보아 *C. fructicola* 와 *C. siamense*의 우점의 차이는 사과 탄저병 발병 시기에 과원의 평균온도가 영향을 미칠 것이라고 판단된다[그림 3].

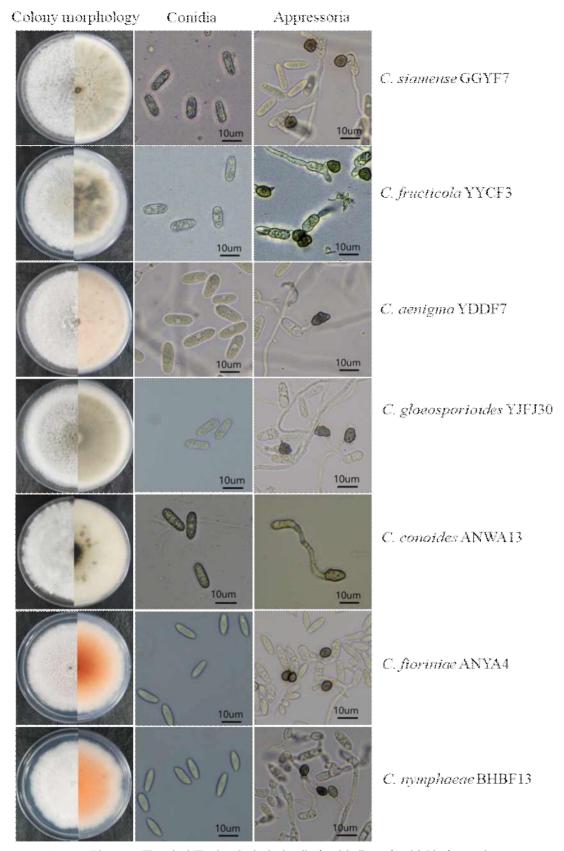



그림 3. 7종 병원균의 배지위의 생장, 분생포자, 부착기 모양.

#### □ 대표균주의 병원성 연구

○ 사과탄저병균 7종의 품종과 온도에 따른 병원성 연구를 위하여 병원균을 PDA배지에서 7일간 배양한 후 분생포자를 수확하여 1X10⁵ conidia/ml로 희석하여 병원성 검정에 이용하였다. 병원성 검정에 사용된 사과 과실은 3가지 품종(아오리, 홍로, 후지)를 이용하였고, 이

를 20, 25, 30℃조건으로 병원성 검정을 진행하였다. 사과 과실을 1% 차아염소산나트륨 용액으로 세척한 후, 멸균증류수를 이용하여 2~3회 헹군 후 상온에 두어 건조시켜 표면살균을 진행하였다. 이후, 각각의 사과에 병원균을 접종한 후 습실처리된 멸균 플라스틱 상자에넣어 20, 25, 30℃의 배양기에 두어 7일 후에 병징의 크기를 측정하였다.

○ 사과 3개 품종에 대하여 *C. siamense*, *C. fructicola* 두 균주에서 가장 높은 병원성이 나타났으며, 이는 병원균 분리 비율과도 비슷한 결과를 나타낸다. *C. siamense*의 경우 3개 품종 모두에서 병원성이 나타났으며, 홍로 품종에서 가장 높은 병원성이 나타났다. *C. fructicola*균주의 경우 3품종 모두에서 병원성이 나타났으나, 아오리, 홍로 품종에서 30℃ 조건에서 가장 높은 병원성을 나타내었다. 이와 다른 *C. aenigma*, *C. gloeosporioides*, *C. conoides*, *C. nymphaeae*, *C. fioriniae*에서는 앞선 두 균주보다 낮은 병원성을 나타내었다 [그림 4, 5, 6, 7].

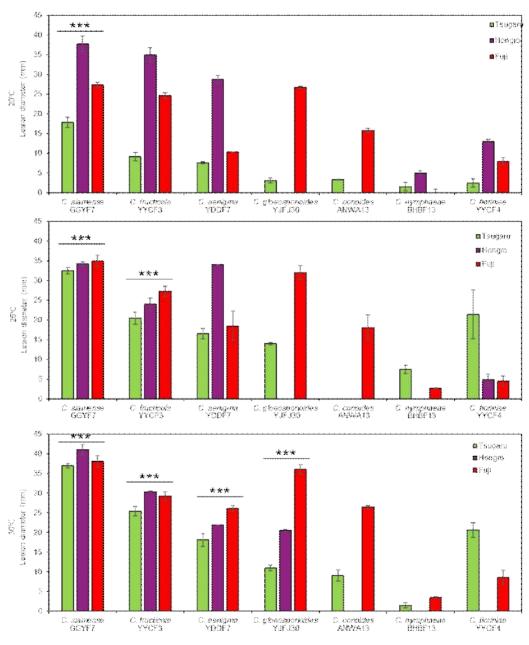



그림 4. 3품종의 온도별 병원성 검정 결과.



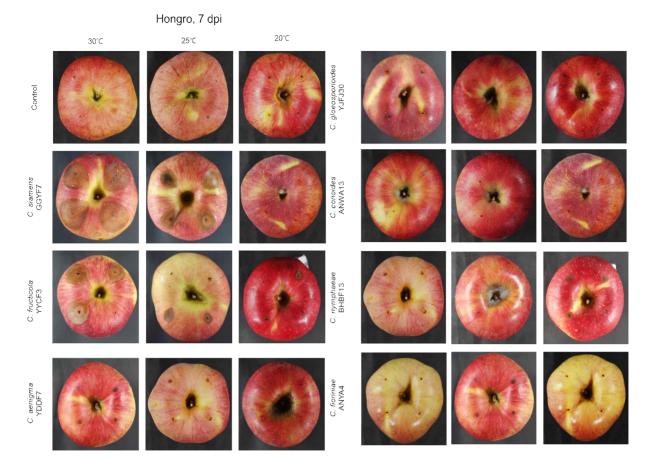



그림 5. 각 온도별, 품종별 병원섬 검정 결과.

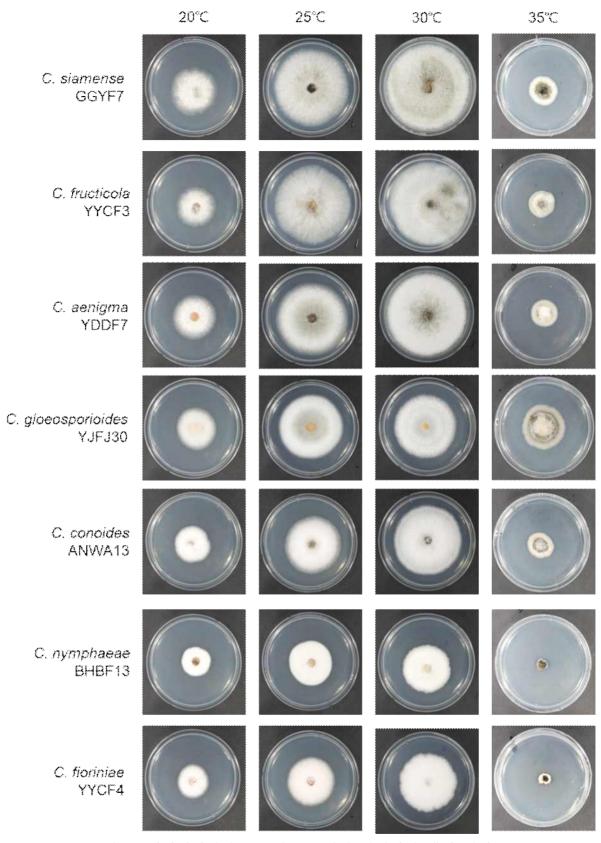



그림 6. 사과탄저병의 온도별 PDA배지 위에서의 생장 길이.

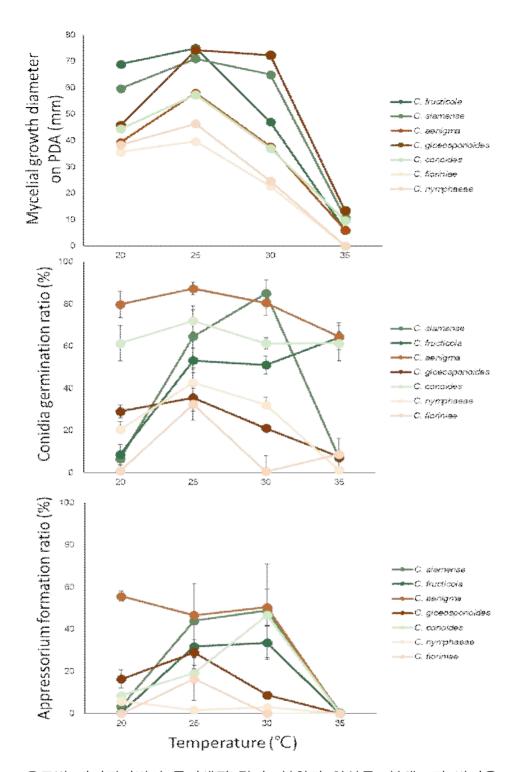



그림 7. 온도별 사과탄저병의 균사생장 길이, 부착기 형성률, 분생포자 발아율 그래프.

#### □ 사과 탄저병 우점종의 분포 특성 연구

○ 국내에서 사과 탄저병의 우점종인 *C. siamense*와 *C. fructicola*의 온도 번위를 35℃까지 추가하여 추가로 실험을 수행하였다. 이는 기존의 온도 범위에선 *C. siamense*와 *C. fructicola*의 차이를 구분하기 모호하여 온도를 더욱 넓게 설정하여 추가 실험을 진행하였다. 상기 진행 방법과 동일한 방법으로 진행하였고 추가로 온도를 35℃추가하여 배양기에서 배양하였다.

○ *C. siamense*균주는 35℃에서 균사생장을 하였으나, 포자 발아률이 현저히 낮아진 것을 알수 있었고 이를 병원성 검정에 대입할 결과 35℃상황에서는 병이 발병하지 못했다. *C.*  fructicola의 경우 35℃에서 병원성이 나타났으며, 이는 *C. fructicola*가 비교적 고온에도 병원성을 유지 하여 과원의 평균 온도가 높을 경우 *C. fructicola*가 우점할 가능성을 시사한다[그림 8].

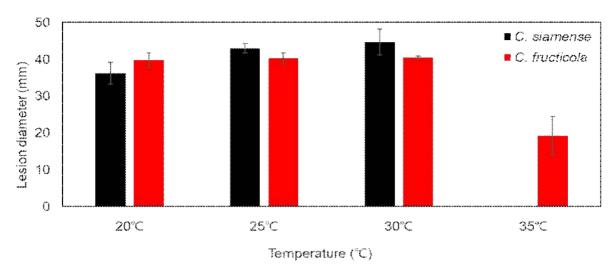



그림 8. C. siamense, C. fructicola의 온도 조건에 따른 병원성 여부

#### 3) 사과 탄저병 살균제 저항성 연구

○ 최근 사과 탄저병이 대발생 되고 있는 원인을 다수의 병원균에게서 유래되었을 수도 있으나, 분포 비율을 보았을 때 *C. siamense*와 *C. fructicola*의 비율이 압도적으로 높다. 이는 탄저병의 대발생이 병원균의 다양성도 하나의 사유가 될 수 있으나, 특정 살균제에 저항성이 발생해서 대발생 하였을 가능성이 있기 때문에 본 연구팀은 2020년도, 2023년도 분리한 탄저병원균에서 지역별로 대표 균주를 랜덤하게 선발하여 살균제 시험을 진행하였다.

#### □ 살균제 선발 (1차 실험)

○ 시험에 사용된 살균제는 작물보호 지침서에 등록된 사과 탄저병 방제용 살균제를 유효 성분 별로 선발하여 총 16개를 선발하였다[표 1].

표 1. 시험에 사용된 살균제.

MoA Code	계통	상표명 (제조사)	품목명	제형	작용기작	공시효과
나1	카바메이트	톱신엠 (경농)	Thiophanate-methyl	WP	-	_
나5	벤지미다졸계	아리베노밀 (농협케미컬)	Benomyl	WP	침투이행성	치료예방
		오티바 (신젠타)	Azoxystribin	SC	생육억제	치료예방
Elo.	ᇫᆮᆿᄞᆯᅴᆌ	카브리오 (경농)	Pyraclostrobin	EC	생육억제	예방
다3 스	스트로빌루린계 -	에이플 (팜한농)	Trifloxystrobin	WG	호흡억제	예방
	_	해비치 (성보화학)	Kresoximmethyl	WG	생육억제	예방

MoA	계통	상표명	품목명	제형	작용기작	공시효과
Coode		(제조사)				
다5	디니트로아니린계	후론사이드	Fluazinam	WP	포자발아,	예방
		(팜한농]	Παεπαπ	V V I	균사생장저해	~II O
		실바코	Tebuconazole	WP	침투이행성	치료예방
		(바이엘)	rebuconazoie	V V I	<u> </u>	————————————————————————————————————
사1	트리아졸계	푸르겐	Difenoconazole	WP	침투이행성	치료예방
7/11	그디어크게	(경농) 살림꾼	Direflocoflazole	VVF	<b>11488</b>	시파에이
		살림꾼	Metconazole	SC	침투이행성	치료예방
		(동방아그로)	Metconazoie	30	검무역행정	시프,에당
	구아니딘계	베푸란	iminoctadine triacetate	SL	지질합성자해제	예방
	구아니 단계	(동방아그로 팜한농)		SL	VIEROVINI	에당
	 유기염소계	다코닐	Chlorothalonil	WP	보호살균	 예방
	T/1日上州	<u>(경농)</u> 안트라콜	Chlorothalomi	VVF	포오글린	에 3
		안트라콜	Draninah	\ <b>\</b> /D		
카	으기 오하게	(바이엘)	Propineb	WP	_	_
71	유기유황계	다이센엠-56	Managada	\A/D		
		(경농,팜한농)	Mancozeb	WP	_	_
		델란	Dithionon	\\/D		 예방
	퀴논계 	(한국삼공)	Dithianon	WP		에당
		경농캡탄	Conton	\ <b>\</b> /D		
	트리할로메칠치오계	(경농)	Captan	WP	_	_

#### □ 병원균 선발

○ 살균제 감수성 실험을 위하여 2020~2021년에 분리하여 보관하여 있던 병원균을 분리지역 및 종별로 총 51개의 균주를 선발하여 살균제 감수성 실험을 진행하였다.

#### □ 살균제 실내 감수성 평가

○ 선발된 살균제를 PDA 배지에 각각 작물보호지침서에 등록된 정규 희석배수의 1/4, 1/2, 1, 2배로로 희석하고, 살균제가 희석된 배지의 중앙에 3mm 직경의 균사체 조각을 접종하여 7일간 25℃ 배양기에 암실조건으로 배양한 후 생장한 길이를 측정하여, 대조군 대비생장 억제율을 계산하여 억제율을 계산 하였다. 이를 기준으로 정량 희석배수의 억제율을 기준으로 저항성 유무를 판단하였다. 감수성의 척도는 4단계로 나누어서 감수성(100~90%억제), 중도저항성(89.9~70%억제), 저항성 (69.9~60%억제), 완전저항성 (59.9%이하 억제)로 판단하였다. 이후 R 프로그램의 EC50Estimator 패키지를 이용하여 EC50(반수치사농도)를 계산하였다[표 2].

표 2. 51개 균주에 대한 살균제 EC50 값.

T; Trifloxystrovin, K; Kresoxim-methyl, P; Pyraclostrobin, A; Azoxystrobin, Di; Dithianone, B; Benomyl, Cl; Chlorothalonil, It; Iminoctadine-triacetate

Strain	Т	K	Р	Α	Di	В	Cl	lt
C. siamense	9							
ANBA2	786.33	143.91	275.83	31.25>	25>	175>	940.02	144.29
ANBK4	31.25>	140.76	31.25>	31.25>	25>	175>	6021.2	133.44
BHUF1	49.7	62.5	31.25>	719.88	25>	175>	2526.47	62.5>
BHZF11	67.49	511.34	31.25>	31.25>	25>	175>	360.6	62.5>
CDGS5	71.98	234.01	954.29	158.12	25>	175>	758.96	62.5>

Strain	Т	K	Р	Α	Di	В	CI	lt
CGCP11	744.42	224.11	79.06	101.29	25>	175>	2480.19	62.5>
CGCP6	244.81	176.78	69.73	31.25>	25>	175>	1511.48	62.5>
GGYF7	75.4	62.5	83.19	79.79	25>	2334.59	500.04	62.5>
GJAC2	410.32	162	120.66	88.39	25>	175>	500.43	62.5>
GJAC5	219.49	216.76	119.55	31.25>	25>	175>	800.43	62.5>
GJGD1	838.75	518.53	64.72	88.39	25>	1892.17	413.3	62.5>
GJGD5	90.91	465.28	76.12	531.39	25>	3096.34	250>	62.5>
GJGD8	423.94	150.99	88.39	71.25	25>	175>	7135.6	62.5>
GWDF4	93.67	232.45	62.5	337.72	25>	175>	250>	62.5>
MGCF2	31.25>	1033.6	113.96	62.5	25>	175>	250>	62.5>
SJMF3	441.66	223.48	78.08	88.39	25>	3300.02	3774.38	62.5>
YCJF13	131.61	1232.86	74.64	51.36	25>	175>	332.35	149.89
YDCF2	234.72	156.17	488.11	324.83	25>	175>	649.86	79.31
YDDF6	835.69	62.5	80.28	144.88	25>	175>	250>	751.66
YDJF2	353.86	62.5	124.95	31.25>	25>	175>	250>	107.09
YDJF3	379.27	1284.18	92.69	31.25>	25>	175>	250>	62.5>
YHHF2	255.21	249.03	81.93	62.5	25>	2279.78	999.94	62.5>
YHHF5	31.25>	421.25	831.5	385.05	25>	2509.87	250>	62.5>
YJTF7	152.19	994.92	88.39	31.25>	25>	175>	3573.28	154
YYCF5	592.26	535.24	835.96	31.25>	25>	175>	1932.62	86.76
YYIF5	101.81	160.56	366.37	81.43	25>	175>	337.9	149.89
C. fructicola								
ANBA7	36.85	252.35	879.97	88.39	25>	4102.04	919.72	62.5>
ANYA1	560.39	220.01	73.67	75.12	25>	700	1176.31	62.5>
BHUF6	624.51	376.28	177.88	554.67	25>	411.31	847.32	62.5>
CGCP7	691.69	176.8	144.45	69.03	25>	175>	500.36	534.64
CSHD3	117.14	62.5	70.57	46.91	25>	371.78	250>	62.5>
CSJH2	93.09	1271.91	447.71	677.43	25>	2101.59	991.42	62.5>
GGYF10	132.29	218.26	77.54	31.25>	25>	550.98	862.52	62.5>
<u>GGYF3</u>	31.25>	62.5	94.25	352.81	25>	175>	821.89	62.5>
GJAC1	817.05	159.9	71.63	31.25>	25>	2476.23	707.11	62.5>
GWDF2	957.36	595.58	31.25>	55.97	25>	175>	781.42	263.81
PHJF9	649.16	161.48	31.25>	88.39	25>	2051.9	337.91	62.5>
SJSF2	31.25>	2162.27	37.33	31.25>	25>	175>	844.64	62.5>
SZHB1	966.26	176.78	79.56	31.25>	25>	2256.6	505.42	62.5>
SZHB2	143.02	180.16	85.91	31.25>	25>	1530.75	707.13	62.5>
YDCF3	141.14	161.67	85.76	31.25>	25>	2866.15	707.11	62.5>
<u>YJYK8</u>	60.7	176.78	146.39	88.39	25>	175>	710.05	558.97
<u>YSHF3</u>	93.52	213.93	31.25>	590.46	25>	175>	250>	62.5>
YYCF2	466.39	1351.44	31.25>	96.67	25>	175>	782.46	62.5>
YYIF3	804.92	81.56	124.98	31.25>	25>	175>	998.47	62.5>
C. aenigma								
YDDF2	76.73	176.78	312.66	125	25>	175>	3676.98	62.5>
C. gloeospo								
GGYF6	64.9	275.74	80.19	51.37	25>	578.51	872.28	62.5>
C. conoides								
ANWA13	263.75	466.94	135.94	157.92	25>	461.35	251.22	62.5>
ANWA14	227.24	668.22	132.18	1455.9	1138.67	175>	14672	62.5>
C. nymphae								
ANYA3	74.64	227.55	31.25>	31.25>	25>	3428.72	288.01	194.05
C. fioriniae								
YYCF4	115.87	125	31.25>	31.25>	25>	175>	785.52	1513.49

[□] Strobilurin계 살균제와 Benzimodazole계 살균제의 작용부위의 유전적 돌연변이 검정

[○] 선발된 살균제 중 Strobilurin계 살균제는 Cytochrome *bc1* 유전자의 143 번째 아미노산 돌연변이(G143A)에 의하여 살균제에 저항성이 발현된다. 또한 Benzimidazole계의 살균제는 β-Tubulin의 198번째 아미노산 돌연변이(E198A)에 의하여 살균제에 저항성이 발현된다고 알려져 있다(FRAC; Fungicide Resistance Action Committee). 본 연구진은 51개의 균주의 Cytochrome *bc1*, β-Tubulin 유전자를 부분 증폭하여 돌연변이유무를 확인하였고, 배지 검정결과와 돌연변이 유무를 종합하여 대표균주를 선발하여, 과실에 살균제를 처리 한후 균주를 접종하여 살균제 저항성 유무를 검정하였다[표 3, 4].

^{○ 51}개 균주 중 21개의 균주에서 돌연변이를 확인하였고, 이 중 배지 검정에서 가장 높

은 억제력을 보인 *C. fioriniae* YYCF4, 중도 저항성을 보인 *C. siamense* CGCP6, *C. siamense* GGYF7, 완전 저항성을 보인 *C. conoides* ANWA13 균주를 선발하여 과실 검정을 진행하였다. 과실 검정은 사과 과실(품종; 후지)를 표면살균 한 후, Pyraclostrobin, Thiophanate-Methyl 살균제를 작물보호지침서에 따른 권장농도로 희석하여 사과 과실에 처리하였고, 이후 상온에서 건조 시킨후 각 병원균을 처리하여 7일 후에 병원성을 측정였고 Strobilurin계 살균제와 Benzimidazole 살균제는 배지 검정보다 유전학적 돌연변이 분석이 더욱더 정확한 값을 나타내는 것을 알 수 있다[그림 9].

표 3. Cytochrome bc1의 유전자 증폭.(붉은 글씨로 나타난 부분이 143번째 아미노산)

																	•		
Strains							P	rote	in	SEQ	<u>UEN</u>	1CE	<u>S</u>						
<i>C. aenigma</i> NBG-2		Р	Υ	G	Q	М	S	L	*	Α	Α	Т	V	- 1	Τ	Ν	L	- 1	•••
C. fruticola HZJ-2		Ρ	Υ	G	Q	M	S	L	*	Α	Α	Τ	V	1	Τ	Ν	L	-	
C. siamense YYIF5		Р	Υ	G	Q	М	S	L	*	Α	Α	Τ	V	I	Τ	Ν	L	I	
C. siamense YYCF5		Р	Υ	G	Q	М	S	L	*	Α	Α	Т	V	I	Т	Ν	L	1	
C. siamense CJTF7		Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	I	Т	Ν	L	I	
C. siamense YHHF5		Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	I	Т	Ν	L	I	•••
C. siamense YHHF2	•••	Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	I	Т	Ν	L	I	•••
C. siamense YDFJ3		Р	Υ	G	Q	М	S	L	*	Α	Α	Т	V	I	Т	Ν	L	I	•••
C. siamense YDJF2		Р	Υ	G	Q	М	S	L	*	Α	Α	Т	V	I	Т	Ν	L	I	•••
C. siamense YDDF6		Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	I	Т	N	L	T	
C. siamense YDCF2		Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	I	Т	N	L	1	
C. siamense YCJF13		Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	ı	Т	N	L	ı	
C. siamense SJMF3	•••	Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	I	Т	Ν	L	ı	
C. siamense MGCF2		Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	ı	Т	N	L	T	•••
C. siamense GWDF4		Р	Υ	G	Q	М	S	L	*	Α	Α	Т	V	ı	Т	N	L	T	•••
C. siamense GJGD5		Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	ı	Т	N	L		
C. siamense GJGD1		Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	ı	Т	N	L	T	
C. siamense GJAC5		Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	ı	Т	N	L		
C. siamense GJAC2		Р	Υ	G	Q	М	S	L	*	Α	Α	Т	V	1	Т	N	L	$\overline{}$	
C. siamense GGYF7		P	Υ	G	Q	М	S	L	*	Α	Α	Т	V	1	Т	N	L		
C. siamense CHCP6		Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	1	Т	N	L	T	
C. siamense CHCP11		Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	1	Т	N	L	<u> </u>	
C. siamense CDGS5		<u>.</u> Р	Y	G	Q	M	S		*	A	A	T	V	i	T	N		÷	
C. siamense BHZF11		<u>.</u> Р	Y	G	Q	М	S		*	G	A	T	V	<u> </u>	T	N		÷	
C. siamense BHUF1		Р	Y	G	Q	M	S		*	G	A	T	V	<u> </u>	T	N		i	
C. siamense ANBK4		P	Y	G	Q	М	S	ī	*	A	Α	T	V	i	T	N	L	Ť	
C. siamense ANBA2		P	Υ	G	Q	М	S	L	*	G	Α	T	V	1	T	N	L	<u> </u>	
C. nymphaeae ANYA3		P	Y	G	Q	М	S	L	*	G	Α	T	V	i	T	N	L	i	
C. gloeosporioides GGYF6		<u>.</u> Р	Y	G	Q	М	S		*	G	A	T	V	i	T	N	L	÷	
C. fructicola YYIF4		<u>.</u> Р	Y	G	Q	М	S	L	*	G	A	T	V	<u> </u>	T	N	L	÷	
C. fructicola YYCF2		<u>.</u> Р	Y	G	Q	М	S		*	G	A	T	V	i	T	N		÷	
C. fructicola YSHF3		<u>.</u> Р	Y	G	Q	M	S	L	*	A	A	T	V	<u> </u>	T	N	L	÷	
C. fructicola YJYK8		<u>.</u> Р	Y	G	Q	M	S	_ <u>-</u> _	*	G	A	Ť	V	i i	T	N	L	÷	
C. fructicola YDCF3		<u>.</u> Р	Y	G	Q	M	S	L	*	G	Α	T	V	<u> </u>	T	N	L	÷	
C. fructicola SZHB2		<u>.</u> Р	Ү	G	Q	M	S	L	*	G	A	T	V	<u> </u>	T	N	L	÷	
C. fructicola SZHB1		<u>'</u> Р	Y	G	Q	M	S	L	*	G	A	T	V	· ·	T	N	L	÷	<del></del>
C. fructicola SJSF2		 P	Y	G	Q	M	S	L	*	A	A	T	V	<u> </u>	T	N	L	<del>.</del>	
C. fructicola PHJF9		<u>.</u> Р	Y	G	Q	M	S	L	*	A	A	T	V	·	T	N	L	÷	
C. fructicola GWDF2		 	Y	G	Q	M	S	L	*	A	A	T	V	<u> </u>	T	N	L		
C. fructicola GWD1 2  C. fructicola GJAC1		P	Y	G	Q	M	S	L	*	A	A	T	V	<u>'</u>	T	N	L	<u> </u>	
C. fructicola GGYF3		P	Y	G	Q	M	S		*	A		T	V	<u>'</u>	T	N	L	<u>'</u>	
C. fructicola GGYF10		<u>Р</u> Р	Y	G	Q	M	S	L L	*	G	<u>А</u> А		V	<u>'</u> 	T	N N	L		
C. fructicola GGTFT0  C. fructicola GGTFT0		<u>Р</u> Р	Y	G	Q		S			<u>А</u>		<u>'</u>	V	1	<u>'</u> 				
						M		<u>L</u>	*		A	<u>'</u>		1		N N	L		
C. fructicola CSHD3		P	Y 	G	Q	M	S	L	*	G	A		V	<u> </u>		N N	L		<del></del>
C. fructicola CGCP7	•••	Р	Υ	G	Q	М	S	L	*	Α	Α	T	V	ı	T	N	L		

Strains						F	rote	in :	SEQ	UEI	NCE	S						
C. fructicola BHUF6	 Р	Υ	G	Q	М	S	L	*	Α	Α	Т	V	-	Т	Ν	L	I	
C. fructicola ANYA1	 Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	-	Т	Ν	L	- 1	
C. fructicola ANBA7	 Р	Υ	G	Q	М	S	L	*	Α	Α	Т	V	-	Т	Ν	L	- 1	
C. fioriniae YYCF4	 Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	1	Т	Ν	L	- 1	
C. conoides ANWA13	 Р	Υ	G	Q	М	S	L	*	Α	Α	Т	V	-	Т	Ν	L	I	
C. conoides ANWA14	 Р	Υ	G	Q	М	S	L	*	Α	Α	Т	V	-	Т	Ν	L	I	
C. aenigma YDDF2	 Р	Υ	G	Q	М	S	L	*	G	Α	Т	V	I	Т	Ν	L	ı	

표 4. 51개 균주의 β-Tubulin 유전자의 증폭.(붉은 글씨로 나타낸 부분이 198번째 아미노 산)

Strains							Р	rote	in	SEQ	UEN	ICE	S						
C. aenigma NBG-2		L	V	E	N	S	D	Α	Т	F	С	ī	D	N	E	Α	L	Υ	
C. fruticola HZJ-2		L	V	E	N	S	D	Α	Т	F	С	1	D	N	E	Α	L	Υ	<del></del>
C. siamense YYIF5		L	V	E	N	S	D	Α	Т	F	С	ı	D	N	E	Α	L	Υ	
C. siamense YYCF5		L	V	Е	N	S	D	Α	Т	F	С	1	D	N	Е	Α	L	Υ	
C. siamense CJTF7		L	V	Е	N	S	D	Е	Т	F	С	1	D	N	Е	Α	L	Υ	
C. siamense YHHF5		L	V	Е	N	S	D	Е	Т	F	С	ı	D	N	Е	Α	L	Υ	
C. siamense YHHF2		L	V	Ε	N	S	D	Е	Т	F	С	ı	D	N	Е	Α	L	Υ	<del></del>
C. siamense YDFJ3		L	V	Е	Ν	S	D	Α	Т	F	С	ı	D	N	Ε	Α	L	Υ	
C. siamense YDJF2		L	V	Е	N	S	D	Α	Т	F	С	ı	D	N	Ε	Α	L	Υ	
C. siamense YDDF6		L	V	Е	Ν	S	D	Е	Т	F	С	I	D	Ν	Е	Α	L	Υ	
C. siamense YDCF2		L	V	Ε	Ν	S	D	Е	Т	F	С	I	D	Ν	Ε	Α	L	Υ	
C. siamense YCJF13		L	V	Е	Ν	S	D	Е	Т	F	С	ı	D	Ν	Ε	Α	L	Υ	
C. siamense SJMF3		L	V	Ε	Ν	S	D	Е	Т	F	С	ı	D	Ν	Ε	Α	L	Υ	
C. siamense MGCF2		L	V	Ε	Ν	S	D	Е	Т	F	С	ı	D	Ν	Ε	Α	L	Υ	
C. siamense GWDF4		L	V	Ε	Ν	S	D	Α	Т	F	С	ı	D	Ν	Ε	Α	L	Υ	
C. siamense GJGD5		L	V	Ε	Ν	S	D	Е	Т	F	С	I	D	Ν	Ε	Α	L	Υ	••
C. siamense GJGD1		L	V	Ε	Ν	S	D	Е	Т	F	С	1	D	Ν	Ε	Α	L	Υ	••
<i>C. siamense</i> GJAC5		L	V	Ε	Ν	S	D	Е	Т	F	С	I	D	Ν	Ε	Α	L	Υ	••
<i>C. siamense</i> GJAC2		L	V	Е	Ν	S	D	Α	Т	F	С	1	D	Ν	Ε	Α	L	Υ	••
<i>C. siamense</i> GGYF7		L	V	Е	Ν	S	D	Α	Т	F	С	1	D	N	Е	Α	L	Υ	••
C. siamense CHCP6		L	V	Е	Ν	S	D	Е	Т	F	С	I	D	Ν	Ε	Α	L	Υ	
C. siamense CHCP11		L	V	Е	Ν	S	D	Е	Т	F	С	I	D	N	Е	Α	L	Υ	••
C. siamense CDGS5		L	V	Е	Ν	S	D	Α	Т	F	С	I	D	Ν	Е	Α	L	Υ	
C. siamense BHZF11		L	V	Ε	N	S	D	Е	Т	F	С	ı	D	N	Ε	Α	L	Υ	
C. siamense BHUF1		L	V	Е	N	S	D	Е	Т	F	С	ı	D	N	Е	Α	L	Υ	••
C. siamense ANBK4	•••	L	V	E	N	S	D	Α	Т	F	С	-	D	N	E	Α	L	Υ	
C. siamense ANBA2	•••	L	V	Е	N	S	D	Е	Т	F	С	-	D	N	E	Α	L	Υ	
C. nymphaeae ANYA3	•••	L	V	Е	Ν	S	D	Е	Т	F	С	I	D	N	Ε	Α	L	Υ	
C. gloeosporioides GGYF6		L	V	Е	N	S	D	Е	Т	F	С	I	D	N	E	Α	L	Υ	
C. fructicola YYIF4	•••	L	V	Е	Ν	S	D	Е	Т	F	С	I	D	N	Е	Α	L	Υ	
C. fructicola YYCF2		L	V	Е	Ν	S	D	Е	Т	F	С	I	D	Ν	Е	Α	L	Υ	
C. fructicola YSHF3		L	V	Е	N	S	D	Α	Т	F	С	ı	D	N	E	Α	L	Υ	
C. fructicola YJYK8	•••	L	V	E	N	S	D	Е	Т	F	С	ı	D	N	Е	Α	L	Υ	
C. fructicola YDCF3	•••	L	V	Е	N	S	D	Е	Т	F	С	ı	D	N	Е	Α	L	Υ	
C. fructicola SZHB2		L	V	E	N	S	D	Е	Т	F	С	-	D	N	E	Α	L	Υ	
C. fructicola SZHB1		L	V	E	N	S	D	Е	Т	F	С	ı	D	N	Е	Α	L	Υ	
C. fructicola SJSF2		L	V	Е	N	S	D	Α	Т	F	С	-	D	N	Е	Α	L	Υ	
<i>C. fructicola</i> PHJF9		L	V	Е	N	S	D	Α	Т	F	С	-	D	N	E	Α	L	Υ	
C. fructicolaGWDF2		L	V	Е	N	S	D	Α	Т	F	С	-	D	N	E	Α	L	Υ	
C. fructicola GJAC1	•••	L	V	E	N	S	D	Α	Т	F	С	-	D	N	E	Α	L	Υ	
C. fructicolaGGYF3		L	V	Е	N	S	D	Α	Т	F	С	ı	D	N	Е	Α	L	Υ	
C. fructicolaGGYF10		L	V	E	N	S	D	E	T	F	С	1	D	N	E	Α	L	Υ	
C. fructicolaCSJH2		L	V	Е	N	S	D	Α	T	F	С		D	N	E	Α	L	Υ	
C. fructicolaCSHD3	•••	L	V	Е	N	S	D	Е	Т	F	С	ı	D	N	Е	Α	L	Υ	
C. fructicolaCGCP7	•••	L	V	Ε	Ν	S	D	Α	Τ	F	С	- 1	D	Ν	Ε	Α	L	Υ	••

Strains						F	rote	ein S	SEQ	UEN	1CE	S						
C. fructicolaBHUF6	 L	V	Ε	Ν	S	D	Α	Т	F	С	ı	D	Ν	Е	Α	L	Υ	
C. fructicolaANYA1	 L	V	Ε	Ν	S	D	Ε	Т	F	С	I	D	Ν	Е	Α	L	Υ	••
C. fructicolaANBA7	 L	V	Е	Ν	S	D	Α	Т	F	С	ı	D	N	Е	Α	L	Υ	
C. fioriniaeYYCF4	 L	V	Е	Ν	S	D	Е	Т	F	С		D	Ν	Е	Α	L	Υ	
C. conoidesANWA13	 L	V	Е	Ν	S	D	Α	Т	F	С	ı	D	N	Е	Α	L	Υ	
C. conoidesANWA14	 L	V	Е	Ν	S	D	Α	Т	F	С	ı	D	Ν	Е	Α	L	Υ	
C. aenigmaYDDF2	 Ĺ	V	E	N	S	D	Е	Т	F	С	Ī	D	Ν	Ε	A	Ĺ	Y	

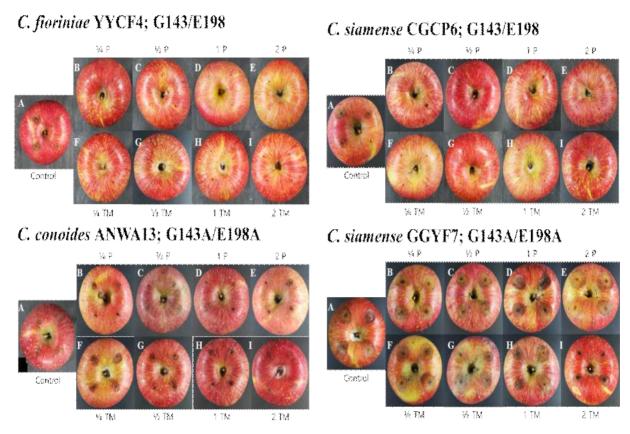



그림 9. 병원균의 돌연변이에 따른 살균제 저항성 과실 검정 결과. (P; Pyraclostrobin, TM; Thiophante-Methyl)

#### □ 살균제 선발 (2차 실험)

○ 시험에 사용된 살균제는 FRAC (Fungicide Resistance Action Committee)와, 2022년 작물보호 지침서를 참고하여, 저항성 발현이 보고된 Strobilurin계통의 Pyraclostrobi, Carbarmate계통의 Thiophanate-Methyl, Triazole계통의 살균제인 Tebuconazole, 마지막으로 Succinate dehydrogenase Inhibitor계통인 Fluxapuroxad 살균제 4개를 선발하여 진행하였다[표 5].

표 5. 살균제 감수성 시험에 사용할 살균제 정보.

MoA	계통	상표명	품목명	제형	작용기작	공시효과
Coode	গাত	(제조사)	급극장	게당	48/14	9시표되
나1	카바메이트	톱신엠(경농)	Thiophanate-Methyl	WP	_	_
사1	트리아졸	실바코(바이엘)	Tebuconazole	WP	침투이행성	치료, 예방
다3	스트로빌루린	카브리오(경농)	Pyraclostrobin	EC	생육억제	예방
다3	카복사마이드	카디스(농협케미컬)	Fluxapyroxad	SC	침투이행성	 치료, 예방

#### □ 병원균 선발

○ 시험에 사용된 병원균은 2022년에 분리된 병원균들 중 각 지역별로 분리된 병원균들 중 3균주씩을 임의로 선발하여 시험을 진행하였다.

#### □ 살균제 선발

○ 선발된 살균제를 PDA 배지에 각각 0(대조군), 0, 1, 10, 100 ppm으로 희석하고, 살균제가 희석된 배지의 중앙에 3mm 직경의 균사체 조각을 접종하여 7일간 25℃ 배양기에 암실조건으로 배양한 후 생장한 길이를 측정하여, 대조군 대비 생장 억제율을 계산하여 억제율을 계산 한 뒤 이를 R 프로그램의 EC50Estimator 패키지를 이용하여 EC50(반수치사농도)를 계산하였고, 이를 기준으로 감수성 (5>[EC50]), 중도저항성 (EC50 = 5.1-20.0), 저항성 (EC50 = 20.1-100), 고도저항성 (EC50>100)으로 측정하였다.

○ Pyraclostrobin 살균제에서는 14균주가 감수성, 7균주가 중도저항성, 5균주가 저항성, 1 균주가 고도저항성을 보였으며, Fluxapyroxad 살균제에서는 감수성 5균주, 중도저항성 10균주, 저항성 7균주, 완전저항성 5균주가 나타났고, Thiophanate-Methyl 살균제에서 감수성 16균주, 중도저항성 3균주 저항성 5균주, 고도저항성 3균주가 나타났으며, Tebuconazole 살균제에서 감수성 12균주, 중도저항성 14균주, 저항성 1균주가 나타났다[표 6].

표 6. 27 균주에 대한 살균제 EC50 값.

* S; 감수성(EC50<5), MR; 중도저항성(5<EC50<20), R; 저항성(20<EC50<80), HR; 고도 저항성(EC50 > 100)

				Fung	jicide			
Strain	Pyraclostrobin	T*	Fluxapyroxad	Т	Thiophanate- Methyl	Т	Tebuconazole	Т
ANHR2	0.095	S	12.385	MR	0.901	S	10.621	MR
ANHR3	3.162	S	15.256	MR	0.952	S	5	S
ANHR21	0.153	S	1.079	S	0.039	S	7.943	MR
YCPS1	4.545	S	15.544	MR	0.783	S	4.176	S
YCPS2	4.549	S	>100	HR	0.725	S	8.048	MR
YCSS2	1.793	S	15.371	MR	1.193	S	4.144	S
YJFJ7	57.402	R	34.377	R	15.738	MR	2.801	S
YJFJ14	>100	HR	21.865	R	34.01	R	3.3	S
YJFJ26	15.505	MR	10	MR	>100	HR	3.521	S
USFJ1	26.029	R	72.744	R	1.248	S	2.337	S
USFJ3	0.192	S	10.548	MR	18.021	MR	5.097	MR
USFJ4	21.386	R	13.296	MR	32.696	R	7.342	MR
CSFJ6	18.211	MR	11.13	MR	1.175	S	5.108	MR
_CSFJ7	14.998	MR	18.413	MR	36.116	R	49.242	R
CSFJ8	8.748	MR	10.941	MR	>100	HR	2.171	S
GCFJ24	20.293	R	3.689	S	6.596	S	2.136	S
GCFJ25	11.111	MR	>100	HR	53.919	R	2.271	S
GCFJ41	10.76	MR	20.302	R	55.571	R	5.75	MR
YYFJ2	4.259	S	>100	HR	0.14	S	6.774	MR
YYFJ3	2.156	S	53.785	R	0.126	S	9.67	MR
YYFJ9	12.9	MR	>100	HR	>100	HR	6.995	MR
BHFJ21	0.113	S	>100	HR	2.255	S	4.589	S
BHFJ24	24.564	R	39.262	R	1.961	S	3.661	S

				Fung	gicide			
Strain	Pyraclostrobin	T*	Fluxapyroxad	Т	Thiophanate- Methyl	Т	Tebuconazole	Т
BHFJ32	1.802	S	0.1>	S	3.788	S	9.131	MR
MGFJ47	3.845	S	2.688	S	2.455	S	9.231	MR
MGFJ51	0.075	S	0.1>	S	5.134	MR	10.074	MR
MGFJ53	0.064	S	54.307	R	1.556	S	9.117	MR

#### □ 살균제 선발 (3차 실험)

○ 2023년에 분리된 사과 탄저병, 사과 점무늬낙엽병, 사과 겹무늬썩음병을 포함한 총 45 개의 균주를 선발하여 진행하였다. 이후 추가로 살균제를 계통별로 추가하여 총 13종의 살균제로 실험을 진행하였다[표 7].

표 7. 2차년도 살균제 시험 살균제 목록

FRAC Code	계통	원제량(함량)
1	벤지미다졸계	thiophanate-methyl 70%
3	트리아졸계	tebuconazole 25%
7	티오펜계	Penthiopyrad 15%
11	스트로빌루린계	pyraclostrobin 22.9%
29	디니트로아니린계	fluazinam 50%
M01	무기동제	copper sulfate basic(Cu로서32%) 58%
M03	디티오카바메이트계	Metiram 60%
M03	유기유황계	mancozeb 75%
M03	유기유황계	propineb 70%
M04	트리할로메칠치오계	Captan 80%
M05	유기염소계	chlorothalonil 75%
M07	구아니딘계	iminoctadine triacetate 25%
M09	퀴논계	dithianon 43%

#### □ 균주 선발

○ 시험에 사용된 병원균은 23개의 사과탄저병원균, 15개의 사과겹무늬썩음병원균, 7개의 사과 점무늬낙엽병원균을 선발하였다. 선발기준은 1차년도와 같이 분리된 과원에서 랜덤으로 3개 이상의 분리주를 임의로 설정하였고, 분리된 병원균은 모두 순수 배양하여 실험을 설계하였다.

#### □ 살균제 감수성 실내평가

○ 선발된 살균제를 PDA 배지에 각각  $0(\text{HT} \times \mathbb{Z})$ , 0,1, 1, 10, 100, F(실제 농과원 사용 농도) ppm으로 희석하고, 살균제가 희석된 배지의 중앙에 <math>3mm 직경의 균사체 조각을 접종하여 7일간  $25^{\circ}$ C 배양기에 암실조건으로 배양한 후 생장한 길이를 측정하여, 대조군 대비생장 억제율을 계산하여 억제율을 계산 한 뒤 이를 R 프로그램의 EC50Estimator 패키지를 이용하여  $EC_{50}$ (반수치사농도)를 계산하였고, 이를 기준으로 감수성  $(5>[EC_{50}])$ , 중도저항성  $(EC_{50} = 5.1-20.0)$ , 저항성  $(EC_{50} = 20.1-100)$ , 완전저항성  $(EC_{50}>100)$ 으로 측정하였다[표 8].

Tm; Thiophanate-methyl, P; Pyraclostrobin, Pd; Penthiopyrad, It; Iminoctadine-triacetate

Isolates	Species	Tm	Р	Pd	lt
JSHR002	C. siamense	422.7588	250<	1>	1>
JHR001	C. fructicola	33.45204	250<	1>	1>
IJHR002	C. fructicola	3.125838	1>	1.270165	1>
JSFJ003	C. siamense	9.381727	163.1933	28.17951	1.903323
JSFJ001	C. siamense	1>	1>	1>	75.649
TBHR003	C. siamense C. fioriniae	1>	326451.7	1>	9.040726
JSHR018		1>	7.142933	1>	157.1244
JSHR017	C. siamense C. siamense	1>	90.89465	1>	29.24735
JSHR017 JSHR006		1355.177	22.16518	19.61001	1>
JSHR008	C. siamense	1.005503	1>	1>	250< 1>
PCHR015	C. fructicola	110.6713	250<	1>	
PCHR016	C. fructicola	1>	16.5481	1>	0.139369
TBHR001	C. siamense	1>	7.28953	1>	250<
TBHR002	C. siamense	1>	25.97474	1>	250<
YWJF005	C. siamense	9635.771	67.22404	1>	0.108205
JSHR007	C. siamense	1>	1.840407	1>	250<
PCHR004	C. fructicola	446.585	250<	1>	0.200826
YWFJ008	C. fioriniae	2668.6	11.4135	7.271473	1>
PCHR005	C. fructicola	1>	6.342053	1>	0.176623
SCHR04	C. siamense	1>	1>	1>	1196.607
PCHR010	C. fructicola	150.2365	176.9632	1>	0.111679
PCHR008	C. fructicola	461.6559	51.73906	1>	1>
ANFJ013	B. dothidea	1.010536	1>	14.26373	0.064006
ANFJ014	B. dothidea	1.241802	250<	3.778018	0.42566
ANFJ012	B. dothidea	1.470426	250<	4.300931	0.714782
MGCW001	B. dothidea	1.580691	12.54887	15.9054	0.233793
MGCW002	B. dothidea	1.270432	1>	9.151875	0.432115
MGCW003	B. dothidea	1.171173	4.961234	11.57068	1>
CSFJ012	B. dothidea	1.058768	8.46868	15.96329	0.640486
CSFJ013	B. dothidea	1.402911	1>	13.98343	0.299823
YGFJ005	B. dothidea	1.177218	8.95193	11.18848	0.399614
YGFJ003	B. dothidea	1.477362	1>	6.919242	0.643128
YGFJ002	B. dothidea	1.130293	6249459	4.141577	0.275766
YJFJ035	B. dothidea	1>	1>	12.12069	40.10314
YJFJ037	B. dothidea	1.784296	250<	16.92858	45.71774
YJBY011	B. dothidea	1.059018	26.80029	12.2407	30.66938
apa12	A. alternata	1>	123.6375	1>	0.829154
apa4	A. alternata	1120.996	250<	1>	1.355598
apa9	A. alternata	1.327163	250<	35.58953	1>
ap26-1	A. alternata	4.577539	200.9352	1.61107	0.641041
apa3	A. alternata	7.466053	1.38833	1>	0.379851
ANFJ011	A. alternata	100.008	250<	100<	0.587302
ap33-2	A. alternata	1>	250<	1.316289	1>

Tb; Tebuconazole, Dt; Dthianon, Cp; Captan, Pb; Propineb

Isolates	Species	Tb	Dt	Ср	Pb
JSHR002	C. siamense	1.186914	430<	15.74457	317.2906

Isolates	Species	Tb	Dt	Ср	Pb
IJHR001	C. fructicola	1.188227	86.53889	22.78164	15.16877
IJHR002	C. fructicola	1.536164	430<	22.60415	29.2947
JSFJ003	C. siamense	2.945954	168.337	68.89998	94.83427
JSFJ001	C. siamense	2.466916	430<	16.95865	34.25458
TBHR003	C. fioriniae	1>	66.91586	31.58778	9.230644
JSHR018	C. siamense	3.075521	661.8723	15.25183	5.747303
JSHR017	C. siamense	4.230124	89.51955	20.28583	49.7957
JSHR006	C. siamense	1>	316.2999	9.983846	584.3125
JSHR008	C. siamense	1>	316.2999	27.11583	31.62884
PCHR015	C. fructicola	1>	26.71448	14.16185	1155<
PCHR016	C. fructicola	1.020443	159.1483	15.2824	1155<
TBHR001	C. siamense	4.612785	430<	31.84644	1155<
TBHR002	C. siamense	1.064027	430<	33.06669	244.1636
YWJF005	C. siamense	1>	430<	30.36549	1147.182
JSHR007	C. siamense	1.170922	24.96466	25.96449	51.19617
PCHR004	C. fructicola	1>	430<	21.87476	1155<
YWFJ008	C. fioriniae	6.541725	3.935154	21.20937	30.76509
PCHR005	C. fructicola	1.117879	71.03065	14.77575	28.23925
SCHR04	C. siamense	1>	430<	22.03686	5.340363
PCHR010	C. fructicola	1>	430<	18.70021	2022.306
PCHR008	C. fructicola	1>	430<	28.50902	173.746
ANFJ013	B. dothidea	1>	430<	72.3423	10.29189
ANFJ014	B. dothidea	1>	430<	36.2062	9.655554
ANFJ012	B. dothidea	1>	430<	63.25587	10.17029
MGCW001	B. dothidea	1>	430<	71.70601	9.486947
MGCW002	B. dothidea	1>	430<	40.09776	9.454703
MGCW003	B. dothidea	1>	430<	73.35468	10.06575
CSFJ012	B. dothidea	1>	430<	60.68625	10.29189
CSFJ013	B. dothidea	1.206529	430<	68.11089	9.739568
YGFJ005	B. dothidea	1>	430<	66.40767	10.17029
YGFJ003	B. dothidea	1>	430<	87.03611	33.19556
YGFJ002	B. dothidea	1>	430<	70.55203	10.29189
YJFJ035	B. dothidea	1>	430<	77.27744	10.54257
YJFJ037	B. dothidea	1>	430<	66.44128	9.635532
YJBY011	B. dothidea	1>	24.20737	76.92199	14.86846
apa12	A. alternata	1.098042	430<	72.5162	3570.643
apa4	A. alternata	2.058813	327.1056	34.49666	14.73356
apa9	A. alternata	19.95192	430<	60.65805	16.15499
ap26-1	A. alternata	12.83562	312.4634	21.72111	1.053142
apa3	A. alternata	8.07922	202.7295	23.19671	39.26764
ANFJ011	A. alternata	10.61157	119.5508	13.96384	19.12367
ap33-2	A. alternata	18.46751	430<	31.61919	15.0736

CSB, Copper sulface basic(네오보르도), FI; Fluazinam, Mb; Mancozeb, Ch; Chlorothalonil

Isolates	Species	CSB	FI	Mb	Mr	Ch
JSHR002	C. siamense	1>	10.03035	120.9301	597.1766	21.81478
IJHR001	C. fructicola	114.1768	1>	16.60518	14.41935	3.740124
JHR002	C. fructicola	120.476	1>	31.86166	669.6333	9.573618
JSFJ003	C. siamense	1>	0.041613	20.38807	122.3743	148.5852
JSFJ001	C. siamense	580<	1>	19.98701	31.86166	7.052756
TBHR003	C. fioriniae	580<	2.650693	12.4985	21.45184	8.378424
JSHR018	C. siamense	580<	1>	77.28007	95.03895	1>
JSHR017	C. siamense	570.3576	9.365256	16.71992	16.72994	169.7739
JSHR006	C. siamense	100.0148	1>	27.14469	18.11584	938<
JSHR008	C. siamense	20.38189	1>	19.7005	66.83651	1.654552
PCHR015	C. fructicola	114.1768	1>	85.60237	56.73138	141.9958
PCHR016	C. fructicola	120.5302	1>	240.561	16.88445	5.590953
TBHR001	C. siamense	85.8686	1>	16.73431	15.33106	14.95263
TBHR002	C. siamense	31.63906	26.16651	15.65961	15.25454	1.139686
YWJF005	C. siamense	126.7542	1>	2417.652	351.764	5.473404
JSHR007	C. siamense	3.096957	1>	20.51426	71.49625	5.566253
PCHR004	C. fructicola	580<	1>	118.696	1200<	938<
YWFJ008	C. fioriniae	434.216	174.5013	44.99204	1200<	20.16807
PCHR005	C. fructicola	396.2646	24.13216	140.6902	1200<	5.393067
SCHR04	C. siamense	65.81483	1>	12.69617	16.51348	1.015209
PCHR010	C. fructicola	439.0541	3.665714	144.0131	1200<	5.549084
PCHR008	C. fructicola	580<	6.664449	254.1561	1200<	38.44062
ANFJ013	B. dothidea	134.6673	2.747313	3.006688	31.86166	2.480833
ANFJ014	B. dothidea	3032.745	1>	11.70713	13.58516	1>
ANFJ012	B. dothidea	352.0766	1>	8.594839	20.38807	1.127483
MGCW001	B. dothidea	355.7687	1>	12.39151	31.86166	2.197987
MGCW002	B. dothidea	157.6908	10.54823	10.24197	31.86166	1.798406
MGCW003	B. dothidea	150.2863	10.54823	3.006688	31.86166	5.056279
CSFJ012	B. dothidea	580<	1>	9.999974	17.29625	3.2921
CSFJ013	B. dothidea	580<	1.565816	13.58516	31.86166	3.215051
YGFJ005	B. dothidea	180.1652	13.67618	3.006688	17.29625	1.18452
YGFJ003	B. dothidea	362.1992	1>	17.29625	100.0005	2484.326
YGFJ002	B. dothidea	148.0401	1>	3.006688	31.86166	1.151435
YJFJ035	B. dothidea	131.0369	2.205368	11.87455	31.86166	5.364059
YJFJ037	B. dothidea	356.6842	10.54823	9.679526	15.40024	1>
YJBY011	B. dothidea	144.6858	1>	3.006688	31.86166	124.9924
apa12	A. alternata	120.6491	4.98366	19.52107	12.67426	336.9939
apa4	A. alternata	78.52561	24.14144	73.76968	926.7837	938<
apa9	A. alternata	378.3166	1>	7.496638	151.8878	104.6494
ap26-1	A. alternata	407.4188	1.043689	13.82406	32.7749	1>
apa3	A. alternata	580<	8.25002	61.65251	1200<	31.87591
ANFJ011	A. alternata	392.4962	8.331156	9.517487	12.94796	1>
ap33-2	A. alternata	1>	1>	113.2098	91.62164	366.2019

○ Thiophante-metyhl 살균제의 경우 부착기 발아를 억제하는 기작을 가진 살균제이다 이는 β-tubulin의 유전자 돌연변이에 의하여 질적 저항성이 일어나게 된다. 이 살균제를 오남용하게 되면 감수성 균주가 죽고 저항성 균주만 남게되어, 결국은 전체 과원에서의 효과가떨어지게 되는데, 저항성 관리 측면에서 관리를 주의해야 한다. 실내실험 결과 Thiophanate-methyl 살균제에서 사과탄저병원균 22개중 9개의 병원균에서 저항성 반응이나타났고 겹무늬썩음병에서는 14개의 병원균중 총 4가지의 감수성 효과와 10개의 다소 낮은 중도저항성 반응을 보인 균주들이 관찰 되었다. 점무늬낙엽병 총 7개의 병원균 중 7개

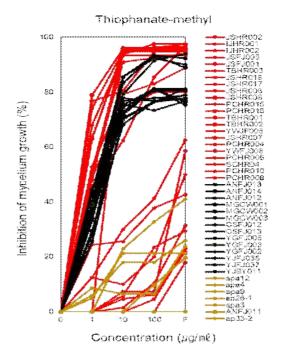



그림 10. Thiophante-methyl 살균제 효과 검정 결과. (빨간색; 탄저병, 검은색; 겹무늬썩음병, 갈색; 점무늬낙엽병)

○ Pyraclostrobin 살균제는 병원균의 mitochondira의 호흡 작용을 억제하여 병원균의 발아를 억제하는 예방제로 사용되는 살균제이다. 이는 호흡과 관련된 유전자인 Cytochrome bc1의 돌연변이에 의하여 저항성이 발현하게 된다. Pyraclostrobin 살균제도 저항성 관리를 주의해야 하는 살균제 중 하나이다. 살균제 시험 결과 탄저병원균 22개중 6개의 병원균에서 저항성 반응이 나타났고 겹무늬 썩음병 9개의 병원균 중 1개의 병원균이 중도저항성 반응이 나타났으며, 점무늬 낙엽병은 저항성 반응을 보였다[그림 11].

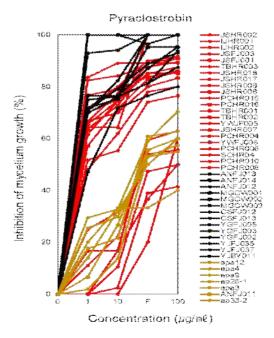



그림 11. Pyraclostrobin 살균제 효과 검정 결과. (빨간색; 탄저병, 검은색; 겹무늬썩음병, 갈색; 점무늬낙엽병)

○ Penthiopyrad 살균제의 경우 사과 방제용 약제로 등록되어 있는 살균제는 아니지만, 점무늬낙엽병과의 동시방제 능력을 보기 위하여 선발하였다. 사과 탄저병 22개의 병원균 중 4개를 제외한 나머지 균주에 대하여 높은 방제효과를 보였고, 겹무늬썩음병의 방제력은 없었으며, 점무늬낙엽병의 경우 7개의 균주중 4개에서 저항성 반응이 나타났으며, 3개는 감수성효과를 나타내었다[그림 12].

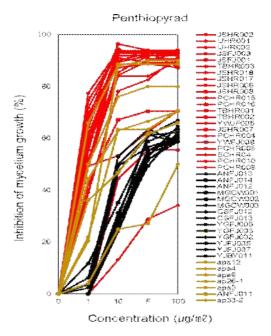



그림 12. Penthiopyrad 살균제 효과 검정. (빨간색; 탄저병, 검은색; 겹무늬썩음병, 갈색; 점무늬낙엽병)

○ Iminoctadine-triacetate 살균제의 경우 세가지 병원균에 대하여 모두 효과가 좋게 나타 났으나, 탄저병 균주12개에 대하여 다소 낮은 효과가 관찰되었다[그림 13].

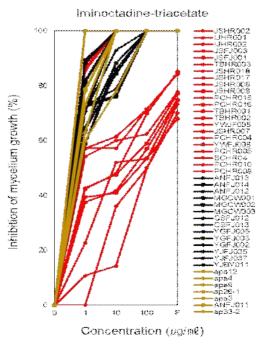



그림 13. Iminoctadine-triacetate에 대한 살균제 효과 검정. (빨간색; 탄저병, 검은색; 겹무늬썩음병, 갈색; 점무늬낙엽병)

○ Tebuconazole 살균제의 경우 Ergosterol 생합성 억제제로 사용되고 있으며, 치료용 균제로 사용되고 있다. 이는 Ergosterol 생합성 능력이 과발현 되면서 저항성이 생기는 살균제이므로 양적저항성이 일어난다. 이는 매년 연구 하면서 이들의 억제 능력이 떨어지고 있는지 지속적으로 확인해야 하는 살균제 중 하나이다. 시험 결과 대부분의 병원균에서 효과가좋게 나타났으나, 점무늬 낙엽병 7균주 중 4균주에서 다소 낮은 반응이 나타났다[그림 14].

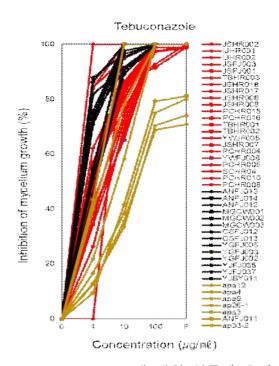



그림 14. Tebuconazole에 대한 살균제 효과 검정. (빨간색; 탄저병, 검은색; 겹무늬썩음병, 갈색; 점무늬낙엽병)

○ Dithianon 살균제 시험 결과 탄저병과 겹무늬썩음병에 대하여 다소 높은 교과가 나타났으나, 탄저병 1균주, 점무늬낙엽병 6균주에 대하여 다소 낮은 효과가 나타났다[그림 15].

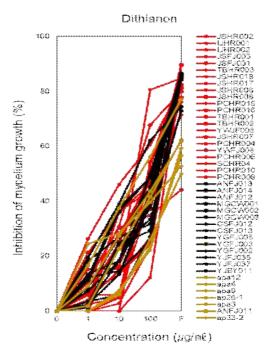



그림 15. Dithianon 살균제 시험 결과. (빨간색; 탄저병, 검은색; 겹무늬썩음병, 갈색; 점무늬낙엽병)

○ Propineb 살균제 시험 결과 Probineb 살균제는 겹무늬썩음병을 방제하는데 가장 높은 효과를 보였으며, 점무늬낙엽병 5균주에 대하여 저항성 효과가 나타났으며, 탄저병에서는 다소 낮은 효과가 관찰되었다[그림 16].

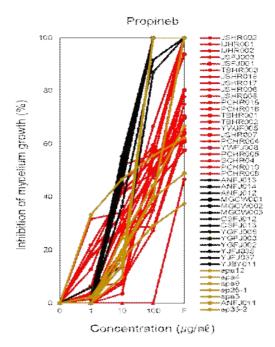



그림 16. Propineb 살균제 시험 결과. (빨간색; 탄저병, 검은색; 겹무늬썩음병, 갈색; 점무늬낙엽병)

○ Fluazinam 살균제의 경우 대부분의 병원균에서 80% 이상의 감수성 수치가 나타났으나, 점무늬 낙엽병에서 80% 이하의 중도저항성 수치가 관찰되었다. Fluazinam의 경우 겹무 늬썩음병에서 가장 높은 억제율이 관찰되었다[그림 17].

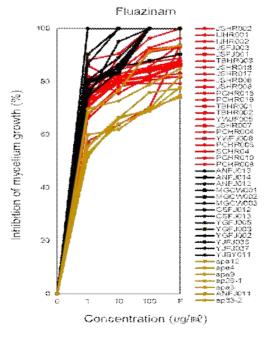



그림 17. Fluazinam 살균제 효과 검정 결과. (빨간색; 탄저병, 검은색; 겹무늬썩음병, 갈색; 점무늬낙엽병)

○ Mancozeb 살균제 효과 검정 결과 겹무늬썩음병원균에 가장 높은 효과가 있었으며, 점

무늬 낙엽병에서 저항성 효과가 나타났으며, 탄저병원균에는 일부 균주에서 저항성 효과가 나타났다[그림 18].

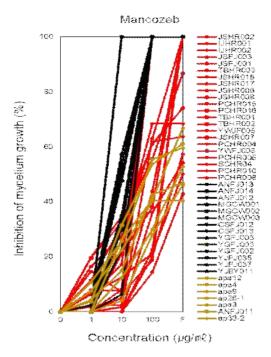



그림 18. Mancozeb 살균제 효과 검정 결과. (빨간색; 탄저병, 검은색; 겹무늬썩음병, 갈색; 점무늬낙엽병)

○ Metiram 살균제 효과 검정 결과 겹무늬 썩음병원균에 대하여 가장 우수한 효과가 나타 났다. 현장 농도로 사용할 경우 모든 겹무늬썩음병원균이 100% 억제가 되었다. 점무늬 낙 엽병원균에 대하여 모든 균주에서 60% 이하의 저항성 효과를 나타내었고, 탄저병의 경우 다양한 반응이 나타났다. 22 균주 중 8균주에 대하여 저항성 반응이 나타났고, 나머지 균주 에 대해서는 높은 억제효과가 나타났다[그림 19].

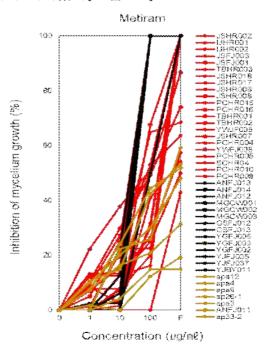



그림 19. Metiram 살균제 효과 검정 결과. (빨간색; 탄저병, 검은색; 겹무늬썩음병, 갈색; 점무늬낙엽병)

○ Chlorothalonil 살균제 검정 결과 점무늬 낙엽병에서는 모든 균주가 저항성 반응을 나타내었고 겹무늬썩음병은 대부분의 균주가 중도저항성 반응이 탄저병 균주에서도 대부분이 저항성 반응을 나타내었다[그림 20].

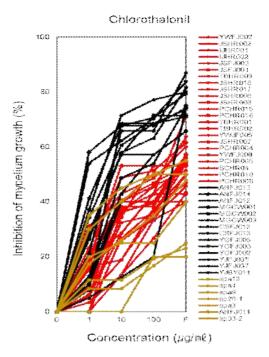



그림 20. Chlorothalonil 살균제 효과 검정 결과. (빨간색; 탄저병, 검은색; 겹무늬썩음병, 갈색; 점무늬낙엽병)

○ 석회보르도액 (4-4식)의 효과 검정 결과 탄저병과 점무늬낙엽병에대하여 방제 효과가 전혀 없었으며, 겹무늬 썩음병에 대해서 필드 농도 사용시 중도저항성의 효과가 나타났다 [그림 21].

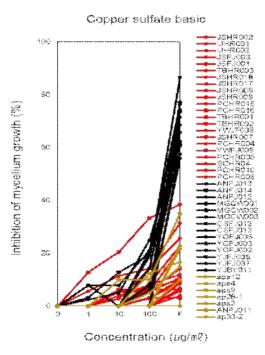



그림 21. 석회보르도액(4-4식)의 효과 검정 결과. (빨간색; 탄저병, 검은색; 겹무늬썩음병, 갈색; 점무늬낙엽병)

#### □ 사과 부란병에 대한 살균제 방제 실험

○ 탄저병, 겹무늬썩음병, 점무늬낙엽병 외에 사과 주요 병해인 부란병을 추가로 선발하여 살균제 방제실험을 진행하였다. 사과 부란병은 경북 안동, 봉화, 청송, 예천, 경남 거창 5지역에서 이병주를 채집하여 실험실로 가져온 후 병원균을 순수 분리를 진행하였다. 이후 ITS, β-Tubulin 유전자를 이용하여 분자생물학적 방법을 이용하여 동정하였으며, 그 결과 25개의 병원균이 분리 되었다. 아래는 분리한 병원균의 결과를 나타내었다[표 9].

표 9. 분리된 사과 부란병 병원균.

No.	Isolates	Location	Species
1	av1	Andong	Valsa mali
2	av4	Andong	Valsa mali
3	av11	Andong	Valsa mali
4	avu1	Andong	Valsa mali
5	avu2	Andong	Valsa mali
6	bvs1	Bonghwa	Valsa mali
7	bvs3	Bonghwa	Valsa mali
8	bvs3-2	Bonghwa	Valsa mali
9	bvs3-3	Bonghwa	Valsa mali
10	cvh1	Cheongsong	Valsa mali
11	cvh3	Cheongsong	Valsa mali
12	cvl1	Cheongsong	Valsa mali
13	cvl2	Cheongsong	Valsa mali
14	cvp1	Cheongsong	Valsa mali
15	cvp2	Cheongsong	Valsa mali
16	cvs5	Cheongsong	Valsa mali
17	cvs6	Cheongsong	Valsa mali
18	cv7-2	Cheongsong	Valsa mali
19	cv7-6	Cheongsong	Valsa mali
20	gv6	Geochang	Valsa mali
21	gv7	Geochang	Valsa mali
22	yvb1−1	Yecheon	Valsa mali
23	yvb1-9	Yecheon	Valsa mali
24	yvs6	Yecheon	Valsa mali
25	yvs7	Yecheon	Valsa mali

○ 국내 사과 부란병 방제용 살균제로는 5개의 살균제가 등록되어 있다. 이 중 2개의 살균 제는 도포제로 사용되어 직접 사용하는 살균제이며, 1개의 살균제는 연무제로 사용된다. 이 세가지 살균제를 제외하고 두 개지 살균제인 Cyproconazole 4.5% 액제와 Iminoctadine-triacetate 25% 액제 두가지 살균제를 사용하여 실험을 진행하였다[표 10].

표 10. 실험에 사용된 살균제 정보.

FRAC Code	계통	원제 함량
3	트리아졸계	cyproconazole 4.5%
M07	구아니딘계	iminoctadine triacetate 25%

○ 사이프로코나졸 살균제를 PDA 배지에 각각 0(대조군), 0,1, 1, 10 ,100, F(실제 농과원 사용 농도) ppm으로 희석하고, 살균제가 희석된 배지의 중앙에 3mm 직경의 균사체 조

각을 접종하여 7일간 25℃ 배양기에 암실조건으로 배양한 후 억제율을 측정하였다.

베푸란 살균제의 경우 실제 농과원에서 부란병 방제에 이용하는 경우가 많기 때문에 실제 농과원 살포량을 기준으로 반량, 정량, 배량 농도를 이용하여 실험을 진행하였다. 억제 결과 는 아래와 같다[그림 22]. 사이프로코나졸 살균제 시험 결과 일부 균주에서 100ppm에서 억제되지 않는 균주가 일부 관찰되었으나 실제 농과원 살포 농도에서는 모두 높은 억제율을 관찰할 수 있었다.

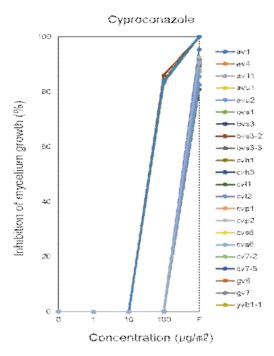



그림 22. Cyproconazole 살균제 시험 결과.

○ 이미녹타딘트리아세테이트 살균제 검정 결과 모든 처리구에서 100% 억제한 것을 볼수 있었다. 이 살균제는 부란병 방제에 높은 효과를 나타내었다[그림 23].

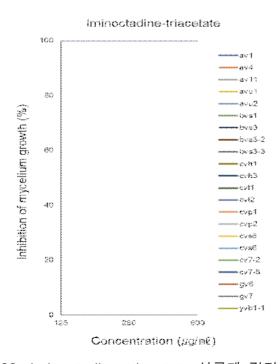



그림 23. Iminoctadine-triacetate 살균제 검정 결과.

#### 2) 사과 탄저병 살균제 저항성 균주에 대한 미생물 제제의 효과 검정

□ GYUN-2311, GYUN10697의 사과 탄저병 예방 효과 검정

○ 시중에 판매하는 미생물 방제제 탄저킬과 유용 미생물의 혼용이 생물학적 방제 능력을 향상하게 하는지 알아보기 위해 실험하였다. 진균 유용미생물 (GYUN-10697, GYUN-10701) 의 처리 농도는 10⁵ spore/ml로 하였고, 세균 유용미생물 (B-4359, GYUN-2311) 의 처리 농도는 10⁷ CFU/ml 으로 하였다. 미생물 제제 (탄저킬; 고려바이오) 와 유용미생물의 혼용성 에 대한 억제능력을 검정하기 위하여 사과 과실 (품종: 후지)을 1% 차아염소산나트륨 용액으로 세척 후 멸균증류수로 2~3회 세척 하여 표면살균을 진행하였다. 유용미생물 단독, 유용미생물 + 탄저킬, 탄저킬 단독을 압력 살포기를 이용하여 과실 표면에 살포하였다. 24시간 후 상온에서 압력 살포기를 이용하여 약 10⁵ conidia/ml로 희석한 병원균 포자 현탁액을 표면에 살포하였다. 습실 처리된 멸균 플라스틱 용기에 넣어 25℃ 배양기에서 7일간 배양하였고, 병징 크기를 측정하여 발병률과 억제율을 분석하였다. 모든 시험은 3회 반복하였다.

○ GYUN-2311과 탄저킬, GYUN-2311+탄저킬의 방제가는 각각 39.2%, 55.6%, 48.6% 이다. GYUN-10697, GYUN-10701, 탄저킬 처리구에서 방제가는 각각 71.4%, 52.6%, 72.4%이었다. 탄저킬의 사과 탄저병 방제는 효과적이었으나, GYUN-10701과는 혼용이 큰 방제 효과가 없는 것을 확인하였다[그림 24].

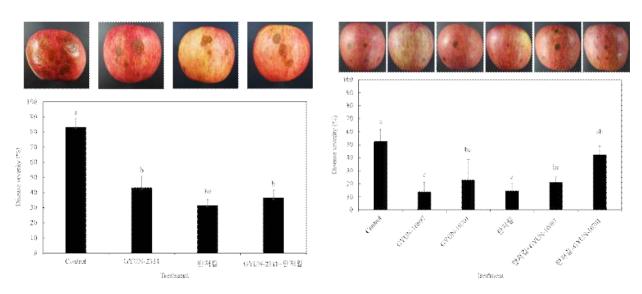



그림 24. GYUN-2311(좌)과 *Trichoderma* spp.(우), 탄저킬의 사과 탄저병 방제.

□ GYUN-1190의 사과탄저병 방제 효과 검정.

○ 사과 과실병인 사과탄저병에 대한 방제효과를 기내 시험을 통해 실시하였다. 사과 중소과를 과수원에서 구입하여 실험에 사용하였다. 사과를 흐르는 물에 먼저 1차 세척을 한 후 1% 차아염소산나트륨에서 2차 세척 후 2회 멸균수로 씻어 주어 표면 소독을 진행하였다. 표면소독한 사과는 자연상태에서 건조시켰으며, 접종원인 사과탄저병 포자현탁액은 7일간 PDA 배지에서 배양한 균사에서 포자만을 채취하여 포자현탁액 (10⁵ conidia/㎡)을 제조하였고, 유용미생물의 농도는 10⁵ CFU/㎡ 현탁액을 처리하였다. 유용미생물의 배양은 0, 8, 24, 48 시간마다 배양한 미생물을 가지고 진행하였다. 처리방법은 유용미생물 현탁액을 분무 후 건조시킨 뒤 포자현탁액을 분무처리 하였다. 치료는 포자현탁액을 분무 후 25℃ 보관후 결과를 관찰하였다.

○ 사과 탄저병의 경우 Pyraclostrobin 저항성 균주를 사용하였기 때문에 Pyraclostrobin 살 균제 단독 처리구 에서는 전혀 방제가 되지 않았으며, GYUN-1190의 경우 48시간 배양 한 처리구에서 가장 높은 방제력이 나타났다. 이는 화학살균제인 Tebuconazole보다 높은 방제가를 나타내었으며, 이 살균제를 실제로 이용할 경우 48시간 배양한 후 사용 할 것이 좋다고 판단된다[그림 25].

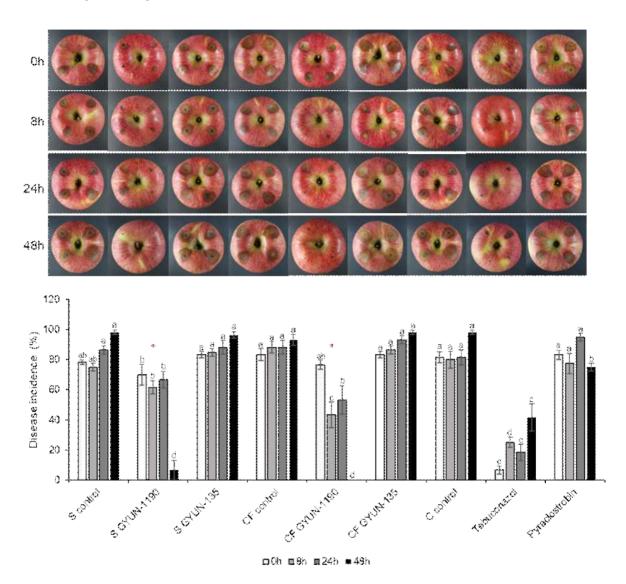
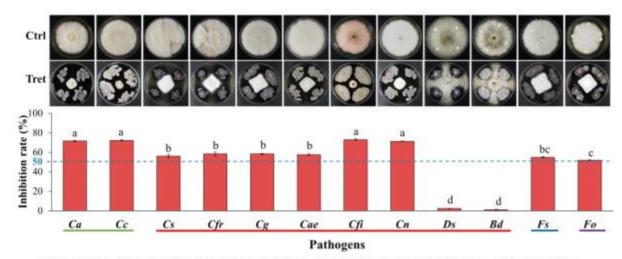



그림 25. GYUN-1190와 살균제의 사과탄저병 방제 효과 검정.


#### (2) 사과 탄저병 방제용 미생물제제 적용병해 확대

□ 대치배양을 통한 적용병해 범위 조사

○ 적용 병해 대상 범위를 확대하기 위하여. 기존에 연구된 GYUN-1190, GYUN-2435을 제외한 나머지 3 균주에 대하여 균사생장 억제 검정을 실시하였다. 병원균 선정은 사과 탄저병인 *Colletotrichum siamense, fructicola,* 사과 겹무늬썩음병인 *Botryosphaeria dothidea,* 고추 역병인 *Phytopthora capcisi,* 고추 탄처병인 *Colletotrichum scovillei,* 풋마름병을 일으키는 *Fusarium solani, oxysporum*을 대상으로 실험을 진행하였다.

○ TSA 배지에서 28℃P, 2일간 배양된 유용 미생물 GYUN-2311균주를 배양하였으며, B-1662의 경우 R2A Broth에서 2일간 배양하였다. 상기 언급된 병원균들은 PDA 배지에서 5일간 배양된 균을 사용하였다. PDK (Potato dextrose + peptone) 배지를 제조하여 중심에

서 3 cm 떨어진 부분에 균사 절편 (1 mm)를 올려놓은 뒤 배양된 유용미생물을 병원균과 6 cm 떨어진 가장자리에 획선 배양하였다. 접종한 배지는 28℃에서 배양하였으며, 5일 뒤 균사생장 억제영역을 측정하여 결과를 도출하였다. GYUN-2311의 경우 사과 겹무늬 썩음병을 제외한 나머지 병원균에서 우수한 병원균 억제 능력을 보여주었다. 반면에 B-1662의 경우 사과 겹무늬썩음병의 경우에도 길항효과가 존재하였다. 선발된 병원균 모두 사과 탄저병에 우수한 길항효과가 있었으며, 다른 병원균에 대한 길항효과 역시 높게 관찰되었다. 이는 선발된 미생물들이 사과 탄저병 뿐만 아니라 다른 병원균을 억제하는데에도 사용할 수 있다고 판단된다[그림 26, 27].



- Diplodia seriata (Ds), Botryosphaeria dothidea (Bd) 3days - Colletotrichum fructicola (Cfr), C. aenigma (Cae), C. siamense (Cs), C. aenigma (Cg), F. oxysporum f. sp. lycopersici (Fo), Fusartum solani (Fs) 7 days - C. nymphae (Cn), C. fioriniae (Cfi), C. coccodes (Cc) 11 days - C. acutatum (Ca) 13days

그림 26. GYUN-2311의 여러 병원균에 대한 향균활성 효과 검정.

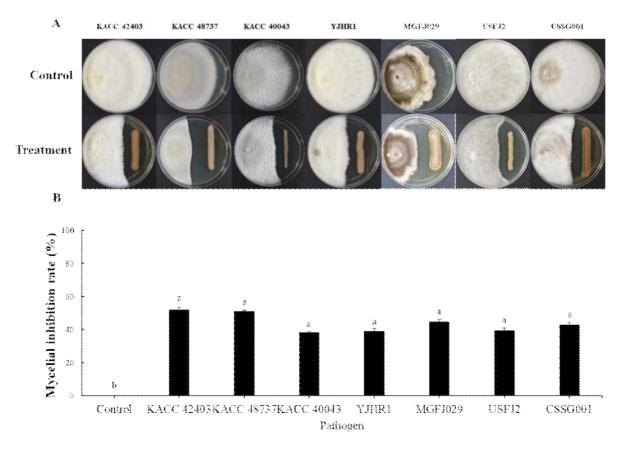



그림 27. B-1662의 여러 병원균에 대한 향균활성 효과 검정.

#### (3) 주요 농약과의 혼용성 평가

□ 살균제, 미생물제제의 혼용성 시험

○ 미생물 제제 (탄저킬; 고려바이오)와 살균제의 혼용성 및 살균제 저항성 균주에 대한 억제능력을 검정하기 위하여 사과 과실 (품종: 후지)을 멸균수지침을 이용하여 사과 표면에 상처를 낸 후 1% 차아염소산나트륨 용액으로 세척 후 멸균증류수로 2~3회 세척 하여 표면살균을 진행하였다. 이 후 상온에서 건조한 후 Pyraclostrobin, Pyraclostrobin + 탄저킬, Fluxapyroxad, Fluxapyroxad + 탄저킬, Thiophanate-Methyl, Thiophanate-Methyl + 탄저킬, Tebuconazole, Tebuconazole + 탄저킬, 멸균증류수 (대조구)를 압력 살포기를 이용하여 과실 표면에 살포하였다. 이 후 상온에서 건조시킨 후 압력 살포기를 이용하여 1 × 10⁶ conidia/ml로 희석한 병원균을 표면에 살포하였다. 이 후 습실처리된 멸균 플라스틱 용기에넣어 25℃ 배양기에서 7일간 배양하였다. 7일 후 병징 크기를 측정하여 억제율을 분석하였다 모든 시험은 3회 반복하였다[그림 28].

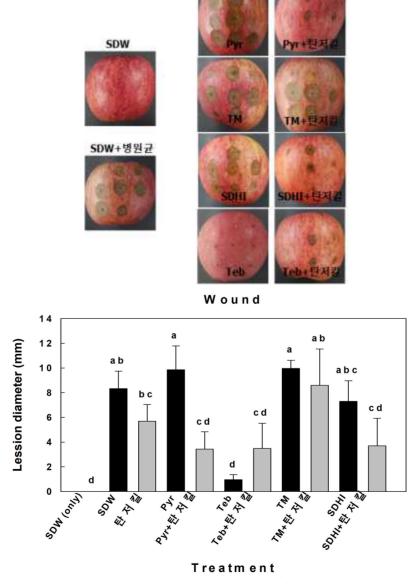



그림 28. 살균제와 미생물제제의 혼용시험 결과.

(Pyr; Pyraclostrobin, Teb; Tebuconazole, TM; Thiophanate-Methyl, SDHI; Fluxapyroxad)

- □ 살균제, 미생물제제의 혼용성 결과
- 각 살균제에 저항성 반응을 보이는 대조구 보다 더 높은 병반 크기를 나타내었으며, 이는 살균제에 대한 효과가 전혀 없다고 판단된다. Pyraclostrobin 살균제와 미생물제제인 탄저킬을 혼용으로 사용하였을 때, 탄저킬을 단독으로 살포하는것 보다 높은 효과를 나타내었으며, 이는 Pyraclostrobin 살균제 저항성 균주에 대한 억제효과가 더 좋은 것으로 판단된다. Tebuconaole 살균제와 혼용하였을 경우에는 살균제 단독 처리보다 더 낮은 효과를 나타내 혼용 사용이 불가능할 것으로 판단된다. Thiophanate-Methyl 살균제에 대한 저항성균주에 대하여 탄저킬과 혼용하여도 억제효과가 없었다. Fluxapyroxad 살균제에 대한 저항성 균주에 대하여 혼용하였을 경우 살균제 단독처리보다 더욱 높은 효과가 나타난다. 혼용가부표는 아래에 첨부하였다[표 11].

표 11. 살균제, 미생물제제의 혼용 가부표.

○: <del>좋</del> 음 △:보통	Tebuconazole	Thiophante-me thyl	Fluxapyroxad	Pyraclostrobin	B. velezensis
x:낮음	DMI	MBC	SDHI	QoI	탄저킬
DMI	-				×
MBC		-			0
SDHI			-		$\circ$
QoI				-	0
탄저킬	×	0	0	0	_

#### (4) 미생물제제 조합별 사과주요병해 억제 검정

- □ GYUN-1190, GYUN-2435의 사과 탄저병 예방 효과 검정
- 사과 과실병인 사과탄저병에 대한 방제효과를 기내 시험을 통해 실시하였다. 사과 중소과를 과수원에서 구입하여 실험에 사용하였다. 사과를 흐르는 물에 먼저 1차 세척을 한 후 1% 차아염소산나트륨에서 2차 세척 후 2회 멸균수로 씻어 주어 표면 소독을 진행하였다. 표면소독한 사과는 자연상태에서 건조시켰으며, 접종원인 사과탄저병 포자현탁액은 7일간 PDA 배지에서 배양한 균사에서 포자만을 채취하여 포자현탁액 (10⁵ conidia/㎡)을 제조하였고, 유용미생물의 농도는 10⁵ CFU/㎡ 현탁액을 처리하였다. 처리방법은 유용미생물 현탁액을 분무 후 건조시킨 뒤 포자현탁액을 분무처리 하였다. 치료는 포자현탁액을 분무 후 25℃ 보관 후 결과를 관찰하였다.
- 사과 과실에서의 탄저병 발생은 병반 크기를 측정하고 무처리구의 결과 값과 비교하여 방제가를 도출하였다. 기존에 포자발아 억제효과를 볼수 없었던 GYUN-2435의 경우를 제외한 균주에서 효과를 볼수 있었다. GYUN1190의 경우 80% 이상의 억제효과가 나타났으며, GYUN-2311의 경우 75%의 억제효과 B-1662의 경우 100% 억제하는 효과가 나타났다. 시험에 사용한 4종의 유용미생물 중 3종에 대하여 사과탄저병 방생 억제 가능성을 보아 친환경 생물제제 균으로써의 가능성을 확인하였다[그림 29].

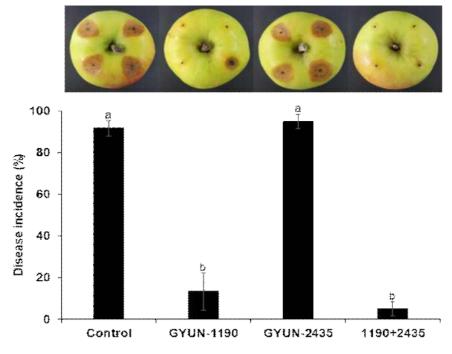



그림 29. GYUN-1190과 GYUN-2435의 사과탄저병 방제 효과 검정.

□ GYUN-2311과 시제품 탄저킬의 사과 탄저병 예방 효과 검정

○ 사과 과실병인 사과탄저병에 대한 방제효과를 기내 시험을 통해 실시하였다. 사과 중소과를 과수원에서 구입하여 실험에 사용하였다. 사과를 흐르는 물에 먼저 1차 세척을 한 후 1% 차아염소산나트륨에서 2차 세척 후 2회 멸균수로 씻어 주어 표면 소독을 진행하였다. 표면소독한 사과는 자연상태에서 건조시켰으며, 접종원인 사과탄저병 포자현탁액은 7일간 PDA 배지에서 배양한 균사에서 포자만을 채취하여 포자현탁액 (10⁵ conidia/mℓ)을 제조하였고, 유용미생물의 농도는 10⁵ CFU/mℓ 현탁액을 처리하였다. 처리방법은 유용미생물 현탁액을 분무 후 건조시킨 뒤 포자현탁액을 분무처리 하였다. 치료는 포자현탁액을 분무 후 25℃ 보관 후 결과를 관찰하였다.

○ 사과 과실에서의 탄저병 발생은 병반 크기를 측정하고 무처리구의 결과 값과 비교하여 방제가를 도출하였다. GYUN-2311의 경우 75%의 예방 효과를 나타내었으나 시제품 탄저킬의 경우 67.81%의 방제 효과를 나타내었다. 두 미생물을 혼합하였을 경우 72%의 예방 효과를 나타내었으며, 미생물제제를 사용할 경우 GYUN-2311의 단독처리가 더 높은 효과를 나타내었다[그림 30].

# < 상처 과실 예방 실험> (항 80 - 40 - 40 - 40 - 20 - 0 Control GYUN-2311 TK® Mix

그림 30. GYUN-2311, 탄저킬(TK), 그리고 Mix(혼합처리구)의 사과탄저병 방제 효과.

#### (5) 미생물제제의 포장 효과 검증

#### □ 탄저킬을 이용한 농가실증시험

○ 농가에서 사과 탄저병에 대한 효과검정을 실시하였다. 예천과 청송에 사과 과원을 임대후 약효시험을 하였다. 후지 품종을 대상으로 수행하였다. 6월 중순부터 10월 말까지 10~15일 간격으로 8~9회 약제 방제를 실시하였다. 방제력에 의한 관행약제 처리구와 관행약제 처리구에 탄저킬을 포함한 처리구로 수행하였다. 기상 조건에 따라서 중간에 추가 살포를 진행하였으며, 처리구당 3반복으로 실시하였다. 나무당 20L 정도로 충분히 약제가 묻도록 동력분무기를 사용하여 시행하였다. 병해조사는 15일 간격으로 병징이 보인 과실을 채집하여 이병과 개수와 병징 크기를 조사하여 병 발생율을 조사하였다.

○ 예천 포장의 시험 결과 인근 지역의 관용 처리를 하는 포장과 해당 포장 간의 방별률 차이가 거의 없었다. 본 시험보장에서는 94.94%의 높은 방제가를 보였으며, 탄저병 발병이 심하게 나타나지 않았다. 그러나 청송 시험 포장의 경우 79.49%의 비교적 낮은 방제가를 나타내었는데 이는 청송지역의 7월~8월간의 찾은 비와 고온, 포장의 특성상 높은 습도를 오래동안 유지하고 있어 처리 전후 과습한 조건에 의하여 악효가 낮게 발휘되었다고 판단된 다 [그림 31.]

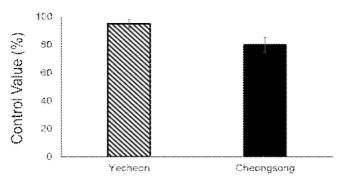



그림 31. 예천과 청송 포장의 시험 결과.

○ 예천과 청송 포장에서 발생한 사과 탄저병 발병율이 상이하게 차이가 나는 것을 확인하였다. 또한 탄저병 발생과 살포시기의 기상조건을 분석하여 이를 분석하였다. 강우량은 청송지역이 유의미하게 낮게 관측이 되나. 7월 이후 두 지역간의 강우조건에서 청송지역의 경우8월 상순까지 강우 상황이 지속되어 왔고 예천 지역의 경우 8월 상순의 경우 예천 지역에서는 강우상황이 나타나지 않았으며, 청송지역의 경우 8월 상순까지 강우 상황이 지속되었다. 이는 8월 상순경에 발병된 탄저병이 약효를 받지 않으면서 대발생 했다고 판단된다.

○ 유용미생물을 이용하여 과수에 병 방제 시 병 방제 효과는 과원의 환경에서도 많은 차이가 나는 것으로 연구결과가 나타났으며, 이에 따라 생물학적 방제를 진행함에 있어 과원환경조성 또한 중요한 요인으로 생각된다[그림 32].

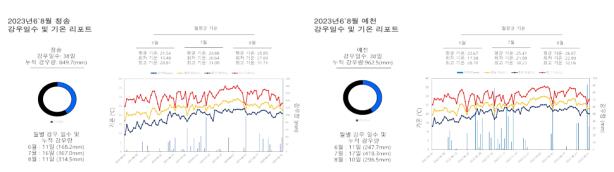



그림 32. 시험 기간 동안 청송과 예천의 기상 리포트(자료 출처; 기상청).

#### (6) 미생물제제를 이용한 사과 병해 종합방제력 개발

□ 미생물 제제를 포함한 사과 병해 종합방제력 제시(화상병 미포함)

○ 농가에서 사용하는 주요 방제력과 실내 검정 그리고 유용미생물 세가지 결과를 고려하여 종합방제력을 제시하였다. 앞선 기상 상황 분석 결과 7~8월의 경우 강우일수와 강우량이 급격히 높아지는 경향이 있었다. 이를 대비에 7~8월의 경우 탄저병이 대발생 할 수 있다고 예상하여 보호살균제와 치료살균제의 혼용을 주로 제시하였다. 이외의 상황에서도 강우 상황 등 여러 가지를 고려하여 종합방제력에 있는 살균제 이외에도 내우성이 강한 살균제 들과 유용미생물을 적극 처리를 하여야 한다[표 12].

표 12. 미생물제제를 이용한 사과 병해 종합방제력 개발.

회차	시기	대상 병해	살균제	미생물제제
1	5월 하	갈색무늬병, 점무늬낙엽병	카디스	
2	6월 상	갈색무늬병, 점무늬낙엽병	골드타임	
3	6월 중	갈색무늬병, 점무늬낙엽병	델란	탄저킬
4	6월 하	갈색무늬병, 점무늬낙엽병, 탄저병, 겹무늬썩음병	안트라콜	탄저킬
5	7월 상	갈색무늬병, 점무늬낙엽병, 탄저병, 겹무늬썩음병	베푸란	
6	7월 중	점무늬낙엽병, 탄저병, 겹무늬썩음병	후론사이드 + 실바코	
7	7월 하	점무늬낙엽병, 탄저병, 겹무늬썩음병	다이센엠 45 + 카브리오에이	
8	8월 상	점무늬낙엽병, 탄저병, 겹무늬썩음병	다코닐 + 살림꾼	
9	8월 중	점무늬낙엽병, 탄저병, 겹무늬썩음병	포리람골드	탄저킬
10	8월 하	점무늬낙엽병, 탄저병, 겹무늬썩음병	실바코	
11	9월 상	탄저병, 겹무늬썩음병	머판	

^{*} 비와 같이 기상에 따라 유기적으로, 한번더 살포하거나, 내우성이 높은 살균제를 주기적으로 사용하여야함.

#### 3. 연구개발과제의 수행 결과 및 목표 달성 정도

#### 1) 연구수행 결과

### (1) 정성적 연구개발성과

- Paenibaillus polymyxa 균주의 탄소원과 질소원 농도, 배양온도, 교반속도, 배양시간, 산소공급량. 종균투입량을 결정.
- Paenibaillus polymyxa 균주의 경제적 대량배양공정을 개발.
- Paenibaillus polymyxa 균주를 이용한 미생물제제 입상 제형 보조제 선발.
- Paenibaillus polymyxa 균주를 이용한 작물 생장 촉진 미생물제제 시제품 개발.
- 이용한 작물 생장 촉진 미생물제제 시제품 대량생산공정 확립.
- 시제품의 경시적 안정성 확인을 통한 유통기간 확립.
- 시제품의 주성분(미생물 동정, 유효균수, 비료성분) 및 안정성(중금속, 병원성미생물, 비료피해, 잔류농약) 평가.
- 시제품의 딸기, 오이 농가 실증시험을 통한 수확량 증대 효과 확인.
- 사과 탄저병 병원균 확보(8종, 300여개) 및 균학적 연구.
- 사과 탄저병 병원균의 살균제 반응성 확인.
- 사과 탄저병 살균제 Thiophanate-methyl과 Diethofencarb의 교차 저항성 연구.
- 사과 겹무늬썩음병 병원균의 살균제 반응성 확인.
- 사과 점무늬낙엽병 병원균의 살균제 반응성 확인.
- 미생물제제 추가 균주 선발 및 기초 연구.
- 추가 선발된 미생물제제의 유전체 분석 연구.
- 살균제 저항성 균주에 대한 미생물제제의 효과 검정.

#### (2) 정량적 연구개발성과

< 정량적 연구개발성과표 >

		연도	1년차	2년차	계	가중치		
성과지표명			(2022년)	(2023년)	* 11	(%)		
	특허출원	목표(단계별)	1	_	1	10		
	- 이 골 건	실적(누적)	1	_	1	10		
	특허등록	목표(단계별)	_	_	_	_		
	= 400=	실적(누적)	_	_	_			
저다기가 드로 기타 지표	F = (001)	목표(단계별)	_	1	1			
전담기관 등록·기탁 지표	논문(SCI)	실적(누적)	_	1	1	_		
	노므퍼그	목표(단계별)	_	2.0	2.0			
	논문평균IF	실적(누적)	-	2.3	2.3	5		
	하나 HL ㅠ	목표(단계별)	2	2	4			
	학술발표	실적(누적)	2	3	5	5		
	기술실시 (이전)	목표(단계별)	1	_	1	5		
		실적(누적)	1	_	1			
	기술료	목표(단계별)	2,000	_	2,000	5		
		실적(누적)	2,000	_	2,000			
	제품화	목표(단계별)	_	1	1	20		
		실적(누적)	-	1	1	30		
	매출액	목표(단계별)	-	20,000	20,000			
어그레바리케 투서 비어 지표	매물액	실적(누적)	_	20,000	20,000	_		
연구개발과제 특성 반영 지표	コロシー	목표(단계별)	-	1	1			
	고용창출	실적(누적)	-	1	1	5		
	기소이즈	목표(단계별)	1	_	1	٥٢		
	기술인증	실적(누적)	1	-	1	25		
	7016	목표(단계별)	2	2	4			
	교육지도	실적(누적)	2	2	4	5		
	중비되다	목표(단계별)	2	2	4			
	홍보전시	실적(누적)	3	1	4	5		
الد		목표	9건+2,000천원	9건+20,000천원	18건+22,000천원	100		
계		실적			19건+22,000천원	100		

## (3) 세부 정량적 연구개발성과

## [과학적 성과]

# □ 논문(국내외 전문 학술지) 게재

번호	논문명	학술지명	주저자명	호	국명	발행기관	SCIE 여부 (SCIE/비SCIE)	게재일	등록번호 (ISSN)	기여율
1	Identificati on and Characteri zation of Diplodia parva and Diplodia crataegico la Causing Black Rot of Chinese Quince	The Plant Pathology Journal	Sungmun Kwon	39(3)	대한민국	한국식물병 리학회	SCIE	2023.06.3	2093–9280	100

## □ 국내 및 국제 학술회의 발표

번호	회의 명칭	발표자	발표 일시	장소	국명
1	2022 한국 식물병리학회 추계 학술대회	장로사	2022.10.19.	순천대학교	대한민국
2	2022 한국 식물병리학회 추계 학술대회	김중연	2022.10.19.	순천대학교	대한민국
3	2023 한국 식물병리학회 춘계 학술대회	김중연	2023.04.27	라한셀렉트 경주	대한민국
4	2023 한국 식물병리학회 춘계 학술대회	김중연	2023.04.27	라한셀렉트 경주	대한민국
5	2023 한국 식물병리학회 춘계 학술대회	김중연	2023.04.27	라한셀렉트 경주	대한민국

# □ 기술 요약 정보

연도	기술명	요약 내용	기술 완성도	등록 번호	활용 여부	미활용사유	연구개발기관 외 활용여부	허용방식

## □ 보고서 원문

연도	보고서 구분	발간일	등록 번호

#### □ 생명자원(생물자원, 생명정보)/화합물

번호	생명자원(생물자원, 생명정보)/화합물 명	등록/기탁 번호	등록/기탁 기관	발생 연도

#### [기술적 성과]

# □ 지식재산권(특허, 실용신안, 의장, 디자인, 상표, 규격, 신품종, 프로그램)

	지식재산권 등 명칭			출	·원			등록		-1.10	활용
번호	(건별 각각 기재)	국명	출원인	출원일	출원 번호	등록 번호	등록인	등록일	등록 번호	기여율	여부
1	트리코델마 롱기브라키아툼 GYUN-10701 신균주 및 이의 용도	대한민국	안동대학 교 산학협력 단	2022.12	10-2022 -016829 2					100%	미활용

#### ㅇ 지식재산권 활용 유형

※ 활용의 경우 현재 활용 유형에 √ 표시, 미활용의 경우 향후 활용 예정 유형에 √ 표시합니다(최대 3개 중복선택 가능).

번호	제품화	방어	전용실시	통상실시	무상실시	매매/양도	상호실시	담보대출	투자	기타
1	√			√						

#### □ 저작권(소프트웨어, 서적 등)

번호	저작권명	창작일	저작자명	등록일	등록 번호	저작권자명	기여율

#### □ 신기술 지정

번호	명칭	출원일	고시일	보호 기간	지정 번호

#### □ 기술 및 제품 인증

버호	인증 분야	인증 기관	인증	내용	인증 획득일	국가명 대한민국	
민오	인당 군아 	인당 기관 	인증명	인증 번호	인당 획득될	4/18	
1	녹색인증 (녹색기술제품확인)	농림축산식품부	식물유래 천연물과 미생물을 이용한 친환경 병해충관리용 유기농업자재	제 GTP-2203046호	2022.06.23.	대한민국	

#### □ 표준화

#### ㅇ 국내표준

번호	인증구분1	인증여부 ^{2」}	표준명	표준인증기구명	제안주체	표준종류 ³ 」	제안/인증일자

- * 1」한국산업규격(KS) 표준, 단체규격 등에서 해당하는 사항을 기재합니다.
- * 2」제안 또는 인증 중 해당하는 사항을 기재합니다.
- * 3」신규 또는 개정 중 해당하는 사항을 기재합니다.

#### ㅇ 국제표준

번호	표준화단계구분1	표준명	표준기구명 ²	표준분과명	의장단 활동여부	표준특허 추진여부	표준개발 방식 ³	제안자	표준화 번호	제안일자

- * 1」국제표준 단계 중 신규 작업항목 제안(NP), 국제표준초안(WD), 위원회안(CD), 국제표준안(DIS), 최종국제표준안 (FDIS), 국제표준(IS) 중 해당하는 사항을 기재합니다.
- * 2」국제표준화기구(ISO), 국제전기기술위원회(IEC), 공동기술위원회1(JTC1) 중 해당하는 사항을 기재합니다.
- * 3」국제표준(IS), 기술시방서(TS), 기술보고서(TR), 공개활용규격(PAS), 기타 중 해당하는 사항을 기재합니다.

#### [경제적 성과]

#### □ 시제품 제작

번호	시제품명	출시/제작일	제작 업체명	설치 장소	이용 분야	사업화 소요 기간	인증기관 (해당 시)	인증일 (해당 시)
1	자연토 골드	2023.10	고려바이오( 주)	_	농업	2년	_	_

# □ 기술 실시(이전)

번호	기술 이전 유형	기술 실시 계약명	기술 실시 대상 기관	기술 실시 발생일	기술료 (해당 연도 발생액)	누적 징수 현황
1	노하우	패니바실러스 폴리믹사(Paenibacillus polymyxa) GYUN-2215 신균주 및 이의 용도 기술 노하우	고려바이오(주)	2022.12.01.	2,000,000원	2,000,000원

^{*} 내부 자금, 신용 대출, 담보 대출, 투자 유치, 기타 등

## □ 사업화 투자실적

번호	추가 연구개발 투자	설비 투자	기타 투자	합계	투자 자금 성격*	

## □ 사업화 현황

	사업화						매결	<b>돌</b> 액	매출	기스
번호	사업와 방식 ¹	사업화 형태 ^{2]}	지역 ^{3」}	사업화명	내용	업체명	국내	국외	배울 발생 연도	기술
	방식						(천원)	(달러)	50 UT	수명
1	자기실시	신제품 개발	국내	자연토 골드	유기농업 자재	고려바 이오(주)	20,000	-	2023	10년

- * 1」기술이전 또는 자기실시
- * 2」신제품 개발, 기존 제품 개선, 신공정 개발, 기존 공정 개선 등
- * 3」국내 또는 국외

# □ 매출 실적(누적)

사업화명	ны ос	매출	출액	รเม	산정 방법	
사업화병	발생 연도	국내(천원)	국외(달러)	합계		
자연토 골드	2023	20,000	_	20,000	출고가10,000원 ×2,000ea	
합계						

# □ 사업화 계획 및 무역 수지 개선 효과

	성과		자연토 골드				
	사업화 소요기간(년)			2			
	소요예	산(천원)		355,000			
사업화 계획	에사 메초	:그ㅁ/처의)	현재까지	3년 후	5년 후		
	예상 매출규모(천원)		20,000	60,000	100,000		
	시장 점유율	단위(%)	현재까지	3년 후	5년 후		
		국내	_	_	_		
		국외	_	_	_		
	응용한 타	기술, 제품을 모델, 제품 날계획	_				
	٨٥١٢١١	레(대)	현재	3년 후	5년 후		
무역 수지 개선 효과(천원)	구입내 	체(내수)	_	_	_		
개단 표시(한편)	ŕ	-출	_	_	-		

# □ 고용 창출

스버	순번 사업화명	사업화 업체	고용창출	고용창출 인원(명)				
		사람과 답제	2022년	2023년	- 합계			
1	개발제품 판매 활성화	고려바이오(주)	-	1	1			
	합계		_	1	1			

# □ 고용 효과

	7	분	고용 효과(명)
	개발 전	연구인력	
고용 효과	개월 선	생산인력	
고은 표된	개발 후	연구인력	
		생산인력	

# □ 비용 절감(누적)

순번	사업화명	발생연도	산정 방법	비용 절감액(천원)
		합계		

# □ 경제적 파급 효과

(단위: 천원/년)

구분	사업화명	수입 대체	수출 증대	매출 증대	생산성 향상	고용 창출 (인력 양성 수)	기타
해당 연도							
기대 목표							

# □ 산업 지원(기술지도)

순번	내용	기간	참석 대상	장소	인원
1	사과나무의 주요병해	2022.10.26.	경북농민사관학교	경북농민사관학교 (온라인)	14명
2	식물의 면역(내병성)	2022.11.16.	경북농업마이스터	경북농업마이스터 안동대캠퍼스	23명
3	사과분야 전문가 초빙교육	2023.11.28.	경북농민사관학교	경북농민사관학교	200명
4	사과분야 전문가 초빙교육	2023.12.05.	경북농민사관학교	경북농민사관학교	350명

# □ 기술 무역

(단위: 천원)

									(
번호	계약 여웍	계약 기술명	계약 업체명	계약업체	기 진수앤	총 계약액	해당 연도	향후	수출/
진호	/11 12 2	711 1 7 1 2 0	7 1 1 1 1 1 1 1 1 1 1 1	국가	1 0 1 1	0 711 1 1	징수액	예정액	수입

## [사회적 성과]

## □ 법령 반영

번호	구분 (법률/시행령)	활용 구분 (제정/개정)	명 칭	해당 조항	시행일	관리 부처	제정/개정 내용

#### □ 정책활용 내용

번호	구분 (제안/채택)	정책명	관련 기관 (담당 부서)	활용 연도	채택 내용

## □ 설계 기준/설명서(시방서)/지침/안내서에 반영

번호	구 분 (설계 기준/설명서/지침/안내서)	활용 구분 (신규/개선)	설계 기준/설명서/ 지침/안내서 명칭	반영일	반영 내용

## □ 전문 연구 인력 양성

번호	번호 분류 기준 연도		현황										
인오	正市	기군 친포		학위별			성	별	지역별				
			박사	석사	학사	기타	남	여	수도권	충청권	영남권	호남권	기타

# □ 산업 기술 인력 양성

번호	프로그램명	프로그램 내용	교육 기관	교육 개최 횟수	총 교육 시간	총 교육 인원

## □ 다른 국가연구개발사업에의 활용

번호	중앙행정기관명	사업명	연구개발과제명	연구책임자	연구개발비

#### □ 국제화 협력성과

번호	구분 (유치/파견)	기간	국가	학위	전공	내용

## □ 홍보 실적

번호	홍보 유형	매체명	제목	홍보일
1	월간잡지	친환경	제품 홍보	2022.06.01
2	월간잡지	친환경	제품 홍보	2022.07.01
3	월간잡지	친환경	제품 홍보	2022.08.01
4	박람회	China international Agrochemical & Crop	제품 홍보	2023.05.2325.

## □ 포상 및 수상 실적

번호	종류	포상명	포상 내용	포상 대상	포상일	포상 기관

#### [인프라 성과]

#### □ 연구시설 • 장비

구축기관	연구시설/ 연구장비명	규격 (모델명)	개발여부 (○/×)	연구시설 • 장비 종합정보시스템* 등록여부	연구시설 • 장비 종합정보시스템* 등록번호	구축일자 (YY.MM.DD)	구축비용 (천원)	비고 (설치 장소)

^{* 「}과학기술기본법 시행령」 제42조제4항제2호에 따른 연구시설·장비 종합정보시스템을 의미합니다.

#### [그 밖의 성과]

## (4) 계획하지 않은 성과 및 관련 분야 기여사항

## 2) 목표 달성 수준

추 진 목 표	달 성 내 용	달성도(%)
<ul><li>이 미생물제제 대량생산공정 기술 확립 및 제품화</li></ul>	○ 제품화 1건, 매출액 2천만원, 고용창출 1건, 기 술인증 1건, 홍보전시 4건 달성	O 100
<ul><li>사과 주요병해 방제용 미생</li><li>물제제 현장활용기술 개발</li><li>및 사업화</li></ul>	○ 특허출원 1건, 기술이전 1건(기술료 200만원), SCIE 논문 1건(IF 2.3), 학술발표 5건, 교육지 도 4건 달성	

## 4. 목표 미달 시 원인분석(해당 시 작성합니다)

# 1) 목표 미달 원인(사유) 자체분석 내용

해당 없음

## 2) 자체 보완활동

해당 없음

## 3) 연구개발 과정의 성실성

해당 없음

# 5. 연구개발성과의 관련 분야에 대한 기여 정도

- 작물 생장 촉진 미생물제제 대량생산공정 확립 및 제형화 기술개발을 통해 관련 산업 활성화
- 살균제와 미생물제의 연혼용을 통한 사과 병해 종합방제력 제작하여 화학농약 사용 절 감 유도

# 6. 연구개발성과의 관리 및 활용 계획

	<	연구개발성과 활용	계획표 >				
그ㅂ/저랴	및 정성적 성과 항목	1 \		연구개팀	발 종료 후	5년 이내	
T판(영경			2024	2025	2026	2027	2028
		SCIE					
국외논문	Н	∃ISCIE					
		계					
		SCIE					
국내논문	Н	ISCIE					
		계					
		국내					
특허출원	-	국외					
		계					
		국내	1				
특허등록	-	국외					
		계					
		학사					
인력양성		석사					
2 ,00		박사					
		계					
		상품출시					
사업화		기술이전					
		공정개발				0.0	
		단위:백만원)	30	50	60	80	100
	임상시험 실시	1.4.1					
이지나의 시기	이야프	1상 2상					
임상시험 실시 (IND 승인)	의약품						
(IND 81)	3상 의료기기						
 진료지침개발							
전묘시점개월 신의료기술개발							
선의효기물제물 성과홍보							
포상 및 수상실적							
	<u> </u>						
영영식 영화 구표 내용					1		

## < 별첨 자료 >

중앙행정기관 요구사항	별첨 자료
	1) 자체평가의견서
1. 공통 요구자료	2) 연구성과 활용계획서
	3) 연구부정행위 예방 확인서
	1)
2.	2)

# 주 의

- 1. 이 보고서는 농림축산식품부에서 시행한 기술사업화지원 사업의 연구보고서입니다.
- 2. 이 보고서 내용을 발표하는 때에는 반드시 농림축산식품부에서 시행한 기술사업화지원 사업의 연구결과임을 밝혀야 합니다.
- 3. 국가과학기술 기밀 유지에 필요한 내용은 대외적으로 발표 또는 공개하여서는 안 됩니다.