

<제출문>

제 출 문

농림축산식품부 장관 귀하

본 보고서를 "농업 유용 진핵미생물의 참조유전체 및 오믹스 정보 분석 연구"(개발기 간: 2014.08.23.~2018.08.22.) 과제의 최종보고서로 제출합니다.

국가연구개발사업의 관리 등에 관한 규정 제18조에 따라 보고서 열람에 동의 합니다. <요약문>

연구의 목적 및 내용	 전통 주류 진핵 미생물의 참조유전체 및 오믹스 정보 분석을 통한 유유전자 발굴과 활용기술 개발을 통한 산업화 지원 전통 주류 진핵 미생물 유전자원 수집 및 DB화 당화 및 발효능 우수 전략 미생물의 유전체 서열해독 및 정보 분석 오믹스(전사체학, 대사체학) 분석기술 기반 선정 균주들의 특성 분석 체계적 유전체 및 오믹스 기반 분석 정보를 활용한 유용유전자(당화, 발효 능 및 풍미 조절 유전자군) 발굴과 활용기술 개발 							
	○ 전통누룩 유래 - 당화 및 향미 특허 출원/등록	당화 및 향미 - 가 뛰어난 효모 하였으며 산업적	우수 효모/곰팡이 와 사상성 곰팡이 유용 진핵미생물	 균주 분리 및 이를 다수 분리 · 균주 DB를 구축 [:]	DB 구축 동정하여 국내 함.			
연구개발성과	 전통주류 관련 전분분해능 등 전체와 독일의 질 참조유전체 6.3%에 해당되는 신규 누룩효덕 산업용 막걸리 대상으로 염 대상으로 염 <i>Lichthemia ra</i> 구축하고 <i>L. ra</i> <i>A. sojae</i>를 who 수행하였음. 현재 총 8종의 전체 서열은 Ge 오믹스 분석 7 다양한 배양 조 관련 유전자 발 GC-MS 기반 후 통계 분석을 통하 	효모와 사상성 및 향미가 우수한 호밀빵 효모균 지도를 세계 최 는 ' <i>Biotechnolog</i> 은 3종(<i>Saccharom</i> <i>doburtonii</i> KJS14 효모 2종(<i>Saccharom</i> <i>doburtonii</i> KJS14 <i>a</i> <i>doburtonii</i> KJS14 <i>a</i> <i>a</i> <i>a</i> <i>a</i> <i>a</i> <i>b</i> <i>b</i> <i>b</i> <i>b</i> <i>b</i> <i>b</i> <i>b</i> <i>c</i> <i>doburtonii b</i> <i>c</i> <i>doburtonii b</i> <i>c</i> <i>doburtonii b</i> <i>doburtonii b</i> <i>doburtoniii b</i> <i>doburtoniii b</i> <i>doburtoniii b</i> <i>doburtoniii b</i> <i>doburt</i>	전균 균주들의 이형효모균 S. S. fibuligera AT 역초로 완성하고 ny for Biofuels " nycopsis malanga)과 한국식품연극 aromyces cerev 립을 완수함. us oryzae KSS2 orymbifera (2종 uencing해서 총 니 효모, 3종의 두 NABIC(11종)에 목 대사 및 조절 네 문석 기반의 전 성보 확보함. GC-TOF/MS 기반 지표 성분을 발	고품질 참조 유 <i>fibuligera</i> KJJ8 YCC 36309와 비교 바이오테크노트 에 게재함. a KCN26, <i>Hypha</i> 구원과 국순당(주 <i>isiae</i> KSD, <i>S. c</i> & KBP3에 대한), <i>A. oryzae</i> (6 12종에 대한 비 =룩 사상성 진균 등록하였음. 트워크 분석 사체 분석을 통하 비휘발성 대사처 굴함.	전체 구축 1 & KHP12 유 분석하여 고품 로지 분야 상위 opichia burtonii)과 공동연구로 erevisiae 98-5) : 참조유전체를 5종), <i>A. flavus,</i> 교유전체 분석 들의 고품질 유 여 당화 및 발효 이 분석 데이터의			
	 ● 발효숙성 및 5 - 신규 유용유전 효소)의 기능 <i>fibuligera</i> 유전 - 산업용 막걸리 필요한 CRISPR) 화관련 유용유 고(전분분해 효 검증 연구를 자에 대한 특허] 이 효모 균주 대 -Cas9 활용 유전	전자 발굴 및 활 소, 단백질 분해 구행하고 이를 건(2018년 8월) 상으로 고기능 자가위 기술을	용 기술 개발 및 향미 관련 디 토대로 항향미 출원함. 종균 개발을 위 구축함.	내사산물 생합성 관련 신규 <i>S.</i> 한 대사공학에			
연구개발성과의 활용계획 (기대효과)	 > 달요만 CRIPTE-CASS 철장 규선자가귀 기室을 구죽함. > 당화·발효능이 우수한 효모 및 사상성 진규 균주 자체 또는 유용 유전자를 활용하여 보다 표준화된 맛과 기능성을 가진 전통주를 생산할 수 있는 핵심기 술들이 개발될 수 있을 것으로 사료됨. > 한국 전통주의 맛과 기능에 대한 메커니즘을 최첨단 유전체 및 오믹스 분석 기술로 과학적으로 규명하여 침체기에 들어선 전통주류 산업의 활성화와 수 총 학료 개척에 지어한 수 이유 거요로 기대되 							
국문핵심어 (5개 이내)	누룩	효모	사상성 진균	참조유전체	오믹스 분석			
영문핵심어 (5개 이내)								

※ 국문으로 작성(영문 핵심어 제외)

<보고서 요약서>

과제고유번호	914007-4	해 당 단 계 연 구 기 간	2014.08.23. · ~2018.08.22.	단계구분	(1 단계)/(2 단계)	
성구가이러	단위사업		농식품	풍기술개발사업		
인구사입명	사 업 명		미생	물유전체사업		
	대과제명		(1	해당 없음)		
연구과제명	세부 과제명	· 과제명 농업 유용 진핵미생물의 참조유전체 및 오믹스 정 분석 연구				
연 구 책 임 자	강현아	해당단계 참여연구원 수 총 연구기간 참여연구원 수	총: 24 명 내부: 12 명 외부: 12 명 총: 24 명 내부: 12 명 외부: 12 명	해당단계 연구개발비 총 연구 개발비	정부: 1,200,000 천원 민간: 천원 계: 1,200,000 천원 정부: 1,200,000 천원 민간: 천원 계: 1,200,000 천원	
연구기관명 및 소 속 부 서 명	중앙대학교 상	방명과학과		참여기업명		
국제공동연구	상대국명:			상대국 연구기관명:		
위 탁 연 구	연구기관명: 여	이텍스 바이오여	연구소	연구책임자: 홍	두창표 	

<u>보고서 요약서</u>

※ 국내외의 기술개발 현황은 연구개발계획서에 기재한 내용으로 갈음

연구개발성과의
보안등급 및
사유

일반

9대 성과 등록·기탁번호

			보고서	여구시석	기순영양	소프티		생명	자원	신픹	풍종
구분	논문	특허	01 12	기관	기코꼬ㄱ	പ്പം	화합물	생명	생물	거버	시민
			편군		~8도	퀘어		정보	자원	정보	신물
등록·기탁 번호	12	5	1					18	65		

국가과학기술종합정보시스템에 등록한 연구시설·장비 현황

구입기관	연구시설· 장비명	규격 (모델명)	수량	구입연월일	구입가격 (천원)	구입처 (전화)	비고 (설치장소)	NTIS 등록번호
요약(연구개)	발성과를 중 [,]	심으로 개조	식으로 작	성하되, 500 [;]	자 이내로 ?	작성합니다) 보고서 '	면수
							290	

<본문목차>

< 목 차 >

 연구개발과제의 개요
□ 1세부: 한국 전통주류 효모 균주의 참조유전체 및 오믹스 분석 연구 제1절. 전분분해 효모 고품질 유전체 해독 및 오믹스 분석 제2절. 신규 누룩효모 균주의 고품질 유전체 해독 및 생리적 특징 분석 제3절. 막걸리 효모 균주 표준유전체 및 비교유전체 분석 제4절. 누룩효모 참조유전체 기반 유용 유전자 발굴 및 기능 분석 제5절. 산업용 막걸리 효모 균주의 유전체 엔지니어링 기술 구축
□ 1세부 위탁: 주류 진핵 미생물 참조 유전체 정보 생산 제1절. 핵심 효모 균주 '2종' 에 대한 분석 제2절. 핵심 당화곰팡이 및 전통주류 우수 효모 균주에 대한 데이터 생산 및 분석 제3절. 참조 유전체 서열 해독을 위한 신규 누룩 효모 균주 선정 및 유전체 분석
 □ 1협동: 한국 전통주류 사상성 진군의 참조유전체 및 오믹스 분석 연구 제1절. 전통주 당화/발효 미생물 유전자원 수집, DB 구축 및 보존 제2절. 양조 특성 분석들을 통한 참조유전체 분석 대상 우수 진핵 미생물 균주 선발 제3절. 누룩 유래 유용 사상성 진군의 참조 유전체 해독 및 해외 산업 균주외 의 비교 유전체 분석 제4절. 누룩 유래 사상성 진군의 유용 유전자 발굴 및 기능 연구 제5절. 전통주의 발효 유래 휘발성/비휘발성 대사체 프로파일링
2.3 연구개발 성과 제1절. 연구성과 목표 및 대비실적 제2절. 사업성과 제3절. 기타성과
3. 목표 달성도 및 관련 분야 기여도
4. 연구결과의 활용 계획 등
붙임. 참고 문헌

<별첨> 주관연구기관의 자체평가의견서

주 의

1. 이 보고서는 농림축산식품부에서 시행한 미생물유전체사업의 연구보고서입니다.

이 보고서 내용을 발표하는 때에는 반드시 농림축산식품부에서 시행한 미생물유전체사업
 의 연구 결과임을 밝혀야 합니다.

3. 국가과학기술 기밀유지에 필요한 내용은 대외적으로 발표 또는 공개하여서는 아니됩니다.

1. 연구개발과제의 개요

1-1. 연구개발 목적

- 전통 주류 진핵 미생물의 참조유전체 및 오믹스 정보 분석을 통한 유용 유전자 발굴 과 활용기술 개발을 통한 산업화 지원
- 참조유전체 분석 10 종 이상(사상성 진균 2건, 효모 균주 4건 이상 포함) 및 재해독 유 전체 분석(사상성 진균 2종 포함) 10 건 내외
- 생산된 유용 유전정보의 NABIC 및 KOBIC 등록 10건 이상
- 산업체 균주에 대한 유전체 분석 및 유전체 정보 기반의 현장 애로기술 개발을 통한
 산업화 지원 2건
- 국제 SCI급 논문 10 편 이상(mBio 포함 상위 10% 논문 2건 이상 주저자 발표 포함)

1-2. 연구개발의 필요성

가. 국내외 현황

1) 주류 산업 활용도가 높은 진핵 미생물의 국내외 연구동향

- 주류의 품질을 결정짓는 가장 중요한 요소는 알콜 발효 외에도 주류의 풍미에 영향을 미치는 여러 대사물질을 생산해내는 효모 균주이므로, 최근에는 유럽과 미국을 위시하여 선진 국의 경우 맥주와 와인을 비롯한 주류 발효에 일정한 품질을 유지할 수 있도록 다양한 효모 균주들의 집단체 대신 보다 순수하게 분리된 Saccharomyces cerevisiae 계 효모 균 주들을 종균으로 사용함. 이와 같은 흐름은 유전체 정보를 기반으로 특정 기능이 강화된 효모 균주를 개발할 수 있는 기반을 제공함(Cebollero et al., 2007).
- 한편, 주된 발효능을 지닌 종균으로 작용하는 S. cerevisiae 계 효모 균주들외에도 최종 주 류의 풍미에 영향을 주는 non-Saccaromyces 계 효모들의 중요성이 부각되면서 이들에 대한 생리적 특징 및 유전체 분석에 대한 관심도 고조되고 있음(Jolly et al., 2014).
- 아시아 국가들의 전통주는 당화과정이 없이 바로 발효가 이루어지는 포도주와는 달리 코 지 또는 누룩 속의 전분분해효소에 의해 쌀의 전분질이 가수분해에 의해 두분자의 이당류 로 환원되는 당화과정을 거쳐야만 발효가 이루어지는 다소 복잡한 과정으로 이루어지는 술임. 즉, 한국의 전통주는 자연균인 누룩곰팡이와 효모균으로 당화와 발효를 동시에 거치 게 되는 "병행복발효" 방식으로 제조됨(그림 1).

- 이러한 누룩의 당화력을 담당하는 누룩곰팡이로는 원료 및 환경 중 존재하는 리조푸스 속(*Rhizopus* sp.), 뮤코 속(*Mucor* sp.), 압시디아 속(*Absidia* sp.), 아스페질러스속 (*Aspergilus* sp.), 페니실리움 속(*Penicillium* sp.) 등의 곰팡이이며, 또한 여러 종류의 전통 효모 사카로미세스 속(*Saccharomyces* sp.) 및 비전통 효모 균주들이 알코올 발효에 관여 하는 것으로 알려져 있음.
- 현재 일본과 중국 등에서도 전통발효 미생물 종균에 대한 과학적 연구가 활발하게 수행
 하고 있어, 국가차원에서의 유용 발효미생물 선발을 통한 생물자원주권의 확보를 위해
 전략적이고 혁신적인 대책이 수립되고 있음.
- 특히, 일본에서는 국가적인 산업군으로 분류되고 있는 주류산업에서 유용균주로 알려진 Aspergillus oryzae 균주에 대하여 오랫동안 기초적인 연구를 통하여 사케의 품질을 높이 고 일정한 품질을 유지할 수 있도록 표준화해 왔으며 당화, 발효 조건, 당, 질소 등의 원 재료에 따른 표준화 등을 거쳐 명실상부한 고부가가치 산업으로 자리 잡았음.
 - 일본 연구팀은 이미 1990년대부터 A. oryzae 균주의 당화능, 단백질분해능에 관련된 유 전자에 대한 유전체학적인 접근 및 분자생물학적인 기능 연구를 수행해 왔음(Hata et al., 1991, Maeda et al., 2004).
- 국내 전통 주류 제조과정의 당화 및 발효 원인 '누룩'에 대한 연구는 1900년대 일본 연구팀들에 의해 진행되었고(Takamine J., 1914), 국내에서의 연구는 단편적이며 기초적 인 내용들에 불과했으나 이명박 정부에서 우리나라 고유의 전통주류에 대한 복원 및 기 술개발, 표준화 등을 위한 지원 사업이 본격화되면서 연구개발에도 투자가 시작되었음.
- 국내 연구팀들은 전통 주류 제조에 쓰이고 있는 누룩으로부터 곰팡이류를 분리, 동정하고 당화능, 발효능 등 생리적인 특징을 분석하는 정도에서 그치고 있음(Kim. et al., 1997, Baek et al., 2010, Yang et al., 2011, Kim et al., 2011).
- 최근 국순당 연구팀은 막걸리의 기능성과 관련하여 항산화기능, 멜라닌 합성, 광피부 노화 등을 억제하는 효과가 있다는 연구논문을 발표된 바 있으나(Lee et al., 2012), 전통주의 품질향상 및 표준화에 의한 글로벌화를 위한 근본적이며 과학적인 연구의 접근은 극히 미흡한 실정임.

2) 주류 진핵미생물 대상 유전체 및 오믹스 분석 연구 동향

- 미생물 활용 발효 식품 산업을 전통적으로 주도하고 있는 유럽에서는 대학뿐만 아니라 기업 연구소를 중심으로 맥주와 와인 발효 효모 균주들을 대상으로 유전체 분석 연구와 이를 기반으로 하는 전사체, 단백질체, 대사체 등의 오믹스 분석 연구가 활발하게 진행 되고 있으며, 이는 발효 숙성과정 동안의 효모 균주의 생리 활성을 총체적으로 이해하려 는 시스템 생물학적 연구로 확대 진행되고 있음(Pizarro et al. 2007).
- 전통 발효효모 S. cerevisiae 대상의 참조유전체 및 비교유전체 분석 연구
- S. cerevisiae 유래의 많은 산업용 균주들은 여러 다양한 조건에서도 당을 에탄올로 발효 시키는 생리활성을 주된 근거로 선택적으로 활용되고 있음. 이와 같은 생리적 다양성을 유전학적으로 조사하기 위해 여러 산업용 사카로마이세스 계통의 효모 균주들의 유전 체 분석이 수행되고 S288c 균주를 참조유전체로 하여 비교 분석되고 있음. 일반적으로 이들간의 뚜렷한 차이는 Ty elements의 수와 분포 패턴, sinlge-nucleotide polymorphisms (SNPs),특정 균주만 지니고 있는 단백질의 유전자 존재 및 일부 유전자 구조적의 변이성에 기인한 다양성에 있음(Borneman et al., 2008).
- 더 많은 비교 유전체 분석 결과가 축적될수록 특정 형질에 연계된 유전적 변이를 규명 하는 것이 가속화 될 것으로 기대되고 있음. 이와 같은 연구 트렌드는 현재 S. cerevisiae (37 균주)와 S. paradoxus (27 균주)에 대한 대규모 유전체 비교 분석 연구를 수행하고 있는 영국의 Sanger institute에서 진행되고 있는 Saccharomyces Genomoe Resequencing Project (http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp/)에 잘 반영되 고 있음.
- 첫 번째 진핵생물체 유전체 분석으로 마일스톤을 세운 S. cerevisiae 유전체 분석 (Goffeau et al., 1996) 이후 최근의 관심사인 바이오연료로 바이오에탄올 생성을 위한 목적으로 많은 진균의 유전체가 연구되어 2000년대에 많은 주요 사상성 진균류 즉 Aspergillus nidulans, Neurospora crassa 등의 모델 진균의 유전체 해독(Galagan et al., 2003, 2005) 연구가 활발히 수행됨.
- 일본 산업에서 매우 중요한 역할을 하고 있는 *A. oryzae*에 대한 게놈 시퀀싱 및 분석에 대한 연구논문을 Nature에 발표하였으며(Machida., 2005), 페니실린 생성 균주인 *Penicillium chrysogenum*에 대한 유전체 분석 연구가 수행되었음(Berg et al., 2008).
- 미국은 에너지부(DOE, Department of Energy)에서 Joint Genome Institute(JGI)을 설립하 여 "Fungal Genomics Program"을 시작하였으며 목적은 에너지와 환경 분야를 위한 다양한 바이오매스 응용에 있음(Grigoriev et al., 2011).
- 중국은 역사적으로 식품과 의약품의 원료로 진균류를 활용해 왔기에 진균 유전체에 관하여 2009년에는 이미 20여개 이상의 진균 유전체 연구가 진행 또는 완료되었으며, 향후 에도 많은 진균의 유전체 연구가 계획되어 있고 식물 및 인간 병원성 진균분야, 진균-기 주 상호작용(바이오콘르톨 제재) 진균분야, 식품 및 의학 유용진균 분야 세 분야로 나누어 진행 중임(An et al., 2010).

3) 사상성 진균 및 효모 대상 대사체 분석 연구 동향

- 이 대사체학은 생체 내에 분포하는 저분자 화합물인 대사체들(metabolites)의 전대사체 분석 (global metabolite)을 통하여 유전적 환경이나 기타 외부 환경변화에 대한 생체 조절시스 템의 변화를 확인하고, 여기에 관여하는 기존에 보고되지 않은 새로운 물질 발견에 연구 가능성이 매우 높은 연구기법으로, GC-MS, GC-TOFMS, LC-MS, NMR, IR 등의 분석기기 이용 및 다변량 통계 분석 (PCA, PLS-DA, HCA 등)이 대사체 연구에 중요한 열쇠가 되고 있음.
- MIT에서는 향후 10년을 지배할 10가지 기술 중 하나로 대사체학을 선정한 바 있으며 (Tecnology review, MIT, 2005), 2010년 1월 Nature에 발표된 <2020 visions>에 의하면 향 후 10년 동안 주목받을 분야의 하나로 대사체학 분야가 선정된 바 있음. 특히, microbial metabolomics, system biology 등의 BT 분야에서 그 중요성이 커지고 있음.
- 다양한 기기분석을 이용하여 여러 식품을 대상으로 metabolomic analysis 연구가 수행되고 있음. 예를 들면, UPLC-TOF-MS를 이용한 녹차의 품질 지표 성분 분석 (Pongsuwan et al., 2008a.), NMR을 이용한 와인의 대사체 특성 연구(Pereira et al, 2007), GC-MS 기 기분석법을 이용하여 녹차의 휘발성 향기성분 profiling하여 품질지표성분을 분석한 바 있음(Pongsuwan et al., 2008b).
- 미생물 대사체학 연구를 위한 시료 전처리 방법도 중요한 부분임. 최근 효모 S. cereviae
 를 분석하기 위한 최적의 전처리 방법이 소개된 연구가 있음. S. cereviae는 -40℃,
 methanol을 이용한 "leakage-free cold methanol quenching" 방법이 이용되었고,
 GC-TOF/MS를 이용하여 110개의 세포내 대사체를 동정함(Kim et al., 2013) 또한 water를
 이용한 washing 과정으로 fast filteration을 적용하여 세포외 대사체 손실과 오염을 줄이
 는 해결 방법을 제시함.
- 에포내 대사체를 프로파일링을 확인하기 위한 metabolic fingerprinting 전처리 기법으로 효모의 glucose 대사를 정지시키기 위해 -40℃에서 60% methanol을 분사하고, quenching, cold methanol washing 단계를 거친 후, -40℃에서 chloroform 추출하였음 (Koning and Dam, 1992). 또한 미생물 세포를 추출하기 위한 방법으로 microwave와 sonic wave, 그리고 SPE를 이용한 방법이 개발된 바 있음(Young, 1995, Lim,2002).
- 유기체 환경의 화학적인 변화를 증명하기 위해 미생물 배양액을 사용하여 세포외 대사 체 프로파일링을 주로 측정함. 효모 *S. cereviae* mutants 6종의 metabolic footprinting 분 석연구에서는 DI-MS 분석을 위해 90% MeOH용매 추출한 시료 전처리 방법을 이용하였 고, GC/MS 분석을 위하여 분리된 상층액을-56℃에서 동결건조 하여 남은 고체 부분을 1% sodium hydroxide 용액과 methanol, pyridine을 넣어 혼합하고, methyl chloroformate 를 이용하여 유도체화 하였음(Mas et al., 2007).

- 사상성 진균의 대사체 연구는 주로 2차 대사 경로와 관련된 연구로 진균이 생성하는 2
 차 대사산물 중 독성 물질로 분류되는 진균독소(mycotoxin) 생산에 관여하는 기능 유전 체학 등의 분야로 주로 수행되었음.
- 비교유전체 및 기능유전체학 연구를 통하여 위의 2차대사산물 생성을 조절하는 전사조 절인자들도 연구가 활발히 수행되었으나 산업적으로 유용한 균주보다는 병원성 진균 및 독소생성 진균류에 초점을 맞춘 연구들이 대부분임(Fedorova et al., 2008).
- 대표적인 발효주인 와인을 소재로 한 대사체학 연구는 다양하게 진행되었음. 와인을 NMR로 분석한 연구(Son et al., 2009)와 GC-TOF와 NMR을 이용하여 white wine의 이차 대사산물을 조사한 연구(Skogerson et al., 2009)가 있음. 또한 대사체학 접근 방법을 이 용한 국산 포도주의 품질 개선에 관한 연구와 와인의 malolactic fermentation 특성에 관 한 연구도 진행된 바 있음(Son 2010, Lee 2010).
- 최근 국내연구팀에서 여러 가지 진균에 의한 쌀 koji 발효에 대한 대사체 프로파일링 분
 석으로 논문을 발표하였으며, 이 연구에서는 Aspergillus kawachii, A. oryzae, Rhizopus
 종 등의 사상성 진균이 활용되었음(Lee et al., 2010).
- 본연구팀에서는 전통적인 발효식품인 간장에 두 가지 효모(Tetragenococcus halophilus, Zygosaccharomyces rouxii.)을 접종하여 간장의 휘발성 성분을 분석한 연구에서는 SPME 를 이용하여 acid, aldehydes, ester, ketones, furan 유도체, phenols 류 107개의 성분을 분석한 후 비교한 바 있음(Lee et al., 2013). 또한 주류의 휘발성 대사체를 조사한 연구에서는 저온살균 유무에 따른 전통 막걸리의 휘발성 성분을 GC/MS와 GC-O로 분석 비교 한 연구를 진행 한 바 있고, 저온살균하지 않은 막걸리에서 odor-active compounds가 유의적으로 차이가 있음을 알 수 있었음(Park et al., 2013).
- GC-Olfactometry 및 GC-MS 등을 사용하여 국내 전통주 막걸리에서 2,3-butanediol 및 다양한 ethyl ester류가 중요한 풍미성분으로 작용하고 있으며, 기타 2/3-methylbutanoic acid 및 methionol 등 품질저하와 관련이 있는 성분들도 주요 인자로 규명함(Park et al., 2013). 국내 전통주에 대한 총체적인 품질지표 성분에 대한 연구는 아직 부족한 실정임.
- 최근에는 주류 섭취 시 숙취와 관련이 있는 acetaldehyde, methanol 및 fusel oils에 대한 관심도 증대되고 있으며, 특히 일부 국내 전통주에서는 상대적으로 이들의 함량이 높은 편이었음. 이들 성분들은 과량으로 섭취 시 간질환 및 암을 유발할 수도 있는 것으로도 알려져 있음(Chung et al, 2012).

나. 국내 연구 주류 미생물 연구 현황 및 문제점

- 우리나라 전통술의 가장 큰 특징으로는 발효제로 누룩을 사용하는 병행복발효 방식으로 양조하는 것으로, 누룩은 곡류를 조분쇄하여 살균하지 않은 생전분을 그대로 자연 발효 상태에서 제조하기 때문에 곰팡이, 효모, 세균류 등의 다양한 종류의 미생물이 존재함으 로써 곰팡이에 의한 전분의 당화력과 효모에 의한 알콜 발효능을 동시에 지니게 되어 전통주의 제조가 가능하게 되는 것임.
- 서양 전통주인 와인 및 맥주 제조공정과는 달리, 우리나라의 전통주 제조공정은 분리정 제된 종균을 첨가하지 않고 주원료에 부재료를 첨가, 혼합하여 원료나 공기 중에서 유입 된 천연 미생물에 의한 자연발효 과정을 이용하고 있음. 따라서 발효에 참여하는 미생물 이 균일하지 못하여 제조 공정의 표준화가 어려우며 이로 인하여 생산되는 발효식품의 품질 및 맛이 다양하게 형성되는 문제점이 있음.
- 국내 전통주는 다양한 효모균주 및 발효조건(원료, 온도, 기간 등)에 의해 생성물이 변화하며, 이에 따라 표준화된 품질 관리 및 품질지표 성분 선정에 어려움이 있음. 특히, 대사체 성분들에 대한 규명은 전통발효주의 품질 및 풍미와 매우 밀접한 연관이 있으며, 이들에 대한 과학적인 규명 및 전통발효주 내 미생물 대사체 변화와 발효조건 등과의 상관관계 규명은 최적 발효조건의 확립, 산업적 이용을 위한 품질 관리에 필수적인 요소임.
- 우리나라의 전통주 산업은 대표적인 2~3개 업체를 제외하면 매우 영세한 규모로 운영되고 있어 기본적인 품질관리조차 제대로 이루어지지 않는 업체가 대부분임. 특히 아직 우수한 종균개발이 미비한 관계로 매년 고액의 로열티가 해외 생물자원의 사용 대가로 지불되고 있으며 심지어 막걸리, 간장, 식초와 같이 우리고유의 발효식품 생산에 있어서도 종균 수입과 관련하여 해외에 막대한 비용을 지불하고 있음.
 - 현재 일본에서 도입된 Aspergilus awamori var. kawahcii 균을 이용한 입국을 막걸리 양 조용 발효제로 많이 이용하고 있으나 산이 지나치게 많고 아미노산이 부족하여 맛의 조화가 이루어져 있지 않음. 또한 독특한 향도 없어 지역마다의 차별성이 없어지고, 주 질이 획일화되는 결과를 초래함. 이와 같은 A. awamori var. kawahcii 균의 사용에 대하 여는 2010년 국정감사에서도 지적된 바 있음.
- 막걸리에 대한 젊은 층을 중심으로 국제적인 인기 상승으로 인해 대중성 있는 기호도 확
 보 가능한 막걸리 상품 개발 가능성 모색에 대하여 연구가 집중되어 있을 뿐 지역과 자
 연환경에 따라 독특한 누룩 유래 곰팡이 및 이를 활용하여 본연의 지역과 환경의 차별성
 을 구현시킬 수 있는 전통주 제조 관련 생물자원에 대한 기반 정보는 매우 미흡함.

다. 국내 연구개발의 필요성 및 중요성

○ 전통주 종균 보전 및 산업적 활용 제고 기술 개발 필요

- 국내의 전통주를 만드는 데 사용하는 사상성 진균류 및 효모는 소규모의 발효회사들이
 생산 공급하나 이들은 지적재산권 보호를 받고 있지 못함
- 우리의 술맛을 내는 사상성 진균류 및 효모 균주를 발굴하고 개량, 종균화하여 산업재
 산권을 확보함으로써 미생물 자원의 국가 주권 확보가 필요함
- 참조유전체 정보 확보와 유전적 다양성 연구의 필요성
- 외국의 전통주와 달리 한국 전통주는 약 130여종의 복합 누룩균주에 의해 제조됨. 한국 전통주의 표준화, 과학화, 세계화를 위해서 핵심 종균들에 대한 참조유전체 정보의 확보
 가 필수적임. 참조유전체 해독을 통해 유용 형질과 관련된 유전자들을 발굴하고 관련 대 사경로를 이해할 수 있으며 이를 기반으로 종 다양성 분석 연구를 수행하여 야생균주 및 우량 형질 보유 균주들을 체계적으로 선발 및 확보하고, 더 나아가 우수 목표 형질을 가진 균주로의 개량이 가능할 것임

○ 전통주 발효 종균의 유용 유전자원 확보 및 활용 기반 기술 개발 필요

- 우리나라는 오래전부터 김치, 술, 간장, 된장과 같이 전통발효 방법을 사용하여 다양한 발효식품을 제조해온 나라임에도 불구하고 국내 전통식품 관련 발효 미생물의 유전체 정보 확보하고 이를 기반으로 하는 종균 개발 및 유용자원 활용 기술 개발 연구는 외 국에 비해 상대적으로 미진함
- 국내 전통주에서 분리한 효모균들을 대상으로 비교유전체 및 기능유전체 분석을 수행 하여 우수한 발효능과 기능성을 가진 종균개발에 필요한 유용 유전자원을 확보하고, 전통주의 표준화 및 고급화 공정에 활용할 수 있는 기반 기술을 개발하는 것이 바이오 산업에서의 국제 경쟁력 제고에 크게 기여할 것임

○ 세계 시장 진입을 위한 전통주의 표준화 및 고급화 기술 개발 필요

- 국내에서 일부 모델 생물체로 활용되는 곰팡이 혹은 효모 대상의 오믹스 분석 연구는 진행된 바 있으나, 전통 주류 진핵 미생물에 관한 유전체 기반 오믹스 분석 연구는 미비 한 상태임. 따라서 효모 및 곰팡이를 이용한 전통 주류의 유전체 기능에 대한 총체적인 연구 및 풍미, 품질관리에 대한 미생물 유전체와 발효조건의 상관관계에 대한 연구가 필요한 실정임
- 전통 주류산업에서 효모 균주의 생화학적 작용에 의해 다양한 대사체들이 최종적으로 생성되며, 이들에 의해 전통 발효주의 기능성, 영양학적 특성 및 품질 특성이 결정됨.
 특히, 제품의 기호도와 밀접한 연관이 있는 풍미와 관련한 미생물 대상의 전사체/대사 체에 대한 총체적인 연구는 제품 개선을 위한 기초적인 자료로 활용될 수 있으며, 산 업적으로도 품질 관리에 유용한 정보를 제공할 것임

1-3. 연구개발 범위

○ 연구개발 최종 목표

- 주류 산업에 활용도가 높은 사상성 진균 및 효모의 유전체 정보를 확보하고 이를 기반
 으로 전사체/대사체 통합 분석 연구를 수행하여 병행복발효 숙성과정을 주도하는 대사
 경로와 유용 유전자를 발굴하고 활용 기술을 개발함

○ 연구개발 주요 범위

- 전통주 병행복발효에 이용되는 당화능 우수 사상성 진균 및 발효능 우수 효모의 유전자원 수집 및 보존
- 혼합 미생물 발효제(누룩 또는 koji)로부터 미생물군집 분석
- 각 시료로부터 단일균주 분리 및 종(species) 동정
- 유용 미생물 자원의 정보, 생리학적 특성, 산지 정보 등 유용 DB 구축

2) 유용 진핵 미생물의 참조유전체 서열해독, 비교유전체 분석을 통한 유용 유전자 발굴

- 우수한 주류제조 특성을 가진 균주의 선발 및 참조유전체 서열 해독
- 우리나라 전통주 미생물 군집에서 흔히 발견되는 사상성 진균의 비교유전체
- 당화 및 발효 관련, 향미 관련 유전자의 구조 및 발현 차이 분석 및 유용 유전자 발굴
- 3) 전통주 당화·발효 진핵미생물의 오믹스 분석을 통한 유전체 및 당화·발효조건과의 상관관계 규명
- 선별된 진핵 미생물에 의해 당화·발효된 전통주의 전사체 및 대사체 프로파일링 분석
- 주요 당화·발효 조건 및 대사체 프로파일링 변화에 대한 상관 관계 조사 및 분석
- 발효 숙성과정을 주도하는 대사경로 조절 기작 및 전사조절 인자 규명
- 주류의 알콜 지수 및 풍미에 영향을 주는 유전자 발현 조절 기작 규명

4) 발굴한 진핵 미생물의 유용유전자를 활용한 산업화 지원

- 오믹스 통합 정보 활용 유용유전자 발현 극대화를 위한 발효조건 연구
- 유용유전자 발현이 우수한 자연돌연변이 균주 선발 및 균주 개량 기술 개발
- 국내 전통주의 품질지표 성분 선정

2. 연구수행 내용 및 결과

2.1. 이론적, 실험적 접근방법

가. 연구개발 추진전략 및 방법

▶ 참조 유전체 분석 효모 및 사상성 곰팡이 균주 선정

 본 연구에서 국내의 다양한 지역에서 확보된 누룩을 대상으로 신규 양조 진핵 미생물 균 주를 발굴하고 이들의 생리적 특징을 비교 분석하고 하기와 같은 활성에서 우수한 형질을 보이는 균주를 참조유전체 균주 후보로 선정할 것 임(표 1).

<표 1> 선행 연구를 통해 확보된 국내 누룩에서 발굴된 대표적인 효모 균주 리스트

효모 균주명	국내 누룩 정보	당화 능	풍미	서열 해독 (근연종 포함)	지놈 크기 (Mbp)	염색체 개수
Saccharomycopsis fibuligeraJC1-3	충북 제천시 중앙로 1가 77	5.65	배향, 포도향	미수행	Unknown	Unknown
Hyphopichia pseudoburtoniiJS1-4	강원도 정선군 사북읍 직전로 769	10.53	쉰내	미수행	Unknown	Unknown
Pichia jadiniiJS2-1	강원도 정선군 사북읍 직전로 769	7.69	쉰내, 밥냄새	미수행	Unknown	Unknown
Clavispora lusitaniaeJS3-3	강원도 정선군 북평면 남평리 412-1	0.09	무취	수행	12.1	Scaffolds
Torulaspora delbrueckiiSS1-1	부산 금정구 금성동 603	25.33	상큼한 향	수행	9.2	8
Pichia kudriavzeviiJJ1-3	제주특별자치도 제주시 도두1동 1204-1	2.52	쉰향	미수행	Unknown	Unknown
Pichia burtoniiJJ4-3 (Hyphopichia burtonii)	제주특별자치도 제주시 도두1동 1204-1	0.43	꼬릿한 냄새	미수행	Unknown	Unknown
Wickerhamomyces anomalusJJ2-5 (Pichia anmala, Hansenula anomala)	제주특별자치도 제주시 도두1동 1204-1	0	밥냄새	수행	26.6	Scaffolds

② 또한 본 과제 참여 연구팀이 환경부 산하 국립생물자원관에서 용역사업으로 2013년 도 진행하였던 선행 연구 결과 확보된 사상성 진균 중 당화·발효능이 우수하나 유전 체 해독이 미완료된 균주들을 중심으로 참조유전체 해독 대상 균주로 고려할 것 임. 이와 같은 국립생물자원관으로부터 균주 분양 및 결과 활용에 대한 협력 연구 추진은 국가 R&D 예산의 중복사용 방지 및 연구결과 연계의 우수한 사례가 될 것임.

▶ 차세대 염기서열 분석 기법을 이용한 whole-genome *de novo* sequencing

- 차세대염기서열분석기법(Next Generation Sequencing)을 이용하여 선정된 핵심 균주의 전장게놈(whole-genome)에 대한 서열 데이터를 생산함. 서열 데이터 생산은 genomic DNA 라이브러리 크기 1 kb 미만 short reads과 2 kb, 5 kb, 10 kb, 20 kb의 long-mate pair reads을 생산함.
- ② Long-read sequencing: Moleculo (또는 평균 5~6 kb) 또는 PacBio (P5-C3 SMRT셀 평 군 8.2 kb) 플랫폼을 활용하여 long-read sequence들을 생산함.

▶ 유전체 물리지도 작성(Physical mapping)

① 제한효소 절단법을 통한 참조유전체의 physical mapping 수행함(OpGen 또는 BioNano 플랫폼 이용)

- ② 작성된 물리지도는 *de novo* sequence assembly 결과와 통합시켜 scaffold들의 physical order를 결정할 것임.
- ▶ 유전체 서열 조립

- 기존의 유전체 염기서열 조립 알고리즘외에도 본 연구과제의 위탁연구팀인 테라젠에서

자체 개발된 알고리즘을 활용하여 시퀀싱을 통해 확보된 유전체 서열을 조립함(그림 1)

- K-mer 분석: 저품질의 서열을 필터링 후 유전체 크기에 대한 예측이 이루어지고, single base correction 과정을 통해서 정상적인 분포를 가질 수 있는 유일한 서열이 존재하는 지 점검함.
- ② Contig 조립: K-mer를 이용한 de Bruijn graph 구성을 통해 contig들을 생성함. DBG에 서 repeat이나 diploid에서 나타나는 heterozygotes에 의해서 나타나는 문제점 등을 수정 함(Error correction).
- ③ Scaffold 조립: 조립된 contig를 더 긴 scaffold로 확장하는 단계임. 이 단계에서는 contig 구성에 사용한 singleton 뿐만 아니라 앞서 생산된 long mate-pair를 이용함. 'singleton 정렬, 'scaffold construction, 'gap closure' 3단계로 이루어짐. 특히, scaffold construction 단계의 경우, scaffold 조립 과정에서 long mate-pairs의 경우 singleton보다 더 중요한 정보를 담고 있지만, 생산된 데이터 중 신뢰할 만 한 거리를 가지는 비율이 낮아 일정한 scoring function을 이용하여 contig 사이의 거리를 추정하여 scaffold 서열 을 생성함.
- ④ 조립된 Scaffold 서열에 RNA-Seq 데이터의 맵핑을 통한 유전자 부위에 대한 서열 조립 퀄리티를 확인하고, 조립된 scaffold 데이터는 physical map에 결합시킴으로서 scaffold 들의 실제 physical order를 결정함. 이 단계를 통해 참조유전체 서열 정보를 정리하고 비교유전체 및 기능유전체 분석에 활용함.

유전체 구조 분석 ① 참조유전체 내 Gene Set 구축 및 해석: 유전자 annotation은 scaffold 서열에서 유전 자 모델을 만들어내는 과정임. Ab initio prediction, RNA-Seq을 활용한 transcribed region 확인, 상동성 검색(BLAST를 이용한 homology search) 등을 복합적으로 활용하 여 유전자 모델을 구축함 ② Orthologous gene cluster 분석: BLASTX(P)를 이용하여 시퀀싱된 모델 미생물 균주들 의 GeneSet들과 비교하여 참조유전체와 타종에서 orthologous gene cluster들을 탐색함 ③ 유전체 조직의 구성도 분석: Gene structure (gene family 포함) 이외, 상동성 검색법을 통해 transposable elements 및 tandem repeats 등의 분포(풍부성, 종류)를 조사함. 또 한 유전체 내 non-coding RNAs (tRNA, rRNA, miRNA, snRNA) 등을 탐색함 • 진화 히스토리 분석 ① Genome duplication 분석: Synteny 분석을 통해 유전체 내 duplicated genomic regions 을 탐색함(진핵생물의 genome complexity는 TEs이외에 다양한 속도와 함께 genome duplication에 의해 결정됨. 특히, gene family의 확장/축소는 생물학적 기능의 다양성을 유도할 수 있음) ② 유전체 진화 히스토리 규명: 주류 미생물 유전체의 진화적 계통 분류(근연관계 존재 시 genome synteny 분석 수행), 관심 형질 관련 유전자들에 대해 positively selected genes을 선발 분석 ③ 공통조상으로부터 분화된 이후로 확장(expansion) 및 축소(contraction)된 gene family 분석함 ▶ 주요 대사경로 관련 유전자들의 탐색, 맵핑, 네트워크 분석 ① 상동성 검색기법을 이용하여 GeneSet으로부터 주요 대사경로 관련 유전자들의 탐색 및 pathway에 맵핑함(그림 2) ② 유전체, 전사체, 대사체 정보 이용 '당화' 및 '발효'에 영향을 주는 주요 대사경 로 관련 유전자 조절 네트워크 분석을 수행함 TCA cycle Givoxviate c

그림 2. 오믹스 정보 기반의 *Rhodosporidium toruloides* 지질 대사경로 조절 네트워크 분석 연구 (Zhu et al. 2012) ▶ 유전체 정보 기반 *in silico* metabolic pathway reconstruction

- 여러 공공 데이터베이스(SGD, MIPS, YPD, yMGV 등)로부터 상동성 검색기법을 이용하여 발효능, 당화능 및 풍미 우수 참조유전체 내에서 대사 조절 관련 유전자들을 탐색하고, 대사 및 조절망 정보는 KEGG (Kyoto Encyclopedia of Genes and Genomes; http://www.genome.ad.jp/kegg.kegg2.html)와 WIT (http://wit.mcs.anl.gov/WITs/)에서 확보하여 참조유전체 분석 균주들의 *in silico* 탄소원 및 황원 대사 경로를 구축함
- ② 유전체 데이터와 함께 발효 및 당화능 기능 연구로부터 확보된 전사체 및 대사체 정보를 토대로 IPA (Ingenuity Pathway Analysis)를 이용하여 대사경로 기반의 네트워크 분석 을 수행하여, 대사경로에서 핵심적으로 작용할 수 있는 유전자 후보군을 탐색함
- ③ *in silico* pathway 검증을 위해서는 몇 개의 주요 유전자들에 대한 결손 및 과발현 변이주를 제작하고 성장 및 생리적 특징 분석을 수행함
- ▶ 유전체의 총체적인 발현 양상 분석 및 전사 조절 회로 모델링
 - ① 참조유전체 선정 균주 대상의 다양한 배양 조건 및 탄소원에 따른 전사체 변화 분석을 위해 배양 시간에 따른 RNA-seq 활용 전사체 발현 프로파일 분석을 수행하고, in silico 탄소원, 질소원, 황 대사 경로에 mapping하여 배양 조건에 따른 총체적인 대사 관련 유전자들의 발현 양상 변화에 대한 정보를 확보함
 - ② 유전체 정보 비교 분석을 토대로 주류 효모 균주들의 glucose repression 신호전달 경로를 구축하고 Crabtree effect 및 발효능과 관련된 탄소원 대사 조절인자(Snflp, Adrlp, Hap4p) 유전자 결손 및 과발현 변이주를 제작하여 이들에 대한 전사체 분석을 수행함. 발효주의 풍미에 영향을 주는 황 대사 관련 조절인자(Met4p) 및 질소 대사 관련 조절인자(Gln3p, Gatlp)에 대한 유전자 결손 변이주를 제작하고 전사체 발현양상 분석을 수행함
 - ③ RNA-seq data는 일부 특정 유전자군에 대한 Real-Time PCR을 사용하여 검증하며, 특히 전 통효모에서 확보된 전사체 프로파일과 비교 분석하여 전사조절 메카니즘에 대한 총체적인 정보 를 확보함
 - ④ 확보된 전사체 발현 data는 대사체 정보와 통합 분석을 시도하고, 주류 발효공정에 사용될 생산 균주의 총체적인 발현 양상 분석 정보를 재창출하는 반복되는 분석 cycle을 거쳐 발효능 및 풍 미 개선 균주 및 발효 공정 최적화에 필요한 타겟을 발굴함
- ▶ 주류의 알콜지수 및 풍미 향상을 위한 유전자 발현 증폭 및 제거 기술 개발
 - 발효능 및 풍미 관련 대사 조절 인자에 대한 기능별 도메인 분석을 수행하고 활성 억제 도메인이 결손된 활성화된 조절인자 유전자를 제작하고 이를 과발현시켜 발효 및 풍미 관 련 유전자군 발현이 활성화된 고알콜 또는 특정 풍미를 지닌 고품질 종균을 개발함.
 - ② GRAS 급의 종균 제작 기술을 개발하기 위해 rRNA 또는 delta 서열과 같은 자체적 반복 서열의 존재를 분석하고 이를 활용하여 발효/당화/풍미 관련 유용 유전자 발현 증폭을 위 한 카피수 삽입 조절 기술을 개발함
 - ③ 한편,예로써 황화수소 등과 같이 전통주의 풍미를 저하시키는 황 대사 관련 유전자와 같이 특정 유전자 제거를 통해 풍미가 향상된 고품질 종균을 위한 self-cloning 기법을 개발함.
- ▶ 대사체 프로파일링 및 분석

① 효모 및 곰팡이 발효에 의한 전대사체(metabolome) 분석을 위해 다양한 분석기기(GC-MS, GC-TOF/MS, CE-MS)를 사용하고자 하며, 이를 위한 전처리(quenching, cell distruption,

extraction 및 derivatization 등) 과정 및 추출과정을 확립하고 이를 수행함. 전대사체의 분석 은 targeted 및 non-targeted analysis로 metabolic fingerprinting/footprinting을 수행함 ② 휘발성 대사체는 SPME, dynamic headspace 및 stirrer bar extraction 등의 추출법을 활용하 며, GC-MS (quadrupole)을 사용하여 분석하고자 함 ③ 비휘발성 대사체(아미노산, 유기산, 당류 등)은 BSTFA 등으로 유도체화를 실행하며, GC-TOF/MS로 분석을 실행함 ④ 극성 및 이온성 대사중간산물들은 CE-MS로 분석하며, 대사경로 분석 및 mapping에 활용함 (5) 알데히드류(포름알데히드, 아세트알데히드 등)은 PFBHA 등으로 유도체화한 후 GC-MS로 분석 하며, ¹³C로 처리된 내부표준물질을 이용하여 정량하며, 퓨젤 오일류는 GC-MS로 분석함 ▶ 유전체 및 발효조건과의 상관관계 규명 및 품질지표 성분 선정 ① 대사체 프로파일링 및 분석 데이터의 미생물 (효모 및 곰팡이) 유전체 분석 결과 및 발효 조건과의 상관관계 규명을 위하여 PCA, PLS-DA, HCA 등의 다변량 통계 기법을 활용함 ② 품질지표 성분 선정은 다변량 통계 결과 유의적인 차이에 관여하는 성분들의 풍미 특성 및 관능 특성 등을 고려하여 선정함 ▶ 비교 유전체 및 오믹스 분석을 통한 주류 품질 관련 유전자 발굴 및 발현 조절 네트워크 정 보 규명 ① 참조 유전체로 해독된 핵심 종에 대해 국내 다양한 지역의 가양주에서 동정된 관련 균 주들의 유전체 재해독을 수행하여 핵심 균류의 유전적 다양성을 품질 관련 발효, 당화 및 풍미 관련 유전자(**당화 효소, 리파아제, 에스테라제 유전자**)를 중심으로 분석함. ② 당화효소 관련 데이터베이스(CAZy, Carbohydrate-Active Enzyme DB)로부터 유전자 및 단백질 정보 수집 후 상동성 검색 기법 및 functional domain의 보존성 조사를 통해 당 화효소를 코딩하는 유전자 후보군들을 탐색하고, KEGG 당화효소 관련 대사경로에 대 한 유전자 맵핑을 수행함. 특히 서열의 변이화 분석을 통해 positively selected genes을 탐색하고, 해당 유전자의 단백질 구조 변화를 예측함. 또한 TFBS 부위에서 변이 생성 및 유전자 발현 변화여부도 분석됨 ③ 리파아제 관련 데이터베이스인 LIPABASE (http://www.lipabase-pfba-tun.org) 및 lipase engineering 데이터베이스인 LED (http://www.led.uni-stuttgart.de), 에스테라제 관련 데이터베이스로는 ESTHER (http://bioweb.ensam.inra.fr/esther)로부터 유전자 및 단 백질 구조 정보를 확보하여 비교 분석함. ④ RNA-Seq 분석 기반의 전사체 발현 프로파일링을 통해 발현조절이 일어나는 유전자들 (특히, co-regulated differentially expressed genes)을 선발함. 특히 대사체 발현과 상관 관계를 나타나는 유전자들이 우선적으로 고려하고 관련 주류 곰팡이 균주들간의 발현 양상을 qRT-PCR로 비교 분석함.

⑤ 참조 유전체 균주를 중심으로 확보된 유전체, 전사체 및 대사체 정보를 통합하여 IPA 를 이용한 대사경로 기반의 네트워크 분석을 수행하여 탄소원 및 황원 대사경로에서 핵심적으로 작용할 수 있는 유전자 후보군을 탐색함, 이를 토대로 비교 유전체 균주들 의 핵심 당화 및 풍미 관련 유전자 후보군을 동정하고 기능 및 발현 양상을 비교 분석 함(특히 이웃관계에서 발현 조절과 함께 상호작용 가능성이 우선적으로 분석됨).

- 14 -

2.2. 연구내용 및 연구결과

□ 1 세부: 한국 전통주류 효모 균주의 참조유전체 및 오믹스 분석 연구

1절. 전분 분해 효모 Saccharomycopsis fiburigera 참조 유전체 및 오 믹스 분석

1. 참조유전체 분석 균주 선정 및 생리적 특징 분석

가. 당화능 및 풍미가 우수 효모 균주 선정

- 참조유전체 분석 균주로 선행 연구를 통해 국내 누룩에서 발굴된 당화능 및 풍미가 우수 한 여러 효모 균주들 중 아직 유전체 분석 연구가 되어 있지 않은 균주 2 종 (*Saccaromycopsis fibuligera* LNJJ8-1와 *Pichia jadinii* LNPH1-2)을 선정(표.1)하고, ITS1 (TCCGTAGGTGAACCTGCGG) 및 ITS4 (TCCTCCGCTTATTGATATGC) 프라이머로 이들의 ITS (internal Transcribed Spacer) 부분을 PCR로 확보한 후 시퀸싱하여 비교 분석한 결과 두 균주의 ITS는 동일한 염기서열을 보였으며 ISHAM ITS DB (<u>http://its.mycologylab.org</u>)에서 *S. fibuligera*에 속하는 것으로 확인되었다(그림 1). 이는 두 균주가 상당히 가까운 근연종이라 고 생각된다.

효모 균주명	국내 누룩 정보	당화능	풍미	서열 해독 (근연종 포함)	지놈 크기 (Mb)	염색체 개수
Saccharomycopsis fibuligera]]8-1	제주 서귀포시 중문동 2123-1	55.7	과실형	미수행	Unknown	Unknown
Pichia jadiniii PH1-2	경상북도 포항시 남구 연일읍 유강리 대림 한숲 1차 104-303	27.88	락스향	미수행	Unknown	Unknown
	효모 균주명 Saccharomycopsis fibuligeraJJ8-1 Pichia jadiniii PH1-2	효모 균주명 국내 누룩 정보 Saccharomycopsis fibuligeraJJ8-1 제주 서귀포시 중문동 2123-1 Pichia jadiniii PH1-2 건상북도 포항시 남구 연일읍 유강리 대원 한술 1자 104-303	효모 균주명 국내 누룩 정보 당화능 Saccharomycopsis fibuligeraJJ8-1 제주 서귀포시 중문동 2123-1 55.7 Pichia jadiniii PH1-2 경상북도 포항시 남구 안일읍 유강이 대립 한술 1차 104-303 27.88	효모 균주명 국내 누록 정보 당화능 풍미 Saccharomycopsis fibuligeralJ8-1 제주 서귀포시 중문동 2123-1 55.7 과실형 Pichia jadiniii PH1-2 경상북도 포항시 남구 연일읍 유강리 대리 한숲 1차 104-303 27.88 락스형	효모 균주명 국내 누록 정보 당화능 풍미 서열 해독 (근연종 포함) Saccharomycopsis fibuligeral/8-1 제주 서귀포시 중문동 2123-1 55.7 과실향 미수행 Pichia jadiniii PH1-2 전상북도 포항시 남구 연일은 유강리 대림 한숲 1차 104-303 27.88 락스향 미수행	효모 균주명 국내 누록 정보 당화능 풍미 서열 해독 (근연종 포함) 지놈 크기 (Mb) Saccharomycopsis fibuligeraJJ8-1 제주 서귀포시 중문동 2123-1 55.7 과실형 미수행 Unknown Pichia jadiniii PH1-2 전원동 유강리 대원 관술 1차 104-303 27.88 관수량 미수행 Unknown

표 1. 참조 유전체 분석을 위해 선정된 국내 누룩에서 효모 균주 2 종

Monday, September 15, 2014 03 Project: Untitled sqd Contig 1	00 PM	Pag	e 1Monday, September 15, 2014 03:00 PM Project: Untitled sqd Contig 1	Page 2
		20 20 30 40 50 60 70 80 000-1000044041041104110111104A00000011-A010000001114A0404040000	a	599 510 520 510 590 550 550 570 570 570 570 570
A-11, ab1(8>614) A-14, ab1(47>609) B-11, ab1(10>625) C-14, ab1(25>514)	TH	SEC. TOOLIAACAACAA TAAVATATI TUTUA AA A	Ar11.ab1(8>614) Ar14.ab1(4>609) Br11.ab1(1>625) Cr14.ab1(1>625)	
0-11.4b1(13-608) E-11.4b1(13-608) E-11.4b1(12-608) F-14.4b1(49-609) F-11.4b1(5)-610)	1111	עדעגעלי איז איז דער איז	C-11.4D1(12+623) D-11.4D1(12+620) E-11.4D1(12+608) F-14.4D1(40+608) F-11.4D1(5+618) FH1-2 TTH1.4D1(47+1151)	
		90 100 110 120 130 140 140 140 140 TTTTSJTTSCIGATTSGTTTSJTTJUTGJTTTGTTGTSGTSGTSGTSGTSGTSGTSGTSGTSGTSGTSG	27. 	385 590 400 418 620 630 640 650
A-14.ab1(47>609) B-11.ab1(10>625)	-	TETESTING AND THE PAIL THE SET THAT SUPPORT AND	A-11.ab1(8>614)	TETUTICATTAATTTEMACTICAATCASSTAADDATACCOSCEGAACTIAACCATATCA
C-11.Ab1(12>613) C-11.Ab1(12>623) D-11.Ab1(12>620) A-11.Ab1(12>620) T-14.Ab1(12>600) T-14.Ab1(5>610) F-11.Ab1(5>610) F41.Ab1(5>610) F41.Ab1(5>610)	IIIIII		C-14.0021255143 C-11.0051255443 D-21.005125620 F-11.002155610 P-11.002155610 PH1-2_1721.001(47>1151)	TENDENTATATTE AL TENDENTATTE AL TENDENTATTENTENTENTENTENTENTENTENTENTENTENTENTEN
		179 185 190 250 210 229 230 240		
A-11.ab1(8>614) A-14.ab1(47>609) B-11.ab1(10>625)	111		파랑선	을 기준으로 위가 IJ8-1 아래가 PH1-2
C-11.481(12>403) D-11.481(13>623) E=11.481(13>623) F=14.481(13>608) F=11.481(49>608) F=11.481(5>628) F=11.481(5>628) F=11.481(5>151)	111111		102	
		250 260 210 280 290 300 310 320		
A-11,Ab1(0>614) A-14,Ab1(47>609) B-11,Ab1(10>625)	111	איז		
C-11.ab1(12>623) D-11.ab1(13>623) D-11.ab1(13>620) F-11.ab1(13>608) F-14.ab1(43>608) F-11.ab1(5>608) F+11.ab1(5>618) F+1-2_1T51.ab1(47>1151)	111111			
		339 340 350 240 370 290 370 400 410 ATELIARCETTOALCOMMITCONFERENCEMENTATION AND ADDRESS OF TRANSPORT		
$\begin{array}{l} A=11, ab1, (0)=0, (1)\\ A=14, ab1, (1)=0, (2)\\ B=11, ab1, (1)=0, (2)\\ C=11, ab1, (1)=0, (2)\\ C=11, ab1, (1)=0, (2)\\ C=11, ab1, (1)=0, (2)\\ B=11, ab1, (1)=0, (3)\\ B=11, ab1, (1)=0, (3)\\ T=14, ab1, (3)=0, (3)\\ T=14, (3)=0, (3)=0, (3)\\ T=14, (3)=0, (3)=0, (3)\\ T=14, (3)=0, (3)=0, (3)=0, (3)\\ T=14, (3)=0,$	HILLINI		E	
		410 440 450 460 470 440 490		
A-11.ab1(0>614) A-14.ab1(47>605) B-11.ab1(10>625)	Ξ			
C=11.4b1(12>623) D=11.4b1(12>623) D=11.4b1(13>625) K=11.4b1(13>625) F=14.4b1(49>608) F=14.4b1(5>618) F=1.4b1(5>618) F=1-2_1TS1.4b1(47>2151)	11111			

그림 1. LNJJ8-1 및 LNPH1-2 균주의 ITS 시퀀싱 결과.

나. 참조유전체 분석 효모 균주들의 성장 비교분석

- YPD 고체 배지에서 LNJJ8-1 및 LNPH1-2 효모 균주들은 배지에 달라붙어서 자라는 형태를 보이면서 배양 시간이 지남에 따라 매끈한 일반적인 효모 콜로니와 효모/균사(hyphae) 형태를 동시에 보이는 효모들처럼 쭈그러진 콜로니 형태를 지녔으며, 특히 LNJJ8-1의 콜로니는 보다 쭈그러진 모양을 형성하였다(그림 2).

그림 2. YPD 완전 배지에서 각 효모 균주가 콜로니를 형성하는 모양. early;1일째, late; 5 일 배양

다. S. fibuligera LNJJ8-1 및 P. jadinii LNPH1-2 균주의 성장 곡선 분석

두 효모의 성장양상을 분석하기 위해 2% 포도당을 탄소원으로 사용한 YPD 배양에서 spectrophotometer (Thermo. inc.)를 이용한 OD (600 nm) 측정과 동결 건조기를 이용한 건조 중량 측정을 통해 성장곡선 분석을 시행한 결과 LNJJ8-1과 LNPH1-2 균주의 성장 속도는 비 슷하며 stationary phase 및 최대 측정 OD가 다르다는 것을 알 수 있었다. 건조 중량은 상대 적으로 LNJJ8-1 균주가 LNPH1-2 균주보다 크게 측정되었으나 OD 측정과 비슷한 성장 패턴 을 나타냄을 확인하였다(그림 4). 특히 exponential phase에서 growth rate가 유지되는 패턴 을 보여 OD 측정 결과를 토대로 cell growth stage를 조절하여 실험 계획이 가능하였다.

그림 3. 각 효모 균주의 건조 중량 및 OD 측정. Red: S. fibuligera LNJJ8-1, Blue: P. jadinii LNPH1-2

라. S. fibuligera LNJJ8-1 및 P. jadinii LNPH1-2의 성장 단계에 따른 균주 모양 분석

- S. fibuligera LNJJ8-1는 시간이 지남에 따라 균사 길이가 점점 길어지며 단일세포로 자라는

모습은 찾기 어렵고, multipolar hyphae를 형성하여 뭉쳐서 Ball 형태를 만들었다. *P. jadinii* LNPH1-2는 LNJJ8-1과 유사하게 시간에 지남에 따라 균사 길이가 늘어나지만 탄소원이 거 의 다 소모되는 12시간이 지나면 단일 세포의 형태도 많이 관찰되었다(그림 4A, 4B).

그림 4A. *S. fibuligera* LNJJ8-1의 growth time에 따른 균주 모양 분석(YPD 배지, 30°C)

그림 4B. S. fibuligera LNJJ8-1의 배양시간에 따른 균주 모양 분석(YPD 배지, 30°C)

마. RNA 추출법 확립

- S. fibuligera LNJJ8-1 효모의 경우 YPD 액체 배양 시 LNPH1-2보다 더 많은 hyphae가 형성 되는 것이 확인되었다. 이로 인해 원심분리가 잘 되지 않아 10 μm pore size의 membrane filter와 감압장치를 이용하여 세포들을 모아 DEPC treated water로 1회 washing 후 액체 질소와 막자사발을 이용하여 세포를 파쇄한 후 Qiagen RNA prep. KIT 을 이용하여 정제하였다. S. fibuligera LNJJ8-1 균주는 초기 OD 0.35로 하여 2 L 플라스 크에 YPS 2%, YPD 2%, YPD 0.1%, B 배지 300 ml 배양한 것을 상기 언급한 대로 샘플을 모은 후 RNA를 추출하였다(그림 6). LNPH1-2의 경우 초기 OD 0.35로 하여 2 L 플라스크 에 YPS 2% 배지 300 ml에서 모은 샘플을 가지고 RNA를 추출하였다(그림 5, 그림 6).

그림 5. LNJJ8-1의 RNA 추출 및 Bioanalyzer QC 측정

그림 6. LNPH1-2의 RNA 추출 및 Bioanalyzer QC 측정

h. *S. fibuligera* LNJJ8-1 및 *P. jadinii* LNPH1-2 균주의 탄소원 농도에 따른 균주 모양 분석
- 두 균주의 ploidy 분석을 하기 위해서는 단일 세포 형태의 초기 exponential 단계의 균주 가 필요하기 때문에 탄소원의 농도에 따라 각 효모들의 단일 세포 형태로 자라는 조건이 있는지 확인하고자 하였다. 탄소원이 soluble starch 일 때나 glucose 일 때 모두 농도가 높아짐에 따라 overnight culture 조건에서 균사길이가 점점 길어지는 것이 확인되었다(그 림 7A, B). 상대적으로 soluble starch 조건에서 단일 세포가 다량 확인되었다. 하지만 LNPH1-2 균주와는 달리 LNJJ8-1 균주는 단일세포가 잘 확인되지 않는 반면, 영양소 제한 조건인 B 배지에서 OD 0.5 까지 배양한 조건에서 단일 세포가 다수 관찰되었다(그림 7C).

그림 7A. 탄소원 농도에 따른 S. fibuligera LNJJ8-1 균주 모양 분석

그림 7B. 탄소원 농도에 따른 P. jadinii LNPH1-2 균주 모양 분석

그림 7C. 황 및 영양 제한 조건인 B 배지에서 S. fibuligera LNJJ8-1 균주 모양 분석

- 사. S. fibuligera LNJJ8-1, KCTC7806(=ATCC 36309) 및 NCBI 등록 유전자들의 시퀀스 비교
- NCBI에서 S. fibuligera를 키워드로 각 유전자의 시퀀스 정보를 획득한 후 PCR을 통해 ATCC 36309, LNJJ8-1 균주의 게놈 DNA를 이용하여 전체 ORF를 증폭 후 각각 일부분을 시퀀싱하여 비교하였다. NCBI에 등록된 시퀀스(A11, R64, HUT7212)와 ATCC 36309, LNJJ8-1 균주의 해당되는 유전자 시퀀스를 분석한 결과 GLUI을 제외하고 대부분의 시퀀스 가 다소 다른 것이 확인되었으며(표 2), LNJJ8-1 균주는 해외에서 연구된 바가 없는 균주로 생각된다.

	NCBI	КСТС7806	JJ8-1
MIG1	A(A11)	А	В
PEP1	A(?)	В	В
ALP1	A(R64)	В	С
BGL1	A(HUT7212?)	В	С
BGL2	A(HUT7212?)	В	С
TPS1	A(A11)	В	NA
GLU1	A(HUT7212)	A	A

표 2. S. fibuligera LNJJ8-1, KCTC7806, NCBI에 등록되어 있는 유전자들의 시퀀싱 비교표.

** 같은 알파벳으로 표시된 것은 시퀀스가 동일하다는 의미함(NA : non-amplified).

아. LNJJ8-1과 LNPH1-2 균주의 핵의 모양 및 성장 패턴 분석

- 이들 균주의 경우 단일 세포의 크기가 15 μm를 넘지 않는 특징을 이용해, LNJJ8-1의 경우 단일세포로 가장 많이 성장하는 0.1% YPS 배지, LNPH1-2 균주는 2% YPD 배지에서 배양 후 whatman 사의 Grade 520 a: 15-18 μm 의 pore 크기인 종이 filter를 이용하여 단일세포 를 얻어내는데 성공하였다(그림 8).

그림 8. 각 균주의 단일 세포를 얻어낸 후 확인한 광학 현미경 사진. scale bar : 10 μm

LNJJ8-1 균주와 LNPH1-2 균주는 모두 hyphae를 형성하는 multipolar dimorphic yeast 로써 두 균주의 단일 세포로부터 시간에 따라 hyphae를 형성하는 양상을 분석함과 동시 에 핵의 모양을 분석하였다. 두 균주 모두 YPD (2% glucose) 배지 300 ml에서 키운 균주 를 멸균된 whatman Grade 520 filter를 사용하여 분리한 단일세포를 seed로 OD 0.4로 접 종하여 6, 12 시간 배양한 후, 균주를 70% 에탄올을 이용하여 30분간 permeation 시킨 것을 5 ug/ml 농도의 hoechst 염색약을 사용하여 핵 염색한 결과 두 균주 모두 1개의 핵 을 가지고 있었고 시간이 지남에 따라 단일세포로부터 hyphae를 형성한다는 것을 확인 하였다(그림 9 그림 10). 또한 LNJJ8-1의 경우 세포의 크기와 핵의 크기가 LNPH1-2 보다 큰 것으로 분석되었다(그림 11).

그림 9. LNJJ8-1 균주의 공초점 현미경 및 핵 염색 사진 400배 배율, scale bar:20 µm

그림 10. LNPH1-2 균주의 공초점 현미경 및 핵 염색 사진. 400배 배율, scale bar:20 µm

그림 11. LNJJ8-1과 LNPH1-2의 공초점 현미경 분석. 각 그림은 DIC 및 핵 염색의 합체한 결과임. 1000 배 배율, scale bar : 5 μm

자. LNJJ8-1와 LNPH1-2 균주의 성장 단계에 따른 핵 및 septum (격벽) 형성 비교분석

- YPD 배지에서 각 균주를 전배양한 것을 멸균된 whatman Grade 520 filter 사용하여 단일 세포를 얻은 후 시작 OD 0.5로 시작하여 핵은 6, 12 시간 배양 균주, 격벽은 4, 8, 24 시간 배양한 균주로 핵은 hoechst, septum은 calcofluor-white 처리하여 현미경 분석을 수행하였 다.
- 시간이 지남에 따라 셀들 사이에 septum이 형성되어 hyphae가 형성되었고 각 세포가 핵을 제대로 가지고 있는 것으로 분석되었다(그림 12).

그림 12. 성장 시간에 따른 LNJJ8-1와 LNPH1-2의 핵 및 septum 형태의 현미경 분석

2. S. fibuligera KJJ81 (LNJJ8-1)과 KPH12 (LNPH1-2) 균주 참조유전체 분석

가. Whole genome sequencing을 위한 게놈 DNA 추출법 확립

- 3 세대 Next generation sequencing (NGS)의 한 방법인 Illumina 사의 TSLR 시퀀싱을 위한 게놈 DNA 샘플을 일반적인 효모의 게놈 DNA를 추출하는 방법인 Glass bead 와 Phenol/chloroform/isoamylalcohol을 사용하여 추출하였을 경우 효모의 특성 중 multipolar hyphae 형성이 너무 잘 일어나서 기존 yeast 형태인 구체의 균주 보다 게놈 DNA 추출시 단편화가 보다 잘 일어난다는 것이 확인되어 TSLR 시퀀싱의 QC시 fluorescence 기준 총량을 통과하지 못하였다(그림 13A). 또한 long mate pair 시퀀싱을 위해서도 마찬가지로 분해 되지 않은 게놈 DNA 샘플을 준비하기 위하여 1차적으로 세포벽 분해 효소 lyticase를 처리 한 후 1% SDS, phenol/chloroform/isoamylalcohol을 연속처리한 후 원심분리하여 얻은 상충액을 phenol/chloroform/isoamylalcohol 재처리 후 원심분리하여 얻은 상충액을 -80 ℃에서 보관 된 100% 에탄올을 처리하여 생긴 침전물을 멸균된 유리막대를 이용한 게놈 DNA spooling 후 RNAse A를 처리하는 방법으로 추출한 결과 TSLR의 QC뿐 아니라 또 다른 3세 대 시퀀싱인 Pacific biosciences 사의 SMRT의 QC 또한 통과하여 dimorphic yeast의 시퀀싱 을 위한 게놈 DNA 추출법을 확립시켰다(그림 13B,C).

그림 13. LNJJ8-1 Genomic DNA 추출 분석. A: glass bead 이용 추출, B: lyticase 법으로 추출(TSLR용), C: lyticase 법으로 추출한 사진 (SMRT용)

나. S. fibuligera KJJ81 (LNJJ8-1)과 KPH12 (LNPH1-2) 균주의 genome 염색체 비교 분석

- S. fibuligera KJJ81과 KPH12의 게놈 염기서열을 비교한 결과 놀랍게도 KJJ81의 A 그룹 염 색체와 KPH12의 염색체가 99.98 %로 유전체 정보가 동일함이 확인되었다(표 3, 그림 14).
 따라서 KJJ81은 KPH12 균주와 B 그룹 염색체를 지닌 또 다른 균주간의 hybrid 균주라고 추 정된다. 또한 시퀀싱 비교 분석을 통해 KPH12 균주는 P. jadinii가 아닌 S. fibuligera의 한 종으로 분석된다.

	Ξ. Ј.	VIJOT	也ㅜዣ	NL1177	Ochonie	~1년 8	11	군귀	~큰
--	-------	-------	-----	--------	---------	-------	----	----	----

	PH1_aligned	AvgLen(bp)	AvgIden (%)
A1	2997806(99.90%)	78949.71	99.75
A2	2084164(99.21%)	141131.60	99.86
A3	2634663(99.44%)	38517.09	99.49
A4	4129743(99.94%)	94594.95	99.85
A5	1441798(100.00%)	240012.50	99.95
A6	4485231(99.92%)	93016.37	99.83
A7	1345303(99.40%)	63960.33	99.89
chtot	19147272(99.90%)	92582.63	99.81
Mt	67403(99.96%)	30953.00	99 98

- 그림 14. KJJ81의 A 그룹의 염색체와 KPH12 염색체 간의 Mummer tool을 이용한 상동성 분석 대각선은 두 염색체 세트 간의 시퀀스가 동일한 것을 나타냄(X축 : KPH12, Y축 : KJJ81 A 염색체).
- 다. S. fibuligera KJJ81, KPH12, KCTC7896 (ATCC36309) 균주의 유전자 비교 분석
- 현 실험실에서 보유하고 있는 *S. fibuligera* 균주 KJJ81, KPH12, KCTC7896 (ATCC36309)의 염색체를 추출하여 KJJ81 시퀀싱 정보를 기반으로 A 및 B 게놈 상호간 같은 유전자로 검색 되는 유전자를 2개 세트씩 특이적으로 프라이머를 디자인하였다(그림 15).

- 이를 가지고 DNA 합성 효소인 Pyrobest (TAKARA)를 사용하여 여러 annealing 온도에서 PCR 수행을 한 결과 9개 유전자 중에서 7개 (MIG1, PEP1, ALP1, GLU1, TPS1, RAD5, ULP2) 유전자 분석에서 KJJ81에는 두 유전자 세트가 모두 존재하며, KPH12와 또 다른 *S. Fibuligera* 균주인 KCTC7896 (ATCC36309) 에서는 한 세트씩만 존재함이 확인되었다(그림 16).

PCR 1. 1994 bp	JJBGL1-1 adgs bp		PCR 7. 517 bp	JJALP1-1 1485 hp
PCR 2. 907 bpJJBGL1-2			PCR 8. 1151 bp	
PCR 3. 305 bp	IG1-1		PCR 9. 613bp	JGLU1-1
PCR 4. 571 bp	IG1-2		PCR 10. 1058bp	JIGLU1-2
2CR 5. 519 bp	P1-1		PCR 11. 883 bp	117PS1-1
PCR 6. 434 bp	EP1-2		PCR 12. 426 bp	JJTPS1-2
PCR 13. 544 bp		JJRAD5-1 4698 bp	C ²	
CR 14.665 bp	-	JJRAD5-2 4698 bp		
CR 15. 613 bp		JJULP2-1 4392 bp		
CR 16. 545 bp	_	JJULP2-2 գցջՀեր		
PCR 17. 657 bp	JJPLB1-1 s866 hp	-		
CR 18. 447 bp	JJPLB1-2			

그림 15. S. fibuligera 9 개 유전자에 대한 프라이머 디자인 및 PCR 절편 예상 크기

그림 16. S. fibuligera KJJ81, KPH12, KCTC7896 균주의 9개 유전자에 대한 PCR 분석 결과

라. KJJ81, KPH12 균주의 탄소 및 황 대사 경로 in silico 분석

- SD 최소 배지에 탄소원(Glucose, Soluble starch, Galactose, Glycerol, Ethanol, Xylose)에 따 른 표현형 분석 결과 *S. fibuligera* KJJ81, KPH12 경우 모두 xylose를 탄소원을 사용하였을 때에만 성장이 거의 되지 않는 것으로 확인되어 xylose 대사능에 대한 유전자가 없을 것으 로 분석된다(그림 17).

- 황 결핍 배지인 B 배지에 다양한 황원을 포함하는 배지에서 표현형 분석 결과 KJJ81과 KPH12는 sulfate를 제외한 모든 황원을 이용 가능한 것으로 판단된다(그림 18).

- KEGG pathway 및 사카로마이세스 게놈 데이터베이스 SGD (<u>www.yeastgenome.org</u>)를 참고 하여 대사경로 맵을 완성하였으며, 각 유전자에 해당되는 유전자 mapping은 gene prediction 결과를 참고로 유전자 이름 또는 대사경로 상 효소의 이름으로 분석하였다.

그림 17. 다양한 탄소원에 따른 KJJ81 및 KPH12의 표현형 및 탄소원 대사경로 분석. Hansenula polymorpha DL1 균주로 대조군으로 사용됨. S. fibuligera KJJ81 유전자 위치를 파 란색으로 표시함.

그림 18. 다양한 황원에 따른 KJJ81 및 KPH12의 표현형 및 황 대사 경로 분석. *S. fibuligera* KJJ81 유전자 위치를 파란색으로 표시함.

마. S. fibuligera KJJ81 및 KPH12 균주에서 respiration 억제 조건에서의 표현형 분석

- 효모나 곰팡이의 Hyphal growth는 respiration 억제 조건에서 저해된다는 선행연구가 수행되 어있다. 이러한 조건을 KJJ81 및 KPH12 균주에서 만들어 주기 위해 Antimycin A 시약처리를 하여 표현형의 변화를 확인하고자 하였다.
- Antimycin A 를 10µM 처리하였을 때 시약을 처리하지 않은 대조군 균주 대비 Hyphal growth 형태보다는 yeast 형태로 성장하는 경향을 보였다(그림 19).

바. S. fibuligera KJJ81 및 KPH12 균주의 ploidy 분석

- 두 균주의 genome 시퀀싱 결과에서 각각 약 38, 19 Mb의 게놈 크기를 보였는데 선행연구 에서 *S. fibuligera* 균주는 homothallic 하고 diploid가 우세하다고 보고되어 있어 두 균주들이 이에 해당되는지 배수체 확인을 위한 flowcytometry 분석을 수행하였다.
- YPS (0.1% starch) 배지에서 200 ml 키운 균주를 멸균된 whatman Grade 520 filter를 사용하여 분리한 단일세포를 얻은 것에 KJJ81 및 KPH12 균주는 각각 40, 80 mM hydroxyurea (HU) 를 포함하는 YPD 배지에 시작 OD 0.1로 3.5시간 키워 cell cycle을 arrest 시킨 것과, 동시에 대조군으로 사용될 Saccharomyces cerevisiae haploid 및 diploid 균주는 YPD에 overnight 배

양 한 것을 샘플하여 flowcytometry 분석을 수행하였다.

- S. cerevisiae 균주의 DNA 크기를 고려하였을 때 그림 20에서 39 Mb의 genome 크기를 가 진 KJJ81 균주의 첫 번째 peak이 24~48 Mb 사이에 나타나고 그의 두 번째 peak이 48 Mb 보다 큰 위치(78 Mb추정)에 나타나는 것으로 보았을 때 KJJ81 균주는 haploid로 추정되었다.
- 마찬가지로 KKPH12와 같은 경우 S. cerevisiae haploid 균주의 DNA 크기를 고려하였을 때 12~24 Mb 부분에 첫 번째 peak이 24 Mb 보다 큰 위치(38 Mb 추정)에 두 번째 peak이 나타 나는 것으로 보았을 때 haploid로 추정되었다(그림 19).

그림 20. HU 처리에 따른 유세포 분석 결과. Schaploid는 *S. cerevisiae* BY4741 균주. Scdiploid는 *S. cerevisiae* BY4743 균주로 각각 약,12, 24 Mb의 게놈 크기를 지녔다.
사. S. fibuligera KPH12 균주의 optical mapping (IRYS)을 통한 염색체 구조분석 및 검증

- KPH12 균주의 염색체 DNA를 100kb 이상의 크기로 얻기 위하여 agarose-embedded DNA추출 법을 이용하여 CHEF Genomic DNA Plug를 제작하였다.
- Nickase BspQI를 처리한 후 형광 표지를 한 것을 바이오 나노사의 IRYS 장비를 이용하여 optical mapping을 수행하였다.
- 총 7개의 염색체로 이루어져 있으며(그림 21), 1번 염색체에서 rDNA repeat 시퀀스가 50개가 존재한다는 것을 확인 할 수 있었다(그림 22).
- IRYS 8번 contig 와 genome 시퀀싱 결과 비교에서 차이가나는 지역은 PCR을 통해 IRYS 8번 contig의 assembly가 잘못되었음이 확인되었다(그림 213).

그림 21. IRYS optical mapping 결과. 녹색은 SMRT와 TSLR을 이용하여 assembly를 수행한 contigs, 파랑색은 IRYS 결과를 이용하여 assembly를 수행한 contigs.

그림 22. 1번 염색체의 rDNA repeat 개수 분석. 파란선 하나가 10개의 repeat을 나타 냄.

그림 23. IRYS 결과의 PCR 검증. 1번, 4번 염색체와 IRYS contig 8번 사이에서 mapping이 잘 안되는 부분을 PCR 증폭을 통해 검증.

아. S. fibuligera KJJ81 및 KPH12 균주의 rDNA cluster 구조 분석.

게놈 시퀀싱 결과를 토대로 rDNA cluster 구조를 분석하였다. KPH12는 KJJ81의 A genome
 은 같은 rDNA 시퀀스를 가지며 주변 구조가 같고 50개가 반복되지만 KJJ81의 synteny구조
 인 B genome은 1개의 rDNA cluster를 가지며 시퀀스 차이가 다소 확인되었다(그림 24).

KJJ81 subgenome A and KPH12 genome

그림 24. rDNA cluster 구조의 모식도. 5S 시퀀스 길이는 동일하며 A genome과 비교하여 B genome의 25S는 +1, 18S는 +2, ITS1은 -1, NTS1-3 'ETS는 -29, 5 'ETS-NTS2는 +1 개의 시 권스 길이 차이가 있는 것으로 분석됨.

3. S. fibuligera KJJ81 및 KPH12 균주의 전사체 분석

가. 성장 조건에 따른 RNA-sequencing 분석을 통한 전사체 분석

- 각 균주를 전배양한 후 YPD, YPD 0.1% (glucose 0.1%), B 배지에 시작 OD 0.2에서 시작하여
 0.5 될 때 까지 배양한 균주를 액체질소를 이용하여 균주를 물리적으로 깨는 방식으로 RNA 를 추출하여 RNA-sequencing을 2 반복 수행하였다.
- 세포내 탄소대사 과정의 in silico 분석을 통하여 관련 유전자를 찾아낸 것을 가지고 대사과 정 맵을 제작하고 전사수준을 분석한 결과 저농도의 탄소원 조건에서 glyconeogenesis, glyoxylate cycle, glucose fermentation 대사경로의 발현 수준이 증가된 것을 확인하였다(그림 25).
- 세포내 황대사 과정의 in silico 분석을 통하여 관련 유전자를 찾아낸 것을 가지고 황 대사과 정 맵을 제작하고 전사수준을 분석한 결과 황원 제한 B 배지 조건에서 메티오닌 합성을 위 한 유전자들과 황원 transporter 관련 유전자의 발현 수준이 증가된 것을 확인하였다(그림 26).
- S. fibuligera에서 산업적으로 유용하게 이용될 수 있는 셀룰로오스, 전분 및 세포벽 분해관련 유전자를 in silico 분석을 통하여 찾아낸 유전자들의 전사수준을 분석한 결과 탄소원 제한 조건 및 황원 제한 B 배지 조건에서 발현 수준이 증가되는 현상을 보였다(그림 27).
- *S. fibuligera*에서 산업적으로 유용하게 이용될 수 있는 단백질 분해효소의 수를 MEROPS 데 이터 베이스를 이용하여 대표적 곰팡이(*A. oryzae*) 및 효모(*S. cerevisiae*)와 비교 분석하였다.
- 그 결과 KPH12에서 202개의 protease를 찾았고 그 중 다른 두 fungi와 비교할 때 aspartic protease (A 그룹)의 수가 protease 중 가장 많은 비율을 차지하는 것으로 분석되었다.
- 이 중 분비 단백질 분해 효소관련 유전자를 in silico 분석을 통하여 찾고 전사 수준을 분석한 결과 GPI anchor 시퀀스가 존재하지 않는 yapsin 계열의 유전자들과는 대조적으로 SfPEPI 계열의 분비 단백질 중 상당수의 유전자의 발현 수준이 증가하는 양상을 보였으며, 이들 유 전자의 계통수 분석 결과 yapsin 계열의 유전자로 부터 GPI anchor 시퀀스가 제거되면서 SfPEPI 계열의 분비단백질로 진화 한 것으로 분석되었다(그림 28).

그림 25. *S. fibuligera*에서의 탄소 대사경로 *in silico* 분석 및 전사체 분석. A : 탄소대사과정 의 *in silico* 분석, B : YPD 대비 낮은 농도의 glucose 조건 (YPD 0.1%)에서의 전사체 변 화 분석(log₂ value)

그림 26. *S. fibuligera*에서의 황 대사경로 *in silico* 분석 및 전사체 분석. A : 황 대사과정의 *in silico* 분석, B : YPD 완전배지 대비 황 제한 B 배지 조건에서의 전사체 변화 분석(log₂ value)

그림 27. 셀룰로오스(A), 전분(B) 분해 및 세포벽 분해(C) 유전자의 전사체 분석

그림 28. S. fibuligera의 단백질 분해 유전자 그룹 분석 및 분비 단백질 분해 유전자의 전사 체 분석. A : MEROPS 데이터 베이스를 이용한 단백질 분해 유전자 그룹 분석(A: aspartic, C: cysteine, G: glutamic, M: metallo, N: asparagine, P: mixed, S: serine, T: threonine, U: unknown proteases), B : 분비 단백질 분해 유전자의 계통수 분석, C: 분비 단백질 분해 유전자의 전사체 분석

나. KJJ81, KPH12 균주 성장에 따른 탄소원 소모 및 에탄올, 글리세를 생성량 분석
- Sacchromycopsis fibuligera KJJ81 및 KPH12 균주는 전사체 분석 결과 Crabtree-negative 효모라고 예측된 대로 glucose repression에 의한 탄소원 대사과정이 큰 영향을 받지 않음을 증명하기 위해 균주 성장에 따른 에탄올 글리세를 포도당 생성 및 소모량을 분석하였다.
- 실험 결과 KJJ81, KPH12의 glucose 소모 대비 에탄올 생성은 크랩트리 양성 전통효모 균주 인 Saccharomyces cerevisiae (CENPK)에 비해 현저히 떨어지는 것으로 분석되었다(그림 29). 이는 KJJ81, KPH12 경우 크랩트리 음성 균주로 판단되는 근거가 될 수 있다.

그림 29 *S. fibuligera* KJJ81, KPH12의 성장에 따른 에탄올, 글리세롤, 포도당 생성 및 소모량 분석

- 4. S. fibuligera 표준유전체 정보 기반 비교유전체 분석
- 가. KJJ81 균주의 B genome에 해당되는 균주를 찾기 위한 *Saccharomycopsis* genus species들의 ITS 분석
- KJJ81 균주의 genome 시퀀싱 결과 이 균주는 두 균주의 genome이 hybrid 된 형태의 genome 구조를 가질 것이라는 가정하여 B genome에 해당되는 균주를 찾기 위해 Saccharomycopsis genus species들의 ITS 분석을 수행하여 KJJ81 균주의 ITS와 비교 분석하 였다.
- Saccharomycopsis genus에 속하는 yeast들의 ITS sequence는 약 70% 내외의 상동성을 가지고 있었으며, 그 중 S. vini와 S. fermentans끼리는 94%의 높은 homology를 가지고 있으나 S. fibuligera와 높은 상동성을 가지는 균주는 없었다(표 4, 그림 30).
- 또한 KJJ81균주는 A genome만을 가지는 KPH12와 다양한 황 선택배지에서 표현형이 다르게 나와 이에 착안하여 *Saccharomycopsis* genus species와 *S. fibuligera*를 황 선택배지에서의 spotting 분석하여 KJJ81과 비슷한 표현형을 가지는 균주를 찾고자 하였다.
- 그 결과 S. fibuligera들은 sulfate 배지에서도 다른 yeast들 보다 좀 더 성장이 가능하며 S. synnaedendra, S. capsularis는 황원에 매우 민감하게 반응하여 자라지 못함. S. fibuligera와 비슷한 성장패턴을 가지는 균주는 없었다(그림 31).

표 4. ITS 문석	비교표
-------------	-----

					and the second		E(496)		
. :	S. sel.	S. fib.	S. syn.	S. cap.	S. ferm.	S. vini	S. mal.	S. jav.	
S. sel.		73.2	71.2	66.9	64.8	69.3	70.3	64.9	S. sel.
S. fib.	33.4		72.8	71.3	67.1	72.7	72.7	67.5	S. fib.
S. syn.	36.5	34.1		69.8	74.7	74.7	70.3	75.8	S. syn.
S. cap.	43.9	36.5	38.9		66.3	78.4	69.7	67.8	S. cap.
S. ferm.	47.7	43.5	31.2	44.9		70	62.4	94	S. ferm.
S. vini	39.6	34.2	30.9	25.7	38.4		69.2	70.9	S. vini
S. mal.	38	33.9	37.8	38.9	52.4	39.7		62.3	S. mal.
S. jav.	47.4	42.9	29.4	42.1	6.3	36.9	52.4		S. jav.
	S. sel.	S. fib.	S. syn.	S. cap.	S. ferm.	S. vini	S. mal.	S. jav.	

Sequence identity

S. sel.	S. selenospora (KCTC7276)
S. fib.	S. fibuligera (ATCC 36309)
S. syn.	S. synnaedendra (KCTC7813)
S. cap.	S. capsularis (KCTC7818)
S. ferm.	S. fermentans (KCTC7839)
S. vini	S. vini (KCTC7981)
S. mal.	S. malanga (KCTC17370)
S. jav.	S. javanensis (KCTC7252)

Sequence distance

그림 30. Saccharomycopsis 균주들의 ITS 시퀀스 간에 계통수 분석

그림 31. 황원에 따른 Saccharomycopsis 균주들의 성장패턴 분석. S. fibuligera #1, #2; KPH12, KJJ81

나. S. fibuligera KPH12 and KJJ81 mating type locus 재구성 및 비교 분석

- 각 균주의 mating type locus 및 mating pheromone alpha/A 유전자 시퀀스를 얻기 위하여 위 하여 게놈 시퀀싱 정보 및 annotation 정보와 함께 현재 알려져 있는 mating type A관련 유 전자의 특징을 분석하여 게놈 시퀀싱 정보에서 mating pheromone A 유전자 후보를 선별, 분석하였다(그림 32A).
- KJJ81 A genome은 이와 거의 같은 genome type인 KPH12와 함께 mating pheromone alpha2 유전자만을 가지고 있으며 KJJ81 B genome 은 mating pheromone alpha1 유전자만을 가지고 있는 것으로 분석되어 이 차이를 실험적으로 확인하기 위한 PCR 분석을 수행하여 확인 하 였다(그림 32B).
- mating locus 및 mating pheromone A1/A2 유전자는 A genome 과 B genome에서 다소의 시 퀀스 차이는 존재하지만 구조적 차이는 없는 것으로 분석되었다(그림 32C).

다. S. fibuligera ATCC36309 genome sequencing

 - S. fibuligera ATCC36309 게놈 시퀀싱 하기 위하여 lyticase 법으로 게놈 DNA를 추출하여 PacBio 사의 SMRT 시퀀싱 및 Illumina Hiseq을 수행하여 5번과 7번 chromosome을 제외한 1,2,3,4,6번 chromosome centromere 지역에 5개의 gap만 존재하며 총 7개의 염색체로 이루 어진 것으로 분석되었다(표 5).

Chr. #	JJ8A	%GC	JJ8B	%GC	PH1	%GC	КСТС	%GC
1	4,911,352	38.63	4,344,079	38.92	4,897,519	38.63	4,890,918	38.68
2	4,155,118	37.93	4,044,695	38.56	4,145,645	37.96	4,114,871	37.96
3	3,027,211	38.14	2,646,735	38.63	3,010,680	38.13	2,651,165	37.95
4	2,704,859	38.13	2,652,149	38.96	2,681,439	38.06	2,657,528	38
5	2,120,103	37.99	2,381,737	38.92	2,105,831	38.02	2,388,082	38.16
6	1,449,650	38.63	1,410,702	39.19	1,462,644	38.67	1,382,812	38.33
7	1,364,239	38.31	1,345,124	39.37	1,359,543	38.29	1,400,906	38.48
total	19,732,532	38.24	18,825,221	38.86	19,663,301	38.25	19,486,282	38.23

표 5. KJJ81 및 KPH12 균주와 ACTT36309 (독일 균주)의 어셈블 결과 비교

- KJJ81 및 KPH12 균주와는 다르게 7번 chromosome이 6번 chromosome보다 약간 더 크며 구 조적으로 3번 및 5번 염색체의 translocation은 누룩에서 분리된 KJJ81 및 KPH12 균주에서 일어난 것으로 분석되었다(그림 32).

A. KJJ81 subgenome A, , KPH12 & ATCC3609 genomes (Chr. 4)

MFa1

С.			Proposed processing site		
			* 20 * 40		
	CaMFA1	1	MAAQQQSKK GSGQ KDKDAAAKNNAVRSVSTGNCCSTCSVM	:	42
	CguMFA1	3	MAAQ STSA TQAETRDNRKVVKHVRRGYPAHYCVIA	:	38
	ScMFA1	3	MQPSIATAAPKEKTSSEKKDNYIIKGVFWDPACVIA	:	36
	ScMFA2	:	MOPI TASTOATOKDKSSEKKDNYIIKGLFWDPACVIA	:	38
	SfMFA1(A)	:	MKFASSHNATSTGSNKDQQDNIYTDPNNSNHILAQSC UV	:	40
	SfMFA1(B)	3	MNFASSHNATSNGSKKDQQDNIYTDPNNSNHILAQSCIIV	:	40
	SfMFA2(A)	3	WKFASSHNATSTGSNKBQQDNIYTDPNNSNHILAQSCIIA	:	40

CAAX : Proposed farnesylation site

그림 32. Mating 관련 유전자 분석. A : mating locus 및 mating pheromone alpha 유전자의 구조, B. KJJ81 균주의 Mating locus의 모식도 및 프라이머 결합 위치 및 PCR 결과. Forward primer;빨강 글씨, reverse primer;초록 글씨(primer set 1), 보라 글씨(primer set 2), C : mating pheromone A1/A2 시퀀스의 아미노산 서열 비교 분석.

그림 33. S. fibuligera KJJ81 및 KPH12 균주와 ACTT36309 (독일 균주)의 게놈 시퀀싱 비교분석.염색체 구조 분석(A) 및 시퀀싱 coverage 및 유사도 분석(B)

라. 고온에서 S. fibuligera 전사체 비교 분석을 위한 RNA 샘플 준비 및 QC 분석

- YPD, 25℃ 배양조건에서 mRNA의 발현 양상을 YPD, 37℃에서 배양하여 얻은 기존의 KJJ81, KPH12의 RNA 시퀀싱 결과와 비교 분석하기 위하여 YPD 배지에서 시작 OD 0.2 약 4시간 배양한 것을 샘플링 하여(최종 OD 약 0.5±0.05) 이전에 gene prediction을 위한 RNA 추출한 방법과 동일한 방법으로 액체질소 및 Qiagen RNA prep. KIT을 사용하여 RNA를 추출 한 후 QC 및 RNA-seq을 진행하였다(그림 34).

그림 34. 추출된 RNA의 전기영동 및 QC 결과

마. 저온에서 *S. fibuligera* 전사체 비교 분석을 위한 reference strain ATCC36309의 RNA 샘플 준비 및 QC 분석

 - S. fibuligera KJJ81, KPH12균주의 25℃ 배양조건에서 유전자 발현 양상을 S. fibuligera reference strain인 ATCC36309와도 비교해 보기 위하여 ATCC36309를 25℃, 37℃ 배양조건, YPD 배지에서 시작 OD 0.2 약 4시간 배양한 것을 샘플링 하여(최종 OD 약 0.5±0.05) 이전 과 동일한 RNA 추출법으로 액체질소 및 Qiagen RNA prep. KIT을 사용하여 RNA를 추출 한 후 QC 및 RNA-seq을 진행하였다(그림 35).

					Consulta as Kit	Decel	Concentrat	tion (ng/µL)	Volume	Quant	ity (µg)	PL	irity
Summer of		And in case of	Real Property lies	NO	Sample of Kit	Result	BioAnalyzer	NanoDrop	(µL)	BioAnalyzer	NanoDrop	RIN	28s/18
-	ALC: N	_		S1	RNA Sequencing — TruSeq Strande	d mRNA Sample	Prep Kit (Eukaryote	s)				
	-	And the other	Lances		Sample requirements		≥ 65	≥ 65	N/A	≥ 1	≥1	≥7	1-3
				1	KC1_25 Eularyote TN1604R1019	pass	580		45	26.10		10.0	1.6
				2	KC2_25 Sukaryone TN1604R1020	pass	1900		13	24.70		10.0	1.8
				3	KC1_37 Eckaryote TN1604R1021	pass	1170		19	22.23		9.9	1.8
				4	KC2_37 Eskaryote TN1504R1022	pass	1920		24	46.08		10.0	1.7

그림 35. S. fibuligera KJJ81, KPH12균주의 RNA QC 결과

바. S. fibuligera KPH12, KJJ81, ATCC36309 균주의 synteny 분석 및 single gene 분석

- S. fibuligera KH12, KJJ81, ATCC36309 세 균주의 유전체 정보를 이용하여 type strain인 ATCC36309 균주를 기준으로 세 균주의 유전자들의 synteny를 분석 한 결과 대부분의 synteny gene의 순서가 보존되어 있었고 KH12, KJJ81의 3번 및 5번 염색체에서 translocation 이 일어났음이 분석되었다(그림 36).
- A genome에만 있는 유전자는 약 389개이며 B genome에만 있는 유전자는 약287개로 분석 되었으며, A genome에 특이적으로 존재하는 단일 유전자는 20개이며 B genome에 특이적으 로 존재하는 단일 유전자는 5개로 분석되었다(표 6, 표 7).

그림 36. S. fibuligera KH12, KJJ81, ATCC36309 세 균주의 유전자 synteny 분석

표 6. A genome에 특이적으로 존재하는 단일 유전자

Locus taq	Annotation	Description	KPH12	ATCC 36309
KJJ81A1G091600	SPO22	Sporulation-specific protein 22	KPH12A1G091600	KCTCA1G102950
KJJ81A1G142200	vioD	Capreomycidine synthase	KPH12A1G142000	KCTCA1G162100
KJJ81A2G021000	YBL028C	UPF0642 protein YBL028C	KPH12A2G020900	KCTCA2G020500
KJJ81A2G049700	SPBC2G2.13c	Deoxycytidylate deaminase	KPH12A2G049400	KCTCA2G052700
KJJ81A3G026400	CIS3	Cell wall mannoprotein CIS3	KPH12A3G026200	KCTCA3G032250
KJJ81A3G090600	SAP6	Candidapepsin-6	KPH12A3G089500	-
KJJ81A4G003400	YDR286C	Glutaredoxin-like protein YDR286C	KPH12A4G002900	KCTCA4G002900
KJJ81A5G063400	KNH1	Cell wall synthesis protein KNH1	KPH12A5G063500	KCTCA3G090050
KJJ81A6G019900	SOH1	Mediator of RNA polymerase II transcription subunit 31	KPH12A6G019600	KCTCA6G022750
KJJ81A6G044400	GLA1	Glycosyl hydrolases family 15	KPH12A6G043900	KCTCA6G049450
KJJ81A7G009100	MSH5	MutS protein homolog 5	KPH12A7G009200	KCTCA7G009300
KJJ81A7G024200	qorB	Quinone oxidoreductase 2	KPH12A7G024100	KCTCA7G024300
KJJ81A7G030400	SPAC869.02c	Flavohemoprotein	KPH12A7G030200	KCTCA7G030200

표 7. B genome에 특이적으로 존재하는 단일 유전자

Locus taq	Annotation	description	KPH12	ATCC36309
KJJ81B1G099200	COX7	Cytochrome c oxidase subunit 7	Х	Х
KJJ81B1G102300	BGL2	Beta-glucosidase 2	Х	KCTCA1G116900
KJJ81B2G015800	COX17	Cytochrome c oxidase copper chaperone	Х	Х
KJJ81B5G075500	LSB5	LAS seventeen-binding protein 5	Х	Х
KJJ81B7G033100	SATL1	Spermidine/spermine N(1)-acetyltransferase-like protein 1	Х	Х

사. S. fibuligera KH12 및 KJJ81 sporulation 분석

- S. fibuligera KJJ81 및 KPH12 균주의 ascus형성 조건을 분석하여 tetrad 분석을 수행하였다.
- 그 결과 KPH12 및 KJJ81 균주는 25°C 온도에서 각각 PDA, YPD 배양시 ascus가 잘 형성 되는 것을 확인하였고 이들 ascus를 dissection 하여 tetrad 분석을 수행한 결과 KPH12 균주는 약 89%의 spore가 다시 균주로 성장하였으나 KJJ81 균주는 다시 균주로 성장하지 못하는 spore라는 것으로 분석되었다(그림 37).

그림 37. KH12 및 KJJ81 균주의 spore 형성(a) 및 tetrad 분석(b)

2절. 신규 누룩효모 균주의 고품질 유전체 해독 및 생리적 특징 분석

1. 신규 효모 균주들의 생리적 특징 및 ploidy 분석

가. 공초첨 현미경(Confocal microscope)을 이용한 morphology 관찰

전통누룩에서 발굴된 3 종의 신규 효모균주 Hypopichia pseudoburtonii KJS14, Hyphopichia burtonii KJJ43, Saccharomycopsis malanga KCN26를 대상으로 균사 형성 여부 및 형태적 특 징을 알기 위해 현미경 분석을 수행하였다(그림 38). 세 균주 모두 정도의 차이는 있으나 균 사 형성을 하는 것으로 분석되었다.

그림 38. Confocal 현미경을 이용한 morphology 분석 결과

나. 주사전자현미경(=SEM : scanning electron microscope)을 이용한 morphology 관찰

- 누룩에서 얻은 세 종의 효모 H. burtonii, H. pseudoburtonii, S. malanga 에 대해서 누룩 배 양 환경인 고체 배양 환경에서 각 세포마다, 세포군집이 이루는 형태적인 특성을 관찰하기 위해 주사전자현미경(SEM)으로 측정하였다(그림 39). S. malanga를 제외하면 이전의 S. fibuligera를 포함한 대부분의 누룩 유래 효모는 hyphal formation을 가지는 것으로 판단된 다.

그림 39. Morphological characteristics of Nuruk yeasts by SEM

다. 누룩 효모의 hyphal growth 억제 실험 진행

- Hyphae는 효모의 세포벽이 cell간에 연결 되어 더 단단하게 붙어있게 함으로서, 환경에서 는 생존에 도움을 주지만, 실험시 hyphae가 있으면 single cell에 맞춰진 실험 방법들이 대 체로 적용이 되지 않게 되며, 특히 single cell만을 이용해 진행해야 하는 FACS 실험 같은 경우 수행이 매우 어려우므로 hyphae를 가지고 있는 세 효모를 single cell로 바꿀 수 있는 조건을 찾는 실험을 수행하였다.
- 우선 pH가 변함에 따라 hyphae가 yeast form이 되기도, 반대로 바뀌기도 한다는 기존 연 구결과들을 토대로 세 효모에도 적용을 시켜보았다. 기존 배양액의 경우 pH가 6정도이며, pH가 7상태를 유지하면 hyphae가 줄어든다는 결과를 인용하여 배양을 진행하였다(그림 40). 그러나, pH가 기존보다 조금 더 높은 7로 유지될 때, *S. fibuligera*와 *H. burtonii*의 경 우 일정 부분 single cell로 변하는 모습을 볼 수 있었으나, *H. pseudoburtonii*는 pH가 7일 때 yeast 형태의 single cell이 관찰되지 않았다.
- 또한 antifungal agent에 속하는 물질인 Amphotericin B를 이용하여 종에 따라서 농도가 일 정 수준을 넘어가면 성장이 억제가 되기 때문에 Hyphae가 억제되는 조건을 찾기 위해 여러 농도에서 실험을 수행하였다(그림 41). Amphotericin B도 일정 농도에서는 hyphal growth를 억제한다는 연구결과에 따라 실험을 수행하였으며, pH 7의 결과와 반대로 대부분 hyphal growth로 존재하던 *H. pseudoburtonii*가 가장 single cell form으로 변했으며, *H. burtonii*와 *S. fibuligera*는 hyphae가 많이 존재하는 것을 확인하였다. 하지만, single cell이 많이 나타난 *H. pseudoburtonii*도 angtifungal effect에 의해 cell이 작아지는 현상도 같이 확인되었다.

그림 40. pH를 7로 유지시킨 배양액에서 hyphal growth를 나타내는 효모 배양체 관찰 결과

24hr culture in YPD (glucose 0.1%) + Amphotericin B

그림 41. Amphotericin B 첨가 조건에서 hyphal growth를 나타내는 효모 배양체 관찰 결과

다. 누룩 유래 효모들의 여러 조건별 내염성 생장 실험 수행

- 누룩 유래 효모인 H. burtonii의 경우 전통 된장과 같은 염분이 높은 환경에서 분리된 보고
 가 있어 고염 조건이 아닌 누룩에서 얻은 효모도 비슷한 성질이 있는지, 다른 누룩 유래 효
 모들은 염분에 대한 저항성이 어느 정도인지 확인하기 위해 여러 조건에서 osmotic stress를
 주어 growth ability를 확인하였다.
- H. burtonii는 고농도의 염분 조건(NaCl 8%, KCl 12%)에서도 높은 수준의 생장을 나타내었으
 며, 다른 누룩 유래 효모들(H. pseudoburtonii, S. fibuligera)도 대조구로 쓰인 model yeast species인 Saccharomyces cerevisiae에 비해서 높은 저항성을 가짐이 확인되었다(그림 42).
- 또한, 술의 발효에서 주된 역할을 하는 S. cerevisiae 보다도 높은 농도의 EtOH 조건에서 모
 든 누룩 유래 효모들이 잘 생장하는 것을 확인하였다. 이는 술을 만드는 환경에서 누룩에
 있는 효모들이 당화과정이 끝난 뒤 발효과정을 하는 중에도 계속해서 생존해 있으며, 향을
 내는 단계의 대사과정에 관여할 수 있음을 의미한다.

그림 42. 세 가지 내염성 확인, 고에탄올 조건에서의 누룩 효모들의 생장능 확인

라. 누룩 유래 효모들의 내염성 반응 실험 수행

- 모델 진핵생물인 S. cerevisiae의 경우 염분에 노출되면 Hogl 단백질이 인산화됨으로서 염 분에 저항하는 기작이 일어난다. 내염성 효모인 H. burtonii는 Hogl 단백질이 어떤식으로 변 화하는지 확인하기 위해 고농도의 염분 조건(NaCl 1M)에서 배양한 뒤 Hogl 단백질의 시간 별 인산화 패턴을 확인하였다(그림 43).
- Saccharomyces cerevisiae가 염분에 노출되기 전 0분에서 Hogl 단백질이 거의 인산화 되지 않은 형태로 존재하는데 비해, H. burtonii와 H. pseudoburtonii의 경우 0분에서도 이미 Hogl 단백질이 인산화 된 형태로 존재하며, 염분에 노출되는 시간이 길어짐에 따라 모든 종에서 Hogl 단백질의 인산화 정도가 더 증가함을 확인하였다(그림 44).

그림 44. 세 효모 종의 시간별 NaCl 노출에 따른 Hogl 단백질 인산화 분석

마. 누룩 유래 효모들의 ploidy 분석

- Whole genome sequencing 분석 시, haploid, diploid 여부는 분석의 방향을 잡아줌으로서 분 석 방향성을 제시할 수 있어 세 효모 균주의 WGS 분석 전 ploidy 분석을 수행하였다.
- 세 균주 모두 균사를 형성하여 ploidy 분석 시 정확한 분석을 방해하기 때문에 이를 보완하 기 위해 단일 세포만 얻기 위한 filtration을 sample 준비과정에서 수행하였다. Ploidy 분석 수행을 위해 대조군으로 *S. cerevisiae*의 haploid인 BY4741과 diploid인 BY4743을 이용하였으 며 성장 정도에 따른 variation을 고려해 시간대별로 얻은 cell을 이용하여 EtOH fixation, RNase A, Protease를 처리한 뒤 flow cytometry를 이용한 ploidy 분석을 진행하였다. 그 결 과, KJJ43, KJS14, KCN26 균주는 haploid인 것으로 분석되었다(그림 45).

그림 45. Flow cytometry를 이용한 ploidy 분석 결과

2. 신규 누룩 효모 균주들의 De novo genome 해독 및 비교 분석

가. Whole genome sequencing을 위한 게놈 DNA 추출법과 시퀀싱 방법 결정

- 이들 효모들의 경우 염색체 추출이 lyticase를 이용한 추출법으로는 PacBio 분석을 위한 좋
 은 품질의 샘플을 얻기 어려워 phenol extraction 방법을 변형하여 whole genome sequencing을 위한 염색체를 추출하여 유전체 분석을 수행하였다.
- PacBio long-read SMRT sequencing을 통해 컨티그 어셈블리(100X 이상)를 확보하였다.
- Long-mate pair sequencing (5-kb, 10-kb, 15-kb 3종 라이브러리 준비)을 통해 스캐폴딩(샘플 당 2G 데이터 생성)(단 KSD-YC는 2종의 라이브러리를 사용)을 수행하였다.
- Short insert 100-bp paired end sequencing을 통해 gap filling(샘플당 4G 데이터 생성)까지 진행하였다.

나. Saccharomycopsis malanga KCN26 유전체 조립

- PabBio data를 기반으로 6개 chromosome과 2개의 mitochondrial genome으로 조립하였다.

- rRNA cluster length : 1,1073 (2 copies + alpha added in chromosome 4)

chn	chlen	%GC	CCCCACTGACACCCTTA	TAAGGGTGTCAGTGGGG
ch1	3,543,799	38.33	8	3
ch2	3,236,455	38.01	10	7
ch3	3,137,114	38.02	8	8
ch4	2,716,178	37.99	10	10
ch5	2,617,008	38.43	9	10
ch6	1,527,952	38.21	9	7
mt1	173,850	17.41		
mt2	25,228	21.57		
tot	16,977,584	37.93		

- 미토콘드리아(mt) 유전체에는 inverted repeat 서열이 존재하며, 두 mt 유전체에 있는 repeat

서열은 거의 동일하다고 볼 수 있다(그림 46).

그림 46. S. malanga mt 유전자 구조 분석

일본에서 sequencing한 S. malanga JCM7620과 비교해본 결과, 4개의 chromosome에서 rearrangement가 일어난 것으로 보이며 rearrangement외의 genome 정보는 거의 같은 것으로 분석된다(그림 47).

그림 47. Synteny analysis between S.malanga JCM 7620(Y axis) and KCN26 (X axis) genomes

- 본 연구과제에서 분석한 *S. fibuligera* genome과 비교해 보면 매우 일부분만의 synteny가 보 존되어 있어 진화학적으로 두 종이 상당히 오래전에 분리된 것으로 유추된다(그림 46).
- 이와 같은 *S. fibuligera와 S. malanga*의 먼 근연관계는 본 연구실에서 수행한 rRNA sequence 기반의 phylogenitic tree 분석에서도 시사되고 있다(그림 47).

그림 48. Synteny analysis between *S. fibuligera* A and B ((Y axis) and *S.malanga* (X axis) genomes

그림 49. rRNA sequence 기반의 Saccharomycopsis clade phylogenetic tree 분석

다. Hyphopichia burtonii KJJ43

- PabBio data를 기반으로 8개 chromosome과 1개의 mitochondrial genome으로 조립되었다.

- 각 염색체 말단에 존재하는 telomere repeats를 확인하였으며, Ribosomal RNA clusters가 염색체 2번과 3번 말단에 존재함이 밝혀졌다.

chn	chlen	%GC	CCTCCGTACATCTAGTATTTAGTTAGGGCAAAAA	TTTTTGCCCTAACTAAATACTAGATGTACGGAGG
ch1	2,741,975	34.89	1	18
ch2	2,074,296	35.45	5	rRNAcls
ch3	1,851,320	34.85	6	rRNAcls
ch4	1,556,836	35.07	8	3
ch5	1,367,557	35.02	11	1
ch6	1,012,648	34.92	4	15
ch7	975,068	34.93	1	6
ch8	916,850	34.96	13	3
tot	12,496,550	35.02		

- Genbank에 등록된 Y1933과 구조가 같지만 homology는 97~98% 정도였다(그림 50).

그림 50. Synteny analysis between H. burtonii Y1933 (Y axis) and KJJ43 (X axis) genomes

라. Hyphopichia pseudoburtonii KJS14 지놈 해독 및 어셈블리 완성

- PabBio data를 기반으로 8개 chromosome과 1개의 mitochondrial genome으로 조립되었다.
- 각 염색체 말단에 존재하는 telomere repeats를 확인하였다.
- Ribosomal RNA clusters가 염색체 3번, 6번과 7번 말단에 존재한다.

chn	chlen	%GC	TACCTCCTCACCCTCGTAGAAAAGACCCG	CGGGTCTTTTCTACGAGGGTGAGGAGGTA
h1	3,163,475	36.19	18	17
ch2	2,353,989	36.05	13	7
ch3	2,086,637	36.06	6	rRNAcls
ch4	2,047,225	35.87	11	28
ch5	1,971,387	35.97	15	15
ch6	1,953,585	35.87	6	rRNAcls
ch7	1,094,404	36.24	23	rRNAcls
h8	876,631	35.43	1	21
ot	15,547,333	36		1

- *H. burtonii* KJJ43과 비교하면, chromosome 수는 동일 (8개)한데, 크기가 3 Mb 정도 더 크고, %GC content도 36%로 1% 정도 더 높았다. 또한, mitochondrial genome의 크기도 43,129 bp로

P}. Mummer analysis b/w H. pseudoburtonii KJS14 and H. burtonii KJJ43

24,614 bp인 H. burtonii보다 크게 분석되었다.

 H. burtonii와 동일한 균주로 분류되다가 최근에는 다른 종으로 분류된 H. pseudoburtonii는 8개의 동일한 염색체를 지니고 있지만, 유전체 크기뿐만 telomeric repeat sequence도 다르 고, 염기서열에서도 상당히 상이함을 보여 일부 유전체 지역에서만 synteny가 유지되고 Chromosome rearrangement가 심하게 진행되어 이 두 효모간의 분화가 꽤 오래전에 일어난 것으로 사료된다(그림 51).

그림 51. Synteny analysis between *H. pseudoburtonii* KJS14 (Y axis) and *H. burtonii* KJJ43 (X axis) genomes

바. H. pseudoburtonii KJS14 유전자 예측 및 구조 분석

- Transcript 서열 정보 및 유사종의 protein 서열, *ab initio* 방법을 이용하여, 유전자 예측을 수행한 결과 *H. pseudoburtonii* KJS14는 5,900개의 유전자가 예측되었다(표 8).

표 8.	Н.	pseudoburtonii	KJS14	유전체	유전자	예측	결과
------	----	----------------	-------	-----	-----	----	----

	Quantification
Total no. of gene models predicted	6,202
Unique gene models (No.)	5,900
Genes with isoforms (No.)	302
RNA-Seq supported gene model (No.) *	6,188
Average gene length (bp)	1,627 bp
Total bases of gene models (Mbp)	10.09 Mbp
%Genes in the draft genome	64.94 %
No. of CDS	6,946
Average no. of CDS per gene	1.11
Average CDS length (bp)	1,435 bp
No. of intron	744
Average no. of intron per gene	0.11
Average intron length (bp)	168 bp
%CDS in the draft genome	64.14%
%Introns in the draft genome	0.81%

- 예측된 유전자는 상동성 검색 방법으로 기능에 대해 예측 수행하였고, 그 결과 KJS14의 경우 5,985개로 기능이 예측되었다(표 9).

표 9. H. pseudoburtonii KJS14 유전체 유전자 기능 예측 결과

Transcripts	Uniprot	NCBI nr	InterProScan	Annotated Transcripts	(%)
6,202	4,878	5,897	5,605	5,985	96.50

- RepBase 데이터베이스를 이용하는 방법과 *de novo*로 반복 서열을 탐색하는 방법을 병합하여 분석한 결과 KJS14 균주의 경우 유전체 크기에 비례해 5.59%의 반복염기서열 비율을 보였다(표 10).

표 10. H. pseudoburtonii KJS14 유전체 반복염기서열 분포도

		Repbase sea	arch	De novo p	rediction	Combination		
Repeat type		Length(bp)	(%) in genome	Length(b p)	(%) in genome	Length(bp)	(%) in genome	
Retrotransposons		16251 bp	0.10%	9420 bp	0.06%	22642 bp	0.15%	
	SINEs	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%	
	LINEs	1352 bp	0.01%	0 bp	0.00%	1352 bp	0.01%	
	LTR elements	14899 bp	0.10%	9420 bp	0.06%	21290 bp	0.14%	
	Retroposon	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%	
DNA		2546 bp	0.02%	46054 bp	0.30%	48429 bp	0.31%	
transposons	DNA	2325 bp	0.01%	46054 bp	0.30%	48208 bp	0.31%	
	RC	221 bp	0.00%	0 bp	0.00%	221 bp	0.00%	
	Other	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%	
Inserted sequence		0 bp	0.00%	0 bp	0.00%	0 bp	0.00%	
Segmental duplication		0 bp	0.00%	0 bp	0.00%	0 bp	0.00%	
Unclassified		458 bp	0.00%	59318 bp	0.38%	59776 bp	0.38%	
Small RNA		38467 bp	0.25%	0 bp	0.00%	38467 bp	0.25%	
Satellites		0 bp	0.00%	0 bp	0.00%	0 bp	0.00%	
Simple repeats		523322 bp	3.37%	500261 bp	3.22%	528045 bp	3.40%	
Low complexity		206882 bp	1.33%	195736 bp	1.26%	207267 bp	1.33%	
Total		786506 bp	5.06%	810353 bp	5.21%	869428 bp	5.59%	

사. 누룩 유래 효모 H. burtnoii와 H. pseudoburtonii의 균주 특이적 유전자 확인

- 누룩 유래 효모인 *H. burtnoii*와 *H. pseudoburtonii*의 경우 매우 유사한 종이라고 알려져 있다.
 다. 이들의 유전적 차이를 확인하기 위해 annotation을 통해 확인된 ORF들을 비교하여, 서로가 가지고 있지 않은 유전자를 각각 48개, 54개 존재하는 것을 확인하였다(그림 52).

- *H. burtonii*의 경우, *H. pseudoburtonii*에 비교해, 특징적으로 hydrolase, reductase 등의 효소 와, filamentous growth에 관여하는 유전자, 그리고 amine, sugar, amino acid등의 물질 이동 에 관여하는 유전자가 존재하였다(표 11).

- *H. pseudoburtonii*의 경우에도, molecule 물질 이동에 관한 유전자들이 일부 발견되었으나 대부분의 경우 도메인을 결정하지 못해 유전자명을 모르거나 유전자의 기능 분석이 되지 않 은 유전자가 존재한다(표 12).

그림 52. Orthologous gene clusters of H. burtnoii and H. pseudoburtonii

표 11. H. burtonii 효모의 unique 유전자 목록

	Description	Domain
	· · · · F · ·	Type I restriction enzyme R protein N terminus (HSDR_N)(PF04313)
1	-	[Source:Pfam]
2	hypothetical protein PGUG_04849 [Source:NCBI_NR 146413847]	Alpha/beta hydrolase family(PF12695) [Source:Pfam]
3	hypothetical conserved protein of unknown function [Source:NCBI_NR 150864656]	-
4	Filamentous growth regulator 27 [Source:UniProtKB/Swiss-Prot Q59NX5]	Fungal Zn(2)-Cys(6) binuclear cluster domain(PF00172) [Source:Pfam]
5	hypothetical protein CLUG_02421 [Source:NCBI_NR 260945359]	Leucine rich repeat(PF13855) [Source:Pfam]
6	-	-
7		-
8	hypothetical protein CANTEDRAFT_112083 [Source:NCBI_NR 575509441]	Prokaryotic membrane lipoprotein lipid attachment site profile.(PS51257) [Source:ProSite]
9	MAP-homologous protein 1 [Source:UniProtKB/Swiss-Prot P43638]	-
10	Protein cps3 [Source:UniProtKB/Swiss-Prot P41000]	Zinc finger C-x8-C-x5-C-x3-H type (and similar)(PF00642) [Source:Pfam]
11	DEHA2E07524p [Source:NCBI_NR 294657318]	The Golgi pH Regulator (GPHR) Family N-terminal(PF12537) [Source:Pfam]
12	Probable pyridoxal reductase 2 [Source:UniProtKB/Swiss-Prot O94521]	Aldo/keto reductase family(PF00248) [Source:Pfam]
13	Kinetochore protein spc7 [Source:UniProtKB/Swiss-Prot O59757]	Spc7 kinetochore protein(PF08317) [Source:Pfam]
14	Polyamine transporter 4 [Source:UniProtKB/Swiss-Prot Q12256]	Major facilitator superfamily (MFS) profile.(PS50850) [Source:ProSite]
15	-	Retrotransposon gag protein(PF03732) [Source:Pfam]
16	DEHA2F16060p [Source:NCBI_NR 294658725]	-
17	mucin-like protein with chitinase features [Source:NCBI_NR 150864572]	Minimal binding motif of Hap4 for binding to Hap2/3/5(PF10297) [Source:Pfam]
18	-	-
19	-	Transcriptional activator of glycolytic enzymes(PF12550) [Source:Pfam]
20	-	-
21	-	SH3-binding, glutamic acid-rich protein(PF04908) [Source:Pfam]
22	Pyrimidine pathway regulatory protein 1 [Source:UniProtKB/Swiss-Prot P07272]	Fungal Zn(2)-Cys(6) Dinuclear cluster domain(P+00172),Fungal specific transcription factor domain(PF04082) [Source:Pfam]
23	Transposon Tf2-6 polyprotein [Source:UniProtKB/Swiss-Prot P0CT39]	Reverse transcriptase (RNA-dependent DNA polymerase)(PF00078) [Source:Pfam]
24	Transcriptional regulator HMO1 [Source:UniProtKB/Swiss-Prot Q59PR9]	HMG (high mobility group) box(PF00505) [Source:Pfam]
25	DEHA2G24068p [Source:NCBI_NR 50427945]	Domain of unknown function (DUF3844)(PF12955) [Source:Pfam]
26	Uncharacterized MFS-type transporter C1271.10c [Source:UniProtKB/Swiss-Prot 094343]	Major Facilitator Superfamily(PF07690) [Source:Pfam]
27	-	-
28	Sugar transporter STLL [Source:UniProtKB/SWISS-Prot P39932]	Sugar (and other) transporter(PF00083) [Source:Ptam]
29	bypothetical protein PCLIC 01662 [Source:NCRL NR 100345641]	RINT-17 TP-1 lamity(PF04437) [Source.Plam]
31		
	Vacualar basic amino acid transporter 3 [Source: IniProtKB/Swiss_Prot	
32	P25594]	-
33	Myosin tail region-interacting protein MTI1 [Source:UniProtKB/Swiss-Prot P47068]	SH3 domain(PF00018) [Source:Pfam]
34	Agglutinin-like protein 3 [Source:UniProtKB/Swiss-Prot 074623]	Cell-wall agglutinin N-terminal ligand-sugar binding(PF11766) [Source:Pfam]
35	hypothetical protein PICST_67383 [Source:NCBI_NR 150864644]	-
36	Thiamine pathway transporter THI73 [Source:UniProtKB/Swiss-Prot Q07904]	Major Facilitator Superfamily(PF07690) [Source:Pfam]
37	Altered inheritance of mitochondria protein 21 [Source:UniProtKB/Swiss-Prot Q6BWB9]	-
38	T-complex protein 1 subunit delta [Source:UniProtKB/Swiss-Prot Q6BXF6]	TCP-1/cpn60 chaperonin family(PF00118) [Source:Pfam]
39	-	-
40	Piso0_005718 [Source:NCBI_NR 448087155]	Transcription factor AFT(PF08731) [Source:Pfam]
41	RNA polymerase II degradation factor 1 [Source:UniProtKB/Swiss-Prot Q5AMM4]	CUE domain(PF02845) [Source:Pfam]
42	Phosphatidylethanolamine N-methyltransferase [Source:UniProtKB/Swiss-Prot Q6BY28]	-
43	-	-
44	hypothetical protein PICST_89961 [Source:NCBI_NR 150865860]	-
45	hypothetical protein MGE_01999 [Source:NCBI_NR 723191898]	-
46	hypothetical protein SPAPADRAFT_50634 [Source:NCBI_NR 598068969]	Leucine rich repeat(PF13855) [Source:Pfam]
47	Fungal transcriptional regulatory protein [Source:NCBI_NR 150951588]	-
40	Meiotically up-regulated gene 157 protein [Source:UniProtKB/Swiss-Prot	

丑	12.	Н.	pseudoburtonii	효모의	unique	유전자	목록
---	-----	----	----------------	-----	--------	-----	----

C-terminal C-terminal Pfam] Cot P19972 Source:Pfam]
Pfam] Prot P19972]
Pfam] Prot P19972]
Pfam] Prot P19972]
Pfam] Prot P19972] Source:Pfam]
Prot P19972]
Prot P19972]
Source:Pfam]
Source:Pfam]
Source:Pfam]
Source:Pramj
domain(PF13518)
:Pfam]
Hap2/3/5(PF10297)
[Source:ProSite]
) [Source:Pfam]
e:Pfam]
):Pfam]
e:Pfam]
e:Pfam] [Source:Pfam]
e:Pfam] [Source:Pfam]
9:Pfam] [Source:Pfam]
e:Pfam] [Source:Pfam]
e:Pfam] [Source:Pfam]
e:Pfam] [Source:Pfam]
2) [Source:ProSite]
e:Pfam] [Source:Pfam]
e:Pfam] [Source:Pfam] 2) [Source:ProSite]
e:Pfam] [Source:Pfam]
-

아. 고염에 의한 H. burtnoii와 H. pseudoburtonii HOG1 신호전달 경로 활성 분석

- H. burtonii와 H. pseudoburtonii 균주의 내염성의 특징을 좀 더 자세히 파악하기 위해 osmotic stress에 반응하는 기작인 HOG pathway에서 핵심 역할을 맡고 있는 HOG1 단백질 을 발굴하고 인산화 도메인을 분석하였다. H. burtonii와 H. pseudoburtonii Hog1 단백질은 S. cerevisiae Hog1 단백질과 각각 81%, 80% 정도의 높은 상동성을 보였으며, 인산화되는 Thr174/Tyr176 부위도 완벽하게 보존되어 있었다(그림 53A).
- 염분에 노출되었을 때 수 분 내로 진행되는 Hogl 단백질의 인산화 변화 양상을 확인하기 위해 고농도의 염분 조건(1M NaCl)에서 배양한 뒤 Hogl 단백질의 시간별 인산화 패턴을 다 시 확인하는 실험을 수행하였다(그림 53B).
- S. cerevisiae가 염분에 노출되기 전에는 Hogl 단백질이 거의 인산화 되지 않은 형태로 존재하는데 비해, H. burtonii의 경우 노출되기 전에서도 이미 Hogl 단백질이 인산화된 형태로 존재하며, 염분에 노출된 지 5분 내로 두 종의 효모에서 Hogl 단백질의 인산화 정도가 더 증가함을 확인하였다(그림 53B). 하지만, S. cerevisiae의 인산화 정도는 NaCl에 노출되는 시간이 15분이 되도록 유지되고 있지만, H. burtonii의 경우 5분이 지나면 인산화 정도가 줄어 들어 15분 째에는 노출되기 전보다 감소됨이 관찰되었다.

- 내염성 관련 전사체 분석을 수행하기 위해 *H. burtonii* KJJ43과 *H. pseudoburtonii* KJS14 두 균주에 대해 RNA 샘플을 NaCl 노출 시간별로 확보하고 RNA-Seq 분석을 수행하였다. Hogl 단백질의 변화를 토대로 시간을 0, 5, 15, 30분으로 설정하여 분석 수행. 5분에서 가장 많은 변화가 있을 것으로 예상되며, 15분에서는 고염 조건에 맞춰 적응하는 과정, 30분에서는 적 응이 끝나, 변화가 적을 거라 추측하였다. RNA-Seq 분석 결과, 0분 샘플에 비교했을 때, 모 든 시간에서 많은 유전자들의 발현량에 변화가 일어난 것을 확인하였다(그림 54).
- 이후, 0분 샘플을 기준으로, 많은 변화가 일어난 유전자들을 찾아 그 기능을 확인하고,
 KJJ43균주와 KJS14 균주간의 차이도 확인할 예정이다. 상대적으로 내염성이 더 강한 KJJ43
 의 기작을 통해, 다른 내염성 효모들의 고염 조건 적응 기작을 유추하고 연구할 수 있다고 판단한다.

Heat-map

자. 고염도 배양 조건에서의 Hyphopichia 전사체 분석

H. burtonii KJJ43과 H. pseudoburtonii KJS14 두 균주에 대해 RNA 샘플을 NaCl 노출 시간별 로 확보하고 RNA-Seq 분석을 수행하였다. Hogl 단백질의 변화를 토대로 시간을 0, 5, 15, 30 분으로 설정하여 분석한 결과, NaCl에 노출되기 전 샘플과 비교했을 때, H. burtnoii에서는 5배 이상 발현값이 증가한 유전자가 23개, 1/5 이하로 발현값이 감소한 유전자가 24개 발견되었다. 이 중에는 효모가 NaCl과 같은 고염 물질에 대한 저항을 타나낼 수 있도록 도와주는 transporter나 permease 기능을 하는 단백질을 발현하는 유전자가 10개 존재하였다(그림 55).
H. pseudoburtnoii 균주의 경우 같은 조건의 분석에서 발현값이 증가한 유전자는 9개, 감소한 유전자는 26개로, 전체 유전자 개수가 H. burtonii보다 약 5% 적은 것을 감안하더라도 고염 조 건에 노출되었을 때 발현이 증가하는 유전자가 적은 것을 알 수 있다. 또한, transport 기능을 나타내는 단백질을 합성하는 유전자가 3개만 발견되었다(그림 56).

Hyphopichia burtonii KJJ43

BUBBIOSHING: Angeges Department program 0.001422 (10142)* 0.456 (10142)*	GeneAcc Ge	en eNam/Desc	DEG : 0	DEG:5	DEG : 15	DEG : 30	EXP:KJJ43	EXP:KJJ43	EX P:KJJ43_	EXP:KJJ43_	EX P K JJ 4 3_ 1	XP:KJJ43_E	XP:KJJ43_H	XP:KJJ43_
BENE205711 Probable not-private memosphere 0.082009 0.082009 0.082009 0.082009 0.082009 0.0711 0.088419 0.022009 0.0711 0.088419 0.022009 0.0711 0.088419 0.022009 0.0711 0.08819 0.072009 0.08419 0.022009 0.0711 0.08819 0.071210 0.08111 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.081210 0.011210 0.081210 0.011210 0.081210 0.011210 0.081210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.012210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 0.011210 </th <th>GEMERSSRH</th> <th>H064 Intergenic phosphate composer PHD</th> <th>84</th> <th>0.02258</th> <th>0.067493</th> <th>0169576</th> <th>463.8</th> <th>490.18</th> <th>15,91</th> <th>18.26</th> <th>29.52</th> <th>57.8#</th> <th>18585</th> <th>102 12</th>	GEMERSSRH	H064 Intergenic phosphate composer PHD	84	0.02258	0.067493	0169576	463.8	490.18	15,91	18.26	29.52	57.8#	18585	102 12
GENEZOVOLTI Probable nodes—synutes monopage ID 048827 002827 1257 0207 057 038 136 134 039 115 GENEZSAYACI DOSESS 0000000 010182 000000 118 149 125 321 222 721 GENEZSAYCI Unobascumpt provide provides 0000000 010182 0000000 118 148 </td <td>GENE0257GIT</td> <td>IT1 Probable metabolite transport protein</td> <td>G</td> <td>0.038208</td> <td>8 0.057114</td> <td>0.048361</td> <td>252.77</td> <td>200.43</td> <td>9.85</td> <td>8.6</td> <td>20.64</td> <td>13.37</td> <td>1457</td> <td>18.26</td>	GENE0257GIT	IT1 Probable metabolite transport protein	G	0.038208	8 0.057114	0.048361	252.77	200.43	9.85	8.6	20.64	13.37	1457	18.26
Gelegesen, Volg Gelegesen, Volg Gelegesen, Volg Volg Volg Volg Volg Volg Volg Volg	GENEO000YU	JC11 Probable indole-3-pyruvate monooxyg	e	0.048027	0.069348	0.027205	12.79	20.67	0.77	0.88	1.06	1.94	0,19	1,15
GENESSAFURG_DCH Unchannerse drampome Cr02116_0 0.001241<	GENE0546YA	AGI_SCH Uncharacterized transporter C11D3.18	9	0.055939	0.096055	0.180491	17.64	21.07	1.18	1,09	1.52	3.32	282	7.21
GENESSEGU-D Posbel requires emeanse (BourdsOW) 1 0.101521 0.007561 1537 177.7 1128 1986 1285 1785	GENE0546YIZ	ZG_SCH Uncharacterized transporter C1002.16c	I	0.061214	0.0819	0.110338	24.39	18	1.41	1.26	32	1,44	3,4.1	3.39
B01:NDE0_P1100 B01:NDE0UP provide prov	GENE0569qu	tD Probable quinate permease (Source:SV	VI	0.101532	0.072796	0.025916	135.37	176.71	13.26	19.69	12.66	16.56	738	4.33
GENEB32 Malete anymhase 1, givoyomel (Dourse) 1, 0111878 0.001261 3141 3968 2584 3844 3002 0.116 751 751 GENEB3201014 Malete inter (Journet MUSDArcoller) 1 0.11225 0.01210 3440 5518 5718 5716 5717 5716 5716 5716 5716 5716 5716 5716 5716 5716 5716 5717 5716 5717 5716 5717 5716 571	GENEDE Dga	al 10 Bifunctional protein gal 18 (Source:SW	12:	0.10732	0.182868	0.045487	1577/15	1787.2	218.1£	168.85	410.81	295.51	12813	86.68
Sch20020100-L NAR2:preprint (Unanue: Lange) drings in una (Seure SM(SSR: 100-100) 1.011229: 003849 003943 005943 02100 1001 02100 1001 02100 1001 02100 1001 02100 1001 02100 1001 021000 02100 02100	GENE0331ML	LS1 Malate synthase 1, glyoxysomal (Sourc	e	1 0.111878	8 0.047696	0.015625	283.14	396,98	25,94	53.43	20.02	21.16	751	7,93
BaltBalt Calence / MicSArerO9K01 0.1162/2 0.1102/2 0.02356 200.01 266.01 201.11 456.01 240.01 BaltBalt - 1 0.1102.37 0.1023.61 200.02 266.01 201.11 456.01 44.41 24.77 12.4 95.0 BaltBalt Allantolesas [Source SWISArcP35980] 1 0.125.12 10.1211 0.125 10.1211 0.125 10.1211 0.125 10.1211 0.125 10.1211 0.125 10.1211 0.125 10.1211 0.125 10.1211 0.125 10.1211 0.125 10.1211 0.125 10.126 0.126 10.026 10.0126	GENEDBER GE	SHA NADP specific glutamate dehydrogen	85	1 0.11422.5	8 0.09539	0.037944	490.6	518,75	48,3	68.47	67.18	68,76	2684	28.8
SENEGSSI- - 10.118357 0.120742 0.03848 2004 2659 82.81 35.86 4.447 24.77 12.4 95.9 SENEGSSI- - 0.120742 0.150112 0.023848 26.47 33.86 52.9 8.4 7.06 366 158 73.6 73.6 366 158 73.6 <td>GENEBSIDga</td> <td>al Galacolinase (SourceSM6S.Ac.Q9H</td> <td>pi;</td> <td>0.11582</td> <td>0.171843</td> <td>0.066563</td> <td>1867.46</td> <td>2222.59</td> <td>268.21</td> <td>227 17</td> <td>486.32</td> <td>435.08</td> <td>17669</td> <td>169.7</td>	GENEBSIDga	al Galacolinase (SourceSM6S.Ac.Q9H	pi;	0.11582	0.171843	0.066563	1867.46	2222.59	268.21	227 17	486.32	435.08	17669	169.7
SENDESSI- - I 0.120742 0.116112 0.0120142 0.12152 0.112152 0.012152	GENE0351-	12		0.118257	0.120742	0.03396	200.43	265.99	28.81	25.46	44,47	24.77	12.4	9.92
GENEALED ALL Allenciare [Doures WIGS.Acc/25393] 1 0.125852 0.111215 0.132 173.64 192.85 24.06 197.54 295.65 24.06 197.54 295.67 33.8 2.44 GENESSIGUA-1 Probable use asset terransporter 1 [Doure 1 0.125855 0.004255 0.1257.77 295.67 20.07 30.8 355 27.78 30.8 355 27.78 30.8 355 27.78 30.8 177.24 295.67 20.07 30.8 177.24 20.07 30.8 187 17.76 67.4 12.57 6040054 197.14 604.0 10.14600 10.14600 10.117 0.065607 22.09 27.86 4.41 34.6 65.6 2.55 1.1 1.42 6180255624.0 - 0.118297 0.00392 0.01392 20.97 7.925 4.44 34.6 55.0 55.0 55.0 1.42 11.42 11.42 11.42 11.42 11.42 11.42 11.42 11.42 11.42 11.42 <td>GENE0351-</td> <td></td> <td>1</td> <td>0.120742</td> <td>2 0.105112</td> <td>0.023848</td> <td>28.47</td> <td>33.98</td> <td>5.29</td> <td>3.4</td> <td>7.06</td> <td>3.68</td> <td>153</td> <td>0.93</td>	GENE0351-		1	0.120742	2 0.105112	0.023848	28.47	33.98	5.29	3.4	7.06	3.68	153	0.93
GENEDARI (1959/VE_C) None [Dource_SWISS.Acc.Q599/VE] 1 0.125659 0.04389 0.00582 280.06 177.24 26.56 24.06 19.05 4.95 3.25 2.78 3.06 GENEDSEGUARD Probable unes active transporter 1 [Bour 0.125421 0.02550 0.0444 19.45 19.44 19.45 19.44 19.45 19.44 19.45 19.44 19.45 19.44 19.45 19.44 19.45 19.44 19.44 19.45 19.44 19.44 19.44 19.44 19.45 19.44 19.45 19.44 19.45 19.44 19.45 19.44 19.45 19.44 19.45 19.44 19.45 19.44 <td< td=""><td>GENE0451 D A</td><td>AL2 Allantoicase (50 urce SWISS:Acc:P2 5335</td><td>1</td><td>0.121582</td><td>0.131215</td><td>0,125</td><td>173.66</td><td>161.28</td><td>23.72</td><td>19.72</td><td>29.56</td><td>28.72</td><td>3361</td><td>29.27</td></td<>	GENE0451 D A	AL2 Allantoicase (50 urce SWISS:Acc:P2 5335	1	0.121582	0.131215	0,125	173.66	161.28	23.72	19.72	29.56	28.72	3361	29.27
GENEGSEJUUrs-1 Probable urea active transporter 1 [Gour 1 0.127621 0.136787 0.099652 0.1108 11.01 3.64 1.68 3.88 3.55 2.76 3.00 GENE02SSQLAPI General amino-acid permease GAV1 [Go 0.127621 0.042671 100.448 0.147771 0.065965 0.0216717 0.05507 2005 177.66 50.03 40.76 44.67 52.55 2.244 22.84 22.86 61.02507 1.0138566 0.138666 0.178.000 255.06 252.16 38.42 41.85 48.48 598 7.22 GENE03567/01 1.015916 1.016916 0.016916 0.016926 0.006926 252.16 39.42 1.83 17.79 1.83 17.79 1.85 1.63.9 65.07 1.05.0 1.65.9 1.62.9 1.62.77 65.03 1.62.9 1.62.77 65.03 1.62.9 1.62.77 1.63.9 65.00 1.65.0 1.65.9 1.65.9 1.65.9 1.65.9 1.65.9 1.65.9 1.65.9 1.65.9 1.65.9 1.65.	GENE0341Q5	59PV6_CNone_[Source:SWISS;Acc:Q59PV6]		0.125869	0.043889	0.00982	230.06	177.24	26.56	24.06	19.05	4.95	3.2	2.49
GENE0235(GAP) General amino-axid permease GAP1 [50 1 0.127627 0.06295 0.034674 196.48 204.77 80.8 18.77 12.76 6.74 12.57 GENE0235(GAP) Angl-coencyme A outgate 2 [SourceSVI 0.134894 0.151127 0.065607 2209 272.68 80.84 44.22 44.45 44.44 255 224.64 224.84 244.94 44.44 255 224.64 224.84 244.94 44.44 559.9 722.5 24.44 258.64 242.9 10.33696 0.13696 0.136986 0.106380 900477 726.75 44.41 84.66 656 255 1.71 14.25 GENE0235(QAV) Lindstaft I alphanethylism.(Source VIII) 1 0.15920 0.05820 21.41 176.81 856 0.61.31 1.75 16.54 1.05 1.75 16.54 1.05 6.14 4.16.83 1.057 1.05.24 1.051 1.05 1.05 1.05 1.05 1.05 1.05 1.05 0.05 5.25 5.25	GENE0552du	ur3-1 Probable unea active transporter 1 [So	ur	0.126749	0.136787	0.096055	21.08	19.16	3.64	1,68	3.83	3.55	278	3.06
GENEQ175PON2 Acyl-coercyme A oxidae 2 [SourceSWI 1 0.134904 0.157127 0.065607 2209 278.08 90.33 40.78 44.67 52.55 2.44.4 22.88 GENEQDSDGA12 Photophomutae-like protein 3 [SourceSWI 1 0.138666 0.173006 25.56 25.78 27.85 4.41 8.46 6.56 2.55 1.1 1.42 GENEQDSDL - 1 0.138696 0.118257 0.033.062 57.92 27.85 4.41 8.46 6.56 2.55 1.1 1.42 GENEQDSDL - 0.016904 0.16257 0.033.02 57.92 27.86 1.01 1.84 4.035 6.77 3.915 GENEQDSDAP - 0.016340 0.017431 0.0173812 0.083.02 1.141 47.61 1.85 35.07 11.39 17.79 1.85.4 16.81 35.07 11.39 17.79 1.85.4 26.81 42.04 43.85 37.64 20.44 24.45 24.45 24.45 24.45 <td>GENE0235/GA</td> <td>AP1 General amino-acid permease GAP1 [</td> <td>So</td> <td>0.127627</td> <td>0.062939</td> <td>0.034674</td> <td>192.48</td> <td>196.43</td> <td>20.47</td> <td>30.8</td> <td>18.7</td> <td>12.76</td> <td>674</td> <td>12.57</td>	GENE0235/GA	AP1 General amino-acid permease GAP1 [So	0.127627	0.062939	0.034674	192.48	196.43	20.47	30.8	18.7	12.76	674	12.57
GENEQ256/GA12 Phosphormutase-like protein 3 [Source.S] 1 0.13666 0.13700 255.06 252.16 38.46 34.82 41.85 48.49 5991 7222 GENEQ351- - 1 0.13666 0.11257 0.033262 257.85 4.41 8.46 6.56 255 1.1 1.43 GENEQ352/04/D1 Lanotter) 1.430/braitemethylami [Source.S] 0.016920 0.00220 5.11.4 4703 1.0170 (6.475 152.57 GENEQ352GAP1 General anno-acd germease GAP [Source.S] 0.017434 0.00220 62.99 12.52 11.40 15.56 10.507 11.39 17.79 16.84 16.88 GENEQ17/NO1 Inextol -3-photphate synthase [Source.S] 0.117447 0.1522 0.021708 7.57 14.56 15.52 14.01 15.55 12.01 10.127 0.03.22 24.42 10.45 16.83 GENEQ17/NO1 Inextol -3-photphate synthase [Source.S] 1 0.114356 0.13666 61.51 22.89 14.07 18.54 <td< td=""><td>GENE0275PO</td><td>0X2 Acyl-coenzyme A oxidase 2 [Source:SV</td><td>VI</td><td>0.134904</td><td>0.157127</td><td>0.065607</td><td>220.9</td><td>278.08</td><td>30.33</td><td>40.78</td><td>46.87</td><td>52.55</td><td>2464</td><td>22.88</td></td<>	GENE0275PO	0X2 Acyl-coenzyme A oxidase 2 [Source:SV	VI	0.134904	0.157127	0.065607	220.9	278.08	30.33	40.78	46.87	52.55	2464	22.88
GENE035 - 1 0.136696 0.118257 0.033 262 25.78 2.7.85 4.41 3.46 6.56 2.55 1.1 1.42 BENE0350ATCD : Afore [Source:WK57ActD2V/D11 0.169262 0.068283 902877 729,35 10425 16205 16205 1752 64.14 4035 667 129,55 17,73 16204 667 67057 129,55 17,73 16243 667 67057 129,55 61,14 107,16 1835 357,44 20,45 625 337 GENE02156API General ammosed permease GAP [50 1 0.14147 0.14256 0.73847 0.28846 615 528.55 528.55 420.44 544.4 37,44 20,45 387 GENE03567P1N2 [PSI+] induction protein 2 [Source/SWI 1 5,97997 6,453134 513,704 21,91 30,68 1757 14,85 324,84 20,46 377,71 GENE03577IN2 [PSI+] induction protein 2 [Source/SWIS5 1 6,52023 28,4901 42,506	GENE0256PG	SA12 Phosphomutase-like protein 3 (Source	S	0.138698	6 0.139661	0.178006	255.06	252.16	38.46	34.82	41.85	48.49	5991	72.2
OEKEN1302(3)/7D 1_4-None [Source:WISSAcci(2017D 1] I C/ISO7A6 O/ISO7A6 O/ISO7A7 O/ISO7A7 <tho iso7a7<="" th=""> O/ISO7A7 O/ISO7A7</tho>	GENE0351-	-		0.138698	6 0.118257	0.033262	25.78	27.85	4.41	3.46	6.56	2.55	1.1	1,42
SBN 2005936AP1 Canockers1 Jubic Ipin demosing symbol Class2 1050 1050 64.44 40.85 677 GEN 2023GAP1 General amino-acid permase GAP1 [Soi 0.1174343 0.07812 0.08982 121.41 176.16 18.85 35.07 11.39 17.79 18.54 16.83 GEN 2013GAP1 General amino-acid permase GAP1 [Soi rec.5 0.017039 76.6 59.99 12.52 11.44 15.63 10.94 50.9 387 GEN 2013GAP1 Supervice diamuster [Min, imbiohond" 0.192109 0.014386 61.51 22.89 14.07 14.85 35.64 10.94 50.9 GEN 2017GEN P51+] induction protein 2 [Source/SWIS 1.5779937 6.451132 2.839 1.757 14.85 58.5 55.26 480.96 317.1 GEN 2017G P51+] induction protein 2 [Source/SWIS/AccQSAK51] 1.643019 5.441617 7.80 17.82 14.16 11.797 19.41 17.11 26.46 28.30 17.71 14.85 31.757 14.86 31.738 14.1	9ENE0432105	SY7D1 A None (Source SWISS AccOSY7D1)		8160724	0.16164	0165555	828.47	729.48	106.42	129.78	184.5	165.06	164.78	182.57
SENE0235(A.P.1) General amino-acid permease GAP1 [50 1 0.174443 0.073812 0.08362 121.41 176.16 18.95 95.07 11.39 17.73 18.64 GENE017/NO1 Inositiol-3-spherophate synthese [SourceSC] 0.181747 0.18220 0.047039 76.6 55.98 11.34 15.66 10.44 15.66 10.44 15.66 10.44 15.66 55.98 14.07 43.95 37.64 20.45 24.66 55.52.4 43.85 36.85 55.52.4 43.85 24.45 55.52.6 43.85 24.45 14.67 43.95 37.64 20.45 24.45 55.52.4 43.85 36.85 15.87.8 24.096 31.7.7 GENE0507010- - 1 6.30033 28.84001 40.50421 1.38 8.76 85.4 25.84 137.38 217.88 24.092 21.67 GENE0270_QSAK51_CNone [SourceSWISSAccQSAK51] 1 6.602865 509.834 1.76 6.53 23.99 26.12 23.84 39.82 24.65	SENEDSEBER	R611 Lanosterol 14-alpha demethylase (550		0.1598	0.05829	0.006846	5 81414	678.97	126.52	11752	64.44	40.85	57	6,85
SENEDAT7 NO1 Inostol-3-phosphate symbase [Source:S ID181747 ID1822 ID1477 ID1822 ID144 ID563 ID144 ID163 ID163 <thid163< th=""> I</thid163<>	GENE0235 GA	AP1 General amino-acid permease GAP1 []	50	0.174843	0.073812	0.08362	121.41	176.16	18.95	35.07	11:39	17.79	1854	16.83
GENEDI78_CDD2 Superoxide digmutate [Mn], mitochond 1 0.192109 0.14458 0.13866 61.51 228.59 14.07 43.95 97.64 20.46 24.61 33.72 GENE0078ENA5 Sodium transport ATPase 5. [SourceSWIS 1 S028058 34.26675 32.89964 7.57 14.66 59.5 55.26 430.84 58.45 45.84 49.07 GENE0087PIN2 [PSI+] induction protein 2 [SourceSWIS 1 5.979397 6.453134 5.13704 21.91 30.83 162.01 161.27 203.2 224.26 210.44 169.84 GENE0087- - 1 6.439019 S44.161 7.2611.16 11.97 22.66 22.849 21.6 GENE0037-6 - 1 6.439019 S44.161 7.207 19.41 17.11 22.66 28.49 21.6 GENE00270Q5AK51_CNone [SourceSWISSAccQ5AK51] 1 6.727171 6.91629 5.098243 1.76 6.93 22.99 26.12 28.84 38.82 24.65 29.86	GENE0417ING	IO1 Inositol-3-phosphate synthese [Source	s	0.181747	0.15822	0.047039	76.6	53.93	12,52	11:44	15.63	10.94	505	3.87
GENEOD27EINAS Sodium transport ATPase 5 [SourceSWI] 1 SO2005 8429675 32.8964 7.57 14.86 59.5 55.26 430.84 564.56 55.64.3 498.07 GENE0587PIN2 [PSI+] induction protein 2 [SourceSWIS 1 5.97997 6.453134 5.133704 21.91 30.83 162.01 161.27 203.32 234.26 21.044 169.84 GENE05877 - 1 6.43033 28.4001 40.50421 1.38 8.76 35.4 25.84 197.38 217.88 24.096 317.1 GENE00270Q5AK51_CNone [SourceSWISSAccQ5AK51] 1 6.44216 7.20171 31.86 17.97 19.41 17.11 26.4 18.23 23.77 GENE003716 HN3M_P 6-hydroxynicotinate 3-monoxygenase 1 6.727171 14.728 8.66097 0.45 1.02 4.22 6.09 18.48 9.24 6.88 10.56 GENE003716 HN3M_P 6-hydroxynicotinate 3-monoxygenase 1 6.727171 14.728 8.66097 0.45 1.02 4.22 6.09 <	GENE017850	002 Superoxide dismutase [Mn], mitochon	dr	0.192109	0.144586	0.138696	61.51	228.59	14.07	43.95	37.64	20.45	2461	33.72
GENEOSS7PIN2 [PSI+] induction protein 2 [Source:SWIS] 1 5.979997 6.453134 5.133704 21.91 30.83 162.01 161.27 203.32 234.26 21.044 168.84 GENEDSB7- - 1 6.3003 28.84001 40.50421 1.38 8.76 35.4 25.64 137.38 217.88 240.96 317.11 GENE00370_CSAK51_C None [Source:SWISS.Acc:QSAK51] 1 6.43216 6.062866 50.00283 1.97 19.41 17.11 26.4 182.3 23.77 GENE00370_ENH3M_P 6-hydroxynicotinate a-monoxygenase 1 6.727171 11.4228 8.68097 0.45 1.02 4.22 6.09 18.48 9.24 688 10.56 GENE00370_ENN1 CWF19-like protein DRN1 [Source:SWIS1 6.868523 5.856843 5.897077 2.07 3.76 19.25 2.214 19.68 23.38 2.855 21.9 GENE00370_EN11 CWF19-like protein DRN1 [Source:SWIS1 6.6868523 5.85684 5.89094 1.33 2.03 10.5 13.42	GENE0278EN	VA5 Sodium transport ATPase 5 (Source SV	711	5.028053	34,29678	32.89964	7.57	14.86	59.5	55.26	430.84	584.56	55543	493.07
GENE0110- - 1 6.3003 28.8400 40.50.421 1.38 8.76 35.4 25.84 137.38 217.88 24.096 317.1 GENE0387- - 1 6.498019 5.464161 7.260153 1.89 3.05 17.52 14.16 11.97 22.66 28.49 21.6 GENE0370Q5AK51_CNone [Source/SWIS5.Acc/Q5AK51] 1 6.542316 6.062866 5.028053 1.97 3.98 17.57 19.41 17.11 22.66 28.49 21.6 23.84 39.82 24.65 29.86 29.86 23.99 26.12 23.84 39.82 24.65 29.86 29.86 20.57 14.16 19.77 19.41 17.11 24.6 28.84 24.65 29.86 29.86 20.57 21.9 24.22 6.09 18.48 9.24 6.88 10.56 21.9 54.07 13.6 19.25 22.14 19.88 14.86 14.75 13.57 29.14 19.88 14.56 14.36 14.75 15.97 21.95 34.77 228.34 18.92 76.405 51.19 82	GENE0587PIN	N2 [PSI+] induction protein 2 [Source:SW	15:	1 5.979397	6.453134	5.133704	21.91	30.83	162.01	161.27	203.32	234.26	21044	169.84
GENE0387- GENE0387- GENE0370Q5AK51_CNone [SourceSWISSAccQ5AK51] 1 6.498019 5.464161 7.260153 1.89 3.05 17.52 14.16 11.97 22.66 28.49 21.6 GENE0370Q5AK51_CNone [SourceSWISSAccQ5AK51] 1 6.543216 6.062866 5.028053 1.97 3.88 17.97 19.41 17.11 26.4 18.23 23.77 GENE03716 HN3M_P'6-hydroxynicotinate 3-monoxygenase 1 6.727171 14.23 5.897077 2.07 3.76 19.25 22.14 19.68 23.83 28.55 21.9 GENE0037DRN1 CWF19-like protein DRN1 [Source:SWIS1 6.868523 5.856343 5.897077 2.07 3.76 19.25 22.14 19.68 23.83 28.55 21.9 GENE0032YCK2 Cssein kinase I homolog 2 [Source:SWIS1 1 7.260153 17.87659 21.95574 21.95 5.44.77 226.34 18.91 7.44.05 5.956243 5.990243 47.67 116.65 540.36 668.92 23.06 892.21 55.40.55 55.40.36 658.92 23.20.6	GENEO110-	-		6.3203 3	3 28.84001	40.50421	1.38	8,76	35.4	25.84	137.38	217.88	24096	317.1
GENE0270Q5AK51_CNone [Source:SWIS:Acc:Q5AK51] 1 6.543216 6.062866 5.028053 1.97 3.98 17.97 19.41 17.11 2.64 18.23 23.77 GENE0106PDE2 3.5'-cyclic-nucleotide phosphodiesterase 1 6.727171 6.916298 5.098243 1.76 6.93 23.99 26.12 23.84 39.82 2.465 29.86 GENE03716HN3M_P(6-hydroxynicotinate 3-monoxygenase 1 6.727171 14.723 8.168097 0.45 1.02 4.22 6.09 18.48 9.24 6.88 10.56 GENE03370RN1 CWF19-like protein DRN1 [Source:SWIS 1 6.868523 5.856343 5.897077 2.07 3.76 19.25 22.14 19.88 14.68 14.75 13.57 GENE002550U2 Sorbose reductase homolog 2 [Source:SWI 7.620153 17.85763 21.95 34.77 228.34 19.81 764.05 51.9 82.07 52.857.4 GENE0052F0R71 Mitochondrial ornithine transporter 1 [S 7.671113 8.693879 17.14888 3.16	GENE0387-		1	6,498019	5.464161	7.260153	1.89	3.05	17.52	14.16	11.97	22.66	2849	21.6
GENE0106PDE2 3:5-cydic-nucleotide phosphodiesterase 1 6.727171 6.91298 5.0982.43 1.76 6.93 23.99 26.12 23.84 39.82 24.65 29.86 GENE03716HV3M_P 6-hydroxynicotinate 3-monooxygenase 1 6.727171 14.723 8.168097 0.45 1.02 4.22 6.09 18.48 9.24 688 10.56 GENE037716HV3M_P 6-hydroxynicotinate 3-monooxygenase 1 6.727171 14.723 8.168097 0.45 1.02 4.22 6.09 18.48 9.24 688 10.56 GENE0423YCK2 Casein kinase I homolog 2 [Source:SWIS 1 6.868523 5.856343 5.897077 2.07 3.76 19.25 2.14 19.68 23.33 28.57 19.5 GENE00256/0U2 Sorbose reductase homolog 2 [Source:SWII 7.260153 17.87659 21.55574 21.95 34.77 226.34 189.81 764.05 511.9 82.7 918.61 GENE005250021 Mitochondrial ornithine transporter1 15.77113 8.69379	GENE0270Q5	SAK51_CNone_[Source/SWISS:Acc:Q5AK51]	1	6.543216	6.062866	5.028053	1.97	3.98	17.97	19.41	17.11	26.4	1823	23.77
GENE03716HN3M_P 6-hydroxynicotimate 3-monooxygenase 1 6.727171 14.723 8.168097 0.45 1.02 4.22 6.09 18.48 9.24 6.88 10.56 GENE0537DRN1 CWF19-like protein DRN1 [Source:SWISS 1 6.868523 5.856343 5.897077 2.07 3.76 19.25 22.14 19.68 23.33 2855 21.9 GENE0537DRN1 CWF19-like protein DRN1 [Source:SWIS 1 6.868523 5.856343 5.938094 1.33 2.03 10.5 13.42 8.83 14.66 14.75 13.57 GENE00255/0U2 Sorbose reductase homolog SOU2 [Source:SWII 7.260153 17.87659 21.85574 21.95 34.77 228.34 189.81 764.05 511.9 82.87 919.61 GENE0524/NIP7 60S ribosomal protein S1-8 [Source:SWII 7.674113 8.693879 17.14838 3.16 0.88 19.28 16.61 18.34 33.97 62.31 50.88 GENE0524/NIP7 60S ribosoma subunit biogenesis protein 1 7.674113 8.16809	GENE0106PD	DE2 3'.5'-cyclic-nucleotide phosphodiestera	se	6.727171	6.916298	5.098243	1.76	6.93	23.99	26.12	23.84	39.82	2465	29.86
GENE0537DRN1 CWF19-like protein DRN1 [Source:SWIS: 1 6.868523 5.856343 5.897077 2.07 3.76 19.25 22.14 19.68 23.33 2855 21.9 GENE0423YCK2 Casein kinase I homolog 2 [Source:SWIS 1 6.964405 5.656854 5.998094 1.33 2.03 10.5 13.42 8.83 14.68 14.75 13.57 GENE0025SOU2 Sorbose reductase homolog SOU2 [Source:SWIS 1 7.2601633 17.87669 21.55874 21.95 34.77 228.34 189.81 764.05 511.9 828.7 919.61 GENE0087RPS18 405 ribosomal protein S1-8 [Source:SWII 1 7.621104 £979397 5.098243 47.67 116.65 540.36 668.92 323.08 892.21 554.05 58523 GENE0359/ORT1 Mitochondrial omithine transporter 1 [S 1 7.674113 8.693879 17.14838 3.16 0.89 19.28 16.61 18.34 33.97 62.31 50.88 GENE0524NIP7 60S ribosome subunit biogenesis protein <t< td=""><td>GENE03716H</td><td>HN3M P(6-hydroxynicotinate 3-monooxygenasi</td><td>el</td><td>6.727171</td><td>1 14.723</td><td>8.168097</td><td>0.45</td><td>1.02</td><td>4.22</td><td>6.09</td><td>18.48</td><td>9.24</td><td>688</td><td>10.56</td></t<>	GENE03716H	HN3M P(6-hydroxynicotinate 3-monooxygenasi	el	6.727171	1 14.723	8.168097	0.45	1.02	4.22	6.09	18.48	9.24	688	10.56
GENE0423 YCK2 Casein kinase I homolog 2 [Source:SWIS 1 6.964405 5.656854 5.938094 1.33 2.03 10.5 13.42 8.83 14.68 14.75 13.57 GENE0025 SQU2 Sorbose reductase homolog SQU2 [Source:SWII 1 7.260153 17.87659 21.58874 21.95 34.77 228.34 169.81 764.05 511.9 828.7 919.61 GENE0067.RPS18 405 ribosomal protein S1-8 [Source:SWII 1 7.621104 5979397 5.098243 47.67 116.65 540.36 668.92 323.08 892.21 554.05 5852.33 GENE03590R11 Mitochondrial ornithine transporter 1 [S 1 7.674113 8.693879 17.14838 3.16 0.89 19.28 16.61 18.34 33.97 6231 50.88 GENE0135asm-3 Putative sphingomyelin phosphodiesteri 1 7.674113 8.16097 6.19025 7.46 4.25 57.83 37.6 4.21 5.59 3.66 5.98 GENE054- - 1 8.05564	GENE0537DR	RN1 CWF19-like protein DRN1 [Source:SWI	22	6.868523	5.856343	5.897077	2.07	3.76	19.25	22.14	19.68	23.33	2855	21.9
Senecular Sorbose reductase homolog SOU2 [Sourding Source:SWII 1 7.260153 17.87659 21.95874 21.95 34.77 228.34 189.81 764.05 511.9 828.7 919.81 GENED007RPS18 405 ribosomal protein S1-8 [Source:SWII 1 7.621104 5.979397 5.098243 47.67 116.65 540.36 668.92 323.08 892.21 554.05 585.23 GENE00578/018 Mitochondrial ornithine transporter 1 [S 1 7.674113 8.693879 17.14838 3.16 0.89 19.28 16.61 18.34 33.97 6231 50.88 GENE0524/NIP7 605 ribosome subunit biogenesis proteir 1 7.674113 8.169097 6.19025 7.46 4.25 57.83 37.3 37.03 92.05 67.47 40.46 GENE0135asm-3 Putative sphingomyelin phosphodiesteri 1 7.78124 8.397733 7.012.846 0.3 0.67 3.65 3.76 4.21 5.59 3.66 5.98 GENE054- - 1 10.255644	GENE0423YC	CK2 Casein kinase I homolog 2 [Source:SW	AS	6.964403	5.656854	5.938094	1.33	2.03	10.5	13.42	8.83	14.68	1475	13.57
GENED067.RPS18 405 ribosomal protein S1+8 [Source:SWII 1 7.621104 5.97937 5.098243 47.67 116.65 540.36 668.92 323.08 892.21 854.05 588.23 GENE0359/ORT1 Mitochondrial ornithine transporter 1 [S 1 7.671113 8.693879 17.14838 3.16 0.89 19.28 16.61 18.34 33.97 6231 50.88 GENE0524/NIP7 605 ribosome subunit biogenesis proteir 1 7.674113 8.168097 6.19025 7.46 4.25 57.83 37.3 37.03 92.05 67.47 40.46 GENE0135asm-3 Putative sphingomyelin phosphodiester 1 7.78124 8.397733 7.012.846 0.3 0.67 3.65 3.76 4.21 5.59 3.66 5.98 GENE0147LCB4 Sphingoid long chain base kinase 4 [So 1 8.876556 11.71269 12.72858 2.04 2.32 21.69 18.78 17.87 48 2863 51.67 GENE0055- - 1 11.23556 16.79547 380	GENEO025SO	002 Sorbose reductase homolog SO02 [So	a i	7.260153	17.87659	21 55 574	21.95	34.77	228.34	189.81	764.05	511.9	828.7	919.61
GENE0359/ORT1 Mitochondrial ornithine transporter 1 S 1 7.674113 8.693879 17.14838 3.16 0.89 19.28 16.61 18.34 33.97 62.31 50.88 GENE0524/NIP7 605 ribosome subunit biogenesis proteir 1 7.674113 8.160097 6.19025 7.46 4.25 57.83 37.3 37.03 92.05 67.47 40.46 GENE0135asm-3 Putative sphing onyelin phosphodiester 1 7.78124 8.397733 7.012.846 0.3 0.67 3.65 3.76 4.21 5.59 3.66 5.98 GENE0147LCB4 Sphingoid long chain base kinase 4 [So 1 8.876556 11.71269 12.72858 2.04 2.32 21.69 18.78 17.58 48 28.63 51.67 GENE0055- - 1 11.23556 16.79547 3805483 84.22 30.83 585.36 562.42 1631 945.58 231.54 3437.98 GENE0055- - 1 11.23558 16.79547 3805483 <td>GENEO087RP</td> <td>S18 405 ribosomal protein S1-8 (Source:SV</td> <td>VII:</td> <td>7.621104</td> <td>1 5.979397</td> <td>5.098.243</td> <td>47.67</td> <td>116.65</td> <td>540.36</td> <td>668.92</td> <td>323.08</td> <td>892.21</td> <td>55405</td> <td>585.23</td>	GENEO087RP	S18 405 ribosomal protein S1-8 (Source:SV	VII:	7.621104	1 5.979397	5.098.243	47.67	116.65	540.36	668.92	323.08	892.21	55405	585.23
GENE0524/NIP7 605 ribosome subunit biogenesis protein 1 7.674113 8.168097 6.19025 7.46 4.25 57.83 37.3 37.03 92.05 67.47 40.46 GENE0135asm-3 Putative sphing on yelin phosphodiesteri 1 7.78124 8.397733 7.012.846 0.3 0.67 3.65 3.76 4.21 5.59 3.66 5.98 GENE0584- - 1 8.055644 5.241574 7.464264 2.54 0.97 13.28 16.75 12.15 11.73 21.14 18.89 GENE0147LC84 Sphingoid long chain base kinase 4 [So 1 8.876556 11.71269 12.72858 2.04 2.32 21.69 18.78 17.58 48 28.63 51.67 GENE0055- - 1 11.23556 16.79547 3805483 84.22 30.83 585.36 562.42 1631 945.58 231.54 3437.38 GENE0055-DR1 Multidrug resistance protein CDR1 [Sour 1 2.12573 99.17662 10.41073 1	GENE0359/OR	RT1 Mitochondrial ornithine transporter 1	IS	7.674113	8.693879	17.14838	3.16	0.89	19.28	16.61	18.34	33.97	6231	50.88
GENED135asm-3 Putative sphingomyelin phosphodiester: 1 7.78124 8.397733 7.012.846 0.3 0.67 3.65 3.76 4.21 5.59 3.66 5.98 GENE0584- - 1 8.055644 5.241574 7.464264 2.54 0.97 13.28 16.75 12.15 11.73 21.14 18.89 GENE0147LC84 Sphingoid long chain base kinase 4 [So 1 8.876556 11.71269 12.72858 2.04 2.32 21.69 18.78 17.58 48 2863 51.67 GENE0505- - 1 11.23556 16.79547 3805483 84.22 30.63 585.36 562.42 1631 945.58 231.54 3437.98 GENE0055CDR1 Multidrug resistance protein CDR1 [Source3W 1 12.12573 9.917662 10.41073 16.87 16.53 222.37 20.069 178.71 261.74 302.12 206.05 GENE03260MN72 Alpha-1.3-mannosyltransferase MN72 5 1 14.723 16	GENE0524 NIF	P7 60S ribosome subunit biogenesis proti	ein	1 7.674113	8.168097	6.19026	7.46	4.25	57.83	37.3	37.03	92.05	67A7	40.46
GENE0584- - 1 8.055644 5241574 7.464264 2.54 0.97 13.28 16.75 12.15 11.73 21.14 18.89 GENE0147LC84 Sphingoid long chain base kinase 4 [So 1 8.876556 11.71269 12.72858 2.04 2.32 21.69 18.78 17.58 48 2863 51.67 GENE0505- - 1 11.23556 16.79547 38.05483 84.22 30.83 585.36 562.42 1631 945.58 231.54 3437.98 GENE0095CDR1 Multidrug resistance protein CDR1 [Sour 1 12.12573 9.917662 10.41073 16.87 16.53 222.37 200.69 178.71 261.74 302.12 206.05 GENE0236MN72 Alpha-1.3-mannosyltransferase MNT2 [S 1 14.723 16 6062866 1.74 32.25 35.83 32.73 34.56 60.41 1685 27.35 GENE0040NDT80 Meiosis-specific transcription factor ND1 1 21.70567 7.889662 7.56	GENE0135 ast	m-3 Putative sphing on welin phosphodiest	era	1 7.78124	4 8.397733	7.012846	0.3	0.67	3.65	3.76	4.21	5.59	3.66	5.98
GENED147LC84 Sphingoid long chain base kinase 4 [So 1 8.876556 11.71269 12.72858 2.04 2.32 21.69 18.78 17.58 48 286.3 51.67 GENE0505- - 1 11.23556 16.79547 38.05483 84.22 30.63 585.36 562.42 1631 945.58 231.54 3437.98 GENE009SCDR1 Multidrug resistance protein CDR1 [Source3W] 1 12.12573 9.917662 10.41073 16.87 16.53 222.37 20.069 178.71 261.74 302.12 206.05 GENE0236MNT2 Alpha-1.3-mannosyltransferase MNT2 [S 1 14.723 16 6.062866 1.74 3.25 35.83 32.73 34.56 60.41 16.85 27.35 GENE03411PT1 Inositolphosphotransferase 1 [Source5W] 1 15.03236 16.33619 5.979397 1.88 10.42 78.5 97.52 49.84 194.25 46.2 53.38 GENE0373/UBP10 Weissit-specific transcription factor ND1 1 21.075	GENE0584-	-		1 8.055644	4 5.241574	7,464264	2.54	0.97	13.28	16,75	12.15	11.73	2114	18.89
GENE0505- - 1 1123556 1679547 38.05483 84.22 30.83 585.36 562.42 1631 945.58 2331.54 3437.98 GENE0095CDR1 Multidrug resistance protein CDR1 [Sourd 1 12.12573 9.917662 10.41073 16.87 16.53 222.37 200.69 178.71 261.74 302.12 206.05 GENE0236MNT2 Alpha-1,3-mannosyltransferase MNT2 1 1.472.3 16 6.052866 1.74 3.25 35.83 32.73 34.56 60.41 16.85 27.35 GENE03411PT1 Inositolphosphotransferase 1 [Source:SW] 1 15.03236 16.33619 5.979397 1.88 10.42 78.5 97.52 49.84 194.25 46.2 53.38 GENE0060NDT80 Meiosis-specific transcription factor ND1 1 21.70567 7.889662 7.568.461 2.12 1.08 40.16 32.21 12.09 22.34 17.5 19.64 GENE0373/UBP10 Ubiquitin carboxyl-terminal hydrolase 10 12.69086	GENE0147LC		01	8.876556	5 11.71269	1272858	2.04	2.32	21.69	18.78	17.58	48	2863	51.67
GENE0095/CDR1 Multidrug resistance protein CDR1 [Sourd] 1 12.12573 9.917662 10.41073 16.87 16.53 222.37 200.69 178.71 261.74 302.12 200.65 GENE00236/MNT2 Alpha-1.3-mannosyltransferase MM12 1 1.4.723 16 6.052866 1.74 3.25 35.83 32.73 34.56 60.41 16.85 27.35 GENE00341/IPT1 Inositolphosphotransferase 1 [Source:SW] 1 15.03236 16.33619 5.979397 1.88 10.42 78.5 97.52 49.84 194.25 46.2 53.38 GENE0060/NDT80 Meiosis-specific transcription factor ND1 1 21.70567 7.889662 7.568.461 2.12 1.08 40.16 32.21 12.09 22.34 17.5 19.64 GENE0373/UBP10 Ubiquitin carboxyl-terminal hydrolase 10 1 26.90869 16.5424 6.964405 1 1.13 34.11 24.26 10.68 37.97 10.1 12.27 GENE0275- <	GENEOSOS-			11,23554	16.79547	38 05 463	84.22	80,63	585.84	562.42	1631	945.58	233154	3437.98
GENE0236/MNT2 Alpha-1.3-mannosyltransferase MNT2 1 1.4.72.3 16 6.062866 1.74 3.25 35.83 32.73 34.56 60.41 16.85 27.35 GENE0236/INT2 Inositolphosphotransferase 1 [Source:SW 1 15.03236 16.33619 5.979397 1.88 10.42 78.5 97.52 49.84 194.25 46.2 53.88 GENE0060NDT80 Meiosis-specific transcription factor ND1 1 21.70567 7.889862 7.568.461 2.12 1.08 40.16 32.21 12.09 22.34 17.5 19.64 GENE0373/UBP10 Ubiquitin carboxyl-terminal hydrolase 1(1 26.90869 16.56424 6.964405 1 1.13 34.11 24.26 10.68 37.97 10.1 12.27 GENE0275- - 1 28.05138 48.1679 23.10287 7.19 5.53 190.18 190.38 420.37 383.91 20625 229.58	GENE0095ICD	DR1 Multidrug resistance protein CDR1 (So	NIT .	1 12 12573	9.917662	10:41:073	16.87	16.53	222.37	200.69	178.71	261.74	30212	206.05
GENE03411PT1 Inositolphosphotransferase 1 [Source:SW 1 15.03236 16.33619 5.979397 1.88 10.42 78.5 97.52 49.84 194.25 46.2 58.38 GENE0360NDT80 Meiosis-specific transcription factor ND1 1 21.70567 7.889862 7.568461 2.12 1.08 40.16 32.21 12.09 22.34 17.5 19.64 GENE0373/UBP10 Ubiquitin carboxyl-terminal hydrolase 10 1 26.90869 16.56424 6.964405 1 1.13 34.11 24.26 10.68 37.97 10.1 12.27 GENE0275- - 1 28.05138 48.1679 28.10287 7.19 5.53 190.18 190.38 420.37 383.91 20.825 229.56	GENE0236MM	NT2 Alpha-1,3-mannosyltransferase MNT2	IS	1 14.723	3 16	6.052866	1.74	3.25	35.83	32.73	34.56	60.41	1685	27.35
GENE0060/NDT80 Melosis-specific transcription factor ND1 1 21.70567 7.889862 7.568461 2.12 1.08 40.16 32.21 12.09 22.34 17.5 19.64 GENE0050NDT80 Ubiquitin carboxyl-terminal hydrolase 10 1 26.90869 16.56424 6.964405 1 1.13 34.11 24.26 10.68 37.97 10.1 12.27 GENE00275- - 1 28.05138 48.1679 28.10287 7.19 5.53 190.18 190.38 420.37 383.91 20.825 229.56	GENE03411PT	T1 Inositolphosphotransferase 1 (Source's	M	1 15.03236	5 16.33619	5.979397	1.88	10.42	78.5	97.52	49.84	194.25	46.2	53.38
GENE0378UBP10 Ubiquitin carboxyl-terminal hydrolase 10 1 26.90869 16.56424 6.964405 1 1.13 34.11 24.26 10.68 37.97 10.1 12.27 GENE0275 1 28.05138 48.1679 28.10287 7.19 5.53 190.18 190.38 420.37 383.91 20825 229.56	GENE0060ND	DT80 Meiosis-specific transcription factor N	T	21,7056	7.889863	7.568.461	212	1.08	40.16	32.21	12.09	22.34	17.5	19.64
GENE0275 1 28.05138 48.1679 23.10287 7.19 5.53 190.18 190.38 420.37 383.91 20.825 229.58	GENE0373UR	8P10 Ubiquitin carboxyl-terminal hydrolase	10	26.9086	16.5642/	6.964.405	1	1.13	34.11	24.26	10.68	37.97	10.1	12.27
	GENEO275-	-		28.05193	48 1679	23.10287	7.19	5.52	190.18	190.28	420 37	383.91	20825	229.55

그림 55. *H. burtnoii* KJJ43 균주의 고염 노출 시 발현량이 변화된 유전자 목록. 파란색은 1/5 이하로 발현량이 감소한 유전자이며 붉은색은 5배 이상 발현량이 증가한 유전자. 주황색 표시는 일정 수준(300<FPKM<10,000)의 발현량을 가지는 유전자

Hyphopichia pseudoburtonii KJS14

GeneAcc GeneNam	Desc	DEG :0	DEG:5	DEG:15	DEG:30	EXP:KJS14	EXP:KJS14_E	EXP:KJS14	EXP:KJS14	EXP:KJS14	XP:KJS14_E	XP:KJS14	XP:KJS14
GENEOCOC VHS1	Serine (threonine-protein kinase VHS1.)	5 1	0.005083	0.010896	0.013508	1704,34	1980.36	102411	10,9822	10.4255	34,0311	24,3148	40.6418
GENED 177 srell	Sterol regulatory element-binding prote	e i	0.008974	0.0555558	0.085971	387219	407.118	4,42528	4.52021	超器叫	23.8008	34,0061	46,5528
GENEO107-		T	0.011842	0.077482	0.093428	416,373	\$23,313	4.15712	5 98972	四,479	347483	54,43(86	33 6573
GENE0445TDH1	Givceraldehyde-3-phosphate dehydroge	e d	0.01248	0.024181	0.027394	4089.33	4462.79	44.8265	72.64	80,89,911	138,533	155.018	149.756
GENE0204RCF2	Respiratory supercomplex factor 2, mito	i 1	0.015698	0.020475	0.047696	1958.08	1011.01	7 65 4 95	51,5901	364548	51,241	123.273	121 (09)
GENE0588 STO	Alternative exidase imtechandrial (Sour	i 1	9/0166681	0.023968	0181215	1575,43	164278	224118	37.8138	34,3973	963112	292,729	268-461
GENEO443ERG25	Methylsterol monopygenase [Source:3]	i k	0.025096	0.041235	0.047696	606.393	612,691	TTTT	187764	958569	48,8099	41,6715	35,4965
GENED078ADH1	Alcohol dehydrogenase 1 (Source/SWIS)	s 1	0.033493	0.043586	0.099442	5316:16	5448,76	160.992	220.873	200.88	305.894	719.264	719,177
GENECUSE POCT	(Phosphatidu)/glycerol/phospholipase C (\$ 1	0.036147	0.082469	0.062068	764,258	852.36	41 5947	25,9465	51,4596	95.02.22	62.9726	68,5109
GENEOUISYHB1	Havehemoprotein [Source SWISS Acc 0.5	5 T	0.098478	010344455	6194904	488.765	587,899	16,2417	26 1589	19,0039	20/1999	841701	96,6978
GENED/77ERG 11	Lanosterol 14-alpha diamethylase [Source	a 1	0.040107	0.049723	CONSIGNITS	304 (582	345,609	8,41602	17.6284	9,28501	24.1969	13.554	26,4303
GENERAGI TVEZ	Carbohydrate metabolism regulator TVS	1	0.046714	0.072796	0.06983	2253:29	2309.95	111.556	194.398	115:468	240,965	188 362	211.86
GENEOV24 FDH 1	Formate dehydrogenase Tsource/SWIS	\$ 1	0/049378	0.044811	0.15283	881514	396.426	293327	10.5678	24,231	112627	80.3040	67,9051
GENEO208-	2	Ŧ	0.049878	0.064704	0.105848	4387.25	3833.46	232 12	206.988	407 84	194:274	651667	\$11,578
GENE0514PFK27	6-phosphofructo-2-kinase 2 [Source:SW	1 1	0.067921	0.131215	0.198884	172.299	162.938	12.8101	14.7534	21.0638	27.2667	31.6425	53.9884
GENED494 RDC11	Pyruvate decaritioxylase (Source:SWISS,A	i 1	0.087171	0.082469	0.049721	10909.6	10905-4	84 <u>3.3</u> 76	1289,34	<u>828.036</u>	11564	692.667	767 576
BENEO253 MAE 1	NAE-dependent malic enzyme, mitocho	0 1	6.109576	0130308	6 153898	489 579	501 323	53.8389	614999	65.71144	797758	95.0278	118.289
GENE0339+		1	0.110338	0.074842	0,15283	119.286	99,7659	10.3736	19.3601	8.67697	9.96318	24.9741	18.1067
GENEO196 YOR 062W	Undraracterized membrane protein VCR	R 1	0,121582	0.188(0.1)	0179244	\$16934	824/98	49.7238	40.6665	527167	74,8749	78.1858	69.5321
GENEDS84 -	2	1	0 125	0.138695	0178006	385918	385,789	681613	41,2985	27.3576	82.8578	99.2784	81,4705
GENE0373 9096_D10	Transmembrane protein DDB_G0269096	i 1	0.130308	0.094078	0,15283	142.463	154,965	9.14887	31,6289	4.4275	26.205	27.3787	32,7082
GENE0313 SCS7	Ceramide very long shain fatty acid hyd	1	0.131219	0.130308	0.09.9412	922.679	950.871	154.528	122.352	107.594	168,686	106.895	147.366
6由(由)181 GLV1	Low-specificity L-threonline eliticiase (So	ù 1	0.157127	0.109576	0.108819	537374	539,854	80,9905	100.309	89,5437	44.0372	65 1714	95:0302
GENED319 -	5	1	4157127	0/166041	0.153893	2366,73	2237.20	309.568	518,258	401 506	352,394	521.569	860.871
GENE0566BEM1	Bud emergence protein 1 [Source:SWIS!	S 1	0.157127	0.174343	0.198884	71,801	68,0414	14,2378	11.247	12.3163	14,427	14.5318	21.6919
GENEO381 CTR2	Copper-transport protein CTR2 (Source:	5 1	0,13537799	0.179244	0.176777	521,489	491,468	105.908	77,2466	125.121	71,6309	109.347	127.483
GENE0213FTH1	Iron transporter FTH1 [Source:SWISS;Acc	: 1	5.426417	6.233317	8.876556	1.8156	1.74683	5.48031	15,1841	11.0243	14.0008	21.9762	20.7667
GENE00301kh1	Dual specificity protein kinase lkh1 [Sou	1 1	5.540438	9.12611	16.91229	0.540524	1.03799	6.47933	2.72972	8.79466	6.13723	17.8523	15.1621
GENE0518+		1	6.233317	41.35529	103.9683	7.69097	9.18454	63.6791	56.174	309.768	459.557	1151.15	1143.09
GENE0550 -	-	1	6.964405	11.08088	15.24221	0.715695	1.3655	9.92746	7.11812	12,0639	14.0223	15.4453	26.1144
GENE0023J1431	MEMO1 family protein YJR008W [Source	e 1	7.061624	12.64066	19.83532	4.52209	6.54126	28.8299	57.5104	71.8991	80.848	136.416	153.011
GENE0214araE	Arabinose-proton symporter [Source:SW	1	7.210004	22.3159	128	1.24273	0.597519	8.94712	5.82015	20.9618	27.5737	194.405	131.101
GENE0059YO389_YE	Uncharacterized protein YOR389W [Sou	1 1	8.815241	11.15795	11.3924	0.610476	1.75574	7.29606	14.6112	23.4841	6.95124	17.8838	18.7741
GENE0063-		1	10.05611	15.88948	5.35171	1.01034	1.93579	22.935	9.92334	24.4296	27.1073	3.98475	17_637
GENE0540-		1	10.05611	15.67072	9.38268	2.08118	0.662839	9.71869	18.8758	26.3159	21.0464	18.7097	14.9711

그림 56. *H. pseudoburtnoii* KJS14 균주의 고염 노출 시 발현량이 변화된 유전자 목록. 파란색 은 1/5 이하로 발현량이 감소한 유전자이며 붉은색은 5배 이상 발현량이 증가한 유전자. 주황 색 표시는 일정 수준(300<FPKM<10,000)의 발현량을 가지는 유전자

- 분석된 RNA-seq의 정확도를 검증하기 위해서 발현량이 증가, 감소한 유전자 중 일부를 선 택하여 qRT-PCR 실험을 수행하였다. 6개 유전자 *HbENA5, HbERG11, HbATP4, HpENA5, HpERG11, HpCYS3*를 선택하였으며 *ENA5*은 ATPase sodium pump단백질을 합성하는 유전자이 고 와 *ERG11*은 세포막의 기능에 주요한 영향을 끼치는 ergosterol을 합성하는 대사과정에 핵 심적인 역할을 하는 효소를 발현하는 유전자이다. 두 균주 모두에서 *ENA5* 유전자는 발현량이 증가, *ERG11*은 감소하는 유전자로 고염 조건에 노출 되었을 때 어느정도 변화가 있을것으로 예상되는 유전자이다. *HbATP4*와 *HpCYS3* 유전자의 경우 RNA-seq 분석 결과 모든 배양 조건 에서 발현량의 차이가 0.9 < < 1.1 사이로 나타난 유전자이며 각각 mitochondrial ATP synthase 와 황 영양소 대사과정에 관여하는 cystathionine gamma-lyase 단백질을 발현한다. 두 유전자 는 주형으로 사용되는 cDNA 양 차이에 따른 ENA5와 ERG11 유전자의 발현량 오차를 보정하 는 과정에서 사용되었다. qRT-PCR 분석 결과, 두 균주의 RNA-seq 데이터와 비교했을 때 비슷 한 발현 패턴을 나타내고 있는 것을 확인하였다(그림 57).

- 추후 다른 내염성 효모 종들에 존재하는 ENA5를 비롯하여 STL1, SOU1, SOU2 등의 내염 저 항 관련 유전자들의 copy 수와 발현 패턴의 차이를 분석하고, 다양한 스트레스 및 고염 조건 에 노출되었을 때 비교 전사체 연구를 심도있게 수행하여 내염성의 기작을 규명하는 연구로 연계 수행할 계획이다.

그림 57. 고염 처리 시간에 따른 RNA-seq 결과에 대한 gRT-PCR 실험을 통한 검증. H. burtonii (A) 및 H. pseudoburtonii (B)를 대상으로 0, 5, 15, 30분 간격으로 1M NaCl 처리 후 확보한 RNA 샘플 대상으로 내염성에 관련되는 네 종류의 유전자(HbENA5, HbERG11, HpENA5, HpERG11)의 발현 패턴을 RNA-seq과 qRT-PCR 실험을 통한 비교 분석

В.

3절. 막걸리 효모 균주 표준유전체 및 비교유전체 분석 (한식연/국순당과 협력연구)

1. 막걸리 효모 균주 S. cerevisiae KFRI 98-5와 KSD-Yc의 ploidy 및 포자형성 분석

가. Flow cytometry를 이용한 ploidy 분석

대조군으로 S. cerevisiae의 haploid인 BY4741과 diploid인 BY4743을 이용. 시간대별로 얻은 cell을 이용하여 EtOH fixation, Rnase A, Protease를 처리한 뒤 flow cytometry를 이용한 ploidy 분석 결과, 98-5와 KSD-Yc 균주는 diploid인 것으로 분석되었다(그림 58).

그림 58. Flowcytometry를 이용한 ploidy 분석 결과

나. Ascospore 생성 분석

Diploid 균주인 SC98-5와 KSD-Yc의 경우 heterologous SNP가 매우 높은 비율로 존재함이 관찰되어 ascospore 형태로 만드는 sporulation 실험을 수행한 결과, positive control로 쓰인 *S. cereivisae* strain의 경우 7일 동안의 sporulation 조건에서 대부분 ascospore를 형성하였 지만 SC98-5와 KSD-Yc 균주는 ascospore를 전혀 생성하지 못하였다(그림 59). 이는 SC98-5와 KSD-Yc 균주들의 경우 거의 동일한 유전체 서열을 지닌 균주들간의 interstrain mating 을 통해 diploid가 형성될 가능성을 높음을 시사한다(그림 59).

그림 59. SC98-5와 KSD-Yc 균주의 sporulation efficiency test

2. 막걸리 효모 균주의 whole genome sequencing

가. 막걸리 효모 균주 S. cerevisiae KFRI 98-5의 whole genome sequencing

- PacBio사의 SMRT 시퀀싱 진행을 위해 lyticase 효소를 이용한 DNA 추출법으로 게놈 DNA를 얻어 시퀀싱을 수행하고 Falcon 소프트웨어로 분석한 결과 20 kb 이상의 contig는 67x~144x의 depth로 시퀀싱 되었으며 총 31개의 contig가 형성되었다(표 13).

- PacBio와 llumina sequencing data를 토대로 31개의 contigs를 16개의 chromosome으로 assembly를 거의 완성한 후 GenBank에 등록하였다(Accession number MLJN0000000).

Contig Name	Length (bp)	GC %	Depth
contig1	1,461,227	37.9	113
contig2	1,069,743	38.1	115
contig3	1,022,494	38.1	112
contig4	932,842	38.1	127
contig5	904,026	38.2	114
contig6	787,186	38.3	118
contig7	720,472	38.5	121
contig8	681,592	38.2	118
contig9	571,127	38.4	112
contig10	561,716	38.5	109
contig11	535,976	38.1	111
contig12	499,795	38.4	113
contig13	430,570	38.4	106
contig14	418,215	38.8	178
contig15	251,417	38.8	144
contig16	243,265	38.2	115
contig17	236,264	38.7	108
contig18	204,201	39.3	121
contig19	46,669	37.8	67
contig20	37,004	40.4	114
contig21	30,988	38.2	54
contig22	24,959	38.4	56
contig23	22,668	38.5	84
contig24	21,923	15.7	3128
contig25	19,981	37.5	46
contig26	19,741	36.3	52
contig27	15,442	43.9	1892
contig28	11,756	17.2	3038
contig29	6,925	19.1	3078
contig30	4,619	15.2	1167
contig31	1,514	19.3	2096
Total	11,796,317		

표 13. S. cerevisiae 98-5 균주의 SMRT 시퀀싱 결과

- 정밀 분석을 통해 12번 chromosome에 rRNA cluster를 100 copy 추가하고, 일차 assemble 과

정에서 생긴 6개의 non-anchored contig들은 모두 false contig들로 제거하게 되어 좀 더 완성된 유전체 지도를 얻을 수 있었다(그림 57, 왼쪽 패널).

나. 일차 드노보 어셈블리 결과

	No. of sequences	Total bases	Longest	N50	N90
Contig	32	12,267,066	1,504,012	728,456	240,059
				Qua	antification
Total no. of	gene models predicted	ł			5,809
Unique	gene models (No.)				5,614
Genes	with isoforms (No.)				195
Average ge	ene length (bp)				1,476 bp
Total bases	s of gene models (Mbp)				85.75 Mbp
Genes in th	ne draft genome (%)				69.90

- Diploid인 한식연 균주의 경우, 공인된 S. cerevisiae 표준유전체 (S288c 유전체)에 비교분석한 경우 흥미롭게도 상동염색체들 간에 heterologous SNP (27,701 sites)와 heterologous Indel (1,818)를 합치게 되면 총 29,519 heterozygous sites가 존재하여 다른 S. cerevisiae diploid 균 주에 비해 높은 편으로 분석되었다(표 14).
- 일본 Sake 효모의 경우 총 1,347개의 heterologous sites가 존재하는 경우에 비해 heterozygosity가 상당히 높은 편으로 단순히 homothalic yeast가 자기 자체 내 교배(mataing) 을 통해 homozygous diploid를 형성한 것이 아니라 두 개의 다른 strain (즉, subspecies 수준) 의 교배을 통해 diploid가 된 후 LOH (Loss of Heterozygosity)에 의해 거의 유사한 sequence 로 통일화되는 과정에 있는 것으로 추정된다.
- 이러한 특이한 구조적 상이성을 재검토하기 위해 Illumina sequencing을 추가적으로 수행하 여 *S. cerevisiae* reference 균주인 S288c와 다시 비교한 결과, heterologous SNP가 매우 높은 비율로 존재함이 재차 확인되었다.

Chromosome	Variant (No.)	SNP (No.)	Alterative homozygous SNP (No.)	Alterative heterozygous SNP (No.)	InDel (No.)	Alterative Homozygous InDel (No.)	Alterative heterozygous InDel (No.)
1 (214,742)	2,173	2,023	1,132	891	150	91	59
II (803 <i>,</i> 030)	4,430	4,135	3,144	991	295	225	70
111 (323,804)	2,145	2,001	378	1,623	144	36	108
IV (1,461,227)	8,528	7,972	6,502	1,470	556	471	85
V (571,127)	3,849	3,573	2,290	1,283	276	183	93
VI (265,868)	2,388	2,212	1,108	1,104	176	96	80
VII (1,069,743)	7,309	6,803	4,653	2,150	506	372	134
VIII (535,083)	4,172	3,900	1,151	2,749	272	83	189
IX (418,215)	3,937	3,716	1,627	2,089	221	110	111
X (732,462)	5,036	4,716	1,740	2,976	320	133	187
XI (681,592)	4,685	4,346	2,490	1,856	339	207	132
XII (1,012,377)	6,240	5,798	4,115	1,683	442	349	93
XIII (919,486)	4,987	4,636	2,491	2,145	351	186	165
XIV (791,267)	4,811	4,498	2,885	1,613	313	219	94
XV (1,022,494)	6,320	5,894	4,200	1,694	426	316	110
XVI (932,842)	5,038	4,673	3,370	1,303	365	268	97
MT	726	435	354	81	291	280	11
Total	76.774	71.331	43,630	27,701	5,443	3.625	1.818

표 14. S. cerevisiae 98-5 genome variant calling used reference S288C

*extensive allelic differences

결론적으로, S288c reference sequence와 alternate sequence가 heterozygosity를 보이는 지역 이 20,955 곳, alternate sequence 들끼리 heterozygosity,를 보이는 지역이 417 곳으로 총 21,372 곳이 확인되었다. 특히 heterozygosity를 보이는 지역은 거의 대부분 reference와 alternate가 1:1 비율에 가깝게 분리되는데, 이는 서로 거의 같은 sequence를 가지는 strain들 이 diploid를 이루었을 가능성을 강력하게 뒷받침하고 있다. Heterozygosity 분포도를 기반으 로 *S. cerevisiae* 98-5 균주 유전체를 대략적으로 A와 B subgenome으로 나눌 수 있었으며, 이를 기반으로 annotation 분석을 진행하였다.

다. 국순당 효모 KSD-YC 균주 유전체 분석

PacBio sequencing data 기반 assembly 결과, 국순당 효모균주는 S288c와 비교해 봤을 때, 3번 염색체 앞부분의 약 90 kb 정도 deletion된 것으로 보이고(repeat 등을 제외하면 75 kb로 추정), 5번 염색체 중간에 inversion이 일어난 것이 확인되었다(그림 60, 오른쪽 패널).
꽤 큰 크기의 deletion 및 여러 군데 gap에 대한 sequence 정보를 확보하기 위해 Illumina sequencing을 추가로 수행하였다. 국순당 효모 KSD-YC 균주의 유전체도 diploid 형태이므로, heterozygosity에 대한 심화 분석을 진행하였다.

그림 60. S. cerevisiae 표준유전체 (S288c 유전체)와 한식연 균주 유전체 (왼쪽), 국순당 균주 (오른쪽) 유전체와의 synteny 비교

3. 막걸리 효모 균주 genome annotation 및 비교유전체학 분석

가. Genome annotation

- *S. cerevisiae* 98-5와 KSD-Yc 유전체 정보를 토대로 보다 정확한 gene annotation을 위해 YPD에서 배양한 효모 세포의 RNA 샘플을 획득하고 RNA-Seq 분석을 수행하였다.

- Pacbio SMRT와 illumina HISEQ을 이용해 얻은 고품질의 assembly data를 이용해 유전자의 유무와 길이, 위치 등을 확인하는 annotation 과정을 진행하였다. 최초로 지놈 시퀀싱이 진행 된 모델 효모 균주인 *S. cerevisiae* S288C의 지놈 정보를 기준으로 이용하여 분석하여 국순당 의 발효 균주인 KSD-Yc의 경우 5493개의 유전자가, 한식연의 발효 균주인 SC98-5의 경우 5443개의 유전자가 확인되었다. S288C 균주와 지놈 구조를 비교한 결과 KFRI에서 큰 chromosomal insertion이 발견되었다(그림 61).

- 두 균주의 진화적 위치를 확인하기 위해 진화적 위치가 다양한 여러 균주들과 비교 분석을 진행한 결과, KSD-Yc 균주는 일본의 사케 발효 균주인 K7과 매우 유사하게 분석되었으며, SC98-5는 아시아 계열의 균주들이 아닌 유럽 계열의 균주들과 더욱 유사하게 분석되었다 (그림 62).
- KSC-Yc 균주와 유사하게 분석된 K7 균주의 지놈과 더 상세한 비교분석을 수행한 결과, 두 균주는 진화적 위치는 유사하지만 유전자 서열상에서는 많은 차이를 나타내었다(그림 63).

그림 61. Saccharomyces cerevisiae 모델 균주인 S288C와 발효 균주들과의 지놈 구조 분석

그림 62. 다양한 S. cerevisiae 균주를 이용한 진화적 위치 확인 (KFRI=SC98-5)

그림 63. *S. cerevisiae* KSD-Yc와 K7 유전체 서열 및 SC98-5 균주의 각 염색체 간 지놈 서열 비교

- 두 균주의 진화적 위치를 확인하기 위해 변이율이 높은 13개 유전자를 marker로 사용하여 시퀀스 비교를 통해 진화적 위치가 다양한 여러 균주들과 비교 분석을 진행하였다(그림 62). 분석 결과, KSD-Yc 균주는 일본의 사케 발효 균주인 K7과 매우 유사하게 분석되었으며, KFRI 균주는 아시아 계열의 균주들이 아닌 유럽 계열의 균주에 속하는 YJM1381, EC1118, YJM270 등과 유사하게 분석되었다(그림 64).

그림 64. 유전체 정보 기반 누룩 유래 산업용 막걸리 효모 KSD-Yc와 KFRI의 진화적 위치 분석

이전 연구를 통해 KFRI 균주는 12번 염색체의 크기가 S288C 유래의 잘 알려진 실험용 균주 및 KSC-Yc 균주와도 다르게 1.8 배 가량 크게 나타났다. 이를 확인하기 위해 진화적으로 비 슷하게 분석된 위 균주들의 게놈 데이터도 확인한 결과 진화적으로 가장 가까운 YJM1381 균 주에도 염색체 12번의 비슷한 확장된 부분이 존재함이 확인되었다(그림 65).

그림 65. S. cerevisiae KSY-YC와 YJM1381-균주 특이적 염색체 12 확장

4절. 누룩효모 S. fibuligera 참조유전체 기반 유용 유전자 발굴 및 기능 분석

1. S. fibuligera 표준 유전체 기반 바이오폴리머 분해 유용 유전자 발굴

가. 신규 Starch 분해 효소 Polysaccharide Monooxygenase (PMO) 후보 단백질 발굴 및 분석
Starch 분해 효소인 PMO는 KJJ81, KPH12 균주에서 각각 6개, 3개가 발굴되었으며 이 효소 는 분비 단백질로 알려져 있어 분비단백질의 특징인 signal sequence가 존재하는지 SignalP 프로그램으로 예측하여 8개의 후보 단백질에서 보존되어 있는 것을 확인하였다(그림 66).
PMO에 보존되어 있는 것으로 알려져 있는 catalytic, starch binding 도메인의 존재를 분석하 기 위해 상기 후보 단백질에 대한 weplogo 분석을 수행하였다. 그 결과 catalytic 도메인에 보존이 되어있는 아미노산 잔기가 존재하는 것으로 분석되었다(그림 67).

그림 66. PMO 후보 단백질들의 signal sequence 위치 분석

그림 67. Weplogo 분석결과. 빨강 원:catalytic 도메인에 보존되어 있는 아미노산 잔기
나. 신규 cellulose 분해 효소 유전자 S. fibuligera BGL 발굴 및 도메인 분석

국내 누룩에서 분리한 *S. fibuligera* KJJ81 균주의 유전체 분석을 통해 얻은 정보를 이용하여, 산업적 유용 셀룰로즈 분해 효소로 가능성 있는 Sf*BGL1*, Sf*BGL2*, Sf*BGL3*, Sf*BGL4*, Sf*BGL5*(β-glucosidase)를 동정하였다. *S. fibuligera* 는 A type, B type 두개의 hybrid genome을 가지는데, Sf*BGL1*, Sf*BGL3* 경우 A, B 두 genome에 존재하는 반면 Sf*BGL2* 경우 B genome에만 존재하므로, 각 유전자를 Sf*BGL1*(A), Sf*BGL1*(B), Sf*BGL2*(B), Sf*BGL3*(A), Sf*BGL3*(B), Sf*BGL4*(A), Sf*BGL4*(B), Sf*BGL4*(B), Sf*BGL4*(B), Sf*BGL5*(A), Sf*BGL5*(B)로 명명하였다.

- SfBGL 단백질들의 효소활성 domain과 상동성 분석을 수행한 결과 SfBGL5를 제외하고는 glycosyl hydrolase family 3 N-termoinal domain이 높게 보전되어있음이 관찰되었다(그림 68).

그림 68. S. fibuligera 유래 신규 cellulose 분해 효소 유전자 BGL 발굴 및 도메인 분석

다. S. cerevisiae 발현 시스템을 이용한 S. fibuligera BGL 기능 분석

- 셀룰로즈 분해능이 없는 S. cerevisiae 균주에 S. fibuligera KJJ81 유래 9개의 β-glucosidase 효소 유전자, fBGL1(A), SfBGL1(B), SfBGL2(B), SfBGL4(A), SfBGL4(B), SfBGL4-2(A), SfBGL4-2(B), SfBGL5(A), SfBGL5(B)를 도입하여 분비발현시킴으로써 기능 검증을 수행하고 자, BGL 유전자를 mating factor α 의 signal sequence와 fusion 하여 분비발현 벡터 Y2pU-SfBGL1A, Y2pU-SfBGL1B, Y2pU-SfBGL2B, Y2pU-SfBGL3A, Y2pU-SfBGL3B, Y2pU-SfBGL4A, Y2pU-SfBGL4B, Y2pU-SfBGL5A, Y2pU-SfBGL5B 제작을 진행하였다(그림 69A), 제작된 벡터를 BY4742 균주에 도입하여 재조합 균주 SfBGL1A/BY4742, SfBGL1B/BY4742, SfBGL2B/BY4742, SfBGL3A/BY4742, SfBGL3B/BY4742, SfBGL4B/BY4742, SfBGL5A/BY4742, SfBGL5B/BY4742 제작하여 western blot 분석을 통해 단백질 발현을 확인 하였다(그림 69B).

재조합 SfBgl 단백질 발현 분석(B)

- 또한 효소 활성 분석 결과, SfBGL1A/BY4742에서 가장 높은 β-glucosidase 활성을 보였으며, SfBGL2B/BY4742 균주에서는 SfBGL1A/BY4742에 비해 50% 수준의 효소 활성을 보였다.
 그 외 fBGL2B/BY4742, SfBGL3A/BY4742, SfBGL3B/BY4742, SfBGL4A/BY4742, SfBGL4B/BY4742, SfBGL4B/BY4742, SfBGL5A/BY4742, SfBGL5B/BY4742 균주에서는 SfBGL1A/BY4742에 비해 30% 정도의 β-glucosidase 효소 활성을 보였다(그림 70).

그림 70. SfBgl 발현 재조합 균주의 β-glucosidase 활성 분석

2. 신규 항미 관련 효소 유전자 발굴 및 기능 분석

가. 신규 항미 관련 효소 acetyl transferase 유전자 (ATF) 발굴 및 도메인 분석

- 한국 누룩에서 분리한 *S. fibuligera* KJJ81 균주의 유전체 분석을 통해 얻은 정보를 이용해, 좋은 향기를 가지기에 주류 산업에 유용한 물질인 phenylethylacetate를 만드는 대사과정에 관여하는 유전자들을 확인하였다(그림 71A). 그 중 phenylethylacetate 대사의 마지막 과정에 관여하는 Alcohol acetyltransferase 기능을 가질 것으로 유추되는 *S. cerevisiae* ATF1과 ATF2 유전자와 낮은 상동성을 보이는 13 개의 *S. fibuligera* 유전자들을 발굴하였다. *S. fibuligera* 는 A type, B type 두개의 hybrid genome 을 가지는데, 13개 중 7개 유전자의 경우 A genome 에 존재하며, 나머지 6개는 B genome에 존재한다(그림 71B).

(A)

(B) Phenylethylacetate 대사 관련 S. fibuligera 유전자 리스트

Symbol	Description	Gene Description	Most homolog Sc gene	Sc gene name	KUS1A Gene D	KJUS1B Gene ID
ARO8	Aromatic/aminoad	Aromatic aminotra	AROS	YGL202W	KJJ81A2G085100	
ARO8	Aromatic/aminoad	Aromatic aminotra	ARO8	YGL202W		KJJ81B2G082900
ARO9	Aromatic amino a	Aromatic aminotra	ARO9	YHR137W	KJJ81A1G077300	
ARO9	Aromatic amino a	Aromatic aminotra	ARO9	YHR137W	KJJ81A4G051400	
ARO9	Aromatic amino a	Aromatic aminotra	ARO9	YHR137W	KJJ81A4G054800	
ARO9	Aromatic amino a	Aromatic aminotra	ARO9	YHR137W	KJJ81A4G054800	
ARO9	Aromatic amino a	Aromatic aminotra	ARO9	YHR137W		KJJ81B1G075700
ARO9	Aromatic amino a	Aromatic aminotra	ARO9	YHR137W		KJJ81B4G049900
ARO9	Aromatic amino a	Aromatic aminotra	ARO9	YHR137W		KJJ8184G053000
ARO10	Transaminated arr	Phenylpyruvate de	ARO10	YDR380W	KJJ81A7G028000	
ARO10	Transaminated arr	Phenylpyruvate de	ARO10	YDR380W		KJJ81B7G026600
ARO80	Transcriptional act	Zinc finger transcr	ARO80	YDR421W	KJJ81A2G021500	
ARO80	Transcriptional act	Zinc finger transcr	ARO80	YDR421W		KJJ81B2G021000
PDC1	Pyruvate decarbox	Major of three pyr	PDC1	YLR044C	KJJ81A2G034500	
PDC1	Pyruvate decarbox	Major of three pyr	PDC1	YLR044C		KJJ8182G083800
			PDC5			
			PDC6			
FDH1	S-(hydroxymethyl)	Bifunctional enzyn	SFA1	YDL168W	KU81A1G047100	
SPBC11	SZinc-type alcohol	Bifunctional enzyn	SFA1	YDL168W	KJJ81A4G043300	
FDH1	S-(hydroxymethyl)	Bifunctional enzyn	SFA1	YDL168W		KJJ81B1G045500
ADH4	Alcohol dehydrog	Mitochondrial alco	ADH4	YMR083W	KJJ81A3 G035000	
ADH4	Alcohol dehydrog	Mitochondrial alco	ADH4	YMR083W		KU8183G034000
ADH4	Alcohol dehydrog	Mitochondrial alco	ADH4	YMR083W		KJJ81B3G034100
	1		ADH5	1		
ATF1	Alcohol a cetyltra n	sferase(PF07247) [S	ATF1		KJJ81A2G089500	
AT F1	Alcohol a cetyltra n	sferase(PF07247) [S	ATF1			KJJ81B2G087000
AT F1	Alcohol a cetyltra n	sferase(PF07247) [S	ATF1			KJJ81B4G012200
AT F1	Alcohol a cetyltra n	sferase(PF07247).Ale	ATF1			KJJ8185G008500
AT F2	Alcohol a cetyltra n	sferase(PF07247),Ale	ATF2		KJJ81A2G066500	
AT F2	Alcohol a cetyltra n	sferase(PF07247) [S	ATF2		KJJ81A2G089400	
AT F2	Alcohol a cetyltran	sferase(PF07247) [S	ATF2		KJJ81A3G017700	
AT F2	Alcohol a cetyltran	sferase(PF07247) [S	ATF2		KJJ81A4G012700	
AT F2	Alcohol a cetyltra n	sferase(PF07247) [S	ATF2		KJJ81A4G012800	
AT F2	Alcohol a cetyltran	sferase(PF07247) [S	ATF2		KU 81A5 G003500	
AT F2	Alcohol a cetyltra n	sferase(PF07247), Ale	ATF2			KJJ81B2G064500
AT F2	Alcohol a cetyltra n	sferase(PF07247) [S	ATF2			KU8182G086900
AT F2	Alcohol a cetyltra n	sferase(PF07247) [S	ATF2			KJJ81B3G017600

그림 71. Phenylethylacetate 생합성 경로(A) 및 관련 S. fibuligera 유전자들(B)

Β.

S288C_ATF1 : KKFIFS C CMSD RE SIHFFHD R S288C_ATF2 : KNFYN T CCSD V CSNFFKD A CENPK_ATF2 : KNFYN T CCSD V CSNFFKD A SfATF(A) D :ACFNYF ALAD I SCVNFHDE K SfATF(A) D :HLSN FI FYSD ASCAACKEV V SfATF(A) D :HLSN FI FYSD ASCAACKEV V SfATF(A) D :ACFNYF ALAD M CVIFHDEFC SfATF(B) D :LSN FI YSSD G ALYCKEV SfATF(B) D :LSN FI YSSD I AKNLLOF X.ancmalus :LAY S ISSD I AKNLLOF X.ancmalus :LAY S ISSD I AKNLLOF CM.ancmalus :LAY S ISSD I AKNLLOF CANACMALUS :LYN S VIAD I GVOFGKD A CAMIDA_1 : CVISY I SNYD I GVOFGKD A CAMIDA_1 : VLSVIE TTAD VVANYHEIFL CAMIDA_1 : VLSVIE TTAD VVANYHEIFL CAMIDA_1 : VLSVIE TTAD VVANYHEIFL CAMIDA_1 : VLSVIE TTAD VVANYHEIFL CAMIDA_1 :LINTY VVIE I GCSD V GSNFFKD A Saccharcmy : KNFYVIS CCSD V GSNFFKD A Saccharcmy : KNFVVIS CCSD V		340	*	360
S288C_ATF2 : KNFYYTT CGGSD VCGSNFFKD A CENFK_ATF1 : KKFTFVS.ICMS FR SINFFND A STATF(A)1p :ACFNYH ALAD I GVNFHDD K STATF(A)2p :ACFNYH ALAD I GVNFHDD K STATF(A)3p : -HLSNTF PTSC A GAAFCKE V STATF(A)4p : -HLANTI FNNVC GAVVCFLKDI STATF(A)5p : -LISNTF VSTV GAVVCFLKDI STATF(A)5p : -LISNTF VSTV GAVVCFLKDI STATF(A)5p : -LISNTF VSTV GAVVCFLKDI STATF(A)5p : -LISNTF VSTV GAVVCFLKDI STATF(B)5p : -LISNTF VSTV GAVVCFLKDI STATF(B)5p : -LISNTF VSTV GAVVCFLKDI STATF(B)5p : -LISNTF VSTV GAVVCFLKDI STATF(B)5p : -HLANTI STATA GVTFHDEFC STATF(B)5p : -HLANTI VSTATA GVTFHDEFC Mancmalus :LCY SN ISS I AANFFCDT Mancmalus :LCY SN ISS I GAVNFFCDT Mancmalus :LCY SN ISS I GANFFCDT Mancmalus :LLCY SN I GUS I GANFFCDT Mancmalus :LLCY SN I GUS I GANFFCDT Mancmalus :LLCY SN ISS I GUS I GANFFCDT Mancmalus :LLCY SN ISS I GUS I GANFFCDT Mancmalus :LCY SN ISS I GUS I GANFFCDT Mancmalus :LCY SN I GUS I GANFFCDT Mancmalus :LCY SN I GUS I GAN	S288C ATF1	: KKFIESS	CMSE	RESINFFHDR
CENPR_ATF1 : KKFIFVS: CHSD:RCSIFFFD1R CENPR_ATF2 : KNFYNID_CCSD:VCSNFFKD1A SfATF(A)1p :	S288C ATF2	: KNFVYNT	ECGSI	V-GSNFFKD A
CENPR_ATF2 : KNFVYTT CGGSD VG GSNFFKDIA SfATF(A)1p : ACFNYF ATAD I GOVNFHDE K SfATF(A)3p :ACFNYF ATAD I GOVNFHDE K SfATF(A)3p :ACFNYF ATAD I GOVNFHDE K SfATF(A)4p :-HLANYL : NNVC GAVVCKLTD : SfATF(A)5p :-LISWFFYSTVC GAVVCKETV SfATF(A)6p :ACFNYFATAD GOVNFHDE K SfATF(B)2p :ACFNYFATAD M GVIFHDEFC SfATF(B)2p :ACFNYFATAD M GVIFHDEFC SfATF(B)2p :ACFNYFATAD M GVIFHDEFC SfATF(B)2p :ACFNYFATAD GOVNFHDE SfATF(B)5p :ACFNYFATAD GOVNFHDE SfATF(B)5p :ACFNYFATAD GOVNFHDE SfATF(B)5p :ACFNYFATAD GOVNFHDE SfATF(B)5p :ACFNYFATAD GOVNFHDE SfATF(B)5p :HLANYI SNNC GOVCFLKTI SfATF(B)5p :HLANYI SNNC GOVCFLKTI SfATF(B)5p :HLANYI SNC GSD I GANNICOF M.ancmalus :LYNS ISSD I AKNIFCD G M.ancmalus :LYNS ISSD I AKNIFCD F M.ciferrii :SVAGVW SFTAD T VLRFTSD F M.ciferrii :LIBTT VLHO I SCNIFND F M.ciferrii :LIBTT VLHO I SCNIFND S M.ciferrii :LABTT VLHO I AKNFFHD T M.ciferrii :LABTT VLHO I AKNFFHD T M.ciferrii :LABTT VLHO I AKNFFHD T M.ciferrii :LABTT VLHO T AKNFFHD T	CENPK ATF1	: KKFIFAS	CMS	RESINFFHDER
STATE A 10 :	CENPK ATF2	: KNEVMIT	ECGSE	VSGSNEFKDA
STATF (A) 2p :ACFNYH ATAD ISOVNHUDEK STATF (A) 3p : -HLSWIF IFIS A GAARCREP STATF (A) 4p : -HLAWL IFNNO GAVCFLKDI STATF (A) 5p : -LISWIF YSTVD GAVCFLKDI STATF (A) 5p : -LISWIF YSTVD GAVCFLKDI STATF (A) 7p : -YLSU VI TIF ALAD M GVIFHDEFC STATF (B) 1p :ACFNY ATAD M GVIFHDEFC STATF (B) 1p :ACFNY ATAD M GVIFHDEFC STATF (B) 1p :ACFNY ATAD M GVIFHDEFC STATF (B) 1p :ACFNY SATAD M GVIFHDEFC STATF (B) 1p :ACFNY SATAD M GVIFHDEFC STATF (B) 1p :ACFNY SATAD M GVIFHDEFC STATF (B) 5p :ACFNY SATAD M GVIFHDEFC W.ancmalus :LGY SA ISSN I AKNFFCDIC W.ancmalus :LGY SA ISSN I AKNFFCDIC Candida_1 : -LGY SA ISSN I AKNFFCDIC Candida_1 : -LEYSN E CSS I AKNLLODE Candida_1 : VLSSN E CSS I GANLFCDIC Saccharcmy : KNFFYNS CCSS I GANLFCDIF N.ciferrii : SVAGVW SFTAD T VLRTSD F N.ciferrii : SVAGVW SFTAD T VLRTSD F N.ciferrii :LFNT NVHO I AKNFFHDT N.ciferrii :LAFT N VHHO I AKNFFHDT N.ciferrii :	SfATF(A) 1p	:		
STATF (A) 3p : -MLSN FL PISS AS GAAFCKE V STATF (A) 4p : HLANYL INNVO GAVVCPLRD I STATF (A) 5p : -LISW FY SYLV GAVVCPLRD V STATF (A) 6p : -ACF YN ALAA M CVIHDEFO STATF (A) 7p : -YLSL VI THF AA VSIYIKOIV STATF (B) 1p : -ACF YN ALAA M CVIHDEFO STATF (B) 2p : -MLSW FI FISS AS GAVFCKEV STATF (B) 2p : -MLSW FI FISS AS GAVFCKEV STATF (B) 2p : -ACF YN ALAA M CVIHDEFO STATF (B) 2p : -MLSW FI FISS AS GAVFCKEV STATF (B) 5p : -HLAN'L WNVO GE VVGHKD'L STATF (B) 6p : -YLSL VI THFNG VLIYKC I X.ancmalus :LY'S ISS I GANYLOOF X.ancmalus :LY'S ISS I GANYLOOF X.ancmalus :LY'S WIAO I GEVOFUCT X.ancmalus :LY'S WIAO I GEVOFUCT A.ancmalus :LY'S WIAO I GEVOFUCT X.ancmalus :LY'S WIAO I GEVOFUCT SACCHARCMY : KKFYF SNNCM DORSINFFND Saccharcmy : KKFYF SNNCM DORSINFFND T Saccharcmy : KKFYF SN CCS I GENTFND T SaccharCMY : KKFYF SNNCM DORSINFFND T SaccharCMY : KKFYF SN CCS I GENTFND T SaccharCMY : KKFFF SNNCM DORSINFFND T SACFFFII :LAFT T VHHO T AKKFFHD T SACFFFII :LAFT T VHHO T SACFFFII T SACFFFII :LA	SEATE (A) 2p	: ACENYE	ATAR	INGVNEHDERK
STATF (A) 4p : -HLAM L : WNVD GAVVGFLKD I STATF (A) 5p : -LISW STYLO G AVVGYLED Y STATF (A) 5p : -ACFLY ALA M GVIFHEFY STATF (A) 7p : -YLSL V ITLF AA VSIYIKQIV STATF (B) 1p : -ACFLY ALA M GVIFHEFY STATF (B) 2p : -HLSH FIF PIS A GAVYCKE V STATF (B) 2p : -HLSH FIF PIS A GAVYCKE V STATF (B) 4p : -LTSW FIF PIS A GAVYCKE V STATF (B) 4p : -LTSW FIF PIS A GAVYCKE V STATF (B) 5p : -HLAN I WNVD G VGYKRTL STATF (B) 6p : -YLSL V ITLF AG VLIVYKC I %.ancmalus :LGY SA ISS I AKNFFOD %.ancmalus : -LGY SA ISS I AKNLOD Sacharcmy : KNFFVYTN CISS I AKNLOD Saccharcmy : KNFFVYTN CISS I GANFFFD Saccharcmy : KNFFVYTN COSS I GANFFFD %.ciferrii : SVAGVW SFTAD T VLRFTSD F %.ciferrii :LFFT VHA I SKNFFDT T %.ciferrii :LFFT VHA I AKNFFHD T %.ciferrii :LFFT VHA I AKNFFHD T %.ciferrii :LFFT VHA I AKNFFHD T %.ciferrii :LFFT VHA I AKNFFHDT %.ciferrii :LFFT VHA I AKNFFHTT	SfATF (A) 3p	: -MLSW F	PISE	ASGAAFCKELV
STATF (A) 5p : -LISW F YSTVC C AVVYCKE V STATF (A) 6p : -ACFUV ALAD M CVIFHDEFC STATF (A) 7p : -YLSU V: TIF ALAD M CVIFHDEFC STATF (B) 2p : -ACFU V: ALAD M CVIFHDEFC STATF (B) 2p : -ACFU V: ALAD M CVIFHDEFC STATF (B) 3p : -ACFU V: ALAD M CVIFHDEFC STATF (B) 3p : -ACFU V: ALAD M CVIFHDEFC STATF (B) 4p : -LISW F YSIFD C ALVYCKU V STATF (B) 6p : -YLSU V: TIF ACTUVCCT W.ancmalus : -LCV S. IISD I AKNFFCDIC W.ancmalus : -LCV S. VIAO I GKNLFCDIC W.ancmalus : -LCV S. VIAO I GKNLFCDIC W.ancmalus : -LCV S. IISD I AKNFFCDIC W.ancmalus : -LCV S. VIAO I GKNLFCDIC W.ancmalus : -LCV S. VIAO I GKNLFCDIC A.ancmalus : -LCV S. VIAO I GKNLFCDIC M.ancmalus : -LCV S. VIAO I GKNLFCDIC A.ancmalus : -LCV S. VIAO I GKNLFCDIC M.ancmalus : -LCV S. VIAO I GKNLFCDIC A.ancmalus : -LCV S. VIAO I GKNLFCDIC A.ancmalus : -LCV S. VIAO I GKNLFCDIC A.ancmalus : -LCV S. CCS I GANNFFCDIC S. CACHACMY : KNFFV S. CCSS I GANNFFCDIC SaccharcmY : KNFFV S. CCSS I GANFFDI M.ciferrii : SVAGVW STAD T VLRTSO F M.ciferrii : -LTFT VHHO I GKNFFNDI M.ciferrii : -LLRY T. VHHO I GKNFFNDI M.ciferrii : -LLRY T. VHHO I GKNFFNDI M.ciferrii : -LLRY T. VHHO I AKNFFLOTF M.ciferrii : -LLRY T. VHHO I AKNFFLOTF M.CIFERRI : -LLRY T. VHHO I AKNFFLOTF	STATF (A) 4p	-HLAM	WNVE	GAVVGFLKD I
<pre>SfATF(A) 6p :ACE YLAIAC MCOVIHDERC SfATF(A) 7p : -YLSL VL TIF AALO MCVIHDERC SfATF(B) 1p :ACE YL ALAO MCVIHDERC SfATF(B) 2p : -ACE YL ALAO MCVIHDERC SfATF(B) 2p : -ACE YL ALAO MCVIHDER SfATF(B) 5p : -ALEN TYST ACANCKEV SfATF(B) 5p : -HLAN'I WNVD GC VVGHKDI SfATF(B) 5p : -HLAN'I WNVD GC VVGHKDI StATF(B) 6p : -YLSL VL TIFIAC WLINKC W.ancmalus :MYN'S ISS' TAKNLOD'E W.ancmalus :MYN'S ISS' TAKNLOD'E Candida_B:LAY'S WIAO IG GVGFCD A Candida_B:HAY'S WIAO IG GVGFCD A Candida_B: -HLCV'SF USNYD LG GVGFCD A Candida_GT : -HLCV'FE TIAD IVARYHETFL Saccharcmy : WNFYN'S ICCS' IG STNFFOT Saccharcmy : WNFYN'S ICCS' IG STNFFOT Saccharcmy : WNFYN'S ICCS' IG STNFFOT Saccharcmy : WNFYN'S ICCS' IG GNFFCTA Saccharcmy : WNFYN'S ICCS' IG GNFFCTA SaccharCM :LAFT'T WHAT IG GKNFFCTA SACGHARCM :LAFT'T WHAT IG GKNFFCTA SACGHARCM :LAFT'T WHAT IG GKNFFCTA SACGHARCM :LAFT'T WHAT IG ANNFHOFT SACGHARCM :LAFT'T WHAT IG ANNFHOFT S</pre>	SfATF (A) 5p	: -LISWAF	YSIVO	GAVVYCKE
STATF (A) 7p : -YLSL VL TIFL AA VSTVIKQ V STATF (B) 1p : -ACTIVLETIAA M GVIFHDEFG STATF (B) 2p : -MLSH F PISD A GAVFCKE V STATF (B) 4p : -LTSW F YSTFD G AIVQCKE V STATF (B) 4p : -LTSW F YSTFD G AIVQCKE V STATF (B) 4p : -LTSW F YSTFD G AIVQCKE V STATF (B) 5p : -HLANVI F WNOF G AIVQCKE V STATF (B) 6p : -YLSL VI TIFUAG VLIYVKG I X.ancmalus :LCY S. ISSD I AKNFFCD W.ancmalus :LCY S. ISSD I AKNFFCD X.ancmalus :LYSV LE TIAD VVANYHEIFL Candida_ma : -YLSV LE TIAD VVANYHEIFL Candida_ma : -YLSV LE TIAD VVANYHEIFL Candida_ma : VISV LE TIAD VVANYHEIFL Saccharcmy : KNFYVYT CGSD V GSNFFKD A Saccharcmy : KNFYVYT CGSD V GSNFFKD A Saccharcmy : KNFYVYT CGSD V GSNFFKD A Saccharcmy : KNFYVYT CGSD V GSNFFKD F X.ciferrii :LTPIT VHHO I SCNFFDF X.ciferrii :LTPIT VHHO I SCNFFHD F X.ciferrii :LTPIT VHHO I AKNFFHD F X.ciferrii :LAFT : VHHO I AKNFFHDFT X.ciferrii :LYS S CLSD I GANVICD S A ciferrii : -LYS S CLSD I GANVICD S A ciferrii :LYS S CLSD I GANVICD S A ciferrii :	STATF (A) 6p	: ACFIFY	ALA	MGVIFHDEFC
STATF (B) 1p :ACT Y SALAC M CVIHUEFQ STATF (B) 2p :ACT Y SALAC M CVIHUEFQ STATF (B) 3p :ACTNY FATAO IS CVIFUEFQ STATF (B) 4p : -LTSWY FYSTFD CSALVYCKD V STATF (B) 5p : -HLANUL Y STTF ACTUVCKD V STATF (B) 5p : -LISSVY FYSTFD ACTUVCKD V Aancmalus :LCY SALSSV ISSD I AKNFFCDTC W.ancmalus :LCY SALSSV I AKNFFCDTC W.ancmalus :LCY SALVIAO I AKNFFCDTC W.ancmalus :LCY SALVIAO I AKNFFCDTC W.ancmalus :LCY SALVIAO I AKNFFCDTC M.ancmalus :LCY SALVIAO I AKNFFCDTC M.ancmalus :LCY SALVIAO I AKNFFCDTC M.ancmalus :LCY SALVIAO I AKNFFCDTC ALSSV I CSSO I AKNFFCDTC ALSSV I SALVIAO I WANY HEIFI Candida_ma : YLSV I L TTAO VVANY HEIFI Saccharcmy : KNFFY SALVAN BCGSS V GSNFFKTA Saccharcmy : KNFFY SALVAN STAO I VLRTSO F M.ciferrii :LIFT VLHO I SCNFFNDT M.ciferrii :LFT VLHO I SCNFFNDT M.ciferrii :LFT VLHO I AKNFFHDT W.ciferrii :LFT VLHO I AKNFFHDT W.CIFERI	SfATF(A)7p	:-YLSLV	TLF	AVSINIKOV
STATF (B) 2p : -MLSKIF EFTSL ASCAVECKE V STATF (B) 3p : -LTSKIF ETTSL ASCAVECKE V STATF (B) 5p : -LTSKIF YSTFC GAIVYCKE V STATF (B) 5p : -HLANI I WANN G VUCFLKT I STATF (B) 5p : -HLANI I WANN G VUCFLKT I STATF (B) 5p : -LLSKIF ISSL TAKNEFOD G X.ancmalus :LCY S. TSSL TAKNEFOD G Saccharcmy : KKFYF S. CCSS TS GTNFFOT T Saccharcmy : KKFYF S. CCSS TS GTNFFOT T Saccharcmy : KKFYF S. CCSS TS GTNFFOT T X.ciferrii :LTST TVHM TS GKNTFND S X.ciferrii :LTST TVHM TG GKNTFND S X.ciferrii :LAFT TVHM TAKNEFHDT T X.ciferrii : -LAFT TVHM TAKNEFHDT T	SfATF(B)1p	: ACFLY	PALAT	MGVIEHDEFQ
SfATF(B)3p:ACENYE ATAC IS CONFIDE K SfATF(B)4p: -LISWYE VIETE CALVARE SfATF(B)5p: -HLANVI SWIND COVUETRUE SfATF(B)6p: -YLSIVE TIFUAG VLIYVKO I %.ancmalus:LYSIS ISSD IA AKNFFCD W.ancmalus:LYSIS ISSD IA AKNFFCD Candida_1: (STISS) IA AKNFFCD Candida_1: -YSIS ISSD IA AKNLOD Saccharcmy: KNFVYIS COSS IS AKNLOP Saccharcmy: KNFVYIS COSS IS AKNILOP Saccharcmy: KNFVYIS COSS IS AKNIFFD Saccharcmy: KNFVYIS COSS IS AKNFFCD N.ciferrii:LYSIS ISSD IA AKNFFD N.ciferrii:LYSIS ISSD IS AKNIFFD N.ciferrii:LYSIS ISSD IS AKNIFFD N.ciferrii:LYSIS ISSD IS AKNFFD N.ciferrii:LYSIS ISSS ISSN ISSN ISSN ISSN ISSN ISSN	SfATF(B)2p	: -MLSW F	PISE	ASGAVECKEV
SfATF(B)4p:-LTSN/FYSIFD.GAVVGKEV SfATF(B)5p:-HLANUL WWWDGGVVGFLKDL SfATF(B)5p:-VLSLVV-TTFFAGUVLTVKGT W.ancmalus:LCVIS.ISSDIAAKNFFCDTC W.ancmalus:LCVIS.ISSDIAAKNFFCDTC W.ancmalus:LCVIS.ISSDIAKNFFCDTC W.ancmalus:LCVIS.ISSDIAKNFFCDTC W.ancmalus:LCVIS.ISSDIAKNFFCDTC W.ancmalus:LCVIS.ISSDIAKNFFCDTC W.ancmalus:LCVIS.ISSDIAKNFFCDTC W.ancmalus:LCVIS.ISSDIAKNFFCDTC W.ancmalus:LCVIS.ISSDIAKNFFCDTC W.ancmalus:LCVIS.ISSDIAKNFFCDTC W.ancmalus:LCVIS.ISSDIAKNFFCDTC Candida_d1:CUISSICSSIATAKNFFCDTC Candida_ma:-YLSVILETTASUVANYHEIFI Candida_ma:-YLSVILETTASUVANYHEIFI Saccharcmy:KKFFFVSNCKSSVGSVGSVFFKTA Saccharcmy:KKFFFVSNCKSVGSVGSVGSVFFKTA Saccharcmy:KKFFFVSNCKSVGSVGSVGSVFFKTA Saccharcmy:KKFFFVSNCKSSVGSVGSVFFKTA Saccharcmy:KKFFFVSNCKSVGSVGSVFFKTA Saccharcmy:KKFFFFVSNCKSVGSVGSVFFKTA SaccharCMSVFFKTA SACCHARCMSVFFFF	SfATF(B)3p	: ACENYE	AIAD	ISGVNFHDELK
SfATF(B)5p: -HLAN'I TWAVD GSVVGILKTI SfATF(B)5p: -YLSDVITTLFIAGVLIVVKGIL X.ancmalus:LYIS, ISSITAARNEYDTO W.ancmalus:LYIS, ISSITAARNEYDTO W.ancmalus:LYIS, ISSITAARNEYDTO W.ancmalus:LYIS, ISSITAARNEYDTO W.ancmalus:LYIS, VIAO IGKNIFOTO W.ancmalus:LYIS, VIAO IGKNIFOTO Candida_al: CPISVSFISNYDIS GVOFOKD A Candida_g1: KKFYISSICCS ALSAVNIFOLA Candida_g1: KKFYISSICCS ALSAVNIFOLA Candida_g1: HKFYISSICCS ALSAVNIFOLA Candida_g1: CKFYISSICCS ALSAVNIFOLA Saccharcmy: KKFYFVSSICCS VASSIHFFHD Saccharcmy: KKFFFVSSICCS OF GSNFFKDTA Saccharcmy: KKFFFVSICSICCS IS GTNFFCDT Saccharcmy: KKFFFVSICSICCS IS GTNFFCDT Saccharcmy: KKFFFVSICSICSIS IS GSNFFKDTA Saccharcmy: KKFFFVSICSISSISSIFFFHD N.ciferrii:LIFTTVHHO IGKNIFNDS N.ciferrii:LAFTTVHHO IGKNIFNDT N.ciferrii:LAFTTVHHO IGKNIFNDT N.ciferrii:LAFTTVHO IGKNIFNDT N.ciferrii:LAFTTVHHO IGKNIFNDT N.ciferrii:LAFTTVHO IGKNIFNDT N.ciferrii:LAFTTVHHO IGKNIFNDT N.ciferrii:LAFTTVHO IGKNIFNDT N.ciferrii:LAFTTVHO IGKNIFNDT N.ciferrii:LAFTTVHO IGKNIFNDT N.ciferrii:LAFTTVHO IGKNIFNDT N.ciferrii:LAFTTVHO IGKNIFNIFN	SfATF(B)4p	: -LTSW F	YSIF	GSAIVYCKE V
SfATF(B)6p:VLSLW-TTFFLAGTULTWKGTI %.ancmalus:UCYUS, ISSD TAKNEPCD T %.ancmalus:UCYUS, ISSD TAKNEPCD F %.ancmalus:LCYUS, ISSD TAKNEPCD F %.ancmalus:MYUS, ISSD TAKNEPCD F %.ancmalus:MYUS, ISSD TAKNEPCD F %.ancmalus:MYUS, ISSD TAKNEPCD F %.ciferri: SVAGVW, SFTAD TAVEFTD F %.ciferri:LFFT, VHAP TAKNEPTF %.ciferri:LFFT, VHAP TAKNEPTF %.ciferri:LFFT, VHAP TAKNEPTF %.ciferri:LFFT, VHAP TAKNEPTF %.ciferri:LFTT, VHAP TAKNEPTF %.ciferri:LFTT, VHAP TAKNEPTF %.ciferri:LFTT, VHAP TAKNEPTF %.ciferri:LFTT, VHAP TAKNEPTF %.ciferri:LFTT, VHAP TAKNEPTF	SfATF(B)5p	:-HLAMUL	EWNVE	GEVVGELKDL
<pre>%.ancmalus :LCY S. ISSD I AKNFFCD [%.ancmalus :LCY S. ISSD I AKNFFCD [Candid_al : CFISYFI SNYD L SCYCRCP] Candida_g1 : KFYY S. CCSD I AKNFFCD [Candida_g1 : KFYY S. CCSD I ACNFFCD] Candida_g1 : KFYY S. CCSD I GANFFCD] Saccharcmy : KKFFFY SNCM DGRSSIHFFHD Saccharcmy : KKFFFY SNCM DGRSSIHFFHD Saccharcmy : KKFFFY SNCM SFTAD TVLRTED F %.ciferrii :LFFT VLHO I SCNFFCD F %.ciferrii :LFTT VLHO I SCNFFCD S %.ciferrii :LFTT VLHO I AKNFFLOT S %.ciferrii :LFTT VLHO I</pre>	SÍATF(B)6p	: -YLSLVV	TLF	G VLIYVKC I
<pre>%.ancmalus :MYY SY ICISS II AKNILOPE %.ancmalus :LAY A. IIAA AIAGNYFOD E %.ancmalus :LAY S. VIAO IIGKNIFOD O %.ancmalus :LAY S. VIAO IIGKNIFOD O %.ancmalus :MYY S. VIAO IIGKNIFOD O Candida_q1 : (FISVSF ISNY) LIGVOF(CKD A Candida_q1 : KFYY SN CCS AIGAVNIFOD A Candida_q1 : KFYY SN CCS AIGAVNIFOD A Candida_q1 : HKFYY SN CCS AIGAVNIFOD A Candida_q1 : HKFYY SN CCS AIGAVNIFOD A Saccharcmy : KKFYF FVSNCM DORSSIHFFHD Saccharcmy : KNFYY SN CCS OF GONFFOD T Saccharcmy : KNFYY SN CCS OF GONFFOD T Saccharcmy : KNFYFVS ICSS FR GINFFDD T Saccharcmy : KNFYFVS ICSS FR GINFFDD T Saccharcmy : KNFYFVS ICSS FR GINFFDD T %.ciferrii :LIFT TVHHO IIGKNIFND S %.ciferrii :LAFT VIHO IIGKNIFND S %.ciferrii :LAFT SING SICLS IIGKNIFNIFNT SING SICLS IIGKNIFNIFNT SING SICLS IIGKNIFNIFNT SING SIGN SIGN SIGN SIGN SIGN SIGN SIGN</pre>	W.ancmalus	:LGY S	ISS	I AKNEFOD C
<pre>%.ancmalus :LAY A. IIAC MIACKTFCDTE %.ancmalus :LAY S. VIAO I GKNIFCDTC %.ancmalus :MYYIT SCISD I GKNIFCDTC %.ancmalus :MYYIT SCISD I GKNIFCDTC %.ancmalus :MYYIT SCISD I GKNIFCDTC Candida_g1 : KKFYYI SS CCSS AIGAVNIFCDTA Candida_g1 : KKFYYI SS CCSS AIGAVNIFCDTA Candida_g1 : KKFYYI SS CCSS AIGAVNIFCDTA Saccharcmy : HLCVFF TIAC LVARYTHEITL Saccharcmy : KKFYYITS CCSS I GKNIFCDTA Saccharcmy : KKFYYITS CCSS I GKNIFFDTA Saccharcmy : KKFYYITS CCSS I GKNIFFDTA Saccharcmy : KKFYYITS CCSS I GKNIFFDTA %.ciferrii : SVAGVW SFTAD TO VLRFTSD F %.ciferrii :LIFTS VIHO I GKNIFFD F %.ciferrii :LIFTS VIHO I GKNIFFD T %.ciferrii :LAFT VVHD I GKNIFFDTA %.ciferrii :LAFT VVHD I AKNFFHDTT %.ciferrii :LAFTS VVHD I AKNFFHDTT %.ciferrii :LAFTS VVHD I AKNFFHDTT %.ciferrii :LAFTS VVHD I AKNFFHDTS %.ciferrii :LAFTS VIHDTS I AKNVICUSS h dgj</pre>	W.ancmalus	: MVY IS	CLSD	IS AKNLLOD E
<pre>%.ancmalus :LGY S. ISSO II AKNFFOD C %.ancmalus :LGY S. VIAO I GKNFFOD C %.ancmalus :MYYIT CISO I AKNFFOD C Candida_dl : GFISYSFI SNYD LGCVGCKDFA Candida_ma : -YLSY LE TTAO YVANYHEIFI Candida_ma : -YLSY LE TTAO YVANYHEIFI Saccharcmy : KNFFYSFI SNYD LGCSD FFFD Saccharcmy : KNFFYSFI CGSD I GCNFFOD T Saccharcmy : KNFFYSFI CGSD I GCNFFOT Saccharcmy : KNFFYSFI CGSD I GCNFFOT Saccharcmy : KNFFYSFI CGSD I GCNFFOT %.ciferrii :LIFIT VIHO I GKNFFND F %.ciferrii :LIFIT VIHO I GKNFFND F %.ciferrii :LAFIT : VIHO I AKNFFND T %.ciferrii :LAFIT : VIHO I AKNFFNO T %.ciferrii :LAFIT : VIH</pre>	W.ancmalus	:LAY A	ILAS	ALAGKYFFOD E
<pre>%.ancmalus :LAY S. TVLAD I GKNIFODI %.ancmalus :MYY T. CLSD I AKNIFODI Candida_al : CPISVSF: SNYD L GVCGKDTA Candida_gl : KKFYY SS. CCS ALGAVNIFODI Candida_gr : -HLCV FE TTAD LVARYIHEIFL Candida_or : -HLCV FE TTAD LVARYIHEIFL Saccharcmy : KKFFF FVSNCM DCRSSIFFFHD Saccharcmy : KKFFFVS CGSD I GTNFFOD T Saccharcmy : KNFYVS I CGSD I GTNFFOD T Saccharcmy : KNFYVS I CGSD I GTNFFOD T Saccharcmy : TNFVYS I CGSD I GTNFFOD T Saccharcmy : TNFVYS I CGSD I GTNFFOD T Saccharcmy : SKFIFVS I CGSD I GTNFFOD T Saccharcmy : TNFVYS I CGSD I GTNFFOD T Saccharcmy : SKFIFVS I CGSD I GTNFFOD T Saccharcmy : SKFIFVS I CGSD I GTNFFOD T Saccharcmy : SKFIFVS I GSS FI GSS FI</pre>	W.ancmalus	:LGY S	ISSE	I AKNEFOD C
<pre>W.ancmalus :MYWIT CLSS II AKNILOFE Candida_d1 : CFISVET ISNYD LGVOFCKD A Candida_g1 : KKFYVISN CCSS AIEAVNIFOIA Candida_ma : -VLSVILE TIAC VVANYHEIFL Saccharcmy : KKKKFFVSNNCK DOGSSIHFFHD Saccharcmy : KKFVYIT CGSD IGGTNFFCD A Saccharcmy : KKFVYIS CGSD KIGSNFFKD A Saccharcmy : KKFVYIS CGSD KIGSNFFKD A Saccharcmy : KKFVYIS CGSD IGGTNFFCD F %.ciferrii :LIFCINULHC IGKNIFFED F %.ciferrii :LIFCINULHCINULHC IGKNIFFED F %.ciferrii :LIFCI</pre>	W.ancmalus	:LAY S	VLAD	IGKNLFODC
Candida_al : CPISVSFISNYD LGCVÖRCKDA Candida_ga : VISVILGTAA VVANYHEIFI Candida_ma : VISVILGTTAA VVANYHEIFI Candida_or : HICVYFFITAA UVANYHEIFI Saccharcmy : KWKKPIFVSNCMSDGSSIHFFHD Saccharcmy : KWKKPIFVSNCMSSFRVTA Saccharcmy : KKFIFVSNCMSSFRVTA SGSVIGSNFFNTA Saccharcmy : KKFIFVSNCMSSFRVTA VINFTSOF %.ciferrii : SVAGVWASTAD T VINFTSOF %.ciferrii :LIFIT VIHO ISGKNIFNSS %.ciferrii :LIFIT VVHO ISGKNIFNSS %.ciferrii :LAFIT.VVHO I GKNIFNST %.ciferrii :LAFIT.VVHO I GKNIFNDT %.ciferrii :LAFIT.VVHO I GKNIFNDT %.ciferrii :LAFIT.VVHO I AKNFFHOT %.ciferrii :LAFIT.VVHO I AKNFFHOT %.ciferrii :LAFIT.VVHO I AKNFFHOT %.ciferrii :LAFIT.VVHO I AKNFFHOT %.ciferrii :LAFIT.VVHO I AKNFLHIFT	W.ancmalus	I MVY T	CLS	I AKNLLOD E
Candida_gl : KKFYY S. CCCS ALSAVNIFOPIA Candida_ma :-YLSV LE TIAC VVANYHEIFL Candida_or :-HLCVYFITAC UVANYHEIFL Saccharcmy : KWKKFIFVSNHCMEDGRSSIHFFHD Saccharcmy : KNFYYAT CGSD VGGSWFFKTA Saccharcmy : TNFYYAT CGSD VGGSWFFKTA Saccharcmy : KKFIFVS ICHSD R SIHFFHD R %.ciferrii :-LIFT VIHO ISGSWIFWD S %.ciferrii :-LAFT VVHS ICHSD IGKNVICD S %.ciferrii :-LAFT VVHS IGKNVICD S %.ciferrii :-LAFT VVHS IGKNVICD S %.ciferrii :-LAFT VHH TI AKNFFHD T %.ciferrii :-LAFT VHH TI AKNFFHD T	Candida_al	: QFISVSF	ESNYD	LEGVOFCKDA
Candida_ma :-VLSVILE_TIAC_VVANYHEIFL Candida_or :-HLCV/FE_TIAC_LVARYHEIFL Saccharcmy : KWKYKF_FVSNRCM/SDGRSJHFFHD Saccharcmy : KNFYVTT COSD VYSONFFKTA Saccharcmy : KNFYVTT COSD VYSONFFKTA N.ciferrii :-LIFNTNVFHT TSCKNFFHD N.ciferrii :-LIFNTNVFHT TSCKNFFHD X.ciferrii :-LAFTN VVHD IN AKNFFHDT X.ciferrii :-LAFTN VVHD IN AKNFFHDTS X.ciferrii :-LAFTN VVHD IN AKNFFHDTS X.ciferrii :-LAFTN VVHD IN AKNFFHDTS X.ciferrii :-LAFTN VVHD IN AKNFFHDTS	Candida_gl	: KKFVY S	CCS.	ALAVNLFODA
Candid_or : -HLCV0FF_TIAC_LVARYHEIDL Saccharcmy : KWKKPIFVSNHCMEDGRSSHFFHD Saccharcmy : KWKKPIFVSNCCGSD VGGSNFFKDTA Saccharcmy : KKFIFVSN CGSD IGGTNFFODT %.ciferrii : SVAGVWGSTAD TVLRFTOTF %.ciferrii :LIFTT VVLRD IGGKNFFNDT %.ciferrii :LIFTT VVLRD IGGKNFFNDT %.ciferrii :LAFTT.VVLRD IGKNFFNDT %.ciferrii :LAFTT.VVLRD IGKNFFLDT %.ciferrii :LAFTT.VVLRD IGKNFLHFFT %.ciferrii :LAFTT.VVLRD IGKNFLHFT	Candida_ma	: -YLSVHLE	TIAN	VVANYFHEIFL
Saccharcmy: KKKKF FYSNHCM DGRSSHFFHD Saccharcmy: KKKFFVSNKCSO IGGNFFKDA Saccharcmy: TNFVVSN GGSD IGGNNFFKDT Saccharcmy: KKFIFVSN GMSD R SIHFFHD R %.ciferrii: SVAGVWNSTAD TVLRFTSD F %.ciferrii:LIFT NVHO ISGNNFHD S %.ciferrii:LIFT NVHO IGKNVICD S %.ciferrii:LAFT NVHO IGKNVICD S	Candida_or	: -HLCVVFF	TIAN	LVARYIHEI
Saccharcmy: KNFYUYT COSD V GONFFRIA Saccharcmy: TNFVNSN COSD T GTNFFOIT Saccharcmy: KKFIPLSN COSD R SINFFHD R N.ciferrii: SVAGVWSTAD T VLRTSD F N.ciferrii:LIFNT VLHC I GKNIFNDS N.ciferrii:LIFNT VVHO I GKNIFND T N.ciferrii:LAFNT VVHO I AKNFFHD T N.ciferrii:LAFNT VVHO I AKNFFHD T N.ciferrii:LAFNT VVHO I AKNFFHD T N.ciferrii:LAFNT VHO I AKNFFHD T	Saccharcmy	: KWKKFEFF	SNHCM	BDGRSSIHFFHD
Saccharcmy : TNFYLS, CCSD IGTNFFODT Saccharcmy : KKFIFVS, ICMSD R SIHFHDIR W.ciferrii : SVACVIW STAD T VLRTSOF W.ciferrii :LIFT, VLHD IGCNIFND W.ciferrii :LIFT, VLHD IGCNIFND W.ciferrii :LAFT, VVHD I AKNFIHDT W.ciferrii :LAFT, VVHD I AKNFIHDT W.ciferrii :LAFT, VVHD I AKNFIHDT W.ciferrii :LAFT, VHD I AKNFIHDT W.ciferrii :LAFT, VHD I AKNFIHDT W.ciferrii :LAFT, VHD I AKNFIHDT	Saccharcmy	: KNFVY T	ECGSD	VEGSNEFKDIA
Saccharcmy: KKFIB'S ICMSD R SIHFHD'R N.ciferrii : SVAGV N SFTAD T VLRFTSD F N.ciferrii :LIFNT NVHP IS GKNIFND'S N.ciferrii :LAFNT VVHD IN AKNFHD'T N.ciferrii :LAFNT VVHD IN AKNFHD'T N.ciferrii :LAFNT, VVHD T AKNFHD'T N.ciferrii :MVYIS, ICLSD IN AKNFHD'T N.ciferrii :MVYIS, ICLSD IN AKNFHD'T N.ciferrii :MVYIS, ICLSD IN AKNVICD'S N.ciferrii :MVYIS, ICLSD IN AKNVICD'S	Saccharcmy	: TNFVY S	ECGSE	ISGINFFODIT
<pre>%.ciferrii : SVAGVMW STTAD TVLRTSDF %.ciferrii :LIFUT.VVLHDCISGKNIFNDS %.ciferrii :NVVIS.CISD IIGKNVICDIS %.ciferrii :LAF.T.VVHD IIAKNFFHD_T %.ciferrii :LAF.T.VVHD IIAKNFFHD_T %.ciferrii :LAF.T.VVHD IIAKNFFHD_T %.ciferrii :LAF.T.IVHD:T.AKNFLHDFT %.ciferrii :KAF.T.IVHD:T.AKNFLHDFT %.ciferrii :KAF.T.IVHDT</pre>	Saccharcmy	: KKFIFUS	ECMSE	RESIMFFHDR
<pre>%.ciferrii :LIFATIVUHO IIGGNIFNE'S %.ciferrii :LAFATIVUHO IIGNIFNOT %.ciferrii :LAFATIVUHO IIGNNFHOT %.ciferrii :LAFATIVUHO IIGNNFHOT %.ciferrii :LAFATIVUHO IIGNNFHOT %.ciferrii :NYY SICLSDIGANVICOS h dg</pre>	W.ciferrii	SVAGVIW	SFTAD	TEVLRETSDUF
<pre>%.ciferrii :MYYIS,HCLSP IIGKNVICDIS %.ciferrii :LAF,TM,VVHD T,AKNFHD,T %.ciferrii :LAF,TM,VHD T,AKNFHDFT %.ciferrii :NYYIS,LCLSP IIGKNVICDIS h dg</pre>	W.ciferrii	:LIFUT	EVLHE	ISGKNIFNERS
X.CIFETTII :LARTTUVHO TAANFFHDIT X.CIFETTII :LARTTUVHO TAANFHHDFT X.CIFETTII :MVYIS ICISITAANNVICDIS h dg	W.ciferrii	: MVYIS	CLSD	IGKNVIGDS
W.ciferril :LAFTT IVHE TAKNFLHDFT W.ciferrii :MVY STCLSD IMAKNVIQUS h db	W.ciferrii	:LAPST	DAAAD	IHAKNEFHD T
W.ciferrii :MVMSCICLS IAKNVICLS h dp	W.ciferrii	:LAF	IVHE	TAKNELHDET
h dg	W.ciferrii	:MVY S	ECLSD	I AKNVICD'S
			h d	1

SfAtf enzyme length

그림 72. S. fibuligera ATFs 유전자들의 Phylogenetic tree 및 도메인 분석

나. S. cerevisiae 발현 시스템을 이용한 ATF 유전자 기능 분석

발굴한 S. fibuligera 유전자들에서 실제 기능을 가진 효소인지 검증하기 위해 S. cerevisiae atf1, atf2, eeb1 유전자가 결손된 균주를 제작하고 이 결손 균주에 CEN expression vector 에 도입된 SfATF, SfEEB, SfEAT 유전자들의 발현시켜 효소 활성을 확인하고자 하였다(그 림 74A).

그림 73. SfATF 활성 분석을 위한 S. cerevisiae atf1△|atf2△ 변이주 제작

 Western blot분석에서 Sf*ATF3*(A), Sf*ATF2*(B), Sf*ATF6*(B)의 예상되는 크기의 단백질 밴드가 확인되어 발현이 확인되었으나, Sf*ATF4*(A) Sf*ATF2*(B), Sf*ATF5*(B)의 경우 발현이 되지 않은 것으로 사료된다.

그림 74. S. fibuligera ATF 유전자 발현 균주 제작 모식도(A) 및 SfAtf 단백질 발현 확인(B)

- 우선 13종의 SfATF 중 제작이 완성된 6개 재조합 균주 SfATF1(A)/atf1atf2,
 SfATF4(A)/atf1atf2, SfATF1(B)/atf1atf2, SfATF2(B)/atf1atf2, SfATF3(B)/atf1atf2,
 SfATF5(B)/atf1atf2들을 YPD 배지에서 24 시간 배양한 5 ml 배양액에서 headspace로 향미 성분 샘플을 회수하여 SPME GC/MS (CAR-PDMS fibre) 분석을 수행하였다.
- 그 결과 *S. cerevisiae* WT 균주의 경우 Isoamyl acetate, 2-Phenylethyl acetate, Phenylethyl alcohol와 같은 향미 성분 외에도 Ethanol, Butanol, Isoamyl alcohol와 같은 비 향미 성분들

이 분석되었다. *eebl* 결손 균주의 경우 이들 향미 성분 프로파일은 WT 균주와 동일한데 반해 *atf1atf2* 결손 균주의 경우 Isoamyl acetate, 2-Phenylethyl acetate 향미 성분의 생산 능력이 사라짐을 확인하였다(그림 75).

Sf ATF13(A)/atf1atf2, Sf ATF2(B)/atf1atf2, Sf ATF6(B)/atf1atf2 균주의 경우 atf1atf2 결손 균주 에 비해 Isoamyl acetate, 2-Phenylethyl acetate 향미 성분을 대량 생산할 뿐만 아니라 Butyl acetate와 같은 새로운 향미 성분 또한 생산한다(그림 75). 그러나 Western blot분석 에서 밴드를 확인할 수 없었던 Sf ATF4(A)/atf1atf2, Sf ATF2(B)/atf1atf2, Sf ATF5(B)/atf1atf2 균주의 경우 atf1atf2 (control) 결손 균주와 동일한 GC/MS 결과를 보였다.

No.	Compounds	Structure	t _R	Odor description	Probability (%)
1	Ethanol	ОН	3.77		90.6
2	lsoamyl acetate	Y	8.56	Banana and pear	52.7
3	Butanol	~~	9.76		76.5
4	Isoamyl alcohol, fusel oil	Ц	11.59		67.9
5	2-Phenylethyl acetate		26.94	A rose and honey scent and a raspberry-like taste	59.0
6	Phenylethyl alcohol	0~0*	29.36	Sweet, rose-like	88.6
7	Ethyl acetate	1	2.98	Solvent, sweet	91.5
8	Butyl acetate	- l	6.98	A sweet smell of banana or apple	95.2

그림 75. Sf ATF atf latf 2 재조합 균주의 유용 향미성분 SPME GC/MS를 이용한 분석 결과

다. 기타 신규 항미 관련 acetyl transferase 효소 유전자 분석 시스템 구축

-S. fibuligera KJJ81 균주의 유전체 분석을 통해 얻은 정보를 이용해, ATF 이외에 ester 관련 향미 생합성 관련 유전자들을 추가로 확인하였다(그림 76A). 이 효소 정보를 S. cerevisiae에 존재하는 효소들과 상동성 비교를 진행한 결과(그림 76B, 76C), Gene Symbol 이 match되지 않았던 두 효소를 제외한 나머지는 Alpha/Beta hydrolase 기능을 유지시켜 주는 catalytic traid S-D-H 아미노산 잔기가 conserved 되어 있는 것을 확인할 수 있었다. - 이 유전자 중에서도 특히 homology가 높게 나타난 A, B genome의 *EEB1* 유전자를 상기 한 *ATF* 기능 분석 실험과 마찬가지로 S. cerevisiae에서 발현시켜 기능 확인 실험을 진행 하고 있다.

(A)

GeneAcc	Symbol	Sc	Desc	Domain	SeqID	NT	AA
KJJ81A1G146200	SPAC22H	YGR031W	Abhydrolase domain-containing protein C22H12.03 [Alpha/be	t A1	ATGCTCA	MLSTKTLK
KJJ81B1G143900	IMO 32	YGR031W	Abhydrolase domain-containing protein IMO32 [Sour	Alpha/be	t B1	ATGCAAA	MQSIKVLF
KJJ81A7G021000	IMO32	YGR031W	Abhydrolase domain-containing protein IMO32 [Sour	Alpha/be	t A7	ATGTTGC	MLLISNVA
KJJ81B7G020100	IMO 32	YGR031W	Abhydrolase domain-containing protein IMO32 [Sour	Alpha/be	t B7	ATGTTGC	MLLISNVA
KJJ81B2G033500	÷	YGR031W	Abhydrolase domain-containing protein 11 [Wickerha	Alpha/be	t B2	ATGTTAA	MLRSVSA
KJJ81A2G034200	-	YGR031W	Abhydrolase domain-containing protein 11 [Wickerha	Alpha/be	t A2	ATGTTAA	MLRSVSA
KJJ81A1G109800	EEB1	YPL095C	Medium-chain fatty acid ethyl ester synthase/esterase	Alpha/be	t A1	ATGACCO	MTVSFFG\
KJJ81B1G108000	EEB1	YPL095C	Medium-chain fatty acid ethyl ester synthase/esterase	Alpha/be	t B1	ATGACCO	MTVSFFG

(B)

				20		40		60		0.0		100		
W.ano EAT1.pr ScIM032.pro KJJ81EAT1A.pr KJJ81EAT1B.pr KJJ811M032B1. KJJ811M032B1. KJJ811M032B1. KJJ811M032B1.	* * * * * * * *	-MMILGP MIRSVSA MIRSVSA -MILISN -MLLISN	GILAQ GILAQ GLKSAJ VAKRAAI	20 YGTIYVRQ ATGTVVRTAFKA ATGTVVRTSIRA FARGATKYTLSA MQSIKVI FARGAPKYTLSA MLSTKTL	MFFTK NTIRNN SS TTATTK DV TTATTK DV STTAIKUTS RYTHPSVR STTAIKUAA KYTHPSUTR	40 VINNQVANGI CIFKQSLCAFI SISSS-AAVI FINSSQSQRAH AMHTIKAAFI FKSSPSQRAH AMHTIKAAVI I	KQ- IS- ANALEN- ANPREN- IVLKAPRETAC KP- IVSKAPRETAC KP-	60 CKPHFARQFN GKLQPSRCFN SSSSASAPSS SSSLASSPPS	TSSLLSNSG ASSLLSNSG SSSGFPSYG PLPGSPSYG	80 LAKVI KQFPEEKLFN RHFPEDKLFI SEENYLKASI NEENYLKSSI	LPVHKRVQVA QCKQVPLDIS ESLGPLQHFE ESQGPLQHFE ATDIPTVKIA LPTKVPVHJE ATDIPTVKIA LPTKVPVHJE	YDTHIP YDTHIP PTYHNP PTYHNP PTYHNP FIXFSE YDTHIP FIXFSE YDTHIP SD	36999494	32459494
				120		140	*	160		180		200		
W.ano EAT1.pr ScIM032.pro KJJ81EAT1A.pr KJJ81EAT1B.pr KJJ81IM032B1. KJJ81IM032B1. KJJ81IM032B1. KJJ81IM032B1.	* * * * * * * * *	NKI DAS DHS YKKLAEE YKKLAEI	VNPNLN: VKTGDEG FLEKSPI SQNNDTI QGLPS SQNNSAI QDLPS	IRSHEPIVEV SKPREPITER INFREPTIER INFREPTIER INFREPTIER STHKOPITER STHKOPITER STHKOPITER STHKOPITER STHKOPITER STHKOPITER	LF CN FL NL LF CN FL NL LF SN FNA IN LF SN FNA IS LF CS SS NL LF SS NL LF SS NL	HDCCKTANUT SIGRNINKKT VEANETART VEANETART TVARCISSI SVGKHAAKLI SVGKHAAKLI SVGKHAAKLI 6 1	VY 61LRN	RCS CYSNGSGSND CYSNGSGSDE HCS HCS HCS HCS HCS HCS HCS HCS HCS HCS	-MIALPED -PISSVENI IEFAKPFOL -EISPRED -PIAMPED -DISPRED -PIAMPED h ly	ETLAQDVTDE 20MSEDVRH DELVSDLVQE 20MLADVER 20LADV	CEDHGEK TTKHEIN CRONNFE CRONFE DEGEVPRQ TDEQDIG TDEQDIG TDEQDIR	QTKQEG QTKQEG	: 11 : 14 : 18 : 18 : 19 : 11 : 19 : 11	00000000000000000000000000000000000000
				2201		240	-	260		280		300		
W.ano EAT1.pr ScIM032.pro KJJ01EAT1A.pr KJJ01EAT1B.pr KJJ01IM032A2. KJJ01IM032B1. KJJ01IM032B2. KJJ01IM032A1.	******	KN ERSSSSS		NLIG IG K THIG NGK LIG NGK THIG NGK THIG NGK THIG NGK THIG NGK THIG NGK THIG NGK GIG SG 4	OLIMIQNE ADMIVIXNE GULASULKQ GULASULKQ GULASULKQ ADAISURRE ANCIAULHQ AMAISURRE ANCIAULHQ 6 L	DTVRSGVI QTCSM VC KEIDIAKIVV KEIDIAKIVV DTPKLVIS DTVGREVA DTPKLVIS DTVGREVA 1 6	DESCRIPTION DESCRI	IEIFLTCONK AEFVENIK AIDTLNNTE SGSKFARTOR IGLNFTKDE SGSKFARTOR IGLNFTKDE	SALHAL ST AIMERVODK ALQYIVODS ALQYIVODS ALQYIVODS ALQIIVE SCANESSK ALIDITEGH GCANESSK 6 n	KIRAD SK SIKKG SNGSATSTTT SNGSGTSAN- SILKT	DKDWESKEN TIRTLKOLD DKELEEKYY DKELEEKYY NAAVTSTTOLD EKRWEEKGL EKRWEEKGL EKRWEEKGL 	RAKREY HHAER VUGEK VUGEK KUAKI KEVEQY KUAKI KEVEQY 6	: 19 : 26 : 26 : 28 : 19 : 19	19345797
				320		340		360		380		400		
W.ano EAT1.pr ScIM032.pro KJJ01EAT1A.pr KJJ01EAT1B.pr KJJ01IM032A2. KJJ01IM032B1. KJJ01IM032B2. KJJ01IM032A1.	******	IPNGG IGGNE FGIEDSQ FGIEDSQ EPELG EQDAS EPELG EQDAA	IVERET IVERET IVERET INCELI VRIFII INCELI VRIFII INCELI INCELI INCELI INCELI INCELI	TALK VFKG TALK VFKDNS TNQSVNL NUPSVNL NUPSKQEVI NUPSKQEVI NUPSKQEVI NUPSKQEVI NUPSKQEVI NUPSKQEVI NUPSKQEVI	YKSPVINYD SSVSSYT QKTGQYQ DEFEEHQKD SDHGGIDYG DEFEEHQKD SDHGGIDYG	KKDKKIYKDIG	DGXIHFONE FEEUI FLEPAU SSVPVFKSAU DEFANDAU SSVPVFKSAU DEFANDAU F	VRHMTEVARK UATIKDAIGK UNYIKEEFEP UNYIKEEFEP URVIGKAIDA VNHISÖVGEK URVIGKAIDA NHIAQAGEK 6 6	NVSAWETEH GEIAAWPLD EYFKWPAET EYFKWPAET GNIAVWPFD SIGDFPLKE GNIAVWSFD SIGDFPSKE	NGLK EGOV PAREN TELA ISGLTSKS V SKEN SG V KSIK CR S KSIK CR S SKEN SG T LKSIK RG S	FILGTKSAF FILGTKSAF FILGRHSP FILGRHSP FILGRHSP FILGRHSP FILGRHSP FILGRHSP FILGRHSP FILGRHSP FILGRHSP FILGRHSP FILGRSSTY FILGRHSP FILGRSSTY	HDE AGSKDI AGSKDI MSD MSD MSD MSD	279448888888	37560040
			English	420		440	*	460	*	480		500		-
W.ANO_EATI.PT ScIM032.pro KJJ81EATIA.pr KJJ81EATIB.pr KJJ81IM032A2, KJJ81IM032B1, KJJ81IM032B1,	* * * * * * * *	EYH YKSIEAX YKSIEAX DV ST DV	PITGAE NKIAKO NKIAKO PEVGRU SLIYHEI SLIYHEI	TREETOIDAG TREETOIDAG TREETOIDAG TREETOIDAG TREETOIDAG TRETTOIDAG TREETOIDAG	NY NAEKS NY NNQSS NY NNQSS NY SACLE NY SACLE NY SACLE NY SACLE NG SACLE	ELVELUE FI ECAESIVEFU HVTNAICOFI HVTNAICOFI EFVEIVA WI EFVEIVA WI EFVEIVA WI EFVEIVA WI FINAVA FU	WINKIKSLOUF SRHED- ITERNPEYDRI SIKEEVMEDQF KIT	RQQDQYED RQQDQYED RQQDQYED NGRQGIF		ILKQMELLK,			30 34 40 43 40 32 43 42 32 42	0.000000000
a				520										
W.ano EAT1.pr ScIM032.pro	1	LASKVDI	SATERQ	200NKEITV :	391									
KJJ81EAT1A.pr	-				174									
KJJ81EAT18.pr	1				-									
KJJ81IMO32B1.	:													
KJJ81IM032B2.	8			:	-									
FORMER LINCESCHI.	- 2.1			to the over the law was been ten. Inc.										

(C)

그림 76. S. fibuligera의 추가 acetyl transferase 유전자 분석 및 효소 도메인 비교

라. Aroma pathway 강화 전사조절인자 ARO80 유전자 발굴 및 비교 분석

- 향미 관련 아미노산의 transamination과 decarboxylation에 관여하는 ARO 계열의 유전자들 의 발현량을 조절한다고 알려진 ARO80 전사조절인자의 활성이 전체 Aroma pathway의 흐 름을 결정하는데 중요한 요소로 작용하기 때문에, *S. fibuligera ARO80* 상동 유전자에 대한 *in silico* 분석을 수행하였다(그림 77).
- KPH12, KJJ81 두 균주 모두 ARO80 상동 유전자를 가지고 있었으며, S. cerevisiae의 유전 자와 상당히 높은 수준의 homology를 가지는 것으로 보이지만, transcription activator 부분 의 일부가 소실된 것으로 확인되었다. 4차년도에서 S. fibuligera ARO80 기능 분석 실험을 수행할 예정이다.

그림 77. S. fibuligera의 ARO80 전사조절인자 아미노 서열 비교 분석

마. S. fibuligeraKJJ81의 배지에 따른 Aromatic pathway 내 유전자 발현량 qRT-PCR 분석

- 당화와 발효 과정을 통해 막걸리 내 향미와 맛, 알콜 농도 등이 결정됨. S. fibuligera는 누 룩에서 높은 당화능을 담당하고 있으며 배양액의 향이 좋기 때문에 다양한 향미 대사과정 을 유전체 발현양상에 대한 정보를 확보하기 위해 RNA-Seq 분석과 더불어 이를 보완하기 위한 대사과정 내 여러 유전자 중에서 관심도가 높은 몇 개 유전자들의 발현량을 중점적으 로 확인하기 위해 qRT-PCR을 진행하였다(그림 78).
- 대부분의 유전자들은 황 영양소가 매우 부족한 상태인 B 배지에서 발현량이 증가하였으
 며, YPD 포도당 0.1%, 37도에서는 감소, YPD 포도당 2%, 25도 배양시에는 일부는 증가, 일
 부는 감소하는 패턴을 나타내었다. 이는 막걸리의 제조 조건에 따라 같은 효모와 재료를
 가지고도 매우 다양한 향을 가질 수 있음을 의미한다. 예로, 와인의 경우도 상대적 고온에서 발효시킨 포도주는 레드 와인으로, 저온 발효를 진행한 와인은 화이트 와인으로 진행된
 다고 알려져 있다.
- 다만, 기존 RNA 시퀀싱 결과와 일치하지 않는 패턴을 나타내는 유전자들이 발견되어, 신 뢰성을 높이고자 현재 반복 실험을 수행 중에 있다.

그림 78. S. fibuligera KJJ81 균주의 배지별 주요 향미 대사과정 유전자 발현량

5절. 산업용 효모 균주 대상의 CRISPR/Cas9 기반 유전자 Knock-out

시스템 구축

가. URA3 deletion mutant 제작을 위한 YCpNAT-Cas9-URA3gRNA vector 제작

- 산업균주 국순당 KSD-YC, 한식연 SC98-5 균주의 URA3 deletion mutant 제작을 위해 NAT merker에서 발현되는 cas9 protein, URA3 target guide RNA 발혀 벡터 YCpNAT-Cas9-URA3gRNA를 제작하고자 하였다. YCpNAT-Cas9(addgene) 벡터에 PCR로 얻은 URA3 guide RNA complex (SNR52 promoter, URA3 guide RNA, structure component, SUP4 terminator)를 In-Fusion방법으로 삽입하여 YCpNAT-Cas9-URA3gRNA 제작을 진행하였고(그림 79A), URA3 guide RNA 부분 확인을 위해 YCpNAT-Cas9-URA3gRNA sequence 분석을 한 결과 URA3 guide RNA가 삽입된 것을 확인하였다(그림 79B). 또한 donor DNA는 gRNA의 좌우 50bp 를 포함한 약 100bp의 단편을 그것으로 하고 gRNA에 포함되어 있던 PAM sequence (5' -TCC-3')를 제거하고 stop codon(5' -TAA-3')을 포함한다(그림 79B).

그림 79. YCpNAT-Cas9-URA3gRNA 제작 모식도(A), YCpNAT-Cas9-URA3gRNA벡터의 URA3gRNA sequence 결과 분석(B)

나. 산업용 효모(국순당 KSD-YC / 한식연 SC98-5)에 YCpNAT-Cas9-URA3gRNA 형질전환을 통한 *URA3* deletion mutant 균주 제작

 국순당 KSD-YC, 한식연 SC98-5 균주에 YCpNAT-Cas9-URA3gRNA과 함께 donor DNA를 형 질전환 한 후 5-FOA(5-Fluoroorotic acid) plate에 선별하여 균주를 얻었다(그림 80). 효모 균 주의 형질 전환시 5-FOA plate를 선별배지로 사용할 경우 URA3가 제거된 균주만이 생존 가 능하였다. 이러한 전략은 NAT 선별마커가 아닌 다른 선별마커를 가지는 벡터 YCpHIS-Cas9-URA3gRNA를 사용한 경우에도 동일한 균주를 얻을 수 있었다. - 5-FOA plate에서 얻어진 형질전환체 들은 동일 배지에서 잘 생존하였으나 URA3 결손 확인 을 위해 SC-URA 배지에 streaking 한 결과 국순당 KSD-YC 균주는 모두 생존하지 않는 반면 한식연 Sc98-5 균주는 SC-URA 배지에서 생존하였다(그림 81A). 따라서 국순당 KSD-YC 균주 에서만 URA3 결손균주가 제작되었음을 확인하였다.

- URA3가 결손된 국순당 KSD-YC 균주 확인을 위해 후보군들의 gDNA를 회수 후 gRNA target 주위 sequence를 분석한 결과 삽입된 donor DNA sequence를 가지고 있음을 확인하였다(그림 81B). 또한 complementation 분석을 위해 URA3 발현 벡터 YCpU 벡터를 결손 균주에 삽입할시 균주들이 SC-URA 벡터에서 생존함을 확인하였다(그림 81C). 따라서 국순당 KSD-YC 균주는 CRISPR/Cas9에 의해 URA3가 결손된 균주임을 확인하였다..

- 국순당 KSD-YC, 한식연 SC98-5 균주에 YCpNAT-Cas9-URA3gRNA과 함께 donor DNA를 형 질전환 한 후 50, 100, 150 ug/ml Nourseothricin이 포함된 YPD 배지에 선별하여 균주를 얻었 다(그림 80). 국순당(KSD-Yc)균주는 YPD+150mg/ulNAT의 8개의 candidate중 3개에서, YPD+50mg/ulNAT은 8개의 candidate중 1개에서 *URA3*가 deletion된 것을 SC-URA plate에서 확 인하였다(그림 82). 그러나 한식연 SC98-5 균주에서는 *URA3* 결손 균주를 역시 얻지 못하였다.

그림 80. 국순당 KSD-YC, 한식연 SC98-5 균주의 *URA3* 결손 균주 제작을 위해 CRISPR/Cas9를 이용한 2가지 방법의 형질전환 모식도

그림 81. 5-FOA 선별을 이용한 국순당 KSD-YC 균주의 URA3 결손 균주 제작(A)과 sequencing 분석을 통한 확인(B) 및 complementation 실험을 통한 확인(C)

그림 82. NAT 선별 마커를 이용한 국순당 KSD-YC 균주의 URA3 결손 균주 제작

□ 1 세부 위탁: 주류 진핵 미생물 참조 유전체 정보 생산

1절. 누룩 유래 핵심 효모 균주 '2종'에 대한 분석

가. 시퀀싱 결과 요약

- Short-insert paired-end sequencing : 평균 fragment 길이 500bp 서열에 대하여 KJJ81 (38Mb), KPH12 (19Mb) 및 ATCC 36309 (19Mb) 균주에 대해 각각 63X, 120X, 61X 데이터를 생산하였다.
- Long-insert mate-pair sequencing : 평균 insert 15kb 서열에 대하여 KJJ81 균주와 KPH12 균주에 대해 각각 5.47Gb, 4.49Gb 크기의 데이터를 생산하였다.
- Truseq Synthetic Long-Read (TSLR) sequencing : 평균 5kb Long read 서열에 대하 KJJ81, KPH12 균주에 대해 각 유전체 크기 별 10X, 23X 정도의 시퀀싱 데이터를 생산하였다.
- Single Molecule Real Time (SMRT) sequencing : 평균 9kb Long read 서열에 대하여 KJJ81, KPH12, ATCC 36309 균주에 대해 정확도 86.3%를 가지는 각 유전체 크기별 94X, 97X, 91X 정도의 시퀀싱 데이터를 생산하였다.

나. 유전체 서열 조립 결과 요약

Single Molecule Real Time (SMRT) sequencing 결과에 대해 FALCON assembly tool을 사용하여 contig assembly를 수행하였고, 이에 대해 Short-insert paired-end sequencing 결과와 Long-insert mate-pair sequencing 결과 Truseq Synthetic Long-Read (TSLR) sequencing 결과 Bionano를 사용한 physical map을 형성 결과, 각 균주별 유사한 유전체 구조를 이용하여 chromosome 수준으로 scaffold 형성하였다.

Chr. Number	KJJ81A	%GC	KJJ81B	%GC	KPH12	%GC	ATCC 36309	%GC
1	4,911,352	38.63	4,344,079	38.92	4,897,519	38.63	4,909,981	38.69
2	4,155,118	37.93	4,044,695	38.56	4,145,645	37.96	4,155,432	37.98
3	3,027,211	38.14	2,646,735	38.63	3,010,680	38.13	2,682,731	37.97
4	2,704,859	38.13	2,652,149	38.96	2,681,439	38.06	2,685,930	38.02
5	2,120,103	37.99	2,381,737	38.92	2,105,831	38.02	2,406,875	38.18
6	1,449,650	38.63	1,410,702	39.19	1,462,644	38.67	1,400,908	38.36
7	1,364,239	38.31	1,345,124	39.37	1,359,543	38.29	1,411,284	38.48
total	19,732,532	38.24	18,825,221	38.86	19,663,301	38.25	19,653,141	38.25

표 1. KJJ81, KPH12, ATCC 36309 Genome에 대한 최종 조립 결과

다. 유전자 예측 및 기능 분석

Transcript 서열 정보 및 유사종의 Protein 서열, ab initio 방법을 이용하여, 유전자 예측 수행 결과 KJJ81은 12,185개, KPH12는 6,155개, ATCC 36309는 6,121개의 유전자가 예측되었다.
예측된 유전자는 상동성 검색 방법으로 기능에 대해 예측 수행하였고, 그 결과 KJJ81, KPH12에 대해 각 10,810개, 5,435개로 기능이 예측되었다.

라. 반복 서열 분석

- 반복서열을 탐색하기 위해 RepBase 데이터베이스를 이용하는 방법과 de novo 로 반복 서열을 탐색 하는 방법을 병합하여 분석한 결과 KJJ81, KPH12, ATCC 36309 각 조립된 유전체 크기에 비례해 9.53%, 9.13%, 10.20%의 반복 염기서열 비율을 보였다.

마. 게놈 구조 비교 분석

- KJJ81의 A genome과 B genome 그리고 KPH12의 A genome을 대상으로 게놈 구조 비교 분석을 수 행하였다. 그 결과, KJJ81의 A genome과 B genome의 유사도는 88.11% 로 확인하였고, 구조적으로는 A3-B3과 A5-B5의 일부가 구조적으로 차이를 보였다.

그립 1. KJJ81 A genome과 B genome, KPH12 genome의 synteny dot plot

또한, ATCC 36309 genome 과 KJJ81의 A genome과 B genome 그리고 KPH12의 A genome을 대상으로 게놈 구조 비교 분석을 수행하였다. 그 결과, ATCC 36309 genome과 KJJ81 A genome, KPH12 genome 서열과의 유사도는 97.9%로 KJJ81 B genome은 89.1%로 확인되었고, 이에 대한 구조적 차이는 ATCC 36309 A3 - KJJ81 A3 또한 KPH12 A3와, ATCC 36309 A5 - KJJ81 A5 또한 KPH12 A5에서의 구조적인 차이를 보였다.

그림 2. ATCC 36309 genome과 KJJ81 A genome, B genome, KPH12 genome의 synteny dot plot

바. 계통 분석

- 보존이 잘 되어있는 55개 유전자를 선별하여 이에 대한 계통분석 수행하였다.

그림 3. KJJ81, KPH12 및 주변종에 대한 계통 분석 결과

이에 대하여 Ka/Ks 분석을 수행하여 기존 계통도 분석했던 결과와 비교를 수행하였고, 그 결과
 KJJ81과 KPH12는 Aspergillus oryzae의 Pezizzomycotina계통 보다 Saccharomyces cerevisiae의
 Saccharomycotina 계통에 유전적으로 더 가까운 계통임을 다시 확인하였다.

그림 4. KJJ81, KPH12, Aspergillus oryzae, Saccharomyces cerevisiae 종에 대한 Ka/Ks 분석 결과

- 그리고 이에 대해 Blastp search 및 Interproscan를 통하여 Gene family 구성 및 Blastp Hit 되는 비율을 계산하여 분석을 수행하였다.
- 앞서 구성해 놓은 Gene family 및 계통분석 결과에 대하여 CAFE v3.1을 이용하여 Gene family의 Contraction 및 Expansion을 확인하였다.

그림 6. KJJ81, KPH12 및 주변 종에 대한 Gene family 조성 Venn diagram

사. 미토콘드리아 게놈 서열 분석

- circular 형태로 assembly가 되는 서열에 대해 mitochondria로 예상되는 유전체를 조립하였고, 그 결과 KJJ81 67,516 bp, KPH12 67,427 bp로 확인되었다.
- 조립된 mitochondria에 대한 기능분석을 위하여, MFannot를 사용하여 mitochondria의 기능 분석을 수행하였고, 그 결과 20개의 protein coding 유전자들이 포함되어 있고, cob, cox1, nad5의 유전자는 intron 구조를 가지고 있는 것을 확인하였다.

그림 8. KJJ81, KPH12 mitochondria 조립 및 기능 분석 결과

제 2절. 핵심 당화 곰팡이 균주 및 전통주류 우수 효모에 대한 데이터 생산 및 분석

가. 시퀀싱 결과 요약

- Short-insert paired-end sequencing : 평균 fragment 길이 500bp 서열에 대하여 *Lichtheimia ramosa* (31Mb) 및 *Saccharomyce scervisiae* 98-5 (11Mb), *Hyphopichia pseudoburtonii* KJS14 (15Mb)에 대해 76X, 256X, 303X 데이터를 생산하였다
- Long-insert mate-pair sequencing : 평균 insert 15kb 서열에 대하여 *Lichtheimia ramosa* 균주에 대해 6.05Gb 데이터를 생산하였으며, 또한, KJS14 균주에 대해 평균 insert 5kb, 10kb, 15kb의 라이 브러리로 각각 5.09Gb, 3.34Gb, 3.54Gb 데이터를 생산하였다.
- Single Molecule Real Time (SMRT) sequencing : 평균 7kb Long read 서열에 대하여 *Lichtheimia ramosa* 및 *Saccharomyce cervisiae* 98-5, KJS14 균주에 대해 정확도 86.3%를 가지는 각 유전체 크기별 80X, 273X, 170X 시퀀싱 데이터를 생산하였다.

Туре	Species	No. of Reads	No. of Bases	No. of Bases (Gb)
	L.ramosa	23,893,276	2,389,327,600	2.38
Short-insert	S. cervisiae 98-5	27,948,170	2,822,765,170	2.82
	KJS14	45,085,756	4,553,661,356	4.55
	<i>L.ramosa</i> (15kb)	60,542,594	6,054,259,400	6.05
Long incont	KJS14 (5kb)	50,400,834	5,090,484,234	5.09
Long-msert	KJS14 (10kb)	33,101,756	3,343,277,356	3.34
	KJS14 (15kb)	35,024,932	3,537,518,132	3.53
TCID	L.ramosa	51,178	517,738,515	0.51
ISLK	S. cervisiae 98-5	167,375	1,187,074,736	1.18
	L.ramosa	277,800	2,516,827,625	2.51
SMRT	S. cervisiae 98-5	417,246	3,009,966,829	3.00
	KJS14	281,560	2,561,397,161	2.56

표 2. L. ramosa, S. cervisiae 98-5, KJS14 데이터 생산 요약 결과

나. 유전체 서열 조립 결과 요약

L.ramosa의 경우 Single Molecule Real Time (SMRT) sequencing 결과에 대해 FALCON assembly tool을 사용하여 contig assembly를 수행한 결과와 Truseq Synthetic Long-Read (TSLR) sequencing 결과에 대해 Celera assembler tool을 사용하여 contig assembly를 수행한 결과를 mitochondria 서 열 제거 및 merge assembly를 수행하였고, 이에 대해 Short-insert paired-end sequencing 결과와 Long-insert mate-pair sequencing 결과를 사용하여 Scaffolding 및 Gapfilling 수행하였다.

그림 9. L. ramosa 유전체 서열 조립 방법 모식도

표	3.	L.	ramosa	유전체	서열	조립	결과
	υ.	<i>L</i> .	1 annoou	11 12 11			

	No. of sequences	Total bases (bp)	N50 (bp)	N90 (bp)	Longest (bp)
PacBio Assembly					
FALCON (PacBio)	41	31,311,778	3,276,235	2,226,143	5,998,895
TSLR Assembly					
CA (TSLR)	257	32,199,549	588,350	150,645	3,190,457
Merge Assembly					
HaploMerger	23	31,251,992	3,202,655	2,385,506	6,009,921
SSPACE (PacBio + TSLR + PE + MP)	14	31,271,552	5,850,932	2,385,506	6,009,921

- 또한, Assembly가 완료된 서열에 대한 검증을 위하여 기존 생산된 Short-insert sequencing 결과와 Long-insert sequencing 결과를 바탕으로 bwa alignment tool을 사용하여 Re-mapping을 수행하였다.

Scaffolds	Total Length	GC contents	Ave.Depth	Genome Coverage (%) - 1x
Scaffold1	6,009,921	41.24%	60.84	99.96%
Scaffold2	5,910,414	41.29%	61.03	99.95%
Scaffold3	5,850,932	41.30%	62.13	99.97%
Scaffold4	3,377,602	41.24%	63.32	99.81%
Scaffold5	2,890,541	41.20%	59.18	99.71%
Scaffold6	2,664,057	41.46%	79.07	99.51%
Scaffold7	2,385,506	41.33%	61.09	99.96%
Scaffold8	1,057,280	40.71%	58.51	98.65%
Scaffold9	853,333	41.20%	60.34	100.00%
Scaffold10	190,272	41.25%	72.63	98.55%
Scaffold11	41,657	41.47%	59.01	99.82%
Scaffold12	19,811	41.24%	43.95	91.95%
Scaffold13	12,284	41.62%	48.48	100.00%
Scaffold14	7,942	54.12%	14.7	32.44%
RMS_MT	48,615	25.35%	1075.07	100.00%
Total	31,320,167	41.24%	64.31	99.81%

	Derus manda	Manmad manda	Mammad man	da Mapped	Mannadan
표 4.	Summary o	of short-reads	aligned to	the scaffolds	

Library	Raw reads (No.)	Mapped reads (No.)	Mapped reads (%)	Mapped paired-end reads (No.)	Mapped paired-end reads (%)	Sequence coverage (%) (≥1 read depth)
PE	23,893,276	20,319,506	85.04	20,045,464	83.90	99.81%
MP	19,463,104	18,475,798	94.93	13,778,854	70.79	N/A

* PE : Paired-end, MP : pre-processed mate pair reads

그림 10. De novo assembly of a L. ramosa

 S. cervisiae 98-5 균주의 경우 Single Molecule Real Time (SMRT) sequencing 결과에 대해 FALCON assembly tool을 사용하여 contig assembly를 수행한 결과와 Truseq Synthetic Long-Read (TSLR) sequencing 결과에 대해 Celera assembler tool을 사용하여 contig assembly를 수행하였고, 실제 S288C 균주의 chromosome 구조에 맞쳐 anchoring을 수행한 후 Illumina short-insert sequencing 데이터를 사용하여 error correction 및 gap filling을 수행하여 최종 16개 의 chromosome을 생성하였다.

Chrom	Length	GC	GC (%)
IB	210,330	82,659	39.30%
IIB	799,962	307,014	38.38%
IIIB	332,992	127,956	38.43%
IVB	1,472,052	558,606	37.95%
VB	588,668	226,704	38.51%
VIB	264,572	102,647	38.80%
VIIB	1,094,532	416,848	38.08%
VIIIB	548,503	211,671	38.59%
IXB	434,354	169,067	38.92%
XB	730,419	281,385	38.52%
XIB	689,298	263,225	38.19%
XIIB	1,939,407	793,165	40.90%
XIIIB	925,948	354,499	38.28%
XIVB	789,351	304,774	38.61%
XVB	1,046,958	399,799	38.19%
XVIB	934,140	355,842	38.09%

표 5. S. cervisiae 98-5 유전체 서열 조립 결과

 KJS14 균주의 경우 Single Molecule Real Time (SMRT) sequencing 결과에 대해 FALCON assembly tool을 사용하여 contig assembly를 수행한 결과와 Illumina short-insert 데이터로 SOAP *de novo* assembly한 결과를 가지고 manual insepection으로 chromosome에 가까운 scaffold를 제작하였다. 그 이후 Illumina short-insert sequencing 데이터를 사용하여 error correction 및 gap filling을 수행하여 최종 8개의 Scaffold 제작하였다.

Scaffold ID	Length	GC	GC (%)
ch1	3,163,475	1,144,834	36.19%
ch2	2,353,989	848,596	36.05%
ch3	2,086,637	752,541	36.06%
ch4	2,047,225	734,424	35.87%
ch5	1,971,387	709,161	35.97%
ch6	1,953,585	700,669	35.87%
ch7	1,094,404	396,571	36.24%
ch8	876,631	310,547	35.43%

표 6. KJS14 유전체 서열 조립 결과

다. 유전자 예측 및 기능 분석

- Transcript 서열 정보 및 유사종의 Protein 서열, ab initio 방법을 이용하여, 유전자 예측 수행한 결과 *L.ramosa*는 12,827개의 유전자가 예측되었다.

	Quantification
Total no. of gene models predicted	13,268
Unique gene models (No.)	12,827
Genes with isoforms (No.)	441
RNA-Seq supported gene model (No.) *	13,048
Average gene length (bp)	1,469 bp
Total bases of gene models (Mbp)	19.49 Mbp
%Genes in the draft genome	62.34%
No. of CDS	68,489
Average no. of CDS per gene	5.16
Average CDS length (bp)	227 bp
No. of intron	55,221
Average no. of intron per gene	4.16
Average intron length (bp)	71 bp
%CDS in the draft genome	49.80%
%Introns in the draft genome	12.54%

표 7. L.ramosa 유전체 유전자 예측 결과

- 예측된 유전자는 상동성 검색 방법으로 기능에 대해 예측 수행하였고, 그 결과 *L. ramosa*에 대해 12,805개로 기능이 예측 되었다.

표 8. L.ramosa 유전체 유전자 기능 예측 결과

Transcripts	Uniprot	NCBI nr	InterProScan	Annotated Transcripts	(%)
13,268	8,257	12,798	10,677	12,805	96.5

- KJS14 균주의 경우 transcript 서열 정보 및 유사종의 Protein 서열, ab initio 방법을 이용하여, 유전자 예측 수행한 결과 KJS는 5,900개의 유전자가 예측되었다.

표 9. KJS14 유전체 유전자 예측 결과

	Quantification
Total no. of gene models predicted	6,202
Unique gene models (No.)	5,900
Genes with isoforms (No.)	302
RNA-Seq supported gene model (No.) *	6,188
Average gene length (bp)	1,627 bp
Total bases of gene models (Mbp)	10.09 Mbp
%Genes in the draft genome	64.94 %
No. of CDS	6,946
Average no. of CDS per gene	1.11
Average CDS length (bp)	1,435 bp
No. of intron	744
Average no. of intron per gene	0.11
Average intron length (bp)	168 bp
%CDS in the draft genome	64.14%
%Introns in the draft genome	0.81%

- 예측된 유전자는 상동성 검색 방법으로 기능에 대해 예측 수행하였고, 그 결과 KJS14 에 대해 5,706 유전자의 기능이 예측되었다.

표 10. KJS14 유전체 유전자 기능 예측 결과

Genes	Uniprot	NCBI nr	InterProScan	Annotated Genes	(%)
5,900	4,676	5,621	5,360	5,706	96.71

라. 반복 서열 분석

- 반복서열을 탐색하기 위해 RepBase 데이터베이스를 이용하는 방법과 de novo 로 반복서열을 탐색하는 방법을 병합하여 분석한 결과 *L.ramosa* 유전체 크기에 비례해 5.93%의 반복 염기서열 비율을 보였다.

		Repbase sear	rch	De novo pre	diction	Combination	
Repeat type		Length (bp)	(%) in genome	Length(bp)	(%) in genome	Length (bp)	(%) in genome
Retrotransposons		84982 bp	0.27%	556312 bp	1.78%	604555 bp	1.93%
	SINEs	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
	LINEs	1758 bp	0.01%	304851 bp	0.97%	306609 bp	0.98%
	LTR elements	83224 bp	0.27%	253626 bp	0.81%	300614 bp	0.96%
	Retroposon	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
DNA transposons		35910 bp	0.11%	258687 bp	0.83%	293332 bp	0.94%
	DNA	14549 bp	0.05%	258687 bp	0.83%	271971 bp	0.87%
	RC	21361 bp	0.07%	0 bp	0.00%	21361 bp	0.07%
	Other	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
Inserted sequence		0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
Segmental duplication		0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
Unclassified		214 bp	0.00%	332727 bp	1.06%	332941 bp	1.06%
Small RNA		61153 bp	0.20%	148519 bp	0.47%	148991 bp	0.48%
Satellites		0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
Simple repeats		373865 bp	1.20%	479768 bp	1.53%	493910 bp	1.58%
Low complexity		40765 bp	0.13%	39440 bp	0.13%	41018 bp	0.13%
Total		596408 bp	1.91%	1769644 bp	5.66%	1854667 bp	5.93%

표 11. L.ramosa 유전체 반복 서열 분포

- KJS14 균주의 경우 유전체 크기에 비례해 5.59%의 반복염기서열 비율을 보였다.

표 12. KJS14 유전체 반복 서열 분포

		Repbase search		De novo prediction		Combination	
Repeat type		Length(bp	(%) in	Length(bp	(%) in	Longth (hp)	(%) in
)	genome)	genome	Length (bp)	genome
Retrotransposons		16251 bp	0.10%	9420 bp	0.06%	22642 bp	0.15%
	SINEs	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
	LINEs	1352 bp	0.01%	0 bp	0.00%	1352 bp	0.01%
	LTR elements	14899 bp	0.10%	9420 bp	0.06%	21290 bp	0.14%
	Retroposon	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
DNA transposons		2546 bp	0.02%	46054 bp	0.30%	48429 bp	0.31%
	DNA	2325 bp	0.01%	46054 bp	0.30%	48208 bp	0.31%
	RC	221 bp	0.00%	0 bp	0.00%	221 bp	0.00%
	Other	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
Inserted sequence		0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
Segmental		0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
duplication				1		1	
Unclassified		458 bp	0.00%	59318 bp	0.38%	59776 bp	0.38%
Small RNA		38467 bp	0.25%	0 bp	0.00%	38467 bp	0.25%
Satellites		0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
Simple repeate		523322	2 270/	500261	3 0 0 0/	529045 bp	3 10%
Simple repeats		bp	5.5776	bp	5.2270	526045 DP	5.4076
Low complexity		206882	1 33%	195736	1 26%	207267 bp	1 33%
LOW COMPLEXITY		bp	1.5576	bp	1.2070	207207 00	1.33%
Total		786506	5.06%	810353	5 21%	869428 bp	5 59%
iotai		bp	5.0070	bp	0.2170	000420 DP	5.5570

마. 게놈 구조 비교 분석

- 기존에 공개된 *L.ramosa* 유전체와 본 과제에서 *L.ramosa* 제작된 유전체 와의 차이를 확인하기 위 하여 게놈 구조 비교 분석을 수행하였다.
- 그 결과, 기존에 공개된 *L.ramosa* 유전체와 본 과제에서 *L.ramosa* 제작된 유전체의 유사도는 98.45% 로 확인하였고, 구조적으로는 서로 유사한 것으로 확인되었다.

그림 11. 기존에 공개된 L. ramosa 유전체와 본 과제에서 L. ramosa 제작된 유전체 synteny dot plot and circular plot

- 또한, 새로 제작한 L. ramosa 유전체에 대해 기존에 공개된 L. ramosa 유전체가 구조적으로 정확 하게 matching이 되었는지 wgVISTA web tool을 통해 확인하였으며, 그 결과, 새로 제작된 L. ramosa 유전체의 구조적 정확도가 더 높은 것을 확인하였다.
- (6) 미토콘드리아 게놈 서열 분석
 - circular 형태로 assembly가 되는 서열에 대해 mitochondria로 예상되는 유전체를 조립하였고, 그 결과 *L. ramosa* 48,615 bp로 확인되었다.
 - 조립된 mitochondria에 대한 기능분석을 위하여, MFannot를 사용하여 mitochondria의 기능 분석을 수행하였고, 그 결과 19개의 protein coding 유전자들이 포함되어 있고, cox3, cox1, nad5의 유전 자는 intron 구조를 가지고 있는 것을 확인하였다.
 - 또한, short-read 데이터를 이용하여 미토콘드리아 게놈에 re-mapping을 시켜 depth를 확인해 본 결과 평균 1500 배수로 시퀀싱이 되었음을 확인하였다.

그립 12. Sequence comparison between Seo et al. (Presented) and Linde et al. (2014) scaffolds using wgVISTA

그림 13. L.ramosa mitochondria 조립 및 기능 분석 결과

- 기존에 공개된 L. hongkongensis 종에 대한 mitochondria 및 주변종의 mitochondria 서열을 wgVISTA tool로 비교해본 결과 진화적으로 주변 종간의 diversity가 높은 것으로 확인하였다.

L. ramosa			100 H		4
Mucor	М. с	circinelloides	-44		
Phycomyces	Pb	lakesleeanus	<u>nm</u>		
- Madural					
Rhizopus	l S	R. oryzae			
Seccharomyces	S	. cerevisiae		са.	a. A
R_NC024200	L. h	ongkongensis	MM	. M. M. J.	
L. hongkongensis	1 10 4	15 15	1 20 1	20 20 3	-
Aucor V					
Phycomyces		Julia a Marcan		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n .
Rhizopus	. An AA	auth a L L L A L		1	
-hunder -		Mr. Humber			Alla

그림 14. Comparison of mitochondrial sequences between L.ramosa and other genomes using wgVISTA

MAL

ANU A

바. 계통 분석

- 보존이 잘되어있는 55개 유전자를 선별하여 이에 대한 계통분석 수행하였고 이에 대해 InterProScan 결과를 이용하여 각각의 종에 대한 Gene family 분포 데이터를 생성하였다.
- 앞서 구성해 놓은 Gene family 및 계통분석 결과에 대하여 CAFE v3.1을 이용하여 Gene family의 Contraction 및 Expansion을 확인하였다.

그림 15. Evolutionary relationship of L.ramosa genome to other Fungi

- 또한, cell signaling과 protein hydrolytic activity, cell wall synthesis에 관한 Gene family를 확인해 본 결과 L. ramosa에서 더 많이 expansion 된 것을 확인하였다.

0	e ⁵	
avisiae 15 1015 138 058 138 inell		
Score LIBCU P. POS A. ONL LIBNI R. ONL N. CIO F	am ID Pfam domain	Function
P	F00091 Tubulin/FtsZ family, GTPase domain	GTPase (Signaling)
P	F00566 Rab-GTPase-TBC domain	GTPase (Signaling)
F	F01412 Putative GTPase activating protein for Arf	GTPase (Signaling)
F	F00616 GTPase-activator protein for Ras-like GTPase	GTPase (Signaling)
	F02212 Dynamin GTPase effector domain	GTPase (Signaling)
	01926 50S ribosome-binding GTPase	GTPase (Signaling)
F	F06371 Diaphanous GTPase-binding Domain	GTPase (Signaling)
	F02190 ATP-dependent protease La (LON) substrate-binding domain	Protease (Hydrolysis)
F	F05362 Lon protease (S16) C-terminal proteolytic domain	Protease (Hydrolysis)
F	F00026 Eukaryotic aspartyl protease	Protease (Hydrolysis)
F	F01398 JAB1/Mov34/MPN/PAD-1 ubiquitin protease	Protease (Hydrolysis)
F	F12436 ICP0-binding domain of Ubiquitin-specific protease 7	Protease (Hydrolysis)
F	F01644 Chitin synthase	Chitin synthase (Cell wall synthesis)
F	F08407 Chitin synthase N-terminal	Chitin synthase (Cell wall synthesis)
F	F12271 Chitin synthase III catalytic subunit	Chitin synthase (Cell wall synthesis)
F F	F03142 Chitin synthase	Chitin synthase (Cell wall synthesis)
	-00187 Chitin recognition protein	Chitin synthase (Cell wall synthesis)
Filmer Fi	03067 Chitin binding domain	Chitin synthase (Cell wall synthesis)
	F12273 Chitin synthesis regulation, resistance to Congo red	Chitin synthase (Cell wall synthesis)

그림 16. Evolutionary relationship of L.ramosa genome to other Fungi

- 또한, Glycolysis 생합성 pathway에서는 Acetaldehyde 쪽의 풍부성이 많이 나타는 것을 확인하였다.

그림 17. Distribution of volatile and non-volatile metabolites related genes in *L.ramosa* and selected fungi genomes

사. KJJ81, KPH12, KCTC 전사체 분석

모든 샘플들의 서열(Reads)들을 각 샘플에 해당하는 종에 대한 참조서열 (KJJ81, KPH12, KCTC)에 alignment를 진행하였고, 그 결과는 아래의 그림과 같이 모든 샘플들 내에서 입력 데이터 (clean reads라고 함) 대비 90% 이상의 서열이 알려진 유전자에 mapping 되었음을 알 수 있어 RNA 샘플의 alignment가 양호하게 진행되었음을 확인하였다.

No	Name	No. of clean reads	No. of mapped reads	No. of uniquely mapped reads	No. of reads in splicing site
1	KJJ81_37_B_2	72,567,784	69,978,698	67,869,755	1,523,689
2	KJJ81_37_B_3	75,039,866	72,429,661	70,522,565	1,527,636
3	KJJ81_37_D01_2	72,778,178	70,191,432	67,775,692	1,976,294
4	KJJ81_37_D01_3	76,125,708	73,269,715	70,683,167	1,625,411
5	KJJ81_37_D02_2	76,577,106	73,784,043	69,953,228	2,020,172
6	KJJ81_37_D02_3	79,113,760	76,283,335	73,858,341	2,208,322
7	KJJ81_25_RNA_1	51,719,828	50,095,860	48,054,980	2,306,688
8	KJJ81_25_RNA_2	51,801,094	50,162,149	47,521,098	2,433,487

그림 18. Alignment statistics of KJJ81

No	Name	No. of clean reads	No. of mapped reads	No. of uniquely mapped reads	No. of reads in splicing site
1	KPH12_37_B_2	42,138,110	39,512,278	38,530,153	1,240,261
2	KPH12_37_B_3	37,714,926	35,123,437	33,901,180	1,015,334
3	KPH12_37_D01_2	41,440,450	38,509,068	30,526,914	1,308,355
4	KPH12_37_D01_3	37,435,734	34,423,688	28,850,793	1,251,966
5	KPH12_37_D02_2	40,440,286	37,145,321	33,878,940	1,165,638
6	KPH12_37_D02_3	41,403,546	38,738,159	37,524,740	1,595,046
7	KPH12_25_RNA_1	40,242,240	37,816,425	36,244,453	2,340,944
8	KPH12_25_RNA_2	54,715,468	51,515,119	48,121,923	2,919,402

그림 19. Alignment statistics of KPH12

No	Name	No. of clean reads	No. of mapped reads	No. of uniquely mapped reads	No. of reads in splicing site
1	KC1_25	49,288,364	46,145,604	44,530,862	2,158,490
2	KC2_25	41,119,230	37,894,047	34,743,750	1,753,854
3	KC1_37	42,821,982	39,061,972	37,279,020	1,334,277
4	KC2_37	44,537,948	40,439,780	38,886,764	1,431,012

그림 20. Alignment statistics of KCTC

- 각 서열들의 유전자 coverage는 각 샘플에서 발현된 transcript가 유전자를 얼마나 커버하는지에 따라 mRNA의 degradation 정도를 보여주는 자료이기 때문에, RNA-Seq에서 중요한 기초 통계자료 로 활용된다.

아. Genome & genes coverage

그림 21. Genome/genes coverage of KJJ81

그림 22. Genome/genes coverage of KPH12

그림 23. Genome/genes coverage of KCTC

- 아래 그림은 유전자의 coverage 분석 결과를 도식화 한 것이며, 90 ~ 100% (0.90, 1.00 구간 파 란색 영역) 정도 커버되는 유전자가 90% 이상 되었음을 확인하였다.
- 이 분석 결과를 바탕으로 모든 샘플에 대한 유전자 coverage가 잘 형성되었고, RNA의 추출 및 sequencing이 잘 진행되었음을 알 수 있었다.

그림 24. Genes coverage of KJJ81

그림 25. Genes coverage of KPH12

KC1_25 (TN1604R1019--GTGGCC)

KC1_37 (TN1604R1021--CGTACGTA)

그림 26. Genes coverage of KCTC

자. 유전자 발현양 측정

- 샘플들 사이의 유전자 발현 경향에 대한 유사성 정도(Correlation)에 대한 정보이며, 이는 Expression값 (FPKM)을 통해 계산되었다.

-	KJJ81_37_B_2 (8-2)	KJJ81_37_B_3 (8-3)	KJJ81_37_D01_2 (D01-2)	KJJ81_37_D01_3 (D01-3)	KJJ81_37_D02_2 (D2-2)	KJJ81_37_D02_3 (D2-3)	KJJ81_25_RNA_1 (KJJ81_25_RNA_1)	KJJ81_25_RNA_2 (KUJ81_25_RNA_2)
KJJ81_37_B_2	KJJ81_37_B_2	0.968 0.978 11.829	0.909 0.930 11,781	0.947 0.938 11.811	0.892 0.922 11,773	0.884 0.905 11,735	0.789 0.855 11,566	0.746 0.832 11,540
KJJ81_37_B_3	0.968 0.978 11,829	KJJ81_37_B_3	0.892 0.913 11,806	0.949 0.932 11.834	0.892 0.919 11,795	0.875 0.890 11,753	0.777 0.638 11,579	0.731 0.815 11 <mark>.5</mark> 50
KJJ81_37_D01_2	0.909 0.930 11,781	0.892 0.913 11,806	KJJ81_37_D01_2	0.952 0.978 11,794	0.978 0.986 11,800	0.964 0.969 11,755	0.886 0.932 11,581	0.843 0.918 11,557
KJJ81_37_D01_3	0.947 0.938 11,811	0.949 0.932 11,834	0.952 0.978 11,794	KJJ81_37_D01_3	0,936 0,964 11,788	0.928 0.969 11,746	0.831 0.915 11,574	0.778 0.890 11,546
KJJ81_37_D02_2	0.892 0.922 11,773	0.892 0.919 11,795	0.978 0.986 11,800	0.936 0.964 11,788	KJJ81_37_D02_2	0.978 0.974 11.750	0.878 0.933 11,576	0.821 0.926 11.553
KJJ81_37_D02_3	0.884 0.905 11,735	0.875 0.890 11,753	0.964 0.969 11,755	0.928 0.959 11.746	0.978 0.974 11,750	KJJ81_37_D02_3	0.886 0.956 11,564	0.846 0.947 11,541
KJJ81_25_RNA_1	0.789 0.855 11,566	0.777 0.838 11,579	0.886 0.932 11,581	0.831 0.915 11,574	0.878 0.933 11,576	0.886 0.956 11,564	KJJ81_25_RNA_1	0.962 0.984 11,484
KJJ81_25_RNA_2	0.746 0.832 11,540	0.731 0.815 11,550	0.843 0.918 11,557	0.778 0.890 11,546	0.821 0.926 11.553	0.846 0.947 11,541	0.962 0.984 11.484	KJJ81_25_RNA_2

그림 27. Pearson correlation of KJJ81

12	KPH12_37_B_2 (TN1507R0214)	KPH12_37_B_3 (TN1507R0215)	KPH12_37_D01_2 (TN1507R0220)	KPH12_37_D01_3 (TN1507R0221)	KPH12_37_D02_2 (TN1507R0217)	KPH12_37_D02_3 (TN1507R0218)	KPH12_25_RNA_1 (TN1602R0183)	KPH12_25_RNA_2 (TN1602R0184)
KPH12_37_B_2	KPH12_37_B_2	0.954 0.981 5,963	0.871 0.882 5,947	0.893 0.925 5.937	0.838 0.865 5,947	0.897 0.910 5,954	0.687 0.781 5.877	0.682 0.798 5,879
KPH12_37_B_3	0.954 0.981 5.963	KPH12_37_B_3	0.808 0.862 5,944	0.836 0.918 5.942	0.789 0.848 5,945	0.835 0.891 5.956	0.656 0.765 5.878	0.658 0.783 5,878
KPH12_37_D01_2	0.871 0.882 5.947	0.808 0.862 5,944	KPH12_37_D01_2	0.956 0.958 5.932	0.938 0.975 5.941	0.970 0.977 5.949	0.833 0.922 5,874	0.830 0.928 5,876
KPH12_37_D01_3	0.893 0.925 5.937	0.836 0.918 5.942	0.956 0.958 5.932	KPH12_37_D01_3	0.916 0.940 5.937	0.976 0.972 5,945	0.827 0.879 5.875	0.826 0.898 5.878
KPH12_37_D02_2	0.838 0.865 5.947	0.789 0.848 5.945	0.938 0.975 5,941	0.916 0.940 5.937	KPH12_37_D02_2	0.922 0.958 5,947	0.796 0.900 5,880	0.797 0.914 5,884
KPH12_37_D02_3	0.897 0.910 5.954	0.835 0.891 5.956	0.970 0.977 5,949	0.976 0.972 5.945	0.922 0.958 5.947	KPH12_37_D02_3	0.785 0.889 5.880	0.778 0.900 5,885
KPH12_25_RNA_1	0.687 0.781 5.877	0.656 0.765 5.878	0.833 0.922 5.874	0.827 0.879 5.875	0.796 0.900 5,880	0.785 0.889 5.880	KPH12_25_RNA_1	0.994 0.990 5.863
KPH12_25_RNA_2	0.682 0.798 5.879	0.658 0.783 5.878	0.830 0.928 5.876	0.826 0.898 5.878	0.797 0.914 5,884	0.778 0.900 5,885	0.994 0.990 5,863	KPH12_25_RNA_2

그림 28. Pearson correlation of KPH12

5	KC1_25 (TN1604R1019GTGGCC)	KC2_25 (TN1604R1020GTTTCGGA)	KC1_37 (TN1604R1021CGTACGTA)	KC2_37 (TN1604R1022GAGTGGAT)
KC1_25	KC1_25	0.995 0.996 5.931	0.903 0.939 5,943	0.934 0.961 5.945
KC2_25	0.995 0.996 5,931	KC2_25	0.907 0.946 5.931	0.931 0.965 5.935
0.903 KC1_37 0.939 5.943		0.907 0.946 5,931	KC1_37	0.926 0.972 5.966
KC2_37	0.934 0.961 5.945	0.931 0.965 5,935	0.926 0.972 5.966	KC2_37

그림 29. Pearson correlation of KCTC

- 생산된 RNA-seq 샘플들의 유전자별 발현량을 확인할 수 있었다. 아래 표는 종별 (KJJ81, KPH12, KCTC) 참조 서열의 유전자 세트 (gene set)의 총 개수와 그 중 샘플별 발현된 유전자 수를 나타 낸다.

No	Name	No. of total genes	No. of expressed genes	No. of unexpressed genes	
1	KJJ81_37_B_2	12,070	11,999	71	
2	KJJ81_37_B_3	12,070	12,023	47	
3	KJJ81_37_D01_2	12,070	11,999	71	
4	KJJ81_37_D01_3	12,070	12,007	63	
5	KJJ81_37_D02_2	12,070	11,992	78	
6	KJJ81_37_D02_3	12,070	11,949	121	
7	KJJ81_25_RNA_1	12,070	11,775	295	
8	KJJ81_25_RNA_2	12,070	11,748	322	

그림 30. Expression statistics of KJJ81

No	Name	No. of total genes	No. of expressed genes	No. of unexpressed genes
1	KPH12_37_B_2	6,081	6,055	26
2	KPH12_37_B_3	6,081	6,062	19
3	KPH12_37_D01_2	6,081	6,043	38
4	KPH12_37_D01_3	6,081	6,041	40
5	KPH12_37_D02_2	6,081	6,046	35
6	KPH12_37_D02_3	6,081	6,053	28
7	KPH12_25_RNA_1	6,081	5,984	97
8	KPH12_25_RNA_2	6,081	5,986	95

그림 31. Expression statistics of KPH12

No	Name	No. of total genes	No. of expressed genes	No. of unexpressed genes
1	KC1_25	6,073	6,038	35
2	KC2_25	6,073	6,027	46
3	KC1_37	6,073	6,070	3
4	KC2_37	6,073	6,068	5

그림 32. Expression statistics of KCTC

차. KJJ81 좋에서의 DEGs (Differentially expressed genes) 선정

- RNA-seq 분석을 통해 샘플별로 나온 발현양을 이용하여 각 샘플들의 발현양 차이를 유전자별로 파악하였다. DEGs 선정 기준은 "p-value 0.05 이하 & FC [1.5] 이상"을 적용하였다.
- 참고로, 아래 MA plot에서 X축은 average, Y축은 log ratios를 나타내며, gene expression data의 normalization 정도를 나타낸다.

					_0
	DEG set		up	down	total
		-			

- DEG set 1 - KJJ81 25 RNA 1.KJJ81 25 RNA 2 vs KJJ81 37 D02 2.KJJ81 37 D02 3

DEG set	up	down	total
KJJ81_25_RNA_1,KJJ81_25_RNA_2 vs KJJ81_37_D02_2,KJJ81_37_D02_3	772	93	865

KJJ81_25_RNA_1,KJJ81_25_RNA_2 vs D2-2,D2-3

- DEG set 2 - KJJ81_37_D02_2,KJJ81_37_D02_3 vs KJJ81_37_D01_2,KJJ81_37_D01_3

DEG set	up	down	total
KJJ81_37_D02_2,KJJ81_37_D02_3 vs KJJ81_37_D01_2,KJJ81_37_D01_3	136	17	153

D2-2,D2-3 vs D01-2,D01-3

DEG set	up	down	total
KJJ81_37_D02_2,KJJ81_37_D02_3 vs KJJ81_37_B_2,KJJ81_37_B_3	696	178	874

- DEG set 3 - KJJ81_37_D02_2,KJJ81_37_D02_3 vs KJJ81_37_B_2,KJJ81_37_B_3

D2-2,D2-3 vs B-2,B-3

카. KPH12 중에서의 DEGs (Differentially expressed genes) 선정

- DEG set 1 - KPH12_25_RNA_1,KPH12_25_RNA_2 vs PH12_37_D02_2,KPH12_37_D02_3

DEG set	up	down	total
KPH12_25_RNA_1,KPH12_25_RNA_2 vs KPH12_37_D02_2,KPH12_37_D02_3	811	492	1303

TN1602R0183,TN1602R0184 vs TN1507R0217,TN1507R0218

- DEG set 2 - KPH12_37_D02_2,KPH12_37_D02_3 vs KPH12_37_D01_2,KPH12_37_D01_3

DEG set	up	down	total
KPH12_37_D02_2,KPH12_37_D02_3 vs KPH12_37_D01_2,KPH12_37_D01_3	41	24	65

TN1507R0217,TN1507R0218 vs TN1507R0220,TN1507R0221

- DEG set 3 - KPH12_37_D02_2,KPH12_37_D02_3 vs KPH12_37_B_2,KPH12_37_B_3

DEG set	up	down	total
KPH12_37_D02_2,KPH12_37_D02_3 vs KPH12_37_B_2,KPH12_37_B_3	467	455	922

TN1507R0217,TN1507R0218 vs TN1507R0214,TN1507R0215

타. KCTC 좋에서의 DEGs (Differentially expressed genes) 선정

- DEG set 1 - KC1_25,KC2_25 vs KC1_37,KC2_37

DEG set	up	down	total
KC1_25,KC2_25			
VS	279	193	472
KC1_37,KC2_37			

제 3 절. 참조 유전체 서열 해독을 위한 신규 누룩 효모 균주 선정 및 유전체 분석

가. 시퀀싱 결과 요약

- Short-insert paired-end sequencing : 평균 fragment 길이 500bp 서열에 대하여 *Saccharomycopsis malanga* KCN26 (16Mb) 및 *Hyphopichia burtonii* KJJ43 (12Mb)에 대해 306X, 341XX 데이터를 생산하였다.
- Long-insert mate-pair sequencing : KCN26균주에 대해 평균 insert 5kb, 10kb, 15kb의 라이브러리 로 각각 5.47Gb, 3.38Gb, 3.79Gb 데이터가 생산 되었고, KJJ43 균주는 평균 insert 5kb, 10kb, 15kb 라이브러리로 각각 4.57Gb, 4.08Gb, 3.91Gb의 데이터를 생산하였다.
- Single Molecule Real Time (SMRT) sequencing : 평균 7~9kb Long read 서열에 대하여 KCN26 및 KJJ43 균주에 대해 각 유전체 크기별 85X, 125X 시퀀싱 데이터를 생산하였다.

나. 유전체 서열 조립 결과 요약

KCN26, KJJ43 균주의 경우 Single Molecule Real Time (SMRT) sequencing 결과에 대해 FALCON assembly tool을 사용하여 contig assembly를 수행한 결과와 Illumina short-insert 데이터로 SOAP *de novo* assembly한 결과를 가지고 manual insepection으로 chromosome에 가까운 scaffold를 제 작하였다. 그 이후 Illumina short-insert sequencing 데이터를 사용하여 error correction 및 gap filling을 수행하여 최종 6개(KCN26), 8개(KJJ43)의 Scaffold를 제작하였다.

Scaffold ID	Length	GC	GC (%)
ch1	3,543,799	1,358,364	38.33%
ch2	3,236,455	1,230,265	38.01%
ch3	3,137,114	1,192,568	38.01%
ch4	2,716,178	1,031,972	37.99%
ch5	2,617,008	1,005,837	38.43%
ch6	1,527,952	583,801	38.21%

표 13. KCN26 유전체 서열 조립 결과

표 14. KJJ43 유전체 서열 조립 결과

Scaffold ID	Length	GC	GC (%)
ch1	2,741,975	956,570	34.89%
ch2	2,074,296	735,276	35.45%
ch3	1,851,320	645,200	34.85%
ch4	1,556,836	546,035	35.07%
ch5	1,367,557	478,973	35.02%
ch6	1,012,648	353,614	34.92%
ch7	975,068	340,627	34.93%
ch8	916,850	320,559	34.96%

다. 유전자 예측 및 기능 분석

- Transcript 서열 정보 및 유사종의 Protein 서열, ab initio 방법을 이용하여, 유전자 예측 수행 결과 KCN26 는 5,857개의 유전자가 예측되었다.

표 15. KCN26 유전체 유전자 예측 결과

	Quantification
Total no. of gene models predicted	6,071
Unique gene models (No.)	5,857
Genes with isoforms (No.)	214
RNA-Seq supported gene model (No.) *	6,052
Average gene length (bp)	1,597bp
Total bases of gene models (Mbp)	9.7Mbp
%Genes in the draft genome	57.81%
No. of CDS	7,505
Average no. of CDS per gene	1.23
Average CDS length (bp)	1,268bp
No. of intron	1434
Average no. of intron per gene	0.23
Average intron length (bp)	128bp
%CDS in the draft genome	56.72%
%Introns in the draft genome	1.10%

- 예측된 유전자는 상동성 검색 방법으로 기능에 대해 예측 수행하였고, 그 결과 KCN26 에 대해 5,673개로 기능이 예측되었다.

표 16. KCN26 유전체 유전자 기능 예측 결과

Genes	Uniprot	NCBI nr	InterProScan	Annotated Transcripts	(%)
5,857	4,573	5,039	5,626	5,673	96.86

- KJJ43 균주의 경우 transcript 서열 정보 및 유사종의 Protein 서열, ab initio 방법을 이용하여, 유전 자 예측 수행 결과 6,115개의 유전자가 예측되었다.

표 17. KJJ43 유전체 유전자 예측 결과

	Quantification
Total no. of gene models predicted	6,418
Unique gene models (No.)	6,115
Genes with isoforms (No.)	303
RNA-Seq supported gene model (No.) *	6,394
Average gene length (bp)	1,426bp
Total bases of gene models (Mbp)	9.15Mbp
%Genes in the draft genome	73.24%
No. of CDS	7,699
Average no. of CDS per gene	1.19
Average CDS length (bp)	1,165bp
No. of intron	1,281
Average no. of intron per gene	0.19
Average intron length (bp)	138bp
%CDS in the draft genome	71.83%
%Introns in the draft genome	1.42%

- 예측된 유전자는 상동성 검색 방법으로 기능에 대해 예측 수행하였고, 그 결과 KJJ43 에 대해 5,953 유전자의 기능이 예측되었다.

표 18. KJJ43 유전체 유전자 기능 예측 결과

Genes	Uniprot	NCBI nr	InterProScan	Annotated Genes	(%)
6,115	4,833	5,868	5,520	5,953	97.35

- 또한, 기능 예측 결과에 대해 Gene ontology(GO)에 대한 GO level 2 분포를 2차 년도 해독된 KJS14와 KCN26, KJJ43 유전자 세트가 확인되었다.

Hyphopichia b. GO:0098772: molecular transducer activity GO:0045725: molecular transducer activity GO:0045725: molecular transducer activity GO:001520: antiovidant activity GO:001520: antiovidant activity GO:001520: activity GO:001520: activity GO:001520: activity GO:001520: activity GO:000471: aignal transducer activity GO:000471: aignal transducer activity GO:000471: aignal transducer activity GO:000471: aignal transducer activity GO:000472: aignal transducer activity GO:000474: aignal transducer activi Hyphopichia burtonii KJJ43 nolecular function component cellular biological process 500 1000 1500 2000 2500

그림 34. KJJ43 유전자 셋에 대한 GO 분포 (level 2)

그림 35. KCN26 유전자 셋에 대한 GO 분포 (level 2)

그리고, 기능 예측 결과에 대해 Gene family (Pfam)을 통하여 유전자 분포를 K. lactis, S. cerevisiae, C. lusitaniae, D. hansenii, H. burtonii KJJ43, H. pseudoburtonii KJS14, S. fibuligera KJ381, S. fibuligera KPH12, S. malanga KCN26, A. oryzae, S.pombe 총 11종에 대해서 비교 분석을 수행하였다.

그림 36. KJS14, KJJ43, KCN26 및 주변 종에 대한 Gene family 조성

라. 반복 서열 분석

- 반복서열을 탐색하기 위해 RepBase 데이터베이스를 이용하는 방법과 de novo 로 반복 서열을 탐색하는 방법을 병합하여 분석한 결과 KCN26 유전체 크기에 비례해 10.14%의 반복염기서열 비율을 보였다.

표	19.	KCN26	유전체	반복	서열	분포
---	-----	-------	-----	----	----	----

		Repbase sea	arch	De novo pre	ediction	Combination	
Repeat type		Length	(%) in	Length	(%) in	Longth (bp)	(%) in
		(bp)	genome	(bp)	genome	Length (bp)	genome
Retrotransposons		37520 bp	0.22%	148842 bp	0.89%	155519 bp	0.93%
	SINEs	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
	LINEs	2129 bp	0.01%	34322 bp	0.20%	35384 bp	0.21%
	LTR elements	35391bp	0.21%	114657 bp	0.68%	120292 bp	0.72%
	Retroposon	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
DNA transposons		1282 bp	0.01%	0 bp	0.00%	1282 bp	0.01%
	DNA	1056 bp	0.01%	0 bp	0.00%	1056 bp	0.01%
	RC	226 bp	0.00%	0 bp	0.00%	226 bp	0.00%
	Other	0 bp	0.00%	0bp	0.00%	0 bp	0.00%
Inserted sequence		0 bp	0.00%	0bp	0.00%	0 bp	0.00%
Segmental duplication		0 bp	0.00%	0 bp	0.00%	0bp	0.00%
Unclassified		112 bp	0.00%	1236482 bp	7.37%	1236594bp	7.37%
Small RNA		17394 bp	0.10%	26717 bp	0.16%	37268bp	0.22%
Satellites		73 bp	0.00%	0 bp	0.00%	73bp	0.00%
Simple repeats		249718 bp	1.49%	223446 bp	1.33%	252978 bp	1.51%
Low complexity		41091 bp	0.24%	37541 bp	0.22%	42037 bp	0.25%
Total		346790 bp	2.07%	1672695 bp	9.97%	1701393 bp	10.14%

- KJJ43 균주의 경우 유전체 크기에 비례해 3.32%의 반복염기서열 비율을 보임

		Repbase se	arch	De novo prediction		Combination	
Repeat type		Length	(%) in	Longth(hp)	(%) in	Length	(%) in
		(bp)	genome	Length(Dp)	genome	(bp)	genome
Retrotransposons		11927 bp	0.10%	0 bp	0.00%	11927 bp	0.10%
	SINEs	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
	LINEs	111 bp	0.00%	0 bp	0.00%	111 bp	0.00%
	LTR elements	11816 bp	0.09%	0 bp	0.00%	11816 bp	0.09%
	Retroposon	0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
DNA transposons		2459 bp	0.02%	0 bp	0.00%	2459 bp	0.02%
	DNA	2318 bp	0.02%	0 bp	0.00%	2318 bp	0.02%
	RC	141 bp	0.00%	0 bp	0.00%	141 bp	0.00%
	Other	0 bp	0.00%	0bp	0.00%	0 bp	0.00%
Inserted sequence		0 bp	0.00%	0bp	0.00%	0 bp	0.00%
Segmental duplication		0 bp	0.00%	0bp	0.00%	0 bp	0.00%
Unclassified		657 bp	0.01%	42169 bp	0.34%	42826 bp	0.34%
Small RNA		53697 bp	0.43%	0bp	0.00%	53697 bp	0.43%
Satellites		0 bp	0.00%	0 bp	0.00%	0 bp	0.00%
Simple repeats		248925 bp	1.99%	244931 bp	1.96%	253811 bp	2.03%
Low complexity		56661 bp	0.45%	55611 bp	0.45%	56810bp	0.45%
Total		373198 bp	2.99%	342580 bp	2.74%	414949bp	3.32%

표 20. KJJ43 유전체 반복 서열 분포

마. 게놈 구조 가시화

- 2차년도 해독을 수행한 KJS14 균주와 해당 연차 해독을 수행한 KCN26, KJJ43 균주에 대해 circos 프로그램을 사용하여 게놈 구조 가시화를 수행하였다.

그림 37. Circular map of KJS14 genome

그림 38. Circular map of KJJ43 genome

그림 39. Circular map of KCN26 genome

- 바. 미토콘드리아 게놈 서열 분석
 - circular 형태로 assembly가 되는 서열에 대해 mitochondria로 예상되는 유전체를 조립하였고, 그 결과 KJS14 43,129 bp, KJJ43 24,614 bp로 확인되었다. 조립된 mitochondria에 대한 기능분석을 위하 여, MFannot를 사용하여 mitochondria의 기능 분석을 수행하였고, 그 결과 15개(KJS14), 16개(KJJ43) 의 protein coding 유전자들이 포함되어 있고, nad5(KJS14), cob(KJS14), cox1(KJS14,KJJ43), atp6(KJS14)의 유전자는 intron 구조를 가지고 있는 것을 확인하였다.

그림 40. KJS14, KJJ43 mitochondria 조립 및 기능 분석 결과

Gene	KJS14	KJJ43	Gene	KJS14	KJJ43
ComplexI			tRNA		
nad1	+	+	trnA(tgc)	+	+
nad2	+	+	trnC(gca)	+	+
nad3	+	+	trnD(gtc)	+	+
nad4	+	+	trnE(ttc)	+	+
nad4L	+	+	trnF(gaa)	+	+
nad5	+*	+	trnG(tcc)	+	+
nad6	+	+	trnH(gtg)	+	+
ComplexIII			trnI(gat)	+	+
cob	+*	+	trnK(ttt)	+	+
ComplexIV			trnL(taa)	+	+
cox1	+*	+*	trnL(tag)	+	+
cox2	+	+	trnM(cat)	+	+
cox3	+	+	trnN(gtt)	+	+
ComplexV			trnP(tgg)	+	+
atp6	+*	+	trnQ(ttg)	+	+
atp8	+	+	trnR(acg)	+	+
atp9	+	+	trnR(tct)	+	+
RibosomalR					
NAs			trn5(gct)	+	+
rns	+	+	trnS(tga)	+	+
OtherORF			trnT(tgt)	+	+
orf113	-	+	trnV(tac)	+	+
			trnW(tca)	+	+
			trnY(gta)	+	+

표 21. KJS14, KJJ43 mitochondria 유전자 조성

+, present; -, absent; *, include intron.

사. 게놈 구조 비교 분석

 KJS14와 KJJ43 유전체는 같은 속 (Hyphopichia)에 해당되기 때문에, 해당 유전체간 유전자의 Orthologous gene cluster를 이용한 비교 분석을 수행하였다. 그 결과, 해당 유전그룹(Orthologous gene cluster)이 KJS14와 KJJ43 유전체에 공여하는 그룹이 5,048개, KJS14의 특이적 그룹은 48, KJJ43의 특이적 그룹은 54개로 확인되어 유전자 조성은 유사한 것으로 확인하였다.

그림 41. KJS14와 KJJ43 Orthologous gene cluster의 venn diagram

- 또한, KJS14와 KJJ43 유전체의 구조 차이를 확인하기 위하여 게놈 구조 비교 분석을 수행하였다.

그 결과, KJS14와 KJJ43 유전체의의 유사도는 85.17% 로 확인하였고, 구조적으로는 보존된 영역들 이 다수 존재하는 것을 확인할 수 있다.

그림 42. KJS14와 KJJ43 유전체 synteny dot plot

아. KJJ43, KJS14 전사체 분석

모든 샘플들의 서열(Reads)들을 각 샘플에 해당하는 종에 대한 참조서열 (KJJ43, KJS14)에 alignment를 진행하였고, 그 결과는 아래의 그림과 같이 모든 샘플들 내에서 입력 데이터 (clean reads라고 함) 대비 90% 이상의 서열이 알려진 유전자에 mapping 되었음을 알 수 있어 RNA 샘플 의 alignment가 양호하게 진행되었음을 확인하였다.

No	Name	No. of clean reads	No. of mapped reads	No. of uniquely mapped reads	No. of reads in splicing site
1	KJJ43_Nacl_Omin_1	28,749,438	27,514,647	5,841,698	81,942
2	KJJ43_Nacl_Omin_2	29,016,930	27,833,430	4,914,725	60,196
3	KJJ43_Nacl_5min_1	28,140,796	26,827,261	12,655,513	177,576
4	KJJ43_Nacl_5min_2	22,620,184	21,646,059	10,803,580	162,645
5	KJJ43_Nacl_15min_1	26,478,784	24,249,565	8,454,959	109,221
6	KJJ43_Nacl_15min_2	26,265,166	25,001,022	9,638,436	137,633
7	KJJ43_Nacl_30min_1	25,653,972	24,597,640	7,535,575	108,205
8	KJJ43_Nacl_30min_2	26,276,578	25,297,810	10,420,154	147,130

그림 43. Alignment statistics of KJJ43

No	Name	No. of clean reads	No. of mapped reads	No. of uniquely mapped reads	No. of reads in splicing site
1	KJS14_Nacl_Omin_1	26,962,376	25,850,448	3,717,463	80,948
2	KJS14_Nacl_Omin_2	22,921,582	22,059,695	4,542,921	87,884
3	KJS14_Nacl_5min_1	22,806,346	21,980,704	2,677,501	44,471
4	KJS14_Nacl_5min_2	23,695,226	22,875,719	2,416,522	29,290
5	KJS14_Nacl_15min_1	27,168,078	25,890,760	2,435,279	20,026
6	KJS14_Nacl_15min_2	25,654,438	24,556,475	3,703,654	50,488
7	KJS14_Nacl_30min_1	24,387,020	23,431,939	2,319,687	33,734
8	KJS14_Nacl_30min_2	25,401,356	24,188,313	2,875,908	31,599

그림 44. Alignment statistics of KJS14

- 각 서열들의 유전자 coverage는 각 샘플에서 발현된 transcript가 유전자를 얼마나 커버하는지에 따 라 mRNA의 degradation 정도를 보여주는 자료이기 때문에, RNA-Seq에서 중요한 기초 통계자료로 활용된다.

자. Genome & genes coverage

- 아래 그림은 유전자의 coverage 분석 결과를 도식화한 것이며, 90 ~ 100% (0.90, 1.00 구간 파란색 영역) 정도 커버되는 유전자가 90% 이상 되었음을 확인하였음
- 이 분석 결과를 바탕으로 모든 샘플에 대한 유전자 coverage가 잘 형성되었고, RNA의 추출 및 sequencing이 잘 진행되었음을 알 수 있었음

그림 45. Genome/genes coverage of KJJ43

KJJ43_Nacl_Omin_1 (TN1805R3563--ACTTGAAT)

KJJ43_Nacl_Omin_2 (TN1805R3564--GATCAGAT)

KJJ43_Nacl_5min_1 (TN1805R3565--TAGCTTAT)

KJJ43_Nacl_5min_2 (TN1805R3566--GGCTACAT)

KJS14_Nacl_0min_1 (TN1806R0594--GGCTACAT)

KJS14_Nacl_Omin_2 (TN1806R0595--CTTGTAAT)

KJS14_Nacl_5min_1 (TN1806R0596--AGTCAACA)

KJS14_Nacl_5min_2 (TN1806R0597--AGTTCCGT)

KJJ43_Nacl_15min_2 (TN1805R3568--AGTCAACA)

KJJ43_Nacl_30min_1 (TN1805R3569--AGTTCCGT)

KJJ43_Nacl_30min_2 (TN1805R3570--ATGTCAGA)

KJS14_Nacl_15min_1 (TN1806R0598--ATGTCAGA)

KJS14_Nacl_15min_2 (TN1806R0599--CCGTCCCG)

KJS14_Nacl_30min_1 (TN1806R0600--GTCCGCAC)

KJS14_Nacl_30min_2 (TN1806R0601--GTGAAACG)

그림 47. Genes coverage of KJJ43

차. 유전자 발현양 측정

- 샘플들 사이의 유전자 발현 경향에 대한 유사성 정도(Correlation)에 대한 정보이며, 이는 Expression값 (FPKM)을 통해 계산하였다.

17E	KJJ43_Nacl_0min_1 (TN1805R3563 ACTTGAAT)	KJJ43_Nacl_0min_2 (TN1805R3564 GATCAGAT)	KJJ43_Nacl_5min_1 (TN1805R3565+-TAGCTTAT)	KJJ43_Nacl_5min_2 (TN1805R3566 GGCTACAT)	KJJ43_Nacl_15min_1 (TN1805R3567CTTGTAAT)	KJJ43_Nacl_15min_2 (TN1805R3568AGTCAACA)	KJJ43_Nacl_30min_1 (TN1805R8569+-AGTTCCGT)	KJJ43_Nacl_30min_2 (TN1805R3570ATGTCAGA)
KJJ43_Nacl_0min_1	KJJ43_Nacl_0min_1	0.953 0.956 5,841	0.882 0.899 5.872	0.882 0.892 5.851	0.877 0.911 5.859	0.829 0.860 5,844	0.736 0.836 5.824	0.776 0.847 5.853
KJJ43_Nacl_0min_2	0.953 0.956 5,841	KJJ43_Nacl_0min_2	0.932 0.925 5.882	0.920 0.924 5.859	0.878 0.908 5.868	0.874 0.896 5,850	0.763 0.836 5.833	0.771 0.843 5.861
KJJ43_Nacl_5min_1	0.882 0.899 5,872	0.932 0.925 5.882	KJJ43_Nacl_5min_1	0.994 0.989 5.945	0.860 0.926 5.941	0.906 0.945 5.936	0.746 0.852 5.905	0.759 0.860 5,930
KJJ43_Nacl_5min_2	0.882 0.892 5.851	0.920 0.924 5.859	0.994 0.989 5.945	KJJ43_Nacl_5min_2	0.850 0.919 5.916	0.911 0.947 5.924	0.753 0.851 5.892	0.739 0.858 5.910
KJJ43_Nacl_15min_1	0.877 0.911 5,859	0.878 0.908 5.868	0.860 0.926 5.941	0.850 0.919 5,916	KJJ43_Nacl_15min_1	0 944 0 963 5,938	0.877 0.927 5.921	0.898 0.939 5.944
KJJ43_Nacl_15min_2	0.829 0.860 5,844	0.874 0.896 5.850	0.906 0.945 5,936	0.911 0.947 5.924	0.944 0.963 5.938	KJJ43_Nacl_15min_2	0.850 0.913 5.906	0.838 0.917 5.928
KJJ43_Nacl_30min_1	0.736 0.836 5.824	0.763 0.836 5.833	0.746 0.852 5,905	0.753 0.851 5,892	0.877 0.927 5,921	0.850 0.913 5,906	KJJ43_Nacl_30min_1	0.977 0.983 5.930
KJJ43_Nacl_30min_2	0.776 0.847 5,853	0.771 0.843 5,861	0.759 0.860 5.930	0.739 0.858 5.910	0.898 0.939 5.944	0.838 0.917 5.928	0 977 0 983 5 930	KJJ43_Nacl_30min_2

그림 48. Pearson correlation of KJJ43

	KJS14_Nacl_0min_1 (TN1806R0594 GGCTACAT)	KJS14_Nacl_0min_2 (TN180680595CTTGTAAT)	KJS14_Nacl_5min_1 (TN1806R0596 AGTCAACA)	KJS14_Nacl_5min_2 (TN1806R0597AGTTCCGT)	KJS14_Nacl_15min_1 (TN1806R0598ATGTCAGA)	KJS14_Nacl_15min_2 (TN1806R0599CCGTCCCG)	KJS14_Nacl_30min_1 (TN1806R0500GTCCGCAC)	KJS14_Nacl_30min_2 (TN1806R0601GTGAAACG)
KJS14_Nacl_0min_1	KJS14_Nacl_0min_1	0.997 0.980 5,513	0.879 0.908 5,473	0.862 0.899 5.378	0.852 0.865 5.353	0.871 0.888 5,479	0.808 0.824 5.504	0.801 0.820 5.510
KJS14_Nacl_Omin_2	0.997 0.980 5.513	KJS14_Nacl_Omin_2	0.879 0.906 5.476	0.855 0.901 5.390	0.841 0.859 5.351	0.873 0.887 5,489	0.800 0.822 5,517	0.791 0.819 5.516
KJS14_Nacl_5min_1	0.879 0.908 5,473	0.879 0.906 5,476	KJ\$14_Nacl_5min_1	0.957 0.948 5.377	0.928 0.913 5,339	0.947 0.923 5,479	0.816 0.828 5,484	0.812 0.830 5,490
KJS14_Nacl_5min_2	0 862 0 899 5,378	0.855 0.901 5,390	0.957 0.948 5.377	KJS14_Nacl_5min_2	0.930 0.903 5.281	0.912 0.905 5,378	0.781 0.808 5.399	0.782 0.803 5,396
KJS14_Nacl_15min_1	0 852 0 865 5,353	0.841 0.859 5,351	0 928 0 913 5,339	0 930 0 903 5 281	KJS14_Nacl_15min_1	0.964 0.938 5.358	0.872 0.876 5,387	0.871 0.871 5,379
KJS14_Nacl_15min_2	0.871 0.888 5,479	0.873 0.887 5,489	0 947 0 923 5,479	0.912 0.905 5,378	0.964 0.938 5,358	KJS14_Nacl_15min_2	0.899 0.910 5,512	0.895 0.908 5.519
KJS14_Nacl_30min_1	0.808 0.824 5.504	0.800 0.822 5,517	0.816 0.828 5.484	0.781 0.808 5.399	0.872 0.876 5.387	0.899 0.910 5.512	KJS14_Nacl_30min_1	0.991 0.962 5.576
KJS14_Nacl_30min_2	0.801 0.820 5,510	0.791 0.819 5,516	0.812 0.830 5.490	0.782 0.803 5,396	0.871 0.871 5,379	0.895 0.908 5.519	0.991 0.962 5,576	KJ\$14_Nacl_30min_2

그림 49. Pearson correlation of KJS14

- 생산된 RNA-seq 샘플들의 유전자별 발현양을 확인할 수 있었다. 아래 표는 종별 (KJJ43, KJS14) 참조 서열의 유전자 세트 (gene set)의 총 개수와 그 중 샘플별 발현된 유전자 수를 나타냄.

No	Name	No. of total games	No. of expressed	No. of unexpressed
140	Ivanie	ive. of total genes	genes	genes
1	KJJ43_Nacl_Omin_1	6,096	5,945	151
2	KJJ43_Nacl_Omin_2	6,096	5,955	141
3	KJJ43_Nacl_5min_1	6,096	6,043	53
4	KJJ43_Nacl_5min_2	6,096	6,041	55
5	KJJ43_Nacl_15min_1	6,096	6,052	44
6	KJJ43_Nacl_15min_2	6,096	6,061	35
7	KJJ43_Nacl_30min_1	6,096	6,024	72
8	KJJ43_Nacl_30min_2	6,096	6,048	48

그림 50. Expression statistics of KJJ43

No	Name	No. of total genes	No. of expressed genes	No. of unexpressed genes
1	KJS14_Nacl_Omin_1	5,851	5,851 5,676	
2	KJS14_Nacl_Omin_2	5,851	5,688	163
3	KJS14_Nacl_5min_1	5,851	5,635	216
4	KJS14_Nacl_5min_2	5,851	5,528	323
5	KJS14_Nacl_15min_1	5,851	5,503	348
6	KJS14_Nacl_15min_2	5,851	5,660	191
7	KJS14_Nacl_30min_1	5,851	5,712	139
8	KJS14_Nacl_30min_2	5,851	5,711	140

그림 51. Expression statistics of KJS14

카. KJJ43 종에서의 DEGs (Differentially expressed genes) 선정

- RNA-seq 분석을 통해 샘플별로 나온 발현양을 이용하여 각 샘플들의 발현양 차이를 유전자별로 파 악하였다. DEGs 선정 기준은 "p-value 0.05 이하 & FC 11.51 이상"을 적용하였다. - 참고로, 아래 MA plot에서 X축은 average, Y축은 log ratios를 나타내며, gene expression data의 normalization 정도를 나타내었다.

DEG set 1	up	down	total
KJJ43_Nacl_0min_1,KJJ43_Nacl_0min_2		22/	
VS	1,067	986	2,053
KJJ43_Nacl_5min_1,KJJ43_Nacl_5min_2			

- DEG set 1 - KJJ43_Nacl_Omin_1,KJJ43_Nacl_Omin_2 vs KJJ43_Nacl_5min_1,KJJ43_Nacl_5min_2

- DEG set 2 - KJJ43_Nacl_Omin_1,KJJ43_Nacl_Omin_2 vs KJJ43_Nacl_15min_1,KJJ43_Nacl_15min_2

DEG set 2	up	down	total
KJJ43_Nacl_0min_1,KJJ43_Nacl_0min_2	041	766	1.607
vs KJJ43_Nacl_15min_1,KJJ43_Nacl_15min_2	041	700	1,607

- 122 -

- DEG set 3 - KJJ43_Nacl_Omin_1,KJJ43_Nacl_Omin_2 vs KJJ43_Nacl_30min_1,KJJ43_Nacl_30min_2

카. KJS14 중에서의 DEGs (Differentially expressed genes) 선정

- DEG set 1 - KJS14_Nacl_C	0min_1,KJS14_Nacl_0min_2 vs	s KJS14_Nacl_5min_1,KJS14_Nacl_5m	iin_2
----------------------------	-----------------------------	-----------------------------------	-------

up	down	total
400	(01	1 1 171
490	681	1,171
	<u>up</u> 490	490 681

DEG set 2	up	down	total
KJS14_Nacl_0min_1,KJS14_Nacl_0min_2 vs KJS14_Nacl_15min_1,KJS14_Nacl_15min_2	642	847	1,489

- DEG set 3 - KJS14_Nacl_Omin_1,KJS14_Nacl_Omin_2 vs KJS14_Nacl_30min_1,KJS14_Nacl_30min_2

DEG set 3	up	down	total
KJS14_Nacl_0min_1,KJS14_Nacl_0min_2 vs KJS14_Nacl_30min_1,KJS14_Nacl_30min_2	1,290	1,248	2,538

MA plot (KJS14_Nacl_0min_1,KJS14_Nacl_0min_2 vs KJS14_Nacl_30min_1,KJS14_Nacl_30min_2

□ 1 협동: 한국 전통주류 사상성 진균의 참조유전체 및 오믹 스 분석 연구

1절. 전통주 당화·발효 미생물 (사상성 진균, 효모) 유전자원 수집, DB 구축 및 보존

 국내 및 해외 전통주 당화·발효 미생물 유전자원 수집 분리·동정·보존 및 DB 구축

가. 누룩시료 수집

- 2014년도 남부지역 누룩 수집

2014년도 우리나라에서 막걸리 제조를 위하여 상업적으로 판매하고 있는 누룩과 지역에서 소규모로 생산, 판매하는 누룩, 그리고 가양주를 담기 위해 개인이 제조하여 사용하는 누룩 등을 제주(6개), 부산(4개), 경남(2개), 전남(3개) 지역에서 2014년 10월 ~ 2015년 2월까지 가 을, 겨울 기간 동안 총 15개를 수집하였다 (표1). 누룩제조시기가 지방 또는 개인 별로 다 르기는 하나 대부분 8월~11월 사이 제조하여 건조 후 사용하고 있어서 수집 시기를 10월부 터 다음 해 2월까지로 정하였다. 2014년 수집한 누룩시료는 2013년에 확보한 누룩 및 균주 의 분포도를 분석하여 참고하였고 누룩을 가장 많이 생산, 공급하고 있는 4대 곡자 중심의 누룩(CN, commercial nuruk)과 개인제조 누룩(LN, home-made nuruk)으로 구분하여 수집하 여 분리되는 균 분포도의 차이점이 있는지를 조사하였다. 또한 국내 4대 곡자(누룩제조사) 중 생산을 가장 많이 하고 있는 지방의 한 곡자에서는 수입밀(미국산)과 국내산밀(남부지 역)로 원료를 달리한 판매 누룩을 수집하여 균분포도를 조사하였으며 4대 주요 곡자들에서 년도별 균분포도의 차이점을 조사하였다.

시료명	수집 일자	제조 원료	비고
CN112*	2015.01.	-	시판 막걸리 제조 누룩
CN123	2015.01.	수입밀(미국)	순천 막걸리업체에서 사용
CN131	2015.01.	국산밀	-
CN132	2015.01.	수입밀(미국)	_
CN152	2014.12	旦	송명섭 명인 제조 (한식연 수집)
CN261	2015.01.	보리	제주 로컬기업 제공
CN262	2015.01.	수입밀(미국)	구입, 안동지역 제조
CN263	2014.10.	-	제주지역 시판 막걸리 생산 누룩
LNBS1**	2015.01.	쌀	분말상태 저장
LNBS2	2015.01.	쌀	분말상태 저장
LNBS3	2015.01.	쌀	찐 홍삼 첨가하여 제조
LNJJ12	2014.10.	-	누룩 첨가된 발효 중 액체시료
LNJJ13	2014.10.	-	좁쌀막걸리 만드는 누룩
LNJJ14	2014.11	보리	누룩 전체와 붉은 부분 나눠서 균분리
LNJJ15	2015.01.	보리	지역 전통 방식 제조

표1. 2014년도 우리나라에서 수집한 누룩 시료 목록

* CN : Commercial nuruk, ** LN : Home-made nuruk / - : 원료 미확인

(2) 2015년도 경기도 수원지역의 개인 발효 연구소의 전통기법으로 빚은 누룩 수집 2014년 궁중 술 빚기 대회에서 대상 (농림식품부 장관상)을 받은 전통주 연구가로 다양한 재료를 이용하여 내부비전곡이나 이화곡과 같이 고서의 제조법을 기본으로 하여 누룩 및 전통주를 빚으며, 발효를 기본으로 한 교육프로그램 (누룩교실/ 전통주 교실 / 천연발효 식 초 교실 등)을 운영하고 있는 수원 소재의 개인 발효 연구소에서 2015년 7월에 누룩 11개 를 수집하였다 (표2). [참고: 개인 연구소들은 직접 빚은 누룩의 균분포도나 양조 특성을 조 사하고 싶어도 개인이 직접 분석하기에는 한계가 있으므로 본 연구진에 시료를 제공하고 분석 후 정보를 제공해 주길 원하거나 협력체계를 구축하고 싶어 하는 경우도 있다.]

시료명	수집일자	재료	시료 특징	비고
LNSW01	2015.07.27	밀가루 718g, 기장 281g, 녹두 156g, 생강즙	생강즙으로 만든 내부비전곡	
LNSW02	2015.07.27	밀가루 718g, 기장 281g, 녹두 156g, 물	내부비전곡1(물사용)	
LNSW03	2015.07.27	멥쌀, 녹두끕	이화곡(녹두끕 이용)	
LNSW04	2015.07.27	녹두(1),찹쌀가루(0.5),물	백수환동곡	
LNSW05	2015.07.27	밀가루(50%), 멥쌀 쌀가루(50%), 물	누룩	
LNSW06	2015.07.27	밀가루, 기장, 녹두	내부비전곡2(물)	
LNSW07	2015.07.27	멥쌀가루, 물	미곡	
LNSW08	2015.07.27	통밀, 물	조곡	
LNSW09	2015.07.27	통밀, 생강즙	정화곡	
LNSW10	2015.07.27	통밀, 녹두즙	향온곡	
LNSW11	2015.07.27	통밀, 찹쌀죽	죽곡	

표2. 고서의 전통기법으로 빚은 누룩 시료 목록

(3) 2015년도 대구 지역의 무형문화재 기능 보유자가 전통기법으로 빚은 누룩 수집 대구 달성군 유가면의 박씨 종가집에서 가양주로 전승되어오는 술인 하향주(술에서 연꽃 향기가 난다고 하여 붙여진 이름)는 무형문화재 기능 보유자가 전통기법으로 누룩을 만 들고 전통주를 빚는다. 누룩 내부의 균사가 붉은색과 흰색을 띄는 두가지 누룩으로부터 유용한 미생물을 분리 동정하기 위하여 2015년 10월에 수집하였다. 아래 그림 1은 대구 에서 수집한 누룩의 전면과 단면의 모습이다.

b)

a)

그림 1. 대구에서 수집한 하향주 누룩. a) 시료 전면 b) 시료 단면

(4) 동남아시아 지역 베트남의 발효제인 반멘 (Banh men) 수집

우리나라와 기후가 비슷한 동남아시아의 베트남에서 발효제로 사용되는 Banh men을 수집 하였다. 그림 2과 같이 남북으로 긴 지형인 베트남은 하노이 중심의 북쪽은 한국과 같이 4 개절이 있으며, 호치민 중심의 남쪽은 열대성 기후이다.

그림 2. 베트남 내에 Banh men 수집 지역

2016년 3월 베트남 현지에 지인을 통하여 상품화 되어 있는 Banh men (8)과 개인이 제조 한 Banh men(3)을 7 지역에서 11개를 수집하였다 (그림 3). 동시에 Banh men의 주요 재료 나 시료 특징, 제조방법을 조사하려 하였으나 제품에 기재되어 있지 않아 조사에 어려움이 있었다.

그림 3. 베트남에서 수집한 Banh men

(5) 농업유용 진핵미생물 자원의 수집, 보존, DB 구축을 위한 기타 생물자원 확보

우리나라의 누록에서 분리, 동정된 보다 많은 누룩 진균미생물 유전자원 확보를 위하여 서울대 진균독소학연구실로부터 2003년~2008년, 2013년도에 수집한 누룩시료로부터 분리한 사상성 진균 및 효모균들을 확보하였으며 확보된 glycerol stock 균주들은 PDA 고형배지에 서 재배양하여 오염 유무를 확인하였고 제공받은 목록의 종과의 -70℃에 20% glycerol stock으로 전달받아 PDA고체배지에서 생장여부 및 동정되어 있는 종(species)을 확인하였 다. 또한 우린라 누룩 유래 유용 미생물 자원의 분포도를 조사하였고 참조 유전체 균주를 건발하기 위한 대상 균주를 선발하는 자원 pool로 활용하였다.

나. 누룩시료로부터 미생물 (사상성 진균, 효모) 분리 및 동정

(1) 시료로부터 진핵 미생물 분리

수집한 누룩시료를 분쇄하여 10 g을 취하고 90 ml의 0.1% peptone 용액에 현탁하고 잘 혼 합한 후 10⁻¹ 찍 순차적으로 10⁻⁷배까지 희석하였으며 각 희석 현탁액은 100 µl씩 취하여 진균의 선택배지인 Dichloran-glycerol agar 배지 (DG18 ; Peptone 0.5%, Glucose 1%, KH₂PO₄ 0.1%, MgSO₄7H₂O 0.05%, 0.2% Dichloran 1.0 ml, Chloramphenicol 0.01%, Agar 1.5%)배지와 Dichloran rose bengal chloramphenicol agar (DRBC배지 ; Peptone 0.5%, Glucose 1%, KH₂PO₄ 0.1%, MgSO₄7H₂O 0.05%, 0.2% Dichloran 1.0 ml, Rose bengal 0.0025%, Chloramphenicol 0.01%, Agar 1.5%)고체평판 배지에 도말하고, 25℃에서 5일간 배 양하여 관찰되는 진균의 콜로니 모양, 색깔을 해부현미경 (Stemi DV4, Carl Ziess, Jena, Germany) 하에서 관찰하고 구분한 그룹 별로 평판배지에 자란 콜로니 개수를 세어 Colony forming unit (CFU)을 정하였다 (그림 4). 이후 각 그룹에서 3-5개의 진균(colocy)을 단일 분리하여 Potato Dextrose agar (PDA : Potato starch 0.4%, Dextrose 2%, Agar 2%) 고 형배지에 streaking 방법과 point inoculation 방법으로 3회 반복 접종 및 계대 배양하여 단 일 균주(single colony) 로 분리하였으며 단일균주로 확인된 사상성 진균 및 효모 균주들은 모두 20% glycerol stock을 만들어 -70℃ deep freezer에 보관하였다.

그림 4. 누룩으로부터 진핵미생물 단일 균주 분리 과정

(2) 진행 미생물 (사상성 진균 및 효모)의 분자생물학적 동정

단일균주로 분리한 각 사상성 진균과 효모 균주들을 PDA고형배지에서 25℃, 5일간 배양하 여 자라난 공중 균사를 포함한 약 2mm 크기의 agar block을 접종원으로 CM [Complete medium ; Yeast extract 1g, sucrose 30g, peptone 2.5g, NaNO₃ 2g, KH₂PO₄ 1g, MgSO₄ 7H₂O 0.5g, KCl 0.5g, trace element Solution¹⁾ 0.2mL, Vitamine stock²⁾ 10mL / Distilled water 1L] 액체배지 5 ml에 접종하여 25℃, 180rpm, 3-5 일간 배양하였다. 액체배지에서 자란 각 균주 의 균사체를 Advantec No. 2 종이필터로 여과하여 액체배지를 완전히 제거하고 microcentrifuge tube에 넣어 -120℃, 24시간 동결 건조 후 마쇄하고 CTAB 방법^{*} (Leslie et al., 2006) 으로 genomic DNA (gDNA)를 추출하였다.

 $^{1)}$ Trace Element solution : Citric acid 5g, $ZnSO_4\cdot 6H_2O$ 5g, $Fe(NH_4)_2(SO_4)_2\cdot 6H_2O$ 1g, $CuSO_4\cdot 5H_2O$ 250mg, MnSO_4 50mg, H_3BO_3 50mg, $Na_2MoO_4\cdot 2H_2O$ 50mg /Distilled water 100mL)

²⁾ Vitamine stock solution :B1 (thiamine) 100mg, B2 (riboflavin) 30mg, B3 (nicotinamide) 75mg, B5 (Ca pantothenate) 200mg, B6 (pyridoxine) 75mg, C (ascorbic acid) 50mg, p-aminobenzoic acid 5mg, Choline 200mg, Folic acid 5mg, Biotin 5mg, m-inositol 4g /50% ethanol 1L)

* CTAB (Cetyl Trimethyl Ammonium Bromide) gDNA 추출방법 : (1) 각 tube에 100mg의 분 쇄된 균사가루를 담고 65°C, 15분간 예열한 CTAB buffer[CTAB:2-Mercaptoethanol solution (100:1,v/v)]를 각 tube에 700 μl를 첨가하고 혼합한 후, 65°C heatblock에서 10분간 정치 (2) 후, 65°C heat block에서 20분간 재반응 (3) 각 voltexing하여 혼합 tube에 CHCl₃-Isoamylalcohol(24:1,v/v) 400 μl 첨가한 후 혼합하여 2층으로 분리가 되면 2~3분간 부 드럽게 혼합한 후, 4°C에서 13,000rpm 10분간 원심분리하여 상등액 500 μ를 새 tube에 옮 김 (4) 2-Propanol 500 μ를 첨가하고 부드럽게 혼합하여 상온에서 5분간 반응시킨 후 10,000rpm에서 5분간 원심분리 (5) 상등액은 버리고 pellet을 약 15분간 건조하고 TE buffer 600 ᡅ에 재현탁하여 lul of RNase A (10 mg/ml)를 첨가, 37° C에서 30분간 반응시킴 (6) PCI solution (Phenol: CHCl3:Isoamvlalcohol.25:24:1.v/v/v) 300 ul 첨가하고 2분가 부드럽게 혼함 후 13,000rpm, 5분간 원심분리 (7) 상등액 500 μl를 새 tube에 옮긴 후, 3M Sodium acetate 50 μ를 첨가하여 부드럽게 혼합 (8) 500 μ의 2-Propanol을 첨가하고 부드럽게 혼합, 상온에 서 5분간 반응 후, 10,000rpm, 5분간 원심분리 (9) 상등액을 완전히 제거한 후, 1mL 70% ethanol로 washing후 상등액을 버리고 10~15분간 건조 (10) pellet을 TE buffer (pH 8.0) 50 ॥에 녹여 -20°C에 보관하고 PCR 증폭 시 template로 사용

사상성 진균 및 효모균의 분자생물학적 동정을 위하여 추출한 각 균주의 gDNA를 template DNA로하고 아래 그림 5과 같이 rRNA 유전자의 5.8S 포함하는 Internal transcribed space (ITS) 지역의 DNA 시퀀스를 universal primer pair인 ITS1과 ITS4를 primer [(주)네오프로브 합성]로 사용하여 증폭하였다. 효모의 경우 D1/D2 domain 지역의 DNA 시퀀스를 universal primer pair인 NL1과 NL4를 primer를 사용하여 동시에 증폭한 후 확인하였다.

그림 5. 진핵 미생물 동정을 위해 사용된 ITS1과 ITS4 primer 위치 및 PCR 증폭 지역

PCR 기기는 TP350 Takara thermal cycler (Takara, Japan)을 사용하였으며 PCR mixture (Takara, Japan)는 2.5U Ex tag polymerase, 각 2.5mM dNTP, 1x Ex tag buffer, 각 10pmol primer에 약 20ng의 gDNA template를 혼합하였으며 PCR 조건은 initial denaturation 단계 로 94℃에서 2분간, 이후 [94℃, 30초 → 55℃, 30초 → 72℃, 1 min]을 35 cycles 돌리고 마 지막 extension [72℃, 10 min] stop으로 rDNA region을 증폭하였다. PCR product는 gel electrophoresis [FastGene® FAS Digi (Pentax MX-1) Imaging System (Cat.GP05LED)]상에서 약 700 bp 내외의 DNA fragment크기로 증폭됨을 확인한 후 염기서열 해독을 위해 QIAquick PCR purification kit (QIAGEN)를 이용하여 정제하였다. 정제된 각 균주의 증폭된 5.8S rDNA region을 해독하기 위해 (주)마크로젠에 서비스를 의뢰하였고 염기서열 결과를 미국 NCBI의 GenBank에 등록되어 있는 진균류의 ITS region과 비교하여 (http://www.ncbi.nlm.nih.gov/BLAST) 가장 높은 확률(97% 이상)로 match되는 균으로 동정하 였다.

(3) 진핵 미생물의 형태학적, 생리학적 동정

진핵 미생물의 동정은 표에서 보는 바와 같이 ITS1-ITS4를 활용하여 1차적으로 동정하였으며, 사상성 진균의 경우, 형태학적 동정을 위해 아래 표에 제시한 여러 가지 고체배지와 액체배지에서 자라나는 모양과 색깔, 온도에 대한 반응 등을 조사하였고, 배율 400배, 1000 배의 현미경(Primo Star FOV18, Carl Ziess, Jena, Germany) 하에서 포자모양, 균사 생장의 특징 등을 조사하였다. 또한 *Aspergillus* spp. 중 형태학적으로 매우 유사한 주요 누룩 균종 인 *A. oryzae*와 *A. flavus* 에 대하여서는 표준균주(KCTC로부터 구입)와 비교하여 고체배지 에서의 형태학적 관찰, 생리적 특성을 조사하였다 (표3).

표3. 누룩 미생물의 형태학적, 생리적 특성 조사를 위해 사용한 배지 종류

Media	Liquid Ingredients per Liter	Solid Ingredients per Liter
Complet e media (CM)	1g yeast extract (BD Sparks, MD)	Liquid ingredients + 2% agar (Duksan, Korea)
、 ,	30g sucrose (Duksan, Korea)	
	2.5g peptone (Duchefa, Netherlands)	
	2g NaNO3 (Samchun, Korea)	
	1g KH2PO4 (Samchun, Korea)	
	0.5g MgSO47H2O (Samchun, Korea)	
	0.5gKCl (Samchun, Korea)	
	24g Potato Dextrose Broth (BD	Liquid ingredients + 2% agar (Duksan,
	Sparks, MD)	Korea)
MEB/MEA	5% Malt Extract (Duchefa,	Liquid ingredients + 2% agar (Duksan,
	Netherlands)	Korea)
YPD	Sug reast extract peptone dextrose	Liquid ingredients + 2% agar (Duksan,
	(BD Sparks, MD)	Korea)
DRBC		col (BDSparks,MD)
DG18		Dichloran Glycerol (Merck, Darcstadt,
DG18		Dichloran Glycerol (Merck, Darcstadt, Germany)
DG18 Minimal Media (MM)	2g Yeast Extract (Samchun, Korea)	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea)
DG18 Minimal Media (MM)	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea)	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea)
DG18 Minimal Media (MM)	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea) 0.5g MgSO47H2O (Samchun, Korea)	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea)
DG18 Minimal Media (MM)	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea) 0.5g MgSO47H2O (Samchun, Korea) 0.5gKCl (Samchun, Korea)	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea)
DG18 Minimal Media (MM)	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea) 0.5g MgSO47H2O (Samchun, Korea) 0.5gKCl (Samchun, Korea) 30g sucrose (Duksan, Korea)	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea)
DG18 Minimal Media (MM)	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea) 0.5g MgSO47H2O (Samchun, Korea) 0.5gKCl (Samchun, Korea) 30g sucrose (Duksan, Korea) Minimal media with 2%	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan,
DG18 Minimal Media (MM)	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea) 0.5g MgSO47H2O (Samchun, Korea) 0.5gKCl (Samchun, Korea) 30g sucrose (Duksan, Korea) Minimal media with 2% NH4Cl(Samchun, Korea)	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea)
DG18 Minimal Media (MM)	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea) 0.5g MgSO47H2O (Samchun, Korea) 0.5gKCl (Samchun, Korea) 30g sucrose (Duksan, Korea) Minimal media with 2% NH4Cl(Samchun, Korea) Minimal media with 2%	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan,
DG18 Minimal Media (MM) MMAm	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea) 0.5g MgSO47H2O (Samchun, Korea) 0.5gKCl (Samchun, Korea) 30g sucrose (Duksan, Korea) Minimal media with 2% NH4Cl(Samchun, Korea) Minimal media with 2% NO3(Samchun, Korea)	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea)
DG18 Minimal Media (MM) MMAm MMAm	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea) 0.5g MgSO47H2O (Samchun, Korea) 0.5gKCl (Samchun, Korea) 30g sucrose (Duksan, Korea) 30g sucrose (Duksan, Korea) Minimal media with 2% NH4Cl(Samchun, Korea) Minimal media with 2% yeast extract	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan,
DG18 Minimal Media (MM) MMAm MMAm MMNO ₃	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea) 0.5g MgSO47H2O (Samchun, Korea) 0.5gKCl (Samchun, Korea) 30g sucrose (Duksan, Korea) Minimal media with 2% NH4Cl(Samchun, Korea) Minimal media with 2% NO3(Samchun, Korea) Minimal media with 2% yeast extract (BD Sparks, MD)	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea)
DG18 Minimal Media (MM) MMAm MMAm MMNO ₃ MMYE Glucose	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea) 0.5g MgSO47H2O (Samchun, Korea) 0.5gKCl (Samchun, Korea) 30g sucrose (Duksan, Korea) 30g sucrose (Duksan, Korea) Minimal media with 2% NH4Cl(Samchun, Korea) Minimal media with 2% NO3(Samchun, Korea) Minimal media with 2% yeast extract (BD Sparks, MD) Minimal media with 0.1% glucose	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan,
DG18 Minimal Media (MM) MMAm MMAm MMNO ₃ MMYE Glucose 0.1%	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea) 0.5g MgSO47H2O (Samchun, Korea) 0.5gKCl (Samchun, Korea) 30g sucrose (Duksan, Korea) 30g sucrose (Duksan, Korea) Minimal media with 2% NH4Cl(Samchun, Korea) Minimal media with 2% NO3(Samchun, Korea) Minimal media with 2% yeast extract (BD Sparks, MD) Minimal media with 0.1% glucose (Duksan, Korea)	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea)
DG18 Minimal Media (MM) MMAm MMAm MMNO ₃ MMYE Glucose 0.1% Glucose	2g Yeast Extract (Samchun, Korea) 1g KH2PO4 (Samchun, Korea) 0.5g MgSO47H2O (Samchun, Korea) 0.5gKCl (Samchun, Korea) 30g sucrose (Duksan, Korea) Minimal media with 2% NH4Cl(Samchun, Korea) Minimal media with 2% NO3(Samchun, Korea) Minimal media with 2% yeast extract (BD Sparks, MD) Minimal media with 0.1% glucose (Duksan, Korea)	Dichloran Glycerol (Merck, Darcstadt, Germany) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea) Liquid ingredients + 2% agar (Duksan, Korea)

다. 누룩 유래 당화·발효 미생물 (사상성 진균, 효모) 분리·동정 및 분포도 조사 (1) 2014년도 남부지역 누룩 수집

(가) 누룩 유래 당화·발효 미생물 (사상성 진균, 효모) 분리, 동정 및 분포도 조사 결과
① 상품화 누룩(4대곡자 누룩 포함)에서의 진핵 미생물 분리 및 동정결과

부산, 순천, 진주, 광주, 제주 지역의 8가지 누룩으로 상업적으로 판매되는 누룩에서 64개 체의 단일균주를 분리하였으며 각 누룩의 단일균주 구성 비율은 다음 그림6과 표4와 같이 조사되었다. 각 시료별 특징과 분리, 동정된 균주의 특징들 기술하면 다음과 같다.

그림 6. 각 지역의 상품화되어 있는 누룩에서 분리한 균주 분포도

⑦ CN112 (부산지역 시판 막걸리 제조에 쓰이는 누룩)

부산지역의 시장에서 손쉽게 구할 수 있는 누룩으로 효모균류인 Saccharomycopsis fibuligera (Sm. fibuligera) 가 89%, Lichtheimia corymbifera 가 9%로 분포하였다.

① CN123 (전남 광주지역)

우리나라 4대 곡자로 알려져 있는 누룩제조사에서 만든 누룩으로 Saccharomycopsis spp.과 Pichia spp.로 yeast가 89% 분리, 동정되었으며 사상성 진균류 중에서는 접합균 류 (Zygomycetes)로 유럽, 미국 등지에서 사람의 폐질환의 원인균으로 알려져 있는 Lichtheimia corymbifera 가 90%의 비율로 분포함을 알 수 있었다.

④ CN131 및 CN132 (경남지역, 4대 곡자 중 한곳)

이 곡자에서 제조하여 막걸리 제조사에 공급되는 누룩은 두가지 종류가 있었으며 주로 미국이 원산지로 수입된 밀과 국내에서 품종개량하여 보급된 앉은뱅이 밀인 국산밀을 원료로 하여 분리, 판매되고 있었고 막걸리 제조사 마다 선호하는 누룩이 있어서 선택 하여 판매 중이었다. 국산밀이 재료인 누룩에서는 79%의 *Penidillium*균이 분포하는 것이 특징이며, 0.4%로 yeast의 비율이 낮다는 것이 특징이다. 수입밀을 재료로 한 누룩은 77% 이상이 *Pichia*종의 yeast이며, 20%는 *Aspergillus*종이 차지하고 있었다 (그림7).

그림 7. 경남지역 4대 곡자에서 수집한 누룩으로부터 분리한 균 분포도

관 CN152 (전북지역)

전라북도 무형문화제로 지정되어 있으며 송명섭 막걸리로 널리 알려져 있는 태인누룩. 누룩을 만들 때 밀을 물에 담가 싹을 틔운 후 만드는 것이 특징이라고 한다. 단일균주 를 분리한 결과 *Saccharomycopsis* 와 *pichia*가 주를 이루는 yeast로 100% 구성되어 있 다.

순천의 한 5일장에서 판매되고 있는 누룩으로 안동지역에서 제조되었다. 재료는 수입 밀로 효모와 *Lichtheimia* 종이 50%정도씩 나타남을 볼 수 있었다.

제주지역에서 시판되는 막걸리를 생산하는 누룩으로 95%의 효모 (Endomyces fibuliger) 로 구성되어있다. 다른 누룩에 비하여 CFU/g누룩 값이 낮게 나타나는 것이 특징이었다. 서귀포지역 벤처기업에서 수집한 누룩으로 대부분 효모균인 Pichia 와 Sm. fibuligera가 80% 가량 차지하고 있었다.

표4. 2014년도 수집한 상품화 누룩시료의 사상성 진균 및 효모균 분포

(단위 : CFU/g x 10⁴)

Sample Isc	No.	Filamentous fungi		Voast	oct	Total	
	Isolates	Mucorales	Aspergillus	Penicillium	reast	ect.	Totai
CN112	8	500	40	0	4,560	0	5,100
CN123	10	200	28	4	2,020	4	0
CN131	11	100	16	418	2	0	536
CN132	7	0	88	0	332	0	420
CN152	5	0	0	0	35	0	35
CN261	10	60	367	0	2,573	0	3,000
CN262	7	280	16	0	380	0	676
CN263	6	42	0	0	0	0	42
Total	58						

② 개인이 제조한 (LN, local nuruk, home-made) 누룩유래 진핵 미생물 분리·동정결과 부산, 제주 지역의 전통방식으로 빚는 누룩 10가지에서 균주를 분리하였다. 75개체의 균주를 분리하였으며 각 누룩의 균주 구성 비율을 다음 그림8과 표5와 같다. 전체적으로 상품화 누룩과 비교하여 CFU/g가 2배 이상 높음을 볼 수 있다.

그림 8. 개인이 제조한 누룩으로부처 진핵미생물 분포도

⑦ 부산지역에서 수집한 누룩 : LNBS1, LNBS2, LNBS3

쌀을 재료로 하며 가루형태로 저장되어 있는 두 가지 누룩과, 찐 홍삼을 첨가하여 만 든 누룩에서 균주를 분리하였다. 대부분 *Pichia* 또는 *Saccharomycopsis* 속의 효모로 구 성되어 있었으며, 한 종류의 누룩에서만 25%의 *Mucor* 종이 발견되었다.

① 제주지역의 전통방식으로 빚은 누룩의 균주 특성 : LNJJ12 ~ LNJJ15

- 누룩이 첨가된 발효 중인 액체시료로 멸균된 filter로 액체와 고체를 분리하여 각각 균 주를 분리하였다. 발효 중인 액체에서는 89%의 yeast와 11%의 Mucorales (*Lichtheimia ramosa*)가 분리되었다. 고체누룩에서는 100% 효모균만 분리되었고 그 대부분은 *Sm. fibuligera* 이었다. 좁쌀 막걸리를 만드는 누룩은 82%의 *Sm. fibuligera*로 구성되어 있었다.
- 제주 서귀포지역에서 전통방식으로 만드는 누룩으로 누룩을 반으로 잘랐을 때 붉은색 을 띄는 누룩이다. 누룩이 잘 만들어졌을 때 붉은색을 많이 띈다는 정보를 바탕으로 붉은 부분에서 균주를 분리하여 보았다. 제주지역 누룩에서 자주 관찰되는 효모인 Sm. fibuligera 가 우점종을 차지하고 있었으며, 사상성 진균인 Aspergillus균도 분리되 었다. 특이한 결과는 홍국균이라고 알려져 있는 Monascus ruber가 다량 나오는 것을 확인할 수 있었다.
- 제주 서귀포 지역에서 전통방식으로 된장을 만들기 위해 제조한 누룩으로 효모인 Sm. fibuligera가 50% 분포하였으며, L. ramosa로 구성된 Mucorales가 30% Aspergillus 종 이 20%로 구성되어 있었다.

표5. 2014년도 수집한 각 지역에서 전통방식으로 빚은 누룩에서 분리한 균주의 분포

(단위 : CFU/g x 10⁴)

Complo	No. Isolates	Filamentous fungi			Voort	oct	Total
Sample		Mucorales	Aspergillus	Penicillium	Teast	ect.	TOLAI
LNBS1	5	0	0	0	17,000	0	17,000
LNBS2	7	180	80	0	440	20	720
LNBS3	3	0	60	0	9,360	0	9,420
LNJJ12	6	60	0	0	490	0	550
LNJJ12	4	0	0	0	18,618	0	18,618
LNJJ13	12	20	480	0	2,348	0	2,848
LNJJ14	10	0	112	0	108	2	222
LNJJ14	9	200	1,980	0	13,920	0	16,100
LNJJ14	8	200	660	0	2,400	0	3,260
LNJJ15	11	204	120	0	326	0	650
Total	64						

(나) 2014년도 수집 누룩으로부터 분리한 진핵 미생물의 분자생물학적 종 동정 결과

전국에서 수집한 15개의 누룩으로부터 35종 (species) 139개체의 사상성 진균 및 효모균 주를 확보하였다 (표6, 7 참조). *Sm. fibuligera*가 33개체로 누룩에서 가장 많은 개체수를 나타냈다. *Aspergillus oryzae*가 32개체로 두 번째 많은 것으로 나타났으며, 세 번째는 18 개체로 *Wickerhamomyces anomalus* (*Pichia anomalus*)로 나타났다. 4번째는 Mucolares로 7개체의 *L. corymbifera* 임을 알 수 있었다. *Sm. fibuligera*는 주로 제주도 지역 및 따뜻한 지역에서 수집한 누룩에 많이 분포하고 있다.

Fungi species identified basedonITSseqofrDNA		NCPI matched	% of matched	No. of isolates	
			% of matched	2013	2014
1	Aspergillus oryzae	LN482516.1	99%	22	28
2	Aspergillus flavus	KC911645.1	99%	14	5
3	Aspergillus fumigatus	KC430930.1	99%	7	4
4	Lichtheimia corymbifera	HQ285626.1	100%	26	7
5	Lichtheimia ramosa	HQ285644.1	99%	13	3
6	Mucor circinelloides	KF298075.1	98%	13	2
7	Saccharomycopsis fibuligera	JX316753.1	100%	40	28
8	Hyphopichia burtonii	KP132304.1	99%	9	2
9	Pichia kudriavzevii	KP674621.1	99%	7	3
10	Wickerhamomyces anomalus	KP638741.1	100%	6	14
	Total			157	96

표6. 2013-2014년 주요 분리, 동정된 진균 목록

표7. 2014년도 수집한 누룩시료로부터 분리, 동정한 사상성 진균 및 효모 목록

	Strain name	No. Isolate	Samples	Ref.
1	Saccharomycopsis fibuligera	33	LNJJ12(5),LNJJ13(4),LNJJ14(8),LNJJ15(2), LNBS1(1),LNBS2(1),LNBS3(2) CN112(1),CN123(2),CN152(2),CN262(2),	Yeast
2	Aspergillus oryzae	31	LNBS3(1)LNJJ13(5),LNJJ14(11),LNJJ15(1), CN112(1),CN123(1),CN131(4),CN132(4), CN261(2),CN263(1)	
3	Wickerhamomyces anomalus	17	LNBS1(2),LNBS2(2),LNJJ12(3), CN112(2),CN123(2),CN132(3),CN152(2)	Yeast
4	Lichtheimia corymbifera	7	LNJJ14(2), CN261(1), CN112(1), CN262(1), CN123(2)	
6	Aspergillus fumigatus	4	CN261(1), LNJJ15(1), LNBS2(1),CN262(1)	
7	Lichtheimia ramosa	4	LNJJ12 (1),LNJJ15(2), CN262(1)	
8	Aspergillus clavatus	3	CN261(2), LNJJ13(1)	
5	Aspergillus flavus	3	LNJJ14(3)	
9	Penicillium citrinum	3	CN131(3)	
10	Pichia kudriavzevii	3	CN112(2), CN152(1), LNJJ13(1)	Yeast
11	Hyphopichia burtonii	2	LNJJ15(1), CN123(1)	Yeast
12	Millerozyma farinosa	2	CN261(1), LNJJ1(1)	Yeast
13	Mucor circinelloides	2	LNBS2(1), LNJJ13(1)	
14	Pichia membranifaciens	2	LNBS1(2)	Yeast
15	Torulaspora delbrueckii	2	LNJJ14(1), CN112(1)	Yeast
16	Aspergillus cristatus	1	LNHH15(1)	
17	Aspergillus nidulans	1	CN112(1)	
18	Aspergillus niger	1	LNBS2(1)	
19	Cladosporium oxysporum	1	CN263(1)	
20	Clavispora lusitaniae	1	CN262(1)	Yeast
21	Cyberlindnera jadinii	1	LNJJ12 (1)	Yeast
22	Galactomyces candidum	1	CN123(1)	Yeast
23	Monascus ruber	1	LNJJ14(1)	

(to be continued)

	Strain name	No. Isolate	Samples	Ref.
24	Penicillium georgiense	1	LNBS2(1)	
25	Penicillium griseofulvum	1	CN131(1), CN132(1), CN261(2), LNJJ13(1)	
26	Penicillium melanoconidium	1	CN123(1)	
27	Penicillium steckii	1	CN131(1)	
28	Pichia sorbitophila	1	LNJJ15(1)	Yeast
29	Rhizopus microsporus	1	CN263(1)	
30	Rhizopus oryzae	1	CN263(1)	
31	Saccharomyces cerevisiae	1	CN262(1)	Yeast
32	Syncephalastrum monosporum	1	CN131(1)	Pathogen of nail dissease
33	Syncephalastrum racemosum	1	CN131(1)	Pathogen of nail dissease
34	Trametes versicolor	1	LNJJ14(1)	Basidio- mycetes
35	Mucor indicus	2	CN263(1)	
	Total	139		

(다) 진핵 미생물 (사상성진균 및 효모)의 형태학적 특징 조사

Rhizopus oryzae Wickerhamomyces Pichia sorbitophila Pichia kudriavzevil anomalus

그림 9. 2014년도 수집 누룩 유래 사상성 진군과 효모의 특징

사상성진균류 중 가장 많은 분포도를 나타낸 Aspergillus 속의 진균과 접합균류 중 Lichtheimia 속의 현미경 관찰 시 각 사상성 진균의 특징적인 무성생식포자 형성 특징들을 아래와 같이 관찰하였으며 PDA 고체배지, 25℃에서 자란 콜로니의 모양, 색깔, 공중균사의 색깔, 자라는 모양 등을 관찰하여 Mycology 분류학 참고문헌 (St-Germain & Summerbell, 2011외 다수) 등을 활용하여 각 종의 특징을 확인하였다 (그림9). 접합균류인 Lichtheimia 는 Mucor속이나 Rhizopus와는 다른 모양의 sporagium을 형성하므로 이들 간의 형태학적 동 정은 비교적 용이하였으며 Aspergillus 속의 균들 또한 conidiophore의 모양과 무성생식포자 의 크기 등에서의 차이를 구분하여 동정하였다. 다만, A. oryzae와 A. flavus의 경우 형태학 적으로 매우 유사하여 독소생성능 등 추가적인 생리적 특성 분석을 실시하였다. 효모균류 인 Wickerhamomyces, Pichia 속의 균들은 누룩 유래 효모균 중 Saccharomycopsis 균속을 제외하고 가장 흔하게 분리되는 군이었다.

(2) 2015년도 경기도 수원지역의 개인 발효 연구소의 전통기법으로 빚은 누룩 수집 다양한 재료를 이용하여 고서의 전통방식으로 재연한 11개의 누룩으로부터 곰팡이를 분리 하기 위하여, 누룩 현탁액을 DRBC 고체배지에 도말하여 25℃에서 5일간 배양하였다. DRBC 평판고체배지에서의 콜로니의 모양과 크기, 균사의 형태로 구분하였으며, 대부분의 누룩에서 사상성 진균이 우점종임을 알 수 있었다(그림 10).

그림 10. 전통방식으로 재연한 누룩 유래 사상성 진균 및 효모의 다양성

각 누룩의 진핵 미생물을 콜로니 형성 단위(CFU)로 측정한 결과 평균 8.3 × 10⁷ CFU/g의 미생물 밀도를 보였다. 누룩 SW6은 8.8 × 10⁵ CFU/g, SW7은 3.1× 10⁵ CFU/g 으로 상대 적으로 낮은 밀도를 보였으며, SW10은 2.1 × 10⁸ CFU/g, SW11은 2.1 × 10⁸ CFU/g로 높은
밀도를 보였다.

수집한 11개의 누룩에서 진핵미생물 95개체 24종의 균주를 분리하였는데, 사상성 진균과 효모의 분포를 알아보기 위하여 진핵미생물의 각 속별 CFU 비율로 나타내었다 (그림 11).

그림 11. 전통방식으로 재연한 누룩의 사상성 진균과 효모의 분포

11개의 누룩 중 10개의 누룩에서 *Aspergillus* 종이 존재하였으며, 특히 SW1과 SW2에서는 80%이상의 높은 비율을 차지하였다. *Lichtheimia* 종은 8개의 누룩에 존재하였으며 SW5, SW6에서 35 ~ 55%의 높은 비율을 차지하였다. 누룩에서 많은 비율을 차지하는 이형성 효 모인 *S. fibuligera* 는 7개의 누룩에 존재하였으며, 10 ~ 50%의 비율을 차지하였다.

그림 12. 전통방식으로 재연한 누룩의 사상성 진균과 효모의 형태학적 특징

전통방식으로 재연한 누룩 유래 주요 3균주인 *A. oryzae* SW6-2, *L. ramosa* SW6-1 그리고 *S. fibuligera* SW1-11를 PDA 고체 평판배지에 25℃, 5일간 배양하여 형태학적 특징을 관찰하였다 (그림 12).

(3) 대구 지역의 전통기법으로 빚은 누룩에서의 진핵 미생물 분리 및 동정 결과

예로부터 전해 내려오는 전통 방식의 누룩제조법으로 만든 사각형의 누룩으로서 수집 당 시 누룩 제조자의 인터뷰에 따르면 붉은빛 곰팡이가 많으면 좋은 누룩이라고 했으며 누룩 을 완전히 건조한 후에는 10℃ 이하의 서늘한 저장고에 보관하면서 양조에 쓰는 것을 조사 하였다(표8). 사각모양의 누룩의 단면은 균사의 색깔이 붉은색과 흰색을 띄었는데 두 가지 다른 누룩으로부터 진핵미생물의 단일균주를 분리하였다. 두 가지 누룩의 진핵미생물 분포 도는 효모가 약 50%, *Aspergillus* 종 25%, *Lichtheimia* 종 25%로 구성 비율은 비슷하나 각 각의 분리 균주는 다른 것을 볼 수 있었다.

표8. 대구 하향주 누룩의 사상성 진균 및 효모균 분포

(단위 : CFU/g x 10⁴)

Comple	No.	Fil	amentous fur	ngi	Veest	ast	Tetel
Sample	Isolates	Mucorales	Aspergillus	Penicillium	reast	ect.	Totai
LNDG1 (Red)	8	56	127	0	153	0	336
LNDG2 (White)	15	312	417	32	760		1,521
Total	23						

- LNDG1(Red) : 균사가 붉은색을 띄는 누룩으로 8개체, 6종의 단일 균주를 분리하였으며, Wickerhamomyces anomalus 45%, Aspergillus 종 (주로 Aspergillus flavus)17%, Lichtheimia 종이 17% 비율로 분포하였다.
- ② LNDG2(White) : 균사가 하얀색을 띄는 누룩으로 15개체, 8종의 단일 균주를 분리하였으며, cyberlindnera fabianii 49%, Aspergillus종 (주로 Aspergillus tritici) 25%, Lichtheimia종이 21% 비율로 분포하였다.

(4) 동남아시아 지역 베트남의 발효제인 반멘 (Banh men) 수집

베트남 현지에서 수집한 상품화 되어 있는 Banh men 9종과 개인이 제조한 Banh men 3종 으로부터 진핵미생물을 분리하기 위하여, banh men 현탁액을 DRBC 고체배지에 도말하여 25℃에서 5일간 배양하였다. DRBC 평판고체배지에서의 콜로니의 모양과 크기, 균사의 형태 로 구분하였다 (그림 13).

그림 13. 베트남 발효제 Banh men 유래 진핵미생물의 다양성

각 banh men의 진핵 미생물을 콜로니 형성 단위(CFU)로 구성비를 측정한 결과 M2-gray (87%)와 M5 (65%)에서만 사상성 진균이 우점하고 있었으며, 나머지 Banh men에서는 95% 이상이 yeast인 *Saccharomyces cerevisiae*로 구성되어 있었다.

수집한 12개의 banh men에서 진핵미생물 85개체 17종의 균주를 분리하였는데, 사상성 진 균과 효모의 분포를 알아보기 위하여 진핵미생물의 각 속별 CFU 비율로 나타내었다 (그림 14).

그림 14. 베트남 현지에서 수집한 Banh men의 진핵미생물의 분포도

12종의 Banh men에 *Saccharomyces* 속은 모두 존재하며, 12중 9개 ((M1, M2-Y, M4, M6, M7, M8, M9, M10, M11))의 시료에서 94%이상의 우점종임을 확인할 수 있었다. 그 다음으 로 많이 분포하고 있는 *Rhizopus* 속은 11개의 시료에 존재하며, 그다음으로는 *Lichtheimia* 가 9개의 시료에 존재한다. 87%가 사상성 진균인 M2-gray 시료에는 *Rhizopus microsporus* 가 52%를 점유하고 있으며 65%가 사상성 진균인 M5 시료에는 *L. raomsa*가 33% *R. microsporus* 20%를 점유하고 있다.

그림 15. 베트남 발효제 banh men 유래 주요 진핵 미생물의 형태학적 특징

베트남 발효제 Banh men 유래 주요 3균주인 *L. ramosa* M5-2, *R. microsporus* M3-5, *S. cerevisiae* M2-6를 PDA 고체평판배지에 25℃, 5일간 배양하여 형태학적 특징을 관찰하였다 (그림 15).

2. 사상성 진균 및 효모 균주 데이터 베이스 (DB) 구축

가. 균주 데이터 베이스(DB)구축

2014년도부터 현재까지 국내 수집한 26개 누룩 시료에서 확보한 232 균주 및 베트남에서 수집한 11개 발효제 banhmen 시료에서 확보한 106 균주, 총 사상성 진균 및 효모 338 균주의 종 (species) 및 시퀀스, plate 사진, 현미경 사진등 효소 활성능, 최적 온도, 독소 분석 특성을 조사하여 <u>http://fungen.ssu.ac.kr/cgi-bin/fungistrain/stdb_main.cgi</u> 에 균주 데이터 베이스를 구축하였다.

나. 균주 데이터 베이스(DB) 정보

그림 16은 누룩 및 banhmen 등의 다양한 시료에서 확보하여 보유하고 있는 사상성 진균 및 효모 균주들의 DB를 구축한 메인 화면이다. 다양한 sources에서 분리한 사상성 진균 및 효모에 대한 정보를 담고 있다.

PunD8 ×
C ① 주의 요절 fungen.ssu.ac.kr/cgi-bin/fungistrain/stdb_main.cgi
Fungi Isolates Database (FunDB)
With the second seco
- Total Isolatus (895)
• Nuruk (232)
- Socioguil University (137)
- Surron (75)
- Benh men(106)
 Strauberry (103)
Paprila (54)
s Search Source (e.g. Nun,x) ▼ Search
ingen 112 ar kerzgi-bin, fungistraon, sheb jeuan egi

그림 16. 사상성 진균 및 효모 균주 데이터 베이스 (DB) 메인화면

그림 17는 그림 16의 빨간색 화살표를 클릭하여 들어간 banh men 시료에서 확보한 106 개의 사상성 진균 및 효모의 리스트 및 정보가 있는 화면이다. 균주가 어떤 source에서 언제 분리가 되었고 plate 사진과 현미경 사진 유무, 시퀀스 정보, 균주 특성을 보기위해 어떤 실험을 진행하였는지 한 눈에 알 수 있었다.

	F	unDi	8			×	A																		YON		
ŝ	-	•	c	@ 3	의 요1	l} fun	gen.ssu.ac.kr/c	gi-b	in/fun	gistra	airi/st	db_	list.cg	lcor	idit	ion	=B	ianhmen&pa	ige#2				8 ₀ (1	e	00	
B-4	inh	imer	n (10	5)																[Return 1	to Main]						
-	ian	story	Note																								
		140	lation i	-terrs	ation	m			Plate	Marqu	icophy		. 5	dueno	ie.			Mycoto	ŵ.	. Dr	cyme act	wity .	Ontinue				
0	seu	ite ta	ocation	Date	Collection	original n	Pungal species ew	Front	Reveise	-	2	1751-	01/D2 domain	185 2854	A/CT	町	(4)	Afutavin	fumoniain	alpha- amylase	glucolate	protesse	temperature				
1	Es.	h V	(46%ar	Mar-	Scongtil	NE_I	Contrama.	0	0	0	263	c	×	0	х		X	67	NT	NT	NT	36.21	37%C				
2	14	h V	lathlar	Mar-	Soongsil Unix	5/5,4	Rhappus	K	0	0	.0	0	×.	0	×	à.	x	NT.		ŃT	N7.	15.92	170,420				
1	Sa.	h	ietar	15	Secongeit	M5_7	Lontheimia ramous	0	0	0	x	0	x	0	- 16	8	×	ŇŤ	NT	NT .	AT.	40.91	37%				
4	-	th v	lether	26	Soongsil	NS_B	Rhangua	0	0	0	0	0	x	0	*	x	×	hr	AT	NT	NT.	67	25°C				
1	E.p.	sh v	istia	MA-	Soongsi	N5,9	Longhamia	0	0	0	0	0	N.	0	×	x	×	147.	NT.	st	57	0.00	17C				
6	La.	th V	lethie .	Mar-	Seengal	N5,10	Ehoopus	0	0	0	0	0	*	0	*		×	N7.	NT	NT	NT	NT	375 425				
1	Eat.	th v	in the	Mar-	Seengra	ME_1	Saccharomycel	ò	0	0	0	0		0	×	×	×	NT.	AT.	N7	NT	NT	25%				
4	Sal I	h	inthan	1/20-	Secretil	ME,Z	Rhapput	0	0	0	0	0		a			×	547	NT	5.7	NT.	NT	374.424				
	-	th y	SetNa-	V&-	Soongsil	146,1	Cunninghamela	0	0	0	0	0	×	0	×	×	×	NT	NT	1.7	AT.	NT	37%				
0	24	the w	etis	Mar-	Soorgil	1/6_4	Lichtherma	0	0	0	0	c	τ	0	×	W		NT	NT	NT	hT	0.00	37°C				
4	1a	nh v	450	Mar-	Soongsil	W6.5	Rhappus	0	0	0	0	0	x	0	x	x	X	NT	AT	ŇŤ	NT	35.47	371C 421C				
4	1a	h v	iet var	Mari	Soongal	M7_1	Saccharomyces	0	0	0	0	0	×	0	×	×		NT	.52	NT	NT.	0.00	29C 3PC				
	24	10 V	lethar	Var-	Socrasi	M7,2	Lontheima	0	0	0	0	0	(K	0	×	x	l,	57	NT	103.13	45.00	1.23	17%				
-	1a	h v	iena-	10 Mar-	Soongsil	107,2	Sacotaromycar	0	0	0		0	(K	0	×		Í,	NT	NT.	NT	NT	61.76	29C 37C				
5	34	th v	lettar	NAr.	SpangsZ	1/7,4	laccharamyean	.0	0	0	0	0	*	0	×		ţ,	NT	NT:	NT	ST.	NT	25°C				
4	-	nh _v	Netria	10 M#-	Soongt/	98.1	Secharomycer	0	0	0	0	0	x	0	×	x	t,	57	NT.	NT	57	61.60	28%0				
7	14	nh v	interior	Mar-	Soonge?	MLZ.	Saccharomycles	0	0	ö	0	0	*	0	×		İ,	ht	NT	NT	NT	44.01	295				
	E.		(Links	16 htgi-	Soongsil	145.2	Cerevisive Contrainta	0	0	0	0			0	x		l,	6.7	AT	122.21	62.13	51.00	170				
4	Es.	nh lu	-	.16 Mar-	Soongel	112.4	Lonberna	0		0		0				1	1.	NT	517	NT	5.7	22.96	ine				
0	Er	nh v	-	- 16 Mar-	Secretil	NE S	Lichtheime	0	0	6		0	*	0	1	-	1	67	NT.	NT	NT.	0.00	175				
-	14	th J	1944	16	Vinve Soongsil	1/2 6	Amerpillur	8	0			0	1	0	X		1	NO	57	NT	NT .	34.02	2510				
	14	nh L	Carlos	-26 Mar-	Unv Scongt/	NS 2	Rhoopvar Rhoopvar	0	0	0		0	1	0	5	4		1.4	NT	1.7	1.4	4.12	100				
	10	-		15 Nar-	Soongs?		Theorem out	-	-	-	-	-	54	-	-	14	1	14	1.7	0.33	14.61	0.00	Har she				
	11	nh l		20	- UTH Soongsi	144.5	Central Me Rhadava		0		0	0			-		ť	1.4		0.33	14.01	0.00	ine ene				
	TT EA	the last		-26 Mari	Utie Soongelik	100,1	merraneout	0	0	0	.0	-	100	0	Ê	-	I.			141	141	0.00	110, 420				
		n i	42.2%	16	Second 2	104 at	Arpenallus	0	0	0		0		0	-	*	X		-NT	147	Par -	0.00	are me				
-	11	nh Y	at same	16	Sector)	202.1	Grout	0	0	.0		0	*	8	-	-	×	86.4291118.295	MT	NT	NT	INT	28%				
	-	-	eta-	16	Unia Same	5/2,4	Mucor indext	0	0	0		0		a	-	×	-	NT	NT	67	NT	0.00	19C 17C				
	10.0	- M	et'sk	.16	UPN.	1.19_6	(Amesa	0	0	.0	9	0	*	0	*	*	×	NT	N7	N7	NT.	0.00	17C				
9	100	n M	white-	26	Univ.	1.19_E	TRANSFIL	0	0	0	*	¢	×	0	×	*	×	NT	57	NT	AT.	0.00	42%				
0		e N	ietiar	146	Univ	109,7	Lonenerita Janosa	0	0	0	9	0	3	0	×	W	X	NT	NT	NT	NT	0.00	37°C				

그림 17. DB에서 banh men 시료에서 분리한 균주 리스트가 있는 화면

그림 18은 대표적으로 banh men에서 분리한 *L. ramosa* M5-3의 균주 ID card 화면이며, 그림 17의 빨간색 화살표를 클릭하여 들어갈 수 있다. *L. ramosa* M5-3의 고체배지 상에서 형태학적 특징, 현미경 사진을 볼 수 있으며, protease 활성능이 있으며, 37 ℃에서 가장 잘 잘 할 수 있다는 균주 특성을 알 수 있다. 종 동정을 하기 위하여 이용한 RNA 유전자의 .8S 포함하는 Internal transcribed space (ITS) 지역과 18S region 의 시퀀스 정보도 알 수 있다.

	주의 요함 fungen.ssu.ac.kr	/cgi-bin/fungistrain/stdb_	detail.cgi?id=263		🖣 Q 🏠 🞯 🖺		
ungal ID	Card						
Strain	5pec	cies	Date	Source	Location		
M5_3	Lichtheim	ia ramosa	Mar-16	Banh men	VietNam		
	Plate		1	Microscopy			
	Front	Reverse	×100		x100		
				<u>20 µm</u>			
	PDA, 25 ⁰ C, 5days			PDA, 25 ^o C, 5days			
		En:	zyme activity				
19	alpha-amylase	glucoamylase	ľ	protease	zase.		
	Not tested	Netherland		36.21			
		(ADL fested					
	Mycotoxin	(Not tested)			1945/1001		
	Mycotoxin Aflatoxin	Pumonisin		Optimum temper	ature		
	Aflatoxin Not tested	Fumonisin Not tested		Optimum temper 37°C	ature		
Region	Mycotoxin Afistoxin Not tested	Fumonisin Rumonisin Not tested Primer1		Optimum temper 37% Primer2	ature		
Region ITS	Mycotoxin Afistoxin Not tested >180715-056_M17_M5-9_1T51_eb GTG6TT05T6A465T0TAA0CACTA65 CT66 TA6TT0CTC4C45TTTTGT6CAA45T05 TGCC TTGT6CC6T46A1CT66TTGTTGT6CAA5T05 TGCCCC4C4C4A46ATCA69CT6CTT	Primer1. ITS1 1 1421 GGTCAACTTGGTGGGCTC BAGACCCTCCTTTTTAGGA BAAAAGAGACGTATGGAC	>1 60715-056 GAAACTGG68 TTTA AGAGAAGA00 ACT AGTCAAGAAG AGTCCAAGAAG OGTTGCTCCT	Optimum temper 37%C Primer2 5,017,M5-3,1154, sb1 1438 690/CTARTRAHTCKARTGARAGA 2406/CTARTRAHTCKARTGARAGA 2406/CTBATGACTGACTAGACTARCAAATG	TTTGT		

그림 18. L. ramosa M5-3의 균주 ID card 화면

2절. 양조 특성 분석들을 통한 참조 유전체 분석 대상 우수 진핵 미 생물 균주 선발

 참조유전체 대상 효모 균주 및 사상성 진균 균주 선발을 위한 확보균주 특성분석 서울대 진균독소학연구실에서 2013년도 수집한 누룩 시료로부터 분리한 사상성진균 및 효모균을 대상으로 1, 2, 3차 당화·발효 특성 조사를 통하여 선발된 100개의 균주들 중 아래 표와 같은 대상 균주들을 선정하였다 (표9, 10).

효모 균주명	국내 누룩 정보	당화 <mark>능</mark>	풍미	서열 해독 (근연종 포 <mark>함</mark>)	지놈 크기 (Mb)	염색체 개수
Saccharomycopsis fibuligeraاللاء	제주 서귀포시 중문동 2123-1	55.7	과실향	미수행	Unknown	Unknown
2 Pichia jadiniii PH1-2	경상북도 포항시 남구 연일읍 유강리 대림 한숲 1차 104-303	27.88	락스향	미수행	Unknown	Unknown
3 Hyphopichia pseudoburtonii JS1-4	강원도 정선군 사북읍 직전로 769	10.53	쉰내	미수행	Unknown	Unknown
4 Pichia burtoniiJJ4-3 (Hyphopichia burtonii)	제주특별자치도 제주시 도두1동 1204-1	0.43	꼬릿한 냄새	미수행	Unknown	Unknown
Clavispora lusitaniaeJS3-3	강원도 정선군 북평면 남평리 412-1	0.09	무취	수행	12.1	Scaffolds
Torulaspora delbrueckiiSS1-1	부산 금정구 금성동 603	25.33	상큼한 향	수행	9.2	8
Pichia kudriavzevii JJ1-3	제주특별자치도 제주시 도두1동 1204-1	2.52	쉰향	수행	Unknown	Draft genome
Wickerhamomyces anomalusJS1-5 (Pichia anmala,)	강원도 정선군 사북읍 직전로 769	0.65	아세톤, 참외향	수행	26.6	Scaffolds

표9. 2013년도 선행연구를 통하여 확보된 효모 균주 특성

표10. 2013년도 선행연구를 통하여 확보된 사상성 진균 특성

곰핑	y이 균주명	국내 누룩 정보	당화 <mark>능</mark>	풍미	서열 해독	지놈 크기 (Mb)	염색체 개수
1 Lichtheim	nia ramosa PH1-1	경상북도 포항시 남구 연일읍	28	은은 달콤	미수행	Unknown	Unknown
2 (Unknown	미생물자원 확보 및 분리 예정	-	-	미수행	Unknown	Unknown
Aspergil	lus oryzae Yl2-8	경기도 용인시 처인구 양지면	27	쉰향 약냄새	수행		
Rhizopu	s oryzae JJ2-11	제주시 도두동	23	상금한향	수행		
Mucor cire	cinelloides JS1-7	강원도 정선군사북읍	33	식혜향 과일향 곰팡향	수행		
Emerice	<i>lla quadrilineata</i> HS1-8	충청남도 서천군 한산면 축동리	25	시큼	미수행		

진핵 미생물 중 2013년도와 2014년도의 누룩시료에서 가장 많은 누룩시료에서 분포하고 있었고 가장 많은 개체를 분리한 효모균으로 *Saccharomycopsis fubuligera* KJJ81 [당화력 55.7SP, 달콤한 과실향]과 *Pichia jardinii* KPH12 두 효모 균주를 1차년도 효모균 참조유전체 해독 및 분석 대상으로 선정하였으며 **사상성 진균은** *Lichtheimia ramosa* KPH11균주 [당화 력 28SP, 은은하고 달콤한 향] 를 선정하였다. 아래와 표11과 같이 선정된 균주들은 우수한 양조특성을 가지고 있었으며 유전체 염기서열의 해독 및 분석이 이루어지지 않았다는 점에

서 우리나라 고유의 전통주 당화, 발효에 중요한 역할을 하는 효모 및 사상성 진균으로 참 조유전체 해독 대상이 되었다.

종명	수집지역	당화력	रुंग	서열해동 (근연종포함)	지놈크기 (Mb)	염색체 개수
Saccharomycopsis fibuligera JJ8-1	제주 서귀포시 중문동 2123-1	55.7	과실 향	미수행	Unknow n	Unknow n
<i>Pichia jadinii</i> PH1-2	경북포항시남구연일읍 유강리 대림한숲1차104-303	27.88	락스 향	미수행	Unknow n	Unknow n
Lichtheimia ramosa pH1-1	경북 포항시 남구 연일읍	28	은은 달콤	미수행	Unknow n	Unknow n

표11. 참조유전체 대상 효모균 및 사상성 진균의 특성

2. 참조유전체 대상 효모 균주 및 사상성 진균 성장 및 생리활성 비교분석

가. 참조 유전체 분석 대상 사상성 진균 *Lichtheimia ramosa* KPH11 생장 및 생리 활성 비교 분석 (1) 고체배지 생장 조사

Lichtheimia ramosa KPH11의 생장 특성을 알아보기 위하여 CM, YPG (Yeast Peptone Glucose), PDA(또는 PDB) (Potato dextrose Agar 또는 Broth) 고체배지에 접종하고 25, 37, 45℃에서 5일 동안 관찰하였다. 9cm plate 가운데 멸균한 toothpick을 이용하여 접종하였으 며 24시간마다 지름 (radial diameter)을 측정하였다.

(2) 액체배지 생장 조사

CM, YPG (Yeast Peptone Glucose), PDB (Potato dextrose Broth) 3가지 액체배지를 사용 하였고, 온도는 25, 37, 45°C 3가지 조건에서 30시간 동안 배양하면서 18, 22, 26, 30시간 에 성장을 관찰하였다.

(3) 탄소원과 질소원 농도에 따른 생장 조사

탄소원과 질소원 농도에 따른 생장 특성을 확인하기 위하여 MM (Minimal media : 1g KH₂PO₄, 0.5g MgSO₄7H₂O, 0.5g KCl, 2g NaNO₃, 0.2ml trace elements , 30g glucose) 고체 배지에 탄소원은 2% glucose 0.1% glucose, 질소원은 2% Ammonium, 2% Yeast Extract, 2% NaNO₃으로 종류와 농도를 변화시켰다.

(4) 참조유전체 분석 대상 사상성 진균 Lichtheimia ramosa KPH11 생장 및 생리 활성 특성 Lichtheimia ramosa KPH11의 생장 특성을 알아보기 위하여 배지 종류와 배양 온도를 변화 시켜 생장을 관찰하였다 (그림 19). 고체 배지의 생장속도는 균사의 지름을 측정하였고, 액체 배지의 생장속도는 일정 시간 간격으로 샘플링하여 건조 중량을 측정하였다. L. ramosa는 고체(최대 22mm/d), 액체(최대 0.0012g/h) 배지 모두 37℃에서 가장 빨리 자랐다. CM, YPD, PDA는 고체, 액체배지 모두 잘 자랐다. 하지만 탄소, 질소원 제한 배지에서는 고체, 액체 모두 늦게 자랐다. 2% yeast extract를 첨가한 MM배지에는 모든 온도에서 가장 빨리 자랐지만 거미줄처럼 약하고 밀도가 낮게 자랐다.

배지종류 : 1) Potato dextrose(PDA), YPD, complete media (CM), 2) minimal media + 2% ammonium(MMAm), 2%NO₃(MMNO3), 2% yeast extract(MMYE). + 2% glucose, 0.1%glucose 온도 조건 : 25, 37, 45°C.

액체 배지에서는 현미경으로 collemella, sporangium, 그리고 germinating spores를 관찰할 수 있었다 (그림20). CM 배지, 37℃에서 30시간 경과했을 때 collemella를 관찰할 수 있었으 며, 45℃, 2% NaNO3 첨가된 MM배지에서 22시간 경과 되었을 때와 YPD배지, 37℃에서 26 시간이 경과 되었을때 sporangium을 관찰할 수 있었다. YPD배지, 25℃에서 30시간 경과 되 었을 때 large cell을 관찰할 수 있었다. PDB배지, 25℃에서 18시간이 경과 되었을 때 germinating spore가 관찰되었다. YPD 배지, 37℃에서 30시간이 경과 되었을 때 hyphal grwth를 관찰할수 있었다. 액체배지에서는 collumella와 sporangium보다는 hyphal growth와 spore germination에서 더 많이 관찰할 수 있다.

그림 20. Lichtheimia ramosa 현미경 사진

a) Collumella grown in CM at $37\,^\circ\!\!C$ and 30 hours. c) Sporangium grown on YPD at $37\,^\circ\!\!C$ at 26 hours.

b) Sporangium at MMNa at 45° C and 22 hours. c) Sporangium grown on YPD at 37° at 26 hours. e) Germinating spores grown on PDB at 25° and 18 hours. f) Hyphal growth on YPD at 37° and 30 hours.

나. 참조 유전체 분석 대상 효모 S. fibuligera KJJ81 생장 및 생리 활성 비교분석

Isolate	Genome Characteristics
Saccharomycopsis fibuligera KJJ8-1A	A genome
Saccharomycopsis fibuligera KJJ8-1AB	A + B genome
Saccharomycopsis fibuligera KJJ8-1R	A+B genome - 붉은 부분을 분리함
Saccharomycopsis fibuligera KPH1-2	A genome

표12. 다른 특성의 유전체 지닌 S.fibuligera 목록

(1) 고체배지 생장 조사

위 표12와 같이 4가지 다른 특성을 가진 *S. fibuligera*를 YPD, PDA, CM, MEA 고체배지에 접종하고 25°C와 37°C에서 5일 동안 관찰하였다. 9cm plate 가운데 멸균한 toothpick을 이용하여 접종하였으며 24시간마다 지름 (radial diameter)을 측정하였다.

(2) 액체배지 생장 조사

고체배지 상의 실험과 같이 4가지 다른 특성을 가진 *S. fibuligera*를 YPD, PDB, CM, MEB 액체배지에 접종하고 25℃와 37℃에서 24시간 동안 관찰하였다. 4, 8, 12, 24시간 되는 시점 에 sampling하여 건조중량을 측정하였다. 접종원은 25℃ MEB에서 18 ~ 24시간 배양한 균주 를 여과한 후 4000rpm에서 10분 동안 원심분리한 후 멸균 증류수에 현탁하여 2 x 10⁶cell/ml이 되도록 1mL을 접종하였다.

(3) 유성생식 세포 형성 관찰

참조유전체 해독 효모균주인 *S. fibuligera*를 고체배지에서 streaking하여 배양하던 중 흰색 의 공중균사가 자라는 콜로니로부터 부분적으로 붉은색 콜로니가 자라는 sectoring 현상을 관찰하게 되었고 붉은색 콜로니를 관찰한 결과 모두 자낭 (asci)만을 생성하는 것을 알게되 었으며 이를 바탕으로 붉은색 콜로니에서 유래한 JJ8-1R 균주를 분리하였으며 참조유전체 를 해독한 KJJ81을 포함하여 위의와 같이4개 균주를 대상으로 PDA, CM, YPD, MEA 고체 배지에 25 와 37° C에서 sectoring 현상을 관찰하였으며 ascospore 생성 정도를 균주 별로 비교 조사하였다.

(4) 참조 유전체 분석 대상 효모 Saccharomycopsis fibuligera 생장 및 생리 활성 특성

(가) 고체배지 생장 특성 조사

다른 종류 4가지 배지에서 다른 특성을 가진 *S. fibuligera*의 25℃에서 KJJ81은 평균 15mm이상 자라지만, 37℃에서는 평균 13mm 이하로 자라는 것을 관찰할 수 있었다(그림 21). 특히 A genome만 가지고 있는 KPH12 균주는 25℃에서는 평균 19mm인데 반하여 3 7℃에서는 8mm로 성장이 1/2밖에 자리지 않음을 관찰할 수 있었다. 아래 그림과 같이 A와 B genome 모두를 가진 KJJ81균주는 흰색균사를 매우 두껍게 형성하거나 얇게 고체배지 표 면에 깔리면서 자라는 것도 관찰 가능했으며 고체배지에서의 형태적 특징은 A genome을 가진 KPH12 균주와는 다른 양상을 보였다. KPH12 균주는 point 접종 시 콜로니 중앙으로 부터 바로 붉은색 (배지 상에서 베이지색)을 띄는 것을 볼수 있었다. A genome만을 가진 KPH12 균주외 JJ8-1A균주 (아래그림 참조)는 AB genome을 가진 JJ81 AB와 매우 유사한 군사형성 특징을 가지고 있었다. KPH12 균주는 특히 CM 고체배지에서 붉은색 자낭과 자낭 포자를 다량 생성하는 것을 관찰할 수 있었다. 따라서 같은 A genome 균주 간의 형태학적 표현형이 상이함을 알 수 있었고 조사한 균주 중 sectoring region 애서 분리한 JJ81-R은 point 접종 시 균체 내에서 다시 붉은색 부분이 갈라져 나오는 것을 볼 수 있었다.

그림 21. Saccharomycopsis fibuligera KJJ81 균주의 배지별 생장 특성

(나) 액체배지 생장 특성 조사

모든 균주는 12~24시간 사이에 급격히 생장이 증가함을 관찰할 수 있었다(그림22, 23). 액체배지 종류에 따라 생장곡선은 각 균별로 다르게 조사되었는데 JJ81A는 25℃ PDB와 37°C CM에서 급격히 자랐고 JJ81R은 25℃ MEB와 CM에서 매우 잘 자라지만 다른 균주에 비하여 전반적으로 생장이 활발하지는 못하였다. PH12는 나머지 세균주보다 가장 잘 자라 는 것으로 관찰되었고 대부분 psuedohyphal growth를 하고 있음을 현미경(Zeiss)하에서 관 찰할 수 있었다.

배지 종류 : YPD, MEB, CM, PDB 온도조건 : 25, 37℃.

그림 23. Microscopic pictures of S. fibuligera cells

(다) 유성생식포자와 포자낭 생성 조사

JJ81AB 균주는 25℃의 모든 배지에서 ascospore를 형성하였으며 그 중 YPD에서 가장 활 발히 생성하였으며 JJ81A 균주는 25℃ MEA에서 ascospore를 가장 잘 형성하였다. JJ81R균 주는 25℃, 37℃ 모두 ascospore를 잘 형성하였지만, 37℃ MEA에서는 형성하지 못하는 것 을 관찰하였다 (그림24). 또한 PH12는 25℃ PDA에서 자낭과 자낭포자를 잘 생성하였다. 본 실험은 추후 유성생식과 관련한 균학적 특징이 두드러지고 dimorphic한 특성이 당화, 발효 과정에서 어떤 유리한 점을 가지고 있는지 등에 대한 특성을 유전체 수준에서 분석해 볼 필요가 있다고 보이므로 3차년도 계획에 일부 반영하였다.

그림 24. S.fibuligera PH1-2 균주의 고제배지 (PDA) 에서의 생장 (25°C, 5 days) a) PDA plate b) close up of sectored sections. c) hyphal and spore growth. d) ascospore growth.

Strains		25	°C			37	°C	
	YPD	PDA	СМ	MEA	YPD	PDA	CM	MEA
JJ8-1AB	+++	+	++	+	+	-	-	-
JJ8-1A	-	+	-	++	+	+	+	-
JJ8-1R	++	+++	++++	+	+++	++	+++	-
PH1-2	++	++++	++	-	-	-	-	-

표13. Saccharomycopsis fibuligera의 유성생식포자 및 자낭 형성 결과

- : 0%, + \geq 10% , ++ \geq 20%, +++ \geq 30% , ++++ \geq 40%, +++++ \geq 50% cells ascospores

Ctrains		2	5°C			37	°°С	
Strains	YPD	PDA	СМ	MEA	YPD	PDA	СМ	MEA
JJ8-1AB	Beige	NA	Beige	Beige	NA	NA	NA	NA
JJ8-1A	NA	NA	NA	Beige	NA	NA	NA	NA
JJ8-1R	Pinkish	Red	Red	Beige	Beige and Yellow	Beige and Yellow	Beige and Yellow	Beige and Yellow
PH1-2	Beige	Red	Pinkish	Beige	NA	NA	NA	NA

⊞14. Color of the sectored section from each strain

* NA- Not Applicable, no sectored section

위의 표13, 14는 각 4가지 타입의 *S. fibuligera* 균주가 각 배지종류에 따라 다른 색의 sectoring을 하는 것을 관찰한 결과이다. 나타나는 색깔은 beige, pink, red, yellow로 유성생 식이 활발히 일어나는 sectoring 지역에서 ascospore가 형성 되지 않을 수도 있으며 완벽히

sectoring 되지 않은 부분에서도 ascospore가 관찰되기도 함을 확인하였다.

3. 2014년도 누룩유래 진핵미생물 (사상성진균, 효모) 균주의 양조 특성 조사

가. 2014년도 누룩유래 진핵미생물 (사상성진균, 효모) 균주의 효소 생성능 조사

2014년도 수집한 누룩으로부터 분리한 균주 139균주를 대상으로 쌀 Koji와 밀기울 Koji에 서 당화력, α-Amylase, Glucoamylase 활성을 측정하였으며 이들 균주 중, 우수한 효소 활 성능을 가진 균주를 10개 내외로 선정하여 전통주 양조에 활용하였고 선발된 균주들에 대 하여 Lipase 활성을 추가적으로 조사하였다.

(1) 효소 생성능 조사를 위한 Koji 제조

(가) 쌀 koji 배양

쌀을 3시간 침미한 다음 물기를 30분간 뺀 후 증미기를 이용하여 1시간 30분 동안 증자 한다. 증자 된 고두밥을 70g 씩 500ml 고온멸균이 가능한 Polypropylene bottle에 넣고 12 1℃, 20분간 가압 살균 후 실온에서 식힌 뒤 균주별로 배양시킨 사면배지에 증류수 5mL를 첨가해 균 현탁액 을 제조하여 접종하였다. 접종 완료 후 항온 항습 배양기에서 30℃, 상대 습도 70% 조건에서 72시간 배양하였다. 배양이 끝난 Koji는 -20℃에 보관하면서 효소분석에 사용하였다.

(나) 밀기울 koji 배양

밀기울 50g에 증류수 30mL를 첨가해 반죽한 뒤 상온에서 10분 간 방치한 뒤 밀기울 반 죽 30g씩 500mL 고온멸균이 가능한 Polypropylene bottle에 넣고 121℃, 20분간 가압 살균 한다. 균주별로 배양시킨 사면배지에 증류수 10mL를 첨가해 균 현탁액을 제조하여 실온에 서 냉각한 밀기울에 접종하였다. 접종 완료 후 항온 항습 배양기에서 30℃, 상대습도 70% 조건에서 72시간 배양하였고 배양이 끝난 밀기울 Koji는 -20° C에서 보관하면서 효소활성 조사에 이용하였다.

(2) 당화력(Saccharogenic Power: SP) 분석

당화력 측정은 DNS 분석법에 따라 누룩 1g을 1 % NaCl 용액 100ml 넣고 30°C에서 3시 간 동안 침출시킨 후, Adventec No. 2 filter paper로 여과하고 적절히 희석하여 효소액으로 사용하였다. 예열한 5ml의 2%의 soluble starch 용액 및 sodium acetate buffer (pH5.0) 3 ml 의 용액에 효소용액 1mL를 첨가하고, 55°C에서 60분 동안 당화한 후, 0.5N NaOH를 1 ml 을 첨가하여 반응을 정지시켰다. 당화력을 분석하기 위하여 DNS 시약 0.6ml에 당화액 0.2 ml에 첨가하고 100℃에서 5분간 끓인 다음, 충분히 냉각한 후, 증류수 3.2 ml를 첨가하고 흅광도를 550nm에서 측정하였다. 당화력이란 전분 1g에 효소 1g이 작용하여 포도당으로 변화시킬 수 있는 능력의 세기를 말한다.

(3) *α* - Amylase 활성 조사

Alpha-amylase 활성은 Ceralpha Method (Megazym, Bray, Ireland)를 사용하여 측정 하였

으며 1 Ceralpha Unit는 1분에 비 환원 말단 p-nitrophenyl maltoheptaoside로부터 p-nitrophenol 1 μM을 줄이는데 필요한 양으로 정의한다. α-amylase는 1g koji당 ceralpha unit의 양으로 정의된다.

(4) Glucoamylase 활성 조사

Glucoamylase 활성을 측정하기 위하여 0.5% NaCl (w/v)를 포함한 10mM sodium acetate (pH5.0) 10mL에 1g koji를 넣고 3시간 동안 실온(15 ~ 20℃)에서 진탕하여 filter paper로 여 과한 후 10mM sodium acetate solution으로 washing하여 적절히 희석하여 효소액으로 사용 하였다. 2% soluble starch 용액 1mL과 0.2M acetate buffer (pH 5) 0.2mL은 40℃에서 5분 간 예열한 다음 0.1mL의 효소액을 첨가하고 40℃에서 20분간 당화한다. 0.1mL의 1N NaOH 를 첨가하고 신속하게 냉각하여 반응을 종료시킨다. 실온에서 약 30분 후에 1N NaOH 0.1mL을 넣고 반응을 종료시킨다. D-glucose의 농도를 측정하기 휘하여 효소 키트를 사용 하였다. (Megazyme, Bray, Ireland) Glucose activity는 1g koji당 감소한 glucose의 단위로 정 의된다.

(5) Acid Protease (pH 3.0) 분석

산성 단백분해력(Acid protease activity)은 casein 용액이 koji에 의해 분해되어 나오는 tyrosin의 양을 측정함으로써 정량할 수 있다. Acid protease 활성을 측정하기 위한 효소액 은 glucoamylase 활성 test 효소액과 같은 방법으로 준비한다. Casein을 기질로 사용하며, 1.5mL casein 용액에 1ml McIlvain solution (pH 3.0)과 0.5ml 효소용액을 넣는다. 추출된 enzyme이 casein을 분해하도록 40° C에서 60분간 두었다가 반응을 정지하기 위하여 0.4M Trichloroacetic acid 3mL를 용액에 넣고 여과를 한다. 여과액 1mL에 5mL의 Na₂CO₃과 1mL 의 phenol을 첨가하고, 38℃에서 30분 동안 반응시킨다. Tyrosin의 양의 변화에 따른 흡광 도를 읽어 검량선을 작성한다. Protease 1U는 lug tyrosin /h을 방출하는데 필요한 단백질 의 양으로 정의한다.

(6) Lipase Activity 분석

Koji 효소액은 밀기울 Koji 0.5g을 100mM Sodium Phosphate buffer (pH 7) 5ml에 넣고 상 온에서 3시간동안 정치하여 뒀다가 Filter paper를 이용하여 거른 다음 측정 농도 범위에 맞게 희석하여 lipase activity 측정에 사용하였다. Extracellular Lipase와 intracellular Lipase Activity 분석을 위하여 250mL 삼각 플라스크에 CM medium에 50mL를 넣고 1x10⁶cells 또 는 spores/ml의 접종을 한후, 25℃, 200rpm으로 4일동안 진탕 배양하였다. 사상성 진균은 filter paper를 이용하여 배양액과 균사를 분리하고, 효모의 경우 4000rpm, 5분 동안 원심분 리하여 배양액과 pellet을 분리하였다. Extracellular Lipase는 배양액을 이용하여 측정하며, Intracellular Lipase는 균사 0.5g을 액체질소를 이용하여 분쇄 후 McIlvain buffer [0.1M phosphate-citrate buffer, pH 5.5], 10mL에 현탁하여 측정 농도 범위에 맞게 희석하여 사용 하였다. (Silva et. al. 2005). Lipase activity는 Sigma Aldrich사에서 제조한 Lipase Activity Assay Kit (Sigma Aldrich MAK046, MO USA)를 사용하였고, 모든 용액은 kit protocol에 따 라 제조하여 사용하였고 Bioscreen C를 이용하여 흡광도를 측정하였다. 효소액 50μl를 100 μl의 반응용액에 넣어 37℃에서 반응 시작 후 2분경과한 시간을 "0"으로 설정하고 매 5분마다 흅광도를 측정하였다.

나. 2014년도 누룩유래 진핵미생물 (사상성진균, 효모) 균주의 효소 생성능 조사 결과 2014년도에 확보한 140균주의 쌀 koji와 wheat koji에서의 당화력, 당화관련 효소 alpha-amylase와 glucoamylase, protease 효소의 활성 조사 결과를 보여주고 있다. 밀기울과 쌀 을 이용하여 koji를 만든 것은 양조 시 우리나라 대부분의 누룩은 밀로 만들어졌으므로 밀 koji에서의 각 효소활성이 우수한 균주로 선발하였다. 주로 향미와 좋은 맛과 관련하여 역할을 하는 효소는 glucoamylase로 알려져 있으며 alpha-amylase 활성능 또한 당화와 관련이 깊은 것으로 알려져 있다. 각 효소의 활성 정도를 균별로 3반복 이상 측정하여 신뢰도를 높였으며 실제 막결리 제조 시와 동일한 조건으로 맞추기 위해 밀기울에 단일균주를 접종하여 입국으로 서의 가능성을 조사하고자 하였다.

그림 25. 2014년 확보한 140균주의 Alpha amylase, Glycoamylase activity heat map

그림 26. 2014년 확보한 140균주의 Protease activity heat map

그림 25는 높은 α-amylase, gluco-amylase 활성도를 그림 26은 높은 protease 활성도를 클러 스터를 식별한 것이다. Heatmap을 활용한 분석도는 140균주의 각 효소의 활성을 보기 좋게 분 석해 놓은 것인데 흰색은 평균수준, 파란색은 평균이하의 효소 활성능을 보이는 것이며 붉은색 이 진할수록 효소의 활성이 우수한 균주라고 할 수 있다. 위의 분석을 토대로 각 쌀koji와 밀 koji에서 alpha-amylase와 glucoamylase, protease 효소 활 성능이 우수한 10개 균주를 각각 정리한 것이 표 15이다.

표 15.	각	enzyme	activity	Тор	10	균주
-------	---	--------	----------	-----	----	----

Г

Organism ID	Alpha- amylase	Organism ID	Alpha- Amylase
Saccharomycopsis fibuligera CN1102_09	28.61	Aspergillus flavus LNJJ12_11	119.63
Aspergillus oryzae CN1302_02	28.24	Wickerhamomyces anomalus CN1302_04	103.21
Wickerhamomyces anomalus CN1102_06	25.29	Saccharomycopsis fibuligera LNJJ14_20	87.17
Wickerhamomyces anomalus CN1502_03	25.13	Lichtheimia corymbifera CN1203_04	78.07
Lichtheimia corymbifera CN1102_04	24.95	Aspergillus oryzae CN1102_08	73.69
Pichia kudriavzevii CN1102_05	23.52	Saccharomycopsis fibuligera LNJJ14_11	53.76
Saccharomycopsis fibuligera CN1102_02	23.12	Pichia membranifaciens LNBS01_03	48.68
Aspergillus clavatus LNJJ13_01	22.75	Saccharomycopsis fibuligera LNJJ14_18	47.04
Aspergillus flavus LNJJ12_11	21.88	Aspergillus oryzae LNJJ13_11	42.66
Saccharomycopsis fibuligera CN1502_01	20.14	Aspergillus oryzae CN2601_05	42.36
	Chugo		Cluco
Organism ID	amulano	Organism ID	amulag
Saccharomycopsis fibuligera (N2601 09	552 07	Saccharomycopsis fibuligera CN2601_09	077 Q1
Aspergillus piger LNBS02 03	268.83	Millerozyma farinosa CN2601_10	562.04
Aspergillus orvzae I NBS03 02	200.03	Aspergillus clavatus CN2601 07	1902.04
Saccharomycopsis fibuligera I NII12 07	195 36	Rhizopus orvzae CN2603.06	430.07
Unknown Unknown CN1301 12	103.00	Mucor circinelloides LNBS02 01	440.00
Aspergillus orvzae CN1102 08	161.00	Lichtheimia ramosa LNII15.06	397 /18
Aspergillus orvzae I NII14 09	150.97	Aspergillus orvzae CN1102 08	378 70
Lichtheimia corymbifera LNII1/ 17	150.37	Saccharomycopsis fibuligera I NII15 10	370.72
Saccharomycopsis fibuligera CN2601 01	1/3 35	Saccharomycopsis fibuligera I NII12 01	352 87
Pichia membranifaciens LNBS01_03	127.11	Aspergillus niger LNBS02_03	319.34
Orregione ID	Protoago		Protoo
Depigillium gitrinum CN1201 09	FIOLEASE	Superphalactrum recomposition CN1201_10	1 4000
Depicillium gricoofulture (N1201_04	/051.4	Syncephalastrum menomerum CN1201_00	14886
Construction of the line of th	5284.6	Syncephalastrum monosporum CN1301_06	12///
Saccharomycopsis fibuligera LNJJ1Z_0/	5192.5	Agnorality rigon LNDCO2 02	12156
Saccharomycopsis fibuligera LNJJ14_22	4137.5	Aspergilius niger LINBSUZ_U3	11645
Periodilium melanoconidium CN1203_06	3963.3	Saccharomycopsis fibuligera LNJJ13_07	11587
Knizopus microsporus CN2603_02	3707.8	Lichtheimia ramosa LINJJ15_06	11264
KNIZOPUS OTYZAE CNZ6U3_U6	3598.8	Aspergillus clavatus LNJJ13_01	11016
Mucor indicus CN2603_01	3510.0	Saccharomyces cerevisiae CN2602_04	10120
Saccharomycopsis tibuligera LNJJ12_09	3337.9	Lichtheimia ramosa LNJJ15_02	9834.
	2200 1	Lighthomic remark CN2602 07	0021

위의 표에서 보는 바와 같이 각 효소능 우수 균주 10위 내에 포함된 균주들은 매우 다양함을 볼 수 있는데 거의 대부분의 균주는 누룩에서 가장 많이 분리, 동정되는 균종들임을 알 수 있었다. 위의 결과를 다시 정리하여 밀 Koji 기준으로 가장 효소활성이 우수한 균주들을 아래의 분석 및 정리된 표로 선정하여 탁주 제조에 직접 입국으로 첨가하여 양조특성에 알맞은 균주인지를 확인하였다.

High Alpha–amylase and Glucoamylase Activity on Koji

그림27. 2014년 확보한 Alpha amylase, Gluco-amylase activity 높은 균주의 heat map

High Protease Activity on Koji

그림28. 2014년 확보한 Protease activity 높은 균주의 heat map

	Wheat Koji	Extracellular	Intracellular
Organism	Lipase Activity	Lipase	Lipase
	(milliunits/g)	(milliunits/ml)	(milliunits/g)
S. fibuligera CN2601-09	0.32	0	0
<i>S. fibuligera</i> KJJ81	0.02	0	2.83
<i>S. fibuligera</i> KPH12	0.10	0	0
<i>R. oryzae</i> CN2603-06	0.64	0.20	0
<i>A. oryzae</i> CN1102-08	0.50	0	0
<i>A. oryzae</i> CN2601-05	0.25	0	0
<i>L. ramosa</i> KPH11	0.10	0	0
<i>L. ramosa</i> LNJJ15-06	0	0	0
<i>L. ramosa</i> CN2602-07	0	0	3.61
L. corymbifera CN1203-03	0.18	0	0
L. corymbifera LNJJ14-17	0.05	0	0
Control		0	
Positive Control		2.642	

표16. Lipase 활성 조사 결과

The lipase activity 확인대상은 총 11가지 균주로 Saccharomycopsis fibuligera 3균주, Rhizopus oryzae 1균주, Aspergillus oryzae 2균주, Lichtheimia ramosa 3균주 그리고 L. corymbifera 2균주를 대상으로 조사하였다. 위의 균주들은 모두 양조특성과 관련된 효소 활성이 우수한 균주들로서 참조유전체 해독한 대상 효모균주들을 포함하여 위 표는 총11균 주의 lipase activity를 3가지 방법으로 분석하여 정리한 것이다. 및 koj에서i lipase activity 는 9개 균주는 0.02 ~ 0.64 mU/g의 lipase activity를 나타냈으나 L. ramosa LNJJ15-06와 CN2602-07 두 균주는 0 mU/g으로 활성이 없었다. Extracellular Lipase activity는 Rhizopus oryzae만 0.2 mU/g의 활성을 나타냈으며 나머지 균주는 활성이 없었다. Intracellular lipase activity는 S. fibuligera KJJ81가 2.83 mU/mL, L. ramosa CN2602-07가 3.61 mU/mL를 나타 냈다.

4. 우수 양조 특성(효소활성) 균주 활용 전통주 (탁주) 제조 및 특성 분석

가. 선발된 양조특성 우수 균주를 대상으로 전통주 제조 방법 개선

실험용 전통주 (탁주) 제조를 위하여 Yang et al (2013)에 의한 방법을 개선하였다. 아래 표 17는 기존에 발표된 막걸리 제조법을 조사한 것인데 쌀, 물, koji의 비율을 달리한 다양한 방 법의 막걸리 제조법이 있으며 쌀보다 물의 비율을 많게 하는 것이 일반적이다. 본 연구에서 는 비교적 간단한 제조법 3번(Yang et. al. 2013)을 기본 방법으로 양조하였고, 조금씩 방법을 변화시켜 연구실에 적합한 제조법으로 개선하였다 (표18).

제조법	구분	고두밥 (g)	물 (ml)	*입국 (g)	효모	Reference
	밑술	-	300	250	4x10 ⁸ cells/g	Kang et.al.
1	<u>_ 덧술 l</u>	750	1300	-	-	- 2014
	Total Ratio	3	7	1		2014
	밑술	-	62	38	0.02%	Kim of al
2	덧술 1	32	68	-	_	
	Total Ratio	1.6	6.5	1.9		2012
0	밑술	80	140	20	1x10 ⁵ cells/g	Yang et. al.
3	Total Ratio	4	7	1		2013
1	밑술	2000	3000	500**	_	Jeon et.
4	Total Ratio	4	6	1	-	al.2010
-	밑술	-	200	100	_	
г	덧술 1	-	2400	900	_	Choi et.
5	덧술 2	4800	7200	_	_	al.2014
	Total Ratio	5	10.3	1		

표17. 막걸리 제조법 문헌 조사. *쌀코지 / **누룩

제조법	구분	고두밥 (g)	물 (ml)	입국 (g)	배양시간 (day)	비고
1	밑술	800	1400	200	7	싸 Koji
1	Total Ratio	4	7	1		
	밑술	250	1500	200	2	
2	덧술 1	1000	-	-	7	밀기울 Koji
	Total Ratio	4	5	1		
	밑술	250	500	30	2	
3	덧술 1	250	-	-	2	믹기운 Koii
0	덧술 2	500	500	-	7	2/12 110)1
	Total Ratio	4.9	4.9	0.2		

표18. 막걸리 제조법 개선 조건

입국은 밀기울 50g에 증류수 30mL를 첨가해 반죽한 뒤 상온에서 10분간 방치한 뒤 밀기 울 반죽 30g 씩 500mL 고압멸균 가능한 polypropylene bottle에 넣고 121℃, 20분간 가압 살균하였다. 사면배지에 배양한 균주에 멸균한 증류수 10mL를 첨가해 균 현탁액을 제조하 여 실온에서 냉각한 밀기울에 접종하였다. 접종 완료 후 항온 항습 배양기에서 30℃, 상대 습도 70% 조건에서 72시간 배양하였다.

탁주 제조에 사용된 쌀은 세척하여 2시간 동안 물에 침지한 후, 체에 밭쳐 30분 동안 물 기를 제거한 다음 쌀을 찜솥에 넣고 1시간 30분 증자한다. 증자 된 쌀을 실온에서 냉각 한 뒤 고두밥, 물, 입국을 제조법에 맞게 양을 정확히 측정하여 골고루 섞은 후 유리병에 담 아 상온에서 배양시간에 맞게 배양한다. 물은 시판되는 생수를 이용하였다. 탁주제조법 개 선에는 Alpha-amylase와 glucoamylase activity가 높은 *A. oryzae* CN1102-08 균주를 선택하 였다.

A. oryzae	CN1102_08	Alpha-amylase	activity	Glucoamylase	Activity
Rice Koji		8.99		161.00	
Wheat Koji		73.69		378.72	

표19. A. oryzae CN1102-08 효소특성

나. 전통주 (탁주) 제조법 3.2 : 기존 제조법 3에서 Lactic acid를 제외한 방법

2013-2014에 확보한 균주 중 참조유전체 분석 대상 균주와 효소 활성이 높고 이전에 탁 주 제조법으로 빚었을 때 맛과 향이 좋은 균주를 대상으로 8균주를 선정하였다. 사업단내 연계 연구대상으로 메타지노믹스 분석을 진행 중인 JJIM과 JJDM 두가지 누룩시료도 시험 대상으로 포함하였다. JJIM과 JJDM은 경남지역에서 수집한 누룩으로 원재료가 수입밀과 우 리밀로 구분되는 시료이다.

Strain Name	Alpha ^{a)} -Amylase	Gluco ^{b)} amylase	Protease ^{c)}	Lipase ^{d)}	균주선정이유
Aspergillus oryzae CN1102-08	73.69	378.72	277.90	0.5	Good flavor
Aspergillus oryzae CN2601-05	42.36	205.52	1197.78	0.25	High gluco amylase
Saccharomycopsis fibuligera KJJ81	7.86	131.55	53.27	0.02	WGS
Saccharomycopsis fibuligera KPH12	1.97	68.06	537.06	0.1	WGS
Saccharomycopsis fibuligera CN2601-09	12.22	977.91	573.73	0.32	High gluco amylase
Rhizopus aryzae CN2603-06	2.93	440.85	1188.30	0.64	Good flavor
Lichtheimia ramosa KPH11	1.64	83.71	7852.90	0.1	WGS
Lichtheimia ramosa LNJJ15-06	3.86	397.48	11264.36	0	High protease

표20. 막걸리 제조에 사용한 균주 목록

a) The glucoamylase activity was defined as the units of glucose released per gram of koji.

b) Alpha-amylase was defined as the amount of ceralpha units per gram of koji.

c) One unit of protease was defined as the amount of enzyme required to release lug of tyrosine/hour.

d) Lipase activity is defined as milliunits of glycerol released per g koji.

다. 주요 균주 S. fibuligera 와 A. oryzae 균주 조합하여 전통주 (탁주) 제조

S. fibuligera로 제조한 막걸리는 맛, reducing sugar, 최종 volume의 값이 낮아서, A. oryzae를 조합하여 막걸리를 제조하면 final volume, 무게 감소, reducing sugar의 경우 향 상될 것으로 예상되어 A. oryzae CN1102-08와 조합하여 막걸리를 제조하였다.

Strain Name	Alpha -Amylase	Gluco amylase	Protease	Lipase	Enzyme Activity	Sequencing
Saccharomycopsis fibuligera CN2601-09	12.22	977.91	573.73	0.32	Glucoamylase 1	Resequence
Lichtheimia ramosa LNJJ15-06	3.86	397.48	11264.36	0	Protease ↑	Resequence
Lichtheimia ramosa CN2602-07	1.12	177.35	8831.9	0	$\begin{matrix} \text{low} & \alpha \text{-amylase} \\ \downarrow \end{matrix}$	Resequence
Lichtheimia corymbifera LNJJ14_17	10.34	181.36	2198.5	0.05	α -amylase Glucoamylase ↑	Resequence
Lichtheimia corymbifera CN1203_03	7.75	0.00	1402.3	0.18	α −amylase Glucoamylase ↓	Resequence

표21. A. orvaze CN1102-08와 조합하여 막걸리 제조에 사용한 균주 목록

라. 선발된 우수 효소활성 균주 대상 양조 제조법 개선 및 양조 후 시음 결과 분석 (1) 탁주 제조법 개선

탁주 양조가 완료되면 taste test를 통하여 분석 후, 맛을 개선하기 위하여 제조법을 개선 하였다. 막걸리 <u>제조법 1</u>은 신맛이 강하고, 높은 알콜 농도와 쓴맛이 났다. 높은 수분 함량 은 신맛을 발생하는 것으로 예상되어 물의 양을 감소시켜서 양조하여 보았다. 그러나 쌀에 비하여 물의 비율이 감소하면 쌀의 분해가 늦어지는 문제가 있어 쌀을 추가로 첨가하는 이 양주 제조법을 사용하였다 (<u>막걸리 제조법 2</u>) 그리고 밀기울 코지의 enzyme 활성이 높고 산업적으로 밀기울 코지를 더 많이 쓰기 때문에 recipe 2에서부터 쌀 코지에서 밀기울 코 지로 변경하였다.

 막걸리 제조법는 신맛을 줄이는데 성공했지만 알콜의 농도, 쓴맛의 감소나 단맛의 증가 하지는 않았다. 그리고 밀기울 코지를 사용하였더니 막걸리의 색이 약간 어두워 졌다. 밀 기울 코지는 쌀 코지 보다 단백질이 많기 때문에 밀기울 코지를 많이 사용하게 되면 쓴맛 이 더 나는 것으로 예상된다.

막걸리 <u>제조법 3</u>에서는 밀기울 코지의 양을 줄이고 단맛을 좀더 개선하고자 쌀의 비율을 높이기 위해서 삼양주 제조법을 사용하였다. 제조법 3은 제조법 2에 비하여 쓴맛이 줄어들 었고 단맛은 조금 증가하였다. 무게감소는 조금 느렸으며, pH는 좀 더 낮았다.

- 따라서 다른 균주의 막걸리 양조 능력을 평가하기 위하여 막걸리 <u>제조법 3</u>번을 선택하였다.

a) recipe별 막걸리최종 단계 i) recipe 1 ii) recipe 2 iii) recipe 3.

- b) pH and Brix(°) of recipe 2 and 3. (not shown recipe 1)
- c) Weight loss of recipes 2 and 3 over the brewing period. (not shown recipe 1)
- d) Taste profile of recipes 1, 2, and 3.

위 그림 29의 a)는 막걸리 제조법 별 최종 단계의 사진이다. 입국의 종류와 양에 따라 최 종 막걸리 색이 다른 것을 확인할 수 있다. b)는 최종단계의 pH와 bix를 측정한 표이다. pH는 401 ~ 4.3으로 비슷하며, bix는 제조법 3번이 15.9로 더욱 높았다. 무게 감소는 제조 법 2번이 95%로 제조법 3번 98%보다 많았다. d)는 taste profile로 제조법 1에서 3으로 갈 수록 overall acceptability가 좋아지는 것을 볼 수 있었다.

Sample	pН	RS	Final Volume (ml)	Weight Loss(%)
<i>S. fibuligera</i> KJJ81	4.2	24.50	1000	97.36
<i>S. fibuligera</i> KPH12	4.1	20.16	700	98.52
<i>S. fibuligera</i> CN2601-09	4.4	22.29	600	98.90
<i>A. oryzae</i> CN1102-08	4.3	116.52	1400	96.52
<i>A. oryzae</i> CN2601-05	4.4	138.03	1300	97.41
<i>L. ramosa</i> KPH11	4.6	146.64	1280	97.27
<i>L. ramosa</i> LNJJ15-06	4.6	160.23	1300	97.00
<i>R. oryzae</i> CN2603-06	4.4	126.04	1220	97.60

표 22. 막걸리 제조법 3.2의 최종 pH, reduced sugars (RS), volume, weight loss (%)

그림 30. 막걸리제조법 3.2로 제조한 막걸리 특성 분석

그림 30에서와 같이 막걸리 발효 과정 중 9일 동안 무게 감소율은 95.8 ~ 98.8%로 측정되었다. 두 개의 누룩과 *A. orzyae* CN1102-08가 가장 빠르게 감소하였으며, *S. fibuligera* KPH12와 CN2601-09 가장 느렸다. 막걸리 제조 후 pH는 3.7 ~ 4.6으로 2개의 누룩이 3.7로 가장 낮았으며, *L. ramosa* 2균주가 4.6으로 가장 높았다. 개선한 레스피 막걸리 최초 부피는 2.4L로 시작하여, *S. fibuligera* strain으로 빚은 막걸리가 CN2601-09 0.6L, KPH12 0.7L, KJJ81 1L로 최대 1/2 ~ 1/3까지 감소하였으며, 나머지 *A. oryzae*, *L. ramosa*, *R. oryzae* 균주로 빚은 막걸리는 1.2 ~ 1.4L 였다.

그림 31. 발효 9일간의 환원당 분석 a) nuruk b) *A. oryzae*, c) *L. ramosa* and *R. oryzae* d) *S. fibuligera*

막걸리 제조 9 일동안의 Reduced sugar(RS) 값은 20.16 ~ 373.55mg/mL으로 조사되었고 상업용 누룩 2종은 은 당화, 발효 기간 동안 급격히 증가하였다가 감소함을 볼수 있었고 *A. oryzae* 종은 급격히 증가하여 170.9까지 증가하였다가 5일동안 111.83으로 다시 감소하 였다. *L. ramosa*와 *R.oryzae*는 약 8일까지 204.93으로 직선적으로 증가하다가 144.13으로 감소하였다. *S. fibuliger* strain은 전반적으로 낮은 환원당 패턴을 보였으며, 2일까지 약간 증가하였다가 감소하고 5일 이후에는 별다른 변화가 없었다. 환원당은 막걸리의 당화, 발 효과정에서 미생물에 의해 전분이 분해되면서 생기는 것으로 일반적으로 맛과 향미에 관 련된다고 알려져 있다. 따라서 환원당을 수치가 높게 유지된 균은 상대적으로 막걸리발효 완료 시 맛에 영향을 주는 상관관계를 볼 수가 있었다 (그림31).

그림 32. 막걸리 맛, 향미 등 기호도 분석 a) *S. fibuligera* strain makgeolli b) Nuruk makgeolli c) *A. oryzae* and *R. oryzae* strain makgeolli and d) *L ramosa* strain makgolli >

Comple	Scont Sweet		Courr	Alcohol/	탄산의	Doctr	Overall
Sample	Scent	Sweel	Sour	Bitterness	세기	BOUY	Acceptability
<i>S. fibuligera</i> KJJ81	3.6	3.4	6.2	6.2	4	3.8	3.375
S. fibuligera KPH12	2.4	2.6	7.4	5	3.2	3.4	3.375
S. fibuligera CN2601-09	3.6	1.8	3.6	3.6	2.8	5.8	2.875
A. oryzae CN1102-08	5.8	4.4	5.4	7	4.4	3.8	5.75
A. oryzae CN2601-05	6.25	5.875	4.75	6.375	4.625	5.625	6.5
L. ramosa KPH11	3.75	5.75	4	5.625	4	5	4.25
L. ramosa LNJJ15-06	2.125	4.375	3.5	5.375	3.625	4.5	2.75
<i>R. oryzae</i> CN2603-06	5.2	6	5.4	6.4	4.8	4.6	6.125

표23. 막걸리의 기호도 분석 결과

위 그림 32와 표23은 각 균주별로 다양한 taste profile을 보여주고 있는데 *S. fibuligera* strains들은 전반적인 호응도가 2-3에 그졌고 단맛이 적고 향도 거의 없음을 알 수 있었다. 상업용 누록시료로 만든 막걸리의 경우 수입밀로 만든 누룩이 전반적인 호응도가 6으로 비 교적 좋은 편이었으나 국내산 밀로 만든 누룩은 3에 그치고 있는데 단맛이 낮고 매우 신맛 이 나는 것으로 결과가 나온 것으로 막걸리 제조사에서 많은 감미료나 맛을 더하기 위한 첨가물을 다량 혼합함을 간접적으로 시사하고 있다. *A. orzyae* 와 *R. oryzae* 균주들이 전체 균주 중 전반적인 호응도가 5.7 - 6.5로 가장 높았다. 단맛과 향이 높고 시음자의 설문에 꽃향기가 난다고 응답한 경우도 있었으며 *L. ramosa* 균주들은 전반적인 호응도가 2-4로 대체로 낮은 편이었으며 다른 균주에 비하여 단맛이 높고 신맛이 낮게 조사되었고 시음자의 향에 대한 평이 치즈, 발 냄새 등이 난다고 조사되었다. 따라서 전체적으로 *A. orzyae* 와 *R. oryzae* 두가지 균주가 가장 시음결과가 우수한 것으로 나타났다.

(3) 주요 균주 S. fibuligera 와 A. oryzae 균주 조합으로 막걸리 제조

선발된 주요사상성 진균 및 효모의 단일균주 koji로 만든 막걸리의 시음결과를 바탕으로 S. fibuligera 균주들과 향미와 맛 특성이 우수한 것으로 나타났던 A. oryzae 균주를 혼합하 여 koji를 제조하여 막걸리 특성을 조사하였다 (그림 33). 마지막 막걸리 생산 부피 감소의 경우 S. fibuligera KJJ81보다 S. fibuligera KPH12의 경우 A. oryzae와 결합하였을 때 좀 더 효과가 있었다. 하지만 A. oryzae 단독이었을 때 보다 크지는 않았다. 환원당 (Reducing sugar)의 경우 두 균주를 조합해서 양조한 경우 누룩과 같이 지속적으로 증가 (753mg/mL) 하다가 감소 (370mg/mL)하는 패턴을 보였다. KPH12 + CN1102-08 조합은375.55mg/ml, CN2601-09 + CN1102-08 조합은 218.4mg/ml, KJJ81 + CN1102-08 조합은 96.4mg/ml으로 조 사되었다. 최종 volume은 S. fibuligera 단독으로 했을 때와 비교하여 두 균주를 조합한 경 우 600에서 1400까지 증가하였다. 단 A. oryzae 단독으로 막걸리를 제조하였을때에도 1400mL이었으므로 크게 두균주를 조합하여 개선된 점은 찾을 수 없었다. 시음결과에서도 두 균주를 조합한 경우 A. oryzae CN1102-08 단독으로 막걸리를 제조 하였을 경우와 크게 개선된 점이 없이 유사한 결과를 나타냈다. 따라서 두 균주를 조합하여 더 좋은 양조특성 을 가진다고는 볼 수 없었다. 오히려 A. oryzae 와 R. oryzae 두종의 우수 균 단일koji의 양조특성이 비교우위에 있다고 볼 수 있었다.

그림 33. A. oryzae CN1102-08 와 S. fibuligera. 조합하여 제조한 막걸리 제조결과 a) Weight loss over 9 days. b) Reduceed sugars in the brew culture over 9 days. c) Final volume of the makgeolli after filtration.

3절. 누룩 유래 유용 사상성 진균의 참조 유전체 해독 및 해외 산업 균주와의 비교 유전체 분석

1. 우수 당화·발효 균주 Aspergillus oryzae, Lichtheimia ramosa 의 유전체 해독 미생물 군집 분석 및 확보한 균주 중 가장 빈도가 높게 나타난 사상성 진균류인 A. oryzae 종과 Rhizopus, Mucor 등을 포함하는 Mucorales 중 Lichtheimia ramosa균의 비교 유전체 분 석을 위해 균주를 선정하고 유용 유전자를 발굴하고자 하였다. 표 24와 같이 A. oryzae균주 는 효소활성이 높고 막걸리 특성이 가장 높은 것을 선택하였고 Lichtheimia 균주들은 각각 L. ramosa와 L. corymbifera균주들 중 효소활성이 현격히 차이가 나는 두 개 균주씩을 선정 하였다. A. oryzae 2균주는 참조유전체로 활용하기 위하여 ㈜테라젠 바이오연구소와 서울대 나이셈 유전체분석센터에서 PacBio NGS 방법으로 whole genome De novo 시퀀싱하였고, 비교유전체 분석을 위해 Lichtheimia 속의 4개 균주는 일루미나 (Illumina) HighSeq 2000으 로 시퀀싱하였다.

Strain Name	Alpha -Amylase	Gluco amylase	Protease	Lipase	선정이유
Aspergillus oryzae BSSS-F2	73.69	378.72	277.90	0.5	Good flavor
Aspergillus oryzae JJBP-E3	42.36	205.52	1197.78	0.25	α-amylase Glucoamylase ↑
Lichtheimia ramosa JJSP-G	3.86	397.48	11264.36	0	Protease ↑
<i>Lichtheimia ramosa</i> SC-b1	1.12	177.35	8831.9	0	low α -amylase \downarrow
Lichtheimia corymbifera JJ4-H2	10.34	181.36	2198.5	0.05	α-amylase Glucoamylase ↑
Lichtheimia corymbifera SH-C2	7.75	0.00	1402.3	0.18	α-amylase Glucoamylase ↓

표 24. 비교 유전체 분석 대상 균주 선정 이유

가. L. ramosa KPH11의 참조유전체 정보분석

L. ramosa 게놈 정보를 분석하기 위해 PacBio사의 Single Molecule, Real-Time (SMRT) sequencing 방법으로 sequencing해서 약 73X coverage (32Mbp기준)의 reads를 얻었고, 이 를 Hierarchical Genome Assembly Process (HGAP) pipeline으로 de novo assembly를 실시 하여 29개의 contig를 얻었다 (그림 34).

그림 35. HGAP pipeline으로 assemble된 contig 정보

Conitg를 합쳐서 chromosome을 만든결과 chromosome들의 끝쪽의 repeat 정보를 분석해서 TTTAGGG의 telomeric repeat이 존재하는 것을 확인했고, 곰팡이류의 ribosomal RNA sequence와 homology search를 이용해서 약 11kbp 크기의 rRNA cluster가 반복되는 것을 확인했다 (그림 35). 이미 sequencing했던 Illumina PE 결과 등을 활용해서 약 60~70개의 rRNA cluster가 6개의 chromosome 말단에 존재한다는 것을 발견해서 이들 6개의 chromosome이 11~12개씩의 rRNA cluster를 가져 총 68개의 rRNA cluster가 되도록 했다. 결론적으로 *L. ramosa*는 약 31.88Mbp크기를 가지는 10개의 chromosome을 구성되어 있는 데, 이들은 양 끝에 4~14개의 telomeric repeat (TTTAGGG)을 가지고 있다. Draft gene annotation결과 12,355개의 mRNA와 145개의 tRNA가 발견되었다 (표 25).

chname	chsize	CCCTAAA	TTTAGGG	#rRNAcls
ch01	6,024,677	14	11	
ch02	3,652,425	13	14	
ch03	3,433,391	14	4	rRNAcls*12
ch04	3,350,265	10	13	
ch05	3,338,532	13	4	rRNAcls*11
ch06	2,965,102	10	4	rRNAcls*11
ch07	2,772,364	14	4	rRNAcls*11
ch08	2,729,116	9	4	rRNAcls*11
ch09	2,542,651	13	4	rRNAcls*12
ch10	1,074,722	11	14	
total	31,883,245			

표 25 L. ramosa KPH11의 genome 정보

나. A. oryzae JJBP-E3와 A. oryzae BSSS-F2 유전체 정보분석 결과

A. oryzae JJBP-E3와 A. oryzae BSSS-F2 유전체 구조를 밝히기 위해 PacBio사의 Single Molecule, Real-Time (SMRT) sequencing 방법으로 sequencing해서 각각 54X와 80X coverage의 reads들을 얻었고, 이를 Hierarchical Genome Assembly Process (HGAP) pipeline으로 de novo assembly를 실시하여 각각 21개와 19개의 contig를 얻었다 (그림 36 ~ 39).

Generated by SMRT Pipe 17 Aug 2016 01:42 PM. For Research Use Only. Not for use in diagnostic procedures.

그림 36. A. oryzae JJBP-E3 Pacbio Subreads Filtering Information

그림 37. HGAP pipeline으로 assemble된 A. oryzae JJBP-E3 contig 정보

그림 38. A. oryzae BSSS-F2 Pacbio Subreads Filtering Information

그림 39. HGAP pipeline으로 assemble된 A. oryzae BSSS-F2 contig 정보

이들 contig들을 합쳐서 chromosome 구조를 밝힌 결과, *A. oryzae*의 참조유전체인 *A. oryzae* RIB40과 마찬가지로 8개의 염색체로 구성되어 있음을 확인하였다. 이들 두 *A. oryzae* 균주 유전체를 구성하는 염색체의 말단에는 AACATTAGGGTC의 telomeric repeat이 존재하는 것을 확인하였다 (표 14, 15).

JJBP-E3	GACCCTAATGTT	AACATTAGGGTC
chn	start	end
ch1	6	10
ch2	7	11
ch3	11	6
ch4	3	9
ch5	7	9
ch6	11	6
ch7	7	7
ch8	7	11

표 26. A. oryzae JJBP-E3 염색체들의 telomeric repeat 개수
BSSS-F2	GACCCTAATGTT	AACATTAGGGTC
chn	start	end
ch1	11	8
ch2	8	11
ch3	11	8
ch4	4	12
ch5	4	10
ch6	0	8
ch7	12	0
ch8	9	0

표 27. A. oryzae BSSS-F2 염색체들의 telomeric repeat 개수

또한, *A. oryzae* 염색체들과 homology 분석을 통해서 *A. flavus*의 참조유전체인 *A. flavus* NRRL3357의 scaffold들도 역시 8개의 염색체를 가지는데, MUMmer 분석결과 *A. oryzae* JJBP-E3와 같은 염색체구조를 가지는 것을 확인하였다 (그림 40.

그림 40. Mummer analysis between A. oryzae JJBP-E3 and A. flavus NRRL3357

A. oryzae JJBP-E3와 다른 A. oryzae 두 균주 유전체들과의 MUMmer 분석결과, 일본의 참 조균주인 A. oryzae RIB40과는 한군데에서 염색체간의 rearrangement가 일어났고, A. oryzae BSSS-F2와는 5군데에서 염색체들간의 rearrangement가 일어났는데, 이것은 A. oryzae에서 염색체들간의 rearrangement가 활발함을 보여준다 (그림 41, 그림 42).

그림 41. Mummer analysis between A. oryzae JJBP-E3 and A. oryzae RIB40

그림 42. Mummer analysis between A. oryzae JJBP-E3 and A. oryzae BSSS-F2

2. 비교 유전체를 통한 국내균주의 우수 특성 관련 유전자 탐색

가. 국내 누룩 유래 *Aspergillus* sp.의 균주 분석 및 우수 특성 관련 비교유전체 분석 (1) *Aspergillus* sp. 참조유전체 및 비교 유전체 해독

비교 유전체 분석을 위하여, 1-3 차 년도 누룩에서 분리한 *A. oryzae* 균주 중 6 개의 균 주를 선정하고, 그 유사 종인 *A. flavus* 표준 균주 ATCC22546, *A. oryzae* 표준 균주 NRRL1989를 선정하여 총 8 개의 *Aspergillus* 균주들을 시퀀싱 하였다 (표 28). 누룩에서 분 리한 *A. oryzae* 중 2 균주 (JJBP-E3, BSSS-F2)는 참조유전체로 활용하기 위해서 ㈜테라젠 바이오연구소와 서울대 나이셈 유전체분석센터에서 PacBio RS II platform (Pacific Biosciences Inc, California, USA) 방법으로 whole genome De novo 시퀸싱하였다. Pacbio-based reads의 assembiles는 Hierarchical Genome Assembly Process (HGAP 3.0)와 PBcR pipline of Celera Assembler 방법을 이용하여 수행되었다 (BerlinK*et al.*, 2015). Assemblers를 통해 얻은 contigs는 Blast N 방법을 이용하여 mapping 하였다 (Altschul*et al.*, 1990). 두 균주를 제외한 다른 6 개의 *Aspergillus* 균주들은 (쥬테라젠 바이오연구소에서 일 루미나 (Illumina) HighSeq 2500으로 시퀀싱하였으며, spades assembler 3.9.0을 이용하여 assembly하였다.

No.	Species	Strain	Seq method	Assembly method
1		BSSS-F2	PacBio	HGAP v.3.3
2		JJBP-E3	PacBio	HGAP v.3.3
3	Assoraillus on 1700	YI3-2	Illumina HiSeq	spades 3.9.0
4	Aspergillus oryzae	JJ4-b	Illumina HiSeq	spades 3.9.0
5		DG2-1	Illumina HiSeq	spades 3.9.0
6		SW1-6	Illumina HiSeq	spades 3.9.0
7	Aspergillus flavus	ATCC22546	Illumina HiSeq	spades 3.9.0
8	Aspergillus sojae	NRRL1989	Illumina HiSeq	spades 3.9.0

표 28. 비교 유전체 분석 대상, 시퀀싱 및 assembly 방법

참조유전체 A. oryzae 2 균주 (BSSS-F2, JJBP-E3)는 PacBio RS II platform (Pacific Biosciences Inc, California, USA) 방법으로 각각 54X와 80X coverage의 reads들을 얻었고, 이를 Hierarchical Genome Assembly Process (HGAP) pipeline으로 de novo assembly를 실 시하여 각각 21개와 19개의 contig를 얻었다 (표 29). 두 균주를 제외한 다른 6 개의 Aspergillus 균주들은 표 6과 같은 coverages의 reads들과 contig를 얻었다.

표 29. 비교유전체 Aspergillus 8 균주들의 reads, coverage, contigs 정보

No.	Species	Strain	Filtered reads	Coverag e	#conti g	Largest contig
1	A. oryzae	BSSS-F2	430,425	80	19	5,968,989
2		JJBP-E3	355,537	54	21	6,628,751
3		YI3-2	61,829,318	163	871	817,091

4		JJ4-b	70,911,646	187	1,121	552,834
5		DG2-11	70,710,478	186	1,004	850,520
6		SW1-6	66,563,512	175	1,152	603,200
7	A. flavus	ATCC22546	170,524,500	449	3,728	640,142
8	A. sojae	NRRL1989	81,114,778	203	1,322	598,667

A. oryzae 염색체들과 homology 분석을 통해서 A. flavus의 참조유전체인 A. flavus NRRL3357의 scaffold들도 역시 8개의 염색체를 가지고 있으며 우리나라 누룩 유래의 A. oryzae 균주들 (JJBP-E3, BSSS-F2, BP2-1)과 일본 참조균주 (RIB40) 간의 염색체 시퀀스 크 기, GC 비율 (%GC) 등은 유사함을 알수있었고, mitochondria 크기는 동일함을 볼 수 있다. BSSS-F2는 어셈블되지 않은 일부 시퀀스가 남아있는데 이는 변이에 의한 것인지 확인할 필요가 있어 보인다 (표 30). 두 균주를 제외한 다른 6 개의 Aspergillus 균주들의 contig ordering information은 표 31과 같다.

1	RIB40		JJBP-E3	7	BSSS-F	2	BP2-1	,î	A.flavu	s	
chn	chlen	%GC	chlen	%GC	chlen	%GC	chlen	%GC	chlen	%GC	-
ch1	6,520,266	48.21	6,628,751	47.35	5,968,989	47.36	6,536,469	47.35	6,447,362	48.29	
ch2	6,264,705	48.57	6,318,930 47.60		5,791,610	47.66	6,393,522	47.54	6,261,997	48.42	
ch3	5,123,684	48.30	5,067,839	47.34	4,913,890	47.48	5,114,879	47.1	5,116,275	48.4	
ch4	4,887,096	48.00	5,014,470	47.10	4,718,806	47.26	4,756,038	47.22	4,757,079	48.17	_
ch5	4,533,889	48.29	4,611,334	47.35	5,497,912	47.46	4,671,750	47.43	4,524,962	48.36	
ch6	4,190,347	48.08	4,059,978	47.10	4,094,098	46.82	4,228,717	47.05	3,998,117	48.54	-
ch7	2,933,481	48.43	4,314,127	47.13	3,249,817	48.11	3,267,634	48.14	3,002,395	48.38	
ch8	3,395,259	48.19	3,135,072	46.90	4,250,471	47.05	3,517,318	46.55	3,179,205	48.23	
47Q	6,938	31.78			C				37,287,392	48.35	-
47Q	18,226	43.35	1								
Q47Con0	8,921	46.07									
u11					35,390	35.5					
mt	29,202 26.15 29,206			29,205		29,216					
tot	37,912,014	37,912,014 48.24 39,179,707 47.27 38,520,983 47.5		47.38	38,486,327	47.3	37,287,392	48.35			
					ĥ			402,696	44.19	un_313	

표 30. A. oryzae 균주들과 A. flavus 염색체구조 비교분석

표	31.	Α.	oryzae	contig	ordering	inform	ation
			~				

		NRRL1989				DG2-11				JJ4-b		-		SW1-6		-	YI3-2			
chn	#con	size1	size2	chn	#con	size1	size2	chn	#con	size1	size2	chn	#con	size1	size2	chn	#con	size1	size2	
ch1	74	6,654,765	6,656,955	ch1	86	6,464,925	6,467,475	ch1	111	6,409,266	6,412,566	ch1	90	6,381,088	6,383,758	ch1	65	6,395,515	6,397,435	
ch2	83	6,485,159	6,487,619	ch2	59	6,313,762	6,315,502	ch2	126	6,339,075	6,342,825	ch2	73	6,246,581	6,248,741	ch2	77	6,221,694	6,223,974	
ch3	100	5,267,703	5,270,673	ch3	56	4,934,196	4,935,846	ch3	71	4,967,466	4,969,566	ch3	59	5,032,932	5,034,672	ch3	47	5,058,700	5,060,080	
ch4	56	4,942,213	4,943,863	ch4	53	4,703,874	4,705,434	ch4	93	4,709,520	4,712,280	ch4	111	4,728,304	4,731,604	ch4	38	4,639,362	4,640,472	
ch5	54	4,625,709	4,627,299	ch5	48	4,454,914	4,456,324	ch5	71	4,493,510	4,495,610	ch5	58	4,423,104	4,424,814	ch5	43	4,461,867	4,463,127	
ch6	92	4,906,219	4,908,949	ch6	35	3,897,837	3,898,857	ch6	49	3,917,469	3,918,909	ch6	41	3,895,733	3,896,933	ch6	41	3,902,800	3,904,000	
ch7	30	2,335,654	2,336,524	ch7	45	3,156,961	3,158,281	ch7	58	2,849,958	2,851,668	ch7	32	2,838,083	2,839,013	ch7	34	3,011,148	3,012,138	
								ch7end	131	684,924	688,824			-	-		-			
ch8	41	3,303,365	3,304,565	ch8	20	3,088,172	3,088,742	ch8	36	3,031,901	3,032,951	ch8	27	3,053,878	3,054,658	ch8	17	3,089,873	3,090,353	
mt	1	29,136	29,136					mt	1	29,282	29,282	-		-	-	mt	1	29,259	29,259	
un2k	123	839,985	839,985	un2k	32	364,639	364,639	un2k	19	70,336	70,336	un2k	36	288,850	288,850	un2k	50	145,314	145,314	
sum	654	39,389,908	39,405,568	sum	434	37,379,280	37,391,100	sum	766	37,502,707	37,524,817	sum	527	36,888,553	36,903,043	sum	413	36,955,532	36,966,152	

A. oryzae JJBP-E3와 다른 A. oryzae 균주들의 유전체과의 MUMmer 분석결과, 모두 8개의 염색체를 가지며, JJBP-E3와 같은 염색체 구조를 가지는 것을 확인하였다. 반면, A. oryzae BSSS-F2와는 5군데에서 모두 염색체들간의 rearrangement가 일어남을 확인하였다. (그림 43, 그림44). 즉, 대표적인 A. oryzae의 염색체 구조는 A. oryzae JJBP-E3와 같다고 판단된 다.

그림 43. Mummer analysis between A. oryzae JJBP-E3 and other A. oryzae strains

그림 44. Mummer analysis between A. oryzae JJBP-E3 and other A. oryzae strains

(2) 계통학적 분석

A. oryzae와 그 유사하다고 알려진 종 들 간의 유연관계를 알아보기 위하여, whole genome level에서 본 연구에서 시퀀싱한 7 균주 (A. flavus ATCC22546 제외)와 생자관의 A. oryzae BP2-1, NCBI에 등록된 A. oryzae 표준균주 RIB40과 A. flavus 표준균주 NRRL3357, A. sojae 표준균주 NBRC4239, A. parasiticus 표준균주 SU-1를 포함하여 phylogenetic tree를 완성하였다.

ANIb (Average Nucleotide Identity using Blast) 방법으로 *A. oryzae* 유전체들과 유연관계가 가까운 *A. flavus, A. sojae, A. parasiticus* 유전체 간의 유연관계를 확인해본 결과 *A. flavus* 는 *A. oryzae*들과 매우 가까운 유연관계를 보이는 반면, *A. sojae*와 *A. parasiticus*는 이들과 거리가 있는 것으로 확인되었다 (표 17, 그림 28). 분양 받았던 *A. oryzae* 표준균주 NRRL1989은 ANIb 방법으로 유연관계를 확인하여 보니, *A. sojae*와 99.95 % 로 *A. sojae*와 유연관계가 더 가까웠다. Phylogenetic tree에서도 *A. oryzae* NRRL1989는 *A. sojae*와 더 유 연관계가 가까움을 확인 하였다.

Aver	age Nuclotide				A. oryzae	3			A. flavus	A. s	ojae	A. parasiticus
I	dentity (%)	КВРЗ	KSS2	KJJ4b	KDG21	KYI32	RIB40	KSW16	NRRL3357	NBRC4239	NRRL1989	SU-1 (JCVI)
	KBP3	100	99.52	99.26	99.22	99	99	99.31	98.72	93.45	93.29	93.34
	KSS2	99.59	100	99.22	99.2	99.03	99.05	99.29	98.76	93.47	93.34	93.4
se	KJJ4b	99.48	99.42	100	99.36	99.12	99.44	99.42	99.14	93.52	93.52	93.51
oryza	KDG21	99.42	99.37	99.35	100	99.15	99.38	99.57	99.18	93.54	93.52	93.54
Ą	КҮІЗ2	99.17	99.17	99.13	99.17	100	99.17	99.16	99.34	93.54	93.53	93.54
	RIB40	99.47	99.49	99.39	99.37	99.14	100	99.43	99.14	93.52	93.49	93.45
	KSW16	99.48	99.42	99.4	99.58	99.14	99.45	100	99.2	93.51	93.48	93.49
A. A.	NRRL3357	99.19	99.17	99.16	99.21	99.36	99.19	99.22	100	93.56	93.55	93.56
ojae	NBRC4239	93.43	93.43	93.44	93.43	93.47	93.44	93.44	93.47	100	99.95	98.27
A. S.	NRRL1989	93.36	93.37	93.41	93.39	93.44	93.39	93.4	93.43	99.94	100	98.21
A. P	SU-1 (JCVI)	93.33	93.35	93.37	93.38	93.44	93.37	93.39	93.44	98.24	98.21	100

₩ 32. ANIb results

그림 45. Phylogenetic tree using Hierachical Clustering method

나. 국내 누룩 유래 L. ramosa & L. corymbifera 균주의 균주 분석 및 우수 특성 관련 비교유전체 분석

(1) Lichtheimia sp. 참조유전체와 비교 유전체 해독

Illumina HiSeq 방법으로 2종의 *L. ramosa* 균주 (*L. ramosa* JJSP-G, *L. ramosa* SC-bi)와 2종 의 *L. corymbifera* 균주 (*L. corymbifera* JJ4H2, *L. corymbifera* SHC2)를 100~120X coverage 로 sequencing해서 *L. ramosa* 참조유전체의 genome에 mapping해본 결과, 예상대로 *L. ramosa* 균주의 reads들은 99% 이상 align된 반면, *L. corymbifera* 균주들은 대부분 align되 지 않았다. 이것이 *L. corymbifera*와 *L. ramosa*와의 genome sequence homology 차이에 의 한 것으로 판단되어 spades assembler로 assemble해서 얻은 contig를 *L. ramosa* 참조유전체 염기서열과 비교분석을 통해서 어떤 염색체구조를 가지는지 확인해보았다 (표 33).

-	L. ramo	sa JJSP	L. ramo	sa SCbl	L. corymbi	fera JJ4H2	fera SHC2	
	contigs	scaffolds	contigs	scaffolds	contigs	scaffolds	contigs	scaffolds
Under 0.5k contigs	3,391	3,444	41,543	38,131	2,019	2,049	2,066	2,100
Under 0.5k sum	501,765	511,105	9,563,987	8,615,694	289,573	294,104	295,821	298,637
Under 1k contigs	222	209	4,157	5,668	184	172	211	189
Under 1k sum	154,747	147,520	2,867,567	3,812,997	131,210	123,400	151,880	136,361
Under 5k contigs	784	775	5,699	2,859	1,048	1,044	1,127	1,128
Under 5k sum	1,363,122	1,350,573	12,874,704	5,454,192	1,720,382	1,710,962	1,868,901	1,873,132
Under 10k contigs	68	65	1,254	442	51	51	45	44
Under 10k sum	472,385	448,350	8,658,196	3,121,774	345,966	342,996	314,743	306,093
over 10k contigs	338	332	510	810	382	378	384	379
over 10k sum	28,862,428	28,886,515	8,467,970	22,118,319	28,925,380	28,932,697	28,938,298	28,946,679
max size	1,232,270	1,232,270	342,291	342,291	401,553	487,177	479,022	479,022

표 33. De novo assembly results with spades assembler

L. corymbifera JJ4H2와 L. corymbifera SHC2의 contig sequence를 L. ramosa 참조유전체 sequence에 mapping 분석을 해본 결과 약 2kbp 이상의 contig 중 1~1.5%를 제외한 나머지 sequence가 mapping되는 것으로 보아 두 균주 모두 L. ramosa와 상당히 유사한 유전자 구 성을 가진 것으로 판단된다. 또한 L. corymbifera JJ4H2에서 ch03과 ch09간의 chrmosomal rearrangement 가능성이 발견된 것 외에 rearrangement 징후가 발견되지 않은 것으로 보아 게놈 구조도 L. ramosa와 매우 유사한 것으로 추정된다 (표 34)

L. 1	amosa		<i>L. со</i>	rymbifera JJ4	H2	1	L. cor	<i>ymbifera</i> SHC	2
chname	chsize	#con size1 size2					#con	size1	size2
ch01	6,024,677	ch01	105	5,910,560	5,913,680	ch01	169	5,939,785	5,944,825
ch02	3,652,425	ch02	76	3,490,794	3,493,044	ch02	107	3,492,391	3,495,571
ch03	3,433,391	ch03	75	2,747,327	2,749,547	ch03	138	3,227,673	3,231,783
ch04	3,350,265	ch04	79	3,211,775	3,214,115	ch04	151	3,236,434	3,240,934
ch05	3,338,532	ch05	61	3,154,736	3,156,536	ch05	114	3,189,684	3,193,074
ch06	2,965,102	ch06	81	2,796,627	2,799,027	ch06	77	2,770,389	2,772,669
ch07	2,772,364	ch07	71	2,566,143	2,568,243	ch07	152	2,607,015	2,611,545
ch08	2,729,116	ch08	81	2,487,192	2,489,592	ch08	99	2,463,509	2,466,449
ch09	2,542,651	ch09	66	2,732,568	2,734,518	ch09	102	2,277,608	2,280,638
ch10	1,074,722	ch10	44	658,990	660,280	ch10	47	653,770	655,150
		unch10	23	52,159	52,819				
		un2k	88	312,273	312,273	un2k	124	445,744	445,744
total	31,883,245	850 30,121,144 30			30,143,674		1,280	30,304,002	30,338,382

H 34. Contig mapping information with *L. ramosa* reference genome

그림 46. MUMmer analysis between L. ramosa and L. corymbifera JJ4H2

그림 47. MUMmer analysis between L. ramosa and L. corymbifera SHC2

(2) 계통학적 분석

ANIb (Average Nucleotide Identity using Blast) 방법으로 *L. ramosa* 참조유전체와 새로 sequencing한 균주들간의 유연관계를 분석해본 결과, *L. ramosa* JJSP는 약 99.84%, *L. ramosa* SCbl는 약 99.13%의 평균 상동성을 보인 반면, *L. corymbifera* JJ4H2는 97.98%, *L. corymbifera* SHC2는 99.97%의 평균 상동성을 보여, *L. ramosa*보다는 약간 낮지만, 다른 종 에 속하는 균주들로써는 매우 높은 유사성을 가지는 것을 알 수 있다 (표 35). *L. ramosa* SCbl는 다른 *L. ramosa* 및 *L. corymbifera* 균주들과 유사성을 보이는 것으로 보아 이들과 독립된 변이를 거친 중간단계의 아종으로 판단된다.

ANIb	Lram	FSUgn	JJSP	SCbl	JJ4H2	SHC2	
Lram	100	99.91	99.84	99.13	97.98	97.97	
FSUgn	99.95	100	99.82	99.18	97.99	98.02	
JJSP	99.98	99.93	100	99.33	98.2	98.2	
SCbI	99.12	99.11	99.11	100	98.82	98.83	
JJ4H2	98.27	98.26	98.26	99.11	100	99.96	2
SHC2	98.27	98.26	98.26	99.11	99.94	100	

표 35. ANIb 분석 결과

또한, 이 결과를 Hierachical Clustering method로 phylogenetic tree를 그려본 결과, 예상대 로 *L. ramosa*와 *L. corymbifera*들간의 계통이 분리되는 유연관계를 보였다 (그림 48).

그림 48. Phylogenetic tree using Hierachical Clustering method

4절. 누룩 유래 사상성 진균의 유용 유전자 발굴 및 기능 연구

 누룩 유래 주요 사상성 진균 Aspergillus oryzae 및 A. flavus 의 aflatoxin 생합성 유전자 분석 및 생성능 조사

가. A. oryzae와 A. flavus의 형태학적 종 동정

우리나라 누룩 시료에서 5.8S rDNA(ITS), 18S rDNA(NS) 지역의 염기서열을 이용하여 분자 동정된 *A. oryzae* 혹은 *A. flavus* 114개의 균주를 형태학적으로 동정하였다. Potato Dextrose Agar (PDA) media, Czapek Yeast Extract Agar (CYA) media에서 25℃, 5일 동안 배양 시킨 후에 고체평판배지에서의 콜로니 색깔, 형태, 공중균사 생장 모양 등과 현미경 하에서 관찰한 무성생식포자 형성 구조로 비교 분석 하였다. 표준균주로는 aflatoxin을 생 성하는 균주인 *A. flavus* ATCC 22546, *A. parasiticus* ATCC 22789와 aflatoxin을 생성하지 않는 *A. oryzae* NRRL 1989, *A. oryzae* RIB 128를 분양 받아 사용하였다.

나. HPLC를 이용한 aflatoxin 생성능 조사

(1) 시약 및 표준 물질

Aflatoxin B₁, B₂, G₁, G₂표준물질은 Aflatoxin Mix Kit (Supelco, Bellefonte, PA, USA)를 구입 하여 사용하였으며, 추출과 분석에 사용되는 acetonitrile, methanol은 HPLC용 (Merck, Darcstadt, Germany)을 사용하였고 Sodium chloride는 99.5% 이상 (Daejung, Siheung-ro, Korea)을 사용하였다.

(2) 정제용 칼럼

실험에 사용된 aflatoxin 정제용 칼럼은 immuno-affinity column인 AflaTest WB (VICAM, Watertown, MA, USA)를 이용하였다. 3 mL syringe 컬럼에 시료 추출액을 통과시키면 aflatoxin의 monoclonal antibody에 독소가 결합되고 증류수로 불순물을 제거한 후 Methanol 을 주입하면 aflatoxin이 항체로부터 떨어지면서 추출되어진다. 이 칼럼은 aflatoxin B₁을 0.03 ppb에서 100 ppb까지 검출 할 수 있다.

(3) 시료 배양

시료는 쌀 배지에 단일 균주를 배양하였다. 쌀 배지는 250 mL 플라스크에 찰기가 없는 베 트남 인디카 쌀을 구입하여 사용하였으며 쌀 30 g에 증류수 10 mL를 넣고 면전으로 입구 를 막은 후 121 ℃에서 20분간 1차 멸균하고, 쌀을 낱알로 분리시킨 후 증류수 10 mL를 넣고 121 ℃에서 20분간 2차 멸균 후 식혀서 사용하였다. 균은 10⁶ spores/mL 포자액을 1 mL씩 접종하고 25 ℃에서 14일간 배양 후 배양체를 121 ℃에서 20분간 멸균하고 (Aflatoxin이 열에 강하여 변성되지 않고 시료 취급 시 안전을 위하여) 거즈로 덮어 완전 건조하였으며 이 시료를 독소추출에 사용하였다.

(4) 시험용액의 조제

시료 내 aflatoxin 추출 및 전처리 과정은 AOAC (http://www.british-standard.org/) 방법에

따라 추출하였다. 시료를 배양한 쌀 배지 25 g에 NaCl 5 g을 넣고 분쇄 후, 70 % methanol 125 mL를 넣고 2분간 최고 속력으로 추출하였다. Vial에 여과지(Advantec No.2)로 여과한 용액을 3차 증류수와 1:2 비율로 희석하여 잘 섞은 후 1.5 µm 유리 섬유 여과지(Vicam, Watertown, MA, USA)로 여과하였다. Immunoaffinity column (AflaTest WB)에 10 mL syringe를 연결하고 여과액 15 mL를 column에 모두 통과시켰다. 10 mL 증류수로 column을 두 번 씻어내고 1 mL methanol을 흘려서 eluent를 추출하였다. 추출한 용액 1 mL에 증류 수 1 mL를 더해 1:1 비율로 희석하였다. 전처리 과정을 요약하여 그림 49에 나타냈다.

Homogenized Sample 25g
↓ ↓
Extraction with 70% methanol 125 mL
↓
Filtration (Advantec No.2)
\downarrow
Dilution of filtrate 15 mL with D.W 30 mL
↓
Filtration (1.5µm glass microfiber filter)
\downarrow
Apply 15mL mixture solution on top of immunoaffinity column(1drop/sec)
\downarrow
Wash 10 mL 3.D.W x2
\downarrow
Elute 1 mL Methanol
\downarrow
Dilution of eluent with 1 mL 3.D.W
↓
HPLC-FLD analysis
그림 49. 시료에서 aflatoxin 추출 및 정제 과정

(5) 회수율 조사

쌀 배지의 회수율 확인은 시료 배양과 동일한 방법으로 쌀 배지를 제조하여 사용하였다. 쌀 배지 25 g에 NaCl 5 g을 넣고 분쇄 후, 70 % methanol 125 mL과 aflatoxin B₁, B₂, G₁및 G₂의 혼합 표준용액을 최종농도 26.1 μg/kg가 되도록 첨가한 후 시료에서의 독소 추출과 동일한 방법으로 표준독소를 추출하여 정량하였다.

(6) 분석 방법

Aflatoxin 분석에 적용된 용매 및 기기조건은 표 36에 나타내었다

표 36. Aflatoxin 분석을 위한 HPLC 조건

Parameters	Conditions
Instrument	1200 Infinity series (Agilent Technologies, USA)
Detector	FLD (Em:360, Ex:450)
Column	ZORBAX Eclipse Plus C18 (4.6 x 150 mm, 3.5 µm)
Solvant	ACN : MeOH : D.W = 1 : 1 : 3
Flow rate	1.0 mL/min
Injection volume	10 µl

다. Aflatoxin 생합성 유전자 분석

2013, 2014년도 누룩으로부터 분리한 75개의 *Aspergillus* 균주 중 aflatoxin 생산에 관여하는 유전자들의 존재 여부를 확인하기 위해 독소생성에 관련된 유전자 클러스터의 유전자 4개 (*aflR, omtA, omtB, ver-1*)의 시퀀스를 바탕으로 선행연구(Kim et al., 2011)에서 디자인한 아래와 같은 primer를 활용하여 PCR을 실시하였다. 그림 50은 4개 유전자들의 확인을 위 해 사용한 primer들의 생합성 유전자군 내의 위치를 나타내었다.

그림 50. 생합성 유전자 분석을 위해 PCR 증폭한 유전자들의 위치

표 7은 aflatoxin 생합성 유전자 분석을 위해 사용한 선행연구에서 design한 primer의 이름, 유전자, sequence, amplicon의 정보이다.

No.	Primer	Gene	Sequence $(5' \rightarrow 3')$	Amplicon (bp)	Reference
1	omt1	omtA	GTGGACGGACCTAGTCCGACATCAC	707	
	omt2	UIIIIA	GTCGGCGCCACGCACTGGGTTGGGG	757	Kim at al
2	aflR1	ofID	TATCTCCCCCGGGCATCTCCCGG	1022	Kini et al.,
	afIR2	dlik	CCGTCAGACCACTGGACACGG	1052	Fuuu
3	ver-1F	war 1	ATGTCGGATAATCACCGTTTAGATGGC	90E	wiicrobiolog
	ver-1R	Ver-1	CGAAAAGCGCCACCATCCACCCCAATG	093	y (2011)
4	omtB1	omtP	GCCTTGACATGGAAACCATC	1222	(2011)
	omtB2	UIIID	CCAAGATGGCCTGCTCTTTA	2000	

표 37. Aflatoxin 생합성 유전자 분석을 위한 Primer set

선행연구의 primer들이 aflatoxin 생합성 유전자 클러스터내의 유전자들의 유무와 변이를 확인하기에 충분치 않음을 확인하고 본 연구에서 이를 확인할 수 있는 생합성 유전자 군 내의 유전자들의 위치를 중심으로 새롭게 primer를 design하였다. 그림 51은 새롭게 design 한 4개의 primer 위치와 유전자들을 표시한 것이다.

그림 51. Aflatoxin 생합성 유전자군 내의 유전자변이 유무확인을 위한 primer들의 위치

라. 누룩 자체의 aflatoxin 오염실태 조사

AFLA-V strip (VICAM) 은 aflatoxin B₁, B₂, G₁, G₂ 네가지 물질의 총 농도 측정이 가능하다. 최저 2ppb에서 최고 100ppb까지 측정할 수 있으며 희석 시료 준비과정이 간단하고 측정하 는데 5분 정도밖에 소요되지 않아 많은 시료의 aflatoxin 오염실태 여부를 확인하는데 유용 하다. 따라서 2013-2015에 수집한 95개의 누룩을 대상으로 VICAM사에서 나온 AFLA-V strip을 이용하여 aflatoxin 오염실태를 조사하였다. VICAM사의 독소 측정법은 대량의 시료 를 대상으로 오염실태 여부를 확인하는 방법이고 검출 최고 한계는 100ppb로 농도이상의 독소를 포함하고 있는 시료는 'over range '로 표시되므로 필요 시 HPLC 등의 분석법으 로 정성, 정량 분석을 추가 실시해야하는 간편한 방법이라 할 수 있다 (표 38).

표 38. Aflatoxin 생성능 조사를 위한 AFLA-V strip 및 Vertu reader 사용법

< Sample Extraction > 1. 누룩 시료 5 g을 extraction tube에 넣는다. → hood에서 저울을 가지고 스푼으로 알코올로 화염 멸균하면서 무게를 잰다. 2. 70 % MeOH를 25 mL씩 파이펫에이드를 이용하여 nuruk이 있는 extraction tube 에 넣어 aflatoxin을 추출한다. 3. Extraction tube의 뚜껑을 덮은 후 2분 동안 최대속도로 vortexing한다. 4. Vicam kit 안의 filter paper를 이용하여 새 extraction tube에 filter한다. < Procedure > 1. Vicam kit에서 set box 에 있는 peanut barcode를 scan한다. 2. Strip test vial에 Afla-V Diluent 100ul와 sample extract 100ul응 vortexing으로 섞 어준다. Afla V 3. 의 동그라미 부분에 수평으로 일초에 한 방울씩 100ul 를 afla-V strip에 떨어뜨린다. → 일회용 4. 5분 동안 flat surface에 확산 반응하도록 대기한다. 5. Vertu reader에 Afla-V strip을 넣고 aflatoxin 농도를 확인한다.

- 2. 누룩 유래 주요 사상성 진균 Aspergillus oryzae 및 A. flavus 의 aflatoxin 생합성 유전자 분석 및 생성능 조사 결과
- 가. A. oryzae와 A. flavus의 표준균주 및 누룩 유래 균주들 간의 형태학적 관찰 결과

Morphological characteristics of standard of *Aspergillus* sp. from Korea Culture Center of Microorganisms (KCCM) and RIB. (A) *A. flavus* ATCC22546, (B) *A. parasiticus* ATCC22789 (C) A. oryzae NRRL1989 (D) *A. oryzae* RIB128 Each strains was grown on potato dextrose agar (PDA) media at 25° C for 5 days, czapek yeast extract agar (CYA) media at 25° C for 7 days and then taken pictures of the colony. The microscopy was examined under the light microscope with 400x magnification. *Aspergillus* sp. had the typical vesicles, conidiophores and spores (red arrow)

그림 52. Aspergillus species 표준균주의 형태학적 특징

A. flavus, A. parasiticus, A. oryzae는 고체배지 상에서 형태학적 특징이 확연하게 차이가 나는 것을 확인 할 수 있었다. 그러나 A. oryzae NRRL 1989, A. oryzae RIB128은 같은 종인데도 고체배지 상에서 포자형성 속도, 균사가 자라는 양상이 다르고, 현미경 관찰에서도 포자형성 속도가 차이가 나는 것을 보였다 (그림 52).

Morphological characteristics of standard of *Aspergillus oryzaelflavus*. (A) **Y12-2**, (B) **JJSP-b1**, (C) **JJ1S-BD**, (D)**JJDMC**. Each strains was grown on potato dextrose agar (PDA) media at 25° C for 5 days czapek yeast extract agar (CYA) media at 25° C for 7 days and then taken pictures of the colony. The microscopy was examined under the light microscope with 400x magnification. *Aspergillus* sp. had the typical vesicles, conidiophores and spores (red arrow)

위의 그림은 A. oryzae 또는 A. flavus로 동정된 114개의 균주들 중 고체배지 상에서 형태 학적 차이가 나는 대표적인 균주들 4개의 균주 사진이다 (그림 53). 고체배지 상에서는 다 양한 형태를 보이기 때문에 그룹을 나눌 수 없었고, 현미경 관찰에서는 일반적으로 20µm의 vesicle을 형성하며 포자 생성이 유사하였다. 따라서 두 균주는 고채배지에서 자라는 형상 이나 현미경하에서의 형태적인 차이가 거의 없었으므로 두 종 간의 동정은 아플라톡신 (aflatoxin) 독소의 생성유무를 확인하는 것이 중요하다고 알려져 있으며 본 연구에서도 확 인하였다.

나. 아플라톡신 생성능 조사를 위한 HPLC 분석

High-performance liquid chromatography (HPLC)를 이용한 아플라톡신 분석은 retention time에 따라 아플라톡신 G₂, G₁, B₂, B₁ 순으로 분리되어서 각각의 농도를 알 수 있다. 검출 한계는 G₂, G₁, B₂, B₁가 0.11 µg/kg, 0.05 µg/kg, 0.05 µg/kg, 0.03 µg/kg이고, 정량 한계는 G₂, G₁, B₂, B₁가 0.15 µg/kg, 0.49 µg/kg, 0.15 µg/kg, 0.515 µg/kg이다. 회수율은 G₂, G₁, B₂, B₁이 각각 88.6%, 91.3%, 79.2%, 92.4%로 확인되었다. 표 39은 표준균주로 사용한 *Aspergillus* species 4개의 균주의 HPLC로 확인한 아플라톡신 생성능 조사 결과이다. *A. flavus*는 아플라톡신 B만 생성하였고, *A. parasiticus*는 아플라톡신 B와 G 모두를 생성하였 다. 반면, *A. oryzae*의 표준균주 2종은 모두 아플라톡신을 생성하지 않았다.

그림 53. 누룩 유래 주요 Aspergillus oryzae 의 형태학적 특징

	HPLC (ppb)					
1D		G ₂	G ₁	B ₂	B ₁	Total
Standard of <i>Aspergillus</i> sp.	A. flavus ATCC 22546	ND*	ND	0.758	295.764	296.522
	A. parasiticus ATCC 22789	0.266	37.886	1.166	236.077	275.395
	A. oryzae NRRL 1989	ND	ND	ND	ND	ND
	A. oryzae RIB 128	ND	ND	ND	ND	ND

표 39. Aspergillus 표준균주의 HPLC에 의한 독소 분석

*ND : no detected in HPLC

누룩 유래 114개 Aspergillus oryzae 또는 A. flavus 균주를 대상으로 HPLC를 이용하여 아 플라톡신 생성능 조사를 실시하였다 (표 40). 114개의 균주 중 8개의 균주(7.00%)만이 아플 라톡신 생성능이 있었다.

표 40. 누룩 유래 114개 As. oryzae 또는 A. flavus 균주의 HPLC에 의한 독소 분석

No	T	HPLC (ppb)					
INO.	Ū	G ₂	G ₁	B ₂	B1	Total	
1	YI1-5	ND*	ND	0.544	279.194	279.738	
2	Y12-2	ND	ND	0.330	273.492	273.823	
3	SW1-3	ND	ND	ND	70.736	70.736	
4	SW1-7	ND	ND	ND	22.818	22.818	
5	SW2-8	ND	ND	ND	206.559	206.559	
6	SW1-6	ND	ND	ND	195.367	195.367	
7	SW2-2	ND	ND	ND	201.343	201.343	
8	DG2-14	ND	ND	ND	123.435	123.435	
9	JJ4R B 외 105 균주	ND	ND	ND	ND	ND	

*ND : no detection in HPLC

다. 아플라톡신 생합성 유전자 분석

선행연구(Kim et al., 2011)에서 독소생성에 관련된 유전자 클러스터의 유전자 4개 (*aflR, omtA, omtB, ver-1*)에서 모두 PCR 증폭을 하면, 아플라톡신 생성능이 있으며, 아플라톡신 생성능을 가지지 않는 *A. oryzae* 균주에서는 4개의 유전자가 모두 증폭되지 못한다고 언급 하였다. 그러나 선행연구결과와는 달리 *Aspergillus* species 표준균주 중 *A. oryzae* NRRL 1989가 4개의 유전자가 모두 증폭되는 결과를 보였다 (표 41).

ㅠᄌᄀᄌ	아플라	톡신 생합성	성 유전자 PC	아플라톡신 HPLC	아플라톡신 생성능 조사 HPLC(ppb)		
	omtA	aflR	ver-1	omtB	아플라톡신 G	아플라톡신 B	_
A. flavus ATCC 22546	+ ^a	+	+	+	ND ^e	+ + + c	-
A. parasiticus ATCC 22789	+	+	+	+	++ ^d	+++	
<i>A. oryzae</i> NRRL 1989	+	+	+	+	ND	ND	a_
<i>A. oryzae</i> RIB 128	+	+	_ b	+	ND	ND	_

표 41. Aspergillus 표준균주의 아플라톡신 생합성 유전자 PCR 결과 및 HPLC에 의한 독소분석 결과

: ampification in PCR

^b- : no ampification in PCR

c+++ : 101-500 ppb detection in HPLC

d₊₊ : 11-100 ppb detection in HPLC

 e_{-} : no detection in HPLC

아플라톡신 생합성 유전자 PCR 결과, 2013, 2014년도 한국 누룩으로부터 분리한 75개의 *A.* oryzae 또는 *A. flavus* 균주는 3개의 그룹으로 구분되었다 (표 42). Groupl은 4개의 유전자 (omtA, afIR, ver-1, omtB)가 모두 증폭된 균주로, 2균주만이 아플라톡신 생성능이 있었고, 26개의 균주들은 아플라톡신 생성능이 없었다. 또한, group2는 3개의 유전자들만 증폭된 균주들로, afIR 유전자가 증폭되지 않은 균주가 5개의 균주, ver-1 유전자가 증폭되지 않은 균주들이 40개의 균주가 있었다. Group3은 afIR, omtB 유전자가 증폭되지 않은 균주들로, 2균주가 있었다.

	누룩	아플라톡신 생합성 유전자 PCR 결과				아플라톡신	아플라톡신 생성능 조사		
구분	유대 규주이					HF	νLC		
	· 개수	omtA	aflR	ver-1	omtB	아플라톡신 G	아플라톡신 B		
Group I	2	+ ^a	+	+	+	ND ^d	+ + + ^c		
	26	+	+	+	+	ND	ND		
	5	+	_b	+	+	ND	ND		
GroupⅡ	40	+	+	-	+	ND	ND		
GroupⅢ	2	+	-	+	_	ND	ND		
Total	75								

표 42. 누룩 유래 75개 A.oryzae 또는 A. flavus 균주의 아플라톡신 생합성 유전자 PCR 결과 및 HPLC에 의한 독소분석 결과

^a+ : ampification in PCR

^b- : no amplification in PCR

c+++ : 101-500 ppb detection in HPLC

 d ND : no detection in HPLC

선행연구와 본 연구의 실험결과가 일치하지 않았으므로 선행연구에서 사용한 primer들의 시퀀스를 비교하기 위해, NCBI에 whole genome sequence (WGS)가 등록되어 있는 Aspergillus oryzae 6종과 A. flavus 1종, 본 연구에서 WGS를 분석한 A. oryzae BSSS-F2의 독소생성 유전자 시퀀스를 align해 보았다. 그림 54을 보면, aflR 유전자의 primer는 A. forward, rerverse 모두에서 한 개의 염기(base pair)가 conserved sequence가 아닌 위치에 디자인되었다. reverse primer의 경우 A. oryzae 균주들은 일치하였으나 A. flavus와 일치하 지 않는 위치에 디자인된 것을 확인 하였다. omtB 유전자 확인용 primer의 경우, forward 는 2 bp, reverse는 1 bp에서 conserved 시퀀스가 아닌 곳에 primer가 디자인 되었으며, ver-1 유전자 확인용 primer의 경우는 forward에서 2 bp에서 conserved 시퀀스가 아니었으 며, forward에서 한 개 염기는 mismatch 되었고, 2 bp는 A. oryzae, A. flavus와 mismatch 된 위치에 디자인된 것을 확인 하였다. 이처럼 primer들이 conserved 시퀀스가 아닌 지역 에 디자인이 된 경우 Aspergillus species간의 아플라톡신 생합성 유전자 클러스터의 유전자 분석을 위해 시퀀스가 mismatch된 primer들을 사용하여 PCR 하게 되면 DNA fragment의 증폭에 대한 신뢰도가 매우 떨어지게 되어 정확한 결과해석이 어려울 수 있으므로 본 연구 에서 이러한 비교분석을 실시해 본 것이었다. Primer들의 지역을 재확인해본 이유도 선행 연구에서의 결과들과 본 연구결과가 일치하지 않는 균주들이 나왔기 때문인데, 근본적으로 전체 독소생합성 유전자 클러스터 내에서 주요 유전자를 중심으로 PCR증폭 방법으로 유전 자들의 결실(deletion) 여부는 일부 확인 가능하겠으나 단순한 SNP (single nucleotide polymorphism) 들에 의한 유전자 기능 정지에 대한 것은 확인할 수 없으므로 이들 일부 유 전자의 확인을 위한 primer로는 독소생성 유무까지를 판단하기에 무리한 면이 있음을 다시 한번 확인하는 계기가 되었다.

>omtA					
Primer(omtA_F)		GT.GGACGGACCTAGT.CCGACATCAC	Primer(omtA_R)		COCCAACCCAGTGCGTGGCGCCGAC
A. flavus NRRL3357	301	GT GGA CGGA CCT AGT CCCACA TCA C	A. flavus NRRL3357	1071	COGCAACCCAGTGCGTGGCGCCGAT
<i>A. oryzae</i> RIB40	301	GT GGA TGGA CCT AGT CCCACA TCA C	A. oryzae RIB40	1071	CCCCAACCCAGTGCGTGGCGCCGAC
A. oryzae 100-8	301	GT GGA TGGA CCT AGT CCCACA TCA C	A. oryzae 100-8	1071	CCOCAACCCAGTGCGTGGCGCCGAC
A. oryzae 3.042	301	GT GGA TGGA CCT AGT CCCACA TCA C	A. oryzae 3.042	1071	CCCCAACCCAGTGCGTGGCGCCGAC
A. oryzae AS3.863	301	GTGGACGGACCTAGTCCCACATCAC	A. oryzae AS3.863	1071	CCGCAACCCAGTGCGTGGCGCCGAC
A. oryzae AS3.951	301	GTGGATGGACCTAGTCCCACATCAC	A. oryzae AS3-951	1071	CCCCAACCCAGTGCGTGGCGCCGAC
A. oryzae BSSS-F2	301	GT GGA CGGA CCT AGC CCCACATCAC	A. oryzae BSSS-F2	1071	CCGCAACCCAGTGCGTGGCGCCGAC
		***** ***********			** *****
> om t B					
Primer(omtB_F)	G	COTTGACATGGAAACCATC	Primer(omtB_R)		TAAAGAGCAGGCCATCTTGG
A. flavus NRRL3357	8 G	CCTTGACATGGAAACCATC	A. flavus NRRL3357	1201	TAAAGAGCAGGCCATCTTGG
<i>A. oryzae</i> RIB40	8 G	CCTTGGCATGGAAACCATC	A. oryzae RIB40	1293	TAAAGAGCAGACCATCTTGG
A. oryzae 100-8	8 G	CCTTGGCATGGAAACCATC	A. oryzae 100-8	1293	TAAAGAGCAGACCATCTTGG
A. oryzae 3.042	8 G	CCTTGGCATGGAAACCATC	A. oryzae 3.042	1293	TAAAGAGCAGACCATCTTGG
A. oryzae AS3.863	8 G	COTTGACATGGAAACCATC	A. oryzae AS3-863	1293	TAAAGAGCAGACCATCTTGG
A. oryzae AS3.951	8 G	COTTO GCATO GAAACCATO	A. oryzae AS3.951	1293	TAAAGAGCAGACCATCTTGG
A. oryzae BSSS-F2	8 G	COTTGACATGAAAACCATC	A. oryzae BSSS-F2	1290	TAAAGAGCAGACCATCTTGG
	*	***** **** *******			*****
>ver-1					
Primer(ver-1_R)	C	GAAAAGCGCCACCATCCACCCCAATG	Primer(ver-1_F)		GCCAT CTAAACGGTGATTAT COGACAT
A. Flavus NRRL3357	20	GAAAAGCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	A. flavus NRRL3357	872	GCCAT CTA A ACGGT GGT T GT CQGA CA T
<i>A. oryzae</i> RIB40	2 C	GAAAAGCGCCACCATCCACCCCAATG	A. oryzae RIB40	871	TCCATCTAAACGGTGGTTGTCCGACAT
A. oryzae 100-8	20	GAAAAGCGCCACCATCCACCCCAATG	A. oryzae 100-8	871	TCCAT CTAAACGGT GGT T GT CGGACAT
A. oryzae 3.042	20	GAAAAGCGCCACCATCCACCCCAATG	A. oryzae 3.042	871	TCCAT CTAAACGGT GGT T GT CGGA CAT
<i>A. oryzae</i> AS3 .863	2 0	GAAA GGCGCCACCAT CCACCCCAATG	A. oryzae AS3.863	871	GCCAT CTAAACGGT GGT T GT CGGACAT
A. oryzae AS3.951	2 C	GAAAAGCGCCACCATCCACCCCAATG	A. oryzae AS3-951	871	TCCATCTAAACGGTGGTTGTCCGACAT
A. oryzae BSSS-F2	20	GAAAAGCGCCACCATCCACCCCAATG	A. oryzae BSSS-F2	871	TCCATCTAAACGGTGGTTGTCCGACAT
	*	**** ***** ***********			****
≥afIR					
Primer(afIR_F)		TATCTCCCCCCGGGCATCTCCCGG	Primer(afIR_R)		CCGTGTCCAGTGGCTGTCTGACGG
A. flavus NRRL3357	12	TATCTCCCCCCGGCCATCTCCCGG	A. flavus NRRL3357	1022	CCGTGTCCAGTGGCTGTCTGACGG
<i>A. oryzae</i> RIB40	12	TATCTCCCCCCGGGCATCTCCCGG	A. oryzae RIB40	1022	COGTGTCCAGTGGCTGTCTGACGG
<i>A. oryzae</i> 100-8	12	TATCTCCCCCCGGCATCTCCCGG	A. oryzae 100-8	1022	COGTIGTOCAGTIGGOTIGTOTIGACGG
A. oryzae 3.042	12	TAT CTCCCCCCGGGCATCT CCCGG	A. oryzae 3.042	1022	COGTIGTOCAGTIGGOTIGTICTIGACGG
A. oryzae AS3.863	12	TATCTCCCCCCGGGCATCTCCCCG	A. oryzae AS3.863	1022	COGTIGTOCAGTIGGOTIGTICTIGACGG
A. oryzae AS3 •951	12	TATCTCCCCCCGGGCATCTCCCGG	A. oryzae AS3-951	1022	COGTIGTOCAGTIGGOTIGTICTIGACGG
<i>A. oryzae</i> BSSS-F2	12	TATCTCCCCCCGGGCATCTCCCGG	A. oryzae BSSS-F2	1022	COGTIGTOCAGTIGGOTIGTICTIGACGG
		*****			*****

그림 54. A.flavus와 A. oryzae와 omtA, omtB, ver-1, afIR primer와의 alignment

따라서 NCBI에 whole genome sequence가 등록되어 있는 Aspergillus species (A. parasiticus, A. flavus, A. orvzae, A. sojae) 균주들의 아플라톡신 생합성 유전자 클러스터 시퀀스를 바탕으로 클러스터 내의 유전자를 비교 분석하여 A. oryzae와 A. flavus를 구분할 수 있는 새로운 primer set을 만들고자 하였다. 새로이 디자인한 primer를 활용하면 Aspergillus species의 afIT, norB-cvpA 유전자 지역을 PCR하였을 때, band의 size로 쉽게 유전자 결실 패턴을 분석할 수 있었다. A. parasiticus SU1J와 A. sojae NBRC4239 모두 afT 유전자의 3 '-end 지역에 결실이 존재하지 않았으며, norB-cypA 유전자의 intergenic 지역에도 결실이 존재하지 않았다. A. flavus의 경우 A. flavus NRRL3357을 비롯한 WGS가 등록되어 있는 균주들은 aflT 유전자의 3 '-end 지역에 결실이 존재하지 않았고, norB-cypA 유전자의 intergenic 지역에는 A. parasiticus와 비교하여 906bp 결실이 존재하였으며, 예외적으로 A. flavus AF70는 norB-cypA 유전자의 intergenic 지역에서 1510bp 결실이 존재하였다. A. orzae RIB40의 경우 aflT 유전자 의 3 '-end 지역에 173bp 결실이 존재하였고, norB-cypA 유전자의 intergenic 지역에는 A. parasiticus와 비교하여 1510bp 결실이 존재하였다. 또한, A. oryzae BCC7051의 경우 아플라톡 신 생합성 유전자 클러스터의 뒷 부분에 완전한 결실이 존재하였다. 따라서, Aspergillus species간에 PCR하였을 때, band size로 생합성 유전자 클러스터 결실 패턴을 나눌 수 있는 afIT. norB-cvpA 유전자 지역과 아플라톡신 생합성 유전자 클러스터의 앞, 뒷 부분의 유무를 판별할 수 있는 primer들을 디자인하였다. 4개의 primer로 PCR하여 누룩 유래 114개 A. oryzae 또는 A. flavus 균주의 아플라톡신 생합성 유전자 클러스터의 결실 패턴을 분석한 결과, A. flavus는 1 가지 pattern, A. oryzae는 4 가지의 유전자 결실 패턴이 존재하였다 (그림 55). 7개 의 A. flavus 모두 A. flavus NRRL3357과 동일한 유전자 결실 패턴을 보였다. A. flavus는 norB-cypA 유전자의 intergenic 지역에 906 bp 결실을 가지는 것이 주요 결실 패턴이였다. 107 개의 A. oryzae 균주의 경우 A. oryzae RIB40과 동일한 패턴이 33균주, A. oryzae BCC7051과 동일한 패턴이 64균주가 있었다. 예외적으로 9개의 A. oryzae 균주가 norB-cypA 유전자의 intergenic 지역은 1510bp으로 주요 A. oryzae의 유전자 결실과 일치하였지만 aflT 유전자 지역 은 결실이 존재하지 않았다. 또한, 1개의 A. oryzae 균주만이 norB-cypA 유전자의 intergenic 지역이 A. flavus와 동일한 906bp 결실이였으며, aflT 유전자 지역에서도 결실이 존재하지 않 았다.

라. AFLA-V strip을 이용한 누룩 자체의 아플라톡신 오염실태 조사

	VICAM(ppb)		
	YH	연효제홍삼 (부산)	ND
	JJ10S	제주도청	ND
	MILL	수입진주곡자	ND
	BSSS	산성누룩(부산)	ND
	JJ4	제주중문	14.08
	TI	장인누룩 (태인)	ND
	JJBP	한라산청정원	ND
SSU (15 누룩)	JJSP	서귀포	ND
	YF	연효제 F (부산)	ND
	YD	연효제 D (부산)	ND
	JJ3	시판생막걸리	ND
	JJ2	성산좁쌀막걸리	ND
	JJDM	국산진주곡자	ND
	SH	송학곡자	ND
	SHSC	순천아랫장	ND

표 43. 2013-2016년도에 수집한 한국, 베트남 누룩 자체의 아플라톡신 오염농도 - AFLA-V strip

	누룩	명 (표계속)	VICAM(ppb)
	CN1	웰섬 — 쌀막걸리 믹스	ND
	CN2	상생촌-더막걸리	ND
	CN3	송학곡자 - 소율곡	ND
	CN4	셔우드 -누룩가루	ND
	CN5	천연곡물팩 - 누룩	ND
	CN6	천연사랑 - 누룩 분말	ND
	CN7	케이비바이오텍 - 막걸리국선	ND
	CN8	푸른들동산-누룩(곡자)	ND
	CN9	네이처인제주 - 제주산 누룩가루	ND
	CN10	천년향 약선누룩	ND
	CN11	이화곡 쌀누룩	ND
	CN12	우리밀 전통누룩 1호 전통주용	ND
	CN13	우리밀 전통누룩 2호 식초용	ND
	CN14	미백누룩 (소)	ND
	CN16	누룩가루 (충남논산)	ND
	CN17	바이오누룩	ND
SNU	BA1	백아산 누룩	ND
(43 누룩)	BA2	백아산 누룩	ND
	YI1	경기도 용인시	ND
	YI2	경기도 용인시	ND
	YI3	경기도 용인시	13.1
	SC1	전라남도 순천	ND
	PT1	경기도 평택시	ND
	GJ1	광주광역시	ND
	GH1	전라남도 고흥군	ND
	TI1	전북 정읍시 태인면	ND
	JC1	충북 제천시	ND
	JS3	강원도 정선군	ND
	HS3	충청남도 서천군 한산면	ND
	JJ1	제주특별자치도 제주시	ND
	JJ2	제주특별자치도 제주시	ND
	JJ3	제주특별자치도 제주시	ND
	JJ4	제주특별자치도 제주시	ND
	JJ5	제주특별자치도 제주시	ND

	누룩	명 (표계속)	VICAM(ppb)
	JJ6	제주특별자치도 제주시	ND
	JJ7	제주특별자치도 제주시	ND
	8II	제주 서귀포시	ND
	911	제주도 서귀포시	5.64
	JJ10	제주 서귀포시	ND
	JJ11	제주 서귀포시	ND
	JJ12	제주특별자치도 제주시	ND
	JJ13	제주 서귀포시	ND
	JJ14	제주 서귀포시	ND
	술씨	소금나무	ND
	홍국쌀	(주)백의 천년	ND
	쌀누룩	소금누룩익는마을	ND
	백국	정철기 누룩	ND
상품누룩	이화국	정철기 누룩	ND
(10 누룩)	조국(섬누룩)	정철기 누룩	ND
	백수환동주국	정철기 누룩	ND
	향온국	정철기 누룩	ND
	조국	정철기 누룩	ND
	내부비전곡	정철기 누룩	ND
	수원1	생강즙으로 만든 내부비전곡	ND
	수원 2	내부비전곡1(물사용)	ND
	수원 3	이화곡(녹두끕 이용)	ND
	수원 4	백수환동곡	ND
	수원 5	누룩	ND
수원 (11 누룩)	수원 6	내부비전곡2(물)	ND
(1 -1)	수원 7	미곡	ND
	수원 8	조곡	ND
	수원 9	정화곡	ND
	수원 10	향온곡	ND
	수원 11	죽곡	ND
하향주	red	대구 하향주 누룩	11.86
(2 균추)	white	대구 하향주 누룩	ND

	VICAM(ppb)		
	boiled	베트남 Banh men	ND
	no boiled	베트남 Banh men	ND
	M1	베트남 Banh men	ND
	M2	베트남 Banh men	ND
	M2(12)	베트남 Banh men	ND
	M3	베트남 Banh men	ND
_	M4	베트남 Banh men	ND
Banh men (14 누룩)	M5	베트남 Banh men	ND
(= · 1 - 1)	M6	베트남 Banh men	ND
	M7	베트남 Banh men	ND
	M8	베트남 Banh men	ND
	M9	베트남 Banh men	ND
	M10	베트남 Banh men	ND
	M11	베트남 Banh men	ND
	M12	베트남 Banh men	ND

*ND : no detection in HPLC

표 44. 2013-2016년도에 수집한 한국, 베트남 누룩 자체의 아플라톡신 오염 농도 - HPLC

No.	ID	G ₂	G ₁	B ₂	B ₁	Total
1	하향주 R	0	0	0.205	8.330	8.535
2	JJ 4	0	5.185	1.845	13.328	20.358
3	JJ 9	0	0	0	0	0
4	YI 3	0	0	0.789	11.847	12.636

AFLA-V strip을 이용하여 95개의 누룩자체의 아플라톡신 오염실태를 조사하여 보니, 5 ppb 이상으로 검출된 누룩이 총 4개로 확인되었다 (표 43). 5 ppb이상으로 검출된 누룩은 정성, 정량 분석을 HPLC 분석법으로 추가 실시해야할 필요가 있다고 판단하여, HPLC 분 석을 진행하였다. 4개의 누룩에서 3개의 누룩에서만 아플라톡신 오염이 발견되었으며, 모 두 AFLA-V strip을 이용하였을 때, 10ppb이상으로 아플라톡신이 검출된 누룩으로 확인 되 었다 (표 44).

2. 유용 유전자 발굴 및 기능 연구를 위한 돌연변이 균주 선발

가. Aspergillus flavus 표준균주 (ATCC 22546)의 돌연변이 균주 선발

(1) UV 조사에 의한 돌연변이 균주 선발

분양받은 *A. flavus* ATCC 22546 (AF+) 균주를 UV 조사방법으로 돌연변이를 유기하였다. PDA 고체평판배지에 25℃, 7일간 배양한 포자를 멸균 증류수에 현탁하고 miracloth로 여과 하여 10⁶ spores/ml으로 준비하였다. 포자액을 clean bench (HB-402, HAN BAEK SCIENTIFIC) 안에서 포자액과 UV 광원과의 거리를 40cm로 유지하고 6분간 조사한 후 포 자액을 10⁻¹ ~ 10⁻⁴으로 serial dilution 하여 PDA 고체평판배지에 도말하고 25℃, 3일 동안 배양한 후 자라난 돌연변이 후보균주의 colony들을 PDA 고체평판배지에 옮겨 배양하였다.

(2) Aspergillus flavus 돌연변이 균주 선발

(가) 영양요구성 돌연변이 (Auxotrophic mutants) 균주 선발

영양요구성 돌연변이 균주를 얻기 위하여 Minimal media (0.2% NH₄Cl, 0.1% (NH₄)₂SO₄, 0.05% KCl, 0.05% NaCl, 0.1% KH₂PO₄, 0.05% MgSO₄.7H₂O, 0.002% FeSO₄.7-H₂O, 2% glucose, 2% agar, pH 5.5)와 각 amino acids (0.1% L-arginine, 0.01% adenine, 0.12% uracil, 0.12% uridine, 0.15% methionine, 20mg/L histidine, 20mg/L tryptophan, 20mg/L leucine, 20mg/L isoleucine, 20mg/L serine, 20mg/L threonine, 20mg/L phenylalanine, 20mg/L glutamine)를 추가한 minimal media에 균주를 접종하여 생장 여부로 screening하였다.

(나) 형태학적 돌연변이 (Morphological mutants) 균주 선발

UV 돌연변이 유기를 통하여 PDA 고체 평판 배지에서 wild type *A. flavus*와 다른 형태로 자라는 균주를 선별하였다. PDA 고체 평판배지에 접종하여 25℃에서 5일, 7일 경과 후 생 장속도 (growth rate) 차이를 관찰하였으며, 배양 7일째에 실체현미경과, 광학 현미경으로 무성생식포자 (conidia) 형성 구조 등을 관찰하고 wild type *A. flavus*와 비교하였다.

(다) Aflatoxin 비생성 돌연변이 (aflatoxin non-producing mutants) 균주 선발

UV 돌연변이 유기를 통하여 aflatoxin을 생성하지 않는 균주를 선발하고, aflatoxin 생합성 유전자 군내에서 어떤 유전자에 돌연변이가 일어나는지 확인하고자 한다.

① Ammonia vapor color change method (AVM) 활용한 선발

Aflatoxin 비생성 돌연변이 균주를 선발하기 위하여 Ammonia vapor color change method (AVM)를 이용하여 1차 screening을 수행하였다. AVM방법은 시간을 절약할 수 있고 쉽게 구할 수 있는 시약을 이용하여 경제적, 효율적으로 많은 시료를 빠르게 조사하는데 유용하 다. AVM의 원리는 aflatoxin 생합성과정에서 나오는 yellow anthraquinone biosynthetic intermediates가 ammonia vapor와 반응하여 double oxygen bond가 깨어지게 되고, 이 반 응의 결과로 알칼리 pH에서 적색으로 변하여 발생하게 되는 것이다. Aflatoixn 생합성을 유 도하는 YES (15% sucrose, 2% yeast-extract, 0.1% MgSO_{4.}7H₂O, 2% agar) media에 wild type 균주와 UV mutants를 point inoculation하여 25℃에서 7일간 배양하였다. 28% ammonia hydroxide를 petri dish를 거꾸로 한 채 뚜껑에 200ul를 떨어뜨려서 7일 동안 배양 시킨 colony를 ammonia vapor와 반응시키고 15분 후에 petri dish 뒷면을 관찰하여 colony 의 색이 적색으로 변했는지 확인하였다.

② Thin layer chromatography (TLC) 로 독소 생성 유무 확인

YES (15% sucrose, 2% yeast-extract, 0.1% MgSO_{4.}7H₂O) media 20mL에 mutants를 접종하여 5일 동안 28℃에서 암배양하였다. 배양액을 ADVANTEC No.2 filter paper로 여과한 후, 2mL filtrate에 1mL chloroform을 넣어 20분 동안 vortexing하여 aflatoxin을 추출하였다. 5 분 동안 원심 분리하여 chloroform phase를 2mL vial로 분주하고 건조시킨 후, 20uL spotting solvent (benzene:acetonitrile=2:98)로 다시 용해하여 TLC를 위한 시료를 준비하였 다. 5uL sample과 spotting solvent에 용해한 aflatoxin 표준독소용액을 TLC plate (TLC Silica gel 60 F₂₅₄, Merck, Germany)에 1cm 간격으로 spotting하여 30분 이상 이동상 (water:acetone:chloroform=1.5:22:88)에 전개하고, 실온에서 30분간 dry시킨 후, UV light (365 nm)에서 aflatoxin의 유무를 확인하였다.

③ High performance liquid chromatography (HPLC) 로 독소 생성 유무 확인 HPLC 분석은 4차년도와 동일한 방법으로 진행하여 정량적으로 wild type *A. flavus* ATCC22546와 돌연변이와의 aflatoxin 생성능 차이를 비교하였다.

(3) Aspergillus flavus ATCC 22546의 아플라톡신 생성 감소 돌연변이 genome 분석

Aspergillus flavus ATCC 22546을 UV 조사 방법으로 유기한 500개의 돌연변이 중 아플라톡 신 생성능이 현저히 감소한 돌연변이 (UVm155, UVm298)를 선정하여 아플라톡신 생성과 연관된 유전자를 분석하고자 하였다. Wild type *A. flavus* ATCC22546과 돌연변이 UVm155, UVm298을 선정하여 Illumina Hiseq 방법으로 시퀸싱하였다,

나. *Lichtheimia ramosa* KPH11의 돌연변이 균주 선발 (1) UV 조사에 의한 돌연변이 균주 선발

그림 8은 *Lichtheimia ramosa* KPH11의 돌연변이 균주 선발 과정을 도식화 한 것이다. 55mm의 멸균 petri dish에 10⁶/mL 포자 현탁액 2mL를 UV광원과의 거리를 40-75 cm로 하여 노출시간을 변화시켜 생존율을 확인하였다. 영양요구성 돌연변이 균주 선발법은 *A. flavus*와 동일하게 수행하였다.

(2) 화학물질 (Methyl methane sulfonate, MMS) 에 의한 돌연변이 균주 선발

1× PBS (pH 7.2)에 wild type *L. ramosa* KPH11의 포자를 10⁶ /ml 농도로 현탁하여 4°C에 보관하였다. 20mL의 포자 현탁액을 30°C에서 예열한 후, MMS의 최종 농도가 1.5μl/ml이 되도록 첨가하고 30°C에서 30분간 shaking 하며 화학물질 돌연변이 균주가 생성되도록 하였다. 원심분리를 통하여 conidia를 모은 다음 1× PBS (pH 7.2)로 3번 세척하고 살아 남은 포자는 PDA 고체 평판배지에 serial dilution 하여 도말하고 확인하였다.

(3) Lichtheimia ramosa KPH11의 포자 생성 감소 돌연변이 SPO1 genome 분석

Lichtheimia ramosa KPH11 (참조 유전체 선정 균주)을 화학 물질을 이용하여 유기한 돌연 변이 중 포자 생성이 현저히 감소한 돌연변이 (SPO1)를 선정하여 Illumina Hiseq 방법으로 시퀸싱하였다,

그림 56. Lichtheimia ramosa KPH11의 돌연변이 균주 선발 과정

4. 유용 유전자 발굴 및 기능 연구를 위한 돌연변이 균주 선발 결과

가. Aspergillus flavus 표준균주 (ATCC 22546)의 돌연변이 균주 선발

(1) UV 조사에 의한 돌연변이 균주 선발

Aspergillus flavus ATCC 22546 (AF+) 균주를 UV (40cm, 6min)에 노출시킨 결과 survival rate이 10%임을 확인 하였다. UV 돌연변이 유발 실험을 총 5회 실시한 결과, 약 500개의 UV 돌연변이들을 얻었으며, 이를 대상으로 영양 요구성 돌연변이 스크리닝를 하였고, 형태 학적 관찰을 통하여 sporultion과 vegetable growth와 관련한 유전자 분석, 아플라톡신 생성 능을 잃은 돌연변이 스크리닝을 하였다.

(2) Aspergillus flavus 돌연변이 균주 선발

(가) 영양요구성 돌연변이 (Auxotrophic mutants) 균주 선발

약 500개의 UV 돌연변이들을 M media에 접종하여 스크리닝한 결과, 총 6개의 영양 요구성 돌연변이 후보들을 얻었다. M media에 아미노산을 추가한 배지에 영양 요구성 돌연변이 후보들을 접종하여 1 개의 arginine 영양 요구성 돌연변이, 1 개의 adenine 영양 요구성 돌 연변이, 2 개의 histidine 영양 요구성 돌연변이들을 얻었다 (그림 57).

그림 57. 영양 요구성 돌연변이 조사 결과

영양 요구성 돌연변이 스크리닝으로 확인한 6개의 영양 요구성 돌연변이 후보들을 plate상 에서 colony의 형태, 광학 현미경, 실체 현미경으로 conidia 형성과 sporulation을 wide type (W.T)과 비교 관찰하였다 (그림 58). Plate 상에서 W.T과 colony를 비교하면, AF-m 34가 생장 속도는 느리지만, colony의 색와 hyphae등을 보았을 때 가장 유사하였다. AF-m 110 은 거의 색이 색이 사라진 양상을 보였지만, 가에 연한 노란색을 띄었고, AF-m 8은 붉은 색의 colony를 만들며 바닥에 얕게 깔리면서 자라는 양상을 보였다. AF-m 31, 87, 43은 거 의 색이 없었으며 바닥에 얕게 깔리면서 자랐다. 한 균주를 제외하고는 W.T과 다른 형태 학적 특징을 보였다. 현미경으로 W.T과 비교하여 본 결과, AF-m 43, AF-m 8은 sporulation되는 것을 관찰하지 못 하였고, AF-m 31, 87은 거의 sporulation 비율이 줄어든 것을 관찰하였다.

N.F : Not found 그림 58. 6개의 영양 요구성 돌연변이 후보들의 형태학적 관찰 결과

(나) 형태학적 돌연변이 (Morphological mutants) 균주 선발

각 돌연변이들을 PDA상에서 W.T과 다른 형태학적 특징을 보이는 돌연변이들을 선별하여 형태학적 특징을 관찰하였다 (그림 59). W.T과 다른 형태학적 특징을 보이는 돌연변이들은 PDA media에 접종하여 25℃에서 5일, 7일별로 plate상에서의 W.T과의 생장 속도 차이를 관찰하였으며, 7일에 실체현미경과, 광학 현미경에서 conidia 형성과 sporulation을 관찰하고 비교하였다. 아래의 그림은 현미경상에서 sporulation을 하지 못 한다고 관찰을 한 5개의 sporulation을 하지 못하는 돌연변이 후보들이다. 이들은 colony의 색도 푸른색을 띄지 않으 며, 현미경 상에서도 spore와 conidia를 관찰하지 못 하였다.

그림 59. 5개의 sporulation을 하지 못하는 돌연변이 후보들의 형태학적 관찰 결과

그림 60은 W.T과 plate상에서 colony를 관찰 하였을 때, 생장 속도가 느린 5개의 돌연변이 들의 plate 사진과 현미경 사진이다. AF-m 67, 91의 경우 conidia를 생성하긴 하지만 어떠 한 결함에 의하여 W.T과 같은 conidia를 생성하지 못 하는 것을 관찰하였다.

그림 60. W.T과 비교하여 생장 속도가 느린 5개 돌연변이들의 형태학적 관찰 결과

그림 61은 어떠한 결함에 의하여 conidia 형성이 W.T과 다른 형태학적 특징을 보이는 4개 의 돌연변이들의 plate 사진 및 현미경 사진이다.

그림 61. conidia의 형성에 영향을 받은 돌연변이들의 형태학적 관찰 결과

ID Plate (5days) Plate (7days) Light microscopy Stereoscopic microscopy Control 20 µ AF-m 118 AF-m 7 AF-m 53 AF-m 61 AF-m 114 AF-m 33

그림 62는 현미경 관찰 상에서는 W.T과 같은 형태의 conidia나 sporulation을 하지만, plate 상에서 colony의 형태학적 특징이 차이가 나는 6개의 plate 사진 및 현미경 사진이다.

그림 62. W.T.과 다른 형태학적 특징을 보이는 다양한 돌연변이들의 형태학적 관찰 결과

모든 영양 요구성 돌연변이 후보들과 W.T과 다른 형태학적 특징을 가지는 돌연변이들은 5 세대가 지나도 그 특징을 가지는지, plate상에서의 colony 관찰과 현미경 관찰을 진행할 예정이다.

(다) Aflatoxin 비생성 돌연변이 (Non-aflatoxin producing mutants) 균주 선발

① Ammonia vapor color change method (AVM) 활용한 선발

HPLC를 이용하여 아플라톡신 생성능을 확인한 아플라톡신을 생성하는 3개의 균주와, 아플 라톡신을 생성하지 않는 3 개의 균주를 대상으로 PDA, YES media에 25℃에서 7일동안 배 양시킨 후 AVM을 실시하였다. 아플라톡신을 생성하는 3 개의 균주는 ammonia vapor와 반 응하여 colony가 적색으로 변하였고, 아플라톡신을 생성하지 않는 3 개의 균주는 ammonia vapor와 반응할 아플라톡신 생합성에 요구되는 중간 생성물이 생성되지 않아 아무런 변화 가 있지 않았다 (그림 63). YES media는 아플라톡신을 유도시키기 때문에 PDA media보다 color 변화가 더 뚜렷하였다. 따라서 YES meida에서 약 500개의 UV 돌연변이들을 대상으 로 25℃에서 7일간 배양시킨 후 AVM을 이용하여 아플라톡신 생성능을 잃는 균주가 있는 지 첫 번째 스크리닝을 진행하였다.

그림 63. 아플라톡신 비생성 돌연변이 균주 선발을 위한 Aspergillus 표준 균주의 AVM 결과

② Thin layer chromatography (TLC) 로 독소 생성 유무 확인

A. parasiticus ATCC 22789는 아플라톡신 B₁, B₂, G₁, G₂, A. flavus ATCC 22546는 아플라톡 신 B₁, B₂만을 생성하였고, A. oryzae NRRL 1989, A. oryzae RIB128 모두 아플라톡신을 생 성하지 않았다. 누룩 유래 A. flavus SW1-6은 아플라톡신 B₁, B₂를 생성하였고, A. oryzae YI3-2는 아플라톡신을 생성하지 않았다. 500개의 UV 돌연변이들의 아플라톡신 생성능을 TLC로 확인하여 본 결과, 6개의 UV 돌연변이들 (AFm21, UVm18, UVm32, UVm37, UVm155, UVm298)이 아플라톡신이 검출되지 않았다 (그림 64).

1 Iane; A. parasiticus ATCC22789, 2 Iane; A. flavus ATCC22546, 3 Iane; A. oryzae NRRL1989, 4 Iane; A. oryzae RIB128, 5 Iane; A. flavus SW1-6, 6 Iane; A. oryzae YI3-2

9 lane; A. flavus UVm299,

13 lane; A. flavus UVm303,

1 Iane; A. flavus UVm28, 2 Iane; A. flavus UVm29, 3 Iane; A. flavus UVm30, 4 Iane; A. flavus UVm31, 5 Iane; A. flavus UVm32, 6 Iane; A. flavus UVm33

12 lane; A. flavus UVm302,

16 lane; A. flavus UVm306

그림 64. 아플라톡신 비생성 돌연변이 균주 선발을 위한 UV 돌연변이 Aspergillus 균주의 TLC 결과

③ High performance liquid chromatography (HPLC) 로 독소 생성 유무 확인

10 lane; A. flavus UVm300,

14 lane; A. flavus UVm304,

HPLC를 이용하여 wild type *A. flavus* ATCC 22546는 아플라톡신 B₁을 331.11±25.23 ppb를 생성함을 확인 하였고, 아플라톡신을 생성하지 않는 표준균주 *A. oryzae* NRRL 1989, *A. oryzae* RIB128 모두 아플라톡신을 생성하지 않음을 확인하였다. TLC를 이용하여 아플라톡 신이 검출되지 않은 6개의 UV 돌연변이들을 HPLC를 이용하여 삼반복하여 UVm155는 48.99±14.76

11 lane; A. flavus UVm301,

15 lane; A. flavus UVm305,
ppm (wide type 대비 85.20% 감소), UVm298은 3.82±0.37 ppm (wide type 대비 98.85% 감소)으로 확연하게 줄은 두 균주를 선별하여 wild type과 함께 whole genome sequencing 하였다. 한편, UVm298은 wild type 대비하여 포자 생성이 55 % 감소 하였다.

(3) Aspergillus flavus ATCC 22546의 아플라톡신 생성 감소 돌연변이 genome 분석

아플라톡신을 적게 생산하는 mutant line인 Uvm155와 Uvm298을 Illumina HiSeq 방법으로 resequencing하여 각각 273X와 299X coverage의 sequencing reads를 얻었고, 이들을 Trimmomatic v.32를 이용하여 trimming한 후, bwa를 이용하여 reference genome에 mapping한 결과 259X와 285X coverage의 reads들이 적절하게 align되었다 (표 45).

± 45. Resequencing statistics of low-aflatoxin producing mutant lines of *Aspergillus flavus*

	reads_pairs	total_bases	total_coverage	trimmed_pairs	mapped_pairs	mapped_bases	mapped_coverage
Uvm155	33,959,235	10,255,688,970	273	33,079,394	32,443,968	9,728,711,238	259
Uvm298	37,275,664	11,257,250,528	299	36,400,076	35,816,230	10,712,190,813	285

Freebayes 라는 프로그램을 이용하여 mutant position을 확인한 결과, Uvm155과 Uvm298 에서 각각 46개와 6개의 유효한 변이지점이 발견되었다. 46개의 Uvm155 변이지점 중 오직 한개만 표현형에 영향을 큰 영향을 미칠 수 있는 CDS 지역내에서 frame-shift를 일으키는 mutant이고 나머지는 표현형에 영향이 없거나 미미할 것으로 예상되는 intergenic region 또는 intron에서 일어난 변이이거나 CDS 지역에서 missense mutation (amino acid를 바꾸는 mutation)이나 silent mutation (amino acid가 변하지 않는 mutation)을 일으키는 변이지역들 이었다. 또한 12개의 Uvm298 변이지점 중에서도 오직 한개만 표현형에 영향을 끼치는 nonsense mutation (중간에 stop codon이 생기는 mutation)을 일으켰고 나머지 지역들은 Uvm155와 마찬가지로 표현형에 큰 영향이 없을 것으로 추정되는 지역들에서 일어난 변이 였다 (표 46).

		CDS			intr	onic	inte	rgenic	# of mutation
	frame-shift	nonsense	missense	silent	Ins	SNP	Ins	SNP	# of mutation
Uvm155	1		12	6		5	1	21	46
Uvm298		1	2					3	6

표 46. Aspergillus flavus mutant line들의 변이위치 요약

표 47. Uvm155 CDS내의 변이정보

chn	pos	Gtype	Rnum	Refbase	Refnum	**	Altbase	Altnum	altered_gene	fr	type	ref	alt	mut_type	annotation
ch1R	1039040	1/1	222	A	0	**	G	222	AF60330_001245-T1	1	CDS	F	S	missense	cleavage and polyadenylylation specificity factor
ch1R	3189623	1/1	234	А	0		G	234	AF60330_002035-T1	1	CDS	L	P	missense	flavin containing polyamine oxidase
ch1R	3280606	1/1	228	Т	0		G	228	AF60330_002067-T1	-	CDS		E	missense	proteasome subunit alpha type-2
ch2L	652713	1/1	226	C	0	**	Т	226	AF60330_002832-T1	+	CDS			silent	squalene-hopene-cyclase
ch2L	1358869	1/1	193	Т	0	:	Α	192	AF60330_003095-T1	+	CDS	D	E	missense	polyketide synthase
ch2L	1897751	1/1	249	G	0	••	Α	249	AF60330_003282-T1	1	CDS			silent	agmatinase 2
ch3R	2291754	1/1	199	TGGGCTTCCCGA	0		TC	199	AF60330_006725-T1		CDS			frameshift	afIB / fas-1 / fatty acid synthase beta subunit
ch3R	2304191	1/1	277	А	0	**	T	277	AF60330_006729-T1	+	CDS	- I	F	missense	afIC / pksA / pksL1 / polyketide synthase
ch4L	342765	1/1	267	C	0		Т	267	AF60330_006896-T1	+	CDS	S	F	missense	histone deacetylase RPD3
ch4R	1237467	1/1	227	G	0	12	Α	227	AF60330_008187-T1	1	CDS			silent	glutamyl-tRNA synthetase
ch4R	1584397	1/1	208	т	0	**	A	208	AF60330_008321-T1		CDS	Y	F	missense	telomere length regulation protein Elg1
ch5L	631581	1/1	263	Т	0		С	263	AF60330_008750-T1		CDS	R	G	missense	acid ceramidase
ch5L	1537659	1/1	220	T	0	**	Α	220	AF60330_009115-T1	+	CDS	W	R	missense	salicylate hydroxylase
ch5L	2026719	1/1	211	A	0	**	G	211	AF60330_009309-T1	1	CDS	F	S	missense	Transcriptional regulator TACO1-like
ch5R	1096246	1/1	277	С	0	**	т	276	AF60330_009838-T1		CDS			silent	C2H2 type zinc finger domain protein
ch7L	1105381	1/1	213	Т	0	**	С	213	AF60330_011983-T1	-	CDS			silent	hypothetical protein
ch7R	367344	1/1	250	Т	0		Α	250	AF60330_012634-T1		CDS	Y	F	missense	ATPase
ch8R	488869	1/1	194	Α	0	**	G	194	AF60330_013371-T1	+	CDS			silent	alkaline D-peptidase
ch8R	1360434	1/1	239	Т	2	::	A	235	AF60330_013721-T1	+	CDS	1	N	missense	hydroxysteroid 17-beta dehydrogenase 11

표 48. Uvm298 CDS내의 변이정보

chn	pos	Gtype	Rnum	Refbase	Refnum	11	Altbase	Altnum	mid	fr	type	ref	alt	mut_type	annotation
ch1R	2035819	1/1	252	Α	0	::	Т	252	AF60330_001618-T1	÷	CDS	Y	F	missense	eukaryotic translation initiation factor 3 subunit B
ch2R	1393694	1/1	255	C	0		T	254	AF60330_003812-T1	÷.	CDS	Q	*	nonsense	secondary metabolism regulator laeA
ch3L	558640	1/1	263	Α	1	11	Т	261	AF60330_005076-T1	e.	CDS	Y	N	missense	WD repeat-containing protein

Uvm155의 CDS내에서 일어난 변이는 19개의 CDS내 변이중 frameshift mutation이 일어나 서 *aflB* 유전자를 knockout 시킨 변이가 표현형에 가장 큰 영향을 준 것으로 보인다. 실제 로 *aflB* 유전자는 aflatoxin 생합성 cluster군에 속하는 유전자로 aflatoxin 생합성의 개시물 질은 hexanoic acid를 생합성하는 유전자로 deletion되면 aflatoxin 생합성이 저해되는것이 오래전부터 알려졌다 (Brown DW et al., 1996). Uvm155에서 wild-type 대비 15%의 aflatoxin이 검출된 것은 nutrient media를 사용하여 배지에 존재하는 미량의 hexanoic acid 가 영향을 끼쳤거나 hexanoic acid를 미량 생산할 수 있는 다른 fatty acid synthase들이 있 었기 때문으로 생각된다 (표 47).

Uvm298의 CDS내에서 일어난 변이는 3개의 CDS내 변이중 nonsense mutation으로 laeA 유 전자를 knockout시킨 변이가 표현형에 가장 큰 영향을 준 것으로 보인다. *laeA*는 secondary metabolism 뿐만 아니라 다양한 fungal development에 관여한다고 알려진 regulator로 이 유전자를 deletion시키면 aflatoxin 생합성을 조절하는 *afIR*의 발현이 저해되 어 aflatoxin 생합성도 저해된다는 것도 역시 오래전에 알려졌다 (Bok & Keller, 2004). Uvm298의 aflatoxin 생합성량이 wild-type 대비 1% 내외로 줄어든건 global regulator인 *laeA*의 deletion으로 aflatoxin 생합성 시스템이 유도되지 않았기 때문으로 생각된다(표 48). 종합적으로 볼때, Uvm155와 Uvm298의 표현형은 Resequencing으로 deletion된 것으로 확인 된 *afIB*와 *laeA* 유전자에 의한 것임이 이전의 연구결과들을 참고하여 증명할 수 있었다.

나. Lichtheimia ramosa KPH11 의 돌연변이 균주 선발

(1) UV 조사에 의한 돌연변이 균주 선발

UV 광원과의 거리를 40 ~ 75cm, 조사 시간을 45초 ~ 4분까지 조절하여 11가지 조건으로 돌연변이 유기를 하였을때 *L.ramosa* KPH11의 생존율은 0.2 to 32.9 % 이었다. 영양 요구성 돌연변이 균주를 선발하기 위하여 100 ~ 200 콜로니를 minimal media와 PDA에 배양하여 MM에 생장하지 않는 균주를 선발하였다. 100 ~ 200 콜로니 중 MM 배지에 생장하지 않는 영양요구성 돌연변이로 예상되는 균주는 1 균주로 돌연변이 균주 선발 빈도수는 5×10⁻³ ~ 6×10⁻³ 이었다 (표 49).

			Nur	nber of:	
N	Distance / time	Survival rate	Colonies selected	Auxotrophic mutagenesis candidates	Frequency of mutants
1	40cm - 4 min	0.2 %	100	0	0
2	40 cm - 2 min	0.6 %	100	0	0
3	45 cm - 45 sec	12.2 %	100	0	0
4	57 cm - 1 min 30s	4.1 %	200	1	5×10 ⁻³
5	57 cm - 1 min 30s	16.3 %	200	1	5×10 ⁻³
6	57 cm - 1 min	17 %	200	1	5×10 ⁻³
7	65 cm - 45 sec	25 %	200	1	5×10 ⁻³
8	75 cm - 2 min	2.8 %	200	1	5×10 ⁻³
9	75 cm - 1 min 30s	5%	150	1	6×10 ⁻³
10	75 cm - 1 min	32.9%	150	0	0
11	57 cm - 1 min 30s	15.7%	200	1	5×10 ⁻³

표 49. UV 돌연변이 유기를 통한 돌연변이 균주 생존율

(2) 화학물질 (Methyl methane sulfonate, MMS) 에 의한 돌연변이 균주 선발

MMS의 최종 농도가 1.5 µl/ml 되도록 하여 30℃에서 30분간 처리후 생존율을 확인하였다. 37℃에서 PDA와 MM에 배양하여 168 콜로니를 얻었고 그때의 생존율은 14.5% 이었다 (그림 65).

그림 65. 화학물질 (MMS)에 의한 돌연변이 유기를 통한 돌연변이 균주 생존율

(3) L. ramosa KPH11 돌연변이 균주 선발

가. 영양요구성 돌연변이 (Auxotrophic mutants) 균주 선발

영양 요구성 돌연변이 균주를 선발하기 위하여, UV 조사 돌연변이 유기를 통한 돌연변이 균주 AUI, AU2, AU3, AU4, AU5, AU6, AU7와 화학물질 돌연변이 유기를 통한 돌연변이 균주 ACI 총 8균주를 대상으로 하였다 (그림 66. AUI, AU2, AU3 균주는 Methionine이 포함되어 있는 minimal media에서, ACI는 isoleucine이 포함되어 있는 minimal media에서 생장하였다. 이중 wild type L. ramosa와 유사 한 표현형인 AUI, AU3, ACI 3균주를 PDA 고체평판배지 37℃ 3일간 배양 후 고체평판배지와 광학현 미경하에서 표현형을 확인하였다 (그림 67).

그림 67. 영양요구성 돌연변이 균주와 wild type 균주와의 표현형 비교

나. 형태학적 돌연변이 (Morphological mutants) 균주 선발

UV 조사 돌연변이 유기를 통하여 포자를 형성하지 못하는 SPO1 균주를 선발하였다 (그림 68). PDA 고체 평판배지에서 37℃ 5일간 배양하였을 때 wild type과 비교하여 SPO1 균주는 포자낭과 포자를 거의 생성하지 못하였다. 또한 배지성분을 다르게 하여 CM, MM, PDA, YPD 고체평판배지에서 37℃ 7일간 배양하고 광학현미경으로 관찰하였으나, 포자를 거의 생성하지 못하였다.

PDA

YPD

그림 68. 포자 생성 감소 돌연변이 L.ramosa KPH11의 형태학적 특성

배지 성분을 다르게 하여 CM, MM, PDA, YPD 고체평판배지에서 37℃ 7일간 배양하였을 때 wild type *L. ramosa*와 비교하여 생장속도가 약 20 ~ 25% 느린 것을 관찰할 수 있었다 (그림 69).

그림 69. 포자 생성 감소 돌연변이 L. ramosa KPH11의 다양한 배지에서의 생장속도

(4) Lichtheimia ramosa KPH11의 포자 생성 감소 돌연변이 SPO1 genome 분석

Sporulation이 wild-type에 비해 현저히 감소되는 표현형을 가진 (자세한건 확인필요) *L. Ramosa* SPO1을 Illumina HiSeq 방법으로 resequencing하여 510X coverage의 sequencing reads를 얻었고, Trimmomatic v.32를 이용하여 trimming한 후, bwa를 이용하여 reference genome에 mapping한 결과 473X coverage의 reads들이 적절하게 align되었다 (표 50).

丑	50.	Resequencing	statistics	of	Lichtheimia	ramosa	SPO1
---	-----	--------------	------------	----	-------------	--------	------

	reads_pairs	total_bases	total_coverage	trimmed_pairs	mapped_pairs	mapped_bases	mapped_coverage	insert_size	insert_size_dev
SPO1	80,440,998	16,249,081,596	510	79,671,792	74,865,969	15,094,683,514	473	404	85

표	51.	Lichtheimia	ramosa	SPO1	mutant	line들의	변이위치	요약
---	-----	-------------	--------	------	--------	--------	------	----

		CDS	6		intr	onic	inte	rgenic	# of mutation
	frame-shift	nonsense	missense	silent	Ins	SNP	Ins	SNP	# or mutation
SPO1	2	I	2					2	6

Freebayes 라는 프로그램을 이용하여 mutant position을 확인한 결과, 6개의 유효한 변이 위치를 발견하였는데, 이중 2개가 표현형에 영향이 클 것으로 예상되는 frame-shift mutation을 일으킨다는 것을 확인하였다(표 51).

chn	pos	Gtype	Rnum	Refbase	Refnum ::	Altbase	Altnum	mid	fr	type	ref	alt	mut_type	annotation
ch05	2557661	1/1	449	G	0 🗄	A	449	FUN_007403-T1	12	CDS	T	Т	missense	aldehyde dehydrogenase
ch06	2482409	1/1	354	TGAAAAG	39 :	TGAAAAGAAAAG	307	FUN_008668-T1	+	CDS			frame-shift	actin-like atpase domain-containing protein, hsp70 family
ch07	2513447	1/1	423	GAC	0 #	GAAC	404	FUN_009752-T1	+	CDS			frame-shift	velB-like velvet complex protein
ch10	920946	1/1	469	Т	0 ::	C	468	FUN_011962-T1	+	CDS	Y	Н	missense	peroxisomal hydratase-dehydrogenase-epimerase

丑	52.	Lichtheimia	ramosa	SPO1	CDS내의	변이정보
---	-----	-------------	--------	------	-------	------

2개의 frame-shift mutation은 각각 actin-like ATPase domain-containing protein과 velvet factor domain-containing protein 유전자에서 일어났는데, 이중 filamentous fungi에서 asexual sporulation에 관여한다고 알려진 velvet factor 유전자들 (Park & Yu, 2012)과 같은 domain을 가진 유전자에서 일어난 frame-shift mutation이 SPO1의 표현형에 큰 영향을 끼 친것으로 보인다 (표 52). 다만, 4개의 velvet factor 유전자들이 상호작용하는 대다수의 fillamentous fungi와는 달리, L. ramosa에는 무려 18개의 velvet factor domain-containing 유전자들이 있고, 이들의 기능에 대해서는 아직 알려진 것이 없기 때문에 조절기작을 밝힐 후속연구가 필요하다.

5절. 전통주의 발효 유래 휘발성/비휘발성 대사체 프로파일링

1. 전통주 대사체 분석 및 데이터 프로세싱 기반 확립

가. Sample preparation

(1) 효모 배양

제주도 서귀포시 중문동 2123-1에서 제조된 누룩에서 얻은 효모 Saccharomycopsis fibuligera LNJJ8-1(이하 LNJJ8-1)과 경상북도 포항시 남구 연일읍 유강리 대림한숲 1차 104-303에서 제조된 누룩에서 얻은 효모 Pichia jadiniii LNLNPH1-2 (이하 LNLNPH1-2)를 이용하여 실험을 진행하였다. 두 효모는 YPD 액체배지 [1% (w/v) yeast extract, 2% peptone, and 2% glucose] 에서 배양하였다. 배양은 250 mL baffled flask with screw cap에 서 총 볼륨 25 mL로 37℃에서 진행되었다. 약 24시간 배양 한 후 OD₆₀₀=0.1로 맞추어 8시 간 동안 배양을 진행하였다.

(2) 곰팡이 배양

곰팡이는 경상북도 포항시 남구 연일읍에서 제조된 누룩에서 얻은 Lichtheimia ramosa LNPH1-1를 이용하였다. L. ramosa LNPH1-1를 complete media 고체배지에 37℃에서 4일 키운 후 멸균한 증류수로 균사를 적시고 miracloth (Calbiochem, San Diego, CA)에 여과시 켰다. Miracloth에 걸러진 액체를 1.5 mL safe-lock tube (hamburg, Germany)에 나누어 담 고 13000 rpm, 4℃에서 10분 동안 원심분리시켜 상층액을 제거하고 safe-lock tube에 다시 멸균한 증류수 1 mL를 넣었다. 이것을 L. ramosa LNPH1-1의 포자 수가 개/mL가 되도록 액체 배지에 분주하였다. 액체배지는 complete media (CM), potato dextrose broth (PDB), sabouraud dextrose broth (SDB)를 이용하였다. CM배지는 증류수 1 L에 yeast extract 1 g, sucrose 30 g, peptone 2.5 g, sodium nitrate 2 g, potassium phosphate 1 g, magnesium sulfate heptahydrate 0.5 g, potassium chloride 0.5 g, trace element solution 0.2 mL, vitamin stock solution 10 mL를 넣어 만들었다. Trace element solution에는 citric acid 5 g, • 5 g, • 1 g, • 250 mg, 50 mg, boric acid 50 mg, 50 mg, 증류수 95 mL를 넣었다. Vitamin stock solution에는 thiamine 100 mg, riboflavin 30 mg, pyridoxine 75 mg, pantothenic acid 200 mg, nicotinamide 75 mg, ascorbic acid 5 mg, p-aminobenzoic acid 5 mg, choline 200 mg, folic acid 5 mg, biotin 5 mg, inositol 4 g, 50% ethanol 1 L를 넣어 만 들었다. PDB배지는 증류수 1 L에 potato dextrose broth 24 g을 넣었고, SDB 배지는 증류 수 1 L에 sabouraud dextrose broth를 30 g 넣어 만들었다. 250 mL screw 삼각 플라스크에 35 mL의 배지를 넣고 37℃에서 220 rpm 조건으로 뚜껑을 닫고 발효를 진행하였다. 균을 접종하고 난 후 12시간, 24시간, 36시간, 48시간 후에 sampling을 수행하였다.

나. 효모, 곰팡이의 휘발성 발효 대사산물 분석

(1) Stir bar sorptive extraction (SBSE)법을 이용한 휘발성 발효 대사산물 추출

4℃, 3500 rpm에서 300 초 동안 원심분리 한 후 상층액을 sample로 이용하였다. 곰팡이는 원심분리 하지 않은 액체배지 자체를 sample로 이용하였다. Sample 8 mL를 10 mm length, 32 phase volume ethylene glycol-silicone coated stir bar (EG-silicon twister) (GERSTEL GmbH & Co. KG, Mülheim an der Ruhr, Germany) 또는 10 mm length, 0.5 mm film thickness polydimethyl siloxane coated stir bar (PDMS twister) (GERSTEL GmbH & Co. KG, Mülheim an der Ruhr, Germany) 와 함께 10 mL screw vial (CTC Hdspce, Agilent technologies, DE, Germany)에 넣고 screw cap (Ultra clean 18 mm, Agilent technologies, DE, Germany)으로 막았다. Twister를 1000 rpm으로 stir하며 효모는 60분, 곰팡이는 90분 흡착시켰다. 흡착 후에는 twister를 증류수로 씻은 후 lint free tissue로 닦아 물을 제거하였다.

(2) 휘발성 발효 대사산물 분석

SBSE법을 이용하여 추출한 sample의 휘발성 발효 대사산물 분석은 7890B GC system과 5977A mass detector (Agilent technologies, Santa Clara, CA, USA)를 이용하여 분석하였다. 흡착시킨 EG-silicone twister, PDMS twister를 tube에 넣어 thermal desorption unit (TDU) (GERSTEL GmbH & Co. KG, Mülheim an der Ruhr, Germany) 에서 40℃에서 0.5 분, 12 0℃/min으로 온도를 높이고, PDMS twister는 280℃에서 5분 유지, EG-silicone twister는 220℃에서 5분 온도를 유지하여 휘발성 발효 대사산물들을 탈착시켰다. 탈착하는 동안에는 액체질소를 이용하여 cooled injection system (CIS)에서 -80℃를 유지하였고, -80℃에서 0.01분, 12℃/s로 온도를 높이고 PDMS twister는 290℃, EG-silicone은 230℃에서 1분 유지 하였다. CIS liner는 를 이용하였고 mode는 solvent vent모드를 이용하여 민감도를 최대화 시켰다. Solvent vent모드에서 vent flow 조건은 50 mL/min, 4.772 psi until 0.01 min 이었 다. Column은 DB-wax (30 m length x 0.25 mm I.D.. x 0.25 µm film thickness, J&B Scientific, Folsom, CA, USA)를 사용하였다. GC oven온도는 4℃에서 5분간 유지하였고, 23 0℃까지 4℃/min으로 온도를 높인 후 230℃에서 10분간 유지하였다. Mass scan range는 35-350 a.m.u였으며 masss spectra는 70 eV에서 electron ionization (EI)방식에 의해 얻었다. 이동가스로는 Helium을 0.8 mL/min의 유속을 유지하였고 splitless모드로 탈착하였다.

(3) 휘발성 발효 대사산물의 동정 및 정량

SBSE법으로 추출한 휘발성 발효 대사산물의 동정은 mass spectral database (Wiley9n.1 및 NIST08) 및 manual interpretation에 의해 비교 분석되었다. Hexane에 희석한 - saturated alkanes (1000 in hexane)을 외부 표준물질로 사용하여 각 휘발성분의 RI를 구한 후 문헌 에서 보고된 retention index (RI) value와 비교하였다.

(4) 주성분 분석 및 다변량 분석

GC-MS로 분석하여 얻은 휘발성 발효 대사산물 성분의 차이 및 변화양상을 확인하기 위하 여 SIMCA-P software (SIMCA-P version 11.0, Umetrics, Umea, Sweden)을 이용하여 주성분 분석 및 다변량 분석을 실시하였다.

다. 효모, 곰팡이의 비휘발성 발효 대사산물 분석

(1) 비휘발성 발효 대사산물 추출

효모 2종과 곰팡이 1종의 전처리 및 비휘발성 발효 대사산물 추출을 위해 fast filtration (Kim et al., 2013) 방법을 일부 수정하여 이용하였다. 시료 1 mL를 필터에 거른 후 5 mL의 물 (HPLC grade; J.T.Baker, AVANTOR, PA, USA)로 씻어주었다. 이 작업을 최대한 빠르게 진행하여야 추출 과정 중 대사체 손실 및 변화를 줄일 수 있다. 시료를 걸러낸 nylon membrane filter를 -24℃ acetonitrile/water 혼합액 (1:1, w/v) (HPLC grade; J.T.Baker, Avantor, PA, USA) 20 mL에 넣고 1분간 vortexing하였다. 그 후 quenching의 목적으로 액 체질소에 담근 후 얼음에서 해동시켰다. 시료가 다 녹은 후 4℃, 3500 rpm에서 20분간 원 심분리 (UNION 32R PLUS, Hanil science Inc, Inchun, Korea)하였다. 효모는 상층액 1 mL를 1.5 mL safe lock tube에 담았고, 곰팡이는 상층액 1.5 mL를 2 mL safe-lock tube (Eppendorf, Hamburg, Germany)에 담아 centri-vap (Labcono Co., Kanasas City, MO, USA) 에서 완전 건조 시켰다. 완전 건조 후에는 지질과 왁스성분의 제거를 위해 0℃ acetonitrile/water 혼합액 (1:1, w/v) 500 µL를 분주한 후 다시 완전 건조 시켰다.

(2) 비휘발성 발효 대사산물 분석을 위한 유도체화

본 실험에서는 유도체화에 methoxyamine-HCl (Sigma-Aldrich, St Louis, MO, USA)과 N,O-bis (trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) (Sigma-Aldrich, St. Louis, MO, USA)를 사용하였다. 완전 건조된 시료에 pyridine (Sigma-Aldrich) 상에 20 mg/mL로 용해된 methoxyamine-HCl 60 µL를 넣고 30℃에서 60분 간 반응시켰다. 이 후 BSTFA+TMCS, 99:1 80 µL를 넣고 70℃에서 60분간 추가로 반응시켰 다. 상온에서 방치 후 insert가 들어간 1.5 mL auto-sampler vial에 담아 최종 주입량을 1 µL로 설정하여 GC-TOF/MS로 분석하였다.

(3) 비휘발성 발효 대사산물 분석

Agilent 6890N gas chromatograph에 연결된 time-of-flight (TOF) Pegasus III mass spectrometer (Leco, St. Joseph, MI, USA)에 DB-5MS column (30 m length x 0.25 mm I.D. x 0.25 µm film thickness, J&W Scientific)을 장착하여 사용하였다. 오븐 온도는 50℃에서 1 분간 유지시킨 후 50℃에서 300℃까지 분당 8℃씩 증가시켰다. 그 후 300℃에서 5분간 유 지시켰다. Injector의 온도는 270℃, detector transfer line의 온도는 280℃였다. Carrier gas 로는 초고순도 헬륨 (He)을 사용하였으며 1 mL/min의 constant flow rate으로 흘려주었다. 주입은 splitless mode로 설정하였다. Mass spectrometer의 acquisition rate은 20 spectra/sec 으로 설정하였다. Mass scan range는 35-500 a.m.u로 설정하였다.

(4) 비휘발성 발효 대사산물의 동정 및 정량

GC-TOF/MS에 의해 분석된 비휘발성 발효 대사산물은 GC-TOF에 장착된 Fiehn, mainlib, Wiley9, replibrary를 이용하여 동정하였다. 정확한 정량을 위하여 내부표준물질을 사용하였 다. Carbohydrate의 내부 표준물질로는 threitol 100 ppm (w/v)을 100 사용하였고, lipid는 heptadecanoic acid로 효모는 100ppm (w/v) 50, 곰팡이는 100 ppm (w/v) 50 사용하였다. 유기산의 내부표준물질로는 tropic acid 100 ppm (w/v)을 50 사용하였고, 아미노산의 내부 표준 물질로는 norleucine 100 ppm (w/v)을 효모 100 곰팡이 50 사용하였다. 유기산의 내 부표준물질로 docosanoic acid를 사용해보았으나 수용성을 띄는 대부분의 유기산들과 그 특 성이 달라 정확한 분석이 이루어지지 않았다. 이를 보완하여 tropic acid를 유기산의 내부 표준물질로 선정하여 실험을 진행하였다.

(5) 다변량 분석

GC-TOF/MS로 분석하여 얻은 LNJJ8-1과 LNLNPH1-2의 비휘발성 발효 대사산물 성분의 차 이를 확인하기 위하여 SIMCA-P software (SIMCA-P version 11.0, Umetrics, Umea, Sweden) 을 이용하여 다변량 분석을 실시하였다.

라. 효모, 곰팡이의 휘발성/비휘발성 발효 대사산물 분석 연구결과

(1) 휘발성 발효 대사산물 추출법 및 분석법 확립

(가) EG-silicone과 PDMS twister의 추출 효율 비교

PDB배지에서 *L. ramosa* LNPH1-1를 3일 배양한 후 EG-silicon과 PDMS twister를 이용하여 휘발성 발효 대사산물을 추출하여 분석한 결과는 아래 그림 70과 같다.

그림 70. PDB배지에서 키운 *L. ramosa* LNPH1-1의 GC-MS total ion chromatograms: (a) EG-silicone, (b) PDMS.

EG-silicone을 이용하여 실험 한 결과로는 acid류 2개, alcohol류 7개, aldehyde류 8개, benzene류 6개, ester류 1개, ketone류 9개, terpene류 1개와 나머지 4개를 합하여 총 40개 의 성분이 검출되었다. PDMS를 이용하여 실험 한 결과로는 alcohol류 4개, aldehyde류 6개, benzene류 6개, ester류 1개, ketone류 3개, terpene류 2개, hydrocarbon류 5개와 나머지 5 개를 합하여 총 32개의 성분이 검출되었다. EG-silicone에서 더욱 많은 성분이 검출되었으 며 stir bar sorptive extraction에 관한 다른 논문에서와 같이 (Kawaguchi et al., 2013, Sánchez-Rojas et al., 2009) PDMS coated stir bar는 polar한 compounds를 잘 흡착하지 못 하는 것을 확인할 수 있었다.

(나) 휘발성 발효 대사산물 분석 시 배지의 영향

휘발성 발효 대사산물을 분석할 때 twister를 액체배지에 성분들을 흡착시키기 때문에 배지 자체의 휘발성 성분들이 실험 결과에 영향을 줄 수 있다. 따라서 효모와 곰팡이가 발효되 는 과정 중 만들어내는 순수한 휘발성 발효 대사산물을 분석하기 위해서 배지에 의해 검출 되는 성분들을 제거해야 할 필요가 있다. 배지에서 검출된 성분들의 영향을 알아보기 위하 여 효모를 접종하지 않은 YPD 배지와 두 종류의 효모를 접종한 배지를 이용하여 실험을 진행하였다. 효모는 37℃, 220 rpm에서 8시간 동안 발효시켰고 배지도 이와 같은 조건에서 방치하였다.

① YPD 액체배지의 휘발성 성분 분석

효모를 접종하지 않은 YPD 배지만의 휘발성 발효 성분들을 실험해 본 결과는 아래 표 53 와 같다.

Volatile metabolites	RI	RT	Relative peak area*(%)
Aldehydes			
3-methyl-butanal	918	7.87	0.126
2-furancarboxaldehyde	1470	26.77	0.119
benzaldehyde	1532	28.73	0.588
5-(hydroxymethyl)-2-furancarboxaldehyde	>2400	52.66	0.062
Alcohols			
ethylhexanol	1495	27.60	0.020
2-furanmethanol	1666	32.69	0.168
2-(2-butoxyethoxy)-ethanol	1805	36.54	0.047
benzeneethanol	1922	39.57	0.044
2,4-bis(1,1-dimethylethyl)-phenol	2314	48.60	0.170
Esters			
butyl dibutoxyacetate	1147	15.21	0.053
butyl formate	1168	16.04	6.343
butyl butanoate	1227	18.31	0.014
2,2,4-trimethyl-pentan-1,3-dioldiisobutyrate	1885	38.63	0.319
Hydrocarbons			
hexadecane	1599	30.76	0.017
octadecane	1798	36.36	0.023
nonylcyclopropane	1973	40.83	0.137
eicosane	1998	41.45	0.019
Aromatic hydrocarbons			
toluene	1048	11.69	0.037
1,3-dimethyl benzene	1140	14.98	0.016
xylene	1147	15.22	0.019
1,2-dimethyl benzene	1191	16.94	0.013
1,3-bis(1,1-dimethylethyl)-benzene	1432	25.55	0.018
1,6-dichloro-1,5-cyclooctadiene	1912	39.32	0.040
butylated hydroxytoluene	1917	39.43	0.014
Z-5-nonadecene	2007	41.67	0.034
2,6-di(t-butyl)-4-hydroxy-4-methyl-2,5-cyclohexadien-1-one	2104	43.96	0.179
Ketones			
2-pentanone	983	9.64	0.009
2-octanone	1292	20.77	0.017
2-dodecanone	1710	33.95	0.025
Pyrazines			
2-ethyl-5-methyl-Pyrazine	1402	24.59	0.035
trimethylpyrazine	1416	25.03	0.061
2-methyl-5-isopropyl pyrazine	1422	25.23	0.022
pyrazine	1621	31.41	0.022
Aromatic organic compounds			
4-methylquinoline	2133	44.63	0.067
5-methyl-2-phenylpyrimidine	2334	49.02	0.118

표 53. 효모를 접종하지 않고 8시간 동안 37℃, 220 rpm에서 반응시킨 YPD배지의 휘발성 대사체

*Relative peak areas to that of internal standard

② LNPH1-2의 휘발성 발효 대사산물 분석

LNPH1-2의 휘발성 발효 성분을 분석하여 YPD배지의 휘발성 성분과 비교해 본 결과, 효모 에 의해 순수하게 생성된 휘발성 발효 대사산물은 acid류 2개, alcohol류 5개, ester류 8개, hydrocarbon류 2개, aromatic hydrocarbon류 2개, ketone류 1개, furan류 1개, sulfur compound류 1개로 총 20개가 검출되었다(표 54).

표 54. YPD 배지의 영향을 고려한 LNPH1-2의 휘발성 발효 대사산물

Volatile metabolites	RI	RT	Relative peak area*(%)
Acids			
acetic acid	1327	21.98	0.073
2-methyl butanoic acid	1675	32.96	0.056
Alcohols			
2-pentanol	951	8.77	0.036
isobutyl alcohol	1119	14.13	0.101
isoamyl alcohol	1226	18.26	5.297
ethylhexanol	1495	27.60	0.027
3,7-dimethyl-(Z)-2,6-octadien-1-ol	1854	37.82	0.049
Esters			
ethyl butanoate	1047	11.66	0.166
isoamyl acetate	1133	14.67	0.173
ethyl hexanoate	1242	18.88	0.060
ethyl octanoate	1440	25.81	0.040
3,3,5-trimethylcyclohexyl methacrylate	1615	31.23	0.014
2-phenylethyl acetate	1826	37.09	0.059
ethyl-(E)-cinnamate	2144	44.87	0.030
farnesyl acetate	2270	47.65	0.094
Hydrocarbons			
1,4-bis(1,1-dimethylethyl)-benzene	1432	25.55	0.012
octadecane	2027	42.14	0.020
Furans			
5-hexyldihydro-2(3H)-furanone	2161	45.26	0.414
Sulfur compounds			
dimethyl disulfide	1083	12.86	0.040

*Relative peak areas to that of 내부 표준 물질

(다) 내부표준물질 설정

GC-MS를 이용한 휘발성 발효 대사산물 분석 시 내부표준 물질을 시료에 넣어 함께 분석 하면 더욱 정확한 정량이 가능해진다.

① 효모의 내부표준물질 설정

효모의 휘발성 발효 대사산물 분석 시 내부 표준물질로는 methyl octanoate를 사용하였다. Methyl octanoate 1 를 100 ppm (w/v, in alcohol), 50 ppm (w/v, in alcohol) 으로 만들어 sample 8 mL에 넣어 휘발성 발효 대사산물을 추출하여 분석 한 결과 50 ppm (w/v, in alcohol) 일 때가 가장 적절한 peak높이를 가지고 있었다 (그림 71).

그림 71. 내부표준물질인 methyl octanoate의 농도에 따른 GC-MS total ion chromatograms (box 로 표시해 놓은 곳이 methyl octanoate를 나타내는 peak): (a) 100 ppm (w/v) (b) 50 ppm (w/v).

② L. ramosa LNPH1-1의 내부표준물질 설정

내부표준물질 후보 중 하나인 4-ethyl phenol의 경우 methanol에 녹여 100 ppm (w/v) 으로 만들어 8 mL sample에 1 L를 넣어 휘발성 발효 대사산물을 GC-MS로 분석한 결과는 figure 8과 같다. 4-ethyl phenol을 내부표준물질로 설정했을 때는 peak도 갈라지지 않고 그 농도 또한 적당하여 100 ppm (w/v) 의 4-ethyl phenol을 내부표준물질로 설정하였다.

- (2) 비휘발성 발효 대사산물 전처리 (quenching, cell distruption), 추출법 및 분석법 확립 (가) *L. ramose* LNPH1-1 유도체화 시약의 첨가량 확인
- L. ramosa LNPH1-1의 비휘발성 발효 대사산물 분석 시 유도체화 시약의 첨가량을 알아보 기 위해 24시간 발효시킨 PDB배지를 가지고 각각 30, 50 의 methoxyamine- HCl (20 mg in 1 mL pyridine) 와 50, 70의BSTFA+1% TMCS를 넣어 유도체화 시켰다. GC-TOF/MS로 분석 한 비휘발성 발효 대사산물 분석 결과는 그림 72과 같다.

그림 72. L. ramosa LNPH1-1의 GC-TOF/MS total ion chromatograms: (a) 30methoxyamine hydrochloride, 50 BSTFA+1% TMCS (b) 50methoxyamine-HCl, 70 BSTFA+1% TMCS.

30 methoxyamine-HCl, 50 BSTFA+1% TMCS를 넣어 유도체화 시켰을 때는 myo-inositol, oxalic acid, aminobutyrate 와 같은 성분들이 검출되지 않았다. 따라서 본 실험에서는 50 methoxyamine-HCl, 70 BSTFA+1% TMCS를 가지고 *L. rasmosa* LNPH1-1의 비휘발성 발효 대사산물들을 유도체화 하고자 한다.

(나) 비휘발성 발효 대사산물 분석을 위한 적절한 시료 회수량 확립효모의 상층액을 2 mL 회수하여 실험을 진행한 결과 피크가 지나치게 높게 나왔다. 이에

따라 상층액을 1 mL만 회수하여 분석하기로 하였다. 효모의 상층액을 2 mL 회수하여 실 험을 진행하였을 때와 1 mL를 회수하여 실험하였을 때의 GC-TOF/MS total ion chromatogram을 그림 73에 나타내었다.

그림 73. 시료 회수량에 따른 GC-TOF/MS total ion chromatograms: (a) 2 mL 회수 (b) 1 mL 회수.

(3) 데이터 프라세싱 및 다변량 통계기법 확립

(가) L. ramosa LNPH1-1의 휘발성 발효 대사산물의 다변량 통계기법 확립

CM 배지에서 12시간, 24시간, 36시간, 48시간 배양시킨 *L. ramosa* LNPH1-1의 휘발성 발 효 대사산물들을 정성, 정량 분석 한 후 SIMCA-P를 이용하여 주성분 분석 및 다변량 분석 결과는 다음과 같다.

① *L. ramosa* LNPH1-1의 발효 시간 별 휘발성 발효 대사산물의 주성분 분석을 실행한 결 과는 그림 74의 (a)에 나타내었고, 다변량 분석 결과는 (b)에 나타내었다. 제 1주성분 (PC 1)은 33.61%, 제 2주성분 (PC 2)은 19.64%의 설명력을 나타내어 총 변동의 53.25%를 설명하 였다. *L. ramosa* LNPH1-1를 12시간 발효시킨 샘플은 PC 1기준 양의 방향, PC 2기준 음의 방향에 위치하였다. 24시간 발효시킨 샘플은 PC 1기준 음의 방향, PC 2 기준 음의 방향에 위치하였으며 36시간과 48시간 발효시킨 샘플은 PC 2 기준 양의 방향에 위치하였다.

그림 74. L. ramosa LNPH1-1의 발효 시간 별 휘발성 발효 대사산물의 score plot: (a) 주성분 분석, (b) 다변량 분석.

② L. ramosa의 발효 시간별 휘발성 발효 대사산물의 다변량 분석으로 알아본 결과 PC 1 과 PC 2의 양과 음에 방향에 주요한 영향을 미치는 성분 (VIP value > 0.7)들은 octanoic acid, decanal, dichloromethane, dimethyl disulfide, cadinene, nonanal, palustrol, shyobunol, 1-butanol, humulene, 5-methyl-2-furfural, 2-hydroxy- 3-methyl-2-cyclopenten-1-one, furan. methoxy-phenyl-oxime, unknown, 3-methyl-2-buten-1-ol, selinene. copaene, 2.3-dihydro-3.5-dihydroxy-6-methyl-4H-pyran-4-one, 2-methylbutanal, tau-muurolol. cadrelanol, 2-pentylfuran, 5-oxymethyl- furfurole, 1-hexanol, indole, 2,3-butanedione, 2-cyclopentene-1,4-dione, nonanoic acid, 3-methylbutanal, pentadecane, acetic acid, 2-butanone, 2-furancarboxylic acid methyl ester, 2(5H)-furanone, 2-propanone, acetic acid ethyl ester, 2-(2-ethyoxy ethoxy-)-ethanol, 2,2,4-trimethyl-1-pentan-1,3-dioldiisobutyrate, 2,3-pentanedione, 2-ethyl-1-hexanol, chloroform, phenol, ethanol, hexanal 이었다.

- PC 1의 양의방향 (12시간 배양)에 주요한 영향을 미치는 성분 (VIP value > 0.7)들은 selinene, 2-methylbutanal, 2-pentylfuran, 1-hexanol, 3-methylbutanal, shyobunol, 2-hydroxy-3-methyl-2-cyclopenten-1-one, 1-butanol, dimethyl disulfide, cadinene, hexanal, methoxy-phenyl-oxime, chloroform, phenol, nonanal, 5-methyl-2-furfural 이었다.

- PC 1의 음의 방향 (24시간 배양)에 주요한 영향을 미치는 성분 (VIP value > 0.7)들은 octanoic acid, 2-ethyl-1-hexanol, 2,3-pentanedione, 2-cyclopentene- 1,4-dione, ethanol, 5-oxymethylfurfurole, palustrol, decanal, 2-propanone, 2,3-butanedione,

2,2,4-trimethyl-pentan-1,3-dioldiisobutyrate, dichloromethane, nonanoic acid, acetic acid, 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, furan, 2-(2-ethoxyethoxy)-ethanol, pentadecane, humulene, 2-furancarboxylic acid methyl ester, 2(5H)-furanone, 2-butanone, acetic acid ethyl ester, indole, cadrelanol, 3-methyl2-buten-1-ol, tau-muurolol, copaene 이었다.

- PC 2 의 양의 방향 (36시간, 48시간 배양)에 주요한 영향을 미치는 성분 (VIP value > 0.7)들은 palustrol, nonanal, decanal, dichloromethane, 2-hydroxy-3methyl-2-cylopenten-1-one, nonanoic acid, octanoic acid, humulene, chloroform, 3-methyl-2-buten-1-ol, 5-methyl-2-furfural, tau-muurolol 이었다.

2. 사상성 진균 *L. ramosa*의 휘발성/비휘발성 발효 대사산물 분석 연구 가. CM, PDB, SDB 액체배지 및 곰팡이 배양 준비

액체배지는 complete media (CM), potato dextrose broth (PDB), sabouraud dextrose broth (SDB)를 이용하였다. 250 mL screw 삼각 플라스크에 35 mL의 배지를 넣고 37℃에서 220 rpm 조건으로 뚜껑을 닫고 배양을 진행하였다. 균을 접종하고 난 후 0 hr, 12 hr, 24 hr, 36 hr, 48 hr 후에 sampling을 수행하였다.

나. 곰팡이의 휘발성 발효 대사산물 분석

원심분리 하지 않은 액체배지 자체를 sample로 이용하여 SBSE 추출법을 활용하여 휘발성 대사산물을 추출하였고 GC/MS로 분석하였다. 분석된 휘발성 발효 대사산물의 동정은 mass spectral database (Wiley9n.1 및 NIST08) 및 manual interpretation에 의해 비교 분석되었다. 또한 saturated alkanes (1000 µg/mL in hexane)을 외부 표준물질로 사용하여 각 휘발성분 의 RI를 구한 후 문헌에서 보고된 retention index (RI) value와 비교하였다. 4-Ethylphenol [100 ppm (w/v) in methanol]을 내부 표준물질로 사용하여 정량하였다. GC-MS로 분석하여 얻은 휘발성 발효 대사산물 성분의 차이 및 변화양상을 확인하기 위하여 SPSS (version 12.0, Chicago, IL. U.S.A)로 다변량 분석(MANOVA)을 실시하였다. 또한, 배양 시간과 배지 에 따른 차이를 확인하기 위해 SIMCA-P software (SIMCA-P version 11.0, Umetrics, Umea, Sweden)를 이용하여 PLS-DA를 수행하였다.

다. 곰팡이의 비휘발성 발효 대사산물 분석

비휘발성 발효 대사산물 추출을 위해 fast filtration (Kim et al., 2013) 방법을 일부 수정해 이용하였다. 추출된 대사체는 유도체화를 위해 methoxyamine-HCl (Sigma-Aldrich, St Louis, USA)와 N,O-bis (trimethylsilyl) trifluoroacetamide MO. (BSTFA) with 1% trimethylchlorosilane (TMCS) (Sigma-Aldrich, St. Louis, MO, USA)를 사용하여 GC-TOF/MS 로 분석하였다. GC-TOF/MS에 의해 분석된 비휘발성 발효 대사산물은 Fiehn, mainlib, Wiley9, replibrary를 이용하여 동정하였다. 정확한 정량을 위하여 내부표준물질을 이용하였 으며, carbohydrates의 내부 표준물질로는 threitol 100ppm (w/v in water)을 사용하였고, fatty acids는 heptadecanoic acid로 100ppm (w/v in hexane) 사용하였다. 반면 organic acids 의 내부표준물질로는 tropic acid 100ppm (w/v in water)을 사용하였으며, amino acids의 내 부표준 물질로는 norleucine 100ppm (w/v in water)을 각각 사용하였다. GC-TOF/MS로 분

석하여 얻은 비휘발성 발효 대사산물의 시료 간 차이를 확인하기 위하여 SIMCA-P software (SIMCA-P version 11.0, Umetrics, Umea, Sweden)을 이용하여 다변량 분석을 실시 하였다.

라. 곰팡이의 휘발성/비휘발성 발효 대사산물 분석 연구결과 (1) 곰팡이의 휘발성 발효 대사산물 분석

(가) CM 액체배지에서 배양한 L. ramosa 추출물의 휘발성 발효 대사산물 동정

총 acid류 2개, alcohol류 5개, aldehyde류 2개, 5개의 benzene류와 benzene derivative, ester류 1개, 10개의 furan류와 furan derivative, ketone류 6개, sulfur를 함유한 화합물 1 개, terpene류 3개, hydrocarbon류 1개, miscellaneous류 1개로 총 55가지의 휘발성 발효 대 사산물이 검출되었다.

그림 75. CM 액체배지 추출물의 휘발성 발효 대사산물의 PLS-DA score plot

PLS-DA 분석을 통해 CM 배지에서 배양하는 동안 *L. ramosa* 추출물의 휘발성 대사산물의 차이를 확인하였다. CM 액체배지에서 배양한 *L. ramosa* 추출물의 휘발성 대사산물에 대한 PLS-DA score plot을 그림 75에 나타내었다. 배양 시간이 증가할수록 샘플은 PLS component 1을 기준으로 왼쪽에서 오른쪽으로 이동하였다. PLS-DA score plot은 PLS component 1의 32.2%, PLS component 2의 20.8%로 총 변동의 53%를 설명한다.

(나) PDB 액체배지에서 배양한 L. ramosa 추출물의 휘발성 대사산물 동정

총 acid류 2개, 7개의 benzene류와 benzene derivative, etser류 1개, 8개의 furan류와 furan derivative, ketone류 8개, sulfur를 함유한 화합물 1개, terpene류 2개, hydrocarbon류 1개, miscellaneous류 1개로 총 29개가 검출되었다 (그림 76).

그림 76. PDB 액체배지 추출물의 휘발성 발효 대사산물의 PLS-DA score plot.

PLS-DA 분석을 통해 PDB 배지에서 배양하는 동안 *L. ramosa* 추출물의 휘발성 대사산물의 차이를 확인하였다. 그림 4는 PDB 배지에서 배양시킨 *L. ramosa* 추출물의 휘발성 대사산 물에 대한 PLS-DA score plot을 나타낸다. 배양 시간이 증가할수록 시료는 PLS component 1을 기준으로 왼쪽에서 오른쪽으로 이동하였다. 샘플은 PLS component 1을 기준으로 왼쪽 에서 오른쪽으로 움직인다. PLS-DA score plot은 PLS component 1의 21.17%, PLS component 2의 22.21%로 총 변동의 43.38%를 설명한다.

(다) SDB 액체배지에서 배양한 L. ramosa 추출물의 휘발성 대사산물 동정

총 acid류 2개, aldehyde류 3개, 8개의 benzene류와 benzene derivative, 11개의 furan류와 furan derivative, ketone류 6개, sulfur를 함유한 화합물 2개, terpene류 2개, hydrocarbon류 1개, miscellaneous류 1개가 검출되었다.

그림 77. SDB 액체배지 추출물의 휘발성 발효 대사산물의 PLS-DA score plot

PLS-DA 분석을 통해 SDB 배지에서 배양하는 동안 *L. ramosa* 추출물의 휘발성 대사산물의 차이를 확인하였다. 그림 77는 SDB 배지에서 배양시킨 *L. ramosa* 추출물의 휘발성 대사산 물에 대한 PLS-DA score plot을 나타낸다. 샘플은 왼쪽에서 오른쪽으로 이동하였다. PLS-DA score plot은 PLS component 1의 35.61%, PLS component 2의 18.42%로 총 변동의 54.03%를 설명한다.

(라) 48 hr 배양한 L. ramosa의 추출물의 휘발성 대사산물 비교

48 hr 배양 시 주요 휘발성 대사산물은 acetic acid, ethanol, 3-methyl- 2-buten-1-ol, 2-phenylethanol, ethylacetate, 2-furaldehyde, 5-(hdryoxymethyl) -2-furaldehyde, 2,3-dihydro-3,5,-dihydroxy-6-methyl- 4H-pyran-4-one, α - humulene 으로 나타났다. 막걸리 관련 휘발성 대사산물로는 acetic acid, ethanol, and ethyl acetate 등으로 나타났으며, 특히 CM 액체배지에서 가장 많이 생성되었다. 반면, 2-phenylethanol 은 SDS 액체배지 추출물에서 가장 많이 생성되었는데 phenylalanine 으로부터 생성되었을 것으로 사료된다. 2-Phenylethanol 은 CM, PDB, SDB 액체배지에서 많이 생성된 benzene 류 혹은 benzene derivative 로, PDB 액체배지와 SDB 액체배지에서 더 많이 발견되었다. 2-Phenylethanol 은 fusel alcohol 중 하나로. Ehrlich pathway 를 통해 phenylalanine 으로부터 생성되며, 막걸리의 주요 향기 성분 중 하나이다. 장미향을 지니며, 와인, 위스키, 올리브 오일, 포도, 녹차, 홍차, 사과 주스, 커피 등에서도 맥주. 생성된다(Kyoshi, 1999; Kim et al., 2008; Kim et al., 2010). Ethyl acetate 는 CM과 PDB 액체배지에서 생성되었지만, SDB 액체배지에서는 검출되지 않았다. 이 생성물은 과일향과 꽃향을 나타내며, 막걸리와 와인의 주된 휘발성 향기 성분이다(So et al., 1999; Lambrechts et al., 2000).

(2) 곰팡이의 비휘발성 발효 대사산물 분석

(가) CM 액체 배지에서의 비휘발성 발효 대사산물 분석

총 14개의 amino acids, 9개의 carbohydrates, 17개의 fatty acids와 19개의 organic acids가 검출되어 총 59개가 검출되었다. 대부분의 amino acid는 12hr 배양까지 급격히 감소하다 24hr까지 증가하는 경향을 나타내었다. 일반적으로 lag phase동안, amino acid의 함량은 일 정 수준을 유지하지만, exponential phase동안의 amino acid 함량은 감소하는 것으로 알려 져 있다 (Selvarasu et al., 2009). 이는 amino acid가 이를 질소원으로 이용하는 nitrogen balace에 의해 분해될 수 있으며 (Eagle et al., 1959), 미생물의 metabolic pathway를 통해 aldehyde, alcohols, sulfur compounds, lactone 등으로 변환될 수 있기 때문으로 사료 된다 (Korpi et al., 2009). 그러나 이와 달리 Serine의 경우 12hr 배양까지 증가하다가 감소하는 반면, Ornithine의 경우 24hr 배양까지 증가하다 감소하는 경향을 나타내었다.

그림 78. CM 액체 배지에 배양한 L. ramosa의 비휘발성 발효 대사산물의 PLS-DA score plot

그림 78는 배양시간에 따라 비휘발성 발효 대사산물이 어떻게 변하고, 이 때 시료가 어떻 게 분리되는지를 보여주고 있다. 배양 시간의 증가에 따라 PLS component 1을 기준을 왼 쪽에서 오른쪽으로 이동하고 있음을 알 수 있다. Figure5(b)는 이에 대한 PLS-DA loading plot으로써, isoleucine, phenylalanine, glutamic acid와 같은 대부분의 amino acids와 sucrose, organic acid 중 3-propanoic acid, nonanoicd acid, 3-methylbenzoic acid, octadecanoic acid, benzoic acid, ethanedioic acid, 1,4-benzenedicarboxylic acid는 PLS component 1기준으로 오른쪽에 위치하는 proliferation의 초기단계에 영향을 미쳤다. 반면 maltose, glucose, mannose와 같은 carbohydrates와 기타 organic acid은 PLS component 1 기준으로 왼쪽에 위치하는 proliferation의 후기 단계와 nonproliferation에 영향을 미친 것을 알 수 있다.

(나) PDB액체배지에서의 비휘발성 발효 대사산물 분석

총 14개의 amino acids, 9개의 carbohydrates, 17개의 fatty acids와 18개의 organic acids가 검출되어 총 58개가 검출되었다. PDB액체배지의 경우 CM액체배지에서 검출된 amino acids 와 비슷한 경향을 나타내었다. 그러나 ornithine은 CM액체배지와 달리 12hr 배양까지 증가 하다 48hr 배양까지 감소하였으며, Lysine의 경우 24hr 배양까지 증가하다 48hr 배양까지 감소하는 경향을 나타내었다. 반면 carbohydrates의 함량은 24hr 배양된 시료에서 가장 높 았으며, fructose와 glucose외의 다른 carbohydrates가 검출된 시간은 CM액체배지의 경우와 유사하였다. 그러나 CM액체배지에서 sucrose는 0hr 배양된 시료에서 검출된 뒤 배양이 진 행되는 동안 감소하는 경향을 나타내었다. 반면, glucose와 fructose는 sucrose의 가수분해 에 의해 생성되며 (Chambert et al., 1974) 이는 CM액체배지에서 증가하는 양상을 나타내 었다.

그림 79. PDB 액체배지에 배양한 L. ramosa의 비휘발성 발효 대사산물의 PLS-DA score plot

시료는 PLS component 1을 기준으로 왼쪽에서 오른쪽으로 이동하는 경향을 나타내었으며, PLS component 2를 기준으로는 아래쪽에서 위로 이동하는 경향을 나타내었다. 이 때, PLS-DA score plot 은 41.69%의 PLS component 1과 24.46%의 PLS component 2에 의해 총 변동의 66.16%의 설명하였다 (그림 79).

(다) SDB액체배지에서의 비휘발성 발효 대사산물 분석

총 14개의 amino acids, 9개의 carbohydrates, 15개의 fatty acids와 18개의 organic acids가

검출되어 총 56개가 검출되었다. SDB액체배지에서 배양된 비휘발성 발효 대사산물은 다른 액체배지와 다른 경향을 나타내었는데, amino acid의 함량은 다른 액체배지의 경우보다 높 았으며, 12hr 배양된 액체배지에서 가장 높게 나타났다. 그리고 대부분의 amino acids는 12hr 배양까지 증가하다 감소하였지만, isoleucine, aspartic acid, glutamic acid. phenylalanine은 death phase (36-48hr)까지 계속 증가하였다. 또한 24hr 배양된 액체배지에 서의 amino acid 함량의 증가는 glucose와 inorganic nitrogen source를 함유하고 있는 액체 배지의 질소 화합물을 이용한 amino acid의 합성으로 설명되어지며, 이러한 현상은 fungi와 다른 미생물에서도 발견 된다 (Dagley et al., 1957, Morton et al., 1955). 가장 일반적인 storage carbohydrates인 arabitol과 trehalose의 함량은 exponential phase동안 증가하였지 만, mannose, galactose, glucose의 함량은 오히려 감소하였다. CM, PDB, SDB액체배지에서 검출된 대부분의 fatty acids는 미생물의 성장 동안 유지되며, 3-methylpentanoic acid, arachidonic acid, (9Z,12Z)-9,12 -octadecadienoic acid와 (9Z)-octadec-9-enoic acid의 경우 증가하다가 유지되는 경향을 나타내었다. Carbamic acid, butanedioic acid, citric acid를 제 외한 대부분의 organic acids는 CM, PDB, SDB액체배지 모두에서 조금씩 증가하거나 일정 수준을 유지하는 양상을 나타내었다. 이는 exponential phase동안 급격히 증가하다가 death phase까지 유지되는 양상을 나타내었으며, fungi에 의해 생성되는 organic acids인 Citric acid가 L. ramosa.를 이용한 누룩에서 검출된 주요 acid였다 (Gadd GM et al., 1999).

그림 80. SDB 액체배지에 배양한 L. ramosa의 비휘발성 발효 대사산물의 PLS-DA score plot

배양시간에 따른 비휘발성 발효대사산물의 차이를 알아보기 위해 PLS-DA가 수행되었다. PLS-DA score plot 은 37.40%의 PLS component 1과 16.57%의 PLS component 2에 의해 총 53.98%의 설명력을 나타내고 있다. 배양시간에 따라 PLS component 1을 기준으로 오른쪽 에서 왼쪽으로 이동하였으며, 배양시간이 더 증가함에 따라 다시 오른쪽으로 돌아오는 경 향을 나타내었다 (그림 80).

3. 효모 Saccharomycopsis fibuligera KJJ81의 휘발성/비휘발성 대사체 분석 연구 가. YPD 액체배지 및 효모 배양 준비

제주도 서귀포시 중문동 2123-1에서 제조된 누룩에서 얻은 효모 *Saccharomycopsis fibuligera* KJJ81을 이용하여 실험을 진행하였다. 두 효모는 YPD 액체배지 [1% (w/v) yeast extract, 2% peptone, and 2% glucose] 에서 배양하였다. 배양은 250 mL baffled flask with screw cap에서 총 볼륨 40 mL, 37℃, 220 rpm 조건으로 진행되었다. 16시간 배양 한 후

OD₆₀₀=0.1로 맞추어 배양을 진행하였다. 균을 접종하고 난 후 0 hr, 4 hr, 8 hr, 14 hr, 18 hr, 24 hr 후에 sampling을 수행하였다.

나. 효모의 휘발성 대사산물 분석

배양액을 4℃, 3500 rpm에서 300 초 동안 원심분리 한 후 상층액 8 mL를 polydimethyl siloxane coated stir bar (PDMS twister) (GERSTEL GmbH & Co. KG, Mülheim an der Ruhr, Germany) 와 함께 10 mL screw vial (CTC Hdspce, Agilent technologies, DE, Germany)에 넣고 Twister를 1000 rpm으로 stirring 시키면서 60분 흡착시켰다. SBSE법을 이용하여 추출한 시료의 휘발성 대사산물 분석은 7890B GC system과 5977A mass detector (Agilent technologies, Santa Clara, CA, USA)를 이용하여 분석하였다. 효모의 휘발성 대사 산물의 데이터는 AMDIS (Automated Mass Spectral Deconvolution and Identification System, http://chemdata.nist. gov/mass-spc/amdis/) 소프트웨어를 이용해 처리되었다. 얻어진 결과를 SIMCA-P software (SIMCA-P version 11.0, Umetrics, Umea, Sweden)를 이용하여 PLS-DA를 수행하였다. PLS-DA 통계를 수행 후 일정 수준 이상의 VIP 값을 가지는 휘발성 대사산물 은 mass spectral database (Wiley9n.1 및 NIST08) 및 manual interpretation을 하여 동정하였다. Hexane에 희석한 saturated alkanes (1000 µg/mL in hexane)을 외부 표준물질로 사용하여 각 휘발성분의 RI를 구한 후 문헌에서 보고된 retention index (RI) value와 비교하 였다. 정확한 상대정량 값을 구하기 위해 methyl octanoate 50 ppm (w/v, in alcohol)을 내 부 표준물질로 사용하였다.

다. 효모의 비휘발성 대사산물 분석

효모의 비휘발성 대사산물 추출을 위해 fast filtration (Kim et al., 2013) 방법을 일부 수정 하여 이용하였다. 추출액의 유도체화를 위해 methoxyamine-HCl (Sigma-Aldrich, St Louis, MO, USA)와 N,O-bis (trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) (Sigma-Aldrich, St. Louis, MO, USA)를 사용하여 GC-TOF/MS 로 분석하였다. 휘발성 데이터와 마찬가지로 AMDIS 소프트웨어를 이용해 처리하였고 SIMCA-P software (SIMCA-P version 11.0, Umetrics, Umea, Sweden)를 이용하여 PLS-DA를 수행하였다. 일정 수준 이상의 VIP 값을 가지는 휘발성 대사산물은 Fiehn, mainlib, Wiley9, replibrary를 이용하여 동정하였다.

라. S.fibuligera KJJ81 효모의 휘발성/비휘발성 대사산물 분석 연구결과

(1) 효모의 휘발성 대사산물 동정 및 정량

총 acid류 2개, alcohol류 7개, aldehyde류 2개, benzene 및 benzene derivative류 4개, ester 류 7개, furan 및 furan derivative류 3개, hydrocarbon류 1개, lactone류 2개, pyrazine류 5 개로 총 33개의 주요 휘발성 대사산물이 검출되었다.

(가) 3-Methyl-1-butanol과 3-methylbutyl acetate

S. fibuligera KJJ81의 주요 대사산물로 3-Methyl-1-butanol과 3-methylbutyl acetate 등이 검출되었다. 3-methyl-1-butanol은알콜향 또는 희석된 위스키 향을 가지고 있는 물질이며,3-Methylbutyl acetate는 달콤한 과일 향을 갖고 있다. 3-Methyl-1-butanol과 3-methylbutyl

acetate은 동일한 pathway를 거쳐 생성되는 것으로 알려져 있다 (Ashida et al., 1987; Singh et al., 2008; Yang et al., 2014; Beller et al., 2015).

3-Methyl-1-butanol과 3-methylbutyl acetate은 glucose와 valine, leucine의 아미노산으로부 터 생성된다. glucose가 해당과정을 거쳐 pyruvate가 된 후, α-ketoisovalerate, α -ketoisovaproate를 거쳐 3-Methyl-1-butanol과 3-methylbutyl acetate가 생성된다. Glucose 가 pyruvate가 되는 해당과정에서 hexkinase, phosphoglucose isomerase, pyruvate kinase와 같은 효소들이 반응에 작용한다. 덧붙여 alcohol acetyl transferase, acetate kinase, phosphotransacetylase 또 acetyl CoA와 같은 코엔자임들은 3-methyl-1-butanol과 3-methylbutyl acetate가 생성되는 데에 필수적인 요소이다.

3-Methyl-1-butanol의 경우, 배양 0시간부터 14시간까지 그 양이 급속도로 증가하다 (0시간 0.176%, 4시간 2.235%, 8시간 4.253%, 14시간 5.018%) 14시간 이후부터 조금씩 감소하는 (18시간 4.674%, 24시간 4.847%) 경향을 보였다. 3-Methylbutyl acetate의 경우, 배양 0시간 부터 4시간까지는 약간 증가하는 경향을 보였으며 (0시간 0.077%, 4시간 0.302%), 4시간부 터 14시간 까지는 급속도로 생성되는 것을 알 수 있었다 (8시간 2.289%, 14시간 4.141%). 그 후 18시간과 24시간에서는 생성량이 감소하였다. (18시간 3.475%, 24시간 1.585%).

(나) Pyrazine류

pyrazine류 주요 휘발성 대사산물로 5개의 (2-isopropyl-5-methylpyrazine, 3-ethyl-2,5-dimethylpyrazine, 2-butyl-3,5-dimethyl -pyrazine, 2,5-dimethylpyrazine, 3-butyl-2,5-dimethylpyrazine)가 검출되었다. Pyrazine은 벤젠의 1,4 번째 위치의 탄소가 질 소로 치환된 헤테로방향족화합물이다. 어떤 metabolism 또는 metabolic pathway를 거치느 냐에 따라 생성되는 휘발성 대사산물이 달라지는데, dimethyl pyrazine, trimethyl pyrazine, tetramethyl pyrazine과 같은 pyrazine류도 마찬가지로 배지나 생장 조건에 따라서 그 생 성 여부가 달라진다 (Kai et al., 2009). 여러 논문들을 통해 α -amino acids, α, β -dicarbonyls로 부터 pyrazine이 생성되는 여러 hypothetical synthesis pathway들이 제시되 고 있다 (Rajini et al., 2011). 주요 휘발성 대사산물로 검출된 3-ethyl-2,5-dimethylpyrazine, 2,5-dimethylpyrazine은 코코아, 견과류 향 (탄 아몬드 향)의 odor note를 가진다. 본 실험에 서는 전반적으로 배양 시간에 따라서 그 양이 크게 변하지 않았다.

(다) 2-Phenylethanol과 2-Phenylethyl acetate

2-Phenylethanol과 2-phenylethyl acetate는 *S. fibuligera* KJJ81에서 높은 relative peak area (%)을 갖는 것으로 분석되었다 2-Phenylethanol은 장미 향을 내는 퓨젤 알코올로 잘 알려 져 있으며, 라거 맥주에서 상당량 검출된다 (Ravasio et al., 2014). 2-phenylethaol의 경우 phenylalanine으로부터 Ehrlich pathway을 거쳐 생성 된다 (Celinska et al., 2015). 2-Phenylethyl acetate 또한 와인의 주요 향기성분으로 잘 알려진 물질이다. 꿀 향, 과일 향, 꽃 향을 내는 특징을 갖고 있다 (Viana et al., 2011).

Phenylalanine이 transaminase에 의해 α-keto acid로 변한다. 그 후 decarboxylase와 dehydrogenase에 의해 aldehyde와 alcohol로 바뀐다. 마지막으로 acetyltransferase에 의해 acetate 가 만들어진다 2-phenylethanol의 경우 phenylalanine으로부터 3-phenyl-2-oxo-propanoate (α-keto acid), 2-phenylethanal (aldehyde), 2-phenyl ethanol

(alcohol)을 거쳐 생성된다 (Ravasio et al., 2014). 2-phenylethyl acetate는 2-phenylethanol 이 acyl donor와 결합하여 생성된다. 한 예로 2-phenylethanol과 ethyl acetate이 반응 할 경우, ethyl acetate가 acyl donor로 작용하여 2-phenylethyl acetate와 ethanol이 생성된다. 2-Phenylethanol의 경우 배양 0시간부터 24시기간까지 그 양이 꾸준히 증가하는 경향을 보 였다 (0시간 0.209%, 4시간 2.878%, 8시간 4.628%, 14시간 5.397%, 18시간 5.38%, 24시간 6.18%). 2-Phenylethyl acetate의 경우 배양 0시간부터 14시간까지 그 양이 꾸준히 증가하는 경향을 보였다. (0시간 0.048%, 4시간 0.246%, 8시간 1.271%, 14시간 1.633%)

(라) 5-Hexyldihydro-2(3H)-furanone

5-Hexyldihydro-2(3H)-furanone은 복숭아 향을 가지고 있으며 다양한 과일이나 발효 산물 들에 존재 한다 (Pagot et al., 1998; Wache et al., 2001). 5-Hexyldihydro-2(3H)-furanone는 ricinoleic 분해과정의 중간 산물이며, riciholeic acid는 β-oxidation에 의해 분해된다 (Pagot et al., 1998; Blin-Perrin et al., 2000).

배양 0시간부터 14시간까지 그 양이 증가하다 14시간을 기점으로 감소하는 경향을 보였다. (0시간 0.048%, 4시간 0.272%, 8시간 0.656%, 14시간 0.739%, 18시간 0.61%, 24시간 0.653%)

(마) S. fibuligera KJJ81의 휘발성 대사산물의 PLS-DA 분석

0시간부터 24시간 동안 배양한 *S. fibuligera* KJJ81의 휘발성 대사산물에 대한 PLS-DA score plot은 그림 12에 나타내었다. 배양 0시간의 경우 PLS component 1의 양의 방향, PLS component 2의 양의 방향에 위치하였고, 배양 4시간 째 PLS component 1의 양의 방 향, PLS component 2의 음의 방향 이동하였다. 그 후 배양 8시간째에 PLS component 1의 음의 방향, PLS component 2의 음의 방향으로 이동하였고, 배앙 14시간, 18시간 24시간 모 두 PLS component 1의 음의 방향, PLS component 2의 양의 방향 (24시간째에는 PLS component 2 음의방향과 양의방향 사이에 걸쳐져 있음)에 위치하였다. PLS-DA score plot 으로 휘발성 대사산물의 변화 경향을 보았을 때, 배양 0시간부터 14시간까지는 휘발성 대 사산물들이 크게 변화 하고 그 이후부터는 크게 변화하지 않는다는 점을 유추할 수 있다 (그림 81).

그림 81. S. fibuligera KJJ81의 휘발성 대사산물 PLS-DA Score plot

(2) 효모의 비휘발성 대사산물 동정 및 정량

총 18개의 주요 비휘발성 대사산물이 검출되었다. Carbohydrate류는 3개가 동정되었고, lipids류는 4개, organic acid류는 3개, amino acid류는 8개가 동정되었다.

(가) Carbohydrates류

Mannose, arabitol, mannitol이 *S. fibuligera* KJJ81의 배양 시간에 따른 주요 비휘발성 대사 산물로 검출되었다. mannose의 경우 0시간부터 14시간 까지 급감하다 이후에 약간 증가하 는 경향을 보였다 (0시간 0.556%, 4시간 0.105%, 8시간 0.014%, 14시간 0.017%, 18시간 0.09%, 24시간 0.484%). arabitol의 경우 배양 0시간부터 4시간까지 그 양이 급증하다 (0시 간 0.353%, 4시간 1.069%) 이후 감소하는 경향을 (8시간 0.244%, 14시간 0.042%, 18시간 0.01%, 24시간 0.281%) 보였다. mannitol의 경우 mannose와 arabitol에 비해 적은양이 검출 되었으며, 시간에 따른 생성량은 뚜렷한 경향을 보이지 않았다.

(나) Lipids류

Propionic acid, palmitic acid, stearic acid, myristic acid가 *S. fibuligera* KJJ81의 배양 시간 에 따른 주요 비휘발성 대사산물로 검출되었다. Palmitic acid와 Stearic acid의 경우 높은 농도로 검출되었다. 또한 두 지방산은 시간에 따라서 그 양이 감소하는 경향을 나타냈다. 반대로 propionic acid와 myristic acid의 경우 미량 검출되었으며 시간에 따른 변화는 뚜렷 한 양상을 보이지 않았다. Palmitic acid는 탄소가 16개 있는 지방산으로 eukaryotes에서 가 장 흔하게 분포되어있는 지방산이다 (Lomakin et al., 2007). 또한 yeast 내 signaling reaction에 필수적인 단계인 protein modification은 palmitic acid와 myristic acid에 의해 발 생한다 (Tehlivets et al., 2007).

(다). Organic acids류

Oxalic acid와 succinic acid가 주로 검출되었으며, 특히 oxalic acid2가 매우 높은 비율로 검 출되었다. Oxalic acid의 경우 발효 8시간 까지 차츰 증가하다 (0시간 9.948%, 4시간 5.304%, 8시간 5.12%) 그 이후 급증하는 경향을 나타냈다 (14시간 28.111%, 18시간 10.223%, 24시간 18.372%). Oxalic acid는 단순한 dicarboxylic acid 형태로 대부분의 생물체 (organisms)에서 발견된다. 생물체 내에서 oxalate (oxalic acid의 conjugate base)의 역할은 chemical form과 distribution에 따라 달라진다. 미생물에서 oxalate를 생성할 수 있는 능력 은 영양소를 섭취하는 것과 metal tolerance, 세포 내 신호 변환, pathogenicity와 직결된다 (Foster et al., 2014). 다만 지나친 유기산의 생성은 membrane integrity의 파괴와 미토콘드 리아 대사과정의 중단과 같은 physiological 문제를 일으키기 때문에 대부분의 생물체들은 이를 조절 할 수 있는 메카니즘을 가지고 있다 (Foster et al., 2014). 하지만 oxalic acid는 맥주 제조에서 있어 beer stone을 유발해 파이프를 막아버리는 문제를 발생시키기에 칼슘 등을 통해 제거해야 할 물질로 여겨지고 있다 (Kanauchi et al., 2009).

(라) Amino acids류

8개의 amino acids (isoleucine, serine, alanine, glutamic acid, glycine, proline, phenylalanine, threonine)가 주요 비휘발성 대사산물로 분석되었다. 예외적인 부분을 제외 하고 전반적으로 배양 0시간부터 18시간까지 아미노산의 함량이 감소하는 것을 볼 수 있었 다. Selvarasu et al., (2009)와 Korpi et al., (2009)에 의하면 미생물의 exponential phase동안

amino acid의 함량이 감소하는데, 이는 미생물이 아미노산을 대사하여 aldehydes, alcohols, sulfur compounds, lacotne 등을 생성하기 때문으로 사료된다. 반면 18시간부터 24시간까지 는 아미노산의 함량이 증가하는 경향을 볼 수 있다. 이는 배지에 함유되어 있는 glucose와 inorganic nitrogen source를 이용한 미생물 내에서의 아미노산 biosynthesis로 설명 할 수 있다 (Albers et al., 1996; Dagley et al., 1950). *S. fibuligera* KJJ81의 주요 휘발성 대사산물 로 분석된 2-phenylethanol과 2-phenylethyl acetate는 phenylalanine으로부터 생성된다. 주 요 비휘발성 대사산물로 선정된 phenylalanine은 다른 아미노산들에 비해 상대적으로 적은 양이 검출되었다. 이는 phenylalanine의 분해산물인 2-phenylethanol과 2-phenylethyl acetate이 *S. fibuligera* KJJ81에서 상당량 검출된 것과 종합해 보았을 때 phenylalanine분해 가 많이 일어났기에 상대적으로 적은 양이 검출된 것으로 사료된다.

(마) S. fibuligera KJJ81의 비휘발성 대사산물 PLS-DA

배양 0시간, 4시간, 8시간, 14시간의 경우 PLS component 1의 양의 방향 (음의 방향과 양 의 방향 접점에 가까움), PLS component 2의 양의 방향 (음의 방향과 양의 방향 접점에 가 까움)에 위치하였다. 배양 18시간째에 PLS component 1의 음의 방향, PLS component 2의 음의 방향으로 이동하였고, 배양 24시간째에는 PLS component 1의 양의 방향, PLS component 2의 양의 방향에 위치하였다. PLS-DA score plot으로 배양 시간에 따른 비휘발 성 대사산물의 변화 경향을 보았을 때, 배양 0시간부터 14시간까지는 비휘발성 대사산물들 이 크게 변하지 않고, 그 이후부터 크게 변화하는 것을 알 수 있었다. 이는 배양 0시간부 터 14시간 까지는 변화가 크고, 그 이후부터는 거의 변화하지 않는 경향과는 반대된다 (그 림 82).

그림 82. S. fibuligera KJJ81의 비휘발성 대사산물 PLS-DA score plot.

4. 사상성 진균 Rhizopus oryzae JJ3-9의 휘발성/비휘발성 발효 대사산물 분석 연구

가. CM 액체배지 및 곰팡이 배양 준비

곰팡이 *Rhizopus oryzae* JJ3-9 와 *Rhizopus oryzae* KCCM 35485 두 균주를 complete media (CM)에 배양하였다. 250 mL screw 삼각 플라스크에 40 mL의 배지를 넣고 25℃, 30℃에서 180 rpm 조건으로 뚜껑을 닫고 배양을 진행하였다. 균을 접종하고 난 후 32 hr 후에 sampling을 수행하였다.

나. 곰팡이의 휘발성 발효 대사산물 분석

곰팡이의 경우 원심분리 하지 않은 액체배지 8 mL를 polydimethyl siloxane coated stir bar (PDMS twister)로 SBSE 추출을 실시하였다. 추출된 sampe은 GC/MS로 분석하였고 휘발성 발효 대사산물의 동정은 mass spectral database (Wiley9n.1 및 NIST08) 및 manual interpretation에 의해 비교 분석되었다. saturated alkanes (1000 µg/mL in hexane)을 외부 표준물질로 사용하여 각 휘발성분의 RI를 구한 후 문헌에서 보고된 retention index (RI) value와 비교하였다. (-)-Borneol [25 ppm (w/v) in methanol]을 내부 표준물질로 사용하여 정량하였다.

다. Mortar grinding 방법을 이용한 비휘발성 발효 대사산물 추출 및 분석

시료를 paper filter에 거른 후 시료를 걸러낸 paper filter를 접어 tissue로 감싸고 손으로 눌러 물기를 제거하였다. 그리고 물기가 제거된 filter를 알루미늄 호일로 감싸서 액체질소 에 담궈 얼렸다. 얼어서 굳은 시료를 filter에서 떼어내고 막자사발을 이용해서 갈았다.가루 가 된 시료 0.1g을 -22℃의 acetonitrile/water 혼합액 (1:1, w/v) (HPLC grade; J.T.Baker, Avantor, PA, USA) 20mL에 glass beads 2g과 함께 넣고 1분간 vortexing하였다. 그 후 4℃, 3500 rpm에서 20분간 원심분리 (UNION 32R PLUS, Hanil science Inc, Inchun, Korea)한 뒤, 상층액 1.5mL를 2mL safe lock tube (Eppendorf, Hamburg, Germany)에 담아 centri-vap (Labcono Co., Kanasas City, MO, USA)에서 완전 건조 시켰다. 유도체화를 위해 methoxyamine-HCl (Sigma-Aldrich, St Louis. MO, USA)와 N,O-bis (trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) (Sigma-Aldrich, St. Louis, MO, USA)를 사용하여 GC-TOF/MS로 분석하였다. GC-TOF/MS에 의해 분석된 비휘발성 발효 대사산물은 Fiehn, mainlib, Wiley9, replibrary를 이용하여 동정 하였다. 정확한 정량을 위하여 탄수화물, 지질, 아미노산, 유기산 각각의 내부표준물질을 이용하였다.

라. 곰팡이의 휘발성/비휘발성 발효 대사산물 분석 연구결과

(1) R. oryzae JJ3-9의 온도별 휘발성 발효 대사산물 동정 및 정량

총 25℃에서 배양했을 때의 실험 결과, acid류 1개, alcohol류 14개, aldehyde류 7개, 9개의 benzene류와 benzene derivative, ester류 13개, 4개의 furan류와 furan derivative, ketone 류 9개, terpene류 3개, hydrocarbon류 2개, miscellaneous류 2개로 총 63가지의 휘발성 발 효 대사산물이 검출되었다. 30℃에서 배양했을 때의 실험결과로는 acid류 5개, alcohol류 16 개, aldehyde류 5개, 10개의 benzene류와 benzene derivative, ester류 10개, 4개의 furan류 와 furan derivative, ketone류 9개, pyrazine류 1개, terpene류 2개, hydrocarbon류 3개, miscellaneous류 2개로 총 66가지의 휘발성 발효 대사산물이 검출되었다.

(가) Acid류

Acid류의 경우 25℃와 30℃에서 모두 acetic acid가 검출되었고, 내부표준물질 대비 평균 정량값은 30℃에서 더 컸다. 25℃ 배양 결과에서는 검출되지 않았던 propanoic acid, octanoic acid, nonanoic acid, dexanoic acid 총 4 종의 물질이 30℃ 배양 결과 동정되었다.

(나) Alcohols류

25℃와 30℃에서 배양했을 때 모두 ethanol이 내부표준물질 대비 정량값이 24 정도로 가장 많이 검출되었다. 두 온도에서 모두 검출된 물질 중 2-methylpropan-1-ol, 3-methylbutan-1-ol, 2-[2-(2-hydroxyethoxy)ethoxy]ethanol은 25℃에서보다 30℃로 배양했을 때 정량값이 4배 이상 증가하였다. butan-1-ol은 25℃의 정량값이 30℃의 2배 이상으로 검 출되었다.

(다) Aldehyde류

Aldehyde류의 경우 25℃와 30℃로 *R. oryzae* JJ3-9을 배양하였을 때 butanal, heptanal, octanal, nonanal, decanal 5종의 aldehyde가 두 온도에서 모두 검출되었다. 두 온도에 동시 에 검출된 aldehyde 5종 모두 30℃에서 배양했을 때 검출된 함량이 더 높았다.

(라) Benzene & benzene derivative류

phenylalanine으로부터 생성되는 fusel alcohol인 2-phenylethnol은 25℃와 30℃로 배양한 시 료에서 동시에 검출되었으며 25℃에서 내부표준물질 대비 정량값이 1.622이었고 30℃에서 는 5.95로 3배 이상 증가하였다. 25℃와 30℃로 배양한 시료에서 동시에 검출된 물질 중 phenol을 제외한 6종 모두 30℃에서 함량이 더 높게 측정되었다.

(마) Ester류

Ester류의 경우 ethyl acetate, (3-hydroxy-2,4,4-trimethylpentyl) 2-methylpropanoate 등 총 5개의 ester들이 두 온도 조건에서 배양한 시료에서 동시에 검출되었다. 총 5개의 동시 검 출 ester 중 (3-hydroxy-2,4,4-trimethylpentyl) 2-methylpropanoate을 제외하고 나머지 4개의 ester는 30℃에서 내부표준물질 대비 정량값이 더 컸다. 25℃로 배양한 시료에서는 ethyl propanoate, butyl acetate, dimethyl hexaendioate 등의 8개의 ester가 추가로 동정되었고, 30℃ 배양 시료의 결과로는 2-formyloxyethyl formate, hexadecyl 2-ethylhexanoate, methyl 2-(3-oxo-2-pentylcyclopentyl)acetate 등 5개의 ester가 동정되었다. ester 중에서는 dibutyl benzene-1,2-dicarboxylate가 내부표준물질 대비 정량값이 25℃에서는 1.581, 30℃에서는 2.556으로 가장 크게 검출되었다.

(바) Furan & furan derivative류

Furan류의 경우 25℃와 30℃에서 모두 5-(hydroxymethyl)furan-2-carbaldehyde의 함량이 가

장 컸다. 5-(hydroxymethyl)furan-2-carbaldehyde, furan-2-carbaldehyde, furan-2-ylmethanol, 3종이 두 온도 배양 시료에서 동시에 검출되었다. 동시에 검출된 3종 의 화합물의 함량은 25℃에서 배양했을 때 더 높게 측정되었다.

(사) Ketone류

Ketone류의 경우 propan-2-one, butan-2-one, pentan-2-one 등 총 6개의 ketone들이 25℃ 와 30℃에서 배양한 시료에서 동시에 검출되었다. 동시에 검출된 ketone 6종 중 (1-hydroxycyclohexyl)-phenylmethanone,propan-2-one, butan-2-one, pentan-2-one 4종은 30℃에서 내부표준물질 대비 평균 정량 값이 더 컸고, 3-hydroxybutan-2-one, 1-hydroxypropan-2-one 두 물질의 함량은 25℃에서 더 높았다.

(아) Terpene류

Terpene류는 박테리아와 곰팡이에 의해 생성된다고 알려져 있다(Zeringue et al., 1993, Wikins et al., 2000). 25℃에서 배양한 시료에서는 terpene류가 3-Carene과 styrene, alpha-cainol이 검출되었다. 30℃에서는 styrene, alpha-cainol 두 종의 terpene류가 검출되었다.

(2) R. oryzae KCCM 35485의 온도별 휘발성 발효 대사산물 동정 및 정량

총 acid류 1개, alcohol류 14개, aldehyde류 8개, 9개의 benzene류와 benzene derivative, ester류 13개, 4개의 furan류와 furan derivative , ketone류 9개, terpene류 3개, hydrocarbon류 2개, miscellaneous류 1개로 총 63가지의 휘발성 발효 대사산물이 검출되었 다. 30℃에서 배양했을 때의 실험결과로는 acid류 5개, alcohol류 16개, aldehyde류 5개, 10 개의 benzene류와 benzene derivative, ester류 10개, 4개의 furan류와 furan derivative, ketone류 9개, pyrazine류 1개, terpene류 2개, hydrocarbon류 3개, miscellaneous류 2개로 총 66가지의 휘발성 발효 대사산물이 검출되었다.

(가) Acid류

막걸리 관련 휘발성 대사산물 중의 하나인 acetic acid 가 25℃로 배양했을 때는 검출된 반면, 30℃에서 배양한 시료에서는 검출되지 않았고 25℃ 배양 시료에서는 검출되지 않았던 dodecanoic acid 가 30℃에서는 검출되었다. 두 온도에서 모두 검출된 ocatanoic acid 는 0℃에서 함량이 증가하였다.

(나) Alcohols류

25℃와 30℃에서 배양한 시료 모두에서 검출된 화합물 중 2-(2-hydroxyethoxy)ethanol, 3-methylbut-3-en-1-ol, 2-ethylhexan-1-ol, octan-1-ol, 2-methylpropan-1-ol, 3-methylbutan-1-ol 와 같은 화합물들의 함량은 25℃에 대비하여 30℃에서 2 배 이상 높게 검출되었다. *R. oryzae* KCCM 35485를 25℃와 30℃에서 배양했을 때 모두 ethanol 이 alcohol 류 물질 중 내부표준물질 대비 정량값이 가장 높게 나타났다. 30℃에서 배양했을 때가 25℃에서 배양했을 때보다 더 많은 종류의 alcohol 류가 검출되었다.

(다) Aldehyde류

25℃에서 배양했을 때가 30℃에서 배양했을 때보다 더 많은 종류의 aldehyde 류가 검출되었다. butanal 과 heptanal 의 함량은 30℃에서 높았고, nonanal 과 decanal 은 25℃ 시료에서 더 높은 정량값을 보였다.

(라) Benzene & benzene derivative류

Toluene, 2-phenylethanol, phenol과 같은 3종의 화합물은 25℃에서보다 30℃에서배양했을 때 더 높은 함량을 보였으며 그 중 fusel alcohol로 알려진 2-phenylethanol 은30℃로 배양했을 때 내부표준물질 대비 정량값이 4.075로 많은 양이 검출되었다. dimetylbenzene-1,4-dicarboxylate,2-benzylaniline,N-phenylaniline,dibutylbenzene-1,2-dicarboxylate 들은 25℃에서 배양했을 때 더 높은 함량이 검출된 물질이었다.

(마) Ester류

30℃에서 배양했을 때보다 25℃에서 배양했을 때가 더 많은 종류의 ester류가 검출되었다. 두 온도에서 모두 검출된 화합물은 ethyl acetate, 2-ethylhexyl 2-ethylhexanoate, ethyl tetradecanoate, ethyl (Z)-octadec-9-enoate, ethyl (9Z,12Z)-octadeca-9,12-dienoate 등 13종 이다. 막걸리와 와인의 주된 휘발성 향기 성분이며 과일향과 꽃향을 나타내는 ethyl acetate의 함량은 30℃에서 배양했을 때 더 높았으며, dimethyl hexanedioate, ethyl hexadecanoate, butyl hexadecanoate, ethyl octadecanoate, ethyl (Z)-octadec-9-enoate, ethyl (9Z,12Z)-octadeca-9,12-dienoate과 같은 화합물의 함량도 30℃에서 더 높게 검출되었 다.

(바) Furan & furan derivative 류

5-(hydroxymethyl)furan-2-carbaldehyde, furan-2-carbaldehyde, furan-2-ylmethanol, 3종이 두 온도 배양 시료에서 동시에 검출되었다. 동시에 검출된 3종의 화합물의 함량은 25℃에 서 배양했을 때 더 높게 측정되었다.

(사) Ketone류

25℃에서 배양했을 때보다 30℃에서 배양했을 때가 더 많은 종류의 ketone 류가 검출되었다. 30℃에서 배양했을 때 3-hydroxybutan-2-one의 함량이 크게 증가하였다. 내부표준물질 대비 정량값이 20.534 로 25℃에서 1.125 인 것과 비교하면 큰 차이가 생겼다.

(아) Terpene류

25℃에서 배양했을 때는 3-Carene과 styrene이 검출되었고 30℃에서 배양한 시료에서는 styrene 1 종만 검출되었다. 두 온도에서 동시에 검충된 styrene 은 30℃로 배양했을 때 더 많은 함량을 나타내었다.

(3) R. oryzae JJ3-9의 비휘발성 발효 대사산물의 온도별 변화 비교 분석

25℃에서 배양했을 때는 15개의 carbohydrates, 17개의 amino acids, 12개의 fatty acids와 14개의 organic acids가 검출되어 총 58개가 검출되었다. 30℃로 배양한 실험 결과로는 15 개의 carbohydrates, 19개의 amino acids, 10개의 fatty acids와 18개의 organic acids가 검출

되었다.

(가) Carbohydrates류

Fructose, mannitol, sucrose, galactose, arabitol, matlose 등 10종의 carbohydrate가 25℃와 30℃ 배양 결과에 동일하게 검출되었다. D-galactose, D-glucose, sucrose, arabitol, maltose 와 같은 화합물들은 25℃에서 배양했을 때 내부표준물질 대비 정량값이 2 이상으로 많은 함량이 검출되었고 30℃에서 배양했을 때는 mannose, talose, trehalose의 함량이 정량값 2 이상으로 높게 나타났다.

(나) Amino acids류

25℃, 30℃ 두 온도에서 모두 alanine과 proline의 정량값이 5 이상으로 amino acid 중 가장 많은 함량을 나타내었다. 15개의 화합물이 두 온도에서 동시에 검출되었고 glutamic acid, lysine을 제외한 13개의 화합물은 모두 30℃에서 배양했을 때 더 많은 양을 나타내었다.

(다) Lipids류

hexadecanoic acid와 trans-9-octadecanoic acid의 함량은 다른 fatty acid보다 더 높았으며, 이들은 미토콘드리아에서 malonate로부터 합성되는 대표적인 fatty acid으로 알려져 있다 (Guequen et al., 2000). 25℃에서 배양했을 때 보다 30℃에서 배양했을 때 butanoic acid의 함량이 1.5배 이상 증가하였다. linoleic acid의 경우는 30℃ 배양 결과 정량값이 10.087이며 25℃에서는 0.145인 것에 대비하여 10배 가량 증가하는 경향을 나타내었다. oleic acid와 hexanoic acid도 온도가 증가하였을 때 함량이 증가하는 것으로 나타났다. arachidonic acid 는 25℃에서 배양했을 때만 검출되었고 내부표준물질 대비 정량값은 1.907이 나왔다.

(라) Organic acids류

25℃에서 배양했을 때보다 30℃에서 배양했을 때가 더 많은 종류의 organic acid류가 검출되었다. organic acid류 화합물 중 malic acid의 함량이 25℃에서는 내부표준물질 대비 정량값이 8.699, 30℃일 때는 13.919로 가장 높게 나타났다. 그 다음으로는 citric acid의 함량이 높았다. *Rhizopus oryzae* 균주가 특징적으로 생성하는 lactic acid의 함량은 온도가 5℃ 증가하였을 때 2 배 정도 증가하였다.

(4) R. oryzae KCCM 35485의 비휘발성 발효 대사산물의 온도별 변화 비교 분석

총 12개의 carbohydrates, 21개의 amino acids, 11개의 fatty acids와 16개의 organic acids가 검출되어 총 58개가 검출되었다. 30℃로 배양한 실험 결과로는 11개의 carbohydrates, 19개 의 amino acids, 11개의 fatty acids와 13개의 organic acids가 검출되었다.

(가) Carbohydrates류

25℃에서 배양했을 때는 sucrose의 함량이 가장 높게 나타났고, 30℃에서 배양했을 때는 mannose의 함량이 가장 높았다. Fructose, mannose, mannitol, sucrose, arabitol과 같은 화 합물들은 25℃에서 배양했을 때보다 30℃일 때 더 많은 함량을 나타내었다.

(나) Amino acids류

30℃에서 배양했을 때보다 25℃일 때 더 많은 종류의 amino acid가 검출되었다. alanine의 함량이 두 온도에서 모두 가장 높게 나타났다. proline, glycine의 내부표준물질 대비 정량 값은 4 이상으로 amino acid류 중에 높은 함량으로 나타났다. ornithine의 경우 25℃에서 배양했을 때가 30℃에서 배양했을 때 보다 더 높은 함량을 나타내었다.

(다) Lipids류

R. oryzae KCCM 35485를 25℃와 30℃에서 배양했을 때 butanoic acid의 함량이 다른 lipid 에 비해 크게 나타났다. 내부표준물질 대비 정량값이 40 이상이 나왔다. hexadecanoic acid 가 그 다음으로 높은 함량을 나타내었다. 9,12-octadecadienoic acid, *trans*-9-octadecenoic acid, octadecanoic acid와 같은 화합물은 25℃에서 배양했을 때보다 30℃에서 배양했을 때 더 높은 정량값을 나타내었다.

(라) Organic acids류

R. oryzae JJ3-9와 마찬가지로 organic acid류 화합물 중 malic acid의 함량이 가장 높게 나 타났고 citric acid가 그 다음으로 많은 양을 차지하였다. 내부표준물질 대비 정량값이 3 이 상으로 나타나는 화합물이 oxalic acid, succinic acid, malic acid, citric acid가 있고 malic acid를 제외한 3개의 화합물은 30℃에서 배양했을 때 더 많은 함량으로 나타났다.

5. 효모 Saccharomycopsis fibuligera KJJ81의 온도별 휘발성/비휘발성 대사체 분석 연 구

가. YPD 액체배지 및 효모 배양 준비

제주도 서귀포시 중문동 2123-1에서 제조된 누룩에서 얻은 효모 *Saccharomycopsis fibuligera* KJJ81을 이용하여 실험을 진행하였다. 두 효모는 YPD 액체배지 25℃/ 37℃/220 rpm조건으로 배양 후 24 hr 본 배양 후에 sampling을 수행하였다.

나. 효모의 휘발성 대사산물 추출 및 분석

4℃, 3500 rpm에서 300 초 동안 원심분리 한 후 상층액을 8 mL를 PDMS Twister를 1000 rpm으로 stir하며 60분 흡착시키고 동일 시료에 EG Silicone Twister를 1000 rpm으로 stir하며 60분간 흡착시켜 GC/MS로 분석하였다.

다. 효모의 비휘발성 대사산물 분석

효모의 비휘발성 대사산물 추출을 위해 fast filtration (Kim et al., 2013) 방법을 일부 수정 해 이용하였다. 유도체화를 위해 methoxyamine-HCl (Sigma-Aldrich, St Louis, MO, USA)와 N,O-bis (trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) (Sigma-Aldrich, St. Louis, MO, USA)를 사용하여 GC-TOF/MS로 분석하였다.

라. 효모의 휘발성/비휘발성 대사산물 분석 연구결과

(1) S. fibuligera KJJ81의 온도별 휘발성 대사산물 동정 및 정량

25℃로 배양했을 때 총 ester류 32개, acid류 5개, alcohol류 22개, aldehyde류 9개, benzene류 5개, ketone류 7개, lactone류 8개, furan류 1개, pyrazine류 3개, hydrocarbon류 6개로 총 98개의 휘발성 대사산물이 검출되었다. 37℃로 배양했을 때의 실험결과로는, ester류 12개 acid류 7개, alcohol류 22개, aldehyde류 7개, bezene류 5개 ketone류 8개, lactone류 7개 furan류 2개, pyrazine류 2개 pyrrole류 1개, hydrocarbon류 4개로 총 77개의 휘발성 대사산물이 검출되었다.

(가) Ester류

Ester류의 경우 25℃와 37℃로 *S. filbuligera* KJJ81을 배양하였을 때 methyl acetate, 6-methylbutyl formate, 2-phenyethyl acetate등 총 4종의 ester가 동시에 검출되었다. 총 4 종의 동시 검출 ester 모두 methyl acetate, methyl 2-(3-oxo-2-pentylcyclopentyl)acetate, 3-methylbutyl formate, 2-ethylhexyl 2-ethylhexanoate는 25℃로 배양하였을 때보다 37℃로 배양하였을 때 내부표준물질 대비 평균 정량 값이 더 높았다. 25℃로 배양하였을 경우 3-methylbutyl acetate가 평균 내부 표준물질 대비 평균 12.201로 가장 많은 양이 정량되었 다. 이외에도 내부표준물질 대비 평균 정량 값이 1이 넘는 물질은 2-phenylethyl acetate(7.647), ethyl butanoate(1.516), ethyl (E)-6-phenylprop-2-enoate(1.128)가 있다. 37℃ 로 배양하였을 경우에는 farnesyl acetate가 내부표준물질 대비 평균 정량 값이 1.874로 가 장 높았고, 이외에도 평균 정량 값이 1이 넘는 물질로는 2-phenylethyl formate(1.822)가 있 다.

(나) Alcohol류

Alcohol류의 경우 2-methylpropan-1-ol, butan-1-ol, 3-methylbutan-1-ol, 2-phenylethanol, phenol등 총 14개의 alcohol들이 25℃, 37℃로 *S. filbuligera* 배양하였을 때 동시 검출되었 다. 동시에 검출 된 14개의 alcohol들 모두 37℃로 배양했을 때의 내부표준물질 대비 평균 정량 값이 높았다. 25℃로 배양 하였을 경우 내부표준물질 대비 평균 정량 값이 1이 넘는 물질은 3-methylbutan-1-ol(46.227), 2-phenylethanol(41.891), ethanol(8.052), 2-methylpropan-1-ol(1.634)이 있다. 37℃로 배양하였을 경우에는 2-phenylethanol(489.04), 3-methylbutan-1-ol(300.818), 2-methylpropan-1-ol(6.37), phenylmethanol(2.082), farnesol(1.671), 2-(2-hydroxy ethoxy)ethanol(1.134)가 내부표준물질 대비 평균 정량 값이 1 이 넘었다. 3-methylbutan-1-ol과 2-phenylethanol의 경우 25℃와 37℃로 배양하였을 때의 정량 값이 매우 높았다.

(다) 2-Phenylethanol과 2-Phenylethyl acetate

2-Phenylethanol은 25℃, 37℃의 조건에서 *S. filbuligera* KJJ81를 배양하였을 때 매우 높은 realative peak area(%)를 갖는 것으로 분석되었다. 2-phenylethyl acetate는 25℃ 조건으로 *S. fibuligera* KJJ81을 배양 했을 때 에 높은 relative peak area (%)을 갖는 것으로 분석되었다. 아래 그림 83는 2-Phenylethanol과 2-phenylethyl acetate의 생성기작을 나타내었다. 아미노산이 transaminase에 의해 α-keto acid로 변한다. 그 후 decarboxylase와 dehydrogenase에 의해 aldehyde와 alcohol로 바뀐다. 마지막으로 acetyltransferase에 의해 acetate 가 만들어진다 (그림 83A). 2-phenylethanol의 경우 phenylalanine으로부터

3-phenyl-2-oxo-propanoate (α-keto acid), 2-phenylethanal (aldehyde), 2-phenyl ethanol (alcohol)을 거쳐 생성된다 (Ravasio et al., 2014). 2-phenylethyl acetate는 2-phenylethanol 이 acyl donor와 결합하여 생성된다. 한 예로 2-phenylethanol과 ethyl acetate이 반응 할 경우, ethyl acetate가 acyl donor로 작용하여 2-phenylethyl acetate와 ethanol이 생성된다.

그림 83. (A)는 아미노산으로부터 acetate가 만들어지는 일반적인 생성 기작. (B)는 2-phenylethanol이 ethyl acetate를 acy donor로 사용하여 2-phenylethyl acetate로 transesterification되는 pathway (Ravasio et al., 2014).

(라) 3-Methyl-1-butanol과 3-methylbutyl acetate

알콜향 또는 희석된 위스키 향을 가지고 있는 물질인 3-Methyl-1-butanol은 *S. filbuligera* KJJ81를 25℃, 37℃ 조건으로 배양 했을 때 매우 높은 realative peak area(%)를 갖는 것으 로 분석되었다. 달콤한 과일 향을 갖고 있다. 3-methylbutyl acetate는 25℃ 조건으로 *S. fibuligera* KJJ81을 배양 했을 때 에서 높은 relative peak area (%)을 갖는 것으로 분석되었 다 (그림 84).

그림 84. 3-Methyl-1-butanol (isoamyl alcohol)과 3-methylbutyl acetate (isoamyl acetate)의 생 성 기작 (Ashida et al., 1987; Singh et al., 2008; Yang et al., 2014; Beller et al., 2015).

(마) Acid류

Acid류의 경우 25℃와 37℃로 S.filbuligera KJJ81을 배양하였을 때 acetic acid, propanoic acid, butanoic acid, 3-methylbutanoic acid, decanoic acid와 같이 총 5종의 acid가 동시에 검출되었다. 동시에 검출 된 5종의 acid 모두 37℃로 배양했을 때의 내부표준물질 대비 평 균 정량 값이 25℃로 배양 했을 때 보다 컸다. 또한 25℃에서는 내부표준물질 대비 평균 정량 값이 1이 넘는 acid가 없는 반면, 37℃의 경우 propanoic acid(1.878), acetic acid(1.781), butanoic acid(1.51)가 있다.

(바) Aldehyde류

Aldehyde류의 경우 2-methylpropanal, 2-methylbutanal, 3-methylbutanal, hexanal, octanal, nonanal, decanal등 총 7개의 aldehyde들이 25℃, 37℃의 배양 조건에서 동시 검출되었다. 동시에 검출 된 7개의 aldehyde들 모두 37℃로 배양 했을 때의 정량 값이 25℃로 배양했을 때의 정량 값보다 높았다. 25℃의 배양조건에서 nonanal의 내부표준물질 대비 평균정량 값이 0.126으로 가장 높았고 내부표준물질 대비 평균 정량 값이 1이 넘는 물질은 없었다. 3 7℃의 배양조건의 경우에도 nonanal의 내부표준물질 대비 평균 정량 값이 3.47로 가장 높았고 이외에도 decanal(1.926), 2-methylpropanal(1.877), octanal(1.57), 3-methylbutanal(1.129) 의 내부표준물질 대비 평균 정량 값이 1이 넘었다.

(사) Furan류

Furan류의 경우 25℃, 37℃에서 동시에 검출되는 물질이 없었고, 25℃, 37℃에서 검출 된 furan들 모두 내부표준물질 대비 평균 정량 값이 1을 넘지 않았다. 25℃의 경우 2-propylfuran 1종이 검출 되었고 내부표준물질대비 표준 정량 값이 0.032였다. 37℃의 경 우 oxolane, 4-methyl-2H-furan-5-one이 검출 되었는데 각각 내부표준물질 대비 평균 정량 값이 0.106, 0.426이었다.

(아) Pyrazine류

Pyrazine류의 경우 2,5-dimethylpyrazine과 3-ethyl-2,5-dimethylpyrazine이 동시에 검출 되 었다. 동시에 검출 된 pyrazine들 모두 25℃의 배양조건에서 보다 37℃의 배양조건에서 내 부표준물질 대비 평균 정량 값이 더 높았다. 25℃로 배양한 경우 2,5-dimethylpyrazine의 내부표준물질 대비 평균 정량 값이 0.036으로 가장 높았고 평균 정량 값이 1이 넘는 물질 은 없었다. 37℃로 배양한 경우에도 2,5-dimethylpyrazine의 내부표준물질 대비 평균 정량 값이 0.676으로 가장 높았고 25℃배양과 마찬가지로 평균 정량 값이 1이 넘는 물질은 없었 다.

(자) Pyrrole류

Pyrrole류의 경우에는 25℃로 *S.fibuligera*를 배양 하였을 경우에는 검출 되지 않고, 37℃로 *S.fibuligera*를 배양 하였을 때에만 1종 검출 되었다. 1-methylpyrrole이 검출 되었고 내부표 준물질대비 0.176 정량되었다.
(2) S. fibuligera KJJ81의 비휘발성 대사산물 동정 및 정량

25℃로 배양했을 때의 실험 결과로 총 76개의 비휘발성 대사산물이 검출되었다. Carbohydrate류는 20개가 동정되었고, Amino acid류는 27개, Lipid류는 22개, Organic acid 류는 7개가 동정되었다. 37℃로 배양했을 때 실험결과로는 총 73개의 비휘발성 대사산물이 검출되었다. Carbohydrate류는 21개, Amino acid류는 25개, Lipid류는 19개 Organic acid류 는 8개 동정되었다. 표2는 반복해서 검출되는 물질의 경우, 가장 정량 값이 높은 물질들만 나타내었다.

(가) Carbohydrates류

Carbohydrates류의 경우 arabitol, mannose, glucose, mannitol, maltose 등 총 7종의 carbohydrate가 25℃, 37℃로 *S.fibuligera* KJJ81를 배양하였을 때 동시에 검출되었다. 동시 에 검출 된 7종 중 4종인 arabitol, mannose, glucose, mannitol의 경우 25℃로 배양했을 때 내부표준물질 대비 평균 값이 더 높았고, 나머지 3종인 glactose, inositol, maltose는 37℃로 배양했을 때의 내부표준물질 대비 평균 정량값이 더 높았다. 25℃로 배양했을 때 17분 37 초에서 검출 된 arabitol이 내부표준물질 대비 평균 정량 값이 6.007로 가장 높았다. 이외에 도 36분에서 검출 된 maltose(2.23)가 내부표준물질 대비 평균 정량 값이 1을 넘었다. 37℃ 로 배양했을때의 경우 36분에 검출 된 maltose의 내부표준물질 대비 평균 정량 값이 5.061 로 가장 높았다. 이외에도 17분37초에 검출 된 arabitol(3.941) 25분 19초에 검출 된 inositol(1.339), 36분 1초에 검출 된 trehalose(2.329)의 내부표준물질 대비 평균 정량 값이 1 이 넘었다.

(나) Amino acids류

Amino acid류의 경우 alanine, glycine, valine, threonine등 총 15개의 amino acid가 25℃, 37℃로 *S. fibuligera*를 배양하였을 때 동시에 검출되었다. 동시에 검출 된 amino acid 19개 중 11분 41초에 검출 된 glycine과 18분 48초에 검출 된 glutamine, 20분 50초에 검출된 lycine, 27분 06초에 검출 된 tryptophan을 제외한 5개의 amino acid가 37℃로 배양했을 때 내부표준 물질 대비 평균 정량 값이 더 높았다. 25℃로 배양하였을 경우 8분 9초에서 검출 되는 alanine의 내부표준물질대비 평균 정량 값이 10.976으로 가장 높았다. 이외에도 내부 표준물질 대비 평균 정량 값이 1이 넘는 물질은 11분 41초에서 검출되는 glycine(5.062) 등 6개가 있다. 37℃로 배양하였을 경우에도 8분 9초에 검출되는 alanine의 내부표준물질 대비 평균 정량 값이 1 외에도 14분 44초에 검출 된 proline(5.819) 등 6개 의 amino acid가 내부표준물질 대비 평균 정량 값이 1이 넘는 14분 44초에 검출 된 90% 5.06% 5.05\% 5.05\%

(다) Lipids류

Lipid류의 경우 propanioc acid, butanoic acid, hexanoic acid등 총 8개의 lipid가 25℃, 37℃ 로 *S. fibuligera* KJJ81를 배양하였을 때 동시에 검출되었다. 동시에 검출 된 lipid 8개 중 5 개의 lipid가 25℃로 배양하였을 때보다 37℃로 배양하였을 때 내부표준물질 대비 평균 정 량 값이 더 높았다. 25℃로 배양하였을 때 24분 44초에 검출 된 hexadecanoic acid의 내부 표준물질 대비 평균 정량 값이 8.973으로 가장 높았다. 이외에도 7분 14초에서 검출되는 propanoic acid(1.407), 27분 36초에서 검출된 octadecanoic acid(5.21)등 4개의 lipid의 내부 표준물질 대비 평균 정량 값이 1이 넘었다. 37℃의 경우에도 24분 44초에 검출되는 hexadecanoic acid의 내부표준물질 대비 평균 정량 값이 11.695로 가장 높았다. 이외에도 7 분 14초에 검출되는 propanoic acid(4.443)등 3개의 내부표준물질 대비 평균 정량 값이 1이 넘었다.

(라) Organic acids류

Organic acid류의 경우 oxalic acid, succinic acid등 총 6개의 organic acid가 25℃, 37℃로 S. fibuligera KJJ81를 배양하였을 때 동시에 검출되었다. 동시에 검출 된 6개의 organic acid 중 oxalic acid를 제외한 5개의 organic acid의 내부표준물질 대비 평균 정량 값이 25℃ 로 배양 했을 때 더 높았다. 25℃로 배양한 경우 8분 53초에서 검출 된 oxalic acid의 내부 표준물질 대비 평균 정량 값이 7.099로 가장 높았다. 이외에도 11분 49초에 검출 된 succinic acid(4.192), 19분 54초에서 검출된 citric acid(1.995)의 내부표준물질 대비 평균 정 량 값이 1이 넘었다. 37℃로 배양한 경우에도 8분 53초에서 검출한 oxalic acid의 내부표준 물질 대비 평균 정량값이 9.156으로 가장 높았다. 이외에도 25℃의 경우와 마찬가지로 11 분 49초에서 검출 된 succinic acid (1.89), 19분 54초에서 검출 된 citric acid(1.368)의 내부 표준물질 대비 평균 정량 값이 1이 넘었다.

6. 사상성진균 *Rhizopus oryzae* JJ3-9의 온도별 휘발성/비휘발성 대사체 분석 연구 가. CM 배지 및 곰팡이 배양 준비

곰팡이 *Rhizopus oryzae* JJ3-9 와 *Rhizopus oryzae* KCCM 35485 두 균주를 complete media (CM)에서 대사산물 profile에 대한 배양 조건의 영향을 알아보기 위해 온도, 시간, 초기 pH와 같은 조건을 달리하여 배양을 진행하였다. 배지의 초기 pH는 1 M HCl을 첨가하여 조절하였다.

	Temperature	Time	Initial pH
Control	25°C	24 h	6
Factor 1	37°C	24 h	6
Factor 2	25°C	32 h	6
Factor 3	25°C	24 h	4

표 55. R. oryzae 의 배양 조건

나. 곰팡이의 휘발성/비휘발성 발효 대사산물 분석

3차년도와 동일한 방법을 수행하였다.

다. 곰팡이의 휘발성/비휘발성 대사산물 분석 연구결과

(1) 곰팡이의 비휘발성 발효 대사산물 비교 분석

R. oryzae JJ3-9는 20개의 amino acids, 16개의 carbohydrates, 20개의 organic acids, 13개 의 saturated fatty acids와 5개의 unsaturated fatty acids가 검출되어 총 74개가 검출되었 다. KCCM 35485는 총 65개로, 20개의 amino acids, 13개의 carbohydrates, 17개의 organic acids, 10개의 saturated fatty acids와 5개의 unsaturated fatty acids가 검출되었다.

(가) Amino acids류

Amino acids는 주류 내의 fusel alcohols, acetate esters, ethyl esters와 같은 휘발성 성분의 생성에 영향을 줄 수 있다 (Kang, 2014). 검출된 20개의 amino acids 중, alanine이 가장 많 은 양을 차지하였다. Alanine은 JJ3-9 보다 KCCM 35485에서 더 많은 양이 검출되었다. Branched-amino acids (leucine, isoleucine and valine)와 aromatic amino acids (phenylalanine, tyrosine, and tryptophan)는 Ehrlich pathway에 의해 higher alcohols로부터 생성 된다(Hazelwood, 2008). 이는 세 가지 반응을 포함한다. amino acids는 transamination 을 통해 *a*-keto acids로 전환된다. 그 후 decarboxylation과 alcohol dehydrogenase 반응을 통해 branched-chain alcohols을 생성한다(Ravasio, 2014). 반면에, alanine, glycine, serine, threonine과 같은 amino acids는 Ehrlich pathway에 직접적으로 들어가지 않는다. 이러한 amino acids들은 pyruvate로 분해되고 Ehrlich pathway를 공유하여 fusel compounds를 생성 하거나, pyruvate의 catabolic pathway를 통해 non-fusel compounds를 생성한다(Kang, 2014).

위에서 언급한 amino acids 중 leucine을 제외한 모든 아미노산이 검출되었으며, 37 ℃에서 배양한 시료에서는 낮은 정량값을 보였다.

(나) Carbohydrate류

CM 배지의 주 탄소원인 sucrose를 제외한 대부분의 carbohydrates는 32 h 배양 시료에서 증가하는 경향을 보였다. 21개의 carbohydrates 중에서 trehalose가 가장 많은 양을 나타내 었다. 이는 yeast, fungi, bacteria, plant를 포함하는 다양한 organism에서도 이와 같은 경향 이 나타난다(Elbein, 2003). 배양 온도는 carbohydrates와 lipids의 생성에 영향을 줄 수 있다 (Weinstein, 2000), 최적 성장 온도가 42 ℃인 thermophilic 곰팡이를 26 ℃ 의 낮은 온도에 서 배양하였을 때, trehalose와 mannitol의 양은 증가를 하고 inositol의 양은 감소한다는 연 구가 있다. R. oryzae 또한 thermophilic 곰팡이로 알려져 있다(Pogori, 2007; Razak, 1999). 이와 같은 경향으로, 이번 연구에서 37 ℃ 배양 시료에서 trehalose와 mannitol의 양은 감 소하는 반면 myo-inositol은 감소하는 경향을 보였다. 따라서 이러한 경향은 thermal stress 의 영향으로 사료된다. 발효 중 당 분해는 미생물의 성장과 배양 환경의 산성에 영향을 주 는 organic acids의 증가를 초래할 수 있다(Ponnusamy, 2013). Organic acids는 사케나 와인 과 같은 발효주의 신 맛에 기여하는 주성분이다(Kim, 2014). 사상성 진균은 citric acid과 gluconic acid 등 다양한 종류의 organic acids를 생성한다(Lee, 2004). 특히, R. oryzae는 organic acids 생성에 있어서 중요한 미생물이다. 보통 R. oryzae는 lactic acid 생성 균주 혹은 fumaric acid 생성 균주로 2개의 그룹으로 나뉜다(Londono-Hernandez, 2017).본 연구 에서는 fumaric acid는 검출되지 않았고 lactic acid은 대부분의 시료에서 검출되었다.

(다) Organic acid류

Rhizopus 종은 lactic acid 생성에 있어서 bacteria와 비교하여 전분 분해 능력, 낮은 영양 요구량과 같은 몇 가지 이점을 가진다(Zhang, 2007). pH는 lactic acid 생성에 영향을 주는 가장 중요한 요인 중 하나이며, 한 연구에 따르면 pH가 6.0에서 4.0으로 바뀌었을 때 lactic acid와 fumaric acid의 생성이 감소하였다(Tay, 2002). 온도 또한 lactic acid 생성에 영향을 주는 중요한 요인이다(Huang, 2003). 이전의 연구들에서는 일반적으로 27-35 ℃ 범위의 배 양 온도가 lactic acid 생성을 위해 사용된다(Zhang, 2007). 이번 연구에서는 JJ3-9를 25 ℃ 에서 배양했을 때보다 37 ℃ 배양한 시료에서 더 많은 양의 lactic acid가 검출되었다. 다양 한 미생물에 의해서 생성되는 succinic acid는 TCA cycle의 중간물질이자 혐기 대사의 발효 최종 산물이다(Song, 2006). 또한 succinic acid는 주류 발효 중에 생성되는 두드러진 organic acid라는 것이 밝혀져 있다(Thoukis, 1965). 이번 연구에서 succinic acid는 다른 조 건의 시료와 비교해서 37 ℃ 배양 시료에서 상대적으로 많은 양이 검출되었다. 배양 온도 가 발효 중 succinic acid 생성에 기여할 수 있는 요소라는 점이 시사되었다(Coulter, 2004). 온도가 6 ℃에서 30 ℃로 증가함에 따라 succinic acid의 농도가 증가한다는 것이 연구를 통해 밝혀진 바가 있다(Castellari, 1995), 한 연구에서는 *Saccharomyces cerevisiae* 균주에 대한 온도의 영향을 밝혔으며 10 ℃에서 30 ℃로 온도의 증가함과 함께 succinic acid 생성 이 증가되는 것을 확인하였다(Shimazu and Watanabe, 1981).

(라) Fatty acid류

Chinese rice wine 내 대부분의 fatty acids는 미생물 발효에 의해 생성된다고 밝혀졌다 (Luo, 2008). 이번 연구에서는 13개의 saturated fatty acids와 5개의 unsaturated fatty acids, 총 18개의 fatty acids가 검출되었으며, 그 중 hexadecanoic acid, octadecanoic acid, (9Z,12Z)-9,12-octadecadienoic acid 그리고 (9Z)-octadec-9-enoic acid는 모든 시료에서 상대 적으로 큰 정량값을 보였다. 위의 fatty acids와 tetradecanoic acid, pentadecanoic acid, icosanoic acid를 포함하는 일부 saturated fatty acids의 함량은 37 ℃에서 배양했을 때 감 소하는 경향이 나타났다. 이와 반대로 nonanoic acid, decanoic acid, pentanedioic acid, dodecanoic acid와 같은 saturated fatty acids의 양은 37 ℃ 배양 시료에서 높게 나타났으며 control 조건 시료에서는 아예 검출이 되지 않았다. 종합적으로는 배양 온도가 증가함에 따 라 R. oryzae의 fatty acids에서 unsaturated fatty acids가 차지하는 비율은 감소를 하였다. 이러한 unsaturated fatty acids는 미생물의 성장 및 주류의 aroma에 영향을 줄 수 있는 ethyl ester와 isoamyl acetate의 생성과 관련된 대사에 결정적인 영향을 줄 수 있다(Kang 2014). 반면 saturated fatty acids의 경우에는, 배양 온도가 25 ℃에서 37 ℃로 증가하였을 때 tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, octadecanoic acid, icosanoic acid와 같은 일부 saturated fatty acids가 정량적으로 감소하였지만 비율은 증가하였다. 온 도는 대부분의 미생물의 fatty acids 구성에 유의한 영향을 미치는 가장 중요한 환경적 요 인 중 하나이다(Zhu, 2007). 미생물의 지질 구성은 환경이 바뀌는 변화를 나타낼 수 있다. 이러한 미생물의 지질 구성 변화는 환경의 변화에 직면하여 막의 유동성 및 상태와 기능을 유지하기 위한 막의 물리적 성질 변화를 이끌 수 있다. 따라서 온도에 따른 fatty acids 구 성에 대한 결과는 곰팡이의 생리학적 및 생화학적 특성에 의한 것으로 사료된다.

그림 85. 배양 조건에 따른 *R. oryzae* 균체의 비휘발성 발효 대사산물의 PLS-DA score plot (VIP>0.8). ROE: *R. oryzae* JJ3-9, ROS: *R. oryzae* KCCM35485.

PLS-DA 분석을 통해 배양 조건에 따른 R. oryzae 비휘발성 발효 대사산물의 차이를 확인 하였다. 그림 85을 보면, 대부분의 KCCM 35485 시료들은 PLS component 1의 음의 방향에 위치해 있으며 37 ℃배양 시료를 제외한 JJ3-9 시료들은 모두 PLS component 1의 양의 방 향에 위치하였다. KCCM 35485 시료들은 37 ℃배양 조건 시료를 제외한 나머지 배양 조건 시료들은 PLS component 1과 PLS component 2에 의해서 명확하게 나뉘지 않고 뭉쳐있는 반면 JJ3-9 시료들은 모든 시료가 퍼져있는 양상을 보인 것으로 보아 배양 조건에 따라 명 확한 차이를 보였다. Xylitol, sorbitol, arabitol, mannose, mannitol, carbamic acid, decanoic acid 등은 PLS component 1의 양에 방향에 영향을 미치는 대사산물들이고, nonanoic acid, malic acid, hexanoic acid, myo-inositol, pyruvic acid, citric acid 등은 PLS component 1의 영향을 미치는 대사산물들이다. PLS component 2의 양에 음에 방향에 방향에는 (9Z,12Z)-9,12-octadecadienoic acid, 2-aminoadipinic acid, tyrosine, tryptophan, isoleucine, octadecanoic acid 등이 영향을 미치고. PLS component 2의 음에 방향에 영향을 미치는 주 요 대사산물에는 were maltose, dodecanoic acid, xylulose, fructose, carbamic acid 등이 있 다.

(2) 곰팡이의 휘발성 발효 대사산물 비교 분석

R. oryzae JJ3-9는 7개의 acids, 24개의 alcohols, 12개의 aldehydes, 7개의 benzene derivatives, 27개의 esters, 4개의 furan derivatives, 13개의 ketones, 2개의 lactones, 4개의 phenols, 1개의 terpenes와 2개의 hydrocarbons가 검출되어 총 103개가 검출되었다. KCCM 35485는 총 87개로, 3개의 acids, 16개의 alcohols, 10개의 aldehydes, 10개의 benzene derivatives, 25개의 esters, 4개의 furan derivatives, 12개의 ketones, 2개의 lactones, 3개의 phenols와 1개의 hydrocarbons가 검출되었다.

(가) Acid류

KCCM 35485와 비교하여 더 많은 종류의 acids가 JJ3-9에서 검출되었다. propanoic acid,

2-methylpropanoic acid, butanoic acid 그리고 3-methylbutanoic acid와 같은 대부분의 acids 는 JJ3-9 균주를 control condition에서 배양했을 때 가장 높은 정량값을 보였다. 2-methylpropanoic acid (isobutyric acid)와 2-methylpropan-1-ol (isobutanol)는 branched-chain amino acid인 valine으로부터 만들어질 수 있는 성분이다(Kang, 2014). 이번 연구에서 2-methylpropanoic acid는 control condition에서 배양한 JJ3-9 시료에서 가장 많이 검출된 반면에 2-methylpropan-1-ol은 JJ3-9 균주의 37 ℃ 배양 시료에서 가장 많았다. control condition에서 배양한 시료들은 butanoic acid와 butan-1-ol의 함량이 다른 조건의 시료보다 높게 나타났다. Butanoic acid와 butan-1-ol은 발효 중에 carbohydrates 와 fatty acids로부터 생성될 수 있다(Dellomonaco, 2010).

(나) Alcohol류

Alcohols 성분들 중에 ethanol, butan-1-ol, 3-methylbutan-1-ol, 2-phenylethanol이 많은 양 으로 나타났으며, 이들은 KCCM 35485보다 JJ3-9에서 더 많은 양이 검출되었다. 특히, JJ3-9 균주를 37 ℃에서 배양했을 때 가장 높은 정량값을 보였다. Fusel alcohols 중에 하나 인 3-methylbutan-1-ol은 보통 곰팡이에 의해서 생성이 되곤 한다(Schnurer, 1999). 이는 Ehrlich pathway를 통해 만들어질 수 있다(Smit, 2004). Leucine이 transamination과 decarboxylation을 거쳐 3-methylbutanal로 전환이 되고, 그 후에 3-methylbutanoic acid 또 3-methylbutan-1-이로 만들어진다. 3-methylbutanal, 3-methylbutanoic 는 acid. 3-methylbutan-1-ol, 3-methylbutyl acetate과 같은 3-methyl branched 휘발성 물질들이 JJ3-9 시료에서는 모두 검출이 된 반면에 3-methylbutanoic acid와 3-methylbutyl acetate는 KCCM 35485 시료에서 검출되지 않았다. Ehrlich pathway를 통해 분해될 수 있는 amino acids는 주로 acids보다 fusel alcohols로 전환되는 것으로 연구된 바 있다(Hazelwood, 2008). 이와 비슷하게 이번 연구에서, 2-methylpropan-1-ol, 3-methylbutan-1-ol과 같은 fusel alcohols는 이들과 상응하는 aldehydes와 fusel acids에 비하여 더 높은 정량값을 보였다.

(다) Benzen derivative류

Phenylalanine이 Ehrlich pathway를 거쳐 분해되면서 2-phenylethanol이 생성될 수 있으며 가지는 향기성분이다(Etschmann, 이는 rose-like odor를 중요한 2002). 그리고 2-phenylethanol은 와인, 맥주, 위스키와 같은 음료에서 자연적으로 발견이 되는 성분이다 (Jung, 2014). 이번 연구에서는 37 ℃에서 배양했을 때 2-phenylethanol의 양이 증가하는 경 향을 보였다. fusel alcohols는 amino acids와 carbohydrates 대사의 산물이기 때문에 온도가 fusel alcohols 생성에 영향을 미치게 된다(Landaud, 2001). 반면, 2-phenylethanol의 전구체 인 phenylalanine은 37 ℃ 배양 시료에서 정량값이 감소하였다(Table 2). Ehrlich pathway를 통해 amino acids로부터 생성될 수 있는 2-methylpropan-1-ol과 2-methylbutan-1-ol도 이와 같은 경향을 보였다. 이들은 37 ℃에서 배양한 시료에서 정량값이 증가하였으나 이들의 전 구체인 valine과 isoleucine은 해당 시료에서 양이 감소하는 경향이 나타났다. 이는 전구체 로 이용되는 amino acids가 휘발성 성분을 생성하기 위해 분해된 것으로 설명할 수 있겠 다.

Fusel alcohols인 2-phenylethanol, 2-methylpropan-1-ol, 3-methylbutan-1-ol들의 양은 높은 온도 조건인 37 ℃에서 증가한 반면 이들의 fusel acids인 2-methylpropanoic acid와 3-methylbutanoic acid는 해당 조건에서 양이 감소하였다. Ehrlich pathway의 마지막 단계 는 fusel aldehyde의 reduction 또는 oxidation 과정이다. Fusel aldehyde의 reduction과 oxidation의 간의 비율은 배양 조건에 의해 달라진다(Hazelwood, 2008). 따라서 이번 연구에 서는 control 조건과 비교해서 높은 온도 조건에서 aldehyde의 oxidation을 통한 fusel acids 의 생성이 감소되었고, fusel aldehyde의 reduction은 증가하였기 때문에 fusel alcohols의 양 은 증가한 것으로 가정된다.

(라) Aldehyde류

Chinese rice wine에서 발견되는 odor-active aldehydes인 benzaldehyde와 hexanal(Chen, 2013)은 JJ3-9 균주의 control 조건과 37 ℃ 배양 조건 시료에서만 검출되었다. Benzaldehyde는 phenylalanine과 같은 aromatic amino acid의 미생물 대사로부터 생성될 수 있다. 반면 hexanal은 주로 linoleate hydroperoxide decomposition로부터 생성될 수 있다 (Monsoor, 2006).

(마) Ester류

발효 과정 중 esters 생성은 yeast 균주와 발효 공정에 의해 영향을 받을 수 있다(Chen, 2013). Esters 중 ethyl propanoate, ethyl butanoate, 3-mehylbutyl acetate, ethyl octanoate, methyl benzoate, ethyl decanoate는 KCCM 35485 시료에서 검출되지 않았으나 methyl tetradecanoate, ethyl pentadecanoate, methyl hexadecanoate과 같은 high molecular weight-chain esters는 KCCM 35485에서만 검출되었다.

7개의 acetate esters 중 ethyl acetate, propyl acetate, 2-methylpropyl acetate는 37 ℃에서 배양했을 때 증가하는 경향을 보였으며, butyl acetate와 3-methylbutyl acetate는 32 h 배 양 시료에서 가장 높은 정량값을 나타냈다. fruity, floral, perfume-like odor notes를 가지 는 ethyl esters는 발효 중에 ethanol 존재 하에 fatty acids의 esterification에 의해서 생성 될 수 있다(Luo, 2008). 또한 이러한 esters는 와인, 사케, 맥주에서 발견된다고 보고되고 있 다(Park 2014). Ethyl octanoate, ethyl decanoate, ethyl dodecanoate, ethyl tetradecanoate의 양은 JJ3-9의 32 h 배양 시료에서 가장 많았다. Ethyl octanoate는 apple-like odorant를 나 타내며(Lilly,2000), ethyl decanoate는 fruity, grape-like 그리고 brandy-like 향을 가진다 (Peinado,2004). 또한, ethyl dodecanoate는 와인에 sweaty, waxy, soapy, floral note를 기여 하는 성분이다(Selli,2004). 반면, ethyl hexadecanoate, ethyl (Z)-octadec-9enoate, ethyl (9Z,12Z)-octadeca-9,12-dienoate는 JJ3-9 보다 KCCM 35485 균주에서 더 많은 양이 검출되었다. 또한 이 esters의 전구체 fatty acids인 hexadecanoic acid, (9Z)-octadec-9-enoic acid, (9Z,12Z)-9,12-octadecadienoic acid도 JJ3-9 보다 KCCM 35485 균주에서 더 높은 정량값을 보였다. 이전 연구에 따르면, ethyl esters는 발효 조건, 효모 균주, 발효 시간에 의해 영향 을 받을 수 있다(Park 2014).

(바) Furan류

Furan derivatives 중 furan-2-carbaldehyde (furfural), 5-methylfuran- 2-carbaldehyde (5-methyl furfural), furan-2-ylmethanol (furfuryl alcohol)은 배지의 초기 pH가 4인 시료에 서 정량값이 증가하는 경향을 보였다. 배양 배지의 pH는 2차 대사산물 생성에 큰 영향을

줄 수 있다(Miao, 2006). 2-furfuryl ethyl ether, 2-acetylfuran, 5-methylfurfural, 2-acetyl-5-methylfuran, ethyl 2-furoate, 2-furnmethanol, 5-ethylfurfural 그리고 5-hydroxymethylfurfural와 같은 furans는 Chinese rice wine에서 발견되고, furfural은 모든 rice wines에서 발견된다. Chinese rice wine에 있는 furfural의 농도는 다른 furans보다 높 다(Luo, 2008).

(사) Ketone류

대부분의 ketones는 free fatty acids의 β-oxidation을 통한 lipid oxidation에 의해서 생성된 다. 따라서 Chinese rice wine을 위한 saccharification enzymes의 재료가 되는 wheat Qu 내 에 있는 대부분의 acids와 ketones는 미생물 발효에 의한 lipid oxidation에 의한 것으로 간 주된다(Mo, 2009).

몇몇 ketones이 *R. oryzae*.에서 동정되었다. 주로 세균 대사에 의해 pyruvate로부터 만들어 지는(Jia, 2017) butane-2,3-dione (diacetyl)와 3-hydroxybutan-2-one (acetoin)이 검출되었 으며 acetoin의 양이 diacetyl의 양보다 많았다. Diacetyl과 acetoin은 주로 citrate-positive lactococci, lactobacilli 그리고 yeasts에 의해 생성된다(Mukisa and Kiwanuka, 2018). Pleasant yogurt odor, butter 향을 제공하는 acetoin은 유제품과 일부 과일에서 발견된다고 알려져 있다(Xiao, 2014). 세균 대사에서 acetoin은 pyruvate로부터 2개의 enzyme-catalysed 단계를 거쳐 만들어진다(Curic, 1999). Acetoin은 JJ3-9를 37 ℃에서 배양한 시료에서 가장 많은 양이 검출되었다.

그림 86. 배양 조건에 따른 *R. oryzae* 배양액의 휘발성 발효 대사산물의 PLS-DA score plot (VIP>0.8). ROE: *R. oryzae* JJ3-9, ROS: *R. oryzae* KCCM35485.

R. oryzae JJ3-9 균주의 모든 시료는 PLS component 1의 양의 방향에 위치해 있는 반면에 KCCM 35485 시료들은 모두 PLS component 1의 음의 방향이자 PLS component 2의 음의 방향에 위치하였다(그림 86). control 조건에서 배양한 JJ3-9 시료만 PLS component 1의 양 의 방향이자 PLS component 2의 음의 방향에 위치하였다. PLS-DA 분석을 통해 JJ3-9 균주 의 시료들은 배양 조건에 따라 명확한 차이를 보였으나 KCCM 35485 시료들은 배양 조건

에 따른 차이가 명확하지 않은 것을 알 수 있다. 3-Hydroxybutan-2-one, 2-methylpropan-1-ol, 3-methylbutan-1-ol, hexanal, 2-phenylethanol 등은 JJ3-9를 KCCM 35485과 구별하는데 영향을 주는 PLS component 1의 양에 방향과 관련된 대사산물들이다. KCCM 35485 시료들이 위치해있는 PLS component 1의 음의 방향과 관련된 주요 대사산물 에는 ethyl (Z)-octadec-9-enoate, ethyl pentadecanoate, guinoline-4-carbaldehyde, methyl tetradecanoate, methyl hexadecanoate, ethyl (9Z,12Z)-octadeca-9,12-dienoate 등이 있다. Methyl 2-(3-oxo-2-pentylcyclopentyl)acetate, propan-1-ol, 3-methylbutyl acetate, 5-pentyloxolan-2-one, 4-methylphenol, propyl acetate, ethyl acetate는 control 조건을 제외 한 나머지 조건의 JJ3-9 시료들에 영향을 주는 대사산물들이다. PLS component 2의 음의 방향과 연관된 주요 대사산물에는 2-phenoxyethanol, dodecan-1-ol. methyl 3-methylbutanoate, 2-hydroxycyclopent-2-en-1-one 등이 있다 (그림 87).

#R0Econtrol #R0E32h #R0E37C #R0EpH4 #R0Econtrol #R0E32h #R0E37C #R0EpH4

그림 87. Rhizopus oryzae JJ3-9, Rhizopus oryzae KCCM 35485의 Metabolic pathway

7. 효모 S. fibuligera KJJ81의 시간별 휘발성/비휘발성 대사체 분석 연구

가. YPD 액체배지 및 효모 배양 준비

제주도 서귀포시 중문동 2123-1에서 제조된 누룩에서 얻은 효모 Saccharomycopsis fibuligera KJJ81과 경상북도 포항시 남구 연일읍 유강리 104-303에서 얻은 효모 Saccharomycopsis fibuligera KPH12를 전라북도 한국생명공학연구원 생물자원센터에서 얻은 Saccharomyces cerevisiae S288C를 이용하여 실험을 진행하였다. 세 효모는 YPD 액체배지 배양하였고, 균을 접종하고 난 후 0, 6, 16, 24시간 본 배양 후에 sampling을 수행하였다.

나. 효모의 휘발성 /비휘발성 대사산물 추출 및 분석

3차년도와 동일한 추출 및 분석법으로 분석하였다.

다. 효모의 휘발성/비휘발성 대사산물 분석 연구결과

(1) 각 효모의 성장 곡선

그림 88. 각 효모의 성장 곡선

S. fibuligera KJJ81, S. fibuligera KPH12와 S. cerevisiae S288C를 YPD 배지에서 37℃, 220 rpm, 24시간 동안 배양한 성작곡선이다 (그림 88). S. fibuligera KJJ81은 0시간부터 8시간 까지 exponential growth를 보였다. 이어서 배양 8시간부터 24시간까지는 stationary phase 의 양상을 보였다. 마지막으로 24시간 이후부터는 death phase에 접어드는 경향을 보였다. 0시간, 6시간, 16시간, 24시간의 배양 후에 샘플링하여 S. fibuligera KJJ81, S. fibuligera KJJ81, S. fibuligera KPH12와 S. cerevisiae S288C의 휘발성 및 비휘발성 대사체를 분석하였다.

(2) 효모의 배양 시간에 따른 비휘발성 대사산물 동정 및 정량

3개의 효모에서 16개의 carbohydrates와 21개의 amino acids 21개의 fatty acids와 21개의 organic acids가 정성되었다. *S. fibuligera* KJJ81에서는 14개의 carbohydrates, 20개의 amino acids, 20개의 organic acids, 21개의 fatty acids류가 검출되었다. 반면 *S. fibuligera* KPH12에 서는 9개의 carbohydrates, 16개의 amino acid와 12개의 organic acids와 9개의 fatty acids 가 검출되었고 *S. cerevisiae* S288C에서는 7개의 carbohydrates, 14개의 amino acids, 6개의 organic acids와 4개의 fatty acids가 검출되었다.

(가) Carbohydrates류

Trehalose가 세 균주의 모든 배양 시간대에서 모두 높은 정량 값을 보였다. trehalose는 특 히 *S. fibuligera* KPH12의 24시간 배양 시료에서 가장 높은 정량값을 나타냈는데 trahalose 는 *S. fibuligera*의 주요 대사산물중 하나로 알려져 있다(Chi et al., 2009). *S. fibuligera* KJJ81과 KPH12에서 arabitol이 높은 정량값을 나타냈다. arabitol은 대게 glucose로부터 생산 되는 것으로 알려져 있다 (Aoki, Pastore, & Park. 1993; Saha, & Bothast, 1996) KJJ81과 KPH12의 arabitol의 정량 값은 16시간 까지 증가하다가 감소하는 경향을 보였다.

(나) Amino acids류

Trosine, phenylalanine과 tryptophan과 같은 aromatic amino acids와 leucine, isoleucine과 valine과 같은 branched-chain amino acids는 효모의 Ehrlich pathway를 통해 higher alcohols로 전환 된다 (Kang et al., 2014). 실험결과 KJJ81과 KPH12에서 phenylalanine, tyrosine, leucine 은 상대적으로 낮은 값이 정량되었다. 그러나 glycine, alanine, serine과 같은 바로 Ehrlich pathway로 들어가지 않는 aminoacids들은 KJJ81과 KPH12에서 상대적으 로 높이 정량되었다. 이러한 amino acids는 pyruvate로 분해된 다음 non-fusel metabolites 또는 fusel metabolites로 전환되는 Ehrlich pathway로 들어감으로써 fusel metabolites로 분 해된다 (Kang et al., 2014). 세 가지 균주에서 정성된 대부분의 amino acids들은 16시간의 배양시간까지 증가하다가 감소하는 경향을 보였다.

(다) Fatty acids류

Octadecanoic acid와 hexadecanoic aicd는 3가지 균주에서 정성된 fatty acids들 중 높이 정 량되었다. 이러한 두 fatty acids는 참조균주인 S288C의 정량값과 비교했을 때 KJJ81과 KPH12에서 높이 정량되었다. Hexadecanoic acid와 octadecanoic acids는 효모의 미토콘드리 아에서 malonate로부터 합성된다고 알려져 있다 (Gueguen et al., 2000). Oleic acid는 KJJ81 과 KPH12의 16시간 배양 샘플에서만 정성 및 정량되었다. 이러한 unsaturated fatty acid는 세포의 구성성분으로서 효모의 성장에 중요한 영향을 끼친다고 알려져 있고, 알콜 음료의 주요 향기 성분인 ethyl ester와 isoamyl acetate의 생성에 연관이 있다고 알려져 있다 (Kang et al., 2014).

(라) Organic acids류

Oxalic acid의 정량 값이 세가지 균주에서 검출된 다른 organic acids 대사체들에 비해 모든 배양시간 대에서 높이 정량되었다. Oxalic acid의 정량값은 KJJ81의 16시간 배양 시료에서 가장 높은 값을 보였다. Phruvic acid, fumaric acid 와 citric acid는 glycolysis와 TCA cycle 에서 중요한 중간산물이다. Pyruvic acid는 KJJ81의 16시간 배양 시료에서 가장 높이 정량 되었다. 반면 citric acid는 KPH12의 24시간 배양 시료에서 가장 높이 정량되었다. Lee et al.,(2016)에서 효모로부터 생성되는 lactic acid, malic acid와 succinic acid는 막걸리의 주요 organic acid라고 주장하였다. 실험 결과에서 lactic acid의 경우 KPH12의 16시간 배양시료 와 KJJ81의 24시간 배양시료에서만 정성 및 정량되었다. malic acid와 succinic acid의 정량 값은 S288C와 KPH12의 정량 값과 비교했을 때 모든 배양시간대에서 KJJ81이 가장 높았다.

(마) 비휘발성 대사체의 통계결과

아래 그림 89는 세 균주의 비휘발성 대사체의 배양시간에 따른 PCA score plot이다. S288C 의 균의 경우 시간에 따라 PC2의 음의 방향으로 이동하는 경향을 보였으나 크게 변화가 없다. KJJ81의 경우에는 배양 시간에 따라 PC1의 음의 방향으로 이동하였다가 다시 PC1의 음의 방향으로 이동하는 경향을 보인다. KPH12의 경우에는 배양시간에 따라 PC2의 음의 방향으로 이동하는 경향을 보였다. PCA score plot으로 세 균주의 비휘발성 대사산물의 변 화 경향을 보았을 때, 배양 0시간부터 6시간까지는 비휘발성 대사산물들이 크게 변화 하지 않고 16시간 이후부터는 크게 변화한다는 점을 유추할 수 있다.

그림 89. *S. fibuligera* KJJ81, S. *fibuligera* KPH12와 S. *cerevisiae* S288C (참조균주)의 배양시간에 따른 비휘발성 대사체 PCA score plot

그림 90.(A) *S. fibuligera* KJJ81, *S. fibuligera* KPH12 and *S. cerevisiae* S288C의 배양시간에 따 른 비휘발성대사체의 PLS-DA score plot (B) *S. fibuligera* KJJ81와 *S. fibuligera* KPH12 의 배양 시간에 따른 비휘발성 대사체의 PLS-DA score plot

그림 90(A)는 세 균주의 비휘발성 대사체의 배양시간에 따른 PLS-DA score plot이다. KJJ81의 경우 배양시간에 따라 PLS 1의 음의방향으로이 동후 다시 PLS 1 양의 방향으로 이동하는 큰 시계방향으로 움직이는 경향을 보였다. Succinic acid, mevalonic acid 와 malic acid와 같은 organic acids와 phenylalanine, tyrosine, asparagine, histidine과 isoleucine과 같은 amino acids가 KJJ81의 배양시간에 따른 변화의 주요 비휘발성 대사체로 분석되었다. 반면 KPH12의 경우에는 배양시간에 따라 PLS2의 음의 방향으로 이동하는 경향을 보였다. Threonine, glutamine, valine, leucine, alanine과 같은 amino acids와 trehalose, mannose, galactose와 같은 carbohydrates가 배양 시간에 따른 KPH12의 이러한 변화에 영향을 끼치 는 주요 비휘발성 대사체로 분석되었다. PLS-DA score plot으로 세 균주의 비휘발성 대사 산물의 변화 경향을 보았을 때, 배양 0시간부터 6시간까지는 비휘발성 대사산물들이 크게 변화 하지 않고 16시간 이후부터는 크게 변화한다는 점을 유추할 수 있다.

그림 3 (B)는 *S. fibuligera* KJJ81과 *S. fibuligera* KPH12의 배양시간에 따른 비휘발성 대사체 에 대한 PLS-DA score plot이다. KJJ81의 경우 배양 시간에 따라 PLS 1의 음의방향으로 이 동 한 뒤 다시 PLS 1의 양의 방향으로 이동하는 시계방향으로 이동하는 경향을 보인다. 표 2와 같이 Propanedionic acid, tyrosine, phenylalanine, isoleucine, butanoic acid, histidine, malic acid, pentadecanoic acid, succinic acid, mannitol과 lysine등의 대사체들이 KJJ81의 배양시간에 따른 변화에 주요한 비휘발성 대사체로 분석되었다. KPH12의 경우 시간에 따라 PLS 2의 음의 방향으로 이동하는 경향을 보였다. 표 3과 같이 Glutamine, threonine, trehalose, valine, citric acid, mannose, leucine, alanine과 2-butenedioic acid등이 이러한 KPH12의 배양시간에 따른 변화에 주요한 비휘발성 대사체로 분석되었다.

(3) 효모의 배양 시간에 따른 휘발성 대사산물 동정 및 정량

실험 결과 3개의 효모에서 5 acids, 40 alcohols, 16 aldehydes, 1 amide, 12 benzenes, 50 esters, 6 furans, 8 hydrocarbons, 17 ketones, 13 lactones, 1 phenol, 10 pyrazines, 1 pyrone, 4 pyrroles and 1 sulfur-containing compound가 정성 및 정량되었다. *S. fibuligera* KJJ81에서는 13 acids, 24 alcohols, 11 aldehydes, 7 benzenes, 39 esters, 4 furans, 5 hydrocarbons, 12 ketones, 10 lactones, 5 pyrazines and 2 pyrroles가 정성 및 정량되었다. 반면 *S. fibuligera* KPH12에서는 9 acids, 28 alcohols, 9 aldehydes, 8 benzenes, 36 esters, 4 furans, 8 hydrocarbons, 10 ketones, 8 lactones, 1 phenol, 8 pyrazines and 2 pyrroles가 정 및 정량되었고 *S. cerevisiae* S288C에서는 12 acids, 35 alcohols, 13 aldehydes, 1 amide, 6 benzenes, 24 esters, 5 furans, 6 hydrocarbons, 11 ketones, 6 lactones, 1 phenol, 8 pyrazines and 2 pyrroles가 정성 및 정량되었다.

(가) Esters류

세 개의 균주들에서 2-phenylethyl acetate, 3-methylbutyl acetate, 2-methylpropyl acetate, heptyl acetate 와 ethyl acetate와 같은 다양한 acetate ester group들이 주요 휘발성 향기 성분으로 검출 되었다. 휘발성 esters는 fruity하고 와인과 사케, 맥주의 특징적인 향을 가진다 (Etievant et al., 1999). 특히 acetate esters류는 발효된 알콜 음료에서 중요한 향기 성분 역할을 한다 (Ebleler et al., 2001).

(나) Fusel alcohols 와 Fusel esters

Fusel esters인 2-Phenylethyl acetate와 3-methylbutyl acetate는 실험결과 가장 높은 VIP 값을 갖는 휘발성대사체로 검출되었다. 2-Phentylethyl acetate 와 3-methylbutyl acetate는 KJJ81 16시간이후의 시료에서 KPH12 group에 비해 높은 정량 값을 가진다. 2-Phenylethyl acetate는 fruity하고 flowery한 향 특성을 가진 와인의 주요한 향기성분 중 하나다(Viana et al., 2012).

(다) 3-Methylbutyl acetate

3-Methylbutyl acetate (isoamyl acetate)은 효모가 생성하는 휘발성 대사체 중 하나이며 달 콤하고 fruity한 향 특성을 가진다. 2-Phentylethyl acetate와 3-methylbutyl acetate는 amino acid 전환을 통한 Ehrlich pathway를 거쳐 생성된다. 2-phentylethanol과 3-methylbutan-1-ol과 같은 Fusel alcohol은 세 개의 균주에서 주요한 휘발성 대사체로 선 정되었다. 효모가 생성하는 Fusel alcohol류는 특유의 향 때문에 발효된 알코올 음료의 관 능적 특성에 주요한 영향을 미친다 (Li, Wei, et al., 2018). KPH12 group이 생성하는 정량 값이 S288C와 KJJ81 group의 정량 값에 2-phenylethanol의 비해 높다. 2-Phenylethanol과 2-phentylethyl acetate와 같은 phenyl group을 가진 Fusel alcohols과 Fusel esters류는 phenylalanine이 Ehrlichpathway를 거쳐 생성한다. Phentylalanine은 3-phentyl-2-oxo-propanoate (a-keto acid), 2-phentylethanal (aldehyde)을 거쳐 그 후 2-phentylethanol(fusel alcohol)이 2-phentylethyl acetate(fusel acetate)로 전환되어 생성된 다.

그림 91. 세 개의 균주에서 2-phenylethanol과 2-phenylethyl acetate의 배양시간에 따른 metabolic pathway와 정량 값

그림 92. 세 개의 균주에서 3-methylbutan-1-이과 3-methylbutyl acetate의 배양시간에 따른 metabolic pathway와 정량 값

(라) Acids류

Octanoic acid는 세 개의 균주에서 주요한 휘발성 대사체로 검출되었다. Octanoic acid은 ethyl ester의 전구체이다. 3-Methylbutanoic acid와 2-methylpropanoic acid 또한 주요한 휘 발성 대사체로 선정되었는데 는 치즈와 fatty한 향 특성을 가진다 (Song et al., 2015). 이러 한 branched-chain acids는 효모에서 Ehrlich pathway를 통해 생성된다 (Hazelwood et al., 2008). Leucine과 valine은 3-methylbutanoic acid와 2-methylpropanoic acid의 전구체이다 (Lucie A., et al., 2008). 3-methylbutanoic acid는 KJJ81 group의 모든 배양시간대에서 나머 지 두 균주에 비해 높이 정량되었다. 특히 KJJ81의 16시간 배양시료에서 가장 높게 검출되 었다. 2-Methylpropanoic acid 또한 KJJ81 group에서 나머지 두 균주보다 높이 정량되었다.

(마) Aldehydes류

Hexanal의 VIP값이 가장 높았고 그 다음으로 nonanal의 VIP값이 높았다. 표 4에서 불 수 있듯이 hexanal과 nonanal의 정량 값은 KJJ81 모든 시간대의 배양 시료에서 나머지 두 균 주들에 비해 높은 정량 값을 보였다. Hexanal은 green/grassy한 향특성을 가지고 nonanal은 citrus 향 특성을 가진다. 이 두가지 휘발성 대사체는 enzymatic oxidation을 통해 long-chain fatty acids로부터 유래되는 long-chain straight aldehydes 이다 (Morales et al., 1997). 실험에서 정성 된 aldehydes중 3-methylbutanal의 정량 값이 세 개의 균주의 모든시 간대의 배양시료에서 상대적으로 가장 높이 정량되었다. 3-Methylbutanal은 malty한 향특성 을 지니며 그림 4 (A)와 같이 leucine이 Ehrlich pathway를 거쳐 생성한다.

(바) Lactones류

Lactone은 주로 linoleic acid와 oleic acid와 같은 fatty acid로부터 발효과정 중에 생성된다 (Romero et al., 2011). 이러한 lactones류는 buttery하고 peach-like한 향 특성을 가지고 알 콜 발효 음료와 같은 발효음식의 주요한 향이다(Sinha et al., 2007).5-Pentyloxolan-2-one, 5-hexyloxolan-2-one, 6-heptyloxan-2-one과 6-pentyl oxan-2-one은 세 개의 균주에서 주요 휘발성 대사체로 검출되었다. 특히 5-hexyloxolan-2-one (γ-decalactone)의 VIP 값이 가장 높았고 그 다음으로 5-pentyloxan-2-one (γ-nonalactone)의 VIP 값이 높았다. γ -Decalactone은 복숭아 향을 가지며 발효제품과 과일에 존재하는 휘발성 성분이다 (Waché, Yves, et al., 2001). γ-Decalactone은 Chinese rice wine과 aged sake의 주요한 향기성분으 로 보고되기도 하였다 (Adans, et al., 1970). γ-Nonalactone은 코코넛과 달콤한 향 특성을 가지며 Chinese rice wine의 특징적인 맛과 향에 큰 영향을 미친다. γ-Decalactone과 γ -nonalactone의 정량값은 KJJ81 group에서 나머지 KPH12와 S288C group과 비교했을 때 모 든 배양 시간대에서 높은 정량 값을 가졌다. Oleic acid와 linoleic acid와 같은 Unsaturated fatty acids는 γ-Decalactone과 γ-nonalactone의 전구체로 알려져 있다 (Haffner et al., 1996).

(사) 휘발성대사체의 통계결과

그림 93. *S. fibuligera* KJJ81, S. *fibuligera* KPH12와 S. *cerevisiae* S288C (참조균주)의 배양시간에 따른 휘발성 대사체 PCA score plot

그림 93은 세 균주의 휘발성대사체의 배양시간에 따른 PCA score plot이다. PC component 1을 기준으로 29.58%의 설명력을 가지고 PC component 2를 기준으로 20.67%의 설명력을 가져 합계 50.25%의 설명력을 가진다. S288C의 균의 경우 시간에 따라 PC2의 양의 방향으 로 이동하였다 다시 음의 방향으로 이동하는 경향을 보였다. KJJ81의 경우에는 배양 시간 에 따라 PC1의 양의 방향으로 이동하였다가 다시 PC1의 음의 방향으로 이동하는 경향을 보인다. KPH12의 경우에는 배양시간에 따라 PC2의 양의 방향으로 이동하는 경향을 보였으 나 큰 이통을 보이지 않았다. PCA score plot으로 세 균주의 휘발성 대사산물의 변화 경향 을 보았을 때, 배양 0시간부터 6시간까지는 비휘발성 대사산물들이 크게 변화 하지 않고 16시간 이후부터는 크게 변화한다는 점을 유추할 수 있다.

그림 94. (A) *S. fibuligera* KJJ81, *S. fibuligera* KPH12 and *S. cerevisiae* S288C의 배양시간에 따른 휘발성대사체의 PLS-DA score plot (B) *S. fibuligera* KJJ81와 *S. fibuligera* KPH12 의 배양시간에 따른 휘발성 대사체의 PLS-DA score plot

그림 94 (A)는 세 균주의 휘발성 대사체의 배양시간에 따른 PLS-DA score plot이다. KJJ81 의 경우 배양시간에 따라 PLS 2의 양의방향에서 PLS 1의 음의 방향으로 이동하는 경향을 보였다. 표 5와 6에서 볼 수 있듯이, 2-Phenylethyl acetate, 3-methylbutyl propanoate, 2-methyl propyl acetate, 2-phenylthyl formate, 3-methylbutyl acetate and 3-methylbutyl butanoate와 같은 다양한 esters들과 6-pentyloxane-2-one, heptadecan-2-one, 4-hydroxy-4-methyloxan-2-one 6-propyloxan-2-one, 5-octyloxolan-2-one, 과 5-hexyloxolan-2-one 같은 다양한 lactones류 들이 KJJ81 group의 이러한 배양시간에 따른 변화에 영향을 끼치는 주요 휘발성 대사체로 분석되었다. KPH12와 같은 경우에는 배양시 간에 따라 PLS 2의 양의 방향에서 음의방향으로 이동하는 경향을 보였으나 큰 이동양상을 보이지 않았다. PLS-DA score plot으로 세 균주의 휘발성 대사산물의 변화 경향을 보았을 때, 배양 0시간부터 6시간까지는 휘발성 대사산물들이 크게 변화 하지 않고 16시간 이후부 터는 크게 변화한다는 점을 유추할 수 있다.

그림 94 (B)는 *S. fibuligera* KJJ81과 *S. fibuligera* KPH12의 배양시간에 따른 휘발성 대사체 에 대한 PLS-DA score plot이다. 그림 94(B) 에서 볼 수 있듯이 KJJ81과 KPH12의 시간에 따른 휘발성대사체들의 경향에 확연한 차이를 보인다. KJJ81의 경우 배양 시간에 따라 PLS 2의 음의 방향에서 PLS 2의 양의방향으로 이동한 뒤 다시 PLS 2의 음의 방향으로 이동 하는 큰 반시계방향 경향을 보인다. KPH12와 같은 경우에는 배양시간에 따라 PLS 1의 음 의 방향에서 PLS 2의 양의방향으로 이동하였다 다시 PLS 2의 음의 방향으로 이동하는 반 시계방향의 경향을 보였다.

그림 95. S. fibuligera KJJ81, S. fibuligera KPH12 and S. cerevisiae S288C (참조균주)의 Metabolic pathway

2.3. 연구개발 성과

제1절. 연구성과 목표 및 대비실적

가. 사업성과

(단위 : 건수)

성고	사목표	전략 미생물 해독	유용 유전자 원(생물) 확보	사업화 ·실용화	표준 유전체 해독	메타지 놈 분석	유전체 분석기 술개발	NABIC 등록	병원성 미생물 진단마 커개발	병원성 미생물 정보완 성	미생물 병발생 기작 규명
최종	종목표		11		10(+2*)			10			
1	목표		-		2			2			
차 년 도	실적		-		2			0			
2 71	목표		3		3			3			
자 년 도	실적		10		3			13			
3	목표		4		2(+1*)			2			
자 년 도	실적		13(+4)		3(+4*)			3			
4 -7L	목표		4		3(+1*)			3			
지 년 도	실적		(+38)		3(+1*)			2			
소	목표		11		10(+2*)			10			
계 	실적		23(+42)		11(+4*)			18			
そ 1え	중료 년도										
27 	중료 년도										
3z	중료 년도										
	종료 년도										
そ 5え	종료 년도										
소	기										
Ъ.	기										

* re-sequencing

나. 기타성과

(단위 : 건수)

						사	업화지]표							연	' <i>771</i> 5	바지표	2		
			지식 재산권	1	기 실 (이	술 시 전)		,	사업호	ŀ		- 7]	학	술성고	}		0]	정 활용 	책 ··홍 친	기 타 (타
성과목표		특 허 출 원	쁘 하 다 루	포고 옷이 다이 루디	건 수	기 술 료	제 품 화	매 출 액	수 출 핵	고 용 창 출	투 자 유 치	기 술 인 증	논단 SCI	로 비 SCI	학 술 발 표	교육지도	고 력 양 성	정 책 활 용	홍 보 진	· 연구활용등
최종	목표	3	3										14		16	5	16	3	4	4
1 차	목 표	-	-										1		2	1	2	-	-	-
년 도	실 적	-	-										2		2	1	3	-	-	-
2 차	목 표	1	-										3		3	1	3	-	1	1
년 도	실 적	4											2		8	1	2	-	0	1
3 차	목 표	1	_										3		4	1	4	1	1	1
년 도	실 적												6		6	4	4	1	3	4
4 차	목 표	1	1		1								3		5	1	4	1	1	1
년 도	실 적		3										2		10	-	8	1	1	1
소	목 표	3	1										10		14	4	13	2	3	3
계 	실 적	4	3										12		26	6	17	2	4	5
종 1차	료 년도		1										1		1	1	2	1	1	1
종 2차	료 년도		1										1		1		1			
종 3차 	료 년도												1							
종 4차	'료 년도												1							
	계		2										4		2	1	3	1	1	1
합	계	3	3										14		16	5	16	3	4	4

제2절. 사업성과

가. 유용 유전자원 확보

N	lo	유전체, 유전자원 명칭 (건별 각각 기재)	분석내용	비고
	1	<i>S. fibuligera BLG3</i> (<i>S. fibuligera</i> KPH12 A3G060500)	신규 Cellulose 분해 효소(β-glucosidases)	
	2	<i>S. fibuligera BLG4</i> (<i>S. fibuligera</i> KPH12 A2G002200)	신규 Cellulose 분해 효소(β-glucosidases)	
	3	<i>S. fibuligera BGL4</i> (<i>S. fibuligera</i> KPH12 A7G027500)	신규 Cellulose 분해 효소(β-glucosidases)	
	4	<i>S. fibuligera</i> Cel61A (<i>S. fibuligera</i> KPH12 A2G080500)	신규 Cellulose 분해 효소 (Copper-dependent polysaccharide monooxygenases)	
2차 년도	5	<i>S. fibuligera</i> Cel61A (<i>S. fibuligera</i> KPH12 A2G001300)	신규 Cellulose 분해 효소 (Copper-dependent polysaccharide monooxygenases)	
	6	<i>S. fibuligera</i> Cel61A (<i>S. fibuligera</i> KPH12 A1G071400)	신규 Cellulose 분해 효소 (Copper-dependent polysaccharide monooxygenases)	
	7	<i>S. fibuligera</i> abfC (<i>S. fibuligera</i> KPH12 A3G089600)	신규 Cellulose 분해 효소 (alpha-L-arabinofuranosidase C)	
	8	Aspergillus oryzae SSU1102-08	신규 당화 및 발효 우수 균주 발굴	
	9	Saccharomycopsis fibuligera SSU2601-09	신규 당화 및 발효 우수 균주 발굴	
	10	Rhizopus oryzae SSU2603-06	신규 당화 및 발효 우수 균주 발굴	
	11	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 A2G066500)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	
	12	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 A2G089400)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	
	13	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 A2G089500)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	
	14	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 A3G017700)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	
	15	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 A4G012700)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	
	16	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 A4G012800)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	
3차 년도	17	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 A5G003500)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	
	18	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 B2G064500)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	
	19	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 B2G086900)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	
	20	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 B2G087000)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	
	21	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 B3G017600)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	
	22	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 B4G012200)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	
	23	<i>S. fibuligera ATF1</i> (<i>S. fibuligera</i> KJJ81 B5G003500)	신규 향미 관련 효소 alcohol acetyltransferase (ATF)	

*생명자원(생물자원)/화합물

No	생명자원(생물자원)/화합물명	등록/기탁번호	등록/기탁기관	발생년도
1	Saccharomycopsis fibuligera KJJ81	KCTC 18466P	한국생명공학연구원	2016
2	Aspergillus oryzae SSU1102-08	KCTC 13033BP	한국생명공학연구원	2016
3	Saccharomycopsis fibuligera SSU2601-09	KCTC 13034BP	한국생명공학연구원	2016
4	<i>Rhizopus oryzae</i> SSU2603-06	KCTC 13035BP	한국생명공학연구원	2016
5	Saccharomyces cerevisiae	KCTC 27787	한국생명공학연구원	2017
6	Saccharomycopsis fibuligera	KCTC 27788	한국생명공학연구원	2017
7	Saccharomycopsis fibuligera	KCTC 27789	한국생명공학연구원	2017
8	Saccharomycopsis fibuligera	КСТС 27790	·····································	2017
9	Saccharomycopsis fibuligera	КСТС 27791	하국생명공학연구원	2017
10	Saccharomycopsis fibuligera	КСТС 27792	하국생명공한연구원	2017
11	Saccharomycopsis fibuligera	KCTC 27793	하구새며고하여구위	2017
12	Saccharomycopsis fibuligera	КСТС 27794	하구새며고하여그의	2017
12	Superphalastrum manasparum	KCTC 46676	친구성경영학원구권	2017
1.0	Syncephalastrum monosporum	KCTC 46677	친구경경공약원구권	2017
14		KCTC 40077	한국성영등억연구권	2017
15	Wichernamomyces anomaius	KCTC 2/786	안국생명공학연구원	2017
16	Alternaria alternata	KCIC 46649	안국생명공악연구원	2018
17	Aspergillus clavatus	KCTC 46650	한국생명공학연구원	2018
18	Aspergillus clavatus	KCTC 46651	한국생명공학연구원	2018
19	Aspergillusniger	KCTC 46652	한국생명공학연구원	2018
20	Aspergillus oryzae	KCTC 46653	한국생명공학연구원	2018
21	Aspergillus oryzae	KCTC 46654	한국생명공학연구원	2018
22	Aspergillus oryzae	KCTC 46655	한국생명공학연구원	2018
23	Aspergillus oryzae	KCTC 46656	한국생명공학연구원	2018
24	Aspergillus oryzae	KCTC 46657	한국생명공학연구원	2018
25	Aspergillus oryzae	KCTC 46658	한국생명공학연구원	2018
26	Aspergillus oryzae	KCTC 46659	한국생명공학연구원	2018
27	Botryspheria dothidea	KCTC 46660	한국생명공학연구원	2018
28	Botrytis cinerea	KCTC 46661	한국생명공학연구원	2018
29	Lichtheimia corymbifera	KCTC 46662	한국생명공학연구원	2018
30	Lichtheimia corymbifera	KCTC 46663	한국생명공학연구원	2018
31	Lichtheimia corymbifera	KCTC 46664	한국생명공학연구원	2018
32	Lichtheimia ramosa	KCTC 46665	한국생명공학연구원	2018
33	Lichtheimia ramosa	KCTC 46666	한국생명공학연구원	2018
34	Lichtheimia ramosa	KCTC 46667	한국생명공학연구원	2018
35	Lichtheimia ramosa	KCTC 46660	안국생명공악연구원 친구새며고하여그의	2018
30	Lichtheimia ramosa	KCTC 46670	한국경경공학원구권 하국생명공학여구원	2018
38	Mucor circinelloides	KCTC 46671	한국생명공학연구원	2018
39	Penicillum expansum	KCTC 46672	한국생명공학연구원	2018
40	Pichia membranifaciens	KCTC 27795	한국생명공학연구원	2018
41	Rhizopus delemar	KCTC 46674	한국생명공학연구원	2018
42	Rhizopus oryzae	KCTC 46675	한국생명공학연구원	2018

나. 표준유전체 해독

◆ GenBank 등록

N	0	유전체, 유전자원 명칭 (건별 각각 기재)	분석내용	비고
1차	1	Saccharomycopsis fibuligera KJJ81	 14 chromosomes + 1 mitochondria genome) Complete genomic sequence (38.5 Mbp) 두 개의 genome (A, B)으로 구성 (allo-diploidy 형태로 추정) 유전자 예측 (11,970개), Gene family Phylogeny tree 분석 RNA-seq 기반의 전사체 분석 	GenBank Assession Nos. CP012809 - CP012822
번노	2	<i>Saccharomycopsis fibuligera</i> KPH12	- 7 chromosomes + 1 mitochondria genome - Compete genomic sequence (19.6 Mbp) - KJJ81의 A genome의 counterpart로 추정 - 유전자 예측 (6,183개), Gene family - Phylogeny tree 분석 - RNA-seq 기반의 전사체 분석	GenBank Assession Nos. CP012823 - CP012829
	3	<i>Saccharomycopsis fibuligera</i> ATCC 36309	- 7 chromosomes - Compete genomic sequence (19.2 Mbp) - KPH12와 유전자 구조 및 염기서열이 거의 비슷함 - 유전자 예측 (6,183개), Gene family - Phylogeny tree 분석 - RNA-seq 기반의 전사체 분석	GenBank Assession Nos. CP015978-CP015 984
2차 년도	4	<i>Saccharomyces cervisiae</i> 98-5	 16 nuclear genome + 1 mitochondria genome + 1 2 micron plasmid Heterozygosity가 상당히 존재하는 두 copy genome을 지닌 diploid 기존의 <i>S. cerevisiae</i> 참조 유전체와 99% 상동성을 지는 것으로 분석됨. 	GenBank Assession Nos. CP025097-CP02 5112 (17.12.5)
	5	<i>Lichtheimia ramosa</i> LNPH1-1	 - 19.49 Mbp의 크기를 가짐 - Transcript 서열 정보 및 유사종의 Protein 서열, ab initio 방법을 이용하여, 유전자 예측 수행 결과 L.ramosa는 12,827개의 유전자가 예측되었음 - 기존에 공개된 L.ramosa 유전체와 98.45% 유사도를 보이며 구조적으로는 서로 유사함 	등록 예정
	6	<i>Saccharomycopsis malanga</i> KCN26	 - 19.49 Mbp의 크기를 가짐 - 6개 chromosome과 2개의 mitochondrial genome으로 조립 - Genbank에 등록된 <i>S. malanga</i> JCM 7620와 비교시, 4개의 chromosome에서 rearrangement가 일어남. 	GenBank Assession Nos CP025321-CP025 327 (17.12.13)
3차	7	Hyphopichia burtonii KJJ43	 19.49 Mbp의 크기를 가짐 8개의 염색체1과 개의 mitochondrial genome으로 조립됨 Genbank에 등록된 Y1933과 구조가 동일하지만 homology는 97~98% 정도임 	GenBank Assession Nos CP024759-CP024 766 (17.11.8)
년도	8	Hyphopichia pseudoburtonii	- 15.54Mbp의 크기를 가짐 - 8개의 염색체로 조립됨 - Mitochondria genome (43.13 kbp) - 아직 유전체 분석이 전혀 수행되지 않아서 본 연 구팀 분석 결과가 세계 최초임	GenBank Assession Nos CP024751-CP024 758 (17.11.8)
	9	<i>Saccharomyces cervisiae</i> KSD-YC	 16 nuclear genome으로 조립 동일한 두 copy genome을 지닌 diploid 기존의 <i>S. cerevisiae</i> 참조 유전체와 3번 염색체 앞 부분의 약 90 kb 정도 deletion된 것으로 보이고 (repeat 등을 제외하면 75 kb로 추정), 5번 염색체 중간에 inversion이 일어난 것이 확인됨 	GenBank Assession Nos CP023995-CP024 010 (17.10.16)

	10	Aspergillus oryzae KSS2	 - 38.41 Mbp의 크기와 8개의 염색체를 가짐 - Transcript 서열 정보 및 유사종의 Protein 서열, <i>ab initio</i> 방법을 이용하여, 유전자 예측 수행 결과 13,597개의 유전자가 발견되었음 - <i>A. oryzae</i>의 참조 유전체인 RIB40과 비교하여 4군데 에서 염색체간의 재배열이 일어났음 	GenBank Assession Nos CP031434 - CP031439
4차 년도	11	<i>Aspergillus oryzae</i> KSS2	 39.07Mbp의 크기와 8개의 염색체를 가짐 Transcript 서열 정보 및 유사종의 Protein 서열, <i>ab initio</i> 방법을 이용하여, 유전자 예측 수행 결과 13,764개의 유전자가 발견되었음 <i>A. oryzae</i>의 참조 유전체인 RIB40과 비교하여 1군데 의 염색체간 재배열이 일어났는데, 다른 유전체들과 비교해봤을떼, KBP3가 좀더 공통조상에 가까운 구 조를 가지는 것으로 추정됨 	GenBank Assession Nos CP031428 - CP031433

다. NABIC 등록

N	lo	유전체, 유전자원 명칭 (건별 각각 기재)	분석내용	비고
	1	Saccharomycopsis fibuligera KJJ81	유전체 해독, 구조 분석 및 계통 분석	NG-0555-000001 ~ NG-0555-000014
	2	Saccharomycopsis fibuligera KPH12	유전체 해독, 구조 분석 및 계통 분석	NG-0556-000001 ~ NG-0556-000007
	3	Saccharomycopsis fibuligera ATCC 36309	유전체 해독, 구조 분석	NG-0557-000001 ~
	4	Saccharomycescervisiae 98-5	NG-0569-000001 ~	
	5	Lichtheimi aramosa LNPH1-1	NG-0570-000010 NG-0570-000001 ~	
2차 년 도	6	<i>Saccharomycopsis fibuligera</i> 전사체 (탄수원 농도 2종류, 황 결핍)	전사체해독, 발현양분석(12가지) <i>S. fibuligera</i> KJJ81 <i>S. fibuligera</i> KPH12 <i>S. fibuligera</i> ATCC36309 <i>S. fibuligera</i> ATCC36309 <i>S. fibuligera</i> KJJ81(B_2) <i>S. fibuligera</i> KJJ81(D01_2) <i>S. fibuligera</i> KJJ81(D01_3) <i>S. fibuligera</i> KJJ81(D02_2) <i>S. fibuligera</i> KJJ81(D02_3) <i>S. fibuligera</i> KPH12(D02_3) <i>S. fibuligera</i> KPH12(B_3) <i>S. fibuligera</i> KPH12(D01_2) <i>S. fibuligera</i> KPH12(D01_2) <i>S. fibuligera</i> KPH12(D01_3) <i>S. fibuligera</i> KPH12(D02_2) <i>S. fibuligera</i> KPH12(D02_3)	NN-2592-000014
	7	<i>S. fibuligera BGL3</i> (<i>S. fibuligera</i> KPH12A3G060500)	신규Cellulose분해효소(β-glucosidases)	NG-964
	8	<i>S. fibuligera BGL4(1)</i> (<i>S. fibuligera</i> KPH12A2G002200)	신규 Cellulose 분해 효소(β-glucosidases)	NG-965
	9	<i>S. fibuligera BGL4(2)</i> (<i>S. fibuligera</i> KPH12A7G027500)	신규 Cellulose 분해 효소(β-glucosidases)	NG-966
	10	<i>S. fibuligera Cel61A(1)</i> (<i>S .fibuligera</i> KPH12 A2G080500)	신규Cellulose분해효소(Copper-dependent polysaccharidemonooxygenases)	NG-967
	11	<i>S. fibuligeraCel61A(2)</i> (<i>S .fibuligera</i> KPH12 A2G001300)	신규Cellulose분해효소(Copper-dependent polysaccharidemonooxygenases)	NG-968
	12	<i>S. fibuligeraCel61A(3)</i> (<i>S. fibuligera</i> KPH12A1G071400)	신규Cellulose분해효소(Copper-dependent polysaccharidemonooxygenases)	NG-969
	13	<i>S. fibuligera abfC</i> (<i>S. fibuligera</i> KPH12 A3G089600)	신규 Cellulose 분해 효소(alpha-L-arabinofuranosidase C)	NG-970
3-2F	14	Hypopichia burtonii	유전체 해독, 구조 분석	NG-0812-00001 ~NG-0812-00007
년 도	15	Hypopichia psedoburtonii	유전체 해독, 구조 분석	NG-0819-00001 ~NG-0819-00007
	16	Saccharomycopsis malaga KCN26	유전체 해독, 구조 분석	NG-0821-00001 ~NG-0821-000018
4차	17	Aspergillus oryzae BSSS-F2	유전체 해독, 구조 분석	NG-0839-000001 ~ NG-0570-000014
년 도	18	Aspergillus oryzae JJBP-E3	유전체 해독, 구조 분석 유전체 해독, 구조 분석	NG-0570-000001 ~ NG-0570-000014

제3절. 기타성과

가. 국내외 논문 게재

N	0	논문명	학술지명	주저 자명	Ŕ	국명	발행 기관	SCI여 부 (SCI/비 SCI)	게재일	등록번호
1차	1	Effects of <i>aspergillus</i> species inoculation and their enzymatic activities on the formation of volatile components in fermented soybean paste (doenjang).	Journal of Agricultural and Food Chemistry	권수진 (제1 저자) 김영석 (교신저자)	63(5)	미국	ACS	SCI	2015. 2	doi: 10.1021/j f5056002
니 너	2	Hansenula polymorpha Pmt4p plays critical roles in O-mannosylation of surface membrane proteins and participates in heteromeric complex formation	PLoS One	김현아 (제1 저자) 강현아 (교신저자)	10(7)	미국	PUBLIC LIBRARY OF SCIENCE	SCI	2015. 7	doi: 10.1371/j ournal.po ne.01299 14
2차 년	3	Hansenula polymorpha Haclp Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analysis	Applied and Environmental Microbiology	문혜연 (제 1 저자) 강현아 (교신저자	81	미국	ASM	SCI	2015. 10	doi: 10.1128/ AEM.014 40-15
년 또	4	A new set of rDNA-NTS-based multiple integrative cassettes for the development of antibiotic-marker-fre e recombinant yeasts	Journal of Biotechnology	문혜연 (제1 저자) 강현아 (교신저자)	_	네덜란 드	Elsevier	SCI	2016. 7	doi:10.10 16/j.jbiot ec.2016.0 7.006
	5	Functional analysis of recombinant human and <i>Yarrowia lipolytica</i> O-GlcNAc transferases expressed in <i>Saccharomyces</i> <i>cerevisiae</i>	J Microbiol.	오혜지 (제1 저자) 강현아 (교신저자)	54 (10)	한국	The Microbiolo gical Society of Korea	SCI	2016. 10	
	6	Whole-genome de novo sequencing, combined with RNA-Seq analysis, reveals unique genome and physiological features of the amylolytic yeast Saccharomycopsis fibuligera and its interspecies hybrid	Biotech. Biofuels	추진호 홍창표 (제1 저자) 강현아 (교신저자	9	미국	Springer	SCI	2016 11	

	7	A novel bZIP protein, Gsb1, is required for oxidative stress response, mating, and virulence in the human pathogen <i>Cryptococcus</i> <i>neoformans.</i>	Sci. Rep	전선아 (제1 저자) 강현아 (교신저자)	on line	미국	Nature	SCI	2017.06	
3차	8	Comprehensive analysis of fungal diversity and enzyme activity in <i>nuruk</i> , a Korean fermenting starter, for acquiring useful fungi	Journal of Microbiology)	Emily Carroll, 서정아 (교신저자)	Vol. 55, No. 5	Korea	The Mic robi olo gica l Soci ety of Kor ea	SCI(E)	2017.05	1225-8873
RU LY	9	A diversity study of Saccharomycopsis fibuligera in rice wine starter nuruk, reveals the evolutionary process associated with its interspecies hybrid	Journal of Microbiology	Mohamed El-Agamy Farh, 서정아 (교신저자)	Vol. 55, No. 5,	Korea	The Mic robi olo gica l Soci ety of Kor ea	SCI(E)	2017.05	1225-8873
	10	Comparative analysis of nonvolatile and volatile metabolites in <i>Lichtheimia</i> <i>ramosa</i> cultivated in different growth media	Bioscience, Biotechnology, and Biochemistry	이나겸, 정현, 서정아, 김영석 (교신저자)	81	일본	The Japan Society for Bioscience, Biotechnolo gy, and Agrochemi stry (JSBBA)	SCI	2017.03	
4차 년 도	11	Comparison of volatile and non-volatile metabolites in rice wine fermented by <i>Koji</i> inoculated with <i>Saccharomycopsis</i> <i>fibuligera</i> and <i>Aspergillus oryzae</i>	Food Research International	손은영 (주저자)/ 서정아 (공동교신) 김영석 (공동교신)	109	캐나다	Elsvier	SCI	2018.05	
	12	A novel mitochondrial serine O-acetyltransferase, OpSAT1, pays a Critical role in sulfur metabolism in the thermotolerant methylotrophic yeast <i>Ogataea</i> <i>parapolymorpha</i>	Sci Rep	연지윤 유수진 (공동주저 자) 강현아 (교신저자)	8(1)	미국	Nature	SCI	2018.02	

나. 국내 및 국제학술회의 발표

			코드번	호	C	C-06-02			
No	회의명칭	발표자	Ę	발표일시	장소		국명		
1	2015년 한국미생물학회 국제학술대회	이동욱, 추진호 강현아	201	15.4.1518	창원		한국		
2	2015년 한국미생물생명공학회 국제학술대회	문혜연, 전선아 김정윤, 강현아	201	15.6.2426	경주		한국		
3	2015년 한국미생물연합 국제학술대회	이동욱, 추진호, 강현아	201	.5. 11. 5~6.	일산		한국		
4	2016년 한국미생물 · 생명공학회 동계심포지엄	강현아	2010	6. 1, 18~19	평창		한국		
5	2015년 한국미생물연합 국제학술대회	에밀리캐롤, 서정아	20	015. 11. 5	일산 킨텍	텍스	대한민국		
6	2015년 한국미생물연합 국제학술대회	서정아	20	015. 11. 5	일산 킨텍스		대한민국		
7	2015년 한국식품영양학회 동계학술대회	정지혜, 이나겸, 김영석	20	15. 12. 17	서울 케이호	서울 더 대한 케이호텔 대한			
8	제19회 사상성진균 학술분과 학술발표대회	서정아	20	016. 2. 23	천안 상록리	천안 상록리조트			
9	American Chemical Society (ACS)학회	정지혜, 정현, 김영석	2010	6. 3. 13-17	샌디에고		샌디에고		미국
10	13th European Conference on Fungal Genetics	에밀리캐롤, 서정아	20	16. 4. 3-6	파리		프랑스		
11	The 25th KOGO(KOrea Genome Organization) Annual Conference	추진호, 이동욱, 강현아	20.	16.9.5.~9.6	코엑스		한국		
12	14 th International Congress on Yeasts (ICY14)	추진호, 이동욱, 강현아	2016	6.9.11.~9.15	Awaji Yumebu	tai	일본		
13	2016 mBiome International Conference	손은영, 김영석	20	016.12.21	하이원리	조트	대한민국		
14	2016 한국미생물학회 연합	Emily carroll, 서정아	20	016.11.05	킨텍스	2	대한민국		
15	2017년 한국유전체학회 동계심포지엄	강현아	:	2017.2.10	비발디피	Ð	한국		
16	2017년 한국미생물연합 국제학술대회	추진호, 이동욱, 강현아	201	7.4.26-4.28	벡스코	<u>1</u>	한국		
17	2017 모델생체 연구회	이동욱, 추진호, 강현아	4	2017.10,	한양대 수련원		한국		
18	2017 mBiome International Conference	강현아	2017	7. 11.27 ~29	연세디	A	한국		
19	FoodOmics	고승현/김영석		2018.01	체세나		이탈리아		
20	FoodOmics	오수민/김영석		2018.01	체세나		이탈리아		
21	한국대사체학회	고승현/김영석		2018.04	서울 더케이 호텔		서울 더케이 호텔		대한민국
22	한국대사체학회	오수민/김영석		2018.04	서울 더케이 호텔	·]	대한민국		
23	한국대사체학회	박민경/김영석		2018.04	서울 더케이 호텔				

24	2018 NCY (Nonconventioanl Yeasts)	문혜연/이동욱/강현 아	2018.05,13~18	Rzeszow	폴란드
25	2018 NCY (Nonconventioanl Yeasts)	강현아	2018.05,13~18	Rzeszow	폴란드
26	2018 Metabolomics	박민경/김영석	2018.06	시애틀	미국

다. 지식재산권(특허, 실용신안, 의장, 디자인, 상표, 규격, 신품종, 프로그램)

	지식재산권 등 명칭		출원						
No	(건별 각각 기재)	국명	출원인	출원일	출원번호	등록인	등록일	등록번호	기여율
1	당화 및 발효능이 우수한 전통주 발효 효모 사카로마이콥시스 피브리게라 KJJ81 균주 및 이를 이용한 막걸리 제조방법	대한민국	숭실대산 단/중앙대 산단	2016. 06.02	10-2016-0 068705				100
2	전통주 양조 진핵미생물 Rhizopus oryzae SSU2603-06 균주 및 이의 용도	대한민국	숭실대산 단	2016. 06.30	10-2016-0 082213	숭실대 산단	2018. 05.23	10-18624 86	100
3	전통주 발효 효모 사카로마이콥시스 피브리게라 (Saccharomycopsis fibuligera) SSU2601-09 균주 및 이의 용도	대한민국	숭실대산 단	2016. 06.30	10-2016-0 082215	숭실대 산단	2018. 05.23	10-18624 87	100
4	전통주 양조 진핵미생물 Aspergillus oryzae SSU1102-08 균주 및 이의 용도	대한민국	숭실대산 단	2016. 06.30	10-2016-0 082216	숭실대 산단	2018. 05.23	10-18624 88	100

라. 전문연구 인력양성

No 1	분류	기준 년도	현 황										
				학위	귀별		성	별			지역별		
			박사	석사	학사	기타	남	여	수도권	충청권	영남권	호남권	기타
1	학사/석사/ 박사	2015	1	1	1		2	1	3				
2	학사/석사/ 박사	2016		2				2	2				
3	학사/석사/ 박사	2017	1	2	1		1	3	4				
4	학사/석사/ 박사	2018	1	6	1		2	6	8				

마. 기타

▶ 홍보: 막걸리 및 누룩 효모 지놈 해독 관련 홍보(4건)
: ① 한국경제 기사(2016년,11월 28일), ② KBS, 다음뉴스(2017년 1월 24일),
③ 과학동아 특집(2017년 4월호)
④ 2018년 포스트게놈다부처유전체사업 범부처 성과교류회 (2018 2월 6일)
▶ 교육지도(5건)
① 생활공학의 글로벌 트렌드와 미래 전망
- 2015년 6월 12일 13:00 ~ 15:00 (개포고등학교)
② 누룩 유래 유용 곰팡이 산업화 방안회의 (전통주) - 2회
- 2016년 8월 26일 10:00 ~ 12:00 / 2016년 12월 5일 14:00 ~ 16:00 (숭실대학교)
③ 누룩 유래 유용 곰팡이 산업화 방안회의 (화장품) - 2회
- 2016년 8월 24일 10:00~12:00 / 2016년 12월 9일 10:00~12:00 (중실대학교)
④ 생명공학 동아리 설립을 위한 멘토링
- 2017년 6월 21일 14:00 ~ 16:00 (숭실대학교)
⑤ 국제학술대회 및 정기학술대회, 차세대 여성과학기술인 역량강화 프로그램 런천 세미나
- 2017년 6월 29일 (부산 벡스코)
▶ 정책 활용(1건)
 ▶ 정책 활용(1건) : ①농업미생물산업 활성화 및 현장활용 증진을 위한 농업미생물산업발전협의체 발족
 ▶ 정책 활용(1건) : ①농업미생물산업 활성화 및 현장활용 증진을 위한 농업미생물산업발전협의체 발족 회의
 ▶ 정책 활용(1건) : ①농업미생물산업 활성화 및 현장활용 증진을 위한 농업미생물산업발전협의체 발족 회의 -2017년 6월 14일, 대전 유성호텔(3층 킹홀), 농림축산식품부/농촌진흥청 주관
 ▶ 정책 활용(1건) : ①농업미생물산업 활성화 및 현장활용 증진을 위한 농업미생물산업발전협의체 발족 회의
 정책 활용(1건) ①농업미생물산업 활성화 및 현장활용 증진을 위한 농업미생물산업발전협의체 발족 회의
 ▶ 정책 활용(1건) ①농업미생물산업 활성화 및 현장활용 증진을 위한 농업미생물산업발전협의체 발족 회의
 ▶ 정책 활용(1건) : ①농업미생물산업 활성화 및 현장활용 증진을 위한 농업미생물산업발전협의체 발족 회의 -2017년 6월 14일, 대전 유성호텔(3층 킹홀), 농림축산식품부/농촌진흥청 주관 ▶ 타연구활용:사업단 내 및 국제 타 연구팀과의 협력 연구(5건) : ① 전통누룩 미생물자원팀(한식연/국순당); 막걸리 효모 유전체 분석(GenBank 등록 및 홍보) ② 다중오믹스 정보 네트워크 분석팀(연세대학교): 공동논문 1편 게재(Sci. Report, 2017) ③ 메타유전체 분석팀(연세대학교): 누룩 시료 및 균주 분석 정보 제공
 ▶ 정책 활용(1건) : ①농업미생물산업 활성화 및 현장활용 증진을 위한 농업미생물산업발전협의체 발족 회의 -2017년 6월 14일, 대전 유성호텔(3층 킹홀), 농림축산식품부/농촌진흥청 주관 ▶ 타연구활용:사업단 내 및 국제 타 연구팀과의 협력 연구(5건) : ① 전통누룩 미생물자원팀(한식연/국순당); 막걸리 효모 유전체 분석(GenBank 등록 및 홍보) ② 다중오믹스 정보 네트워크 분석팀(연세대학교): 공동논문 1편 게재(Sci. Report, 2017) ③ 메타유전체 분석팀(연세대학교): 누룩 시료 및 균주 분석 정보 제공 ④ 기능대사체 해석(이화여자대학교): 막걸리 시료 제공 및 효소 활성 측정 방법 제공
 ▶ 정책 활용(1건) : ①농업미생물산업 활성화 및 현장활용 증진을 위한 농업미생물산업발전협의체 발족 회의 -2017년 6월 14일, 대전 유성호텔(3층 킹홀), 농림축산식품부/농촌진흥청 주관 ▶ 타연구활용:사업단 내 및 국제 타 연구팀과의 협력 연구(5건) : ① 전통누룩 미생물자원팀(한식연/국순당); 막걸리 효모 유전체 분석(GenBank 등록 및 홍보) ② 다중오믹스 정보 네트워크 분석팀(연세대학교): 공동논문 1편 게재(Sci. Report, 2017) ③ 메타유전체 분석팀(연세대학교): 누룩 시료 및 균주 분석 정보 제공 ④ 기능대사체 해석(이화여자대학교): 막걸리 시료 제공 및 효소 활성 측정 방법 제공 ⑤ 일본 효모 스트레스 연구팀(Nara Institute of Science and Technology): 공동논문 1편
 ▶ 정책 활용(1건) : ①농업미생물산업 활성화 및 현장활용 증진을 위한 농업미생물산업발전협의체 발족 회의 -2017년 6월 14일, 대전 유성호텔(3층 킹홀), 농림축산식품부/농촌진흥청 주관 ▶ 타연구활용:사업단 내 및 국제 타 연구팀과의 협력 연구(5건) : ① 전통누룩 미생물자원팀(한식연/국순당); 막걸리 효모 유전체 분석(GenBank 등록 및 홍보) ② 다중오믹스 정보 네트워크 분석팀(연세대학교): 공동논문 1편 게재(Sci. Report, 2017) ③ 메타유전체 분석팀(연세대학교): 누룩 시료 및 균주 분석 정보 제공 ④ 기능대사체 해석(이화여자대학교): 막걸리 시료 제공 및 효소 활성 측정 방법 제공 ⑤ 일본 효모 스트레스 연구팀(Nara Institute of Science and Technology): 공동논문 1편 게재(Sci. Report, 2018)

3장. 목표 달성도 및 관련 분야 기여도

3.1. 목표 달성도

1절. 최종 목표 달성도

가. 최종 목표

전통 주류 진핵 미생물의 참조유전체 및 오믹스 정보 분석을 통한 유용 유전자 발굴과 활용기술 개발을 통한 산업화 지원
참조유전체 분석 10 종 이상(사상성 진균 2건, 효모 균주 8건 이상 포함) 및 재해독 유전 체 분석(사상성 진균 2종 포함) 10 건 내외
생산된 유용 유전정보의 NABIC 및 KOBIC 등록 10건 이상
산업체 균주에 대한 유전체 분석 및 유전체 정보 기반의 현장 애로기술 개발을 통한 산업화 지원 2건
국제 SCI급 논문 10 편 이상(mBio 포함 상위 10% 논문 2건 이상 주저자 발표 포함)

나. 세부연구목표 및 달성도

연구개발 최종 목표	세부연구목표	달성도 (%)
국내 전통주	전통주 산업의 활용도가 높은 효모 및 사상성 곰팡이 유전 자원 수집 및 보존	100
표군와 옷 고급화를 위한 전통주 당화	전통주 당화 관련 효모(8종) 및 사상성 진균(3종) 대상의 고 품질 참조유전체 해독 및 조립	100
효모 및 사상성 곰팡이 유전체	양조용 효모 및 사상성 진균의 전사체/대사체 분석을 통한 유전체, 당화·발효조건, 대사 활성과의 상관관계 규명	100
정보 확보를 통한 유용 으저가 바구 미	비교유전체 분석을 통한 당화 및 풍미 관련 유용 유전자 발 굴 및 산업화 지원	100
파전시 널릴 옷 활용 기술 개발	발효에 의한 대사체 프로파일링 기반의 국내 전통주의 품질 지표 성분 선정	100

2. 연차별 목표 달성도

가. 1차년도

구분 (연도)	세부과제명	세부연구목표	연구개발 수행내용	달성도 (%)
		전통주관련 community 분석 및 참조유전체 분석 효모 균주 선정	- 당화 및 발효능 우수 효모 후보 균주들 중 최종 참조유전체 분석 균주 2종을 선정하였음.	100
	1세부: 농업유용 호묘	참조유전체 분석 효모 균주들의 성장 및 생리활성 비교분석	 다양한 탄소원 및 황원에서 성장 능을 비교 분석하였으며, 4 가지 배양조건에서 RNA-seq 분석함 다양한 배지 및 배양 시간에 따른 효모의 균체 모양 및 핵 염색 후 현미경으로 분석하였음 	100
	참조유전체 및 오믹스 분석연구	핵심 효모 균주 ' <i>Saccharomycopsis</i> 2종에 대한 참조유전체 서열 해독	 차세대 염기서열 분석기법을 이용 한 whole-genome <i>de novo</i> sequencing 및 whole-genome <i>de</i> <i>novo</i> sequence assembly를 수행함. RNA-seq 정보가 반영된 95% 이상 의 유전자 세트를 구축함 	100
1 차 년 도		발효숙성 관련 유전자 선별	 유전체 정보 기반의 계통분석 수 행하여 진화적 관계 분석함 비교 유전체 분석을 통해 발효 숙 성 관련 주요 유전자군 확보 하고 상동성 비교 분석을 수행함. 	100
도 (2014)	전통주 당화 · 발효 미생물(사상성 진권 효모)의 유전자원 수집, DB 구축 및 보존 1협동: 양조특성 분석 등을 농업유용 통한 우수 사상성 진핵미생물 군주 곰팡이의 선발	전통주 당화 · 발효 미생물(사상성 진균, 효모)의 유전자원 수집, DB 구축 및 보존	 혼합미생물 발효제(누룩 또는 기타) 로부터 미생물군집 분석 지역별 대표 전통주에서의 발효 미 생물 분포 조사 각 시료로부터 단일균주 분리 및 종 동정 및 유용 미생물 DB 구축 	100
		양조특성 분석 등을 통한 우수 진핵미생물 균주 선발	 1차 스크리닝: 당화력, 단백질 분해 력, 유기산 생성능 조사 2·3차 스크리닝: 발효 프로파일, 유기산조성, 향미성분 조성 등에 대 한 대사체 분석 	100
	접조규전제 및 오믹스 분석연구		- 효모 휘발성 발효 대사체 추출법 및 분석법 확립	100
	분석연구 · · · · · · · · · · · · · · · · · · ·		- 비휘발성 발효 대사체 (당, 당알콜, 유기산, 아미노산 등) 전처리, 추출 법 및 분석법 확립: 유도체화, GC-TOFMS 등	100
			- 데이터 프라세싱 및 다변량 통계기 법 확립	100

나. 2차년도

구분 (연도)	세부과제명	세부연구목표	연구개발 수행내용	달성도 (%)	
		참조유전체 정보 기반의 대사 경로 재구성 및 비교 분석	- KEGG 데이터 베이스, SGD 데이터 베이스, 유전체의 유전자 분석 결과 를 종합하여 대사 경로 재구성	100	
2	1세부: 농업유용	전통주 발효 숙성 모사과정 동안의 효모 균주의 전사체 분석	 탄소원 및 황원 제한 조건에서 탄소 대사과정, 황 대사 경로 관 련 유전자들의 발현 양상을 RNA-Seq 기반 전사체 프로파일 을 확보하여 비교 분석함. 탄소원 및 황 대사 조절 전사인 자 유전자군을 확보함 	100	
	효모 참조유전체 및 오믹스 분석연구	효모 - 제 1 협동연구팀에서 발굴한 유전체 상성 곰팡이 '1종' 및 식력 오믹스 핵심 당화 곰팡이 여연구 균주 및 전통주류 우수 효모 참조유전체 으로whole-genome de 서열 해독 으로whole-genome de 위한 생리적 특징 분석 위한 생리적 특징 분석	 제 1 협동연구팀에서 발굴한 사 상성 곰팡이 '1종' 및 식품연 구원(조기성과연구팀)에서 발굴한 전통 주류 효모 '2종'를 대상 으로whole-genome <i>de novo</i> sequencing 및 assembly를 수행 비교 유전체 분석 기반 확보를 위한 생리적 특징 분석 	100	
차 년 도 (2015)			참조유전체 서열 및 RNS-Seq 정보 기반 주석화	- RNA-seq 정보가 반영된 gene Set 구축 및 해석 - 비교 유전체 분석 기반 균주 특 이적 유용유전자 발굴	100
	1협동: 농업유용 사상성 곰팡이의 참조유전체 및 오믹스 분석연구	신규 전통주 미생물 유전자원 수집, DB 구축 및 보존	 각 시료로부터 단일균주 분리 및 종(species) 동정 유용 미생물 자원의 특성분석 포함 한 자원 DB 구축 	100	
		1협동: 참조 농업유용 사건 사상성 생 곰팡이의	참조유전체 분석 대상 사상성 진균 성장 및 생리활성 비교분석	 스크리닝과 대사체분석을 통하여 선별된 미생물의 추가 특성 분석(에 스테라제, 리파아제 등) 양조특성 분석: 발효 프로파일, 유 기산조성, 향미성분 조성 등에 대한 대사체 분석 	100
		<i>A. oryzae, Rhizopus,</i> <i>Mucor</i> 의 비교유전체 분석을 통한 유용유 전자 발굴	- 비교유전체 분석을 통한 유용 유전 자 발굴	100	
		전통주의 발효 유래 휘발성/비휘발성 대사체 프로파일링	 GC-MS를 이용한 휘발성 대사체 분 석 GC-TOF/MS를 이용한 비휘발성 발 효 대사체 분석 	100	

다. 3차년도

구분 (연도)	세부과제명	세부연구목표	연구개발 수행내용	달성도 (%)	
		참조유전체 서열 - 당화능을 보이는 신규 누룩 효 참조유전체 서열 모 균주 '2종' 및 기타 농업유 해독을 위한 신규 용 미생물 "1종" 선정 누룩 효모 균주 선정 및 유전체 분석 및 유전체 분석 - Whole-genome de novo sequencing 및 assembly		100	
	1세부: 농업유용 효모	유전체, 전사체, 대사체 정보 활용 주요 대사경로 관련 유전자 조절 네트워크 분석	 탄소원 경로 재구성 및 검증 <i>in silico</i> 분석 기반 당화/풍미 관 련 핵심유전자 후보 탐색 전사체 프로파일 분석 및 DEG set 선정 	100	
	참조유전체 - 조기성과 연구팀에서 제 및 오믹스 결리 효모 '2종'에 대한 분석연구 막걸리 우수 효모 체 심화 분석 및 검증 참조유전체 해독 및 - RNA-Seq 정보가 반영된 정보 분석 고도화 - 비교 유전체 분석 기반 위한 생리적 특징 분석	 조기성과 연구팀에서 제공한 막 걸리 효모 '2종'에 대한 유전 체 심화 분석 및 검증 RNA-Seq 정보가 반영된 Gene Set 구축 및 해석 비교 유전체 분석 기반 확보를 위한 생리적 특징 분석 	100		
3 차 년 도 (2016)		<i>S. fibuligera</i> 참조유전체 기반 유용 유전자 기능 검증	이한 생리적 특징 분석 위한 생리적 특징 분석 - Cellulose 분해 효소 유전자 BGL 발현 및 활성 분석 시스템 기반 유용 - 항미 생합성효소 유전자 ATF 발 현 및 기능 분석 시스템 구축	100	
			신규 전통주 미생물 유전자원 수집, DB 구축 및 보존	 각 시료로부터 단일균주 분리 및 종(species) 동정 유용 미생물 자원의 특성분석 포함한 자원 DB 구축 	100
	1협동: 농업유용 사상성	누룩 유래 유용 사상성 진균의 참조 유전체 Genome 분석	- 비교유전체 분석을 통한 유용 유전자 발굴	100	
	곰팡이의 참조유전체 및 오믹스	누룩 유래 사상성 진 군의 유용 유전자 발	- 누룩 유래 <i>A. oryzae / A. flavus</i> 의 아플라톡신 생합성 유전자 분석 및 생성능 조사	100	
	문석연구	굴 및 기능 연구	 유용 유전자 발굴 및 기능 연구를 위한 돌연변이 균주 선발 	100	
		전통주의 발효 유래 휘발성/비휘발성 대사체 프로파일링	 GC-MS를 이용한 휘발성 대사체 분석 GC-TOF/MS를 이용한 비휘발성 발효 대사체 분석 	100	

라. 4차년도

구분 (연도)	세부과제명	세부연구목표	연구개발 수행내용	달성도 (%)
		당화/향미 관련 유용 유전자 발현 조절 네트워크와 기능 비교분석	 전사체 기반 알콜지수 및 풍미 주요 대사경로 관련 유전자 조절 네트워크 분석 재조합 단백질 기반 기능 분석 을 통한 유용 신규 고성능 효소 발굴 	100
	1세부: 농업유용 효모 차조유저체	전통 막걸리 효모 참조유전체 기반 비교 유전체	 막걸리, 와인, 사케 효모를 포함 한 비교유전체학을 통한 진화적 관계 분석 유전체 구조 및 유전적 변이 분석 	100
	및 오믹스 분석연구	효모 종균 개발용 유전자 조작 기술 개발	- 산업용 막걸리 효모 균주 대상 의 CRISPR/Cas9 기반 유전자 Knock-out 시스템 구축	100
	신규 누룩 효모에 - Hy 대한 참조유전체 기반 Hy 비교 유전체 및 오믹스 분석 - 내 조건	 Hyphopichia burtonii KJJ43과 Hyphopichia pseudoburtonii KJS14 유전체 구조 및 정보 비교 분석 내염성 기작 확인을 위한 고염 조건에서의 전사체 분석 	100	
4 차 년		신규 누룩 효모 <i>Saccharomycopsis</i> <i>malanga</i> 참조유전체 분석 및 고품질 주석	도신에지의 신자제 문적 한규 누룩 효모 - RNA-seq 정보 기반 주석 <i>iccharomycopsis</i> - 유전체 구조분석 및 유전자 세트 <i>langa</i> 참조유전체 구축 및 고품질 주석 -	100
(2017)		신규 전통주 미생물 유전자원 수집, DB 구축 및 보존	 유용 미생물 자원의 특성분석 포함한 자원 DB 구축 우수 양조 특성 균주의 산업화 방안 모색 	100
	1협동 : 농업유용	국내 누룩 유래 사상성 진균의 참조유전체 해독 및 비교유전체 분석	- 우수 당화·발효 균주의 유전체 해독 및 비교유전체 분석을 통한 유용 유전자 발굴	100
	사상성 곰팡이의 참조유전체 민 오미스	누룩 유래 사상성 진균의 유용 유전자	- 누룩 유래 <i>A. oryzae / A. flavus</i> 의 아플라톡신 생합성 유전자 분석 및 생성능 조사	100
	≍ ㅗㄱㅡ 분석연구	발굴 및 기능 연구	- 유용 유전자 발굴 및 기능 연구를 위한 돌연변이 균주 선발	100
		유용 미생물 유래의 대사체 분석을 통한 품질지표 성분 발굴	- ANOVA, PCA, PLS-DA 등의 다양한 통계기법을 이용한 주요 품질지표 성분 발굴	100

4. 연구결과의 활용 계획

4.1. 활용방안

- 본 연구에서 확보된 주류 효모 및 사상성 곰팡이 유래의 유용 유전자 및 산업적 활용 개발
 기술은 곧바로 지적 재산권 취득과 산업화로 연결됨
- 2) 이는 국내 기업으로 기술이전 또는 국내 기업과의 협동 연구 수행으로 확대 연계되어 국내 고유 전통주의 세계시장 진출에 필요한 고품질의 양조 공정 개발에 활용될 것임
- 3) 참조 표준 유전체 해독 정보를 토대로 한국 전통주 제조 및 개선을 위한 과학적 근거를 제시하고, 핵심 균주들의 유전적 다양성 및 기능체 연구를 위한 기반 마련
- 4) 유전자원의 체계적 관리: 진균 유전체 및 유전적 다양성 정보를 근거로 국내/해외 유전자 원을 체계적으로 분류할 수 있는 가이드라인을 제시하고 유전자원에 대한 권리보호에 도 활용 가능

4.2. 기대성과

1) 기술적 측면

- 복합 균주로 구성된 한국 전통주 발효 과학에 대한 이해를 통한 우수 형질을 가진 양조
 종균 개발 기반 확보
- 종균 정체성 확립을 통한 차별화되고 독창적인 풍미를 나타내는 전통주 양조에 적용 가
 능한 전통 누룩 유래 곰팡이 및 효모 유전자원을 확보
- 선진국과의 오믹스 연구기술 격차를 줄이고 오믹스 관련 연구전문가의 양성에 기여

2) 경제·산업적 측면

- 지역 또는 양조업체의 특성이 발휘될 수 있도록 차별화된 상품 개발 및 이를 통한 고급화· 다양한 상품 포트폴리오 구체화를 통하여 저변 확대에 기여
- 전통주 산업의 질적 개선과 저변 확대가 가능하며 그 결과로 1차 산업 및 3차 산업 등
 전후방 산업의 활성화에도 기여할 수 있는 잠재력을 확보
- 장기적으로는 식품산업의 질 향상, 기능성식품 및 제약산업 등 다양한 국가차원의 바이오
 산업에 기여할 수 있는 핵심소재 개발에 크게 기여할 것임

4.3. 활용 계획

1) 특허분석 측면

기존 특허는 "우수한 당화 및 발효능을 지닌 균주 발굴" 분야에 치중되어 있으므로, 본 연 구과제에서는 유전체 및 오믹스 정보를 확보하고 이를 기반으로 유용 유전자를 발굴하고 활용기술을 개발하는 방향으로 연구를 추진하여 전통주 양조 우수 균주를 다수 분리하여 그 특성 및 이용 방법으로 3건의 특허 등록을 완료하였으며, "전통 양조 진핵 미생물 유 래의 유용 유전자 및 활용 기술"에 관한 특허 등을 출원하였으며 등록할 예정임.
2) 논문분석 측면

본 연구과제에서는 한국 고유의 전통주 양조과정에 핵심적 역할을 수행하는 효모와 사상성 진군을 발굴하고 유전체 염기서열 분석 및 통합 오믹스 정보 분석 방향으로 연구를 추진하 였음. 국내 및 해외 누룩 유래 균주의 특성 및 분포도 조사 논문을 게재하였으며, 해외 산업 균주와의 비교 유전체를 통한 국내 균주의우수 특성 관련 유전자 탐색 논문을 게재할 예정 임.

3) 제품 및 시장분석 측면

가. 본 연구과제에서는 새로운 접근방식, 즉 최첨단 생명공학 기술인 유전체학(참조유전체), 대사체학, 전사체학 등 오믹스 분석기술을 접목하여 전통 발효주의 과학화, 표준화, 고급화 방향으로 연구를 추진하여 **기능성이 과학적으로 입중된 품질지표성분을 포함한 신개념의** 글로벌 한국 전통주를 생산토록 지원할 계획

나. 본 과제에서는 전통 누룩유래 향미생성 우수 미생물 (효모/곰팡이)를 대상으로 양조 특 성에 중요한 조건인 pH, 온도, 시간에 따른 휘발성/비휘발성 (당, 당알코올, 아미노산, 유기 산 등) 대사체 프로파일링의 맞춤식 최적 분석법을 확립하고 다양한 통계기법을 활용하여 발효 미생물의 품질 지표 발굴 및 관리에 대한 기반 기술을 확보함.

다. 전체 정보와 대사체적 해석기법의 통합 연구를 통해 다양한 배양 조건에서의 유용 미 생물내 복잡한 발효 시스템에 대한 총체적인 연구의 원천 기술을 확보하였을 뿐 아니라, 국내 발효식품의 표준화 및 품질관리의 원천 기술로 활용될 수 있음

붙임. 참고문헌

- Adams, J. H. "Analysis of the nonvolatile oxidation products of polypropylene I. Thermal oxidation." Journal of Polymer Science Part A: Polymer Chemistry 8.5 (1970): 1077-1090.
- Albers, E., Larsson, C., Liden, G., Niklasson, C., and Gustafsson, L. (1996). Influence of the nitrogen source on *Saccharomyces cerevisiae* anaerobic growth and product formation. Applied and Environmental Microbiology, 62(9), 3187-3195.
- An et al., (2010) China's fungal genomics initiative : a whitepaper. Mycology 1:1-8
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of molecular biology. 1990;215(3):403-410.
- Ashida, S., Ichkawa, E., Suginami, K., and Imayasu, S. (1987). Isolation and application of mutants producing sufficient isoamyl acetate, a sake flavor component. Agricultural and Biological Chemistry, 51(8), 2061-2065.
- Baek et al. (2010) Screening and charactrization of useful fungi for brewing from commercial Nuruk in Chungcheong provinces Kor J Microbiol Biotechnol 38:373-378
- Bayram, Ö., Krappmann, S., Ni, M., Bok, J. W., Helmstaedt, K., Valerius, O., & Braus, G. H. (2008). VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science, 320(5882), 1504-1506
- Beller, H, R., Lee, T, S., and Katz, L. (2015). Natural products as biofuels and bio-based chemicals: Fatty acids and isoprenoids. Natural Product Reports, 32(10), 1508-1526.
- Berlin, K., Koren, S., Chin, C. S., Drake, J. P., Landolin, J. M., & Phillippy, A. M. (2015). Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. *Nature biotechnology*, *33*(6), 623
- Blin-Perrin, C., Molle, D., Dufosse, L., Le-Quere, J, L., Viel, C., Mauvais, G., and Feron, G. (2000). Metabolism of ricinoleic acid into gamma-decalactone: Beta-oxidation and long chain acyl intermediates of ricinoleic acid in the genus sporidiobolus sp. FEMS Microbiology Letters, 188(1), 69-74.
- Bok, J. W., & Keller, N. P. (2004). LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryotic cell, 3(2), 527-535
- Borneman et al., (2008) Comparative genome analysis of a *Saccharomyces cerevisiae* wine strain FEMS Yeast Res 8:1185–1195
- Casatellari, L., Magrini, A., Passarelli, P., Zambonelli, C. (1995). Effect of must fermentation temperature on minor products formed by cryo and non-cryotolerant *Saccharomyces cerevisiae* strains. Italian Journal of Food Sciences, 7(2), 125-132.
- Cebollero et al., (2007) Transgenic wine yeast technology comes of age: is it time for transgenic wine? Biotechnol Lett 29:191–200
- Celinska, E., Olkowicz, M., and Grajek, W. (2015). L-phenylalanine catabolism and 2-phenylethanol synthesis in *yarrowia lipolytica*-mapping molecular identities through whole-proteome quantitative mass spectrometry analysis. FEMS Yeast Research, 15(5), fov041.
- Chen, S., Xu, Y., and Qian, M. C. (2013). Aroma characterization of chines rice wine by gas chromatography-olfactometry, chemical quantitative analysis, and aroma reconstitution. Journal of Agricultural and Food Chemistry, 61, 11295-11302.
- Chi, Zhenming, et al. "Saccharomycopsis fibuligera and its applications in biotechnology."

Biotechnology advances 27.4 (2009): 423-431.

Cho YS, Hu L, Hou H, Lee H, Xu J, et al. (2013) The tiger genome and comparative analysis with lion and snow leopard genomes. Nat Commun. 4:2433

Chung, et al., (2012) Volatile hazardous compounds in alcoholic beverages JABC 55:141-148

- Connor, M. R., & Liao, J. C. (2008). Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Applied and Environmental Microbiology, 74(18), 5769-5775.
- Connor, M. R., Cann, A. F., & Liao, J. C. (2010). 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Applied Microbiology and Biotechnology, 86(4), 1155-1164.
- Coulter, A., Godden, P. W., Pretorius, I. S. (2004). Succinic acid-how is it formed, what is its effect on titratable acidity, and what factors influence its concentration in wine? Wine Industry Journal, 19(6), 16-25.
- Curic, M., Stuer-Lauridsen, B., Renault, P., and Nilsson, D. (1999). A general method for selection of α-acetolactate decarboxylase-deficient *Lactococcus lactis* mutants to improve diacetyl formation. Applied and Environmental Microbiology, 65(3), 1202-1206.
- Dellomonaco, D., Rivera, C., Campbell, P., and Gonzalez, R. (2010). Engineered Respiro-Fermentative Metabolism for the Production of Biofuels and Biochemicals from Fatty Acid-Rich Feedstocks. Applied and Environmental Microbiology, 76(15), 5067-5078.

Etievant, P. X. "Wine." Volatile compounds in foods and beverages 422 (1991): 483-546.

- Ebeler, Susan E. "Analytical chemistry: Unlocking the secrets of wine flavor." Food reviews international 17.1 (2001): 45-64.
- Elbein, A. D., Pan, Y. T., Pastuszak, I., Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology, 13(4), 17R-27R
- Etschmann, M.M.W., Bluemke, W., Sell, D., Schrader, J. (2002). Biotechnological production of 2-phenylethanol. Applied Microbiology and Biotechnology, 59 (1), 1-8
- Foster, J., and Nakata, P, A. (2014). An oxalyl-CoA synthetase is important for oxalate metabolism in *Saccharomyces cerevisiae.* FEBS Letters, 588(1), 160-166.
- Galagan et al., (2003) The genome sequence of the filamentous fungus *Neurospora crassa*. Nature 422:859-868
- Galagan et al., (2005) Sequencing of *Aspergillus nidulans* and comparative analysis with *A. fumigatus* and *A. oryzae* Nature 438:1105-1115
- Geiser, D. M., Pitt, J. I., & Taylor, J. W. (1998). Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proceedings of the National Academy of Sciences, 95(1), 388-393.
- Goffeau et al., (1996) Life with 6000 genes Science 274:546, 563-567

Grigoriev et al., (2011) Fueling the future with fungal genomics Mycology 2:192-209

- Gueguen, Virginie, et al. "Fatty acid and lipoic acid biosynthesis in higher plant mitochondria." Journal of Biological Chemistry275.7 (2000): 5016-5025.
- Haffner, Thomas, and Roland Tressl. "Biosynthesis of (R)-γ-decanolactone in the yeast Sporobolomyces odorus." Journal of agricultural and food chemistry 44.5 (1996): 1218-1223.
- Hata et al., (1991) Nucleotide sequence and expression of the glucoamylase encoding gene(galA) from *Aspergillus oryzae* Gene 108:145-150
- Hazelwood, L. A., Daran, J. M., van Maris, A. J., Pronk, J. T., Dickinson, J. R. (2008). The ehrlich

pathway for fusel alcohol production: A century of research on saccharomyces cerevisiae metabolism. Applied and Environmental Microbiology, 74(8), 2259-2266.

- Hohn et al., (1998) Characterization of the gene cluster for biosynthesis of macrocyclic trichothecene in *Myrothecium roridium* Mol Gen Genet 257:421-432
- Hong et al., (2009) Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics J Agric Food Chem 57:1481–1490
- Jia, X., Liu, Y., and Han, Y. (2017). A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate. Scientific Reports,7(1),4333.
- Jung, HY., Lee, SJ., Lim, JH., Kim, BK., and Park, KJ. (2014). Chemical and sensory profiles of *makgeolli*, Korean commercial rice wine, from descriptive, chemical, and volatile compound analyses. Food Chemistry, 152, 624-632.
- Kanauchi, M., Milet, J., and Bamforth, C, W. (2009). Oxalate and oxalate oxidase in malt. Journal of the Institute of Brewing, 115(3), 232-237.
- Kang, B. S., Lee, J. E., & Park, H. J. (2014). Qualitative and Quantitative Prediction of Volatile Compounds from Initial Amino Acid Profiles in Korean Rice Wine (makgeolli) Model. Journal of Food Science, 79(6), C1106-C1116
- Kang, B. S., Lee, J. E., Park, H. J. (2014). Electronic tongue-based discrimination of Korean rice wines (*makgeolli*) including prediction of sensory evaluation and instrumental measurements. Food Chemistry, 151, 317-323.
- Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., and Piechulla, B. (2009). Bacterial volatiles and their action potential. Applied Microbiology and Biotechnology, 81(6), 1001-1012.
- Keller et al., (2005) Fungal secondary metabolism-from biochemistry to genomics. Nat Rev Microbiol 3:937-947
- Kim, HR., Kim JH., Ahn BH, and Bai D. (2014). Metabolite profiling during fermentation of makgeolli by the wild yeast strain *Saccharomyces cerevisiae* y98-5. Mycobiology, 42(4), 353-360.
- Kim HR, Jo SJ, Lee SJ, et al. Physicochemical and sensory characterization of a Korean traditional rice wine prepared from different ingredients. Korean J Food Sci Technol, 2008;40:551-557.
- Kim HR, Kim JH, Bae, DH, et al. Characterization of yakju brewed from glutinous rice and wild-type yeast strains isolated from nuruks. J Microbiol Biotechnol, 2010;20:1702-172
- Kim et al., (2010) GC-MS based metabolite profiling of rice *Koji* fermentation by various fungi Biosci Biotechnol Biochem 74:2267-72
- Kim et al., (2011) Identification and characterization of useful fungi with alpha-amylase activity from the Korean traditional Nuruk. Mycobiology 39;278-282
- Kim et al., (2012) Manufacture of *koji* using fungi isolation from *Nuruk* and identification of *koji* moldes. The Korean J Mycology 40:187-190
- Kim et al., (2013) Evaluation and optimization of metabolome sample preparation methods for *Saccharomyces cerevisiae*. Anal. Chem. 5:2169–2176
- Kiyoshi Y. Sake: Production and flavor. Food Rev Int. 1999;15:83-107.
- Koning et al., (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123.
- Korpi, A., Järnberg, J., and Pasanen, A, L. (2009). Microbial volatile organic compounds. Critical Reviews in Toxicology, 39(2), 139-193.
- Lambrechts MG, Pretorius IS. Yeast and its importance to wine aroma: a review. South African J

Enol Vitic. 2000;21:97-129.

- Landaud, S., Latrille, E., Corrieu, G. (2001). Top pressuure and temperature control the fusel alcohol/ester ratio through yeast growth in beer fermentation. Journal of The Institute of Brewing. 107(2). 107-117.Lee, C. (2001). Changes in n-hexanal content of peanut milk fermented with lactic acid bacteria. Food Science and Biotechnology, 10(4), 387-390.
- Lee JE (2010) Studies on the characterization of malolactic fermentative behaviors of lactic acid bacteria in grape wine through metabolomic approach Graduate School of Biotechnology, Korea University, Doctor thesis.
- Lee et al., (2013) Comparative volatile profiles in soy sauce according to inoculated microorganisms Biosci Biotechnol Biochem 77:2192-200
- Lee et al. (2012) Inhibitory effects of ethanol extracts from Nuruk on oxidative stress, melanogenesis, and photo-aging Mycobiology 40:117-123
- Li, Wei, et al. "Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation." Applied microbiology and biotechnology (2018): 1-13.
- Lilly, M., Lambrechts, M. G., and Pretorius, I. S. (2000). Effect of increased yeast alcohol acetyl transferase activity of flavor profiles of wine and distillates. Applied and Environmental Microbiology, 66, 744-753.
- Lim et al., (2002) Separation of as taxanthin from red yeast Phaffia rhodozyma by supercritical carbon dioxide extraction Biochem Eng J 11:181–187
- Lomakin, I, B., Xiong, Y., and Steitz, T, A. (2007). The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell, 129(2), 319-332.
- Londono-Hernandez, L., Ramirez-Toro, C., Ruiz, H. A., Ascacio-Valdes, J. A., Aguilar-Gonzalez, M. A., Rodrigues-Herrera, R., Aguilar, C. N. (2017) *Rhizopus oryzae* – Ancient microbial resource with importance in modern food industry. International Journal of Food Microbiology, 257, 110-127.
- Luo, T., Fan, W., and Xu, Y. (2008). Characterization of volatile and semi-volatile compounds in Chinese rice wines by headspace solid phase microextraction followed by gas chromatographymass spectrometry. Journal of the Institute of Brewing, 114(2), 172-179.
- Machida et al., (2005) Genome sequencing and analysis of Aspergillus oryzae Nature 438:22-29
- Maeda et al., (2004) Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags Appl Microbiol Biotechnol 65:74-83
- Mas et al., (2007) A comparison of direct infusion MS and GC-MS for metabolic footprinting of yeast mutants Biotechnol Bioeng 96: 1014–1022
- Machida et al., (2005) Genome sequencing and analysis of Aspergillus oryzae Nature 438:22-29
- Maeda et al., (2004) Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags Appl Microbiol Biotechnol 65:74-83
- Mas et al., (2007) A comparison of direct infusion MS and GC-MS for metabolic footprinting of yeast mutants Biotechnol Bioeng 96: 1014–1022
- Miao, L., Kwong, T. F. N., Qian, P. Y. (2006). Effects of culture conditions on mycelial growth, antibacterial activity, and metabolites profiles of the marine-derived fungus *Arthrinium* c.f. saccharicola. Applied Microbiology and Biotechnology, 72, 1063-1073.

- Mo, X., Fan, W., and Xu, Y. (2009). Changes in volatile compounds of Chinese rice wine wheat Qu during fermentation and storage. The Institute of Brewing & Distilling, 115(4), 300-307.
- Monsoor, M. A., Proctor, A. (2006). Volatile component analysis of commercially milled head and broken rice. Journal of Food Science, 69(8), C632-636.
- Mukisa, I. M. and Kiwanuka, B. J. (2018), Traditional processing, composition, microbial quality and sensory characteristics of Eshabwe (ghee sauce). International Journal of Dairy Technology, 71, 149-157.
- Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, et al. (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 22;438(7071):1151-6
- Pagot, Y., Clainche, A, Le., Nicaud, J, M., Wache, Y., and Belin, J, M. (1998). Peroxisomal β-oxidation activities and γ-decalactone production by the yeast yarrowia lipolytica. Applied Microbiology and Biotechnology,49(3), 295-300.
- Park, J., Song, S. H., Choi, J. B., Kim, Y., Kwon, S., and Park, Y. (2014). Physicochemical properties of korean rice wine (makgeolli) fermented using yeasts isolated from korean traditional *nuruk*, a starter culture. Food Science and Biotechnology, 23(5),1577-1585.
- Park, H. S., & Yu, J. H. (2012). Genetic control of asexual sporulation in filamentous fungi. Current opinion in microbiology, 15(6), 669-677.
- Peinado, R. A., Moreno, J., Bueno, J. E., Moreno, J. A., and Mauricio, J. c. (2004). Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chemistry, 84, 585-590.
- Pereira et al., (2007) 1H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages J Int Sci Vigne Vin 41:103-109
- Pizarro et al., (2007) A systems biology perspective of wine fermentations Yeast 24:977-991
- Pogori, N., Xu, Y., and Cheikhyoussef, A. (2007). Potential aspects of lipases obtained from *Rhizopus* fungi. Research Journal of Microbiology, 2(2), 101-116.
- Pongsuwan et al., (2008a) High-throughput technique for comprehensive analysis of Japanese green tea quality assessment using ultra-performance liquid chromatography with time-of-flight mass spectrometry (UPLC/TOF MS) J Agric Food Chem 56:10705–10708
- Pongsuwan et al., (2008b) Quality prediction of Japanese green tea using pyrolyzer coupled GC/MS based metabolic fingerprinting J Agric Food Chem 56:744–750
- Ponnusamy, K., Lee, S., Lee, C. H. (2013). Time-dependent correlation of the microbial community and the metabolomics of traditional barley *nuruk* starter fermentation. Bioscience, Biotechnology, and Biochemistry, 77, 683-690.
- Proctor et al., (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in *Gibberella fujikuroi* Fugal Genet Biol 38:237-249
- Rajini, K, S., Aparna, P., Sasikala, Ch., and Ramana, Ch, V. (2011). Microbial metabolism of pyrazines. Critical Reviews in Microbiology, 37(2), 99-112.
- Ravasio, D., Wendland, J., and Walther, A. (2014). Major contribution of the ehrlich pathway for 2-phenylethanol/rose flavor production in ashbya gossypii. FEMS Yeast Research, 14(6), 833-844.
- Ravasio, D., Wendland, J., and Walther, A. (2014). Major contribution of the Ehrlich pathway for 2-phenylethanol/rose flavor production in *Ashbya gossypii*. Federation of European Microbiological Societies, 14, 833-844.
- Razak, C. N. A., Musani, R., Basri, M., and Salleh, A. B. (1999). Characterization of membrane-bound

lipase from a thermophilic *Rhizopus oryzae* isolated from palm oil mill effluent. Journal of the American Oil Chemists' Society, 76(2), 171-174.

- Romero-Guido, Cynthia, et al. "Biochemistry of lactone formation in yeast and fungi and its utilisation for the production of flavour and fragrance compounds." Applied microbiology and biotechnology 89.3 (2011): 535-547.
- Schnürer, J., Olsson, J., Börjesson, T. (1999). Fungal volatiles as indicators of food and feeds spoilage. Fungal Genetics and Biology, 27(2–3), 209–217.
- Sinha, Nirmal. Handbook of food products manufacturing, 2 volume set. John Wiley & Sons, 2007,1, 180-188, 523-538.
- Shimazu, Y., and Watanabe, M. (1981). Effects of yeast strains and environmental conditions on formation of organic acids in must during fermentation. Journal of Fermentation Technology, 59, 27-32.
- Singh, R., Vadlani, P, V., Harrison, M, L., Bennett, G, N., and San, K, Y. (2008). Aerobic production of isoamyl acetate by overexpression of the yeast alcohol acetyl-transferases AFT1 and AFT2 in Escherichia coli and using low-cost fermentation ingredients. Bioprocess and Biosystems Engineering, 31(4), 299-306.
- Skogerson et al., (2009) Comparison of gas chromatography-coupled time-of-flight mass spectrometry and 1H nuclear magnetic resonance spectroscopy metabolite identification in white wines from a sensory study investigating wine Body J Agric Food Chem 57:6899–6907
- Smit, B., Engels, W., Wouters, J., Smit, G. (2004). Diversity of L-leucine catabolism in various microorganisms involved in dairy fermentations, and identification of the rate-controlling step in the formation of the potent flavour component 3-methylbutanal. Applied Microbiology and Biotechnology, 64, 396-402.
- So MH, Lee YS, Han SH, et al. Analysis of major flavor compounds in Takju mash brewed with a modified Nuruk. J Korean Soc Food Sci Nutr. 1999;12:421-426.
- Song, H., Lee, S. Y. (2006). Production of succinic acid by bacterial fermentation. Enzyme and Microbial Technology, 39, 352-361.
- Song, Young-Ran, Do-Youn Jeong, and Sang-Ho Baik. "Monitoring of yeast communities and volatile flavor changes during traditional Korean soy sauce fermentation." Journal of food science 80.9 (2015).
- Son HS (2010) Quality improvement of Korean domestic wines using metabolomics approaches Graduate School of Biotechnology, Korea University, Doctor thesis.
- Tay, A., Yang, S. T. (2002). Production of L(+)-lactic acid from glucose and starch by immobilized cells of *Rhizopus oryzae* in a rotating fibrous bed bioreactor. Biotechnology and Bioengineering, 80(1), 1-12.
- Tehlivets, O., Scheuringer, K., and Kohlwein, S, D. (2007). Fatty acid synthesis and elongation in yeast. Biochimica Et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1771(3), 255-270.
- Thoukis, G., Ueda, M., Wright, D. (1965). The Formation of Succinic Acid during Alcoholic Fermentation. American Journal of Enology and Viticulture, 16, 1-8.
- Viana, F., Belloch, C., Vallés, S., and Manzanares, P. (2011). Monitoring a mixed starter of hanseniaspora vineae–*Saccharomyces cerevisiae* in natural must: Impact on 2-phenylethyl acetate production. International Journal of Food Microbiology, 151(2), 235-240.
- Waché, Yves, et al. "Role of β-oxidation enzymes in γ-decalactone production by the yeast Yarrowia

lipolytica." Applied and environmental microbiology 67.12 (2001): 5700-5704.

- Wache, Y., Aguedo, M., Choquet, A., Gatfield, I, L., Nicaud, J, M., and Belin, J, M. (2001). Role of beta-oxidation enzymes in gamma-decalactone production by the yeast yarrowia lipolytica. Applied and Environmental Microbiology, 67(12), 5700-5704
- Weinstein, R. N., Montiel, P. O., Johnstone, K. (2000). Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia, 92(2), 222-229.
- Yang et al. (2011) Fungi associated with the traditional starter clusters used for rice wine in Korea. J Korean Soc Appl Biol Chem 54:933-943
- Yang, H., Dong, J, J., Yin, H., Zhao, Y, X., Chen, R., Wan, X, J., Chen, P., Hou, X, P., Liu, J., and Chen,
 L. (2014). Wort composition and its impact on the flavour-active higher alcohol and ester formation of beer–a review. Journal of the Institute of Brewing, 120(3), 157-163.
- Yim HS, Cho YS, Guang X, Kang SG, Jeong JY, et al. (2014) Minke whale genome and aquatic adaptation in cetaceans. Nat Genet. 46(1):88-92
- Yonezawa T, Fushiki T. Testing for taste and flavour of beer. In: Jackson JF, Linskens HF, editors. Analysis of taste and aroma. Berlin Heidelgerg: Springer; 2002. p. 29-45.
- Young JC (1995) Microwave-assisted extraction of the fungal metabolite ergosterol and total fatty acids J Agric Food Chem 43:2904–2910
- Yu et al., (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70:1253-1262
- Zhang, Z. Y., Jin, B., Kelly, J. M. (2007). Production of lactic acid from renewable materials by *Rhizopus* fungi. Biochemical Engineering Journal, 35(3), 251-263.
- Zhu, L., Zhang, X., Ji, L., Song, X., Kuang, C. (2007). Changes of lipid content and fatty acid composition of *Schizochytrium limacinum* in response to different temperatures and salinities. Process Biochemistry, 42(2), 210-214.
- Zhu Z, Zhang S, Liu H, Shen H, Lin X, et al. (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun. 3:1112