RS-2021 IP321067	보안 과제(),일반 과제(이) / 공개(이),비공개()발간등록번호(이) 농업기반 및 재해대응 기술개발사업 2023년도 최종보고서
장 기 거 연 동 약 브 지	발간등록번호 11-1543000-004578-01
석 반 및 저 및 수	연약지반 저수지 제체의
실지 계 제 모체	장기거동 분석 및 설계
델 의 개 발	모델 개발
2 0	2024.06.08.
2 4	주관연구기관 / 공주대학교산학협력단
농	공동연구기관 / 강원대학교산학협력단
농림	공동연구기관 / (주)지구환경전문가그룹
직품기술기획평기	공동연구기관 / 한국농어촌공사 농어촌연구원
무 가 원	농 림 축 산 식 품 부
	농림식품기술기획평가원

제 출 문

농림축산식품부 장관 귀하

본 보고서를 "연약지반 저수지 제체의 장기거동 분석 및 설계 모델 개발"(개발기간: 2021.04. ~ 2023.12.)과제의 최종보고서로 제출합니다.

국가연구개발사업의 관리 등에 관한 규정 제18조에 따라 보고서 열람에 동의합니다.

				j.	최종!	보고서	1					-	의바	보안등	급	
	주여	아해저기과	ł		노립추	사시포	ц.	13.9	1	1	입	명	eci			
전문기관명 (해당 시 작성)				농림	립식품기술기획평가원			사입	사업명	내역사업명 (해당 시 작성)		업명 작성)	기후변화 및 농업 대응 기숙		농업재해 술	
		공고번호						총	광연 (해 여구	구개발 당시 ? 개박과지	식별 닥성 테버	번호) ㅎ				
기술		국가과학기 표준분류	술	1	.B0902		60	LBO	0901		3	50	LBO	903	10	
분류	농림	식품과학기	술분류	F	RA0103		60	RA	0102	2	3	50	RAC	0101	10	
-	총	관연구개발명	ġ	국문	2											
1	(해	당시 기자)	85	2											
	~-			국문	2	연인	부지반	저수지 기	세체.	의 장기	거문	동 분석	및 설계	케 모델	개발	
	연기	수개말과세동	5	영동	2	Long-ter	rm beh:	avior ana embankm	lysis ent :	and de structure	sign es o	n model on soft c	develop lay grou	ment of ind	reservoir	
	0-155			기관	명	공주다	학교 /	산학협력	단	사	업지	·등록번화	2	307-82	2-06478	
	주관	연구개발기	관	주소	(32588)충 56(신관동,		충남 공주 , 공주대학	시 공주대학 학교 산학연극	'로 7관)	법인등록번호			2 161271-0 0		-000271 0	
				성명		임		임성훈	성훈		직위			ũ.	! 今	
				직장		장전화					휴대전화					
	L.	11484		연락처	처 전자우편					국	가연	구자번화	ž			
100				전체			202	21. 04.	01	- 2023	3. 1	12. 31(2년 9	개월)		
연	연구개발기간		개발기간 다네		[1]		202	21. 04.	01	- 2022	2. 1	12. 31(1년 9	개월)		
1			년세	2단겨	[1]		202	23. 01.	01	- 2023	3. 1	12. 31(1년 0	개월)		
	연구개발비 정		연구개발비 정부		부지원	기관 연구:	부담 그 외		외 기관 다치단체	기관 등의)	- 합:			연구개발
(단위:		: 전원)	-	최금	현금	현물	현금	현물	혀	금 현	물	현금	현물	합계	원금	
		총계		825,000	2,625	84,925				-	1	827,625	84,925	912.550		
		1년차		225,000		26,300				-		225,000	26,300	251.300		
15	군계	2년차		300,000	15	35,000					35	300,000	35,000	335.000		
25	단계	1년차		300.000	2,625	23.625		2 2		-	. 83	302,625	23.625	326,250		
1	공동연구개발기관 등 (해당 시 작성)		공동연구개발기관		7171	ni	***	TI	TIO	1 A.	-		THTIC	TH	H	고
_			기관명		액임	A	পদ		유내신와		신시우편		역할	기관유형		
			강원대학교 산학협력단		김 용	৸	교수						공동	대학		
1	공동	통연구개발7	관	· (취지구환 가그	경전문 률	한상	재	대표이사	ł					공동	중소기업	
		12.12.3		한국농어 농어촌인	촌공사 9구원	허린	Ě	주임연구	원					공동	공기업	
i ne	04	구개발과제			성명		(임성훈				직위		ī	!수	
	1	뇌무당당자		연람처	직장	전화					휘	대전화				
		E1004		C-MAI	전지	우편				국	가연	! 구자번호	2			

이 최종보고서에 기재된 내용이 사실임을 확인하며, 만약 사실이 아닌 경우 관련 법령 및 규정에 따라 제재처분 등의 불이익도 감수하겠습니다.

< 요 약 문 >

사업명			농업기	반 및 재히	대응	기술개발사업	총괄연- (해	구개빌 당 시	! 식별번호 작성)		
(내역사업명 해당 시 작성)					연구	개발고	과제번호		
기수	국가과학7 표준분류	술 _	LF	30902	60	LB090)1	30	LB	0903	10
분류	술 류 농림식품 과학기술분류		RA	40103	60	RA010)2	30	RA	.0101	10
총 (1	·괄연구개발명 해당 시 작성)									
6	구개발과제명			연익	지반	저수지 제체의	장기거동	분석	및 설계 모델	궬 개발	
_	전체 연구기	간			20	021. 04. 01 -	2023. 12	. 31(2년 9개월)		
	해당 단계				20)21. 04. 01 -	2022. 12	. 31((1년 9개월)		
	총 연구개발	비	총92] (정부)	1,300천원 지원연구개'	칼비:8	825,000천원,	기관부담연	<u>1</u> 구개	발비:96,300	천원)	
	해당 단계		총586 (정부)	5,300천원 지원연구개 ¹	칼비	: 525,000천원	, 기관부담	남연구	개발비 : 61	300천원)	
				초[] 응용	-[]	개발[✔]	기	숰성숙	÷5	착수시점 기준	<u>=()</u>
연구개발단계			기타(위	러 3가지에 해	당되지	않는 경우)[]	(해당 시		작성)	종료시점 목표()	
연구개발과제 유형 (해당 시 작성)											
연- (i	구개발과제 특 해당 시 작성)	성)									
			종 표	연약지반	저수기	지 제체의 장기기	거동을 고려	1 한 7	개선된 설계 :	기준 마련	
목:	연구개발 표 및 내용	전	체용	 (RFP 연금 ○ 기존 ○ 연약지 ○ 주요 ○ 연약지 (추가 연금 ○ 원심5 ○ 저수지 ○ 연약지 	가내용 저수기 지만 기 지수기 가 나 문 형실 지 제 기 만 편) 지 지반거동 사태 신증평가를 지의 다년간 지택 기초 거동 관련) 험을 이용한 연 제를 성토하는 여 근공 이후 장기거 	계 분석 위한 시범 한거동 계측 설계기준 약지반에 연약지반에 동 계측을	범지구 즉자료 정책기 축조독 대한 위한	· 선정 . 분석 및 설: 데안 된 저수지 제 [;] 연직배수재 비전기식 공	계인자 평가 체의 안정성 평 설계 모텔 제 ⁷ 극수압측정장치	가 시 개발
		1 단계	목 표	 기존 저수지 원심5 성 평 준공 발 	연약기를 기 그형실 가 이후	지반 저수지 설치 시공하는 연약지 험을 이용한 PF 장기간동안 계측	례법의 평기 반에 요구: 3D 설치 여 측할 수 있는	ト 되는 부에 는 비	연직배수재의 따른 연약지 전기식 공극수	성능제시 반 축조 제체의 -압측정장치 원] 안정]형 개

			 한국농어촌공사에서 관리하고 있으며 연구에 적합한 저수지를 선정하여 설계 및 시공 당시의 자료와 정밀안전진단자료를 취합하고 현 시점에서 피에조콘 관입시험 및 불교란시료에 대한 물리 역학 시험을 한 후에 역해석할 수 있 도록 정리된 자료 구축
			- 파괴 사례에 대한 원인규명 보고서를 분석하여 제도적 보완점 검토
			- 지반해석모형을 이용해서 지반거동 계측자료 분석
		내 용	- 설계 당시 예측한 장기거동과 현재 상태를 비교하여 설계에 적용한 압밀이론 및 설계인자 평가
			- 수평배수층을 설치하지 않고 연직배수재만을 설치하여 Teo-drain과 연결하 는 저수지 제방 단면을 제시하고 수치해석 등을 통해서 검증
			- 원심모형실험을 이용하여 연약지반에 연직배수재 타설 여부에 따른 저수지 제체의 침하 및 변형 거동 특성 평가
			 전자 전기적인 구성품을 배제하여 수 십년간 작동이 가능하고 원지반 공극수 압 소산시험과 압력수두 측정이 가능한 장치 원형 개발
			 연약지반에 저수지를 설치하는 경우에 지반 거동 유형별 설계요소를 도출하고 설계기준 개정사항 제시
		목 표	 ○ 예비설계단계에서 설계인자들에 따른 예상결과범위를 참고할 수 있는 설계 지원시스템 개발
			 연약지반에 저수지를 설치하는 경우에 연직배수재를 설치하는 표준 단면을 제시하고 설계기준에 반영
			- 1단계에서 기존 저수지에 대해서 분석한 결과를 바탕으로 장기거동 및 유지 관리 등 전생애주기비용(LCC)을 반영한 효과적인 설계기준 제시
	2 단계		 개략적인 예비설계인자에 대한 개략설계결과를 예상할 수 있도록하기 위해서 다양한 조건들에 대한 해석결과를 정리하여 도표 등의 형식으로 설계지원시 스템 개발
		내 용	 - 연직배수재를 설치한 단면에 대한 원심모형시험을 하고 무처리 단면에 대한 시험 결과와 비교하여 효과를 검증하고 수치해석 결과와 비교하여 제시된 단면의 신뢰성을 검증
			 - 원심모형실험을 이용하여 연직배수재가 타설된 연약지반에 저수지의 단계별 성토시 제체의 안정성 검토 및 연직배수재 활용성 검증
			 1단계에서 개발한 원형에 대한 시제품을 제작하고 연구에 적합한 대상지를 선정하여 시험 설치한 후 주기적으로 측정

○ 기존 연약지반 저수지 설계법의 평가
- 축조 중 붕괴이력이 있고 축조 후 20년이 경과한 대야지구 저수지에 대한 현재의 기초지 반조사를 완료하였음. 표준관입시험 43회, 피에조콘관입시험 2회, 시료채취 후 기본물
성, 삼죽 및 압밀시험 6회 실시
 설계 당시의 Terzaghi의 압밀이론을 적용하여 설계지반조사 결과에 의한 압밀 침하량 및 시공계측자료로부터 역해석에 압밀이론을 적용한 침하량을 현재의 지반조사 결과와 비교하여 상당한 오차가 발생하고 있음을 확인하였음.
 - 탄동저수지, 대야저수지, 모항저수지, 예당저수지의 계측자료, 설계자료 등을 데이터베이 스화하고 자료를 계측데이터, 분석 그래프, 장래침하, 통계보고서 등을 설계지원시스템 에 표출
○ 원심모형실험을 이용한 PBD 설치 여부에 따른 연약지반 축조 제체의 안정성 평가
 - 연직배수재(PBD)를 활용한 연약지반 개량공법을 적용했을 경우 압밀 촉진이 가능한지를 평가하기 위해서 원심모형시험을 한 결과 배수공법을 저수지 하부의 연약지반에 적용할 경우 연직배수재를 사용하지 않는 경우에 비해 침하량이 25% 이상 빠르게 발생하는 것 을 확인할 수 있었음. 저수지의 자중에 의해 연약지반에 재하되는 분균등한 하중은 연약 지반에 부등침하를 유발시키며, 이로 인해 저수지 하류부에 균열이 유발되었음.

Т

	○ 농업생산기 제체 성토를 이 연구개를	반정비사업의 일획 를 해야 하는 상황 발5성과의 수요처	환으로 저수지를 축결 에 종종 직면하는 힌 임.	조하는 경우에 불가피 난국농어촌공사 및 잠:	하게 연약지반 위에 재적인 건설시공사가				
연구개발성과	○ 「국가건설기준 67 10 20 농업용 필댐설계 4.1.4 연약지반 기초」에서 Terzaghi 압밀 이 론 적용과 지반파괴에 대한 주의를 규정하고 있는 단순한 내용을 개정하여 최근의 발전 된 연약지반해석이론을 적용하도록 강제하고 연직배수재를 설치할 수 있는 제도적 근거 를 마련하여 향후의 연약지반 저수지 설계에 활용할 수 있음.								
활용계획 및 기대 효과	 원심모형실험을 통해 연약지반에서의 연직배수재 시공이 저수지의 안정성에 미치는 영 월 검증하여 연약지반상 저수지 축조시 연직배수재 활용성 검토 								
	○ 연약지반에 로만 진행여 은 주의를 이 있으며 초래하고 9 클 것으로	저수지를 축조하 이 되어 많은 시긴 기울였음에도 불- 필연적으로 책임: 있으므로 이 연구3 예상됨.	는 경우에 연직배수 이 소요되고 지반피 구하고 탄동지구, 송 소재에 대한 분쟁이 과제의 개발성과를 4	재를 설치하지 않으면 ·괴를 억제하기 위해 현지구처럼 지반파고 발생하는 등 많은 시 실무에 활용하면 경제	년 압밀이 연직방향으 서 압성토를 하고 많 가 발생하는 경우들 -회적 경제적 손실을 적 파급효과는 매우				
국문핵심어 (5개 이내)	연약점토 지반	압밀	저수지	연직배수재	지반파괴				
영문핵심어 (5개 이내)	soft clay ground	consolidation	reservoir embankment	vertical drain	ground failure				

〈 목 차 〉	
1. 연구개발과제의 개요 ······	1
가. 연구 배경 및 필요성 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
나. 원심모형실험	2
(1) 원심모형실험의 역사 ······	2
(2) 원심모형실험의 원리 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4
(3) 원심모형실험기 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5
2. 연구개발과제의 수행 과정 및 수행 내용	9
가. 연약지반 저수지 설계법 평가 및 수치해석모델 비교 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9
(1) 지반조사 개요 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9
(2) 조사결과	
(3) 기존 연약지반 저수지 설계법의 평가	
(4) 표준압밀시험에 의한 점토의 초기탄성계수 산정	
(5) 압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교	57
(6) 소결	73
나. PVD가 설치된 연약지반의 원심모형실험	
(1) 서론 ······	
(2) 재료 및 방법 ······	
(3) 실험 결과 및 고찰	
(4) 소결	94
다. 연약시만 서주시 계측 DB구축 및 질계시원시스템 개발	
() 개요 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
(2) 연약시만 서수지 질게 및 계측자료 수집 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
(3) 지민 거동 계측자료 데이터메이스 구축	105
(4) 시민거공 모니디딩 평가 모듈 개월 ···································	112
(5) 연역시민 지구지 경모 멀딩 모델 개월 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	117
(0) 미신가작 중국구립 국경경자 현영 개월 (7) 성개파인지사례 그초 미 형자적인	110
(7) 길게지원지으럼 누국 및 연양각용 (0) 여야지바 저스피 성게지워니스테 우여 매노어	127
(6) 전력시한 지수지 절개지원지스럼 분용 배뉴철 ···································	156
(9) 연락지만 지우지 지만 거공 절계지원지스템 개월 효과	150
(10) 조실····································	101
3. 연구개발과제의 수행 결과 및 목표 달성 정도	·· 163
가. 연구수행 결과 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	163
(1) 정성적 연구개발성과	163
(2) 정량적 연구개발성과(해당 시 작성, 연구개발과제의 특성에 따라 수정 가능합니다)	166
(3) 세부 정량적 연구개발성과(해당되는 항목만 선택하여 작성하되, 증빙자료를 별도 첨부해야 합니다)…	····· 167
(4) 계획하지 않은 성과 및 관련 분야 기여사항	····· 172
나. 목표 달성 수준 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	····· 173

4.	목표 미달 시 원인분석	74
	가. 목표 미달 원인(사유) 자체분석 내용	174
	나. 자체 보완활동	174
	다. 연구개발 과정의 성실성 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	174
5.	연구개발성과의 관련 분야에 대한 기여 정도	75
6.	연구개발성과의 관리 및 활용 계획 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	76
7.	참고문헌	77

丑	1-1 4	원심모형시험의 주요 상사비(Scaling factor)	5
표	1-2 4	원심모형실험장비 제원	5
표	2-1 -7	공번별 지층 현황(대야저수지)	·13
표	2-2 2	시층분포 현황(대야저수지)	·16
표	2-3 -3	공번별 지층 현황(중장저수지)	·16
표	2-4 7	시층분포 현황(중장저수지)	·19
Ŧ	2-5 >	시층 현황(탄동저수지)	· 19
Ŧ	2-6 >	시층분포 현황(탄동저수지)	·22
Ŧ	2-7 4	심도별 시험결과(대야저수지)	·23
Ŧ	2-8 3	표준관입시험 분석결과(대야저수지) ······	·23
Ŧ	2-9 4	심도별 시험결과(중장저수지)	·24
Æ	2-10	표준관입시험 분석결과(중장저수지)	·24
Æ	2-11	심도별 시험결과(탄동저수지)	·25
Æ	2-12	표준관입시험 분석결과(탄동저수지)	· 25
Ŧ	2-13	피에조콘과입시험 결과분석(대야저수지)	· 26
Ŧ	2-14	수평압밀계수 산정(대야저수지) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· 26
Ŧ	2-15	간극수압소산시험 결과분석(대야저수지)	·26
Ŧ	2-16	피에조콘과입시험 결과분석(중장저수지)	·27
Ŧ	2-17	수평압밀계수 산정(중장저수지) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\cdot 27$
Ŧ	2-18	가극수압소산시험 결과분석(중장저수지) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 27
Ŧ	2-19	피에주코과입시험 결과분석(탄동저수지)	- 28
Ŧ	2-20	가극수압소사시험 결과분석(탄동저수지)	· 28
Η Π	2-21	문서시험 결과(대야저수지) ····································	· 29
Η Π	2-22	일춘안춘시험 결과(대야저수지)	· 30
#	2-22	산추안추시헌(IIII) 결과(대야저수지)	· 30
	2-24	표주안민시험 결과(대야저수지)	·31
Ψ.	2-25	무서시허 결과(주자저스지)	.37
ш. Ш.	2 2)	일 아가요 일거(이 아가 가) 이츠아츠지허 겨과(주자저스지)	.22
ш	2 20	글록감독사람 글러(8.8시구시) 사츠아츠치허(IIII) 겨과(주자저스키)	.22
ш	2 27	피즈아미시허 경과(주자저스기)	.24
ш. Ш.	2 20	무서지하 경과(탄도저스지)	.25
ш.	2 29	같 6시금 걸거(긴 6시구시) 이츠아츠/1허 경과/타도저스기)	.26
ш	2-30	글록급록사업 '글러(한승사무사) 사츠아츠시허(OII) 경과(타도저스기)	. 26
л п	2-31	표조아미 / 혀 경고/타도 지스기)	. 27
π.	2-52	표근접될지엄 결과(단중지구지)	. 37
π π	2-33	Hunorhalia model perspectore from laboratory triavial tests www.	. 5 1
ш. т	2-54	The static of the accumulated instant extension	.51
ш т	2-35	The sensitivity explosion of	· >>
亜	2-30	The sensitivity analysis of	. 50
土	2-3/	Physical and mechanical properties of soil (Kwon and Eam, 2023)	· 60
土	2-38	The initial elastic modulus estimated from the instant settlement obtained by $\frac{1}{2}$	(1
π	2 20	analyzing the results of the standard consolidation test (Kwon and Eam, 2024)	.01
±±.	2-39	Analysis cases according to numerical model and the condition of hydraulic	(2)
17	2 40	The second secon	· 02
世	2-40 2 41	ine comparison of numerical analysis parameters ····································	· /0
#±	2-41	기술년 심도 굴성시 ···································	• /6
土	2-42	지구시 보사시됴 굴성시 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•77

丑	2-43	원심모형실험 모형 지반 및 시험 조건	···· 79
표	2-44	원심모형실험 모형 지반 및 시험 조건	83
표	2-45	원심모형실험 모형지반 및 시험 조건	87
표	2-46	실험 조건에 따른 압밀도 산정결과	91
표	2-47	저수지 매개변수 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	92
丑	2-48	모래 매개변수	92
표	2-49	점토 매개변수	93
표	2-50	연직배수재 매개변수	93
표	2-51	tlb_Instrument 테이블 명세	100
표	2-52	tlb_Instrument 코드 정의	·· 101
Ŧ	2-53	연약지반 저수지별 계측 센서 현황	·· 102
Ŧ	2-54	대야저수지 센서 연동 현황	·· 102
Ŧ	2-55	탄동저수지 센서 연동 현황	103
丑	2-56	모항저수지 센서 연동 현황	·· 104
丑	2-57	예당저수지 센서 연동 현황	105
丑	2-58	강우량 조기경보 관리기준치(안)(행정안전부 권고)	·· 107
丑	2-59	변위 조기경보 관리기준치(안)(행정안전부 권고)	·· 107
丑	2-60	경험적 침하예측식	108
丑	2-61	탄동지구 계측 관리기준치(Ru값)(사례)	112
丑	2-62	위험 저수지 모니터링 화면 및 시·군 조기경보시스템 화면	·· 122
丑	2-63	시·군별 위험 저수지 연계 계측 센서 현황	·· 122
丑	2-64	난곡저수지 현장 적용 현황	·· 125
丑	2-65	갈평저수지 현장 적용 현황	·· 125
丑	2-66	동유제 저수지 현장 적용 현황	126
丑	2-67	구성저수지 현장 적용 현황	126
丑	2-68	명암저수지 현장 적용 현황	126
丑	2-69	용정저수지 현장 적용 현황	·· 127
丑	2-70	대곡저수지 현장 적용 현황	·· 127
丑	2-71	양지사소류지 현장 적용 현황	. 127
丑	2-72	홍류동소류지 현장 적용 현황	128
丑	2-73	성동저수지 현장 적용 현황	128
丑	2-74	복용저수지 현장 적용 현황	·· 128
丑	2-75	고성저수지 현장 적용 현황	129
丑	2-76	파산저수지 현장 적용 현황	·· 129
丑	2-77	금곡저수지 현장 적용 현황	·· 129
丑	2-78	조동저수지 현장 적용 현황	. 130
丑	2-79	장산저수지 현장 적용 현황	. 130
Ŧ	2-80	홈골저수지 현장 적용 현황	. 130
Ŧ	2-81	교곡저수지 현장 적용 현황	·· 131
Ŧ	2-82	오리저수지 현장 적용 현황	·· 131
丑	2-83	현상 석용에 따든 장애 사례 및 조지 이력(영농군)	·· 132
Ŧ	2-84	연상 석봉에 따든 상애 사례 및 소지 이력(보은군)	. 132
Ŧ	2-85	연상 석봉에 따든 상애 사례 및 소지 이력(화순군)	. 132
丑	2-86	연상 석봉에 따든 상애 사례 및 소지 이력(곡성군)	. 133
土	2-87	연상 적용에 따든 상애 사례 및 소지 이덕(정수시)	- 133
Ŧ	2-88	연상 석봉에 따든 상애 사례 및 소지 이력(기상군)	• 133
Ŧ	2-89	연상 석뇽에 따든 상애 사례 및 소지 이력(강진군)	·· 134

丑	2-90	현장적용 문제점 및 현장점검 및 보수 현황	134
Ŧ	2-91	현장 운영 문제점 및 개선방안	135
Ŧ	2-92	설계지원시스템 구성 및 특징	137
Ŧ	2-93	연약지반 저수지 제체의 거동분석 및 설계지원시스템 구동 화면	139
Ŧ	2-94	관리기준치 평가 구동 및 활용	140
Ŧ	2-95	잔류 침하량 평가 구동 및 활용	140
Ŧ	2-96	제체 활동 안전율 평가 구동 및 활용	141
丑	2-97	간극수압 평가 구동 및 활용	141
Ŧ	2-98	슈퍼 절점, 요소 설정화면	143
Ŧ	2-99	실시간 분석 설정 화면	144
丑	2-100) 분석 실행 및 분석 결과(예시)	144
丑	2-101	유지관리 관련 보고서 및 점검현황표 예시	146
丑	2-102	계측시스템 유지관리 점검내용(안)	148
丑	2-103	저수지의 계측값에 따른 조기경보 발령 기준(안)	152
丑	2-104	○○군 방재성능 목표 강우량 및 우리나라 호우 기준	153
丑	2-105	○○제 설계 강우량 검토	153
丑	2-106	○○제 조기경보 발령기준 검토	154
丑	2-107	'저수지의 계측값에 따른 조기경보 발령 기준(안)	155
丑	2-108	지반 거동 모니터링 시스템 비즈니스 모델 캔버스	157
Ŧ	2-109) 기존시스템 대비 차별성	159
Ŧ	2-110) 사업화 계획에 따른 예상 매출 규모	160
Æ	2-111	사업화 계획에 따른 예상 매출 규모	162

〈그 림 목 차 〉

그림	1-1 9	연구개발 배경 및 필요성	···· 2
그림	1-2 -	원심모형실험의 원리 (유남재, 2005)	···· 4
그림	1-3 -	원심모형실험실	6
그림	1-4 4	원심모형실험기 개요 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6
그림	1-5 -	원심모형실험기 사진	6
그림	1-6 7	자료획득장치 개요	8
그림	1-7 H	KAIST 원심모형실험기	8
그림	2-1 3	조사지역 위성사진	9
그림	2-2	산계 및 수계(대야 및 중장저수지)	·10
그림	2-3	산계 및 수계(탄동저수지)	·11
그림	2-4 2	지질도 및 지질계통도(대야 및 중장저수지)	·12
그림	2-5 >	지질도 및 지질계통도(탄동저수지)	·13
그림	2-6 >	지반조사 위치도	·13
그림	2-7 >	저수지 제방 하부 지반조사	·14
그림	2-8 >	지층단면 구역(대야저수지)	·15
그림	2-9 2	지층단면도(대야저수지)	·15
그림	2-10	지반조사 위치도(중장저수지)	·16
그림	2-11	저수지 제방 하부 지반조사(중장저수지)	·17
그림	2-12	지층단면 구역(중장저수지)	·18
그림	2-13	지층단면도(중장저수지) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·19
그림	2-14	지반조사 위치도	·20
그릮	2-15	저수지 제방 하부 지반조사(타동저수지)	·20
그림	2-16	지층단면 구역(탄동저수지)	·22
그림	2-17	지층단면도(타동저수지)	· 22
그릮	2-18	표준관입시험 결과 분석(대야저수지) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·23
그릮	2-19	표준관입시험 결과분석(중장저수지) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·24
그림	2-20	표준관입시험 결과 분석(탄동저수지) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· 25
그립	2-21	피에주콘과입시험 결과(대야저수지)	· 26
그립	2-22	피에주콘과입시험 결과(중장저수지)	·27
그립	2-23	피에주콘과입시험 결과(타동저수지)	·28
그립	2-24	기보묵성 부포도(대야저수지)	· 29
그린	2-25	다위주량 및 의추안추가도 부성(대야저수지)	· 30
그리	2-26	비배수저다가도 부섬(대야저수지)	· 30
그린	2-27	표주안믹시험 결과(대야저수지)	.31
그리	2-27	기보문성 부포도(중장저수지)	.32
그립	2-29	의 순일 이 문고고(이 이 나는다) 의 축 안 축 가 도 분석(중 장 저 수 지) ··································	. 33
그린	2-30	비배수저다가도 부섬(중자저수지) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.34
그리	2-31	표주안민시허 결과(주자저수지)	. 35
그리	2 51	기보문선 부포도(타도저수지)	.36
그리	2 52	비배스저다가도 부서(타도저스지)	. 37
그리	2 33 2-3/	파즈아민지허 경과(타도저스지)	. 28
 리	2 J4 7_25	·····································	50
	رر ۲	고서저구하 결과 (권벼해 서사하의노무 2016)	• 4 /
ㄱ리	7-26	국고이미고 근거 (민이미 귀구귀로판 2010) 3.2kg/cm2근 재하하 치하고서과 즈시치하아 1차 아미 치하마으 고려하여 해서하 이르시으	44
	0ر ک	고서전규하 결과 (권병해 선사하의노무 2016)	· 4/1
ㄱ리	2-27	The estimation process of hyperbolic model parameters	.50
	- 51	The estimation process of hyperbolic model parameters	50

그림	2-38	The comparisons of elastic modulus between the overconsolidated and normally	
		consolidated ranges and the linear and nonlinear relationships	54
그림	2-39	The relationship between elastic modulus and minimum effective principal stress	···· 57
그림	2-40	Settlement over time curves on each load steps from the Oedometer test	
		(Kwon and Eam, 2023)	59
그림	2-41	Hydraulic conductivities estimated from Kwon and Eam's consolidation data	61
그림	2-42	Among the case 1 numerical analysis results, the pore water pressure	
		distribution during consolidation	64
그림	2-43	Finite element mesh and boundary conditions for numerical analysis of	
		consolidation tests	64
그림	2-44	Comparison of the standard consolidation test and the case 1 numerical	
		analysis results using the MCC model on the condition of constant	
		hydraulic conductivity.	66
그림	2-45	Comparison of the standard consolidation test and the case 2 numerical	
		analysis results using the MCC model on the condition of hydraulic	
		conductivity varing according to void ratio	67
그림	2-46	Comparison of the standard consolidation test and the case 3 numerical	
		analysis results using the SSC model on the condition of hydraulic	
		conductivity varing according to void ratio	69
그림	2-47	Comparison of the hydraulic conductivities estimated from consolidation test	
		and the estimated from numerical analysis	····· 71
그림	2-48	실험에 사용된 카올린 점토	76
그림	2-49	현장시료의 입도분포곡선(포항지역 반곡저수지 제체부)	76
그림	2-50	실험에 사용된 현장시료	76
그림	2-51	원심모형실험	77
그림	2-52	연약지반 조성	77
그림	2-53	연직배수재 모형(실)	78
그림	2-54	배수재 설치	·····78
그림	2-55	연직배수재 설치 후	····· 78
그림	2-56	모형 저수지 제작	79
그림	2-57	모형실험 단면도	79
그림	2-58	원심모형실험	80
그림	2-59	모형 제작 및 원심모형실험 수행	80
그림	2-60	원심모형실험	82
그림	2-61	연직배수재 모형(로프)	82
그림	2-62	배수재 설치	82
그림	2-63	모형실험 단면도	84
그림	2-64	센서 설치장면	84
그림	2-65	연약지반 조성 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	85
그림	2-66	연약지반 조성	85
그림	2-67	연직배수재 모형	85
그림	2-68	배수재 설치	86
그림	2-69	모형 저수지 제작	86
그림	2-70	원심모형실험 모형 단면도	87
그림	2-71	레이져 센서 설치	87
그림	2-72	시간-침하 곡선	
그림	2-73	실험후 저수지 상부 균열	

그림	2-74	실험 후 저수지 침하(Test2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
그림	2-75	시간-침하 곡선	
그림	2-76	시간-간극수압 곡선	
그림	2-77	실험 후 저수지 변형	
그림	2-78	실험후 저수지 상부 균열	91
그림	2-79	실험 후 저수지 침하(Test2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	91
그림	2-80	시간-침하 곡선	
그림	2-81	시간-과잉간극수압 곡선 (Case 1) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
그림	2-82	시간-과잉간극수압 곡선 (Case 2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
그림	2-83	수치해석 모형 단면도	
그림	2-84	시간-침하 곡선 (Case 1) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
그림	2-85	시간-침하 곡선 (Case 2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
그림	2-86	계측 및 설계자료 수집내역	
그림	2-87	활동 파괴 발생 저수지 자료 수집	
그림	2-88	탄동지구 활동 파괴 사례	
그림	2-89	모항저수지 활동 파괴 사례	100
그림	2-90	계측 관련 테이블 ER-Diagram	100
그림	2-91	계측 위치 GIS 관련 테이블 ER-Diagram	100
그림	2-92	대야저수지 센서 GIS 표출	103
그림	2-93	대야저수지 센서 연동 데이터	103
그림	2-94	탄동지구 제당 센서 및 데이터 GIS 표출	103
그림	2-95	탄동지구 센서 연동 데이터	103
그림	2-96	모항저수지 센서 및 데이터 GIS 표출	104
그림	2-97	모항저수지 센서 연동 데이터	104
그림	2-98	예당저수지 센서 및 데이터 GIS 표출	105
그림	2-99	예당저수지 센서 연동 데이터	105
그림	2-100) 계측 이상치 검출 및 필터링 기술	106
그림	2-101	L 관리기준 설정 페이지 ······	106
그림	2-102	2 관리기준지 적용 센서 그래프	106
그림	2-103	3 연약지반 저수지 잔류짐하 평가(안) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	108
그림	2-104	4 연약지반 지반해석 프로그램 ····································	109
그림	2-105	5 짐하 예측 자동 모듈(쌍곡선, Asaoka능)	109
그림	2-100	› 연약지반 짐하-수위 모니터링 현장 ·······	109
그림	2-107	/ 짐아 문석 보뮬 ···································	109
그림	2-108	3 제제 왈농 안선율 평가 보식도 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
그림	2-109) 세제 왈옹 안선율 평가용 모델딩(단곡서수시)	
그림	2-110) 경사계 네이터 입덕 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
그림 그리	2-111	[세세 왈옹 안선슐 평가 결과	110
그님	2-112	2 실계시원프도그램을 이용한 세세 활동 안전율 평가 시뮬레이션(영동군 단곡서구시) 2 키오님에 피르 모 가	112
그님	2-113) 심균신에 따는 Ku값 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
그림 ㄱ리	2 - 114	t 급역인 KU없들 펀더기군시노 적용 : 아려 세시	
그님 ㄱ키	2-115) 남덕 (엔시) < 기바 처고 미 세서 서키	
-그님 그리	2-110	기 전 전 6 · 옷 센 1 · 결 1 · · · · · · · · · · · · · · · ·	
-그김 그리	2-11	· '관리 '히지 특히 파이 카페의의 포팔 2 과리기주 성제	
- 1 1 기리	2 110	, 고기가프 ㄹㅇ) 과리기주 인려차	112
 기리	2-120	/ ㄷ ㅜㅜㄷ ㅂㄱㅇ) 경부 축력방시 석정	
			110

그림	2-121	경보 대상 설정	113
그림	2-122	경보 설정 화면	114
그림	2-123	경보 메시지 표출 화면(센서별)	114
그림	2-124	SMS 경보 메시지 설정	114
그림	2-125	E-Mail 경보 메시지 설정	114
그림	2-126	경보 표출 화면	115
그림	2-127	위험 저수지 연계 표출화면	115
그림	2-128	위험 저수지 예·경보 이력	·115
그림	2-129	예·경보 시스템 연계 경보 설정창	·116
그림	2-130	장비 통신 설정창	116
그림	2-131	비전기식 공극수압 측정장치 원형	117
그림	2-132	간극수압 측정 부표 및 측정 실린더	117
그림	2-133	연약지반 저수지 거동 모니터링 및 조기경보 시스템 개념도	119
그림	2-134	데이터 관리/저장 모듈	119
그림	2-135	데이터 백업 모듈	119
그림	2-136	연약지반 저수지 모니터링 시스템 표출화면	120
그림	2-137	모니터링 및 조기경보 모바일 앱	120
그림	2-138	지반거동 평가방안을 적용한 계측 현장 적용 방안	121
그림	2-139	위험 저수지 시·군 모니터링 및 조기경보시스템 개념도	· 122
그림	2-140	프로그램 접속 화면(http://sr.egeit.co.kr/)	138
그림	2-141	구동화면	139
그림	2-142	구동화면	139
그림	2-143	조기경보시스템 구동 설정 화면	142
그림	2-144	전광판 구동 설정	142
그림	2-145	문자메세지 구동 설정	142
그림	2-146	경보음성 구동 설정	142
그림	2-147	프로그램 최초 구동화면	142
그림	2-148	연약지반 저수지 설계지원시스템 유지관리(안)	148
그림	2-149	재난관리 주관기관과의 경보 발령 연계(안)	150
그림	2-150	연약지반 저수지 설계지원시스템 활용 계획 및 방안	158
그림	2-151	구성 기술에 따른 사업화 전략	160

1. 연구개발과제의 개요

가. 연구 배경 및 필요성

연약지반에 성토를 하는 경우에 설계단계에서는 압밀침하량은 되도록 크게 산출하고 압밀 시간은 되도록 오랜 기간이 소요되게 산출하려는 경향이 있다. 이렇게 설계를 하면 시공단계에서 실제 압밀 침하량이 작으면 성토물량에 반영하여 공사비를 감액하고 압밀이 예상보다 빠르면 시공 일정을 앞당 길 수 있어서 시공이 무리없이 진행이 되지만 반대의 경우에는 행정적 재정적으로 여러 가지 곤란 한 문제들에 직면할 수 있다. 이러한 경향은 주관연구책임자가 다년간 설계를 심의하고 시공현장을 점검하면서 반복적으로 확인한 것이다. 설계심의에서 과다설계를 지적하면 설계자는 앞에서 기술한 위험 부담을 언급하면서 양해를 구하는 경우가 많았고 시공 현장을 점검하면 시공자들은 반복된 경 험에 의해서 과다설계가 되었을 것으로 기대하고 설계를 신뢰하지 않는 사례를 빈번하게 경험하였 다. 이는 모두 지반해석의 불확실성 때문에 나타나는 현상이다.

지반조사단계에서는 비용 절감을 위해 최소 조사 수량 규정만 충족하려는 경향이 있고 설계단계에 서는 대상에 대한 자료가 부족하게 되어 인접 지역의 이전 설계도서 및 각종 문헌 등을 지반조사 결 과와 함께 검토하여 설계자가 임의로 판단한 지반정수값을 설계에 적용한다. 이렇게 부정확하게 산출 된 설계인자는 인접지역의 향후 설계에 같은 방식으로 반영이 되고 이렇게 허상이 누적되어 결국 평 균값으로 수렴해가고 있다. 물론 연약지반 시공계측을 통해서 설계의 불확실성을 보완하도록 규정되 어 있으나 시공 계측에 의한 역해석 결과를 공사 준공시에 설계도서에 반영하여 설계변경을 하는 절 차가 없고 시공계측보고서들이 설계도서와 함께 열람될 수 있도록 보존되는 경우도 많지 않다.

Terzaghi의 압밀이론이 제시된 이래 지반해석기술은 계속 발전해오고 있다. Terzaghi는 초창기 에 무한히 넓은 지표면에 하중이 가해지는 것으로 가정하였으나 비선형탄성이론, 탄소성이론 등과 수치해석방법에 의해서 지중응력분포와 지반의 거동을 실질적으로 반영할 수 있게 되었다. 실제 현 상을 단순화시켰던 물리적 거동도 유한변형압밀이론이나 비선형압밀이론 등으로 좀 더 실제 현상에 가깝게 개선하였다. 그러나 실무자들은 다양한 설계요소에 내포되어 있는 불확실성에 비해서 해석방 법의 정확성의 향상이 미미하여 새로운 방법을 적용하는 것이 복잡하고 난해하지만 실익은 적다고 평가하는 경향이 있다. 이러한 경향은 설계기준에도 그대로 반영이 되어서 「국가건설기준 11 30 05 연약지반설계일반사항 3.1 일반사항」,「국가건설기준 11 50 05 얕은기초 설계기준 3 침하량 산 정 」 및 「국가건설기준 67 10 20 농업용 필댐설계 4.1.4 연약지반 기초」등은 여전히 Terzaghi의 압밀이론을 적용하여 설계할 것을 제시하고 있다.

댐은 견고한 기반암까지 굴착하고 축조하는 것이 일반적이지만 농업용 저수지는 제반 여건상 불가 피하게 연약지반 위에 축조해야 하는 경우가 있다. 압밀 촉진을 위해서 연직배수재를 설치하면 수평 배수층도 설치하는 것이 일반적인데 물을 막아야 하는 저수지 제체에서는 원지반과 성토체 사이에 수평배수층을 설치할 수 없으므로 무처리로 연직 압밀만 발생하게 하여 압밀 소요 기간이 상대적으 로 길다. 성토 하중에 의한 원지반의 파괴를 막기 위해서 압성토를 실시하며 압성토에 의한 원지반 의 붕괴를 막기 위해서 추가 압성토가 반복되므로 성토물량도 많고 안정관리도 상대적으로 더 많은 주의가 필요하다. 많은 주의를 기울였음에도 불구하고 탄동지구나 송현지구처럼 지반파괴가 발생하 는 경우들이 종종 있었으며 필연적으로 책임소재에 대한 분쟁이 발생하는 등 많은 사회적 경제적 손실을 초래하고 있다.

연약지반에 저수지를 축조하는 경우에 지반조사단계에서 충분한 정보를 얻을 수 있도록 조사의 양 과 질을 늘리고 설계단계에서는 다양한 이론들을 병행 적용하여 검토하도록 설계기준을 강화하며 연 직배수재를 설치하여 압밀을 촉진하면 시공 기간을 단축할 수 있고 시공단계에서 성토안정관리에 대 한 규정을 강화하면 안전하고 경제적으로 시공할 수 있을 것이며 계측결과를 최종설계도서에 반영하 도록 시방서에 명시하여 인접 지역의 후속 설계에 시공 경험이 정확하게 전달되도록 규정으로 보완 하면 연약지반에 관한 지반공학 기술의 축적과 발전에도 기여할 것이다.

그림 1-1 연구개발 배경 및 필요성

나. 원심모형실험

(1) 원심모형실험의 역사

토목공학에서 원심모형실험(centrifuge)을 활용하기 위한 첫 시도는 1869년 프랑스의 기술자 Phillip이 교량의 안정성을 평가하기 위해서였다. 하지만, 당시의 기술로는 무거운 하중을 고속으로 회전시킬 원동력이 없어 실제 실현되지 못했다. 이후, 1931년에 이르러서 Columbia University의 Buck P.B.에 의해 원심모형실험이 광산공학에 도입되었다. 그의 연구결과는 "Use of models for the study of mining problems"라는 주제로 발표되었는데, 세간의 이목을 끌지는 못하였다. 비슷 한 시기인 1936년 구소련의 Pokrovsky, G.J.와 Fedorov, I.S.가 제1차 국제지반공학회에서 원심모 형실험을 활용한 연구결과(Studies of soil pressures and soil deformations by means of a centrifuge, Volume 1 E-5, page 70)를 발표하였으며, 서방세계에서 원심모형실험의 포문을 열었 다. 초기 연구는 주로 군사목적으로 수행이 되었으며, 대규모 폭발, Crater의 크기 및 영향 범위 등 이 그에 해당된다.

한편 영국과 일본에서는 1960년대 후반에 Cambridge 대학과 Osaka City 대학을 중심으로 연 구가 시작되었으며, 1969년 멕시코 지반공학회에서 첫 논문을 발표하였다. 그 이후 1970년대에 들 어 원심모형실험을 활용한 연구가 크게 증가하였으며, 현재까지 많은 학교와 연구소에서 원심모형실 험을 활용하고 있다. 현재 대표적인 원심모형실험장비 보유기관은 Cambridge University, City University(이상 영국), Delft University of Technology(네델란드), University of Colorado at Boulder, University of California at Davies, US Army Corps of Engineers(이상 미국), Tokyo Institute of Technology(일본), University of Western Australia(호주), National University of Singapore(싱가포르) 등이 있다.

국내에서는 1992년 충북대학교와 강원대학교에 원심모형실험기가 처음으로 도입된 이후 1997년 대우건설기술연구소에서 토목실험을 목적으로 도입하며 점차 활용도를 높여갔다. 이후 국토교통부의 지원으로 분산공유형 건설연구 인프라구축 사업이 추진되면서 2008년 KAIST에 공동활용이 가능한 원심모형실험기가 도입되었다. 또한, 2006년 K-water에서 반경 8m의 초대형 원심모형실험기를 도 입하여 국내에도 원심모형실험이 자리잡게 되었다.

원심모형실험은 대상이 되는 지반구조물을 상사법칙(scaling law)을 고려하여 1/10~1/200의 비 율로 축소시킨 뒤 원심가속도를 작용시켜 지반 깊이별 응력상태를 실제 응력상태와 가깝게 모사한 다. 원심모형실험기는 아래 그림과 같이 빔(beam)의 끝단에 모형을 올려놓을 수 있는 바스켓 (basket)이 힌지(hinge) 형태로 연결되어 있으며, 회전시 원심력에 의해 바스켓이 빔과 평행하게 세 워진다. 이때, 회전하는 방향의 수직으로 원심력이 작용하여 축소모형지반에 증가된 중력가속도를 모사한다. 빔의 반대쪽에는 수평추(counter weight)가 설치되어 회전중 장비의 균형을 유지한다. 원심모형실험은 지반재료거동을 평가하기 위해 활용되기 시작했지만, 기술의 발전으로 복잡한 건설 과정을 모사하는 것도 가능한 수준에 이르렀다. 최근들어 주로 soil-structure interaction, geotechnical earthquake, environmental geotechnics, slope stability, soft soil, soil improvements 등에서 널리 이용되고 있으며, 토석류, 지반함몰 등 복잡한 자연재해 현상도 구현하 고 있다.

대표적인 사례로는 일본의 Mikasa와 Takada (1984)는 원심모형실험기를 활용하여 연약점토의 자중압밀실험과 Mikasa의 압밀이론을 실험적으로 검증하였며, Bloomquist 와 Townsend(1984)는 미국의 Florida 지방의 점토의 압밀에 대해 원심모형실험을 수행한 바 있다. 또한, Townsend(1984)는 원심모형실험에서 압밀과정이나 시간에 의존함수를 검증하기 위해 유한요소해 석을 수행한 바 있다. 국내에서도 엄재경(1996)이 역T형 옹벽의 전단키 위치 변화와 저판이 경사진 경우에 대해 원심모형실험을 수행한 바 있으며, 강대수(1997)는 준설매립된 높은 함수비의 연약해성 토 지반에 배수재를 활용한 자중압밀효과를 알아보기 위해 배수조건과 배수재의 거리에 따른 거동을 원심모형실험을 통해 평가한 바 있다. 이 외에도 전동욱(1997)은 초기 간극비, 중력수준, 배수조건 에 따라 실험을 수행하고 Terzaghi의 연약지반 압밀거동을 검증한바 있다.

그림 1-2 원심모형실험의 원리 (유남재, 2005)

(2) 원심모형실험의 원리

흙의 거동은 지반의 응력수준에 영향을 받는다. 예를들어 흙의 팽창거동(dilation) 은 지반의 응력 에 반비례하며, 주로 낮은 응력수준에서 크게 발현된다. 따라서, 축소모형실험과 같이 실제 현장의 응력수준보다 낮은 상태에서 실험이 수행되면 지반에 팽창거동이 크게 발현되어 지반의 강도특성을 과대평가할 수 있다. 하지만, 원심모형실험을 통해 원심가속도를 지반에 작용시키면 실제 현장의 응 력수준과 유사하게 모사할 수 있기 때문에 실제와 가장 근접한 조건에서 실험을 수행하고 결과를 도출할 수 있다. 이때, 원심모형실험의 결과를 통해 현장의 거동을 평가하고 예측하기 위해서는 상 사법칙(scaling law)를 적용해야 한다. 상사법칙은 축소모형실험의 결과를 실제 원형의 값으로 환산 하는 법칙으로 실제 구조물의 거동과 축소모형의 거동의 관계성을 나타낸다. 여기서, 상사비(scaling factor)는 일반적으로는 차원해석(dimensional analysis)을 통해 도출할 수 있다. 이러한 상사법칙 은 현재까지 많은 연구자들에 의해 검증되어 왔다(Schofield 1980; Taylor, 1995).

원심모형실험의 장점은 실험에 사용되는 흙재료를 명확히 알고 있다는 것이다. 예를들어 원심모형 실험에서 널리 사용되는 흙 재료인 Leighton-Buzzard Sand, Toyoura Sand 및 Kaolin Clay는 다양한 실내실험과 현장실험을 통해 공학적 성질이 매우 잘 정립이 되어 있는 시료이다. 따라서, 이 러한 시료를 이용 할 경우 거동에 불확실성이 줄어들며 이론해와 수치해석 등에 대한 검증이 가능 한 것이다.

원심모형실험의 또다른 장점은 실제 관찰하기 어려운 극한상태(파괴)를 모사할 수 있다는 것이다. 실제 구조물은 그 규모도 클 뿐만 아니라 실험으로 수행하기에 비용이 과도하다. 따라서, 원심모형 실험을 수행 할 경우 적은 비용으로 극한상태를 모사할 수 있는 것이 큰 장점이 된다. 아래 표는 원 심모형실험에 사용되는 대표적인 물리량에 대한 상사비를 나타낸다.

표 1-1 원심모형시험의 주요 상사비(Scaling factor)

물리량	Scaling factor (model/prototype)			
응력, 변형계수	1			
밀도	1			
길이, 변위	1/N			
중력가속도	Ν			
동적 가속도	N			
동적 시간	1/N			
변형률	1			
힘, 하중	1/N2			

(3) 원심모형실험기

본 연구에서는 강원대학교 원심모형실험기를 실험에 활용하였다. 강원대학교 원심모형실험시설 및 개요도는 그림과 같다. 강원대 원심모형실험기의 용량은 20g.ton이며, 회전반경은 회전 중심부터 바 스켓까지 1.35m이다. 또한, 바스켓 위에 적재할 수 있는 토조의 최대사이즈는 500×500×600mm 이다. 원심모형실험기 회전중 계측데이터와 영상을 획득하기 위한 Slip Ring은 총 40개의 Channel 로 구성되어 있고, Conditioner의 구동 및 Video camera의 전원을 공급하는 Slip ring이 분리되 어 설치되어 있다. 또한, 총 2개의 유압식 Rorary joint가 원심모형실험기의 하단에 설치되어 있어 원심모형실험기 가속중 실험체에 유압(또는 공압)을 공급할 수 있다. 또한, 8mm Video camera와 35mm SLR camera를 통해 실험중 실험영상을 촬영할 수 있다. 강원대학교 원심모형실험기의 상 세한 제원을 아래 표와 같이 정리하였다.

표 1-2 원심모형실험장비 제원

Manufacturer	Nondimensional Number			
G-Range	1 to 100-200G at 1,000mm			
Driving System	5.5kw			
Working Radius	1,000mm ⇒ Center to Basket Hinge 1,350mm ⇒ Center to Basket Floor			
RPM Range	0~500 RPM			
Payload Capacity	15~20 g.ton			
Test Package Size	500mm × 500mm × 600mm			
Electrical Pick - UPS	40 Slip Rings			
Fluid Transfer	2 Hydraulic Slip Rings			
Test Recording	8mm Video Camera 35mm SLR Camera			

그림 1-4 원심모형실험기 개요

그림 1-5 원심모형실험기 사진

(가) 강원대 원심모형실험기 구성요소

(1) Centrifuge 중심 축(shaft) 및 회전 팔(arm)

원심모형실험기와 바스켓을 연결해 주는 회전팔을 암(arm)이라 한다. 원심모형실험기는 총 2개의 암으로 구성되어 있으며, 인장에 강한 A7075 T6.5의 고강도 경량의 알루미늄 재질로 구성된다. 이 는 가속회전 시 부재의 자중 및 원심력에 의해 발생하는 인장력에 대해 안전하게 지지하는 역할을 한다.

(2) 바스켓(basket)

토조를 받치는 바스켓(basket)은 암의 끝에 설치된다. 강원대 원심모형실험기의 바스켓은 총 2개 로 구성되어 있으며, 암을 중심으로 양단에 설치되어 있다. 한쪽은 토조를 설치할 수 있는 바스켓이 며, 반대쪽 바스켓은 힘의 평형을 맞추기 위해 설치된다. 힘의 평형을 맞추기 위해 토조와 동일한 무게의 추를 올려 실험을 수행한다. 암의 힌지부는 회전중 발생하는 마찰력을 최소화 할 목적으로 특수강의 Roller bearing이 설치되어 있다. 또한, 원심모형실험기의 균형을 유지하고 필요시 보정 하기 위해 암의 중앙에 키락(key lock) 장치가 설치되었다. 키락은 암 양쪽의 토조무게의 규형을 맞 추기 위해 사용되된다. 실험전 키락을 푼 후 토조를 설치하고 다른 바스켓에 모형토조의 무게에 대 응하는 추를 올려 중심축을 지점으로 일차 모멘트를 만족시킴으로써 회전 가속시 균형을 유지하도록 한다.

(3) 슬립링(slip ring)

슬립링은 원심모형실험기의 내부에 전력선 공급 및 통신을 수행하기 위해 설치된다. 즉, 원심모형 실험기 내부에서 축소모형에 설치된 계측기로부터 원심모형시험기 외부에 설치된 자료획득장치로 전 기적 신호를 송수신해 주는 역할을 한다. 슬립링은 총 40 Channel(20×2=40)로 구성되어 있으며, 원심모형실험기 중심축 상부에 설치되어있다. 슬립링은 110 Volt의 전원을 공급할 수 있는 슬립링 을 별도로 설치하여 실험 중 전기적 노이즈로 인한 간섭을 최소화 하였다.

(4) 구동부

구동부는 AVR, 모터 및 속도 조절기(speed control box)로 구성된다. AVR은 입력전압을 조정 하여 원심모형실험기를 회전시키는 모터에 항상 일정한 전압을 공급해 주며, 탭 전환방식의 TCR형 을 활용하고 있다. 원심모형실험기를 회전시키는 모터는 3상 감속모터(220V, 60Hz, 1750RPM, 5.5kW)이며 원심모형실험기 측면에 설치되어있다. 모터는 원심모형실험기 중심축과 벨트로 연결되 며 중간에 5:1의 변속기어를 수평적으로 설치함으로써 원심모형실험기의 회전속도를 일정하게 유지 할 수 있다. 모터를 제어하는 속도 조절기는 제어실에 설치되어 있으며, 원심모형실험기 중심축 상 단에 설치된 엔코더에 의해 회전속도를 RPM(rev/min)으로 변환하여 디지털 값으로 사용자에게 제 공한다.

(5) 자료획득장치

자료획득장치는 원심모형실험기 상단에 설치된 power supply, conditioner, 제어실에 설치된 티 미널 및 컴퓨터 내에 장착된 A/D 변환기인 UPC601-U Board로 구성된다. Power supply는 +12V, -12V, +5V, GROUND로 conditioner를 구동시킨다. 원심모형실험기에는 총 2개의 conditioner가 장착되어 있으며, 각 conditioner는 상·하 두개의 판으로 되어 있다. 상판에는 센서 와 브릿지(bridge)를 결정하는 스위치와 16개의 브릿지가 장착되어 있고 센서로부터 입력되는 데이 터를 증폭시켜 터미널로 송출하는 역할을 한다. 하판은 이를 조절하기 위한 gain 및 offset이 부착 되어 있다. 터미널은 총 16 Channel로 구성되어 있으며, Differential DC로 입력 할 경우 16개의 데이터를 획득할 수 있고 Single-ended DC로 입력하면 32개의 데이터를 획득할 수 있다.

(6) Monitoring 장치

실험 중 토조내에서 발생하는 변화를 실시간으로 확인하기 위해 8mm 비디오 카메라 및 35mm SLR 카메라가 탑재되어 있다. 모형토조가 설치된 바스켓에 45°의 경사로 설치된 반사경에 비추어진 시료의 거동을 비디오 카메라로 관찰할 수 있다. 또한 슬립링을 통해 송출된 영상을 TV 및 VTR에 연결하여 실시간 녹화 및 상영이 가능하다.

아래 그림은 자료획득장치의 개요도를 나타낸다.

그림 1-6 자료획득장치 개요

(7) KAIST 원심모형실험기

본 연구에서는 KAIST에 구축된 KOCED 지오센트리퓨지 실험센터의 원심모형실험기를 활용하였 다. KOCED 원심모형실험기는 프랑스 ACTIDYN SYSTEMES SA의 C72-2 제품으로 최대용량은 240g-tons이며, 회전반경은 회전 중심부터 바스켓까지 5m이다. 최대 2,400kg의 지반모형을 100g 의 원심가속도까지 구동이 가능하며, 지반모형의 실험에서 사용되는 물, 유압, 공기압 등을 제공하기 위한 6채널 fluid rotary joint 및 장비 내부의 컴퓨터 등을 연결하여 정보를 전송하기 위한 1Gbps급의 fiber optic rotary 또한 설치되어 있다. 실험에 따른 값을 수집하기 위한 신호 계측장 치(Data Acquisiton System)는 회전팔 중앙 상부에 설치되어 있으며, 실험에 사용된 원심모형실험 기는 아래 그림과 같다.

그림 1-7 KAIST 원심모형실험기

2. 연구개발과제의 수행 과정 및 수행 내용

가. 연약지반 저수지 설계법 평가 및 수치해석모델 비교

- (1) 지반조사 개요
 - 농업용 저수지 제방하부를 위한 지반조사로 농업기반시설(대야, 중장, 탄동저수지)에 시추조
 사, 현장원위치 시험을 시행하여 저수지 하부 연약지반거동에 필요한 자료를 취득하였음
 - 조사를 통해 저수지 제방 하부의 구성 상태, 공학적 특성 등을 파악하여 연약지반 저수지 장기
 거동 분석을 위한 자료를 제공하는데 그 목적이 있음

(a) 대야 및 중장저수지

(b) 탄동저수지 그림 2-1 조사지역 위성사진

(2) 조사결과

- (가) 지형 및 지질
- 1) 지형조건

가) 대야 및 중장저수지

- 본 과업지역은 행정구역상 충청남도 태안군 안면읍 중장리 일원이며, 이 일대의 해안은 전형적
 인 리아스식 해안으로 조석 간만의 차이가 매우 크며 넓은 갯벌이 발달하고 있음
- 지질분포에 따른 지형의 차이는 천수만 주변으로 주로 사암으로 구성되는 태안층이 광범위하
 게 분포하기 때문에 뚜렷하게 인지되지 않음
- 산계는 천수만을 경계로 천수만 동쪽의 보령시와 홍성군 지역, 천수만 북쪽의 서산시 지역, 천 수만 서쪽의 태안군 지역으로 나누어져 있음. 안면도의 지형은 안면도 북쪽 창기리의 국사봉 (107m)을 제외하고 모두 고도 100m 이하의 낮은 구릉지로 이우러짐
- 수계는 충청남도 내륙에서 서쪽으로 흘러 서산A지구방조제, 홍성방조제, 보령방조제, 대천방 조제를 거쳐 천수만과 서해에 이르는 네 갈래의 수계가 가장 크며, 그 외에 소규모의 수계들이 천수만과 서해로 흐르고 있음

그림 2-2 산계 및 수계(대야 및 중장저수지)

나) 탄동저수지

- 연구대상 지역은 행정구역상 전라남도 신안군 지도읍 탄동리 일원이며, 지도읍과 연결되는 지 도대교가 개통되어 육상으로 이동이 가능하며, 주변에 지도, 증도, 임자도 및 작은 섬들이 위치 하고 있음
- 과업지역의 지형은 논과 밭으로 개간된 완만한 구릉지로 구분되며, 해안은 주로 암석 해안의 형태이며, 굴곡이 심한 해안선으로 보임
- 과업지역의 지형은 논과 밭으로 개간된 완만한 구릉지로 구분되며, 해안은 주로 암석 해안의 형태이며, 굴곡이 심한 해안선으로 보임
- 과업지역의 산계는 뚜렷하게 발달되어 있지 않으며, 서쪽에 큰산이 위치하며, 대부분 최고점

114m 이하의 낮은 구릉지와 평지로 이루어짐

과업지역의 뚜렷하게 발달된 수계는 없으며, 탄동저수지, 원달제, 탄동1제, 탄동2제, 하탑선저
 수지, 하탑지, 묘동제, 뒷면지, 안골저수지, 진섬제 등의 저수지가 발달되어 있음

그림 2-3 산계 및 수계(탄동저수지)

- 2) 지질특성
- 가) 대야 및 중장저수지
- 1:50,000축척의 안면도·원산도·황도·외연도·호도도폭(지질자원연구원, 2015)에 따르면 안면도
 의 지질은 고원생대 편암류와 화강편마암, 신원생대 퇴적암류와 심성암류, 시대미상의 편암, 고생대 퇴적암류, 중생대심성암류와 퇴적암류, 화산암류, 신생대 표토층으로 구성됨.
- 고원생대 단위에는 흑운모편마암 운모편암, 석영편암, 화강편마암 등이 일부의 단위는 서산층 군에 해당되기도 함. 고생대 지층은 하부로부터'녹도층', 사암 및 이암', 태안층 등으로 구성됨.
 조립질 사암과 암적색 세립암(이암 또는 세립사암)이 교호하는 양상으로 발달하며 태안층 하위
 의 지층으로 추정되는 지층단위를 녹도층이라고 명명함.
- 트라이아스기 단위로 안면도도폭 지역에는 해미화강암과 석영섬장암이 발달하며, 섬장암은 원 산도폭과 외연도도폭 지역에 분포. 쥬라기 단위로 안면도도폭에서는 각섬석암, 흑운모화강암
 이, 원산도도폭에는 반상화강암, 복운모화강암 등이 있음.
- 신생대 제4세기 단위로는 충적층, 해빈모래층, 간척지 등이 포함된다. 안면도·원산도·황도·외연
 도·호도도폭 지역은 도서, 해변 지역이 많고 간척이 많이 진행되어 충적층과 해빈모래층, 간척
 이후 새로이 퇴적된 미고결 층들이 중첩되어 발달하는 특징을 보여주고 있음.,

그림 2-4 지질도 및 지질계통도(대야 및 중장저수지)

- 나) 탄동저수지
- 1:50,000축척의 임자도도폭(지질자원연구원, 2015)에 따르면 안면도의 지질은 고원생대 편마 암과 반상화강암질편마암, 시대미상의 송이도규암, 중생대 트라이아스기 엽리상복운모화강암 과 쥬라기 흑운모화강암, 백악기 퇴적암, 화산암류, 흑운모화강암 및 암맥, 그리고 제4기 충적 층, 풍성사구, 해빈모래 및 간척지로 구성됨
- 과업지역의 지질은 중생대 백악기의 송도층과 사옥도응회암으로 분류됨
- 송도층은 쇄설성퇴적암과 이 퇴적암 사이의 다양한 층준에 얇게 협재된 화산쇄설암 모두를 지 칭함. 송도층은 수 cm에서 수 m 두께의 역암, 사암 그리고 이암이 호층을 이루고 있으며, 이 퇴적암 내부에는 (화산력)응회암이 여러층준에 협재되어 있음
- 임자도화산암의 대부분을 차지하는 사옥도응회암은 다량의 정장석 결정편과 소량의 석영 결정 편을 포함하는 화산력응회암을 지칭하는 층서 단위로 정의되며, 쥬라기 흑운모 화강암과 송도 층을 부정합으로 덮고 있음. 사옥도응회암은 주로 괴상이며, 중립사에서 거력 크기의 암편, 부 석편 그리고 결정편들이 세립의 화산회 기질에 지지되어 있으며 분급은 불량함. 결정편은 주로

그림 2-5 지질도 및 지질계통도(탄동저수지)

- (나) 시추조사
 - 1) 대야저수지
 - 지층 분포는 매립 모래→퇴적 점토(CL, CH, CL)→퇴적 모래→ 풍화토 순으로 시추종료 지점
 까지 연속으로 분포하고 있는 것을 확인됨

표 2-1 공번별 지층 현황(대야저수지)

ज भो	매립층(m)	퇴적·	충(m)	풍화대(m)	S.P.T	총 심도
중 민	모 래	점 토	모 래	풍화토	(회)	(m)
B-1	11.9	9.1	1.5	1.5	22	24.0
В-2	13.6	7.1	2.1	1.2	21	24.0

그림 2-6 지반조사 위치도

그림 2-7 저수지 제방 하부 지반조사

- 지층 분포는 매립 모래→퇴적 점토(CL, CH, CL)→퇴적 모래→ 풍화토 순으로 시추종료
- 매립층 : 모래
- 출현시추공 : B-1, B-2
- 출현심도 : EL.(+)11.44~(+)11.39m
- 층후 : 11.9~13.6m
- 표준관입저항(N)값 : 7/30~34/30 (회/cm)
- 상대밀도 : 느슨~조밀한 상태
- 특징: 실트질 모래가 주를 이루며, 함수상태는 습윤, 비소성, 담갈색 및 황갈색의 색조, 부분적 자갈 함유하고 있음
- 퇴적층 : 점토
- 출현시추공 : B-1, B-2
- 출현심도 : EL.(-)0.46~(-)2.21m
- 층후 : 7.1~9.1m
- 표준관입저항(N)값 : 0/30~9/30 (회/cm)
- 연경도 : 매우연약~견고한 상태
- 특징: 실트질 점토 및 고소성 점토가 주를 이루며, 함수상태는 습윤, 소성, 암회색의 색조, 패 각을 함유하고 있음
- 퇴적층 : 모래
- 출현시추공 : B-1, B-2
- 출현심도 : EL.(-)9.31~(-)9.56m
- 층 후 : 1.5~2.1m

- 표준관입저항(N)값 : 36/30~41/30 (회/cm)
- 상대밀도 : 조밀한 상태
- 특징: 자갈섞인 실트질 모래가 주를 이루며, 함수상태는 습윤, 비소성, 암회색의 색조, 부분적 자갈 함유하고 있음
- 풍화토 : 기반암의 풍화잔류토층
- 출현시추공 : B-1, B-2
- 출현심도 : EL.(-)11.06~(-)11.41m
- 층후 : 1.2~1.5m
- 표준관입저항(N)값 : 34/30~50/22 (회/cm)
- 상대밀도 : 조밀~매우조밀한 상태
- 특징 : 실트질 모래로 구성, 함수상태는 습윤, 암회색의 색조, 암편 함유
- 시추조사 결과를 바탕으로 작성된 지층단면도는 다음과 같음

그림 2-8 지층단면 구역(대야저수지)

그림 2-9 지층단면도(대야저수지)

표 2-2 지층분포 현황(대야저수지)

고버	기츠	분포심도	층 후	그서도지 미 아조	토이브리	상대밀도/연경도	N값(회/cm)
0 1	7 5	(GLm)	(m)	1022 × 10	ን 5 ም. ጠ	[풍화도D, 강도S]	[TCR%/RQD%]
	매립층	0.0~11.9	11.9	실트질 모래	SM	느슨~보통조밀	7/30~14/30
		11.9~14.1	2.2	실트질 점토	CL	매우연약	0/30
D 1	티거츠	14.1~19.0	4.9	고소성 점토	CH	연약~견고	4/30~9/30
D-1	되식승	19.0~21.0	2.0	실트질 점토	CL	보통견고	7/30
		21.0~22.5	1.5	자갈섞인 실트질 모래	SM	조밀	36/30~41/30
	풍화토	22.5~24.0	1.5	실트질 모래	SM	조밀~매우조밀	38/30~50/22
	매립층	0.0~13.6	13.6	실트섞인 모래	SM	느슨~조밀	7/30~34/30
		13.6~15.8	2.2	실트질 점토	CL	연약	2/30
вр	티フス	15.8~20.0	4.0	고소성 점토	CH	보통견고	7/30~8/30
D-7	되식승	20.0~20.7	0.7	실트질 점토	CL	견고	9/30
		20.7~22.8	2.1	자갈섞인 실트질 모래	SM	조밀	36/30~41/30
	풍화토	22.8~24.0	1.2	실트질 모래	SM	조밀~매우조밀	34/30~50/28

2) 중장저수지

○ 지층 분포는 매립 자갈 → 매립 점토 → 퇴적 점토 → 퇴적 모래 → 풍화토 순으로 시추종료
 지점까지 연속으로 분포하고 있는 것을 확인됨

표 2-3 공번별 지층 현황(중장저수지)

ਹ ਮੇ	매립층(m)		퇴적층(m)		풍화대(m)	S.P.T	총 심도
중 빈	점 토	자 갈	점토	모 래	풍화토	(회)	(m)
BH-1	13.4	1.3	12.7	2.3	1.3	18	31.0
BH-2	13.5	1.5	9.0	-	-	16	24.0

그림 2-10 지반조사 위치도(중장저수지)

그림 2-11 저수지 제방 하부 지반조사(중장저수지)

- 지층 분포는 매립 자갈 → 매립 점토 → 퇴적 점토 → 퇴적 모래 → 풍화토 순으로 시추종료
 지점까지 연속으로 분포하고 있는 것을 확인함
- 매립층 : 자갈
- 출현시추공 : BH-1, BH-2
- 출현심도 : EL.(+)11.13~(+)11.03m
- 층후 : 1.3~1.5m
- 특징 : 모래섞인 실트질 자갈이 주를 이루며, 함수상태는 습윤, 비소성, 담갈색 및 적갈색의 색 조, 자갈입경 0.5~7.0cm 내외
- 매립층 : 점토
- 출현시추공 : BH-1, BH-2
- 출현심도 : EL.(+)9.73~(+)9.63m
- 층후 : 13.4~13.5m
- 표준관입저항(N)값 : 5/30~13/30 (회/cm)
- 연경도 : 보통견고~견고한 상태
- 특징 : 실트질 점토가 주를 이루며, 함수상태는 습윤~젖음, 소성, 담갈색 및 적갈색의 색조

○ 퇴적층 : 점토

- 출현시추공 : BH-1, BH-2
- 출현심도 : EL.(-)3.67~(-)3.87m
- 층후 : 9.0~12.7m
- 표준관입저항(N)값 : 2/30~29/30 (회/cm)
- 연경도 : 매우연약~매우견고한 상태

- 특징 : 실트질 점토가 주를 이루며, 함수상태는 습윤~젖음, 소성, 암회색의 색조
- 퇴적층 : 모래
- 출현시추공 : BH-1
- 출현심도 : EL.(-)16.37m
- 층후 : 2.3m
- 표준관입저항(N)값 : 35/30 (회/cm)
- 상대밀도 : 조밀한 상태
- 특징: 실트질 모래가 주를 이루며, 함수상태는 습윤, 비소성, 암회색 및 담회색의 색조, 하부구 간 다량의 자갈 함유
- 풍화토 : 기반암의 풍화잔류토층
- 출현시추공 : BH-1
- 출현심도 : EL.(-)18.67m
- 층후 : 1.3m
- 표준관입저항(N)값 : 50/22 (회/cm)
- 상대밀도 : 매우조밀한 상태
- 특징 : 실트질 모래로 구성, 함수상태는 습윤, 황갈색의 색조, 암편 함유
- 시추조사 결과를 바탕으로 작성된 지층단면도는 다음과 같음

그림 2-12 지층단면 구역(중장저수지)

그림 2-13 지층단면도(중장저수지)

표 2-4 지층분포 현황(중장저수지)

공 번	지 층	분포심도	층 후 (m)	구성토질 및 암종	통일분류	상대밀도/연경도 [프하드D 카드S]	N값(회/cm)
	_1] -1] -5	0.0~1.3	1.3	모래섞인 실트질 자갈	GM	<u>- 127777, 273</u>	- -
	매립승	1.3~14.7	13.4	실트질 점토	CL	보통견고~견고	5/30~13/30
BH-1	티기초	14.7~27.4	12.7	실트질 점토	CL	보통견고~매우견고	6/30~29/30
	되식증	27.4~29.7	2.3	실트질 모래	SM	조밀	35/30
	풍화토	29.7~31.0	1.3	실트질 모래	SM	매우조밀	50/22
	ਗੀ ਹੀ ਨੇ	0.0~1.5	1.5	모래섞인 실트질 자갈	GM	_	-
BH-2	배답증	1.5~15.0	13.5	실트질 점토	CL	보통견고~견고	8/30~13/30
	퇴적층	15.0~24.0	9.0	실트질 점토	CL	매우연약~보통견고	2/30~7/30

3) 탄동저수지

 ○ 지층 분포는 매립 모래→ 매립 점성토 → 퇴적 점성토 → 기반암 순으로 시추종료 지점까지 연 속으로 분포하고 있는 것을 확인함

표 2-5 지층 현황(탄동저수지)

ਹ ਸੀ	매립층(m)			퇴적층(m)			풍화대(m)	기반안	S.P.T	총 심도
공 번	점토	모 래	자 갈	점 토	모 래	자 갈	풍화토 풍화암	(m)	(회)	(m)
BH-1	5.3	12.0	-	15.2	-	-		1.0	27	33.5

그림 2-14 지반조사 위치도

그림 2-15 저수지 제방 하부 지반조사(탄동저수지)

- 매립층 : 모래
- 출현시추공 : BH-1
- 출현심도 : EL.(+)14.66m
- 층후 : 12.0m
- 표준관입저항(N)값 : 6/30~18/30 (회/cm)
- 상대밀도 : 느슨~보통조밀 상태
- 특징 : 자갈섞인 점토질 모래가 주를 이루며, 함수상태는 습윤, 비소성, 갈색, 담갈색, 황갈색 의 색조, 자갈입경 0.5~3.0cm 내외

- 매립층 : 점성토
- 출현시추공 : BH-1
- 출현심도 : EL.(+)2.66m
- 층후 : 5.3m
- 표준관입저항(N)값 : 9/30~15/30 (회/cm)
- 연경도 : 견고한 상태
- 특징 : 자갈 및 모래섞인 실트질 점토가 주를 이루며, 함수상태는 습윤, 소성, 갈색의 색조, 자갈입경 0.5~1.5cm 내외
- 퇴적층 : 점성토
- 출현시추공 : BH-1
- 출현심도 : EL.(-)2.64m
- 층후 : 15.2m
- 표준관입저항(N)값 : 1/30~15/30 (회/cm)
- 연경도 : 매우연약~견고한 상태
- 특징: 실트질 점토, 고소성의 실트질 점토가 주를 이루며, 함수상태는 습윤, 소성, 암회색, 회갈색의 색조
- 기반암 : 응회암의 연암
- 출현시추공 : BH-1
- 출현심도 : EL.(-)17.84m
- 층후 : 1.0m 이상
- 특징: 보통풍화 / 보통강함, 단주상-장주상 형태로 코아시료 회수, TCR (코아회수율, %) = 70%, RQD(암질지수,%) = 10%
- 시추조사 결과를 바탕으로 작성된 지층단면도는 다음과 같음

그림 2-16 지층단면 구역(탄동저수지)

그림 2-17 지층단면도(탄동저수지)

표 2-6 지층분포 현황(탄동저수지)

공 번	지	치이	분포심도 (GLm)	층 후 (m)	구성토질 및 암종	통일분류	상대밀도/연경도 [풍화도D, 강도S]	N값(회/cm) [TCR%/RQD%]
	न्मी स	<u>ا</u> د	0.0~12.0	12.0	자갈섞인 점토질 모래	SC	느슨~보통조밀	6/30~18/30
매립	10	12.0~17.3	5.3	자갈 및 모래섞인 실트질 점토 CL 견고		견고	9/30~15/30	
		17.3~19.5 2.2		2.2	고소성의 실트질 점토	CH	매우연약	1/30
BH-1	ਸੀ ਟ	え	19.5~21.5	2.0	실트질 점토	CL	매우연약	1/30
	되스	15	21.5~26.5	5.0	고소성의 실트질 점토	CH	연약	3/30~4/30
			26.5~32.5	6.0	실트질 점토	CL	연약~견고	15/30
	연	암	32.5~33.5	1.0	응회암의 연암	SR	[3, 3]	[70%/10%]

- (다) 표준관입시험
 - 1) 대야저수지

○ 시추작업과 병행하여 각 지층별 상대밀도 및 연경도를 파악하고, 교란시료를 채취하여 지층분

류를 실시하였음

총 43회 수행된 표준관입시험의 N값(회/cm)분포 분석결과 매립층 모래는 7/30~34/30(평균 13/30)이며, 퇴적층 점토는 0/30~9/30(평균 6/30), 퇴적층 모래는 36/30~41/30(평균 39/30), 풍화토는 34/30~50/22(평균 46/30)으로 나타남

	표준관입시험(회/cm)												
공 번	1.0m	2.0m	3.0m	4.0m	5.0m	6.0m	7.0m	8.0m	9.0m	10.0m			
	11.0m	12.0m	13.0m	14.0m	15.0m	16.0m	17.0m	18.0m	19.0m	20.0m			
	21.0m	22.0m	23.0m	24.0m	-	-	-	-	-	-			
	11/30	9/30	7/30	7/30	11/30	8/30	11/30	8/30	10/30	14/30			
B-1	13/30	0/30	U/D	U/D	9/30	8/30	4/30	8/30	7/30	7/30			
	36/30	41/30	38/30	50/22	-	-	-	-	-	-			
B-2	10/30	10/30	11/30	9/30	7/30	11/30	13/30	13/30	14/30	16/30			
	15/30	34/30	31/30	2/30	U/D	U/D	U/D	8/30	7/30	9/30			
	36/30	41/30	34/30	50/28	-	-	-	-	-	-			

표 2-7 심도별 시험결과(대야저수지)

표 2-8 표준관입시험 분석결과(대야저수지)

	표준관입시험(회/cm)									
공 번	매립층	퇴격	석층	풍화대	히 스					
	모 래	점토	모 래	풍화토	<u>भू</u> म					
B-1	7/30~14/30	0/30~9/30	36/30~41/30	38/30~50/22	22					
B-2	7/30~34/30	2/30~9/30	36/30~41/30	34/30~50/28	21					
분석결과 (평 균)	7/30~34/30 (13/30)	0/30~9/30 (6/30)	36/30~41/30 (39/30)	34/30~50/22 (46/30)	-					

그림 2-18 표준관입시험 결과 분석(대야저수지)

2) 중장저수지

 시추작업과 병행하여 각 지층별 상대밀도 및 연경도를 파악하고, 교란시료를 채취하여 지층분 류를 실시하였음 ○ 총 34회의 표준관입시험 N값(회/cm)분포 분석결과 매립층 점토는 5/30~13/30(평균 10/30)
 이며, 퇴적층 점토는 2/30~29/30(평균 8/30), 퇴적층 모래는 35/30, 풍화토는 50/22~50/14(평균 50/18)로 나타남

표 2-9 심도별 시험결과(중장저수지)

		표준관입시험(회/cm)										
공 번	1.5m	3.0m	4.5m	6.0m	7.5m	9.0m	10.5m	12.0m	13.5m	15.0m	16.5m	
	18.0m	19.5m	21.0m	22.5m	24.0m	25.5m	27.0m	28.5m	30.0m	31.0m	-	
DII 1	11/30	10/30	11/30	13/30	7/30	7/30	9/30	10/30	5/30	6/30	UD	
BH-1	6/30	UD	6/30	UD	6/30	12/30	29/30	35/30	50/22	50/14	-	
	12/30	13/30	13/30	12/30	8/30	10/30	11/30	9/30	8/30	6/30	6/30	
BH-2	6/30	2/30	6/30	7/30	7/30	-	-	-	-	-	-	

표 2-10 표준관입시험 분석결과(중장저수지)

	표준관입시험(회/cm)									
공 번	매루	실층	퇴격	석층	풍화대	키 스				
	점토	자 갈	점 토	모 래	풍화토	욋 구				
BH-1	5/30~13/30	-	6/30~29/30	35/30	50/22~50/14	18				
BH-2	8/30~13/30	-	2/30~7/30	-	-	16				
분석결과 (평 균)	5/30~13/30 (10/30)	-	2/30~29/30 (8/30)	35/30	50/22~50/14 (50/18)	합계 34				
	यो जन्म आ	7 ነት ተ	ל ב	ዝ እንጉ ዛ ተ						

그림 2-19 표준관입시험 결과분석(중장저수지)

3) 탄동저수지

- 시추작업과 병행하여 각 지층별 상대밀도 및 연경도를 파악하고, 교란시료를 채취하여 지층분
 류를 실시하였음
- 총 27회의 표준관입시험 N값(회/cm)분포 분석결과 매립층 점토는 6/30~18/30(평균 12/30)
 이며, 매립층 모래는 9/30~15/30(평균 12/30), 퇴적층 점성토는 1/30~15/30(평균 7/30)으로 나타남

표 2-11 심도별 시험결과(탄동저수지)

		표준관입시험(회/cm)											
ज भो	1.0m	2.0m	3.0m	4.0m	5.0m	6.0m	7.0m	8.0m	9.0m	10.0m			
5 1	11.0m	12.0m	13.0m	14.0m	15.0m	16.0m	17.0m	18.0m	19.0m	20.0m			
	21.0m	22.0m	23.0m	24.0m	-	-	-	-	-	-			
BH-1	18/30	12/30	12/30	8/30	6/30	7/30	13/30	13/30	16/30	11/30			
	9/30	10/30	15/30	15/30	12/30	10/30	U/D	1/30	U/D	1/30			
	3/30	U/D	3/30	4/30	U/D	7/30	13/30	15/30	12/30	14/30			

표 2-12 표준관입시험 분석결과(탄동저수지)

		표준관입시험(회/cm)		
공 번	매력	퇴적층	히 스	
	점성토	모 래	점성토	첫 ㅜ
BH-1	6/30~18/30	9/30~15/30	1/30~15/30	27
분석결과 (평 균)	6/30~18/30 (평균 12/30)	9/30~15/30 (평균 12/30)	1/30~15/30 (평균 7/30)	-

그림 2-20 표준관입시험 결과 분석(탄동저수지)

(라) 피에조콘 관입 및 간극수압소산시험

- 1) 대야저수지
- 가) 피에조콘관입시험(CPT)
- 퇴적층 지반 내 흙의 분류, 비배수전단강도, 과압밀비 등을 파악하고, 마찰응력비와 간극 수압 비를 이용하여 토질을 분류함

그림 2-21 피에조콘관입시험 결과(대야저수지)

표 2-13 피에조콘관입시험 결과분석(대야저수지)

구	분		콘관입저항치 (MPa)	마찰저항력 (kPa)	간극수압 (kPa)	비배수전단강도 (kPa)	과압밀비 (OCR)
D1 0	범	위	1.2~7.4	12.0~65.4	142.5~822.3	56.3~278.2	0.9~4.3
Bn-2	평	균	1.5	21.7	634.0	75.3	1.2

나) 간극수압소산시험(CPTu)

퇴적층내 분포하는 점성토층의 수평압밀계수를 결정하여 압밀이방성 파악하고, 퇴적층 성과분
 석시 간극수압소산시험 결과를 통한 압밀이방성을 파악함

표 2-14 수평압밀계수 산정(대야저수지)

구 분	Torstensson	Teh	Houlsby & Teh		
수평압밀계수 산 정 방 법	$c_{h} = \frac{T_{50}}{t_{50}} R^{2}$	$c_{h=}(\frac{m}{M})^2 \cdot \sqrt{I_R} \cdot r_o^2$	$c_{h} = \frac{T_{50} \cdot r_{o}^{2}}{t_{50}} \cdot \sqrt{I_{R}}$		
여기서, T50 :	압밀도 50%일 때의 시간계수	ro : 콘의 반경	M : 곡선의 경사		
t50 :	압밀도 50%까지의 소요시간	IR : 강성지수	m : 초기 기울기		
R :	공동의 등가반경				

표 2-15 간극수압소산시험 결과분석(대야저수지)

ਹ ਸੀ	시험심도	t50		수평압밀겨	수(㎡/sec)	
공 번	(GLm)	(sec)	Torstensson	Teh	Houlsby & Teh	평 균
ЪЭ	15.62	1,499.2	6.16×10-3	4.05×10-3	5.21×10-3	5.14×10-3
B-2	17.06	2,308.8	4.00×10-3	3.05×10-3	3.38×10-3	3.48×10-3

2) 중장저수지

가) 피에조콘관입시험(CPT)

 퇴적층 지반 내 흙의 분류, 비배수전단강도, 과압밀비 등을 파악하고, 마찰응력비와 간극 수압 비를 이용하여 토질을 분류함

그림 2-22 피에조콘관입시험 결과(중장저수지)

표 2-16 피에조콘관입시험 결과분석(중장저수지)

구	분		시험심도 (GLm)	콘관입저항치 (MPa)	마찰저항력 (kPa)	간극수압 (kPa)	비배수전단강도 (kPa)	과압밀비 (OCR)
B-1	범	위	15 20 24 79	445.3~5,282.7	5.9~108.5	28.6~243.1	6.0~237.6	0.11~3.76
	평	균	15.20~24.78	1,137.7	27.0	117.4	46.6	0.85

나) 간극수압소산시험(CPTu)

퇴적층내 분포하는 점성토층의 수평압밀계수를 결정하여 압밀이방성 파악하고, 퇴적층 성과분
 석시 간극수압소산시험 결과를 통한 압밀이방성을 파악함

표 2-17 수평압밀계수 산정(중장저수지)

구 분	Torstensson	Teh	Houlsby & Teh		
수평압밀계수 산 정 방 법	$c_{h} = \frac{T_{50}}{t_{50}} R^{2}$	$c_{h=}(\frac{m}{M})^2 \cdot \sqrt{I_R} \cdot r_o^2$	$c_{h} = \frac{T_{50} \cdot r_o^2}{t_{50}} \cdot \sqrt{I_R}$		
여기서, T50 :	압밀도 50%일 때의 시간계수	ro : 콘의 반경	M : 곡선의 경사		
t50 :	압밀도 50%까지의 소요시간	IR : 강성지수	m : 초기 기울기		
R :	공동의 등가반경				

표 2-18 간극수압소산시험 결과분석(중장저수지)

공 번	시험심도	t50	수평압밀계수(㎡/sec)						
	(GLm)	(sec)	Torstensson	Teh	Houlsby & Teh	평 균			
B-1	19.9	11,253.4	8.21×10-4	7.12×10-4	6.94×10-4	7.42×10-4			
	22.5	5,651.8	1.63×10-3	1.66×10-3	1.38×10-3	1.56×10-3			

3) 탄동저수지

가) 피에조콘관입시험(CPT)

 퇴적층 지반 내 흙의 분류, 비배수전단강도, 과압밀비 등을 파악하고, 마찰응력비와 간극 수압 비를 이용하여 토질을 분류함

그림 2-23 피에조콘관입시험 결과(탄동저수지)

표 2-19 피에조콘관입시험 결과분석(탄동저수지)

구 분			시험심도 (GLm)	콘관입저항치 (MPa)	마찰저항력 (kPa)	간극수압 (kPa)	비배수전단강도 (kPa)	과압밀비 (OCR)
CPT-1	범	위	10.00 20 5/	821.6~2,524.1	6.5~81.5	229.5~708.1	23.8~101.5	0.43~1.57
	평	균	18.00~28.54	1,069.2	11.1	537.7	34.6	0.62

나) 간극수압소산시험(CPTu)

퇴적층내 분포하는 점성토층의 수평압밀계수를 결정하여 압밀이방성 파악하고, 퇴적층 성과분
 석시 간극수압소산시험 결과를 통한 압밀이방성을 파악함

표 2-20 간극수압소산시험 결과분석(탄동저수지)

공 번	시험심도	t ₅₀	수평압밀계수(㎡/sec)						
	(GLm)	(sec)	Torstensson	Teh	Houlsby & Teh	평 균			
CPT-1	19.63	4,711.0	1.96×10^{-3}	1.50×10^{-3}	1.66×10^{-3}	1.71×10^{-3}			
	23.24	1,773.2	5.21×10^{-3}	4.02×10^{-3}	4.40×10^{-3}	4.55×10^{-3}			
	24.05	1,527.6	6.05×10^{-3}	5.12×10^{-3}	5.11×10^{-3}	5.43×10^{-3}			

- (마) 실내시험
- 1) 대야저수지
- 가) 기본물성 시험

- 자연함수비(%) 분석결과 매립층 모래는 8.8~19.6%(평균 15.4%), 퇴적층 점토는 33.7~38.5%(평균 36.0%)의 결과를 보임
- 비중 분석결과 매립층 모래는 2.624~2.675(평균 2.655), 퇴적층 점토는 2.684~2.698(평균 2.693)의 결과를 보임
- 통일분류 결과는 CH, CL, SM이며, 실내시험이 실시된 심도 외에 시추과정에서 파악되는 전반
 적인 상태를 감안하여 시추주상도 상에서 토층을 구분하였음

고버	시험심도	함수비	비 중 (Gs)	Atterberg	Limits(%)	Grain Size Distribution(%)			통일
중 번	(GLm)	(Wn, %)		LL	PI	No.4	No.200	2 <i>µ</i> m	분류
	1.0	17.1	2.663	N.P.	N.P.	99.1	44.4	7.0	SM
	8.0	16.0	2.657	N.P.	N.P.	72.3	30.9	6.0	SM
D 1	12.5~13.3	38.5	2.684	34.5	13.8	100.0	99.4	34.8	CL
B-1	13.3~14.1	36.5	2.689	45.3	27.4	100.0	99.3	37.0	CL
	14.1~14.9	36.0	2.698	52.4	34.8	100.0	99.7	40.4	CH
	19.0	35.4	2.694	46.5	30.0	100.0	96.4	33.3	CL
	3.0	8.8	2.624	N.P.	N.P.	76.9	25.7	4.7	SM
	6.0	19.6	2.675	N.P.	N.P.	98.7	47.5	10.7	SM
D O	15.0~15.8	33.7	2.692	46.8	31.1	97.5	79.7	32.8	CL
В-2	15.8~16.6	35.6	2.693	50.5	33.0	100.0	99.6	42.0	СН
	16.6~17.4	35.7	2.696	54.5	36.4	100.0	99.9	44.7	СН
	20.0	36.7	2.695	48.1	28.2	100.0	97.4	37.3	CL

표 2-21 물성시험 결과(대야저수지)

그림 2-24 기본물성 분포도(대야저수지)

나) 일축압축시험

 ○ 일축압축강도(qu, kPa) 분석결과 90.9~192.1의 범위와 125.4의 평균값을 보이며, 단위중량 (*r*t, kN/m³)은 17.66~18.59의 범위와 18.21의 평균값으로 나타남

표 2-22 일축압축시험 결과(대야저수지)

구 분	시험심도 (GLm)	토 층	단위중량 (γt, kN/m³)	일축압축강도 (qu, kPa)	통일분류
B-1	12.5~13.3		17.90	90.9	CL
	13.3~14.1		18.18	107.6	CL
	14.1~14.9	티고초	17.66	115.2	СН
В-2	15.0~15.8	되식증	18.45	120.0	CL
	15.8~16.6		18.59	126.5	СН
	16.6~17.4		18.47	192.1	СН

	단위	중량(γt, kN	/m3)			일축압	·축강도(qu,	kPa)	
1	4 16.5	19	21.5	24	0	50	100	150	200
0 15 30 30 30		18.21			0 (ш(-)`15 문 30		 125	5.4	•

그림 2-25 단위중량 및 일축압축강도 분석(대야저수지)

다) 삼축압축시험

- 현장조건과 비슷한 상태의 강도정수를 결정하기 위해 한국산업규격(KS F 2346)에 의거, 삼축 압축시험(UU)을 실시하였고, 시험구간의 비배수전단강도를 구하였음
- 비배수전단강도(qu/2 & Cuu, kPa) 분석결과 45.5~100.7의 범위와 64.4의 평균값으로 나타 남

표 2-23 삼축압축시험(UU) 결과(대야저수지)

구 분	시험심도 (GLm)	토층	비배수전단강도 (Cuu, kPa)	통일분류
	12.5~13.3		47.9	CL
B-1	13.3~14.1		54.3	CL
	14.1~14.9	티고초	62.3	СН
	15.0~15.8	뇌식증	64.6	CL
В-2	15.8~16.6		67.1	СН
	16.6~17.4		100.7	СН

그림 2-26 비배수전단강도 분석(대야저수지)

라) 표준압밀시험

- 퇴적점성토의 불교란 시료를 대상으로 압밀특성을 파악하기 위하여 한국산업규격(KS F 2316) 에 의거하여 실시하였음
- 선행압밀하중(Pc, kN/m²) 분석결과 113.3~226.2의 범위와 155.1의 평균값을 보임
- 압축지수(Cc) 분석결과 0.329~0.432의 범위와 0.379의 평균값을 보임
- 초기간극비(e₀) 분석결과 0.960~1.045의 범위와 0.994의 평균값을 보임
- 압밀계수(CV, cm2/s) 분석결과 5.991×10⁻⁴~1.959×10⁻² 범위와 6.383×10⁻³ 의 평균값을 보임
- 투수계수(kv, cm/s) 분석결과 7.481×10⁻⁹~1.351×10-6 범위와 2.517×10⁻⁷ 의 평균값을 보임

표 2-24 표준압밀시험 결과(대야저수지)

공 번	시험심도	토 층	선행압밀하중	압축지수	초기간극비	평균 압밀계수	평균 투수계수	통일
	(GLm)		$(Pc. kN/m^2)$	(Cc)	(e_0)	$(CV, cm^2/s)$	(kv. cm/s)	분규
B-1	12.5~13.3		113.3	0.329	1.045	1.618×10^{-2}	6.621×10^{-7}	CL
	13.3~14.1		119.4	0.391	1.037	5.107×10^{-3}	2.554×10^{-7}	CL
	14.1~14.9	티거츠	154.1	0.374	0.992	4.104×10^{-3}	1.304×10^{-7}	CH
В-2	15.0~15.8	স্থত	146.3	0.396	0.970	4.136×10^{-3}	1.731×10^{-7}	CL
	15.8~16.6		171.1	0.352	0.962	3.866×10^{-3}	1.313×10^{-7}	CH
	16.6~17.4		226.2	0.432	0.960	4.906×10^{-3}	1.576×10^{-7}	СН

그림 2-27 표준압밀시험 결과(대야저수지)

2) 중장저수지

- 가) 기본물성 시험
- 자연함수비(%) 분석결과 퇴적층 점토는 24.8~31.3%(평균 27.2%)의 결과를 보임
- 비중 분석결과 퇴적층 점토는 2.681~2.697(평균 2.690)의 결과를 보임
- 통일분류 결과는 CL이며, 실내시험이 실시된 심도 외에 시추과정에서 파악되는 전반적인 상태 를 감안하여 시추주상도 상에서 토층을 구분하였음

공 번	시험심도 (GLm)	함수비	비 중 (Gs)	Atterberg	Atterberg Limits(%)		Grain Size Distribution(%)			
		(Wn, %)		LL	PI	No.4	No.200	2 <i>µ</i> m	분류	
	16.0~16.8	26.8	2.688	43.6	25.5	100.0	95.5	26.0	CL	
BH-1	19.0~19.8	31.3	2.690	45.5	28.8	100.0	95.6	31.9	CL	
	22.0~22.8	28.4	2.681	41.4	17.3	100.0	93.5	25.7	CL	
BH-2	17.0~17.8	24.8	2.694	45.0	26.6	100.0	98.9	29.0	CL	
	20.0~20.8	26.2	2.690	44.4	25.8	100.0	98.8	27.4	CL	
	23.0~23.8	25.4	2.697	45.2	27.0	100.0	97.8	31.4	CL	

표 2-25 물성시험 결과(중장저수지)

2,50

0

20

그림 2-28 기본물성 분포도(중장저수지)

2,70

8

o 퇴적 점토

2,80

나) 일축압축시험

○ 일축압축강도(qu, kPa) 분석결과 41.9kPa~196.0kPa의 범위와 114.9kPa의 평균값을 보이 며, 단위중량(rt, kN/m³)은 18.29~19.40의 범위와 18.68의 평균값으로 나타남

표 2-26 일축압축시험 결과(중장저수지)

구 분	시험심도 (GLm)	토 층	단위중량 (γt, kN/m³)	일축압축강도 (qu, kPa)	통일분류
BH-1	16.0~16.8		18.41	175.6	CL
	19.0~19.8		18.29	41.9	CL
	22.0~22.8	티기초	18.83	87.4	CL
BH-2	17.0~17.8	되식증	18.38	196.0	CL
	20.0~20.8		18.88	73.7	CL
	23.0~23.8		19.40	114.9	CL

일축압축강도(qu, kPa)

그림 2-29 일축압축강도 분석(중장저수지)

다) 삼축압축시험

- 현장조건과 비슷한 상태의 강도정수를 결정하기 위해 한국산업규격(KS F 2346)에 의거, 삼축 압축시험(UU)을 실시하였고, 시험구간의 비배수전단강도를 구하였음
- 비배수전단강도(qu/2 & Cuu, kPa) 분석결과 21.0~102.4kPa의 범위와 59.8kPa의 평균값 으로 나타남

표 2-27 삼축압축시험(UU) 결과(중장저수지)

구 분	시험심도 (GLm)	토 층	비배수전단강도 (Cuu, kPa)	통일분류
	16.0~16.8		93.7	CL
B-1 B-2	19.0~19.8		27.4	CL
	22.0~22.8	ビスネ	46.3	CL
	17.0~17.8	뇌식중	102.4	CL
	20.0~20.8		41.4	CL
	23.0~23.8		61.8	CL

그림 2-30 비배수전단강도 분석(중장저수지)

라) 표준압밀시험

- 퇴적점성토의 불교란 시료를 대상으로 압밀특성을 파악하기 위하여 한국산업규격(KS F 2316) 에 의거하여 실시하였음
- 선행압밀하중(Pc, kN/m²) 분석결과 80.2~301.9kPa의 범위와 184.6kPa의 평균값을 보임
- 압축지수(Cc) 분석결과 0.186~0.261의 범위와 0.226의 평균값을 보임
- 초기간극비(e₀) 분석결과 0.677~0.865의 범위와 0.772의 평균값을 보임
- 압밀계수(CV, cm²/s) 분석결과 3.813×10⁻³~1.015×10⁻² 범위와 6.150×10⁻³ 의 평균값을 보임
- 투수계수(kv, cm/s) 분석결과 1.024×10⁻⁷~3.102×10⁻⁶ 범위와 1.780×10⁻⁷ 의 평균값을 보 임

공 번	시험심도 (GL,-m)	토 층	선행압밀하중 (Pc. kN/m ²)	압축지수 (Cc)	초기간극비 (eo)	평균 압밀계수 (CV. cm ² /s)	평균 투수계수 (kv. cm/s)	통일 분류
	16.0~16.8		143.7	0.249	0.828	8.476×10^{-3}	1.581×10^{-7}	CL
BH-1	19.0~19.8		80.2	0.261	0.865	3.813×10^{-3}	1.675×10^{-7}	CL
	22.0~22.8		182.7	0.210	0.784	5.642×10^{-3}	1.378×10^{-7}	CL
	17.0~17.8	되식승	301.9	0.186	0.677	4.959×10^{-3}	1.892×10^{-7}	CL
BH-2	20.0~20.8		137.8	0.198	0.768	1.015×10^{-2}	3.102×10^{-7}	CL
	23.0~23.8		261.2	0.249	0.712	3.855×10^{-3}	1.024×10^{-7}	CL

표 2-28 표준압밀시험 결과(중장저수지)

그림 2-31 표준압밀시험 결과(중장저수지)

- 3) 탄동저수지
- 가) 기본물성시험
- 자연함수비(%) 분석결과 퇴적층 점토는 32.6~38.0%(평균 35.3%)의 결과를 보임
- 비중 분석결과 퇴적층 점토는 2.690~2.695(평균 2.693)의 결과를 보임
- 통일분류 결과는 CL, CH이며, 실내시험이 실시된 심도 외에 시추과정에서 파악되는 전반적인 상태를 감안하여 시추주상도 상에서 토층을 구분하였음

ज भो	시험심도	함수비	비 중	Atterberg	Limits(%)	Grain S	ize Distrib	ution(%)	통일
공 번	(GLm)	(Wn, %)	(Gs)	LL	PI	No.4	No.200	2 <i>µ</i> m	분류
	17.8~18.6	35.3	2.693	51.2	32.5	100.0	99.4	39.4	СН
	19.5~20.3	34.3	2.690	44.7	26.9	100.0	99.4	32.7	CL
BH-2	21.5~22.3	38.0	2.695	58.8	38.6	99.6	97.5	40.5	СН
	23.5~24.3	36.3	2.694	53.2	33.4	100.0	99.4	37.2	CH
	26.5~27.3	32.6	2.692	47.6	29.1	100.0	99.0	34.8	CL

표 2-29 물성시험 결과(탄동저수지)

그림 2-32 기본물성 분포도(탄동저수지)

- 나) 일축압축시험
- 일축압축강도(qu, kPa) 분석결과 62.4kPa~108.6kPa의 범위와 80.8kPa의 평균값을 보이며, 단위중량(γt, kN/m³)은 17.93~18.66의 범위와 18.24의 평균값으로 나타남

표 2-30 일축압축시험 결과(탄동저수지)

구 분	시험심도 (GLm)	토 층	습윤단위중량 (γt, kN/m ³)	일축압축강도 (qu, kPa)	통일 분류		일축압극	축강도((qu, k	Pa)	
	17.8~18.6		18.32	62.4	CH	0	30	60	90	120	150
	19.5~20.3		17.93	86.3	CL	Ê Î 10		8	0.8		
BH-2	21.5~22.3	퇴적층	18.03	108.6	CH		1				
	23.5~24.3		18.28	79.5	CH	버 ₂₀ 코				·	
	26.5~27.3		18.66	67.2	CL	30	l		1		

- 다) 삼축압축시험
- 현장조건과 비슷한 상태의 강도정수를 결정하기 위해 미국 재료시험 협회 규걱(ASTM 4767) 에 의거, 삼축압축시험(CU)을 실시하였고, 시험구간의 비배수전단강도를 구하였음
- 비배수전단강도(qu/2 & Ccu, kPa) 분석결과 13.1~54.3kPa의 범위와 35.0kPa의 평균값으 로 나타남

표 2-31 삼축압축시험(CU) 결과(탄동저수지)

- H	시험심도	토 층			투이거크		
수 문	(GLm)		Cuu(kPa)	Ø(deg.)	Cuu'(kPa)	Ø'(deg.)	농일분류
	17.8~18.6		36.6	11.1	8.1	28.2	CH
	19.5~20.3		13.1	13.3	14.1	22.6	CL
BH-1	21.5~22.3	퇴적층	28.1	13.3	16.6	25.5	СН
-	23.5~24.3		29.2	14.4	21.8	22.9	CH
	26.5~27.3		41.4	11.6	23.5	24.0	CL

그림 2-33 비배수전단강도 분석(탄동저수지)

- 라) 표준압밀시험
- 선행압밀하중(Pc, kN/m²) 분석결과 103.6~215.8kPa의 범위와 151.4kPa의 평균값을 보임
- 압축지수(Cc) 분석결과 0.254~0.375의 범위와 0.306의 평균값을 보임
- 초기간극비(e0) 분석결과 0.876~1.030의 범위와 0.963의 평균값을 보임
- 압밀계수(CV, cm²/s) 분석결과 9.966×10⁻⁴~6.562×10⁻³ 범위와 3.399×10⁻³ 의 평균값을 보임
- 투수계수(kv, cm/s) 분석결과 1.061×10⁻⁸~3.949×10⁻⁷ 범위와 1.202×10⁻⁷ 의 평균값을 보 임

표 2-32 표준압밀시험 결과(탄동저수지)

공 번	시험심도 (GL. - m)	토 층	선행압밀하중 (Pc. kN/m ²)	압축지수 (Cc)	초기간극비 (en)	평균 압밀계수 (CV. cm ² /s)	평균 투수계수 (kv. cm/s)	통일 분류
	17.8~18.6	퇴적층	103.6	0.290	0.961	4.309×10^{-3}	1.413×10^{-7}	СН
BH-1	19.5~20.3		117.0	0.296	0.969	4.480×10^{-3}	1.990×10^{-7}	CL
	21.5~22.3		136.8	0.313	1.030	3.811×10^{-3}	1.319×10^{-7}	CH
	23.5~24.3		183.6	0.375	0.981	1.580×10^{-3}	4.525×10^{-8}	СН
	26.5~27.3		215.8	0.254	0.876	2.815×10^{-3}	8.341×10^{-8}	CL

그림 2-34 표준압밀시험 결과(탄동저수지)

(3) 기존 연약지반 저수지 설계법의 평가

○ 조사공번별 침하량 주) * : 최대침하발생위치

1043

조사공번	DP-1	DP-2	*DP-3	DP-4	DP-5
성토고(m)	9.26	9.50	9.56	9.56	9.58
면약종두제(m)	6.62	9.50	9.97	8.82	5.05
압밀칭혀량(cm)	111.5	144.1	152.0	121.7	96.0
조사공번	DP-1(양면)	DP-2(양면)	DP-3(양면)	DP-4(양면)	DP-5(일면)

8105

1987

2429

1203

○ 조사공번별압밀침하시간

압명철혜시간(일)

- 주) 압밀도90%기준
- 〈DP-3에서의 압밀도-침하경과일〉

Kang et.al., 2009

조사	연약층후	rt	압축 지수	초기 가극비	Pc	압밀계수 Cv	점초 (k)	착력 Pa)	비고
위치	(m)	(kN/m³)	(Cc)	eo	(kPa)	(cm²/sec)	UU	ΡZ	, –
DP-1	6.62	17.034	0.41	1.250	-	1.034e-3	30	26	
DP-2	9.50	17.083	0.42	1.205	100	1.841e-3	40	26	성토체의 다의주랴-10
DP-3	9.97	16.681	0.45	1.367	99	3.020e-4	19	22	(kN/m ³)
DP-4	8.82	17.338	0.37	1.180	78	9.611e-4	33	16	(기설계사됴 참조)
DP-5	5.05	17.034	0.41	1.250	_	1.034e-3	31	16	

Kang et.al., 2009

(가) 계측치에 의한 역해석

○ 1024에서의 침하량1.164m (Kang et.al., 2009)

○ 전체침하량1.836m = 전단변형에 의한 침하량 0.49m + 압밀에 의한 침하량 1.346m

- 압밀도95%에 도달하는 시간 : 6155일(2017년)
- 압밀도95%에서의 침하량: 1.744m(2017년 둑마루표고 : 11.1m)
- 압밀에의한 지반정수 변화
- 추정 압밀도가20% 진행된 상황

	토층구분	사전지반조사(BH-2)	확인지반조사(CH-1)	비교결과
실트질	초하 이 T	10.0m	9.2m	0.8m 심도
점토층	Nネ	1~7(평균3)	1~2(평균1.3)	1.7타저하
실트질	초하 이 T	<u>충</u> 후 1.2m		0.5m
모래층	Nオ	50/12	20~50(평균 35)	`15타저하
	토층구분	사전지반조사(BH-2)	확인지반조사(CH-1)	비교결과
실트질	초하	10.0m	9.2m	0.8m 심도
점토층	NŽ]	1~7(평균3)	1~2(평균1.3)	1.7타저하
실트질	츠하 하다	1.2m	1.7m	0.5m

- 압밀도가 90% 진행된 상황
- 비배수강도-유효상재압의관계(Su/Po') 강도증가율
- Skempton공식에 의한 강도증가율 : 0.111(평균)

•
$$\frac{Su}{P_0'} = 0.11 + 0.0037 \times \text{PI}$$

구분 공번	PI	Su/Po'	Su(kg/cm²)	심 도(m)
BH-1	21.9	0.111	0.408	2.0
BH-2	38.3	0.111	0.191	8.0
BH-3	30.9	0.111	0.332	3.0
평균	30.4	0.111	0.310	4.3

- Hansbo공식에 의한 강도증가율 : 0.231(평균)

· Su/Po'=0.45LL (단, LL>40, LL는 각 시료의 시험치 적용)

구분 공번	LL	Su/Po'
BH-1	44.3	0.199
BH-2	63.9	0.288
BH-3	45.9	0.207
평균	51.4	0.231

- Bjerrum 공식에 의한 강도 증가율 - 0.246(평균)

• Su/Po'= 0.45(PI)0.5

• BH-1 = 0.211

• BH-2 = 0.278

 \cdot BH-3 = 0.250

물성	값	단위
Su0	20	kPa
Н	1	m
Rt	16.681	kN/m^3
S	100	%
Rsub	6.874	
PO	3.437	kN/m^2
Rt_fill	19	kN/m^3
dH	10	m
dP'	190	
dP'_90	171	
P1	174.437	
금회 Pc'	113	
Su/PO'	0.246	
Su	42.912	kPa
금회 Su	48~64	

 설계에 의하면 약 20년이 경과하여 압밀도가90%에 도달하였어야하는 현 시점에 성토지반의 유효상재하중을의미하는 선행압밀하중이압밀도계산에 의한 값보다 매우 작으므로 공극수압이 소산이 설계보다 지연되고 있는 것으로 판단.

○ 이 과제의 출발점인 압밀설계방법의 부정확함을 확인하였음.

1) 정밀안전진단 둑마루표고

○ 역해석결과

		지반고			
기준점EL		10.153	5.011	5.011	
측점	측점거리	2016년9월	2018년	2020년	
0	0	12.08	12.02	12.02	
1	20	12.11	12.07	12.07	
2	40	12.09	12.02	12.02	
3	60	12.05	12.03	12.03	
4	80	11.93	11.89	11.89	
5	100	11.64	11.6	11.6	
6	120	11.50	11.47	11.47	
7	140	11.46	11.43	11.43	
8	160	11.51	11.44	11.44	
9	180	11.51	11.45	11.45	
10	200	11.63	11.61	11.61	
11	220	11.60	11.56	11.56	
12	240	11.60	11.55	11.55	
13	260	11.76	11.7	11.7	
14	280	11.85	11.79	11.79	
15	300	12.02	11.93	11.93	
16	320	12.22	12.18	12.18	
17	340	12.27	12.19	12.19	
18	360	12.14	12.16	12.16	
	369	11.75	11.89		
	374	9.61	9.33	9.33	

○ 2017년에 둑마루표고 11.1m로 압밀이 종료되었어야하지만 2020년 현재 압밀은 진행중임

(나) Terzaghi 압밀이론의 문제점

아래 그림들은 양산지역에서 채취한 연약점토의 표준압밀시험결과를 Terzaghi의 압밀이론과 비교 한 것이다. 익히 알려진 것과 같이 압밀이론에 의한 압밀이 종료된 이후에도 상당한 2차 압축침하 가 발생하는 것을 알 수 있다. 0.8kgf/cm2의 하중 단계에서는 1000sec 이전에 1차 압밀이 종료되 는 것으로 나타났으나 3.2kgf/cm2의 하중 단계에서는 1000sec 이후에 1차 압밀이 종료되는 등 일관된 경향을 나타내고 있지 않다. 2차 압축침하가 시작되는 시점을 1차 압밀 종료 직후로 보면 실험실에서의 실제 압밀 현상 조차 이론과 차이를 나타내므로 2차 압축침하의 시작 시점을 처음부 터 동시에 시작되는 경우, 압밀 진행 중 특정 압밀도에서 시작하는 경우, 기존과 같이 1차 압밀이 종료된 이후에 시작되는 경우 등에 대해서 이론과 실험 결과를 비교하는 많은 연구들이 있었으나 이상과 같이 압밀이 종료되는 시점이 압밀침하곡선의 형상에서 불규칙하기 때문에 일관된 이론으로 발전시키지 못하고 있다. 압밀현상을 인위적으로 1차 압밀과 2차 압축침하로 구분하는 것은 실제 연약점토지반의 침하를 정확하게 반영하지 못한다는 문제의식으로 두 단계를 하나의 이론으로 통일 하려는 많은 시도들도 있었다.

Terzaghi의 압밀이론을 시간의 경과와 깊이에 따라서 나타낸 아이소크론이다. 1면 배수조건을 적 용하여 유한차분법으로 해석한 것이다. 깊이에 따른 공극수압의 분포는 초기조건 80에서 시간의 경 과에 따라서 화살표 방향으로 분포곡선이 감소하여 무한대의 시간이 흐르면 모든 깊이에서 0을 나 타내는 세로축과 일치하게 된다. 표준압밀시험에서 시료의 압축량에 해당하는 지표면의 침하량은 아 래 식과 같이 모든 깊이에서의 공극수압의 분포를 적분하여 평균 압밀도로 환산한 값에 대응한다. 배수경계면에 가까운 깊이에서는 압밀이 조기에 종료되므로 침하량에서 작은 비중을 차지해야 하지 만 위 실험 결과에서 볼 수 있듯이 1차 압밀이 종료된 이후에도 상당한 크기의 침하가 계속해서 발 생하므로 단순히 아이소크론을 적분하여 평균을 취한 이론 침하곡선과 실측 침하곡선은 근원적으로 일치할 수 없다.

압밀이 진행되어 공극이 감소하면 지반의 투수계수도 낮아져야 한다. Terzaghi의 압밀이론은 평 균 공극비에 대응하는 평균 투수계수를 적용하고 있으며 실용적인 측면에서 합리적이라는 평가도 있 으나 실제 물리현상을 반영하는 것이 정확할 것이다. 아래 식은 포화된 흙에서 공극이 감소하는 경 우 투수계수의 감소와 포화된 흙이 불포화되는 경우에 투수계수의 감소를 동시에 고려할 수 있는 식의 일부이다. 편미분방정식으로 구성된 압밀이론에서는 투수계수를 필연적으로 상수로 고정해야 방정식의 해가 존재하지만 수치해석에 의한 근사해법에서는 다양한 기법을 적용하여 근사적으로 투 수계수의 변화를 반영할 수 있으며 아래 식은 그 일례를 나타내고 있다.

$$\cdot \quad k = 10^{\frac{\varDelta e}{c_k}} \times k_r(p) \times k_{sat}$$

여기서 ck : 공극비의 변화량 ⊿e에 따른 투수계수비

 $k_r(p)$: 포화상태의 투수계수 k_{sat} 과 간극수압의 변화에 따른 투수계수비 함수

(4) 표준압밀시험에 의한 점토의 초기탄성계수 산정

(가) 서론

연약지반을 조사하고 실험하는 경우에 표준관입시험, 콘관입시험 등 현장 시험과 흙의 분류를 위 한 입도시험 및 일축압축시험, 비압밀 비배수 삼축압축시험, 압밀시험 등은 관행적으로 실시하지만 압밀 비배수 삼축압축시험은 특별히 지정하지 않는 한 실시하지 않는 경우가 많다. 연약지반의 성토 안정성을 검토하는 경우에 공극수압이 소산되지 않은 재하 직후에 대해서 검토하므로 비배수 전단강 도가 필요하기 때문이다. 그러나 이와 같이 제한된 실험은 설계법을 고전적인 한계평형 해석법으로 제한한다. 한계평형 해석법은 재하 직후의 안전율은 얻을 수 있으나 시간에 따른 지반의 거동을 예 측할 수는 없다. 따라서 압밀 해석에 의한 압밀 소요 시간을 산출하고 개략적인 성토계획을 수립할 수는 있으나 구체적인 단계 성토 일정은 공사 착공 후 현장계측에 의해서 진행하게 된다. 현장 계측 에 의한 성토 안정관리로 진행하는 공사 일정이 설계에서 제시한 것과 다른 경우에는 공사 주체들 간에 불필요한 갈등을 유발할 수 있고 설계를 변경해야 할 수도 있으며 부적절한 현장 조치로 지반 이 파괴되는 경우도 발생한다. 문제가 발생한 연약지반 시공 현장을 재검토하려면 기왕의 설계에서 사용한 방법보다는 정교한 해석 방법이 필요하며 수치해석 등에 의해 정밀한 현황 파악과 성토 일 정 등 대책을 제시해야 할 필요성이 있다. 많은 수치해석 모델들이 제시되어 있고 현재도 개선되거 나 새로운 모델들이 발표되고 있으나 이러한 수치해석 모델들을 사용하려면 각 모델별로 고유한 입 력 정수들을 산출해야 하고 이를 위해서는 적합한 토질시험을 해야 한다. 여러 모델들 중에서 널리 사용되고 있는 Duncan and Chang (1970)의 hyperbolic model이나 Roscoe et al. (1958), Roscoe and Burland (1968) 등의 modified cam-clay model 등은 압밀 비배수 삼축압축시험 결과로부터 모델 정수를 산출해야 한다. 그러나 전술한 것과 같이 관행적으로 압밀 비배수 삼축압축 시험을 실시하지 않고 있으며 이러한 현실을 반영하여 한국산업규격도 「삼축압축시험에서 점성토의 비압밀, 비배수 강도 시험방법」은 규격(KS F 2346:2022)이 있으나 압밀 비배수 삼축압축시험을 하 려는 경우에는 관련 규격이 없어서 ASTM D4767-11 (2020) 등 해외 규격을 참고해야 한다. hyperbolic model은 공극수압이 소산되지 않은 재하 직후의 거동을 잘 모사하고 modified cam-clay model은 압밀이 진행되는 과정을 잘 모사한다(Lim, 1999). 압밀 비배수 삼축 압축 시 험을 하지 않은 경우에도 hyperbolic model에 필요한 정수를 구할 수 있다면 실무에서 성토 안정 관리를 위한 수치해석을 좀 더 수월하게 사용할 수 있을 것이다. Lee et al. (2007)은 피에조 콘 관입시험결과에 따른 구속탄성계수, 압밀계수 산정에 관한 연구를 하였으나 그들이 사용한 구속탄성 계수는 Terzaghi 압밀이론의 체적압축계수의 역수를 일컫는데 사용된 용어이다. Yoon et al. (2010)은 전단파 속도를 이용한 원지반 탐사에 의한 구속탄성계수가 20 MPa ~ 65 MPa 라고 하 였다. Terzaghi의 체적압축계수는 탄성을 포함한 압밀에 의한 압축을 포함한 용어이므로 구속 탄성

계수라는 용어는 실제 의미를 정확하게 표현하지 못하는 용어이다. 이와 같이 탄성계수가 점토에서 는 중요하게 평가되지 않았기 때문에 모래나 불포화풍화토 등에서 주로 연구되었다. Kim and Kim (2004) 모래에서 변형률 0.05 % 이전의 할선탄성계수가 261.50 kPa ~ 1388.68 kPa의 범위에서 aging effect를 나타낸다고 했다. Oh (2012)는 풍화토의 초기 할선탄선계수가 400 MPa ~700 MPa를 제시하여 큰 차이를 나타내고 있다.

이 연구는 수치해석에 필수적인 압밀 비배수 삼축압축시험을 대체할 수 있는 방법을 제시할 목적 으로 표준압밀시험 결과를 정밀하게 해석하여 산출한 즉시 침하량이 흙의 탄성이 압밀시험 중에 발 현되는 거동이라고 전제하고 이를 이용하여 hyperbolic model의 초기탄성계수를 산출하는 방법을 제시하려고 한다.

(나) 재료 및 방법

1) 해석에 사용한 압밀시험 즉시 침하량 자료

이 연구에서 사용한 압밀시험에 의한 즉시 침하량 자료(Table. 2-33)는 Kwon and Eam (2023) 이 점토 시료의 표준압밀시험 결과를 Terzaghi (1923)의 압밀이론과 Mesri (1973)의 2차 압축 이 론을 적용하여 정밀하게 산출한 결과이다. 여기서, 즉시침하량은 1차 압밀침하 및 2차 압축침하에 의한 실측 자료의 curve fitting을 향상시키기 위해서 도입한 인자이므로 시간적 범위나 할선탄성계 수와 같은 변형범위가 없고 문자 그대로 이론적인 즉시침하량이다. Kwon and Eam (2023)은 2차 압축은 1차 압밀도 91 % ~ 98 %인 압밀 종반기에 시작된다고 하였으므로 이 연구에서도 같은 조 건에서 산출된 즉시 침하량을 이용하여 초기탄성계수를 산출하는데 이용하였다.

삼축압축시험은 압밀 후 전단시키므로 여러 개의 시료를 사용하지만 압밀시험은 탄성계수를 구하 기 위해서 동일한 시료를 반복해서 사용하므로 조건이 일치하지 않는다. 압밀시험을 각 하중별로 다 른 시료를 사용한다면 하중이 0에서 임의의 값으로 증가하게 되고 하중증가율을 산정할 수 없게 된 다. 압밀시험은 하중증가율이 1인 경우에 이론과 실험이 비슷한 경향을 나타낸다 (Leonards and Altschaeffl, 1964). 각각 다른 시료로 압밀을 진행한다면 Terzaghi의 압밀이론을 적용할 수 없게 된다.

2) 수치해석모델

식(1)은 Duncan and Chang (1970)의 hyperbolic numerical analysis model이다.

$$E_t = \left[1 - \frac{R_f \times (1 - \sin\phi') \times (\sigma_1' - \sigma_3')_f}{2c' \cdot \cos\phi' + 2\sigma_3' \cdot \sin\phi'}\right]^2 \cdot K \cdot Pa \cdot \left(\frac{\sigma_3'}{P_a}\right)^n \tag{1}$$

여기서 E_t : 탄성계수가 변하는 비선형 탄성해석($\epsilon = \frac{1}{E_t}\sigma$)에서 여러 조건에 의해서 결정되는 접선 탄성계수

 R_f : 삼축압축시험에서 축차응력의 최대값 $\sigma_{d_{max}}$ 의 hyperbolic curve의 점근선에 해당 하는 응력 (σ_{ult}) 에 대한 비

- φ': 유효응력에 의한 흙의 내부마찰각
- σ1': 삼축압축시험에서 유효 최대주응력
- σ₃': 삼축압축시험에서 유효 최소주응력
- c' : 유효응력에 의한 흙의 점착력
- *P*_a : 대기압
- K, n: 삼축압축시험에 의해 초기탄성계수를 산출하고 가로축에 $\log(\sigma_3')$ 를 표시하고 세로 축에 log(초기탄성계수)를 나타낸 그래프의 회귀직선에서 세로 절편이 K이고 직 선의 기울기가 n이다.

표 2-33 The Instant settlements from the curve fitting on standard consolidation test results

Consolidation stress (kPa)	Initial void ratio	Instant settlement $S_i \ {\rm (mm)}$	Initial thickness of sample H_0 (mm)	
5	1.647	0	20	
10	1.629	0.031	19.865	
20	1.610	0.055	19.719	
39	1.581	0.050	19.505	
78	1.541	0.140	19.197	
157	1.472	0.060	18.681	
314	1.333	0.080	17.630	
628	1.128	0.130	16.075	
1255	0.922	0.180	14.519	

hyperbolic model은 기본적으로 변형에 따른 축차응력이 쌍곡선을 따른다는 가정에서 출발하고 압밀 비배수 삼축압축시험의 결과도 쌍곡선으로 curve fitting을 한다.

따라서, 변형에 따른 축차응력의 관계를 쌍곡선 형태인 식(2)로 근사화한다.

$$\sigma_d = \frac{\epsilon}{a+b\cdot\epsilon} \tag{2}$$

여기서 σ_d : 삼축압축시험의 축차응력

ϵ : 축변형률

a,b : 쌍곡선 계수

식(2)의 양변을 €으로 나누면 식(3a)이고 다시 역수를 취하면 식(3b)가 된다.

 σ_{d}

$$\frac{\sigma_d}{\epsilon} = E = \frac{1}{a+b\cdot\epsilon}$$
(3a)
$$\frac{\epsilon}{a+b\cdot\epsilon} = a+b\cdot\epsilon$$
(3b)

$$\frac{1}{d} = a + b \cdot \epsilon$$

$$- 47 -$$

식(2)의 우변에서 분모와 분자를 모두 ϵ 으로 나누면 식(3c)가 된다.

$$\sigma_d = \frac{1}{\frac{a}{\epsilon} + b} \tag{3c}$$

4(3a)에서 $\epsilon = 0$ 을 적용하면 초기탄성계수 4(4)가 된다.

$$E_i = \frac{1}{a} \tag{4}$$

식(3c)에서 ϵ = ∞를 적용하면 점근선 응력에 해당하는 쌍곡선의 극한응력은 식(5)가 된다.

$$\sigma_{d_ult} = \frac{1}{b} \tag{5}$$

쌍곡선의 점근선 응력과 실험 결과에서 파괴시의 응력 $\sigma_{d_{\max}}$ 와의 비를 나타내는 R_f 는 식(6)이 된 다.

$$R_f = \frac{\sigma_{d_{-\text{max}}}}{\sigma_{d_{-ult}}} \tag{6}$$

3) 검증을 위한 압밀 비배수 삼축압축시험 결과

(a) The regression line of hyperbolic curve on triaxial test result

(d) Initial tangential line of hyperbolic curve on $\sigma_3=150~{\rm kP}$

(g) The graph for estimating hyperbolic model parameters of K and n 그림 2-37 The estimation process of hyperbolic model parameters

위 그림은 압밀 비배수 삼축압축시험 결과로부터 hyperbolic model parameter인 *K*와 *n*을 산 출하는 과정이다. 시료는 압밀시험에 사용한 시료와 같은 시료이다. 그림 (a)는 최소주응력(σ₃, 또는 구속압력)을 50 kPa 가한 상태에서 24시간 동안 압밀을 시키고 비배수 조건으로 변경한 후에 시료 내부의 공극수압이 동일한 상태를 유지할 수 있는 정도로 충분히 느린 속도(ASTM D4767-11, 이 연구에서는 0.2 %/min를 적용)로 일정하게 유지하면서 축방향 압축을 하고 일정한 시간 간격으로 축차응력(σ_d)을 측정한 압밀 비배수 삼축압축시험 결과를 식(3b)의 형태로 나타내기 위해서 가로축 은 축변형율로 설정하고 세로축은 ϵ/σ_d 로 설정하여 표시한 그래프이다. 그래프 전체에 대해서 회귀 직선을 구하면 식(3b)의 *a*에 해당하는 값이 음수를 나타내어 실험 결과와 유사한 패턴의 쌍곡선을 얻을 수 없다.

따라서. 실험 결과의 일부만 쌍곡선과 일치시키기 위해서 그림 (a)의 일부 구간만 선별하여 회귀 직선을 구하고 식(3b)의 세로축 절편에 해당하는 a와 기울기에 해당하는 b를 구해야 한다. 실험 결 과로부터 쌍곡선을 얻기 위해서 회귀직선을 이용하는 방법은 Tan (1994)의 방법에서도 적용하고 있는 일반적인 방법이지만 여러 가지 오류들이 포함되어 있어서 이론과 정확하게 일치하지 않는 실 제 실험 결과에 적용하면 약간의 변화만으로도 전혀 다른 형태의 쌍곡선이 나타나므로 실험 결과와 일치하는 정도를 확인하면서 반복적으로 조정을 해야 하는 단점이 있다. 그림 (b)는 이러한 과정을 거쳐서 시료가 파괴되기 전까지만 쌍곡선이 일치하도록 조정한 결과이다. 이 과정에서 hyperbolic model parameter인 K와 n을 구하는데 필요한 초기탄성계수 E_i 가 식(4)에 의해서 산출이 되므로 함께 표시하였다.

그림 (c) ~ 그림 (f)는 그림 (b)에서와 동일한 과정을 통해 σ_3 를 각각 100, 150, 200, 300 kPa 로 유지하면서 시험한 결과에 쌍곡선을 적용한 것이다. 압밀 비배수 전단시험이므로 전단을 시작할 때는 $\sigma_3 = \sigma_3'$ 였고 전단이 진행되면서 시료 내부의 공극수압이 0에서 점진적으로 상승하다가 전단 종반부에서는 대체로 일정한 값을 유지하였다. Fig. 2-37(g)는 K와 n을 구하기 위해서 $\log_{10}(\sigma_3)$ 를 가로축으로 하고 $\log_{10}(E_i)$ 를 세로축으로 한 관계를 나타낸 것이다. 비교적 양호한 직선 경향을 나타 내고 있다. 전술한 과정과 식(5) 및 식(6)에 의한 R_f 값까지 산출한 모든 parameter들을 Table 2-34에 나타내었다.

$\sigma_{3}{}'$	50	100	150	200	300
a (Intercept)	9.503E-05	5.000E-05	3.000E-05	1.700E-05	1.800E-05
b (Slope)	0.0090	0.0070	0.0070	0.0060	0.0032
E_i	10523	20000	33333	58824	55556
σ_{d_ult}	111	143	143	167	309
$\sigma_{d_{-}{ m max}}$	89	112	127	161	299
R_{f}	0.80	0.79	0.89	0.96	0.97

표 2-34 Hyperbolic model parameters from laboratory triaxial tests

압밀시험은 측방 변위가 구속되고 삼축압축시험을 측방 변위가 진행이 되지만 토압은 두 시험 모 두 정지토압 상태가 구현되고 탄성계수는 변위가 나타나기 시작하는 초기값을 사용하고 있으므로 정 확하게 동일한 조건은 아니지만 비슷한 조건이 형성된다고 설정하였다. 횡방향 변위가 구속된 압밀 시험에서의 탄성계수(*E_{oed}*)과 구속되지 않은 삼축압축시험에서의 초기탄성계수(*E_i*)의 관계는 아래 식 (7)로 나타낼 수 있다. (MIDAS)

$$E_{i} = \frac{(1-2\nu)(1+\nu)}{(1-\nu)} E_{oed}$$
(7)

4) 압밀시험결과 해석에 필요한 정지토압계수 산출 방법

압밀시험은 정지 토압 상태에서 진행이 되고 어느 재하 단계가 종료되면 공극수압은 0이 되므로 다음 단계 재하 직전의 응력 상태는 $\sigma_3 = \sigma_3'$ 인 압밀 비배수 삼축압축시험의 전단 직전의 상태와 동 일하다. 압밀에서의 즉시침하량은 재하에 의해 발생한 과잉공극수압이 소산되는 기간이 매우 짧으므 로 압밀 비배수 삼축압축시험에서의 초기탄성계수 E_i 가 작용하는 상태와 비슷하다. 따라서, 압밀 재 하 직후의 σ_3' 를 알기 위해서 정지토압계수 K_0 를 산정하는 Brooker and Ireland (1965)의 식(7) 를 사용하였다. 그림 (b)~그림 (f)로부터 산출한 유효응력에 의한 흙의 내부마찰각 ϕ' 는 9 °이다.

$$K_0 = 0.95 - \sin(\phi') \tag{8}$$

식(7)을 사용하려면 압밀 비배수 삼축압축시험을 해야 $\phi'를 구할 수 있으므로 상호참조를 하는 무 한 순환 과정이 형성이 되어서 압밀시험만으로 접선탄성계수를 구하려는 목적에 부합하지 않지만 이 논문에서 제안하는 방법의 정확한 검증을 위해서 사용하였으며 압밀 비배수 삼축압축시험을 하지 않 아서 <math>\phi'를$ 모를 경우에는 Kenney (1959)가 제시하고 Alpan (1967)이 추천한 식(9)을 사용할 수 있다.

$$K_0 = 0.19 + 0.233\log(PI) \tag{9}$$

여기서 PI : 소성지수

(다) 결과 및 고찰

1) 압밀응력과 누적즉시침하량에 의한 탄성계수

아래 표에서 0kPa ~ 1255kPa까지 압밀 전체 재하 단계에서 발생하는 즉시침하를 성질이 동일 한 하나의 시료로 보고 각 단계별로 산출된 즉시침하량을 누적한 후에 시료의 압밀시험 전 두께를 기준으로 변형률을 산정하였다. 실제로는 각 단계별로 압밀이 진행되었기 때문에 단계가 증가할수록 밀도도 증가하는 물리적 성질이 다른 시료이지만 분석 결과, 즉시침하에 관한 한 물리적 성질이 동 일한 하나의 시료로 간주할수도 있는 결과가 나타났다. 즉시침하량을 유발하는 원인은 압밀 재하응 력이므로 압밀응력의 탄성재료의 변형률에 대응하는 축방향 응력으로 설정하였다. 아래 그림은 표의 결과로부터 탄성계수를 파악하기 위해서 가로축에 누적변형률(⑥)을 나타내고 세로축에 압밀응력(①) 을 나타내어 탄성계수를 비교한 것이다.
n	① Consolid ation stress (kPa)	2 Initial void ratio	③ Instant settlement S _i (mm)	(4) Initial height of sample H_0 (mm)	$5 = \sum_{i=1}^{n} 3$ Accumulated instant settlement (mm)	<pre>(6)=(5)/H_{0(n = 1)} strain of the accumulated instant settlement (mm)</pre>
1	5	1.647	0	20	0	0.00%
2	10	1.629	0.031	19.865	0.031	0.16%
3	20	1.610	0.055	19.719	0.086	0.43%
4	39	1.581	0.050	19.505	0.136	0.68%
5	78	1.541	0.140	19.197	0.276	1.38%
6	157	1.472	0.060	18.681	0.336	1.68%
7	314	1.333	0.080	17.630	0.416	2.08%
8	628	1.128	0.130	16.075	0.546	2.73%
9	1255	0.922	0.180	14.519	0.726	3.63%

\pm 2-35 The strain of the accumulated instant settlement

아래 그림 (a)는 압밀 전체 단계에 대해서 변형률과 압밀응력을 나타낸 것이며 이 시료의 선행압 밀응력인 80kPa (Kwon and Eam, 2023)를 기준으로 탄성계수를 의미하는 직선의 기울기가 구분 되고 있다. 과압밀 영역은 과거에 소성 압축이 발생하여 재하 응력에 비해 조직이 상대적으로 치밀 한 상태이므로 즉시 침하량이 정규압밀 영역보다 더 클 것으로 예상을 하였으나 반대의 결과를 얻 었다. 이것은 판상형 흙 입자의 치합 구조가 과압밀응력 범위에서는 이미 파괴되었기 때문이라고 원 인을 규명할 수도 있을 것이다. 한편, 당초 세웠던 가설대로 압밀에 의해서 밀도가 증가하므로 각 재하 단계별로 물성이 단단한 다른 시료라면 탄성계수도 지수적 관계로 나타날 것으로 예상되어서 지수함수 곡선으로 추세선을 탐 색하였으며 결정계수 값이 0.9 이상으로 높은 상관성을 나타내고 있다. 그림 (b)와 그림 (c)는 이상 의 두 가지 해석을 좀 더 상세하게 살펴보기 위해서 과압밀영역에 해당하는 네 개의 점과 정규압밀 영역에 해당하는 네 개의 점을 분리하여 나타낸 것이다. 점의 수가 각각 다섯 개 미만이므로 통계적 인 의미를 부여할 수는 없다는 것에 유의해야 한다. 과압밀 영역인 그림 (b)에서는 선형추세선의 결 정계수가 지수 추세선의 결정계수보다 더 높았으나 그 차이는 미미했다. 그림 (c)에서도 비슷한 경 향이 나타났으나 그 차이는 더욱 좁혀져서 선행압밀응력을 기준으로 구분하는 것은 명확한 차이점을 만들어 낼 수 없었으며 그림 (a)에서 비록 직관적으로는 선행압밀응력을 기준으로 탄성계수가 구분 되는 것처럼 보이지만 시료의 상태가 변하면 변화율은 현재의 시료 상태에 비례한다는 일반적인 사 실과 이에 따라서 압밀시험의 압축지수도 반대수 축척에서 선형관계를 나타낸다는 점들을 고려하면 전체를 하나의 지수함수 관계로 보는 것이 타당할 것으로 판단된다.

Park and Jeong (2018)은 점토질 흙 165개, 모래질 흙 117개, 자갈질 흙 9로 총 291개의 시 료에 대해서 직접전단시험을 하고 할선탄성계수 등에 대해서 분석하였다. 모래질 흙에서는 하중이 2 배씩 증가할수록 탄성계수는 약 80%씩 증가하는 경향을 나타내었다고 하였다. 점토에서는 하중이 2 배씩 증가할수록 탄성계수는 10%, 20%, 40%씩 증가하는 경향을 나타낸다고 하였다.

위의 그림 (a)의 지수함수 곡선 관계는 각각의 단계별 압밀에 의한 압축을 무시하였기 때문에 흙 의 응력-변형 거동에 직접적으로 사용할 수는 없으나 재하응력이 커지면 선행압밀응력과 무관하게 탄성계수의 역수인 강성도 지수적으로 커지기 때문에 탄성 변형은 더 작아진다는 것을 정성적으로 인식할 수 있다.

2) 압밀시험에서의 최소주응력과 즉시침하량에 의한 초기탄성계수

압밀시험결과를 분석하여 얻은 각 재하 단계별 즉시침하량(Kwon and Eam, 2023)으로부터 초기 탄성계수를 산정하여 아래 표에 나타내었다. Duncan and Chang (1970)의 hyperbolic model parameter인 *K*와 *n*은 σ₃'와 초기탄성계수 *E_i*의 관계로부터 산출한다. 압밀시험의 각 재하 단계에 서 압밀이 종료된 상태의 압밀응력을 초기의 최대 주응력으로 볼 수 있고 식(8)을 이용해서 최소주 응력 σ₃'를 구할 수 있다. 이 상태에서 추가되는 압밀응력 Δσ가 하중 증가율 1:1을 유지하면서 주 어지므로 Δσ=σ₁'이다.

hyperbolic model parameter인 *K*와 *n*은 가로축과 세로축이 모두 log 축척인 관계로부터 산출 이 되지만 분석에 사용한 Micrsoft EXCEL의 추세선은 지원하지 않는 기능이므로 σ₃'와 *E_i*의 상용 로그 값을 각각 계산하고 추세선을 분석하여 아래 그림에 나타내었고 압밀 비배수 삼축압축시험으로 부터 직접 얻은 그림 (g)의 결과도 함께 나타내었다. 표준압밀시험에 의한 탄성계수(*E_{oed}*)를 삼축압 축시험의 초기탄성계수(*E_i*)로 변환하려면 포아송비(*ν*)가 필요하다. 포화된 흙에서 물과 흙입자는 실 용적인 범위에서 각각 비압축성으로 간주하므로 포아송비를 0.5로 생각할 수 있으나 수치해석 오류 가 발생하지 않도록 0.49를 적용하는 것이 일반적이다. 그러나, 이 연구에서는 재료(Kwon and Eam, 2023)의 물리적 성질로 산출한 포화도가 약 94% 임을 고려하여 포아송비를 0.48를 적용하였다. 압밀시험에 의한 방법은 여덟 단계의 재하 단계로 인해서 구속압력을 다섯 단계만 적용한 삼축압축시험보다 더 명확한 선형성을 나타내고 있다. 좌측 하부에 표시한 회귀식은 압밀시험에 의한 자료를 분석한 결과이고 우측 상부에 표시한 회귀식은 삼 축압축시험에 의한 자료를 분석한 결과이다. 압밀시험의 회귀식에서 세로 절편값은 $\log_{10}(K)$ =2.2599으로 $K=10^{2.2599} \approx 182$ 이고 회귀직선의 기울기 n=0.64이다. 삼축압축시험의 회귀식에서 세 로 절편값은 $\log_{10}(K)=2.2845$ 으로 $K=10^{2.2845} \approx 193$ 이고 회귀직선의 기울기 n=1.03으로 큰 차이를 나타내고 있다.

<u>ل</u>	V	n	rate of change		
ϕ	Λ		ϕ'	K	
20	153	0.64	0%	0%	
22	159	0.64	10%	4%	
24	165	0.64	20%	7%	
26	171	0.64	30%	12%	
28	178	0.64	40%	16%	
30	186	0.64	50%	21%	
32	194	0.64	60%	27%	
34	203	0.64	70%	33%	
36	214	0.64	80%	39%	

 \pm 2-36 The sensitivity analysis of ϕ'

Duncan and Chang (1970)은 느슨한 모래에서 K를 295, n은 0.65를 제시하고 있으므로 점토 의 압밀시험으로부터 산출한 값들이 느슨한 모래와 비슷한 것으로 나타났다. K는 세로 절편값이므 로 삼축압축시험결과를 분석하는 과정에서도 회귀직선에 사용할 자료를 어떻게 선정하느냐에 따라서 도 큰 차이를 나타낼 수 있고 위 내용에 대한 기술에서도 언급한 것처럼 쌍곡선의 특성이므로 적용 에 주의를 해야 한다. 현장에서 작용할 것으로 예상되는 응력 범위에서 분석을 하면 오차를 줄일 수 있다.

3) 흙의 내부마찰각의 민감도 분석

이 연구의 목적은 압밀 비배수 삼축압축시험을 하지 않은 현장에 대해서도 정밀한 수치해석을 할 수 있도록 압밀시험 결과로부터 필요한 정보를 산출하는 것인데 산출 과정에 식(8)을 적용하여 삼축 압축시험에 의한 흙의 내부 마찰각을 사용하였으므로 검증을 위해서 필요한 과정이지만 목적에 부합 하지는 않는다. 따라서 소성지수를 이용하는 경험식 식(9)를 함께 제시하고 있으나 경험식은 정확성 이 떨어질 수 있으므로 흙의 내부 마찰각이 결과에 미치는 영향을 분석하여 그 중요성을 평가하였 다. 위 표는 흙의 내부마찰각 φ'를 20°~ 36°까지 변화시킬 때 K와 n의 변화를 나타낸 것이다. φ'는 σ₃'를 산출하는 과정에서만 이용되므로 Fig. 2-39의 그래프에서 초기탄성계수 *E*_i는 같은 값을 유지하면서 수평 이동을 하고 기울기 n은 변동이 없다. φ'가 80% 변하는 경우에 K는 39%만 변했 으므로 민감도는 약 1/2 정도로 평가할 수 있다. 그러므로 다른 차선책이 없는 경우에 경험식인 식 (9)를 사용하는 것도 고려해볼 수 있다.

그림 2-39 The relationship between elastic modulus and minimum effective principal stress

(라) 표준압밀시험에 의한 점토의 초기탄성계수 소결

인공적으로 만든 균질한 재료들과는 다르게 자연 상태인 흙의 탄성계수를 구하는 과정은 오차가 발생할 가능성을 내포하고 있다. 흙의 응력-변형 거동이 비선형적이기 때문에 파괴시 응력의 1/2을 기준으로 할선탄성계수를 사용하는 경우도 많다. 흙은 구속압력에 따라서 탄성계수가 변하는 특성이 있으므로 거동을 해석하는 수치해석 모델들도 필연적으로 복잡한 요소들을 포함하고 있다. 연약 지 반에서 재하 직후의 거동을 비교적 정확하게 모사하는 hyperbolic model은 압밀 비배수 삼축압축 시험의 응력-변형 곡선이 쌍곡선이라고 전제하고 시작점에서의 접선의 기울기를 필요로 한다.

그러나, 실제 삼축시험에서 구한 응력-변형 곡선에서 초기 접선의 기울기는 구속압력의 변화에 따 른 규칙성을 갖기 어렵다. 또한 쌍곡선의 특성에 의해서 관련 인자들의 작은 변화에도 쌍곡선의 변 화는 크다. 그러므로 삼축시험 결과에서 모델 인자들을 산출하는 과정에 많은 임의성이 있고 그로 인해서 결과에도 큰 차이를 발생시키므로 이 연구에서 제시한 압밀시험에 의한 초기탄성계수 산정 방법은 삼축시험에 의한 방법을 검증하는 데에도 적용될 수 있다. 그러나 이 연구에서는 전형적인 압밀 특성을 나타내는 한 가지 시료에 대해서만 적용하였으므로 향후에 다양한 물리적 성질을 갖는 시료에 대해서도 확인할 필요가 있다.

(5) 압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교

(가) 서론

2차 압축은 Terzaghi (1923)의 1차 압밀이 종료된 이후 수년에서부터 수십, 수백 년에 걸쳐 진

행되지만 그 침하량이 작다는 논리로 구조물의 설계 수명의 범위에서는 무시되는 경향이 있고 2차 압축을 설명할 수 없는 Terzaghi의 압밀이론이 여전히 사용되고 있다. 그러나, 연약 점토 지반에서 배수 경계면에 가까운 영역에서는 1차 압밀이 신속하게 종료되고 2차 압축이 시작되므로 각각의 지 반 영역에서 발생하는 침하가 합산되어서 나타나는 지표면의 침하에는 1차 압밀에 의한 침하와 2차 압축에 의한 침하가 혼재되어 있다. 이러한 현상을 무시하고 1차 압축만을 설명할 수 있는 압밀이 론을 적용하면 근본적인 한계를 갖게 된다.

Terzaghi는 압밀이론을 유도하면서 투수계수가 일정한 것으로 근사화하였으나 Mesri and Rokhsar (1974)는 압밀이론을 개발하면서 Terzaghi의 압밀 이론에서 압밀이 진행되는 동안 투수 계수가 일정하다는 가정을 실제 상황에 근접하게 수정하면서 Taylor (1948)의 공극비의 변화와 투 수계수의 대수적 변화가 비례한다는 제안을 적용하였다.

2차 압축은 Buisman (1936)이 시간의 대수 축척과 선형 관계가 있다는 것을 제시한 이래 Bjerrum (1967), Garlanger (1972) 등 많은 연구가 진행되었고 Mesri (1973)가 2차 압축지수를 제시한 후에 보편적으로 많이 사용되고 있다.

Malvern (1951)에 의해서 도입되고 Perzyna (1966)에 의해서 보완된 과부하 개념은 흙의 점성 거동을 연구하는데 혁신적인 개념이었고, Sekiguchi and Ohta (1977)가 제안한 cam-clay model 기반 구성방정식과 Adachi and Okano (1974), Adachi and Oka (1982), Nova (1982), Yin and Graham (1999) 등이 제안한 modified cam-clay (MCC) 모델 기반 구성방정식들의 기 초가 되었다.

Vermeer and Neher (1999)는 MCC model을 확장하여 2차 압축을 해석할 수 있는 soft soil creep model (SSC)을 제시하였다. Leoni et al. (2008)은 SSC 모델을 더욱 확장하여 creep 거동 이 이방성을 나타내는 점토에 대해서도 해석할 수 있는 모델을 제시하였다.

Lee and Cho (2016)은 점토의 2차 압축 특성과 연약 점토 지반에 건설된 콘크리트궤도 철도의 궤도 수명과의 상관성을 분석하기 위해서 Mesri의 2차 압축지수를 적용하였다. Jeong(2020)은 Yoshikuni et al. (1994)의 점탄성압밀이론을 실내시험에 적용하여 2차 압축 침하구간까지 잘 일 치한다고 하였다. Yoshikuni et al. (1994)의 모델에서도 Mesri (1973)의 2차 압축지수를 사용한 다.

이와 같이 많은 모델들이 개발되었으나 검증하는 방법은 기존의 다른 모델과 동일한 조건으로 수 치해석을 하여 비교하거나 현장 계측 자료와 비교하는 방법들을 많이 적용하였다. 기존의 다른 모델 들과 비교하는 것은 새로운 모델의 안정성을 확인할 수는 있겠으나 흙의 실제 거동을 얼마나 정확 하게 해석하는지 판단하는 것에는 한계가 있다. 현장계측 자료는 많은 인자들의 영향을 받기 때문에 기존의 모델들을 적용하는 경우에도 신중히 고려해야 한다. 그러나 실험실의 통제된 환경에서 수행 한 실험결과를 수치해석으로 모사하고 실제 시험 결과와 비교하면 모델이 실제 흙의 거동을 얼마 적절하게 해석하는지를 좀 더 정확하게 평가할 수 있다.

이 연구에서는 현재 연약지반의 수치해석에서 많이 사용되고 있는 modified cam-clay (MCC) model과 이 모델을 2차 압축을 해석할 수 있도록 개선한 soft soil creep (SSC) model을 비교하

려고 한다. 이를 위해서 표준 압밀 시험과 동일한 조건을 부여하여 각 모델로 해석한 결과와 실제 압밀 시험 결과를 비교하여 모델의 정확성을 검토하려고 한다. 또한 압밀이 진행되는 동안 투수계수 가 일정하다는 조건과 변한다는 조건으로 압밀 수치해석을 하여 각 조건들의 타당성을 평가하고자 한다.

(나) 재료 및 방법

1) 해석에 사용한 압밀시험 자료

이 연구에서 사용한 압밀시험 자료(Fig. 2-40)는 Kwon and Eam (2023)이 2차 압축 적용 시점 에 대해서 연구한 자료이다. 경남 양산에서 채취한 이 시료는 침하량이 크고 각 하중 단계별 침하곡 선이 Terzaghi (1923)의 압밀이론과 비슷하게 전형적인 S형태를 나타내고 있어서 압밀 연구에 적 합한 것으로 판단하여 선정하였다.

Mesri and Rokhsar (1974)는 연약점토에서 공극비와 투수계수는 식(1)과 같은 관계가 있다고 제안하였다.

그림 2-40 Settlement over time curves on each load steps from the Oedometer test (Kwon and Eam, 2023)

여기서 △e : 공극비의 변화량

△logk: 투수계수의 변화량 (대수축척)

*c*_k : 투수계수감소비(비례상수)

이 연구에서는 투수계수가 압밀 전체 하중 단계에서 일정한 경우와 모든 압밀과정에서 초기 공극 비에서의 투수계수가 식(1)과 같은 비율로 감소하는 경우를 설정하고 유한요소해석에 의한 시간에 따른 침하 곡선이 실험에 의한 곡선과 일치할 때까지 시행착오법으로 두 경우의 투수계수를 각각 탐색하였다. 압밀 시험 결과로부터 Terzaghi의 압밀이론에 의한 투수계수를 각 하중 단계별로 산정 하여 위 그림에 나타내었다. Terzaghi는 압밀이 진행되는 동안 투수계수가 일정하다고 가정하였고 특정 하중 단계 내에서 공극비의 변화가 크지 않다면 압밀 시점과 종점의 평균 공극비에 대한 평균 투수계수를 사용할 수도 있겠으나 전체 하중 단계에 대해서 살펴보면 Terzaghi의 이론으로 산출한 경우에도 공극비와 대수축척의 투수계수가 선형적으로 비례한다는 것을 알 수 있고 Taylor(1948)의 제안이 적합한 것으로 확인된다. Kwon and Eam (2023)은 과압밀영역에서는 소성변형에 해당하는 1차 압밀이 이미 일어난 상태이므로 이론적으로는 1차 압밀 침하가 진행되는 것으로 해석하는 것은 부적절하지만 시간에 따른 침하곡선이 약한 S곡선의 경향을 나타내기 때문에 curve fitting이 가능 한지를 확인하기 위해서 해석을 하였으며 적용 조건의 적정성과는 무관하게 두 곡선을 비교적 잘 일치시킬 수 있었다고 하였다. 압밀 응력이 39kPa인 경우에 산출된 투수계수가 전후의 투수계수보 다 크게 나타난 원인도 과압밀영역에 해당하기 때문에 신뢰성이 낮은 것으로 판단하였다.

2) 수치해석모델

MCC model (Roscoe et al., 1958; Roscoe and Burland, 1968)은 한계 상태 이론으로부터 항복점이 변형에 따라서 변화하는 경화 탄소성 모델로서 식(2)과 같은 cam-clay 경계상태면에 대한 구성식을 사용한다.

Water content (%)	Dry density (kg/m3)	Specific gravity (G_s)	Initial void ratio (e)	Soil classi- fication (USCS)	Comp- ression index (C _c)	Pre- consolidation pressure $(\sigma_{p0}, \ \mathrm{kPa})$
58.88	997	2.64	1.647	CL	0.67	80

표 2-37	Physical	and	mechanical	properties	of	soil	(Kwon	and	Eam,	2023)
--------	----------	-----	------------	------------	----	------	-------	-----	------	-------

Initial maximum effective principal stress σ_1 ' (kPa)	Incremental stress $\Delta\sigma$ (kPa)	Initial elastic modulus from consolidation at $\nu = 0.48 E_i$ (kPa)
5	5	365
10	10	408
20	20	888
39	39	609
78	78	2765
157	157	3939
314	314	4420
628	628	5767

표 2-38 The initial elastic modulus estimated from the instant settlement obtained by analyzing the results of the standard consolidation test (Kwon and Eam, 2024)

$$q = \frac{M \cdot p'}{\lambda - \kappa} \cdot \left(\Gamma + \lambda - \kappa - v - \lambda \cdot \ln p'\right)$$
(2)

여기서 M: p'-q' 평면에서 한계상태선의 기울기

e : 공극비

경계 상태면은 정규압밀선 사이의 v-p'평면과 교차하고 이때 $q'=0, v=N-\lambda \cdot \ln p'$ 이므로 다음

$$N - \Gamma = \lambda - \kappa \tag{3}$$

여기서 N : p' = 1.0 (혹은 $\ln p' = 0$)일 때 등방 정규압밀선의 비체적

위의 인자들은 압밀 비배수 삼축압축시험과 표준압밀시험으로부터 구할 수 있고, 다음과 같은 관 계가 있다.

$$M = \frac{6 \cdot \sin\phi'}{3 - \sin\phi'} \tag{4}$$

표 2-39 Analysis cases according to numerical model and the condition of hydraulic conductivity

Analysis case	Numerical model	Hydraulic conductivity
Case 1	MCC	Constant
Case 2	MCC	Varied
Case 3	SSC	Varied

$$\lambda = \frac{C_c}{2.303} \tag{5}$$

여기서 C_e : 표준압밀시험의 $e - \log_{10} \sigma'$ 그래프에서 정규압밀선의 기울기

 σ' : 압밀응력

$$\kappa = \frac{C_s}{2.303} \tag{6}$$

여기서 C_s : 표준압밀시험의 $e - \log_{10}\sigma'$ 그래프에서 과압밀선의 기울기

cam-clay model에서는 식(7)을 적용한다.

$$\Gamma = N - (\lambda - \kappa) \tag{7}$$

MCC에서는 식(8)을 적용한다.

$$\Gamma = N - (\lambda - \kappa) \cdot \ln 2 \tag{8}$$

Vermeer and Neher (1999)은 MCC model과 Mesri(1973)의 2차 압축을 결합하여 SSC model을 제시하였다.

식(9)는 SSC model의 일부를 나타낸 것으로 시간 의존적인 전체 변형률 속도(ϵ)를 나타낸다.

$$\dot{\epsilon} = \dot{\epsilon}^e + \dot{\epsilon}^c = \frac{\kappa}{1+e_0} \frac{\dot{\sigma}}{\sigma} + \frac{\mu}{1+e_0} \frac{1}{\tau} \left(\frac{\sigma}{\sigma_p}\right)^{\frac{\lambda-\kappa}{\mu}} \tag{9}$$

$$\sigma_p = \sigma_{p0} \exp\left[-\left(\frac{1+e_0}{\lambda-\kappa}\right)\epsilon^c\right] \tag{10}$$

$$\mu = \frac{C_{\alpha}}{2.303} \tag{11}$$

여기서 ϵ^{e} : 탄성 거동에 의한 변형률 속도

 ϵ° : 시간 의존적인 크리프 변형률 속도

- € : 시간 의존적인 크리프 변형률
- e₀ : 초기공극비
- σ : 재하응력
- · *σ* : 재하응력의 변화율
- μ : 크리프 지수
- C_α: Mesri (1973)의 2차 압축지수
- τ : 기준 시간, 하루에 해당하는 시간
- σ_{p0}: 초기 선행압밀응력. SSC model에서는 선행압밀응력이 creep 변형률에 따라서 변
 한다.

각 해석 사례별 수치해석 모델과 투수계수 조건을 위 표에 나타내었다. MCC모델로 투수계수를 고정한 경우와 공극비에 따라서 식(1)과 같이 변하는 경우로 구분하여 해석을 하고 후자의 해석 결 과가 더 타당하였기 때문에 MCC 모델을 개선한 SSC 모델을 적용하는 경우에는 투수계수에 식(1) 을 적용하여 해석하였다. 수치해석은 MIDAS GTS NX V340R1을 사용하였다. 해석을 위한 유한요 소메쉬는 압밀 시험 시료 크기인 직경 0.06m, 높이 0.02m인 원통형 3차원 솔리드 메쉬를 작성하 였다. 시료는 X-Y 평면에 놓여 있고 중력은 Z축의 음의 방향으로 작용한다. 시료의 측면을 구속하는 압밀링을 모사하기 위해서 원통형 유한요소메쉬의 측면에 있는 절점들은 X축과 Y축의 변형을 구속하였다. 원통형 유한요소메쉬의 바닥면에 있는 절점들은 시료가 압밀시험기에 거치 되어있는 상 황을 모사하기 위해서 X, Y, Z 축의 변형을 구속하였다. 압밀시험의 양면배수조건을 모사하기 위해 서 원통형 유한요소메쉬의 해단에 배수조건을 적용하여 과잉공극수압이 0으로 유지되도록 하였다. 5kPa ~ 1255kPa까지 9단계의 재하를 모사하기 위해서 각각의 압밀응력을 하중조건으로 생성하고 각 하중조건을 1초 동안 재하한 후 24시간 동안 방치하는 조건을 부여해서 해석하였다. 경계조건과 하중조건 및 배수조건을 시각적으로 표현한 원통형 3차원 솔리드 메쉬를 위 그림에 나타내었다.

그림 2-42 Among the case 1 numerical analysis results, the pore water pressure distribution during consolidation

그림 2-43 Finite element mesh and boundary conditions for numerical analysis of consolidation tests

수치해석모델의 인자들은 각각의 역할이 있으므로 표준압밀시험과 같이 측방유동을 구속하고 상면 전체에 재하하여 전단변형을 억제하고 일축 압축을 시키는 조건에 대해서 해석하는 경우에는 각각의 인자들의 영향을 좀 더 명확하게 관찰할 수 있다.

예를 들어 κ 를 변화시키면 과압밀영역에서 시간에 따른 침하곡선이 변하는 것을 확인할 수 있다. λ 를 변화시키면 정규압밀영역에서의 침하곡선이 변한다. M를 변화시키면 측방유동과 전단변형에 의한 침하량이 변하겠지만 표준압밀시험을 모사하는 경우에는 결과에 큰 영향을 나타내지 않는다. μ 를 변화시키면 2차압축에 해당하는 침하곡선의 형상이 변한다. 식(1)의 투수계수 k를 변화시키면 각 하중 단계별 침하곡선에서 1차 압밀 종료 시점이 변한다. c_k 를 변화시키면 전체 하중 단계별 침 하곡선에서 1차 압밀 종료 시점이 변한다.

선행압밀응력이나 과압밀비(O.C.R.)을 변화시키면 최종침하량-log(압밀응력) 곡선 또는 공극비 -log(압밀응력) 곡선에서 과압밀영역에서 정규압밀영역으로 변화는 전이영역에서의 형상과 이후 정 규압밀영역에서의 직선부분의 위치가 변한다. 초기공극비나 투수계수 등 모델에 사용되는 나머지 인 수들은 일부는 토질시험에 의한 값을 사용하거나 그 값을 초기 시작점으로 설정한 후 탐색할 수 있 고 탄성계수 등은 삼축압축시험으로부터 구할 수도 있고 표준압밀시험으로부터 구할 수도 있다 (Kwon and Eam, 2024). 각 인자들의 일반적인 범위는 선행 연구 등(Atkinson and Bransby (1978); Atkinson (1993); Ortigao (1995), Schofield and Wroth (1968); Wood (1990)에 의 해 잘 알려져 있으므로 이 범위 내에서 목표로 설정한 침하곡선과 가장 일치하도록 각 인자별 특성 을 고려하여 값을 변화시키면 특정 인자 값의 증가가 또 다른 인자의 값을 상쇄시키는 간섭효과를 감시하면서 모델 인자들을 결정할 수 있다.

(다) 결과 및 고찰

1) MCC model에 의한 압밀 시험의 수치해석

아래 그림 (a)은 MCC model을 적용하여 유한요소법으로 수치해석한 결과 중에서 임의의 하중

단계와 임의의 재하 후 경과 시각에서 시료의 과잉공극수압의 분포를 나타낸 것이다. 인장을 양의 값으로, 압축을 음의 값으로 나타내었으며 약 -204kPa ~ 0kPa의 과잉공극수압 분포를 나타내고 있다. 일반적으로 낮은 값을 청색으로, 높은 값을 적색으로 표시하는데 압축을 음의 값으로 표시하 였기 때문에 과잉공극수압의 소산이 늦어서 압력이 큰 시료의 중앙부분이 청색으로 표시되어 있다. 배수조건을 부여하여 재하 후 모든 경과시간 동안 시료의 밑면과 윗면은 과잉공극수압이 0을 유지 하였다. 해석 결과를 이와 같은 그래픽으로 나타내면 개략적인 상태 파악만 가능하므로 이후 분석에 서는 실험에서 측정된 시간에 따른 압밀 침하가 해석에서 시료 상면 중심부 절점의 변위에 대응하 는 것으로 설정하고 분석하였다.

아래 그림 (b)는 MCC model을 적용하고 투수계수가 압밀 전 구간에 걸쳐 일정하다고 설정한 case 1 조건에서 실험 결과와 잘 일치할 때까지 모델 인수들을 시행착오법으로 탐색한 것이다. 모 델 인수들은 논문의 후반부에서 다른 해석 결과들과 비교 분석하고 여기에서는 해석된 거동 특성들 만을 고찰하려고 한다. 압밀시험의 압축지수(*C*_c) 및 재압축지수(*C*_s)를 산정하는 *e*-logσ' 곡선에 대 응하는 침하량-압밀응력 곡선(그림 (a))이 최대한 일치하도록 식(5)의 λ, 식(6)의 κ, 그리고 선행압 밀응력(σ_{p0})을 시행착오법으로 탐색했고 시간에 따른 침하곡선(Fig. 2-44(b))이 최대한 일치하도록 투수계수(*k*_z)를 시행착오법으로 탐색했다. MCC model은 기본적으로 2차 압축을 포함하지 않고 있 음에도 모델 정수들은 2차 압축이 포함된 실험 결과로부터 산출하므로 Terzaghi의 압밀이론을 적 용하는 압밀시험 규격인 한국산업규격(KS F 2316)과 같은 조건이 형성된다.

Kwon and Eam (2023)은 2차 압축이 포함된 실험 결과로부터 압축지수(C_o)를 산출하면 실제 시간에 따른 압밀침하량은 필연적으로 Terzaghi의 이론 곡선보다 작게 진행될 수밖에 없다고 하였 다. 그림 (b)의 시간에 따른 침하 곡선을 살펴보면 이러한 상황이 거의 모든 정규압밀 영역에서 재 현되고 있다는 것을 알 수 있다. 침하는 Z축의 음의 방향으로 변위가 발생하므로 음수로 나타내었 다. 그림 (b)에서 세로로 기울어진 점선으로 나타낸 것은 유한요소법으로 해석한 각 압밀응력별 침 하 곡선에서 두 번째 직선구간과 세 번째 직선구간을 연장하여 압밀 종료 시점을 찾고 모든 재하 단계별 종료시점을 연결한 것이다. 종료 시점이 압밀 응력이 커질수록 빨라진다는 것을 알 수 있다.

반면 실험 결과에서는 모든 정규 압밀 영역에서 종료 시점이 비슷하다. 따라서, 투수계수를 시행 착오법으로 탐색할 때 가장 잘 일치시킬 압밀 응력을 선정해야 했고 이 연구에서는 선행연구(Kim ans Eam, 2014; Kwon and Eam, 2023)가 가장 많이 되어 있는 압밀응력 314kPa에서의 침하곡 선을 기준 곡선으로 설정하였다. 이 곡선보다 하중이 커지면 침하곡선의 편차도 더 커졌다.

그림 2-44 Comparison of the standard consolidation test and the case 1 numerical analysis results using the MCC model on the condition of constant hydraulic conductivity.

Kwon and Eam (2024)은 임의의 재하 단계에서의 종료침하량을 기준으로 다음 재하 단계의 이 론해석의 즉시침하량으로부터 탄성계수를 산출하였다. 이 수치해석에서도 입력 정수 중에서 탄성계 수는 압밀 시작 부분의 침하량에 영향을 미친다. 기준으로 설정한 314kPa에서 침하 곡선과 가장 일치하도록 탄성계수를 시행착오법으로 탐색하였다. Kwon and Eam (2024)은 초기탄성계수가 압 밀 응력에 따라서 변화하는 것으로 전제하고 쌍곡선 모델의 인자들에 적용을 하였다. MCC model 에서는 탄성계수의 변화를 구현할 수 없고 GTS NX에서는 지반의 깊이가 증가해서 유효응력도 커 지면 탄성계수도 증가하도록 설정할 수 있는 알고리즘을 구현하였으나 두께 0.02m인 시료에는 반 영할 수 없는 조건이고 깊이에 무관한 탄성계수의 증가는 반영할 수 없으므로 curve fitting의 기준 으로 설정한 314kPa 이외의 재하 단계에서는 즉시침하량도 차이를 나타내고 있다.

아래 그림은 투수계수 이외의 인자들은 case 1 (그림 2-44)와 동일하게 적용하고 투수계수는 식 (1)을 적용하여 초기공극비에서의 포화투수계수(k_z)와 투수계수감소비(c_k)를 실험 결과와 가장 일치할 때까지 시행착오법으로 탐색한 case 2 해석 결과이다. 모든 재하 단계의 해석된 압밀 종료 시점이 비슷하므로 종료 시점을 연결한 세로 점선이 case 1 보다는 수직에 가깝게 나타났으며 실험 결과와 도 더 잘 일치하고 있다. 따라서, 향후 투수계수는 초기공극비에서 포화 투수계수를 기준으로 압밀 이 진행되면서 감소하는 것을 전제로 해석하는 것이 적절할 것으로 판단하였다.

그림 2-45 Comparison of the standard consolidation test and the case 2 numerical analysis results using the MCC model on the condition of hydraulic conductivity varing according to void ratio

2) SSC model에 의한 압밀 시험의 수치해석

압밀 시험 결과는 명확하게 2차 압축을 드러내고 있으나 MCC model은 2차 압축을 해석할 수 없다. 따라서, 이 모델을 개선해서 2차 압축을 해석할 수 있는 SSC model을 사용하여 압밀 시험 결과에 가장 근접한 결과를 얻을 때까지 모델 입력 정수를 시행착오법으로 탐색하였다. SSC model 의 λ와 κ는 MCC model의 λ와 κ를 흙의 비체적(1+e)으로 나눈 값이며 원문(Vermeer and Neher, 1999)에는 λ^{*} 및 κ^{*}로 표시되어 있으나 MIDAS GTS NX에서는 입력 정수들의 혼란을 피 하기 위해 동일한 형태로 입력하도록 모델이 수정되어 있다.

따라서 MCC model의 해석된 값을 시작값으로 하고 시행착오법으로 실험 결과와 가장 일치하는 인자값들을 탐색했다. 아래 그림(a)는 λ와 κ를 탐색한 결과이다. 선행압밀응력을 나타내는 곡선부의 전후에서 서로 반대 경향의 편차가 약간 나타나고 있으나 전반적으로 실험 결과와 잘 일치하고 있 다. 초기공극비에서의 포화투수계수(k_z) 및 투수계수감소비(c_k)는 case 2 해석 결과를 동일하게 적용 하고 시간에 따른 침하곡선을 해석한 결과를 아래 그림 (b)에 나타내었다. 압밀응력이 628kPa인 경 우에는 침하량과 침하속도가 일치하고 있으며 314kPa에서도 침하량은 SSC 모델에서는 0.001433m이고 표준압밀시험에서는 0.001555m로 압밀시험결과를 기준으로 SSC 모델은 약 8%의 차이를 보이고 있으나 침하 속도는 유사하다. 실무에서는 익숙한 MCC model을 많이 사용하고 있 으나 2차 압축을 1차 압밀 침하량에 포함하여 시간에 따른 침하량을 과대평가하게 되므로 이를 개 선한 SSC model을 사용하는 것이 적합하다고 판단하였다.

(b) the settlements vs the elapsed time

그림 2-46 Comparison of the standard consolidation test and the case 3 numerical analysis results using the SSC model on the condition of hydraulic conductivity varing according to void ratio

3) 해석된 모델 입력 정수의 비교 분석

아래 표 2-40에 case 1, case 2 및 case 3 해석에 적용한 모델 정수들을 나타냈다. MCC model은 해석을 시작할 때 현재 상태의 응력도 입력해야 하므로 각 절점의 응력을 계산하고 변위는 초기화하여 변위가 발생하지 않은 상태를 모사하는 사전 초기응력해석 단계가 필요하다. SSC model은 MCC model로부터 파생되었음에도 사전 초기응력해석을 할 필요가 없도록 개선되었으므로 초기응력해석을 본 해석에 사용하면 오류가 발생한다.

Analysis condition parameters	General range of clay*	case 1	case 2	case 3
Numerical model	<u> </u>	МСС	MCC	SSC
Initial stress analysis		Yes	Yes	No
Elastic modulus (<i>E</i> , kPa)	1800~14000	4000	4000	5000
Poisson's ratio (ν)	0.15~0.5	0.48	0.48	0.49
Wet unit weight (kN/m ³)	16	15.53	15.53	15.53
Initial earth pressure at rest (K_0)	0.64~0.95	0.95	0.95	0.95
Saturated unit weight (kN/m^3)	16	15.88	15.88	15.88
Initial void ratio	0.5~3.0	1.647	1.647	1.647
Constant hydraulic conductivity $(k_z, m/s)$	$10^{-7} \sim 10^{-12}$	5×10^{-10}	_	-
Hydraulic conductivity at initial void ratio (k_{z0} , m/s)	$10^{-7} \sim 10^{-12}$	_	3×10^{-9}	3×10^{-9}
Void ratio dependent hydraulic conductivity ratio(c_k)	0.261	-	0.5	0.5
Over consolidation ratio (OCR)	dependent	1	1	1
Slope of normal consolidation line (λ)	0.087 ~0.521	0.24	0.24	0.28
Slope of over consolidation line (κ)	0.026~0.184	0.07	0.07	0.03
Slope of critical state line (M)	0.6 ~ 1.85	1.157	1.157	-
Preconsolidation stress (σ_{p0})	dependent	80	80	60
Allowable tensile stress(c_t)	dependent	10	10	_
Cohesion from effective stress(c')	$0 \sim 40$	-	-	0
Internal friction angle from effective stress (ϕ')	22 ~ 45	_	_	29
creep index (μ)	$10^{-4} \sim 10^{-2}$	-	-	0.008

표 2-40 The comparison of numerical analysis parameters

* : Atkinson and Bransby (1978); Atkinson (1993); Ortigao (1995), Schofield and Wroth (1968); Wood (1990)

MCC model을 사용한 case 1과 case 2의 탄성계수는 Kwon and Eam (2024)이 압밀응력 314kPa인 경우에 산정한 초기탄성계수 3939kPa를 참고하여 적용하였다. 314kPa는 그림 2-44와 그림 2-45에서 시행착오법을 하면서 기준으로 설정한 재하 단계이다. Kwon and Eam (2024)이 제시한 것처럼 이전 단계 압밀의 종료 시점에서의 침하량과 현재 단계 압밀 침하 곡선의 시작 시점 에서의 침하량과의 차이로 나타나는 즉시침하량은 초기탄성계수에 의해서 산출이 되는데 압밀응력이 157 kPa인 경우의 종료 시점에서의 침하량과 314kPa에서의 시작 시점에서의 침하량이 일치하고 있다는 것은 Terzaghi의 압밀이론을 적용한 경우에 산출한 초기탄성계수의 타당성이 수치해석에 의 해서 교차검증이 되었다는 것으로 해석할 수도 있다. 그러나 MCC model은 압밀링에 의해서 측방 면위가 구속된 조건으로 해석하는 경우에 탄성계수의 영향은 작고 정규압밀선의 기울기(λ)와 과압밀 선의 기울기(κ)의 영향을 크게 받으므로 model의 한계라고 할 수 있다. SSC model을 사용한 case 3에서는 탄성계수를 case 1 및 case 2와는 다른 값을 사용하였다. 동일한 값을 사용하였더니 Fig. 2-46(b)에서 5kPa에서의 즉시침하량이 압밀시험결과 보다 과도하게 크게 되어서 각 단계별

침하량이 모두 아래쪽으로 밀리는 결과를 나타내었다. 따라서 압밀시험결과와 가장 일치하도록 시행 착오법으로 찾은 탄성계수를 사용하였다. Fig. 2-46(b)에서 압밀응력이 157 kPa인 침하곡선의 실 험값과 해석된 값의 차이와 압밀응력이 314 kPa인 침하곡선의 시작 시점에서의 실험값과 해석된 값의 차이가 비슷하므로 Fig. 2-44(b) 및 Fig. 2-45(b)와 일관된 경향을 나타낸다. 종료 시점에서의 침하량 차이가 시작 시점의 침하량 차이보다 더 커서 압밀시험에 의한 즉시침하량보다 수치해석에 의한 즉시침하량이 Fig. 2-44(b) 및 Fig. 2-45(b) 보다 약간 작아진다는 것은 탄성계수가 4000 kPa 보다 큰 5000 kPa를 적용한 것으로 설명할 수 있다.

Consolidation stress (kPa)

그림 2-47 Comparison of the hydraulic conductivities estimated from consolidation test and the estimated from numerical analysis

포아송비도 탄성계수와 마찬가지로 case 1과 case 2에서는 Kwon and Eam (2024)이 제시한 값 (Table 2-38)을 사용하였으나 case 3에서는 Fig. 2-46(b)의 5 kPa에서의 즉시 침하량이 압밀 시험결과보다 과도하게 크게 되었다. 따라서 흙 입자와 공극수를 비압축성으로 설정하면 포아송비는 0.5이지만 수치해석 오류를 피하기 위해서 0.49를 적용하였다.

모든 재하 단계를 포함한 압밀 시험 전체 기간 동안 투수계수(k_z)가 일정하다고 설정한 case 1에 서는 Kwon and Eam (2024)의 압밀시험 결과로부터 산출한 각 재하 단계별 투수계수(Fig. 2-41) 중에서 정규압밀영역의 평균투수계수를 기준값으로 설정하고 압밀시험 결과와 가장 일치하는 투수계 수를 시행착오법으로 탐색해서 적용하였다. case 2에서는 압밀이 진행되는 동안 공극비의 감소에 따라서 투수계수도 감소하는 식(1)을 적용하고 투수계수감소비(c_k)와 초기공극비에서의 투수계수(k_{z0}) 를 Fig. 2-45(b)의 압밀시험 결과와 잘 일치하도록 시행착오법으로 탐색하였다. 압밀시험으로부터 Terzaghi의 압밀이론을 적용하여 산출한 투수계수와 case 2 수치해석에 의한 투수계수를 Fig. 2-47에 나타내었다. 압밀응력이 10 kPa와 39 kPa인 경우에는 압밀시험에 의한 투수계수가 더 크게 나타났으나 나머지 경우에는 잘 일치하고 있다. 물리적 현상의 연속성을 고려하면 기복이 큰 압밀시 험 결과보다는 수치해석에 의한 결과가 더 신뢰성이 있으며 정규압밀 영역에서는 두 이론이 서로 부합한다고 판단하였다. 따라서 압밀이 진행되는 동안 투수계수가 일정하다는 Terzaghi의 근사화 가정은 임의의 하중 단계에서는 시간에 따른 압밀 침하 거동에 미치는 영향이 작지만 재하 응력의

범위가 넓은 경우에는 투수계수를 달리하여 적용해야 할 것으로 판단하였다.

Table 2-37의 압축지수(*C_c*)와 식(5)에 의하면 λ는 0.29를 사용해야 하지만 Fig. 2-44(a)의 압 밀시험 결과와 정확하게 일치하지 않았기 때문에 시행착오법으로 탐색해서 case 1과 case 2의 해 석에서는 0.24를 적용하고 case 3에서는 0.28을 적용하였다. 과압밀선의 기울기(*κ*)는 선행연구에서 제시한 값이 없어서 λ의 1/5의 값을 탐색의 시작값으로 정하고 시행착오법으로 탐색하였다. λ =0.24 및 *κ*=0.07을 적용한 case 1과 case 2의 해석 결과는 Fig. 2-44(a)와 Fig. 2-45(a)에 나타 내었고 λ=0.28 및 *κ*=0.03을 적용한 case 3 해석 결과는 Fig. 2-46(b)에 나타내었다.

MCC model을 사용한 case 1과 case 2 해석에서 한계상태선의 기울기 M은 식(4)에 Kwon and Eam (2024)이 제시한 $\phi' = 29^{\circ}$ 를 적용하였다. SSC model은 M 대신에 내부마찰각을 직접 적용하고 점착력도 필요하며 유효응력임을 감안하여 점착력은 c'=0을 적용하였다.

선행압밀응력(σ_{p0})은 Fig. 2-44(a)와 같은 침하량-선행압밀응력 곡선의 형태에 λ 나 κ 만큼 많은 영 향을 미친다. 압밀 시험 결과에서 KS F 2316에 규정되어 있는 방법으로 산출한 80kPa (Table 2-37)는 case 1과 case 2 해석에서는 Fig. 2-44(a)와 Fig. 2-45(a)에 나타낸 것처럼 시험 결과와 잘 일치하였다. SSC model은 식(10)에 나타낸 것처럼 선행압밀응력이 고정되어 있지 않고 시간 의존 적인 크리프 변형율에 따라서 커지기 때문에 초기 선행압밀응력(σ_{p0})을 입력해야 하고 시행착오법으 로 탐색하여 60 kPa를 적용하였으며 그 결과를 Fig. 2-46(a)에 나타내었다.

인장응력은 MCC model에서는 허용되지 않지만 MIDAS GTS NX에서는 모델의 적용 범위를 확 장하기 위해서 허용인장응력을 알고리즘에 반영하고 있다. 이 연구의 해석 조건에서는 기하학적으로 인장응력이 발생하지 않아야 하지만 10진수를 2진수로 변환하고 실수 연산을 하는 과정에서 0 대신 에 -10⁻¹⁵ 정도의 작은 음수가 산출되어서 약간의 인장 응력을 적용하였다. SSC model에서는 인장 응력이 허용되지만 기하학적으로 필요하지 않은 조건이므로 적용하지 않았다.

Kwon and Eam (2023)의 해석에서 2차 압축지수(*C*_α)는 정규압밀 영역에서 평균적으로 0.0225 이고 식(11)을 적용하면 μ=0.0098이며 case 3 해석에서 이 값을 시작으로 시행착오법으로 탐색하 여 크리프 지수 μ=0.008을 적용하였고 결과를 Fig. 2-46(b)에 나타내었다. Terzaghi의 압밀이론은 2차 압축을 반영하지 않고 있으므로 Mesri (1973)의 압밀이론을 적용하려면 적용 시점을 인위적으 로 지정해야 한다. Kwon and Eam (2023)은 2차 압축이 1차 압밀도 91 % ~ 98% 범위에서 시 작된다고 하였다. SSC model은 2차 압축을 포함하고 있으므로 Fig. 2-46(b)에서 확인할 수 있는 것처럼 2차 압축 시작 시점을 지정할 필요가 없이 1차 압밀과 2차 압축이 연속적으로 통합된 결과 로 나타난다.

Table 2-40에 열거한 모델 인자들 중에서 기술하지 않은 나머지 인자들은 Kwon and Eam(2023, 2024)의 선행연구를 참고하였다.

(라) 압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교 소결

Terzaghi의 압밀 이론과 Mesri의 2차 압축 이론으로 이원화된 압밀 이론을 통합하고 시간에 따 른 응력-변형 거동을 분석하기에 적합한 모델을 파악하기 위해서 modified cam-clay (MCC) model과 soft soil creep (SSC) model로 압밀시험과 동일한 조건을 부여하여 수치해석을 하고 다 음과 같은 결론을 얻었다.

1. 대수축척의 공극비와 대수축척의 투수계수 사이에 선형 비례관계가 성립한다는 이론을 적용하 고 MCC model과 SSC model을 이용하여 수치해석한 결과는 투수계수가 일정하다고 설정하고 해 석한 것보다 압밀시험 결과와 잘 일치하였으므로 투수계수는 압밀이 진행되면서 감소하는 것으로 설 정하는 것이 적합할 것으로 판단하였다.

2. MCC model은 2차 압축을 포함하지 않는 model이지만 표준압밀시험의 압축지수에 대응하는 정규압밀선의 기울기는 2차 압축을 포함하고 있으므로 실제 시간에 따른 침하곡선은 수치해석한 예 측치보다 항상 작게 된다. Terzaghi의 압밀이론을 압밀시험 해석에 적용한 다른 선행연구에서도 동 일한 결과를 나타내어 교차 확인을 하였다.

3. 2차 압축을 이론에 포함하는 SSC model은 압밀시험 결과에서 2차 압축을 포함한 전 구간에서 잘 일치하는 것으로 나타나서 연약 점토 지반의 수치해석을 하는 경우에 MCC model을 이용하는 것보다 SSC model을 사용하는 것이 적합하다고 판단하였다.

(6) 소결

① 연약지반 저수지 제방 하부 지반조사 실시

지반조사를 통해 저수지 제방 하부의 구성 상태, 공학적 특성 등을 파악하여 연약지반 저수지 장 기거동 분석을 위한 자료를 제공하기 위하여 농업기반시설(대야, 중장, 탄동저수지)에 시추조사, 현 장원위치 시험을 시행하여 연약지반 거동에 필요한 자료를 취득하였다.

② 표준압밀시험에 의한 점토의 초기탄성계수 산정

탄성계수가 변하는 특성이 있으므로 거동을 해석하는 수치해석 모델들도 필연적으로 복잡한 요소 들을 포함하고 있다. 연약 지반에서 재하 직후의 거동을 비교적 정확하게 모사하는 hyperbolic model은 압밀 비배수 삼축압축시험의 응력-변형 곡선이 쌍곡선이라고 전제하고 시작점에서의 접선 의 기울기를 필요로 한다.

그러나, 실제 삼축시험에서 구한 응력-변형 곡선에서 초기 접선의 기울기는 구속압력의 변화에 따 른 규칙성을 갖기 어려우며 삼축시험 결과에서 모델 인자들을 산출하는 과정에 많은 임의성이 있고 그로 인해서 결과에도 큰 차이를 발생시키므로 이 연구에서 제시한 압밀시험에 의한 초기탄성계수 산정 방법은 삼축시험에 의한 방법을 검증하는 데에도 적용될 수 있다. 그러나 이 연구에서는 전형 적인 압밀 특성을 나타내는 한 가지 시료에 대해서만 적용하였으므로 향후에 다양한 물리적 성질을 갖는 시료에 대해서도 확인할 필요가 있다.

③ 압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교

modified cam-clay (MCC) model과 soft soil creep (SSC) model로 압밀시험과 동일한 조건 을 부여하여 수치해석을 하였다. 대수축척의 공극비와 대수축척의 투수계수 사이에 선형 비례관계가 성립한다는 이론을 적용하고 MCC model과 SSC model을 이용하여 수치해석한 결과 압밀시험 결과와 잘 일치하였으므로 투수 계수는 압밀이 진행되면서 감소하는 것으로 설정하는 것이 적합할 것으로 판단하였다.

MCC model은 2차 압축을 포함하지 않는 model이지만 표준압밀시험의 압축지수에 대응하는 정 규압밀선의 기울기는 2차 압축을 포함하고 있으므로 실제 시간에 따른 침하곡선은 수치해석한 예측 치보다 항상 작게 된다. Terzaghi의 압밀이론을 압밀시험 해석에 적용한 다른 선행연구에서도 동일 한 결과를 나타내어 교차 확인을 하였다. 또한, 2차 압축을 이론에 포함하는 SSC model은 압밀시 험 결과, 연약 점토 지반의 수치해석을 하는 경우에 MCC model을 이용하는 것보다 SSC model 을 사용하는 것이 적합하다고 판단하였다.

나. PVD가 설치된 연약지반의 원심모형실험

(1) 서론

본 연구의 대상인 농업용 저수지는 저수가 주목적이므로 축조 직후 담수를 시작하게 되면 담수된 물이 사면안정에 영향을 미칠 수 있으므로, 압밀도를 증가시키거나 연약지반의 강도를 증가시키기 위한 지반 개량공법의 선택에도 신중한 검토가 필요하다(민학규, 2007). 또한 연약지반 상에 농업용 저수지를 축조할 경우 실제 지반 내의 거동을 정확히 파악하여 최종예상 침하량과 잔류침하 등을 예측하고 설계에 직접 반영하여 최적의 현장시공 관리방안을 마련하는 것은 무엇보다 중요한 요소이 다(이달원과 오범환, 2000). 연약지반은 전당강도가 작고 압축성이 커서 상부에 구조물 축조 시 과 다한 침하가 발생하여 문제가 생기는 경우가 많기 때문에 연약지반 개량을 위한 적절한 공법의 적 용이 필요하다.

연직배수공법은 연약지층의 심도가 깊은 경우 연직방향으로 통수가 잘 되는 배수재를 설치하여 연 약지반에 작용하는 과잉간극수압의 배수거리를 단축시킴으로써 압밀을 촉진시키는 공법이다(정호병, 2020). 그 중PVD(prefabricated vertical drain)공법은 국내외에서 널리 활용되고 있는 연직배수 공법 중 하나이며, 플라스틱 소재의 보드(plastic board drain; PBD)에 필터를 덮은 배수재를 목 표심도까지 관입시켜 연약지반에서 발생하는 과잉간극수압을 효과적으로 지표면 밖으로 배출시킨다 (최형길, 2009). PVD공법은 배수재를 변형 없이 관입시켜주는 맨드렐(Mandrel)이라 불리우는 철제 관과 소요 깊이에서 배수재의 정착을 도와주는 앵커-슈(anchor-shoe or anchor-plate)로 구성된 다. 이 공법을 이용하여 지반을 개량할 경우 시공초기에는 배수재 관입에 의한 지반교란이 예상되지 만 시간이 경과됨에 따라 연약지반에 배수거리를 단축시켜 압밀을 신속하게 촉진시키고 지반안정화 를 조기에 유도할 수 있다(조규식, 2005).

본 연구에서는 총 3회에 걸친 원심모형실험을 통해 PVD 공법이 적용된 연약점토 위에 저수지가 설치된 조건에서의 거동특성을 규명하고 연약지반 상에 축조된 저수지의 현장계측자료를 바탕으로 수행한 수치해석과의 비교분석을 통해 연직배수공법의 효과를 검증하였다.

(2) 재료 및 방법

(가) 시료물성

본 실험에서는 연약지반 위에 저수지가 설치된 조건을 모사하기 위해 정제된 카올린 점토(kaolin clay)와 현장에서 채취한 흙을 실험에 사용하였다. 연약지반 조성을위해 본 연구에서는 인도네시아 산 카올린을 사용하였다. 본 시료는 현장시료에 비해 액성한계와 압밀계수가 커 모형지반 조성시간 이 짧은 장점이 있다(압밀계수 약 6x10-3 cm2/s). 카올린 점토의 화학성분은 SiO2가 약 47.4%로 가장 큰 비중을 차지하며, AL2O3가 36.2%를 차지하여 대부분의 광물이 이 두 성분으로 구성되어 있다. 이 외에도 Fe2O3, TiO2, CaO, MgO 등이 소량 함유되어 있다. 카올린 점토의 기본 물성은 아래 표와 같다.

그림 2-48 실험에 사용된 카올린 점토

표 2-41 카올린 점토 물성치

시 료	물성값
지반분류(USCS)	CL
소성한계(PL, %)	37
액성한계(LL, %)	70
소성지수(PI, %)	33
비중, G	2.6

모형 저수지로 활용된 지반은 포항지역의 반곡저수지 제체부의 성토흙에서 채취하여 활용하였다. 이때, 채취한 뒤 흙을 #4체로 거른 뒤 완전 건조 후 최적함수비로 다짐을 실시하여 모형지반을 축 조하는데 사용하였다. 현장시료의 입도분포와 기본물성은 아래 그림과 표와 같다.

그림 2-49 현장시료의 입도분포곡선(포항지역 반곡저수지 제체부)

그림 2-50 실험에 사용된 현장시료

시 료	물성값
지반분류 (USCS)	SW
탄성계수, E (kPa)	15,000
포아송 비, <i>ν</i>	0.35
비중, G	2.6
최적함수비(%)	15.00
점착력, c (kPa)	0
마찰각, ϕ (deg)	35.0
투수계수, k (cm/s)	1.35E-3

(나) PVD가 설치된 연약지반의 원심모형실험(2021년)

1) 개요

강제압밀과 원심모형실험기를 이용한 자중압밀을 통해 연약지반을 조성하였다. 이를 위해 건조된 카올린 분말을 함수비 80%로 교반한 뒤 내부 단면이 200(W)×450(L)×450(H)mm인 토조에 채워 넣었다. 초기 지반은 매우 교란된 형태이므로 원심모형시험기에 탑재 후 50g의 중력가속도 조건에 서 약 1시간 자중압밀을 실시하였다. 이후, 원심모형실험기를 정지하고 지표면을 깎아 목표하는 연 약지반 두께인 15cm를 조성하였다. 이는 50g 환경에서 점토지반 7.5m에 해당된다. 총 2개의 지반 이 조성되었으며, 각각 함수비는 약 63.6%와 63.4%로 확인되었다.

그림 2-51 원심모형실험

그림 2-52 연약지반 조성

2) 배수재 모사

아래 그림은 배수재 모사를 나타낸다. 현장에서 사용되는 PBD는 얇은 플라스틱 소재의 격자망에 필터를 채워 사용된다. 하지만, 이를 1/50으로 축소하는 것은 현실적으로 불가능하므로 본 연구에 서는 직경 3mm의 굵은 실을 배수재로 활용하였다. 준비된 연약지반에 배수재를 40mm×40mm 격자로 삽입하기 위해 지반에 격자망을 자로 그리고, 배수재를 간격에 맞춰 삽입하였다. 이때 목표 관입깊이까지 배수재(실)를 관입하기 위해 직경이 8mm인 sus 304 튜브파이프(두께 0.5mm)에 실 을 삽입한 후 목표관입깊이까지 함께 관입시켰다. 이후, 튜브파이프만 뽑아 배수재가 연약지반에 삽 입된 상태를 모사하였다.

그림 2-53 연직배수재 모형(실)

그림 2-55 연직배수재 설치 후

3) 저수지 모사

본 연구에서는 연약지반 위에 저수지가 존재하는 조건을 모사하기 위해 포항지역의 반곡저수지에 서 채취한 현장흙을 이용하여 아래 그림과 같이 모형 저수지를 제작하였다. 이를 위해 저수지 형상 과 동일한 단면을 가지는 형틀을 제작하고 형틀 내에 시료를 넣어 다짐을 실시하였다. 이때, 시료는 최적함수비에 맞춰 골고루 섞은 후 다짐을 실시하였으며 조성이 완료된 후 무게를 측정하여 최종 밀도를 확인하였다. 이후 모형 저수지 바닥면에 필터재를 덮고 형틀과 함께 조성된 연약지반 위에 안착시킨 후 형틀을 탈거 하였다. 본 연구는 저수지 건설에 따른 연약지반의 압밀거동에 그 목적이 있으므로 저수지는 별도의 코어재를 활용하지 않았으며, 자중의 역할로만 활용하였다.

그림 2-56 모형 저수지 제작

4) 실험조건

본 연구에서는 총 2회의 원심모형실험이 수행되었다. 실험은 동일한 조건에서 연직배수재 유무에 따른 침하량 비교를 목표로 하였다. 하부 연약지반은 모형 스케일로 150mm이며, 50g 가속도 수준 에서 7.5m의 높이에 해당된다. 또한, 배수조건은 단면배수조건으로 상향으로만 간극수압이 배출될 수 있도록 하였다. 이는 대상 연약지반의 두께가 매우 두껍거나, 불투수층 위에 존재하여 하향으로 배수되지 않는 조건과 같다. 저수지의 경우, 저수지 하단부터 마루까지의 높이 65mm, 마루 폭 40mm, 경사면 기울기 1:2 조건으로 전체 저수지의 폭은 300mm로 설정하였다. 이는 50g 조건에 서 원형으로 높이 3.25m, 마루폭 2m, 저수지 폭 15m에 해당된다.

연직배수재는 300mm × 200mm의 면적에 40mm × 40mm 간격으로 총 32개를 설치하였다. 배수재의 관입깊이는 150mm로 설정하였으며, 조성된 연약지반 표면에서 토조 바닥면까지 튜브파 이프를 활용하여 배수재를 삽입하였다. 실험조건 및 단면은 아래 표와 그림과 같다.

표 2-43 원심모형실험 모형 지반 및 시험 조건

번호	저=	수지	연약지반			
	단면(mm)	단위중량(kN/m3)	단위중량(kN/m3)	함수비(%)	배수재 간격 (mm)	
Test1	$300(L) \times 200(W)$	1.95	1.60	63.6	_	
Test2	×05(H) 경사도 1:2	1.95	1.60	63.4	40×40	

그림 2-57 모형실험 단면도

5) 실험절차

연약지반 및 저수지 설치가 완료되면 아래 그림과 같이 저수지 마루에 Linear Variable Differential Transformer (LVDT)를 설치하였다. 이후 토조를 원심모형실험기에 거치시킨 뒤 목표 중력가속도인 50g까지 낮은 속도로 서서히 증가시킨다. 각 실험 별로 원심모형실험은 각각 5시간씩 수행되었으며, 저수지 마루에서의 침하량을 관측하였다. 본 연구에서는 저수지의 자중에 의한 침하 만을 검토하고자 하였으므로 별도의 수위는 모사하지 않았다.

그림 2-58 원심모형실험

(다) PVD가 설치된 연약지반의 원심모형실험(2022)

1) 개요

강제압밀과 원심모형실험기를 이용한 자중압밀을 통해 연약지반을 조성하였다(그림 2-90). 이때, 양면 배수조건을 모사하기 위해 토조 하단에 10mm 두께의 모래층을 조성하였으며, 모래층 상단을 부직포로 덮어 점토가 모래층에 혼입되지 않도록 했다. 이후, 모래층 상단에 간극수압계를 설치하고, 건조된 카올린 분말을 함수비 120%(액성한계의 2배)로 교반한 뒤 내부 단면이 200(W)×450(L)×450(H)mm인 토조에 채워 넣었다. 슬러리(slurry) 상태의 점토지반은 고함수비에 강도가 매우 약하므로 목표하는 지반강도를 확보하기 위해 강제압밀을 실시하였다. 이를 위해 점토 지반에 선행 압밀하중을 재하할 수 있도록 토조 내부에 에어백을 설치하고 토조 상단에 반력판을 설치하였다. 이후 공기압으로 25kPa까지 단계적으로 재하하였으며, 최종 압밀하중에서 7일간 압밀 을 실시하였다. 선행압밀이 완료된 후 점토 상단에 재하되었던 공기압을 제거하고 점토지반 표면을 깎아 목표하는 두께인 15cm의 점토지반을 조성하였다. 이는 50g 조건에서 두께 7.5m의 점토지반 을 모사한다. 실험 전 점토지반의 초기함수비는 86%로 확인되었다.

배수재 설치 유무에 따른 지반 압밀특성을 상호 비교하기 위해 동일한 점토지반에 배수재를 설치 한 영역(Case 1)과 설치하지 않은 영역(Case 2)으로 구분하고, 저수지 마루를 중심으로 반으로 절 개된 형태의 반단면 저수지를 각각 축조하였다. 이는 저수지가 좌우 대칭의 형태일 때 반단면 거동 을 통해 전단면의 예측이 가능할 뿐만 아니라, 동일한 점토지반에서 배수재 설치 유무에 따른 상호 비교가 가능한 장점이 있다. 실험 과정은 아래 그림과 같다.

(i) 변위계 설치

(c) 점토시료 교반

(a)하부 모래층 조성

\$456769D 234567890 234567890 23

(f) 압밀 완료 후

(h) 표면 깎기 후 점토지반

(h) 반단면 저수지 설치

(j) 실험완료 후 저수지 침하

(b) 간극수압계 설치

그림 2-60 원심모형실험

2) 배수재 모사

현장에서 사용되는 연직배수재(PBD)는 얇은 플라스틱 소재의 격자망에 필터를 채워 사용된다. 하 지만, 이를 1/50으로 축소하는 것은 현실적으로 불가능하므로 본 연구에서는 직경 4mm의 로프를 배수재로 활용하였다. 로프는 내부가 고무심으로 구성되며, 그 주변을 얇은 실로 감싼 구조를 가진 다. 이러한 특징으로 점토지반에 침하가 발생할 시 지반변형에 미치는 영향이 작고, 통수능을 증대 시킬 수 있는 효과가 있다. 준비된 연약지반에 배수재를 40mm×40mm 격자로 삽입하기 위해 점 토지반 지표면에 격자망을 자로 그리고, 배수재를 간격에 맞춰 삽입하였다(그림 2-93). 이때 목표 관입깊이까지 배수재(로프)를 관입하기 위해 외경이 8mm인 sus 304 튜브 파이프(두께 0.5mm)에 로프를 삽입한 후 목표 관입깊이까지 함께 관입시켰다. 이후, 튜브 파이프만 뽑아 배수재만을 연약 지반에 아래 그림과 같이 정착시켰다.

그림 2-62 배수재 설치

그림 2-61 연직배수재 모형(로프)

3) 저수지 모사

본 연구에서는 연약지반 위에 저수지가 존재하는 조건을 모사하기 위해 포항지역의 반곡저수지에 서 채취한 현장흙을 이용하여 모형 저수지를 제작하였다. 이때, 동일 점토지반(동일 토조)에서 배수 재 설치 유무에 따른 지반 압밀특성을 상호 비교하기 위해 저수지 마루를 중심으로 반으로 절개된 형태의 반단면 저수지를 축조하였다. 모형 하부점토는 매우 연약한 상태이므로 점토지반 상단에 저 수지를 다짐 조성할 경우 점토지반에 과도한 교란과 변형이 유발될 수 있다. 이를 방지하기 위해 저 수지 단면으로 형틀을 제작하고 별도로 저수지 단면을 다짐한 뒤 점토지반에 설치하는 방식으로 모 형단면을 조성하였다. 또한, 형틀에 조성된 모형 저수지를 점토지반에 옮기는 과정에서 사면에 균열 이 발생하는 것을 막기 위해 실제 지반 조성 시 전체 시료 건조중량의 5%에 해당하는 벤토나이트를 첨가한 뒤 저수지를 제작하였다. 형틀 내부는 축조된 모형 저수지가 토조내부에 삽입될 수 있도록 토조 폭보다 1~2mm 작도록 제작하였으며, 저수지 조성 후 형틀을 제거한 뒤 토조내 목표 위치에 저수지를 안착시켰다. 모형 저수지를 옮겨 담는 과정에서 저수지 모형이 변형될 가능성이 있으므로 저수지 바닥면에 얇은 투명필름을 부착한 후 필름과 저수지 모형을 조심스럽게 옮겨 목표 위치에 배치하였으며, 설치 후 필름을 제거하였다. 본 연구는 저수지 건설에 따른 연약지반의 압밀거동에 그 목적이 있으므로 저수지는 별도의 코어재를 활용하지 않았으며, 자중의 역할로만 활용하였다.

4) 실험조건

본 연구에서는 총 1회의 원심모형실험이 수행되었다. 실험은 동일한 조건에서 연직배수재 유무에 따른 침하량 비교를 목표로 하였으므로 조성된 점토지반의 양쪽 가장자리에 반단면의 저수지를 배치 하여 배수재 유무에 따른 압밀특성을 비교·분석하였다. 실험 조건 및 단면도는 아래 표와 그림에 나 타내었다. 하부 연약지반은 모형 스케일로 150mm이며, 50g 가속도 수준에서 7.5m의 높이에 해당 된다. 또한, 배수조건은 양면배수조건으로 양단으로 발생한 간극수압이 배출될 수 있도록 하였다. 저 수지의 경우, 저수지 하단부터 마루까지의 높이 65mm, 마루 폭 40mm, 경사면 기울기 1:2 조건으 로 전체 저수지의 폭은 300mm로 설정하였다. 이는 50g 조건에서 원형으로 높이 3.25m, 마루폭 2m, 저수지 폭 15m에 해당된다. 본 연구에서는 대상 저수지의 반단면에 대해서만 실험이 수행되었 으므로 높이 65mm, 마루폭 20mm, 경사면 기울기 1:2, 저수지 폭 150mm인 반단면 저수지 모형 을 제작하였다. 연직배수재는 150mm × 200mm의 면적에 40mm × 40mm 간격으로 총 16개 를 설치하였다. 배수재의 관입깊이는 점토지반의 두께와 동일하게 150mm로 설정하였다.

	저수	지	연약지반				
번호	단면	습윤단위중량	단위중량	함수비 (%)		배수재 간격	
	(mm)	(kN/m ³)	(kN/ m ³)	실험전	실험후	(mm)	
Case 1	150(L)×200(W) ×65(H) 경사도 1:2	1 7(1.60	96	72	40×40	
Case 2		1.76	1.60	80	12	_	

표 2-44 원심모형실험 모형 지반 및 시험 조건

그림 2-63 모형실험 단면도

5) 실험절차

연약지반 및 저수지를 조성한 뒤 저수지 마루 및 원지반(점토지반)에 Linear Variable Differential Transformer (LVDT)를 아래 그림과 같이 설치하였다. 또한 지표면으로부터 수위를 약 3cm가 되도록 물을 흘려 전체 지반이 물에 잠겨있도록 하였다. 이후 토조를 원심모형실험기에 거치시킨 뒤 목표 중력가속도인 50g까지 낮은 속도로 서서히 증가시켰으며, 목표 중력가속도에 도 달 후 시간에 따른 저수지의 침하량과 간극수압을 관측하였다.

그림 2-64 센서 설치장면

(라) PVD가 설치된 연약지반의 원심모형실험(2023년)

1) 개요

본 실험에 사용된 토조는 내부 단면이 1,200(W)×450(L)×700(H)mm이다. 연약지반을 모사하 기 위해 카올린 점토를 120%의 함수비로 혼합한 후 토조에 채워 넣었다. 점토 지반에 선행압밀하 중을 작용시키기 위해 상부에 등분포하중을 재하 할 수 있는 재하판을 거치한 후 압밀기를 통해 5 일간 압밀을 실시하였다. 이후 주걱판을 이용하여 표면 성형과정을 통해 200mm 두께의 목표 점토 지반을 아래 그림과 같이 완성하였다. 완성된 점토지반의 초기 함수비는 86%로 확인되었다.

그림 2-65 연약지반 조성

그림 2-66 연약지반 조성

2) 배수재 모사

현장에서 사용되는 PBD는 얇은 플라스틱 소재의 격자망에 필터를 채워 사용되지만, 이를 1/50으 로 축소하는 것은 현실적으로 불가능하므로 본 연구에서는 직경 5mm의 로프실을 배수재로 활용하 였다. 연직배수재 모형 및 설치 과정은 아래 그림과 같다. 준비된 연약지반에 배수재를 40mm×40mm 간격에 맞춰 삽입하였다. 이때 목표 관입깊이까지 배수재(실)를 관입하기 위해 직경 이 8mm인 sus 304관(두께 0.5mm)에 실을 삽입한 후 목표관입깊이까지 함께 관입시켰다. 이후, 튜브파이프만 뽑아 배수재가 연약지반에 삽입된 상태를 모사하였다.

그림 2-67 연직배수재 모형

그림 2-68 배수재 설치

3) 저수지 모사

본 연구에서는 연약지반 위에 저수지가 존재하는 조건을 모사하기 위해 태안지역의 대야저수지에 서 채취한 현장흙을 이용하여 아래 그림과 같이 모형 저수지를 제작하였다. 또한 배수재 설치 유무 에 따른 지반 압밀특성을 상호 비교하기 위해 동일한 점토지반에 배수재를 설치한 영역(Case 1)과 설치하지 않은 영역(Case 2)으로 구분하고, 반단면 형태의 저수지를 각각 축조하였다. 이를 위해 저 수지 단면을 여러 블록으로 분리한 뒤 형틀을 이용해 외부에서 다짐 조성한 후 결합하는 형태로 저수 지를 조성하였다. 본 연구는 저수지 건설에 따른 연약지반의 압밀거동에 그 목적이 있으므로 저수지는 별도의 코어재를 활용하지 않았으며, 자중의 역할로만 활용하였다.

그림 2-69 모형 저수지 제작

4) 실험 조건

본 연구에서는 총 1회의 원심모형실험이 수행되었다. 실험은 동일한 조건에서 연직 배수재 유무에 따른 압밀거동 비교를 목표로 하였다. 하부 연약지반은 모형 스케일로 200mm이며, 50g 가속도 수 준에서 10m의 높이에 해단된다. 또한, 배수조건은 양면 배수조건으로 가정하였다. 저수지의 경우 높이 194mm, 마루 폭 50mm, 하단 폭은 438mm, 경사면 기울기 1:2 조건으로 이는 50g 조건에 서 원형으로 높이 9.7m, 마루폭 2.5m, 저수지 하단 폭 21.9m에 해당된다.

연직배수재는 중심간격 40mm × 40mm 간격으로 총 80개를 설치하였다. 배수재의 관입깊이는 200mm로 설정하였으며, 지반내 간극수압 변화와 저수지 침하를 관측하기 위해 각 위치에 간극수

압계와 레이저 변위계를 설치하였으며, 실험조건 및 단면은 아래 표와 그림과 같다.

표 2-45 원심모형실험 모형지반 및 시험 조건

번호	저=	수지	연약지반			
	단면(mm)	단위중량(kN/m3)	단위중량(kN/m3)	함수비(%)	배수재 간격 (mm)	
Test1	$438(L) \times 450(W)$	17(1 (0	07	_	
Test2	×194(H) 경사도 1:2	1./6	1.60	80	40×40	

그림 2-70 원심모형실험 모형 단면도

5) 실험 절차

연약지반 및 저수지를 조성한 뒤 저수지 표면에 각 위치별로 레이져 센서를 설치하였다. 이후 토 조를 원심모형실험기에 거치시킨 뒤 목표 중력가속도인 50g까지 낮은 속도로 서서히 증가시켰다. 원심모형실험은 5시간 동안 수행되었으며, 실험 전 과정에서 저수지의 침하량과 연약지반의 간극수 압을 관측하였다.

그림 2-71 레이져 센서 설치

(3) 실험 결과 및 고찰

(가) PVD가 설치된 연약지반의 원심모형실험(2021)

아래 그림은 원심모형실험중 저수지의 상부 중앙에서 계측된 침하량을 나타낸다. 1g 상태에서의 침하량을 0으로 가정했을 경우, 중력가속도가 증가함에 따라 제체 마루에서의 침하량이 급격히 증가 하였으며, 목표가속도인 50g에 도달할 때까지 연직배수재가 설치되지 않은 조건(Test1)과 배수재가 설치된조건(Test2)에서의 침하량은 유사한 것으로 나타났다. 중력가속도가 1g에서 50g로 증가되면 서 2,100초 동안 발생하는 침하량은 두 조건(Test 1과 Test 2) 모두 3.73mm로 확인되었다. 이는 원형으로 환산할경우 약 60.8일(2100초×50g2 = 60.8일)간 186mm의 침하가 발생한 것에 해당된 다.

50g 도달 이후 중력가속도를 유지하면서 13,900초간 침하((13,900초×50g2 = 402.2일)를 관측 하였다. 그 결과 두 실험 간의 침하량에 차이가 발생하였다. 배수재가 설치되지 않은 조건(Test1)에 서는 총 누적침하량이 모형스케일에서 4.63mm로 관측되었으며, 연직배수재가 설치된 조건(Test2) 에서는 누적침하량이 4.86mm로 확인되었다. 즉, 연직배수재가 설치된 조건에서는 설치되지 않은 조건에 비해 실험종료시점에서 약 0.23mm 빠른 침하량을 보였다. 이는 중력가속도가 50g에 도달 된 이후의 침하량을 기준으로 연직배수재가 설치된 조건이 25%이상 빠른 침하를 유도한다고 할 수 있다. 따라서, 연직배수재가 설치될 경우 지반의 압밀속도를 크게 촉진시킬 수 있을 것으로 판단된 다.

그림 2-72 시간-침하 곡선

그림 2-74 실험 후 저수지 침하(Test2)

그림 2-73 실험후 저수지 상부 균열

한편, 실험이 종료된 후 저수지의 표면을 육안으로 관찰한 결과, 저수지의 하류 toe 부근에서 균 열이 발생한 것을 확인하였다. 이는 저수지의 형상에 따라 연약지반의 위치별로 작용하는 하중에 차 이가 발생하기 때문으로 판단된다. 저수지의 중심부(마루)는 토체의 높이가 가장 높으므로 중심부에
위치하는 연약지반의 침하량이 상대적으로 상류나 하류의 toe에 인접한 연약지반의 침하량에 비해 크다. 따라서, 저수지의 중심부와 toe 부근의 침하량에 차이가 발생하고, 장기적으로는 균열이 발생 할 수 있다. 저수지의 균열은 물의 침투특성을 변화시키며 과도한 침투를 유발하여 저수지 붕괴로 이어질 수 있다. 뿐만 아니라, 지진 시 액상화 유발의 가능성 또한 존재하므로 이에 대한 대책을 수 립할 필요가 있다.

(나) PVD가 설치된 연약지반의 원심모형실험(2022)

1) 시간-침하 거동

아래 그림은 원심모형실험 중 저수지의 마루부에서 관측된 침하량을 나타낸다. 1g 상태에서의 중 력가속도가 증가함에 따라 저수지 마루에서의 침하량이 급격히 증가하였으며, 목표가속도인 50g에 도달(원형으로 약 20일 소요)할 때까지 연직배수재가 설치되지 않은 조건(Case 1)이 배수재가 설치 된 조건(Case 2)에 비해 큰 침하량을 나타냈다. 이는 배수재가 1g 상태에서 설치됨에 따라 중력가 속도가 증가하면서 동시에 지반 압밀이 이루어져 침하량이 크게 증가한 것으로 판단된다. 50g에 도 달한 시점에서의 침하량은 Case 1(배수재가 설치된 조건)에서 39.4cm, Case 2(배수재가 설치되지 않은 조건)에서 13.6cm로 확인되었다. 저수지가 축조되지 않은 원지반(토조 중앙부)에서는 40.14cm의 큰 침하가 발생하였는데, 이는 원심모형실험기의 회전반경이 토조 중앙부에서 가장 크 게 나타나기 때문에 큰 침하가 발생한 것으로 판단된다. 다만, 저수지가 설치된 토조 좌우는 동일한 회전반경(동일한 원심가속도 작용)을 유지하므로 상대적인 비교가 가능하다. 한편 전반적으로 관측된 침하량이 매우 큰 것을 확인 할 수 있는데 이는 선행압밀하중이 25kPa로 매우 낮은 수준으로 조성 되어 연악한 지반에 저수지가 설치되었기 때문에 침하량 또한 크게 발생한 것으로 판단된다.

원심가속도 50g 도달 이후에는 점토지반 상단에 작용하는 수직응력이 일정하게 유지되므로 침하 속도가 점차 감소되는 것을 확인 할 수 있다. 총 압밀 시간은 원형기준으로 약 365일이며 실험이 종료되는 시점에서 총 누적침하량은 Case 1(배수재가 설치된 지반)에서 81.1cm, Case 2(배수재가 설치되지 않은 지반)에서 97.2cm가 발생하였다. 한편, 저수지가 축조되지 않은 원지반에서는 99.3cm의 침하가 발생하였다.

그림 2-75 시간-침하 곡선

2) 시간-간극수압 거동

아래 그림은 시간에 따라 발생하는 과잉간극수압의 크기를 나타낸다. 그 결과, 실험 시작 후 50g 에 도달할 때까지 과잉간극수압이 급격히 증가하였으며, 50g에 도달한 후에는 시간이 경과함에 따 라 서서히 감소하였다. 50g에 도달한 시점에서 발생한 최대 간극수압은 Case 1(연직배수재가 설치 된 지반)과 Case 2(연직배수재가 설치되지 않은 지반)에서 각각 78.14 kPa와 78.09 kPa였다. 반 면 저수지가 설치되지 않은 원지반에서는 76.13 kPa의 간극수압이 발생하였다. Case 1과 Case 2 가 원지반 대비 큰 간극수압이 발생한 원인은 저수지 제체의 자체 무게에 의해 점토지반에 상재하 중이 작용했기 때문으로 판단된다. 이때 초기 간극수압은 배수재 설치유무에 관계없이 유사한 값을 나타내는 것을 확인할 수 있었다. 마찬가지로 원지반에서는 저수지에 의한 상재하중이 작용하지 않 으므로 발생하는 간극수압의 크기가 다른 위치에 비해 작은 것을 알 수 있다.

한편, 50g에 도달한 이후 시간이 경과함에 따라 간극수압이 서서히 소산되는 것을 확인할 수 있는데 Case 1의 간극수압 감소량이 Case 2에 비해 큰 것을 확인하였다. 이는 배수재에 의해 간극수 압의 소산속도가 가속화되었기 때문으로 판단된다. 실험이 종료되는 시점(365일 경과)에서의 간극수 압은 Case 1의 경우 19.1 kPa 이었으며 Case 2의 경우 21.9 kPa로 확인되었다.

아래 그림은 간극수압 및 실험 결과를 육안으로 확인한 모습이다. 배수재가 설치된 영역의 저수지 침하량(Case 1)이 배수재가 설치되지 않은 영역의 저수지 침하량(Case 2)에 비해 작은 것을 확인하 였다. 이는 저수지 마루 침하량 관측값에서도 뚜렷히 나타나는데, 연직배수재가 설치된 지반에서의 침하량이 연직배수재 미설치 구간에 비해 감소하는 것을 의미한다. 즉, 저수지 제체가 설치되면서 점토지반에 과잉간극수압이 발현되고 시간에 따라 소산되면서 점토지반의 압밀거동이 나타나는데, 연직배수재 설치시 배수재에 인접한 지반에 과잉간극수압이 빠르게 소산되면서 지반의 강도가 증진 되는 효과가 발현되었기 때문으로 판단된다. 점토지반의 강도증진은 지반 개량효과로 이어지므로 연 직배수재 설치에 따른 지반 보강효과도 실험적으로 확인하였다. 또한, 이로 인해 동일한 압밀하중이 재하되더라도 연직배수재가 설치되지 않은 조건에 비해 배수재가 설치된 조건에서 간극수압이 빠르 게 소산되고 침하가 빠르게 수렴하는 거동이 발현된 것으로 판단된다.

3) 압밀도 평가

시간-침하량 관계곡선을 이용하여 저수지 축조에 따른 압밀도를 평가하였다. 이때 분석방법은 쌍

곡선법, Root법, Asaoka법을 이용하였다. 아래 표는 배수재 설치 유무에 따른 실험 종료시점에서 의 압밀도를 나타낸다. 연직배수재가 설치된 Case 1의 경우, 실험이 종료되는 시점에서 압밀도는 방법에 따라 95~99%로 확인되었으며 평균 97%를 나타냈다. 반면 연직배수재가 설치되지 않은 Case 2의 경우, 실험이 종료되는 시점에서 압밀도는 88~100%였으며, 평균 93.7%의 압밀도를 나 타냈다. 압밀도 평가결과에 따르면 배수재를 설치한 경우가 배수재를 설치하지 않은 경우에 비해 평 균 1.03배 신속하게 압밀이 진행되는 것을 알 수 있다. 뿐만 아니라, 배수재 설치에 따른 간극수압 소산속도 증가와 침하 억제효과를 확인할 수 있으며, 이를 통해 연직배수재 공법을 적용한 저수지의 경우 신속한 지반 안정성을 확보할 수 있음을 확인하였다.

		•			
		Case 1(w/ PVD)	Case 2(wo/ PVD)	원지반	
총 실험시간(일, 원형)		365			
	쌍곡선	97	97 88		
	Root	95	93	86	
입딜도(%)	Asaoka	99	100	92	
	평균	97	93.7	86.7	

표 2-46 실험 조건에 따른 압밀도 산정결과

본 연구에서는 원심모형실험을 활용하여 연약지반에 설치되는 저수지의 침하거동을 실험적으로 평 가하였다. 또한, 연직배수재(PBD)를 설치한 연약지반에 대해 저수지 설치시 압밀촉진 거동을 실험적 으로 평가하였다. 이를 위해 연약한 점토지반을 조성하고 구역을 구분하여 배수재 설치 유무에 따른 저수지의 침하 및 간극수압 거동을 실험적으로 평가하였다. 실험 결과, 연직배수재를 사용하지 않는 경우에 비해 압밀속도가 1.03배 이상 촉진되는 것을 확인할 수 있다. 뿐만아니라 저수지 설치에 따 라 발생하는 간극수압의 저감 속도 증진과 침하억제효과를 확인하였다. 이를 통해 연약지반에 저수 지를 설치할 때 연직배수재를 설치할 경우 압밀을 촉진시킬 수 있을 뿐만 아니라 지반보강효과가 있을 것으로 판단된다.

그림 2-78 실험후 저수지 상부 균열

그림 2-79 실험 후 저수지 침하(Test2)

(다) PVD가 설치된 연약지반의 원심모형실험(2023)

아래 그림은 원심모형실험 중 PBD가 설치된 저수지의 L1(저수지 마루), L2(저수지 사면)와 PBD

공법이 적용되지 않은 저수지의 L3(저수지 사면), L4(저수지 마루)에서 관측한 침하량을 나타낸 그 림이다.

50g 도달 이후 중력가속도를 유지하면서 210분 동안 침하((12600초×50g2 = 364.5일)를 관측하였다. 실제 약 364일, 1년이 경과했을 때에서의 누적 침하량은 L1은 3.83m, L2는 3.05m L3는 1.79m, L4는 2.11m로 관측되었다. 원심모형실험이 종료되는 시점, PBD가 설치된 저수지 마루 (L1), 저수지 사면(L2)에 해당되는 지점에서의 침하량이 PBD를 설치되지 않은 저수지(L3, L4)의 침하량에 비해 각각 1.7m, 1.2m 더 많은 침하량이 발생한 것을 확인하였다.

이는 연약지반에 성토하중이 재하됨에 따라 압밀거동이 발현되는데 PBD를 설치한 연약지반에서 발생하는 과잉간극수압이 외부로 신속하게 배출됨에 따라 더 많은 침하량이 발생한 것으로 판단된 다.

그림 2-80 시간-침하 곡선

아래 그림은 간극수압 계측기를 통해 과잉간극수압을 관측한 결과이다. 침하량과 마찬가지로 50G 에 도달한 시점에서 210분 동안 과잉 간극수압 계측을 수행하였다.

정수압에 의해 깊은 깊이에 설치된 계측기(P1, P3)가 얕은 깊이에 설치된 계측기(P2, P4)에 비해 큰 간극수압이 발생하였다. 간극수압 감소량은 P1에서 82.3kPa, P2에서 75.9kPa, P3에서 60.4kPa, P4에서 44.2kPa로 나타났으며, 이는 연직배수재 설치에 따른 과잉간극수압 배출속도 차 이로 판단된다.

그림 2-82 시간-과잉간극수압 곡선 (Case 2)

(라) 수치해석 결과

1) 실험 조건

본 연구에서는 원심모형실험의 적용성 검증을 위해 MIDAS Soilworks 프로그램을 사용하여 수치 해석을 수행하였다. 해석단면 및 조건은 아래 그림 및 표와 같다. 원심모형실험에 적용했던 축소모 형 단면을 실제 저수지 형태로 적용하였으며, PBD공법이 적용된 경우 (Case 1)과 PBD공법이 적용 되지 않은 경우 (Case 2)로 나누어 수치해석을 수행하였다.

그림 2-83 수치해석 모형 단면도

표 2-47 저수지 매개변수

매개변수		제체 재	료 (1D)
포화단위중량	γ_{sat}	2.0	$tonf/m^3$
점착력	c	0	$tonf/m^2$
내부 마찰각	ϕ	40	[deg]

표 2-48 모래 매개변수

매개변수		모래 재	료 (1D)
포화단위중량	γ_{sat}	1.46	$tonf/m^3$
점착력	c	0	$tonf/m^2$
내부 마찰각	ϕ	35	[deg]
SPT N-value		9	ই
산출 방법		DeBeer	

표 2-49 점토 매개변수

매개변수		점토 (1D)		
모델		Clay	Unit	
포화단위중량	γ_{sat}	1.6	$tonf/m^3$	
점착력	С	0.5	$tonf/m^2$	
내부 마찰각	ϕ	0	[deg]	
수평 투수계수	(Kh)	6.39E-06	m/day	
수직 투수계수	(Kv)	6.39E-06	m/day	
SPT N-value		2	-	
산출 방법		Сс		
압축 지수	Cc	0.	.8	
팽윤 지수	Cr	0.0	022	
선행압밀 압력	(Pc)	()	
과압밀비	(OCR)	0.15		
배수조건		양면 배수		
이차압밀계수		0.002		
이차압밀기간		20	years	

표 2-50 연직배수재 매개변수

매개변수		PBD (rectangular arrangement)		
계산 방법		Hansbo (consider drain resistance, disturbance effects)		
직경	(dw)	0.05	m	
투과 계수	(kw)	86.4	m/day	
영향 반경	(Cv/Ch)	1		
교랸영역 직경	(ds)	0.1	m	
교랸영역 투과계수	(Kh/Ks)	2		

2) 수치해석 결과

전체 모델에 대해 저수지 사면 1/3지점(A), 저수지 마루 중심부(B)에 대해 침하량을 산정한 결과 는 아래 그림과 같다.

그림 2-85 시간-침하 곡선 (Case 2)

수치해석 결과 원심모형실험 종료 시점에 해당하는 침하량은 Case 1의 경우 (A) 3.09m, (B) 3.87m가 발생하였으며, Case 2의 경우 (A) 1.71m, (B) 2.15m로 원심모형실험 계측값과 거의 일 치하는 경향을 나타내었다. PBD공법이 적용된 경우 설치하지 않을 경우에 비해 침하량이 (A)에서 약 1.7배, (B)에서 약 1.8배 더 많이 발생하는 것으로 확인되었다.

(4) 소결

본 연구에서는 원심모형실험 및 수치해석을 활용하여 PBD공법이 적용된 저수지 기초 연약지반의 압밀 거동 특성을 고찰하였다. 원심모형실험 결과, 실험종료시점인 364일에서 PBD를 설치한 경우 (Case 1)가 PBD를 설치하지 않은 경우(Case 2)에 비해 큰 침하량을 나타내었다. 연약지반처리공법 으로 PBD공법을 적용할 경우 하중 재하 시 발생하는 과잉간극수압이 PBD를 따라 빠르게 외부로 배출됨에 따라 침하량이 크게 발생하는 현상을 적절히 모사하였으며, 원심모형실험이 저수지 기초 연약지반의 성토 및 PBD 공법 적용에 따른 압밀거동 특성 분석에 활용이 가능할 것으로 판단된다.

원심모형실험에 적용한 연약지반 모델에 대해 수치해석을 수행한 결과, 원심모형실험 종료시점인

364일까지의 침하량이 Case 1, 2 모두 원심모형실험 결과와 유사한 경향을 나타내었으며, 압밀초 기에 PBD공법이 압밀침하를 촉진하는데 효과적인 것으로 판단된다.

다. 연약지반 저수지 계측 DB구축 및 설계지원시스템 개발

(1) 개요

한국농어촌공사에 따르면 공사가 관리하는 전국 3,421곳 저수지 가운데 88.1%(3,014개소)가 건 설한지 30년 이상 된 노후 저수지이다. 저수지는 댐, 철도, 항만 등 다른 주요 기반 시설보다 오래 된 곳이 많은 편으로 저수지 안정성을 위해 지속적인 유지관리가 필수이다. 행정안전부에서는 재해 에 취약한 지역을 재해위험지구, 급경사지, 재해위험저수지, 풍수해 생활권으로 지구 지정, 열악한 지방재정으로 적시에 정비되지 못하는 문제를 해소하기 위하여 국고보조사업으로 추진 중이다. 미 국, 호주, 유럽 등 선진국에서는 2000년대 이후로 기본 안정성 분석 방법에서 나아가 파괴확률, 관 련 피해도, 다양한 하중조건 등을 통합한 위험도 해석을 통해 댐의 안전도를 종합적으로 평가하는 방안이 채택되고 있다.

현재 축조된 한국 저수지 대부분이 축조 당시 주로 100~200년 동안 내릴 가능성이 있는 가장 큰 비의 양을 예상해 이를 설계한다. 하지만 최근 이상기후 변화로 인해 집중호우 등으로 저수지 붕괴 우려가 증대되고 있다. 최근 이어진 전국적인 집중호우는 축조 당시 설계 최대강우량을 한참 넘어선 최대 강수량으로 과거에 수립된 기준을 토대로 축조된 저수지의 안정성을 위협하고 있다. 단순 계측 결과에 적용한 관리기준만으로 즉각적인 저수지의 안정성을 평가하기에는 어렵고 관리자의 주관적인 판단으로 평가할 가능성이 있다. 이러한 단점 보완을 위해 계측자료 기반의 제체 안정성 평가 및 분 석 프로그램 개발 및 적용하여 조기 경보 발령, 빠른 초기 대응을 통해 인근 지역 및 주민들을 보호 하여야 한다.

(2) 연약지반 저수지 설계 및 계측자료 수집

(가) 설계도서 자료조사 및 수집

- 1) 대상 저수지
- 가) 탄동저수지
- 준공일 : 2009년
- 시설물 위치 : 전라남도 신안군 지도읍 탄동리
- 제방 : L=314.0m, H=13.63m
- 여수로 : L=11.0m, B=3.0m
- 총 저수량 : 103.52만㎡
- 나) 대야저수지
- 준공일 : 2007년
- 시설물 위치 : 충청남도 태안군 안면읍 중장리

- 제방 : L=374.0m, H=12.7m
- 여수로 : L=69.0m, B=3.5m
- 총 저수량 : 208.61만㎡
- 다) 모항저수지
- 준공일 : 1982년
- 시설물 위치 : 충청남도 태안군 소원면 의항리
- 제방 : L=234.0m, H=4.4m
- 여수로 : L=19.4m, B=6.0m
- 총 저수량 : 22.1만m³
- 라) 예당저수지
- 준공일 : 1982년
- 시설물 위치 : 충청남도 예산군 신양면
- 제방 : L=314.5m, H=13.3m
- 총 저수량 : 4.6만m³

(나) 저수지 계측 자료 수집

1) 계측 및 설계자료 수집 및 검토

저수지 계측자료는 계측 및 주요 저수지를 대상으로 조사 및 수집을 하였다. 자료수집 대상은 탄 동저수지, 대야저수지, 송현지구 모항저수지, 예당저수지이다. 수집된 자료는 계측보고서, 로우데이 터, 계측데이터, 계측 단면, 설계도서 등이다. 탄동저수지('03년 05월 ~ '07년 08월), 대야저수지 ('01년12월 ~ '03년 05월), 예당저수지('19년 12월 ~ '21년 10월) 계측데이터를 확보하였다. 아래 그림은 계측 및 설계 자료 수집 내역이다.

그림 2-86 계측 및 설계자료 수집내역

(다) 활동 파괴 이력이 있는 주요 저수지 대상 자료수집 및 검토

1) 활동 파괴 이력이 있는 주요 저수지(2개소) 대상 자료수집 및 검토

저수지 계측자료는 계측 및 활동 파괴 이력이 있는 저수지를 대상으로 조사 및 수집을 하였다. 자 료수집 대상은 탄동지구 제체, 송현지구 모항저수지이다. 활동 파괴 당시의 계측데이터 이력 및 파 괴 원인 등 자료 분석하기 위함이다.

수집된 자료는 계측보고서, 정밀안전점검 자료, 내진성능평가 자료, 유지관리 자료, 로우데이터, 계측데이터, 계측 단면, 파괴당시 사진, 원인보고서, 자문회의 결과서 등이다. 아래 그림은 활동 파 괴 발생 저수지 자료 수집표이다.

2) 활동 파괴 원인에 따른 사례 분석

탄동 제당지구는 2017.05월경 성토부 시공 패턴의 변화로 인해 과잉간극수압의 과도한 증가가 발 생하여 급속 파괴가 발생한 것으로 보인다. 2017.04월 전까지는 완속시공으로 Ru(과잉간극수압 간 극비)값이 0.85~0.9를 유지하였으나 2017.04월 이후 급속성토로 인해 Ru≥1 이상으로 발생하면서 파괴로 이어진 것으로 보인다. 이에 따라 시공시 실시간 모니터링을 구축 및 경보 설정을 통해 관리 기준 초과의 이상 데이터 발견시 지속적인 모니터링이 가능하게 한다. 아래 그림은 탄동지구 활동 파괴 사진이다.

그림 2-88 탄동지구 활동 파괴 사례

모항저수지는 연약지반의 물리적 특성, 강도 특성, 압밀 특성 조사 결과 붕괴 전후 모두 매우 연 약한 상태로 확인이 되었다. 2017.11월 시공중 한계 성토고의 초과 및 연약지반상의 급속 성토로 인해 급속 붕괴가 된 것으로 판단된다.

이에 따라 시공시 사면 변위, 과잉 간극수압 등의 실시간 모니터링이 가능하게 한다. 아래 그림은

그림 2-89 모항저수지 활동 파괴 사례

(3) 지반 거동 계측자료 데이터베이스 구축

(가) 데이터베이스 설계

1) 데이터베이스 설계 내역

아래 그림은 센서 정보, 계측데이터, 설치 위치 등 계측 관련 테이블의 다이어그램과 GIS 관련 테이블 다이어그램이다.

그림 2-90 계측 관련 테이블 ER-Diagram

그림 2-91 계측 위치 GIS 관련 테이블 ER-Diagram

아래 표는 센서 타입에 대한 코드, 종류명, 단위 설정테이블 및 센서 타입에 속하는 매칭 테이블 을 정의하는 테이블 명세표이다.

표 2-51 tlb_Instrument 테이블 명세

번호	열 이 름	DB 형식	Null 허용	기본	설명
1	Code	char(2)	아니요		센서의 종류 코드
2	Name	varchar(200)	ର୍ଭ		센서 종류의 이름
3	TableName	varchar(40)	예		센서의 계측값이 저장되는 DB TableName
4	Unit	varchar(40)	ର୍ଭ		센서의 기본 단위
5	Man_TableName	varchar(40)	예		센서의 Management 설정 테이블명
6	FieldType	char(2)	아니요		현장/프로젝트 종류
7	Support_TableName	char(40)	ର୍ଭ	""	센서의 Support DBTable
8	Unit_Type	int	아니요	-1	단위의 종류

번호	열 이 름	DB 형식	Null 허용	기본	설명
9	is_AnalysisSensor	bit	ଜା		분석센서 여부
10	Name_English	varchar(200)	ଜା		센서의 영문이름
11	KISTEC_SensorDataType	int	ର୍ଦ୍ଧ		표준 센서 종류명(KISTEC제공)
12	Name_CH	varchar(250)	ଜା		현장/프로젝트의 중문명

아래 표는 Tlb_Instrument의 테이블 명세에 대한 코드 정의이다.

표	2-52	tlb_Inst	rument	코드	장	성의	

Code	Field Type	Name	Name_English	Unit	Unit_ Type	TableName
AS	MS	층별침하판	Settlement	cm	1	tlb_settlement
EM	MS	성토고	Embankment	m	1	tlb_EmBank
WL	EK	지하수위계	NULL	m	1	tlb_SoilWaterLevel
WP	MS	간극수압계	NULL	kg/cm²	8	tlb_PWP
EP	MS	토압계	NULL	kg/cm²	8	tlb_EarthPressure
SL	MS	경사계	NULL	cm	1	tlb_Slant
VD	MT	수평변위계	NULL	cm	1	tlb_VerDis
RF	MR	1분단위 일일 누적강우량	NULL	mm/Today at 1 min Interval	20	tlb_RainFall
EP	DM	토압계	NULL	t/m^2	8	tlb_EarthPressure
WP	EK	간극수압계	NULL	kgf/cm²	1	tlb_PWP
AS	EK	침하계	NULL	mm	1	tlb_settlement
SL	DM	경사계	NULL	cm	1	tlb_Slant
AL	DM	수위계	NULL	m	1	tlb_WaterLevel
EM	DM	성토고	NULL	m	1	tlb_emBank
SS	MS	지표면침하판	NULL	cm	1	tlb_SurfaceSettlement
R5	MR	15분강수량	15Min precipitation	mm/15min	26	tlb_Rainfall_QuarterData
R3	MR	30분강수량	30Min precipitation	mm/30min	26	tlb_Rainfall_ThirtyData
R1	MR	1시간강수량	1Hour precipitation	mm/1hour	26	tlb_Rainfall_HourData
RD	MR	금일 강수량	Today precipitation	mm/Today	26	tlb_Rainfall_DayData

(나) 계측데이터 구축

1) 지반 거동 모니터링 시스템 개발(연약지반 저수지 데이터 연동)

대야지구 제체, 탄동지구 제당, 모항저수지, 예당저수지의 계측데이터를 연동하여 모니터링 시스템

에 표출하였다. 아래 표는연약지반 저수지별 계측 센서 현황표이다.

표	2-53	연약지반	저수지별	계측	센서	현황
---	------	------	------	----	----	----

no	위치	구분	측정항목	수량		
		간극수압계	간극수압	14		
1	대야저수지	지표침하판	압밀도	5		
		경사계	수평 변위	16		
		경사계	지중 수평 변위	16		
		수위계	지하수위	2		
2	탄동저수지	간극수압계	간극수압	14		
		토압계	응력 측정	15		
		침하계	압밀도	11		
	고친기소기	경사계	지중수평변위	8		
		수위계	과잉간극수압	2		
2		침하계	압밀도	4		
3	모양제구시	간극수압계	과잉간극수압	8		
		토압계	응력 측정	4		
		지표침하판	압밀도	8		
		지하수위계	제체 지하수위	4		
		이음계	신축부 변위	4		
4	예당저수지	변형률계	구조물 변형, 응력	18		
		구조물 경사계	구조물 기울기	2		
		간극수압계	제체 간극수압	4		
· ·						

가) 대야저수지

대야저수지에서 계측한 센서 및 수량 표이다. 간극수압계, 지표면침하판, 경사계 등 계측 센서를 연동하였다. 아래 표는 대야저수지 센서 연동 현황표이다.

표 2-54 대야저수지 센서 연동 현황

구분	측정항목	수량
간극수압계	간극수압	14
지표침하판	압밀도	5
경사계	수평변위	16
소	35	

아래 그림은 대야저수지 센서 및 데이터 GIS표출 화면과 측정 데이터 및 그래프이다.

그림 2-92 대야저수지 센서 GIS 표출

그림 2-93 대야저수지 센서 연동 데이터

나) 탄동저수지

탄동저수지에서 계측한 센서 및 수량 표이다. 경사계, 수위계, 간극수압계, 토압계, 침하계 등 계 측센서를 연동하였다. 아래 표는 탄동저수지 센서 연동 현황표이다.

표 2-55 탄동저수지 센서 연동 현황

구분	측정항목	수량
경사계	지중수평변위	16
수위계	지하수위	2
간극수압계	간극수압	14
토압계	응력 측정	15
침하계	압밀도	11
소	계	58

아래 그림은 탄동지구 제당 센서 및 데이터 GIS 표출화면과 측정 데이터 및 그래프이다.

그림 2-94 탄동지구 제당 센서 및 데이터 GIS 표출

그림 2-95 탄동지구 센서 연동 데이터

다) 모항저수지

모항저수지에서 계측한 센서 및 수량 표이다. 경사계, 수위계, 침하계, 간극수압계, 토압계, 지표침 하판 등 계측 센서를 연동하였다. 아래 표는 모항저수지 센서 연동 현황 표이며 아래 그림은 모항저 수지 센서 및 데이터 GIS 표출화면과 측정 데이터 및 그래프이다.

표 2-56 모항저수지 센서 연동 현황

구분	측정항목	수량
경사계	지중수평변위	8
수위계	과잉간극수압	2
침하계	압밀도	4
간극수압계	과잉간극수압	8
토압계	응력 측정	4
지표침하판	압밀도	8
· · · · · · · · · · · · · · · · · · ·	계	34

그림 2-96 모항저수지 센서 및 데이터 GIS 표출 그림 2-97 모항저수지 센서 연동 데이터

라) 예당저수지

예당저수지에서 계측한 센서 및 수량 표이다. 지하수위계, 이음계, 변형률계, 구조물 경사계, 간극 수압계 등 계측 센서를 연동하였다. 아래 표는 예당저수지 센서 연동 현황표이다. 아래 그림은 예당 저수지 센서 및 데이터 GIS 표출화면과 측정 데이터 및 그래프이다.

표 2-57 예당저수지 센서 연동 현황

구분	측정항목	수량
지하수위계	제체 지하수위	4
이음계	신축부 변위	4
변형률계	구조물 변형, 응력	18
구조물 경사계	구조물 기울기	2
간극수압계	제체 간극수압	4
소	계	32

그림 2-98 예당저수지 센서 및 데이터 GIS 표출

그림 2-99 예당저수지 센서 연동 데이터

(4) 지반거동 모니터링 평가 모듈 개발

(가) 계측자료를 활용한 지반거동 평가방안 도출 및 모듈 개발

1) 개요

저수지 설계자료 및 계측자료를 기반으로 강우, 수위, 지반 침하 및 변위, 간극수압 등의 변화량 에 따라 제체 안정성(관리기준치, 잔류침하량 평가, 제체 활동 안전율, 과잉간극수압비 등)을 계산하 여 실시간 모니터링 및 조기경보에 활용하기 위해 시스템에 모듈을 구현하였다.

(나) 관리기준치 기반 평가 모듈

1) 개요

경사계, 변위계, 수위계, 강우량계 등의 관심, 주의, 경계, 심각 등 각 단계에 따라 관리기준치를 설정하여 계측값 이상 측정이 발생하면 예·경보를 전파 할 수 있도록 하기 위함이다.

2) 이론적 배경

관리기준치는 각 시·군, 시설물별 상이할 수 있다. 관리기준치는 계측자료 이상치 검출 및 경보 필터링의 기술을 활용한다. 관리기준치는 정규분포 곡선의 3 σ (편차)법에 의하여 기준치를 제시한다. 계측 데이터는 오측으로 인해 경보가 발생하는 것을 방지하기 위해 계측 데이터가 연속하여(2~10 개) 관리기준치를 초과할 경우 경보가 발생한다. 아래 그림은 관리기준치 기반 이상치 검출 및 필터 링 기술이다.

그림 2-100 계측 이상치 검출 및 필터링 기술

3) 평가 모듈 개발

관리기준치는 각 센서별로 1차, 2차, 3차 등 사용자 설정에 따라 단계별로 설정한다. 센서 오측으 로 인한 경보를 방지하기 위해 연속하여 계측데이터가 2개~10개(센서별 설정) 이상 계속하여 관리 기준치를 초과할 경우 경보 발생하도록 기능을 구현하였다. 아래 그림은 관리기준 설정 모듈과 관리 기준치를 적용한 센서 그래프로 단계별 관리기준치 설정, 평가 대상 개수 등을 설정할 수 있다.

그림 2-101 관리기준 설정 페이지

그림 2-102 관리기준치 적용 센서 그래프

4) 현장 적용 사례

아래 표는 시·군 위험저수지 조기경보 기준으로 적용하고 있는 강우량 관리기준치이다. 주의단계 는 각 지역별 강우특성 분석결과 파괴확률이 10% 수준의 강우량, 경계 단계는 파괴확률 30% 수준 의 강우량, 심각단계는 파괴확률 50% 수준의 강우량을 기준으로 설정하였다.

'13~'14년 재해사례를 적용하여 신뢰성 분석 결과, 1시간 최대강우량과 2일 누적강우량 기준을 적용 시 가장 높은 신뢰성을 보였다.

표 2-58 강우량 조기경보 관리기준치(안)(행정안전부 권고)

৮ ৮-ম]	기준 및 강우량 (mm)									
신세	15분 최대강우량	1시간 최대강우량	1일 누적 강우량	2일 누적 강우량						
관심	6	15	45	57						
주의	8	21	64	82						
경계	14	32	121	153						
심각	17	39	155	227						

아래 표는 시·군 위험저수지 조기경보 기준으로 적용하고 있는 변위 관리기준치이다. 붕괴가 발생 한 현장의 계측 Data를 분석한 결과와 선행 연구에서 제시한 관리기준을 참고하여 관리기준 설정하 였다. 장기간의 거동 양상을 인지하는 누적변위 기준과 급격한 변위에 대하여 예·경보를 발령할 수 있는 변위속도 기준으로 구분하였다.

표 2-59 변위 조기경보 관리기준치(안)(행정안전부 권고)

단계	누적 변위(mm)	변위 속도(mm/day)
관심	14	1
주의	36	6
경계	90	26
심각	209	63

(다) 잔류침하량 평가

1) 개요

경사계, 변위계, 수위계, 강우량계 등의 관심, 주의, 경계, 심각 등 각 단계에 따라 관리기준치를 설정하여 계측값 이상 측정이 발생하면 예·경보를 전파 할 수 있도록 하기 위함이다.

2) 이론적 배경

현장계측을 통해 지반거동, 즉 침하량과 간극수압 등은 계측 시점까지의 현장상황을 확인할 수 있 게 하는 것으로써, 침하 완료 여부 또는 진행정도의 파악과 성토 하부지반의 안정성 평가 등에 필수 적인 사항을 평가할 수 있다. 침하 예측을 위해 아래와 같은 방법을 사용하였다.

표 2-60 경험적 침하예측식

방법	S_t (시간 <i>t</i> 에서의 침하량)	S _{total} (최종 침하량)
쌍곡선법	$S_t = S_i + \frac{t - t_i}{\alpha + \beta(t - t_i)}$	$S_{total} = S_i + \frac{1}{\beta}$
Hoshino법	$S_{t} = S_{i} + \sqrt{\frac{t - t_{i}}{\alpha + \beta(t - t_{i})}}$	$S_{total} = S_i + \sqrt{\frac{1}{\beta}}$
Asaoka법	$S_{t} = \beta_{1}^{\frac{t}{\Delta t}} \left(S_{0} + \frac{\beta_{0}}{\beta_{1} - 1} \right) - \frac{\beta_{0}}{\beta_{1} - 1}$	$S_{total} = \frac{\beta_0}{1 - \beta_1}$

아래 그림은 잔류침하를 이용한 침하 평가(안)이다. 현재 잔류침하량, 허용 잔류침하량, 예상 잔류 침하량을 활용하여 평가한다. a(현재 잔류침하량), Sa(허용 잔류침하량)로 평가 한다.

○ Sr(현재 잔류침하량), Sp(예상 잔류침하량), Sa(허용 잔류침하량), Sc(현재 침하량), Sf(최종 침하량)
 현재 상태가 Sr 〈 Sa이면 양호로 판단한다. 안정성은 Sr+Sp(현재 잔류침하량+허용 잔류침하량),
 Sa(허용 잔류침하량)로 평가한다. Sr+Sp 〉 Sa이면 안정성 나쁨으로 판단한다.

그림 2-103 연약지반 저수지 잔류침하 평가(안)

3) 평가 모듈 개발

연약지반 지반해석 프로그램은 침하예측 자동 모듈과 비교분석을 위해 활용하였다. 침하 계측데이 터가 측정되면 자동으로 침하 예측 모듈에서 쌍곡선, Hoshino, Asaoka 등의 방법으로 계산되어 모듈에 예측 결과가 표출된다. 아래 그림은 연약지반 지반해석 프로그램과 침하예측 자동 모듈이다. 예측한 침하분석 결과는 보고서 형태로 저장 및 출력이 가능하다.

그림 2-104 연약지반 지반해석 프로그램

4) 현장 적용 사례

아래 그림은 침하-수위 연약지반 모니터링 현황이다. 수위계와 침하계를 설치하여 운영중이다. 실 제 계측데이터를 장기간 측정하며 침하분석 모듈에서 자동으로 분석되고 있다. 계산된 결과는 실시 간으로 분석된다. 주기적으로 측정된 침하값을 확인하고 예측 모듈로 분석하여 관리 중에 있다.

그림 2-106 연약지반 침하-수위 모니터링 현장

그림 2-107 침하 분석 모듈

(라) 제체 활동 안전율 평가

1) 개요

기존 비탈면의 변형 감시는 지표면 변형(변위 및 경사 등), 지중 변형(경사, 간극수압, 체적 함수 비 등)을 측정하여 붕괴위험도를 판단하지만, 지표면 변형 또는 지중 변형을 측정하는 모듈을 개발 하였다. 안전율 계산 결과에 따라 활동면 안전율을 관심, 주의, 경계, 심각으로 판단하고 그에 따라 예·경보 모듈에 전송되어 경보를 발생시킬 수 있다.

2) 이론적 배경

제체 활동은 파괴유형에 따라 얕은파괴, 원호파괴, 복합적인 파괴 등으로 구분하여 센서 개수에 따른 활동면 추정식을 산정하였다. 2차원 활동면 추정식은 최소 지표면 기울기 센서가 3개 이상 측 정시 가능하다. 따라서 동일한 단면에 센서가 최소 3개 이상일 경우 계산이 가능하다. 아래 그림은 제체 활동면 추정 모식도와 제체 활동 안전율 평가 모델링 화면이다.

그림 2-105 침하 예측 자동 모듈(쌍곡선, Asaoka등)

3) 평가 모듈 개발

다수의 센서(3개 이상)가 설치된 위치정보와 실시간으로 측정된 지표면 경사 정보를 분석하여 안 전율을 정량적으로 평가하는 모듈이다. 평가 모듈 시간에 따른 각 경사계 데이터를 입력하고 경계조 건을 설정한다. 데이터를 입력하고 활동면 분석을 하면 아래와 같이 분석되어 위험도를 표출한다. 아래 그림은 경사계 데이터 입력 화면 및 제체 활동 안전율 평가 결과이다.

4) 현장 적용 사례

아래 그림은 영동군 난곡저수지를 대상으로 제체 활동면을 시뮬레이션한 그림이다. 현재 갈평저수 지에는 지표면 경사계 9개, 수위계 1개, 강우량계 1개가 설치 운영 중이다. 실제 계측데이터는 경사 변화량이 거의 없어 제체 안전율의 변화가 없으므로 붕괴사례의 실험 데이터를 입력하여 시뮬레이션 하였다. 계산 과정은 입력된 모델링 데이터에 실시간 지표면 경사값을 입력받아 활동면을 계산하는 과정으로 이루어진다. 계산된 결과는 실시간으로 계측 모니터링 시스템에 전달하고 미리 설정된 기 준값 초과시 경보 및 상황전파 시스템에 전달되게 된다.

(a) 센서 배치도

(b) 제체 활동면 시뮬레이션

그림 2-112 설계지원프로그램을 이용한 제체 활동 안전율 평가 시뮬레이션(영동군 난곡저수지)

(마) 간극수압 평가 모듈

1) 개요

과잉간극수압비를 활용한 안전관리기법은 간극수압계로 간편하게 관리하는 기법중 하나이다. 과잉 간극수압비를 활용하여 관리기준치를 계산하면 간극수압 로우데이터 1개로 산정할 수 있다.

2) 이론적 배경

연약지반내 과잉간극수압이 증가하면 기초지반의 지지력이 급격히 감소되어 성토 및 시공으로 파 괴에 취약해지며 비탈 끝에서는 융기가 발생할 수 있다. 실제로 탄동지구의 경우 성토부 시공패턴의 변화로 과잉간극수압이 과도하게 증가하여 파괴가 발생된 사례가 있다.

과잉간극수압비를 이용한 안전관리 기법은 간극수압 계측 로우데이터만 취득하여 관리할 수 있다. 과잉간극수압비를 계측관리기준치로 계산하는 식은 (1)과 같다.

과잉간극수압비 : Ru =	$\frac{\sigma'_v}{u}$	식(1)

여기서, 과잉간극수압비(Ru), 유효응력(σ'ν), 과잉간극수압(u)

3) 평가 모듈 개발

과잉간극수압비를 이용한 평가모듈은 침윤선 해석에 따른 Ru값을 산출하여 평가모듈에 입력하면 Ru를 기반으로 관리기준치가 산정되어 과잉간극수압에 따른 위험도를 관리한다. 아래 그림은 침윤 선에 따른 Ru값 산출화면과 Ru를 활용한 관리기준치기반 관리화면이다.

적용

모듈

아래 그림은 연약지반 저수지 압력 센서, 평가 모듈 테스트를 위한 천공 및 센서 설치 사진, 센서 장기 측정 I/O 디바이스 모듈이다. 지반 거동을 확인하고 과잉공극수압 계산에 활용하기 위함이다. 간극수압계, 압력계를 설치하고 측정하여 결과를 과잉간극수압 평가 모듈 개발에 활용하였다.

그림 2-115 압력 센서 그림 2-116 지반 천공 및 센서 그림 2-설치

4) 현장 적용 사례

아래 표는 탄동지구에 실제 적용된 과잉간극수압비에 대한 관리기준치 사례이다. 과잉간극수압의 분포는 성토고의 변화에 따라 반응하여 증가되는 경향을 띠고있어 지속적인 모니터링을 필요로 하였 다. 과잉간극수압의 증가는 지반 내 전단파괴에 원인이 될 수 있어 관리기준치 초과시 현장 시공관 계자에게 SMS 전달되게 설정되어있어 실시간 이벤트 중심으로 안전관리를 하였다.

구 분	위치	1차기준	2차기준	3차기준	비고
Ru_1		0.750	0.775	0.800	Ru칹그래프
Ru_2	STA No 6+10	0.750	0.775	0.800	0.3
Ru_3	110.0 10	0.750	0.775	0.800	2 0.7 The last of
Ru_1		0.750	0.775	0.800	æ 0.3
Ru_2	STA	0.750	0.775	0.800	0.4
Ru_3	No.8+10	0.750	0.775	0.800	0+03-25 18:00 0+07-25 18:20 00+01-16 16:46 00+01-16 16:46 00+01-14 14:00 00+01-14 14:00 00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 14:00+014 10+014 14:00+014

표 2-61 탄동지구 계측 관리기준치(Ru값)(사례)

- (5) 연약지반 저수지 경보 발령 모델 개발
- (가) 조기경보 출력 및 전송 모듈 개발
- 1) 경보 출력 인터페이스

계측 결과 및 평가 모듈 결과에 따라 예·경보 판정 기준을 적용하여 이벤트 상황 발생시 SMS, 앱 등을 통해 즉각적인 조기경보를 실시간으로 확인할 수 있다.

2) 관리기준치 설정

계측 결과 및 평가 모듈 결과에 따라 예·경보 판정 기준을 적용하여 관심, 주의, 경계, 심각, 등 각 단계에 따라 관리기준치를 설정하여 이상 측정이 발생하면 예·경보를 전파할수 있도록 연계 및 구축하였다. 설계 도서, 설계 자료를 반영한 기준치를 근거로 지반 거동 분석결과를(잔류침하량 평 가, 제체 활동 안전율, 과잉간극수압비) 토대로 예·경보 발령이 가능하다.

그림 2-118 관리기준 설정

그림 2-119 관리기준 입력창

3) 경보 출력방식 및 대상 설정

경보 출력방식 및 대상 설정은 경보발생에 따른 경보 출력은 경보 발생시 SMS, E-Mail 등을 통 해 경보단계 이벤트 발생 알림이 가능하다. 경보 대상 설정은 경보단계에 따라 경보 대상을 선택할 수 있으며 경보 발생시 SMS, E-Mail 등 선택하여 경보단계 이벤트 발생 알림이 가능하다. 아래 그 림은 경보 출력방식 설정 화면 및 경보대상 설정이다.

그림 2-120 경보 출력방식 설정

그림 2-121 경보 대상 설정

4) 경보 설정 및 표출

경보 설정 및 표출은 경보단계에 따라 경보 방법, 간격 등을 설정 및 수정할 수 있다. 아래 그림 은 경보 설정 화면과 경보 이력 메시지 표출 화면이다.

경보감시시각 :	22/10/13 17:12:23		재설정	24	측데이터 보기		() (型) ()	21
현재 경보상태 :	1.20		경보해체	4				
감시간격 :	1世 ~							
경보송출간격(분) :	1440							
				비꼬:				
▷화면 경고창				계측시각:2 경보발생시 세서고으크	022-10-13 17:06:00 24:2022-10-04 09:26 5 111204	38		
□ ▷멀티문자 서비스		매시지실정	Test	현재값: 13 단위:mm/ 센서명:3시	.5 3hr 간강우량(보청1지구)			
□ ▷전화 경보서비스		레시지설정	Test	단계: 1 기준값: 12	300			
☑ ▷휴대폰 앱 경보서	비스	메시지설정	Test	설 명:				
☑ ▷단문문자서비스(S	iMS)	매시지설정	Test	시 간 : 중 류 :	09:26:00 경고	유 저 ID: 센서고유코	cagito 111204	•
DE-Mail		매시치성정	Test	현장명: 날 짜 :	보은군 재난대응 조 2022-10-04	원 본: 이벤트 ID:	EISC 경고	
경보설정:				ID: 169	3140의 이벤트 상세실	[보		×

그림 2-122 경보 설정 화면

그림 2-123 경보 메시지 표출 화면(센서별)

5) 경보 메시지 설정

경보단계에 따라 경보 방법, 메시지 설정, 간격 등을 설정 및 수정할 수 있다. 아래 그림은 경보 설정 화면과 경보 이력 메시지 표출 화면이다.

	76(A) 31 (# 36	(2 min 10 1 0min min = 2 10(1 C2020 12)	
에시시 명덕	Contraction Contract	- 백시지 형식	- 최합치목
(* 내장 메시지	[현재 OC교량은 위험수	# 내장 메시지	
← 사용자 설정	위([MaxValue]m) 초과하 이 않자철지 요망. 현재수위:[CurValue]m	广 사용자 물장	- 해일 내용 HTML 스스
SMS Message	현재수위심승속도:[CurSpeed] m/min	사용자 정의 변수	
	In CLARK2 IMA_VALUE (PCF/RC) ELER2 IMA_VALUE (PCF/RC) ELER2 IMA_VALUE (PCF/RC) ELER2 IMA_VALUE (PCF/RC) ELALATEL IMA_VALUE (PCF/RC) ELALATEL IMA_VALUE (PCF/RC) ELALATEL IMA_VALUE (PCF/RC) ELALATEL IMA_VALUE (PCF/RC) IMA_VALUE (PCF/RC) I	en and an and a set of the set of	
		Monivale 운영지역 비소와 1040(20) 또한 2012년 10년 2012 1040(2014) 또한 2012년 10년 2012년 1040(2014) 또한 2013년 2014년 1040(2014) 2013년 2014년 2014년 1940(2014) 2013년 2014년 2014년 2014년 1940(2014) 2013년 2014년 2014년 2014년 1940(2014) 2014년 2014년 2014년 2014년 1940(2014) 2014년 2014년 2014년 2014년 2014년	
		PWP_LOSS_9.0PF: - 누두순설용 전체 가장기 PWP_LOSS_VSECTION: 수두순설용 전체 가장전	
[0 / 80Byte]			(1) 単純的利用 教会的内
확인 취소		BAERIN	입시 제장 취소

```
그림 2-124 SMS 경보 메시지 설정 그림 2-125 E-Mail 경보 메시지 설정
```

6) 앱 경보 출력

연약지반 저수지 모니터링 앱은 구글플레이에서 검색하여 다운로드 가능하며 아이디와 비밀번호를 입력하면 접속할 수 있다. 경보 발생시 SMS, 앱, E-mail 등을 통해 경보단계, 이벤트 발생 상황을 표출하며 계측현황, 계측 이력, 계측 위치를 확인할 수 있다. 조기경보 및 알람은 센서별로 5단계 (보통, 조금 위험, 위험, 매우 위험, 붕괴/대피)까지 경보단계 구현이 가능하다. 예·경보 판정 기준을 적용하여 이벤트 상황이 발생하면 즉각적으로 조기경보가 발생한다. 아래 그림은 모바일 앱 경보 출 력 화면이다.

그림 2-126 경보 표출 화면

(나) 시·군 조기경보 시스템 연계

1) 사업화를 통한 시·군 조기경보 시스템 연계

시·군에서는 재해예방사업으로 재해위험지구 상시계측 관리체계 구축하여 위험저수지 및 급경사지 등에 대해서 실시간 모니터링 및 조기경보 시스템을 개발하여 관리하고 있다. 연구개발성과의 사업 화를 통해서 연약지반 저수지 거동 모니터링 및 조기경보 시스템을 시·군 조기경보시스템에 연계하 였다. 각 지구별 방재 성능 목표인 "수리·수문분석 예·경보 발령기준(시·군)"에 따라 관리기준치(설계 강우량, 저수위, 누수량, 변위량, 방류량 등)를 적용하여 관리기준치 초과시 시·군 조기경보 시스템에 예·경보를 전파한다.

조기경보는 시·군 조기경보 시스템에 전파되고 관리주체(관리자)에게는 SMS, 웹, 앱 등으로 실시 간 전파된다. 본 과제의 사업화를 통해 기장군, 무안군, 강진군, 삼척시 등 시·군 조기경보 시스템에 모니터링 지원 및 조기경보 전파 중이다. 아래 그림은 위험 저수지 연계 표출화면 및 위험저수지 예·경보 이력이다.

		Allow a	Communication of the	Vie T	- D 8
	I INTRODUCED	Sweet Burnet X1	maa Waaaaniya Mees aa 58 - 18	 Sum 	
READING THE THE TAX AND TAXABLE AND TAXABL		an o himi	1 6M/H 824/8 \$948	0.214.8	level.
		TOAR HEESTI R	NUL-OF-OF LY SETTI 1005-09-07 15 TO 11 1-105 // 8/64/0	INTELCTION DATA NOT PERSONAL	111298
		194 10 100000 3	302-08-08-14-03-00 1022-08-34-14-24-07 1-108-08-84-4-0	125개 전원/제유감이 문유가운자를 조유위했습니다.	111228
	Colored Transfer	 MAR TH HERED 8 	10222 00 400 VK22100 2022 00 44 44 24 27 1 1022/#394-00	(2)(# 28)(##29)(857)(#4)# #38922(2)	111238
	(C)	Sylva Ila possena a	302-06-06.14.11.00 1022-06-06.14.12.25.06.1-1022#294930	ISEN BRINASHERI/ERIB ARHOUGH	111210
		(/WR 100023) 3	2022-08-08-14 (1100) 2022-08-04 14 (22.58) 1-098 (28.584-00	(\$1813)(1/1/#18.0117 1948.9(22))(11	411228
A THE REAL PARTY A CHARMEN		C frame at #100213	3023-04-041432100 2022-08-041421-401-10398/1410	The apprention of the second second	111220
	+	· 104 (m. 1000214 m	(027-04-6a ta 00:00 3092-68-6a 14:01 34 1-04(2)(014-30	1959 SHIMASHEEVEN KANSSOT	111236
	20 20	UNI 100000 3	302-00-0111 (FO) 3022-00-0111 (R41-1,9-10200445	I INVESTIGATION AND A VERSION IN	11124
		BITTER IN HOLDER 1	- 2022-04-01-01-02:00, 2022-08-03-01.07:02, 1,3-01000/04-0	I DEVENIANDI USI MANDI ADVIDUCI	11128
DALMANG AND DALLAR A CARACTER FOR A SALE OF A SALE	Designation	Strate an second 1	3027-08-0111 10:00 3022-09-01110227 1.9-10289844	i less amissari/senitral saveguti	111254
	A MARINE CONTRACTOR	()wa 00000 3	DOTE OF OT HIS TONY DELEVIES OF OTALIANS 1,4 COMMAN	I CONTRACTOR AND AND ADDRESS AND	111254
	A CONTRACTOR OF CONTRACTOR	a states all with .	2022-06-0111-12.00. 0522-06-0111-10-1. (-).000/04-0	I DEN BANKADI (KUNEKA KOMBELIO	- 11125A
	a difficulty of the second	\$ 000000 BT	322-04-01-01-1030 (222-00-01-11-02) 1.9-3(2000-04	1 国家计经济和建立大师和有效会议会	117234
CAREAR AND	And a state of the	· NOVE IF M HOLLOOD 3	2011-08-01 11-09-00 1022 08-01 11 10:08 7,9 1/228/44-5	I DON BOARDON DATIEND BRANDWICK	111204
		·	332-84-011108-00 303148-011108-011, y-1(20044)	I DEN DWINADH BUDENB KONBUGO	11124
	(44.)	· ·····	3012-09-01 (1.01:00 1012-00-01 11:00 (2: 1.+)1G868444	0.059 0004409 040848 24900-0	111254
문제에서가 주위(갈팽	저수지)	· Interest and anterest a	3022-08-0111 06:00 3022-08-0111 07:13 7,9-102809-0-0	I ODM DECRETERING AND ADDRESS IN	111234
	206.0	· ITA TA POSSER I	JEEP-IN-IT 11 (R.M. 1002-IN-IN 11 OF 12 1, 1-HOUSE REAL	I DEN DICKADI (BRITERIK KANDULCI	017258
	74.0 2	· 71/4 112 Hattoon 3	302-06-0111 (6:00 2022-06-01 (100:02 1.1-10200444	I ISA SERAGI BANERE SAMBUR	111234
	300.0	A YOR MA ASSAULT	HERE AN AD THE AREA THE ADDRESS OF A DESIGNATION OF A DES	I TOTA DECARDED IN THE OR A DEPARTMENT	1112M
	104.0 2	A NOW HAN LONGING I	1012-04-0111 02:00 1022-08-011102-03 T-V-1/(2010-0-	I DEN DIMAACH HENRIG ADMINISTOR	TATUES.
2-10-15.37.30	22-10-01 200	A NOT OF CONTRACT	STR-SERIE LENDER STREET COMPANY AND	I THE OTHER DUTIES AND ADDRESS	111274
Canada and Canada	1421	MUR HA LABOR 1	and an or therein there are the state of the second state of the s	COLOR REPORTED IN THE ROOM FOR THE	1009
And Andrew Property of Street Balling of Street				Sector Se	

그림 2-127 위험 저수지 연계 표출화면

그림 2-128 위험 저수지 예·경보 이력

2) 예·경보 시스템을 연계한 경보 발령

현재 운용 중인 조기경보시스템은 PC 기반으로 작동되어 현장에서 즉각적인 분석과 잠재적·돌발 적 위험 상황을 조기에 예측·식별·판단해 신속한 의사결정을 내리는 데 한계가 있다. 재해가 발생하 거나 발생할 우려가 있는 경우 위기상황에 신속하고 정확하게 작동하는 조기경보 체계 구축의 필요 가 있다. 따라서 시·군의 재해위험지구 상시계측 관리체계에 따라 예·경보 시스템(경광등, 마을 방송, 자동음성통보시스템(경보음성), 문자알림, 전광판)을 통한 경보발령 모듈 개발 및 적용하였다.

가) 상시계측 관리체계에 따라 예·경보 시스템 경보 발령

장기거동 및 과잉간극수압, 침하 예측, 제체 안정성 평가 등의 기준에 따라 경보를 발령한다. 피 해가 우려될 경우 해당 지역의 주민이나 위험지역에 있는 자에게 사이렌(경광등), 마을 방송, 자동음 성통보시스템(경보음성), 문자알림, 전광판 등 최단시간 내 위험지역 내에 설치된 예·경보 시스템을 통하여 주민에게 대피를 안내하거나 대피를 유도하여 주민의 안전을 확보할 수 있다. 아래 그림은 예·경보 시스템 연계 경보 설정화면 및 장비 통신 설정 화면이다.

	** (*****)	1 1/18	1 (K)					84.811				0.04.00	101.54	1 per	10
9	165 25 2016		0419	DH	CH.	204	Dit	a	1220 (Jz (15)		-2448	0e	Des .	24	.tten
	910	- 10							1911	*					
				,	,				1071		10.1				
	11											141		10.0	Ri .
	H.		8						<i>n</i> :	100			Billion and did	a	
	R.	-											1111 1111 1111 1111 1111 111 1111 1111	n]=	
	49 766												(1944)	n]=	
_	267									2017				- 1	
0	40403 20 208		-044 044	2.00	344	04	DH			88	AND DESCRIPTION	Anna arras			
						-	1 99		-	101111				-	
	86.	3401.1444	1949			1411	-	e	201110-000	t:		(91	1961	(10)	
	11	201201-0	19.00			1000		-	244	100		-			
	e2.	-	***			-		0	500+64						
	1911	MILLER				. Des			-		-	7084	1084	er	1
	ai (1644									
											-0		100		

024100	\$13	
91920		
1955 84	RELEASED, 200mm, 2510W	×
DE BIRD		
2日代代 21日日日 - 400())
202 48971 (IP-80)		
방날유성가) (http://iP-Port)		
aloid		
HWEA		
ERAINI http://IP:Port)		
010103		
CCTV MAID (rtsp: //9P Print)		
CCTV 28 (http://IP:Portl	1	
COLUMN		

그림 2-129 예·경보 시스템 연계 경보 설정창

그림 2-130 장비 통신 설정창

(6) 비전기식 공극수압 측정장치 원형 개발

(가) 개요

한국농어촌공사가 2021년 국정감사자료에서 제출한 자료에 따르면, 한국농어촌공사가 관리하는 농업용 저수지는 1950년대 이전에 만들어진 '70년 이상'된 저수지가 1,538개소로 전체 농어촌공사 관리 저수지(3,400개소) 중 45.2%를 차지하며 '60년 이상'된 저수지는 511개소로 15%를 차지한다. 저수지의 내구연한을 통상적으로 60~70년 정도로 예측한다. 시공 당시의 계측기는 노후되었거나 파손 되어 현재 대부분 시설에서 유지되고 있지 않으며 계측기들이 장기적인 안전성을 확보하지 못한 채 지 속적인 계측이 이루어지지 않고 있다.

최근 기상이변과 이상 강우 등으로 인한 자연재해가 급증하는 추세이다. 이에 따라 시설물의 안전성 에 대한 계측자료를 관리하고 분석할 필요성이 대두되고 있다. 시설물의 안정성 및 효율적인 유지관리 를 위해 반영구적인 계측기기 설치가 필요하며 지속적인 장기 계측을 실시하여 시설물의 안전성 확보 와 효율적인 유지관리를 도모할 필요가 있다. 비전기식 공극수압 측정장치는 간극수압계 테스트용 공압 기를 활용하여 테스트 및 측정을 통해 기술개발에 활용하였다.

(나) 문제점 및 개선(안)

현재 많이 사용되고 있는 공압식 간극수압계는 장기 측정시 튜브의 노화 및 파손, 튜브 내의 이물 질 유입, 튜브의 재질 및 투수계수 등의 문제가 있다. 이에 따라 그 결과가 실제와 다르게 나타날 수 있다. 또한, 특수 고무로 성형된 다이어프램은 소모품으로 사용환경에 따라 수명이 달라지며 피 로도 누적으로 인한 찢어짐, 공급되는 압력보다 토출측 압력이 높아짐에 따른 다이어프램의 파손, 다이어프램의 작동 변위 이상 등이 발생하는 경우가 많다. 따라서, 장기 계측 중 고장시 유지관리가 어렵다. 기존의 저수지나 연약지반에 설치하여도 간극수압과 압력수두를 고장없이 반영구적으로 측 정이 가능하고 전기적인 노이즈가 발생할 수 있는 지역에서도 정확한 측정이 가능하며 튜브 내 재 질, 파손 등으로 인한 잘못된 측정치 유발과 센서의 고장을 최소화할 수 있는 부표를 이용한 비전기 식 공극수압 측정장치를 고안하였다. 아래 그림은 비전기식 공극수압 측정장치를 표현한 그림으로 간극수압 측정 부표 및 측정 실린더이다.

그림 2-131 비전기식 공극수압 측정장치 원형

그림 2-132 긴극수압 측정 부표 및 측정 실린더

(다) 개발의 효과

본 개발은 다이어프램과 같은 소모품을 없애고 정밀 전자 부품도 생략하였다. 이에 전기적인 노이 즈가 발생할 수 있는 지역에서도 정확한 측정이 가능하고, 튜브 내 재질, 파손 등으로 인한 잘못된 측정치 유발과 센서의 고장을 최소화할 수 있다는 특장점을 가질 수 있다.

고안한 비전기식 공극수압 측정장치는 다이어프램을 사용하지 않아 파손 걱정이 없고 별도의 공압 탱크와 압력 출력장치 등이 필요하지 않아 구조적 간략화와 경량화 및 컴팩트화 구현이 가능할 것 으로 판단된다. 또, 다이얼게이지와 눈금실린더를 통해 직관적이고 쉽게 육안으로 확인이 가능하여 전문가가 아닌 일반 관리자도 측정 및 분석 판단이 가능하다.

(라) 개발품 활용

기존 공극수압 측정장치를 대신하여 장기간 측정할 수 있고 오차보정을 통해 정확도 높은 공극수 압 측정이 가능하다. 또한 기후변화에 따라 집중호우 빈도 및 강도 증가로 기상 여건은 열악해지고 있어 붕괴 및 유실 위험에 처해있는 저수지에 설치하여 안전성 확인 및 유지관리를 할 수 있다. 비 전기식 공극수압 측정장치를 활용한다면 저수지 노후화에 따른 장기거동을 신뢰성 높은 자료로 평가 가 가능할 것으로 판단된다.

(7) 설계지원시스템 구축 및 현장적용

(가) 설계지원시스템 구축 개요

기존 연약지반 저수지 설계자료 및 계측자료를 기반으로 강우, 수위, 지반 침하 및 변위, 간극수 압 등의 변화량에 따라 제체 안정성(관리기준치 평가, 잔류침하량 평가, 제체 활동 안전율, 과잉간극 수압비 평가 등)을 계산 및 평가하여 설계사, 시공사, 감리사, 계측사, 유지관리 주체에서 실시간 모 니터링 및 조기경보를 받을 수 있도록 한다. 아래 그림은 연약지반 저수지 거동 모니터링 및 조기경 보 시스템 개념도이다.

그림 2-133 연약지반 저수지 거동 모니터링 및 조기경보 시스템 개념도

1) 연약지반 저수지 데이터 관리 및 저장

아래 그림은 연약지반 저수지 모니터링 및 조기경보 시스템의 데이터 관리/저장 모듈과 데이터 백 업 모듈이다. 실시간 측정자료, 시공시 측정자료, 도면, 물성자료, 지반조사 자료 등을 관리하고 저 장한다. 데이터 백업 모듈은 기존 저장 모듈에서 관리하는 데이터를 백업모듈을 활용하여 데이터가 손실되지 않게 하고 있다.

그림 2-134 데이터 관리/저장 모듈

그림 2-135 데이터 백업 모듈

2) 웹기반 시스템

연약지반 저수지 모니터링 및 조기경보 시스템은 계측 및 경고, 유지관리 계측 등의 프로세스에

연속으로 활용이 가능하다. 시스템은 GIS 표출, 계측데이터 표출, 관리기준설정, 분석 그래프 표출, 보고서 출력, 자료실 등을 지원한다. 아래 그림은 연약지반 저수지 거동 모니터링 및 조기경보 시스 템 표출화면이다. 피드백을 통해 모니터링 및 조기경보 시스템에서 그래프, 보고서, 영상감시, 활동 등 연계 표출이 가능하다. 분석된 데이터를 통해 시공 중 계측 및 분석, 실시간 알람, 유지관리에 활용할 수 있다.

그림 2-136 연약지반 저수지 모니터링 시스템 표출화면

3) 모바일 앱

연약지반 저수지 모니터링 시스템의 모바일 앱은 구글플레이에서 다운로드 가능하며 부여받은 아 이디와 비밀번호를 입력하면 접속할 수 있다. 앱을 통해 CCTV, 위치별 현황, GIS 센서 표출, 센서 리스트, 센서 그래프, 센서 데이터, 경보 알림 등을 확인할 수 있다. 경보 발생시 앱 알림을 통해 경 보단계, 이벤트 발생 상황을 표출하며 계측현황, 계측 이력, 계측 위치를 확인할 수 있다. 아래 그림 은 애플리케이션 출력 화면이다.

그림 2-137 모니터링 및 조기경보 모바일 앱

(나) 설계지원시스템 현장 활용 개요

1) 시공·유지관리 계측현장 모니터링 활용

장기거동 및 조기경보 시스템을 통해 과잉간극수압, 침하 예측, 안정성 검토 등을 실시간으로 표 출할 수 있도록 하였으며 성토 안정성, 과다 침하, 계측 이상을 평가 및 분석하여 위험예측 및 조기 경보를 제시할 수 있는 시스템을 구축하였다. 유지관리 시에는 설계 검토 항목에 따른 계측항목, 측 정 빈도, 관리항목, 관리기준을 제시하여 관리기준 초과 시 대응 방안을 제시 및 설계 시의 적절성 을 검토하여 계측관리 부실로 인한 제방 붕괴 등의 재해로 인한 피해 방지가 가능하도록 하였다.

그림 2-138 지반거동 평가방안을 적용한 계측 현장 적용 방안

2) 위험 저수지 모니터링 시·군 조기경보시스템 활용

자연재해 위험개선지구 개선사업으로 시·군에서는 위험 저수지, 급경사지 등을 관리하는 사업을 진행하고 있다. 기술실시 및 제품화를 통한 사업화로 연약지반 거동 모니터링 및 조기경보시스템을 시·군 통합 조기경보시스템에 연계하여 모니터링 및 조기경보를 전파하고 있다. 사업화로 인해 위험 저수지 대상으로 매출이 더 확대될 것으로 파악된다. 위험저수지 계측 센서의 데이터를 데이터 로거 로 수집하여 계측운영서버(연약지반 저수지 거동 모니터링 및 조기경보시스템)로 전송하여 운영자 PC, 재난경보 시스템으로 모니터링 및 조기경보 서비스를 제공한다. 예·경보 발생시 마을 방송장치 에 경보를 발생시킨다. 아래 그림은 위험저수지 시·군 모니터링 및 조기경보시스템 개념도이다.

그림 2-139 위험 저수지 시·군 모니터링 및 조기경보시스템 개념도

(다) 설계지원시스템 현장 적용

1) 모니터링 및 사업화 현장 적용 현황

사업화를 통해 저수지 안정성 실시간 모니터링 및 시·군 조기경보 시스템에 연계하였다. 대상 시· 군은 영동군, 보은군, 화순군, 곡성군, 청주시, 기장군, 무안군, 장흥군, 강진군, 삼척시 등이다. 총 19개소의 저수지에 연약지반 저수지 거동 모니터링 및 조기경보시스템을 적용하였으며 9개 시·군 조기경보시스템(시·군 관리)에 연계하여 조기경보를 전파하고 있다. 적용 연구 개발품은 기술 실시와 제품화를 통해 매출이 발생하고 있다. 아래 표는 사업화를 통해 연계 표출중인 저수지모니터링 화면 및 센서 항목 현황이다.

표 2-62 위험 저수지 모니터링 화면 및 시·군 조기경보시스템 화면

표 2-63 시·군별 위험 저수지 연계 계측 센서 현황

no	위치		구분	측정항목	수량
1	영동군	난곡저수지	강우량계	강우량	1
			수위계	제체 수위	1
			경사계	지중수평변위	12
no	위치		구분	측정항목	수량
----	--------	------------	---------	--------	----
			강우량계	강우량	1
2		기대기人기	수위계	제체 수위	1
2	모은군	실평제구지	경사계	지중수평변위	10
			구조물 경사계	구조물 경사	1
			강우량계	강우량	1
3	3 회순군	동유제	수위계	제체 수위	1
			구조물 경사계	구조물 경사	2
			강우량계	강우량	1
,			수위계	제체 수위	1
4	곡성군	구성서주시	경사계	지중수평변위	1
			구조물 경사계	구조물 경사	2
			강우량계	강우량	1
		명암저수지	수위계	제체 수위	1
~	- ラマ ハ		구조물 경사계	구조물 경사	8
5	5 정수시		강우량계	강우량	1
		용정저수지	수위계	제체 수위	1
			구조물 경사계	구조물 경사	3
			강우량계	강우량	1
		대곡저수지	수위계	제체 수위	1
			경사계	지중수평변위	2
		강우량계	강우량	1	
6	기장군	기장군 양지사소류지	수위계	제체 수위	1
			경사계	지중수평변위	2
			강우량계	강우량	1
		홍류동소류지	수위계	제체 수위	1
			경사계	지중수평변위	2
			강우량계	강우량	1
		성동저수지	수위계	제체 수위	1
-			경사계	지중수평변위	4
/	千竹七		강우량계	강우량	1
		복용저수지	수위계	제체 수위	1
			경사계	지중수평변위	3

no	위치		구분	측정항목	수량
			강우량계	강우량	1
			수위계	제체 수위	1
		고성서주시	경사계	지중수평변위	3
			구조물경사계	구조물 경사	1
			강우량계	강우량	1
			수위계	제체 수위	1
		파산서수시	경사계	지중수평변위	3
			구조물경사계	구조물 경사	1
			강우량계	강우량	1
			수위계	제체 수위	1
		금곡저수지	경사계	지중수평변위	3
6	-1 -1 -7		구조물경사계	구조물 경사	1
8	강신군		강우량계	강우량	1
			수위계	제체 수위	1
		소중서구시	경사계	지중수평변위	3
			구조물경사계	구조물 경사	1
			강우량계	강우량	1
			수위계	제체 수위	1
		상산저수지	경사계	지중수평변위	3
			구조물경사계	구조물 경사	1
			강우량계	강우량계 강우량	1
		· 국 그 리 & - 리	수위계	제체 수위	1
		홈골서수시	경사계	지중수평변위	3
			구조물경사계	구조물 경사	1
			강우량계	강우량	1
		교곡저수지	수위계	제체 수위	1
9	삼척시		경사계	지중수평변위	10
-			강우량계	강우량	1
		오리저수지	수위계	제체 수위	1
			경사계	지중수평변위	5
			소계		129

○ 난곡저수지

아래 표는 난곡 저수지에서 계측하고 있는 센서 및 수량 표이다. 강우랑계, 수위계, 경사계를 연동하였 다.

표 2-64 난곡저수지 현장 적용 현황

구분	측정항목	수량	난곡저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	12	
소계		14	

3) 보은군

○ 갈평저수지

아래 표는 갈평저수지에서 계측하고 있는 센서 및 수량 표이다. 강우랑계, 수위계, 경사계, 구조물 경사계를 연동하였다.

표 2-65 갈평저수지 현장 적용 현황

구분	측정항목	수량	갈평저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	10	
구조물 경사계	구조물 경사	1	
소계		12	

4) 화순군

○ 동유제 저수지

아래 표는 동유제 저수지에서 계측하고 있는 센서 및 수량 표이다. 강우랑계, 수위계, 구조물 경사 계를 연동하였다.

표 2-66 동유제 저수지 현장 적용 현황

구분	측정항목	수량	동유제 저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
구조물 경사계	구조물 경사	2	
소계		4	

5) 곡성군

○ 구성저수지

아래 표는 구성저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계, 구조물 경사계를 연동하였다.

표 2-67 구성저수지 현장 적용 현황

구분	측정항목	수량	구성저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	1	
구조물 경사계	구조물 경사	2	
소계		5	

6) 청주시

○ 명암저수지

아래 표는 명암저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 구조물 경사계를 연동하였다.

구분	측정항목	수량	명암저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
구조물 경사계	구조물 경사	8	
소계		10	

표 2-68 명암저수지 현장 적용 현황

○ 용정저수지

아래 표는 용정저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 구조물 경사계를 연동하였다.

표 2-69 용정저수지 현장 적용 현황

구분	측정항목	수량	용정저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
구조물 경사계	구조물 경사	3	
소	계	5	

7) 기장군

○ 대곡저수지

아래 표는 대곡저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계를 연동하였다.

표 2-70 대곡저수지 현장 적용 현황

구분	측정항목	수량	대곡저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	2	
소계		4	

○ 양지사소류지

아래 표는 양지사소류지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계를 연동하였다.

표	2-71	양지사소류지	현장	적용	현황
---	------	--------	----	----	----

구분	측정항목	수량	양지사소류지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	2	
소계		4	

○ 홍류동소류지

아래 표는 홍류동소류지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계를 연동하였다.

표 2-72 홍류동소류지 현장 적용 현황

구분	측정항목	수량	홍류동소류지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	2	
소계		4	

8) 무안군

○ 성동저수지

아래 표는 성동저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계를 연동하였다.

구분	측정항목	수량	성동저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	4	
소	계	6	

표 2-73 성동저수지 현장 적용 현황

○ 복용저수지

아래 표는 복용저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계를 연동하였다.

표 2-74 복용저수지 현장 적용 현황

구분	측정항목	수량	복용저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	3	
소	계	5	

9) 강진군

○ 고성저수지

아래 표는 고성저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계, 구조물 경사계를 연동

하였다.

표 2-75 고성저수지 현장 적용 현황

구분	측정항목	수량	고성저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	3	
구조물경사계	구조물 경사	1	
소	계	6	

○ 파산저수지

아래 표는 파산저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계, 구조물 경사계를 연동하였다.

표 2-76 파산저수지 현장 적용 현황

구분	측정항목	수량	파산저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	3	
구조물경사계	구조물 경사	1	
 소	계	6	

○ 금곡저수지

아래 표는 금곡저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계, 구조물 경사계를 연동하였다.

표	2-77	금곡저수지	현장	적용	현황
---	------	-------	----	----	----

구분	측정항목	수량	금곡저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	3	
구조물경사계	구조물 경사	1	
 소	.계	6	

○ 조동저수지

아래 표는 조동저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계, 구조물 경사계를 연동하였다.

표 2-78 조동저수지 현장 적용 현황

구분	측정항목	수량	조동저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	3	
구조물경사계	구조물 경사	1	
 소	계	6	

○ 장산저수지

아래 표는 장산저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계, 구조물경사계를 연동 하였다.

표 2-79 장산저수지 현장 적용 현황

구분	측정항목	수량	장산저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	3	
구조물경사계	구조물 경사	1	
 	계	6	

○ 홈골저수지

아래 표는 홈골저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계, 구조물경사계를 연동 하였다.

표 2-80 홈골저수지 현장 적용 현황

구분	측정항목	수량	홈골저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	3	
구조물경사계	구조물 경사	1	
 소	계	6	

10)삼척시

○ 교곡저수지

아래 표는 교곡저수지에서 계측하고 있는 센서 및 수량 표이다. 강우랑계, 수위계, 경사계를 연동 하였다.

표 2-81	교곡저수지	현장	적용	현황	
		20	10	L0	

구분	측정항목	수량	교곡저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	10	
소	계	12	

○ 오리저수지

아래 표는 오리저수지 계측센서 및 수량 표이다. 강우랑계, 수위계, 경사계를 연동하였다.

표 2-82 오리저수지 현장 적용 현황

구분	측정항목	수량	오리저수지 연계 표출화면
강우량계	강우량	1	
수위계	제체 수위	1	
경사계	지중수평변위	5	
소계		7	

(라) 설계지원시스템 장애 사례 및 개선 방안 제시

1) 현장 적용에 따른 장애 사례 및 조치 이력

가) 영동군

아래 표는 영동군에 발생한 장애 이력과 조치내역이다.

표 2-83 현장 적용에 따른 장애 사례 및 조치 이력(영동군)

일자	위치	세부위치	장애 내용	조치 내역	비고
22-07-02	영동군	도동지구	변위계 장애	케이블 결선이 불안정하여 결선을 보수	케이블 결선
22-08-16	영동군	난곡저수지	수위계 장애	케이블 결선이 불안정하여 결선을 보수	케이블 결선
22-12-08	영동군	난곡저수지	변위계 장애	1개의 센서에서 측정값 오류가 발생하여 센서 교체	측정데이터 오류
23-06-19	영동군	난곡저수지	수위계 장애	케이블 결선이 불안정하여 결선을 보수	케이블 결선

나) 보은군

아래 표는 보은군에 발생한 장애 이력과 조치내역이다.

표 2-84 현장 적용에 따른 장애 사례 및 조치 이력(보은군)

일자	위치	세부위치	장애 내용	조치 내역	비고
22-03-14	보은군	갈평저수지	변위계 장애	케이블 피복 벗겨져 습기에 노출되어 결측이 발생하여 재설치	케이블 결선
22-07-18	보은군	보청지구	강우계 장애	수수구 막힘으로 인해 측정오류가 발생하여 청소를 실시	측정데이터 오류
23-03-28	보은군	갈평저수지	변위계 장애	측정데이터에 노이즈가 발생하여 케이블 재결선 실시	케이블 결선
23-05-30	보은군	갈평저수지	변위,경사계 장애	케이블 단선으로 결측이 발생하여 내구성이 강한 케이싱으로 변경	케이블 결선

다) 화순군

아래 표는 화순군에 발생한 장애 이력과 조치내역이다.

표 2-85 현장 적용에 따른 장애 사례 및 조치 이력(화순군)

일자	위치	세부위치	장애 내용	조치 내역	비고
22-06-29	화순군	동유제	변위계 장애	케이블 결선이 불안정하여 오측이 발생하여 결선을 보수	케이블 결선
22-07-18	화순군	동유제	강우계 장애	수수구 막힘으로 인해 오측이 발생하여 청소를 실시	측정데이터 오류

라) 곡성군

아래 표는 곡성군에 발생한 장애 이력과 조치내역이다.

표 2-86 현장 적용에 따른 장애 사례 및 조치 이력(곡성군)

일자	위치	세부위치	장애 내용	조치 내역	비고
22-03-14	곡성군	구성저수지	경사계 장애	케이블 결선이 불안정하여 결선을 보수	케이블 결선
22-04-14	곡성군	구성저수지	경사계 장애	1개의 센서에서 오측이 발생하여 센서 교체	측정데이터 오류
22-07-03	곡성군	구성저수지	변위계 장애	케이블 결선이 불안정하여 오측이 발생하여 결선을 보수	케이블 결선
22-07-11	곡성군	구성저수지	변위계 장애	1개의 센서에서 오측이 발생하여 센서 교체	측정데이터 오류
22-08-08	곡성군	구성저수지	변위계 장애	케이블 결선이 불안정하여 결선을 보수	케이블 결선
23-03-15	곡성군	구성저수지	통신 장애	강우로 인해 누전차단기가 차단되어 방수 보강 조치함	통신 단절

마) 청주시

아래 표는 청주시에 발생한 장애 이력과 조치내역이다.

표 2-87 현장 적용에 따른 장애 사례 및 조치 이력(청주시)

일자	위치	세부위치	장애 내용	조치 내역	비고
22-06-29	청주시	한계저수지	변위계 장애	계측값이 수렴하지 않아 케이블 재결선	센서 정밀도 저하
22-08-11	청주시	한계저수지	변위계 장애	케이블 결선이 불안정하여 오측이 발생하여 결선을 보수	케이블 결선
22-08-19	청주시	명암저수지	변위계 장애	계측값이 수렴하지 않아 케이블 재결선	센서 정밀도 저하

바) 기장군

아래 표는 기장군에 발생한 장애 이력과 조치내역이다.

표 2-88 현장 적용에 따른 장애 사례 및 조치 이력(기장군)

일자	위치	세부위치	장애 내용	조치 내역	비고
22-10-19	기장군	홍류동	수위계 장애	측정데이터에 노이즈가 발생하여 케이블 재결선	측정데이터 오류
23-01-16	기장군	홍류동	수위계,경사 계 장애	강우로 인해 누전차단기가 차단되어 교체 설치	통신 장애

사) 강진군

아래 표는 강진군에 발생한 장애 이력과 조치내역이다.

일자	위치	세부위치	장애 내용	조치 내역	비고
22-06-07	강진군	금곡저수지	경사계 장애	케이블 피복 벗겨져 습기에 노출되어 장애가 발생하여 재설치	케이블 결선
22-06-29	강진군	금곡저수지	경사계 장애	케이블 피복 벗겨져 습기에 노출되어 장애가 발생하여 재설치	케이블 결선
22-09-06	강진군	금곡저수지	데이터로거 장애	낙뢰로 인한 손상이 발생하여 교체 설치	통신 장애
22-06-29	강진군	고성저수지	변위계 장애	케이블 결선이 불안정하여 오측이 발생하여 결선을 보수	케이블 결선
22-08-03	강진군	홈골저수지	수위계 장애	케이블 결선이 불안정하여 오측이 발생하여 결선을 보수	케이블 결선

표 2-89 현장 적용에 따른 장애 사례 및 조치 이력(강진군)

2) 현장 점검 및 보수 현황

사업화를 통해 연구개발품을 실제 저수지 현장에 적용한 결과, 센서 데이터에서 정상신호 유효범위 를 초과한 측정 및 노이즈 발생, 케이블 단선 및 결선 미흡으로 인한 오류, 센서 정밀도 저하의 문제 를 보였다. 통신 및 프로그램에서는 강우 및 기온 변화로 인한 함체 내 습도로 인한 문제, 낙뢰로 인 한 통신 중단과 센서, 통신 문제 발생으로 인해 잦은 경보발생 등의 문제가 나타났다. 아래 표는 사 업화를 통해 연구개발품을 실제 저수지 현장에 적용 이후 발생한 장애이력에 따른 조치 결과이다.

표 2-90 현장적용 문제점 및 현장점검 및 보수 현황

항목		발생 문제	조치 결과		
센서	측정데 이터 오류	 일부 센서에서 노이즈로 보이는 측정값 발생 계측시그널 정상신호 유효범위를 초과한 데이터 측정 	<pre>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</pre>		
			(센서 교제 설치) (FW 업데이트)		
		 강우량계 수수구의 막힘으로 인 해 오측이 발생되는 것으로 추정 	(이상지 검출 및 필터링 기술) (도이스 필터 및 오슥세거기술) (수수구 청소 및 막힘 방지)		
	케이블 결선	 환경 정비를 위한 제초작업시 케 이블 보호관 파손 및 케이블 단 선이 발생함 	(케이블 및 보호관 파손) (계측시스템 점검)		

항목		발생 문제	조치	결과		
		 케이블 결선이 불안정하여 오측 및 노이즈 발생 				
	센서 정밀도 저하	 측정데이터가 수렴하지 않거나 계측시그널이 정상 신호 유효범 위를 초과 	(센서 고장 여부 판별)	(케이블 재결선)		
통신	통신 장애			 잦은 강우와 높은 습기로 인하여 누전차단기 단전함 내부에 누전 차단기가 차단 	(기존센서 제거)	(센서 교체설치)
		 낙뢰로 인해 전원 차단으로 통신 이 중단 	(내부 습기세거세 배지)	(부선 사단기 교제)		
프로그램	I	○ 센서 고장으로 인한 경보 발령				
	.그램	 장기간 거동 데이터 저장으로 인 한 서버 저장공간 부족 	(계즉시스템 점검)	(경보 단계 업데이트)		

3) 개선방안

사업화를 통해 연구개발품 현장 적용시 발생한 문제는 유지관리를 통한 일상, 정기, 정밀점검 등 을 실시하여 센서 오류를 최소화하며 상시 관리를 통한 함체 내 습기 및 강우에 유의하여야 한다, 표 2- 는 실제 저수지 현장에 적용한 결과에 따라 개선방안을 제시하였다.

표 2-91 현장 운영 문제점 및 개선방안

항목 발생 문제 개선 방안	
----------------	--

항목		발생 문제	개선 방안
	측정데	 센서에서 노이즈로 보이는 측정값 발생 계측시그널 정상신호 유효범위를 초과한 데 이터 측정 	 유지관리를 통한 일상, 정기, 정밀점검 등 을 실시 센서 노이즈 필터 및 오측 제거 기술을 통 한 오류 최소화
,11,1	이더 오류	 강우량계의 경우 수수구의 막힘으로 인해 오측이 발생되는 것으로 추정 	 일상 관리를 통해 오측 방지 (동절기-원활한 히팅을 위한 큰망 제거, 하 절기-나뭇잎 등으로 제거하여 수수구 막힘 을 방지)
센서 -	케이블 결선	 환경 정비를 위한 제초작업시 케이블 보호 관 파손 및 케이블 단선이 발생 	 케이블 보호 케이싱을 금속 등으로 설치 안내판 설치 및 환경관리인과의 소통을 통 해 문제 최소화
		 케이블 결선이 불안정하여 오측 및 노이즈 발생 	 케이블이 연장된 부분에 강우가 침투하지 않도록 설치시 결선 보수를 강화
	센서 정밀도 저하	 측정데이터가 수렴하지 않거나 계측시그널 이 정상 신호 유효범위를 초과 	 유지관리를 통한 일상, 정기, 정밀점검 등 을 실시. 센서의 오류를 최소화
드 기	통신	 잦은 강우와 높은 습기로 인하여 누전차단 기 단전함 내부에 누전차단기가 차단 	 누전차단기 단전함 방수 보강하며 내부에 습기 제거제를 배치하여 주기적으로 교체
동신	장애	 낙뢰로 인해 전원차단으로 통신이 중단 	 비상전원장치(USP)의 적정 용량 확인 및 주기적 점검 실시
프로그램		○ 센서 고장으로 인한 잦은 경보 발령	 유지관리를 통한 일상, 정기, 정밀점검 등 을 실시 오측으로 인한 경보 발령 방지를 위한 경 보시스템을 업데이트
		 장기간 거동 데이터 저장으로 인한 서버 저장공간 부족 	 유지관리를 통한 일상, 정기, 정밀점검 등 을 실시. 저장 여유공간을 파악하여 관리

(8) 연약지반 저수지 설계지원시스템 운영 매뉴얼

(가) 연약지반 저수지 설계지원시스템

1) 개요

연약지반 저수지 설계지원시스템은 데이터 전송시스템, 자동화 계측데이터 분석시스템, 데이터베 이스시스템, 예/경보시스템 등으로 구성되고 각종 시스템이 원활하게 기본 역할 수행할 수 있는 통 합 소프트웨어이다.

GUI 기반 데이터 전송, 저장, 분석 기능과 앱 및 SMS를 이용한 예/경보 기능, 예비시험을 통한 원격지 실시간 모니터링 및 분석 기능 검증이 가능하다. 강우, 수위, 지반침하 및 변위, 간극수압 등 을 실시간 모니터링하고 측정 데이터 및 설계자료를 기반으로 제체의 안정성 분석 평가 및 조기경 보를 줌으로써 실무자 및 담당자가 신속하게 대응할 수 있도록 지원하는 시스템이다.

주요 기능은 센서 속성 및 데이터 관리 계측 현장 관리, 그래픽 사용자 인터페이스, 관리기준치 및 분석·경고 알림이 가능하다. 아래 표는 모니터링 프로그램 특징 및 기능을 나타내었다.

표 2-92 설계지원시스템 구성 및 특징

구 성 품	특 징
자동 계측 프로그램 및 웹서비스	 · 간극수압계, 지하수위계, 침하계 호환 가능(국내외 대부분의 로거·센서호환) · 기간별, 시간별 센서 측정 스케쥴 설정 가능 · LTE, TCP/IP, 모뎀(CDMA포함) 통신 방식 지원 · 방화벽 우회 통신 지원 · CR1000 외 5가지 데이터 로거 통신 프로토콜 지원 (DT, CR1000X, ROTECH, AWSTRL-100 등)
계측데이터 및 설계자료를 기반 분석 서비스	 연약지반 저수지 설계자료 및 계측자료 기반의 제체 안정성 계산 및 평가 제체 안정성(관리기준치 평가, 잔류침하량 평가, 제체 활동 안전율, 과잉간극 수압비 평가 등)을 통한 실시간 모니터링 설계사, 시공사, 감리사, 계측사, 유지관리 주체 등 실시간 모니터링 및 분석 분석 결과 그래프 출력지원 분석 결과에 따른 안정성 평가 및 조기 경보 발령 지원
예·경보 서비스	 데이터 실시간 분류, 경보, 분석, 추출 기능 지원 SMS, E-mail, 모바일 앱 경보 가능 사용자 분석 기법 정의 가능 사용자 그래프, 보고서 작성 및 출력 가능 현장 장비(이렌(경광등), 마을 방송, 자동음성통보시스템(경보음성), 전광판 등) 를 활용한 단위 현장별 경보 발령 가능
웹 서비스 (사용자 운영 프로그램)	• 웹 인터페이스 기반 계측데이터 열람, 추출 • 시각적 / 도면 방식의 인터페이스 • 간극수압 Contour(침윤선) 표출 가능 • 사용자 편의 인터페이스(화면에 모든 필수데이터 표시)

2) 프로그램 다운로드 및 접속

지반 거동 모니터링과 설계지원 시스템으로 구성되어 있으며 프로그램은 웹을 이용하여 배포하며 Clickonce로 자동 업데이트되도록 구성하였다. 프로그램 배포 사이트는 http://sr.egeit.co.kr/ 이 다. 설치프로그램 다운로드 후 아이디와 비밀번호 입력 후 로그인하면 프로그램 구동이 가능하다. 아래는 프로그램 접속화면과 메인화면이다.

그림 2-140 프로그램 접속 화면(http://sr.egeit.co.kr/)

최초 설치시 "설치 프로그램" 다운로드 후 설치한다. 필요시 재부팅 하며 프로그램 설치가 완료 되었다면 지정된 아이디와 비밀번호를 입력 후 로그인한다.(Windows 7 이상 실행 가능) 실시간 지 반 거동 모니터링 및 조기경보 등은 '거동 모니터링 로그인'을 클릭하여 접속하며 필요시 저수지 제 체의 제체 모델링, 물성 입력을 통한 활동면을 평가하고자 할 때 '설계지원시스템 로그인'을 클릭하 여 접속한다.

표 2-93 연약지반 저수지 제체의 거동분석 및 설계지원시스템 구동 화면

3) 프로그램 구동

가) 프로그램 구동 화면

연약지반 저수지 설계지원시스템은 간편하면서도 주요 정보를 쉽게 파악할 수 있도록 제작하였으 며 모니터링 현황, 알림상태. 센서 상태, 필요시 현장영상 등으로 구성하여 전반적인 현장 현황을 파악할 수 있도록 하였다, 아래는 경우에 따른 설계지원시스템의 구동 화면이다.

그림 2-141 구동화면

그림 2-142 구동화면

나) 관리기준치 기반 평가

관리기준치는 사용자의 설정에 따라 단계별로 설정가능하다. 또한 센서 오측으로 인한 경보 방지 를 위해 사용자가 설정한 일정 데이터 이상 관리기준치를 초과할 경우 경보가 발령되도록 구현하였 다. 연약지반, 시설물 계측 등 설계단계 분석, 건설단계 계측 및 경고, 유지관리 등 프로세스에 연속 활용이 가능하며 장기간의 거동 양상을 인지하는 변위, 급격한 변위에 대하여 예·경보를 발령할 수 있다. 또한 축적된 계측값에 근거하여 지속적으로 조기경보 단계별 발령기준 재수립의 기초 자료로 활용할 수 있다. 아래 표는 관리기준치 평가 구동 및 활용 화면이다.

표 2-94 관리기준치 평가 구동 및 활용

다) 잔류침하량 평가

잔류침하량 평가 방법은 측정 데이터를 기반으로 현재 잔류침하량, 허용 잔류 침하량, 예상 잔류 침하량을 활용하여 평가한다. 계측된 실측 침하량 및 침하속도 등을 다양한 방법으로 분석하여 시공 단계별로 원설계와 비교. 설계 지반정수(압밀계수, 압축지수 등) 등을 재평가하기 위한 Feed back 자료 제공이 가능하다. 아래 표는 잔류 침하량 평가 구동 및 활용 화면이다.

표 2-95 잔류 침하량 평가 구동 및 활용

라) 제체 활동 안전율 평가

다수의 센서(3개 이상)가 설치된 위치정보와 실시간으로 측정된 지표면 경사 정보를 분석하여 안전 율을 정량적으로 평가하는 모듈로 활동면 분석이 가능하다. 활동면 곡선식, 결정계수(R^2), 활동면의 단면적으로 시계열로 계산 및 가시화하며 제체 모델링과 물성입력 등의 과정을 포함하여 현장에서 즉각적인 분석과 조기경보가 가능하다. 또한 경보 알고리즘과 연동하여 재난 발생 전후, 피해가 우려 되거나 발생했을 때 선조치가 가능하며 단위 현장에서 즉각적인 조기경보가 이루어 질 수 있도록 하 여 안전, 재난관리에 활용이 가능하다. 아래 표는 제체 활동 안전율 평가 구동 및 활용 화면이다.

표 2-96 제체 활동 안전율 평가 구동 및 활용

마) 간극수압 평가

과잉간극수압비를 이용한 평가모듈은 침윤선 해석에 따른 Ru값을 산출하여 평가모듈에 입력하면 Ru를 기반으로 관리기준치가 산정되어 과잉간극수압에 따른 위험도를 관리한다. 과잉간극수압의 분 포는 성토고의 변화에 따라 반응하여 증가되는 경향을 띠고 있어 지속적인 모니터링을 필요로 한다. 또한 경보 알고리즘과 연동하여 재난 발생 전후, 피해가 우려되거나 발생했을 때 선조치가 가능하며 단위 현장에서 즉각적인 조기경보가 이루어질 수 있도록 하여 안전, 재난관리에 활용이 가능하다. 아래 표는 간극수압 평가 구동 및 활용 화면이다.

표 2-97 간극수압 평가 구동 및 활용

바) 조기경보 표출

조기경보 시스템 상용화를 위한 경보 및 전파는 E-Mail, SMS, 앱 등을 통한 조기 경보 출력 전 송이 가능하다. 시·군 조기경보 시스템에 전파되고 관리주체(관리자)에게는 SMS, 웹, 앱 등으로 실 시간 전파되며 유관기관과 연계하여 현장에 설치된 현장 장비(사이렌(경광등), 마을 방송, 자동음성 통보시스템(경보음성), 문자알림, 전광판)로 즉각적인 경보 발령이 가능하여 위험지역 주민의 생명과 재산을 보호할 수 있다. 또한 계측, 관측, 분석과 결합한 조기경보 통합관리시스템을 운영하여 축적 된 기술과 정보를 주민대피 및 재난관리 정책개선 등에 활용 가능하다.

04 ¹ 04	Del Del	1044	204. D	× () #	THE REAL PROPERTY.	Care	0.6	Det 1	the case	0	CSC 97 5895		L]-4분 안함	[]5s	19	n,	신하	1.162
					per		1			_								
					1621	10.1					初비世皇	7000		1				
					19 C		141		wight)									
100 B						10 10 10 10 10 10 10 10 10 10 10 10 10 1	States of Landson States	Contrate in			褐褐				48			
1000						(A Frank - Annual Color	Section 27 Section and in	-										
				1		100 101 000 1000 Pro		001 M	e. 🚺		90 ·	20144 2040						
1000						Contraction in the	and the second second	-										
						A logic state of the logic					큰입	CONTRACTORY	Contraction					
						Contract Aller	19 H 19 19 19 19 19 19 19 19 19 19 19 19 19	Chargest 1	-		-							
12002 S40	tie Ste	344	6 % 0	н		COLUMN SINT	and the second second second	1001150			\$ 4	1000000	1 miles					
						And the first of the local	And the Color of Colors, Sec.											
			REAL OF					1 000 A	-		24	10000100						
3400144-0030444			144-	0	2	(15/10) (Constant) (1	1 Marian Larger House	100 -										_
PRIMA PARAM			-	0	1.000		104.5		.n. n		14 ¹⁴	3500 552						
-				0 .	101.64													
SHI DO ATM			Tana -	-							7日1	all'equila						
			-	-	14	50	704 904	S 3			-	-						
				-		-		-	-		7(4) 2	111 254742						
림 2-	·143	조기	기경	보시:	스턷	구동	통 설정	정 :	화면			그림 2	2-144	전광	판 구	동	설정	
림 2- 문자메시지 경보 말랑	-143	조기	1 경!	보시:	스턷	I 구된	통 설경 마	정 호	화면	0	경보음성 정보 발랑등급	그림 2	2 -144	전광	판 구	¹ 동 ™	설정	D
림 2- 문자에서지 改보 말함 제873	-143	조7 □	1 ろ!	보시:	스턷	│구동 □**	통 설정	정 :	화면	0	3보음성 정보 발행등급 일에겠요 고려가장	그림 2	2-144 	전광	한 구	¹ 동	실정	0
리 2- 문자에시지 장보 말랑 #577	-143	조기 	13 4# 05	보시:	스턷	구동 □**	통 설경 □™	정 :	화면		정보음성 정보 발명등급 대전:4 	그림 2	2–144 	교	·판 구	1동	설정 교폐	64100
리 2- 문자에시지 강보 말함 제3724 74	-143	조기 	13 148.08	보시: ^{오래}	스턷	□**	통 설경 □™	정 :	화면 	-	정보음성 정보 발명등급 100번호 - 486년적 - 494	고림 2	2-144 	전광 	·판 구	1동 ⁶⁸	설정 ^{교폐}	ean orr
리 2- 문자에시지 장보 말한 	-143 850	조 フ □ ©	113 14#25 ま	보시: ^교	스턷	구 	통 설경	정 : ********	화면 **	_	<u>경보음성 경보 발명했고</u> 발전전후 	그림 2	2-144 	- 전광 - 28년 - 28 - 28 - 28년 - 28 - 28 - 28년 - 28년 - 28년 - 28년 - 28년 - 28년 - 28년 - 28년 - 28년 - 28	·만 구	1.동 아비 (가의 제 (가) 전체 (가) 전체 (가) 전체 (가) 전체 (제 () 전체 () () () () () () () () () () () () () (설정 ₽™ ₩	eatori De
	-143	조 フ □ 00 <u>0</u> AAR 856 EAR 958	1 3 」 14# 25	보시: (282) (48)	스턷	구 동 □**	동 설경	정 : ******	화면 **	-	8288382 प्रमारक मध्र2य मध् मध्र मध्र		2	· 전광	でし、max time"の が、max time"の が、それ Just time"の が、それ Just time"の が、それ Just time"の たって、 たっ て たっ て て たっ て て て て て て て て て て て て	1		entori De
	-143 880 (HAM) 820 (HAM) 820 (HAM) 820	조 フ (0) (2) ルス ぞら ビバ 第5 ルス ぞら ビバ 第5 ルス ぞう ビバ 第5	713! 14# 25 ま	보시: ^{문학}	스턷	구 동 □**	동 설경 고려 (admin (admin (admin (admin (admin)	정 3	シーク		2014/2014 2014 2014 2014 2014 2014 2014 2014 2014 2014	그림 2 300 (전) (전) (전) (전) (전) (전) (전) (전) (전) (전)	2-149 th 	전광 - 198 <td>·만 구 ···································</td> <td>소등 소등 소등</td> <td>실정 고매 (***********************************</td> <td>eation)</td>	·만 구 ···································	소등	실정 고매 (***********************************	eation)
स्राणभग २२ – स्राणभग २४ इष्ट स्राउपन स्राउपन स्रा स्रा २३ स्रा २३ २३ २३ ३३ २२	-143 8880 (RAME 804 (RAME 804 (RAME 804 (RAME 804)	조기	131 14# 12# # # #	보시: ^교 백	스텓	구동	E 설전	정 i	화면 () () () () () () () () () () () () ()		900 00 00 00 00 00 00 00 00 00 00 00 00	고림 2		25 25 25 25 25 25 25 25 25 25 25 25 25 2	· 관 구 · · · · · · · · · · · · · · · · · · ·		⊴ 355 2555 487 4 4 885 885 885 885 885 885 885 885 885	eat ori
स्राण्य	-143 850 (RAM 20) (RAM 20) (RAM 20) (RAM 20) (RAM 20) (RAM 20) (RAM 20)	조 フ 	1/131 1/48 0% # # #	עפא עפא עפ	스턷	구동	E 설(평 : **?\$**0	इ.स.	-	201220 20 199220 199220 1992 1993 1994 1994 1994 1994 1994 1994 1994	고림 2 ************************************		242 243 244 245 245 245 245 245 245 245	·····································		上 313 ■ 2133 ■ 2133	540 OL

그림 2-145 문자메세지 구동 설정

그림 2-146 경보음성 구동 설정

4) 설계지원시스템의 저수지 제체 모델링 및 분석절차

가) 프로그램 구동

메뉴, 모델링 화면, 속성창, 명령창으로 구성되어 있다. 메뉴는 노드 추가, 요소추가, 경계조건 추가 등을 수행한다. 속성창은 노드, 요소, 경계조건을 선택하고 수정 및 삭제가 가능하다. 모델링 화면은 이러한 모델링을 화면으로 가시화하는 창이다. 아래 그림은 프로그램 최초 구동화면이다.

그림 2-147 프로그램 최초 구동화면

나) 슈퍼 절점, 요소 설정

- "File" 메뉴 중 "New File" 또는 "Open"을 실행
- "Save"를 클릭하여 파일명을 입력
- "Mesh" 메뉴 중 "Add SuperNodes"를 클릭
- 지정하고자 하는 위치에 마우스를 옮기고 왼쪽 버튼을 클릭하면 슈퍼절점이 추가
- 슈퍼 절점의 위치를 변경하고 싶다면 "Select" 메뉴 중 "Super Nodes"를 선택
- 선택된 슈퍼노드의 속성창에서 변경하고자 하는 값을 변경
- 슈퍼 요소를 추가하기 위하여 "Mesh" 메뉴 중 "Add SuperELements"를 클릭
- 슈퍼 절점을 시계 반대 방향으로 클릭해가며 폐합하면 슈퍼노드가 완성
- 해석 스탭을 추가하기 위하여 "Mesh" 메뉴 중 "Mesh Information"를 선택
- "Increment Block"를 선택 후 Block Name을 아래와 같이 추가

표 2-98 슈퍼 절점, 요소 설정화면

다) 경계조건 추가 및 실시간 분석 DB설정

경계조건을 추가하기 위하여 "Select" 메뉴 중 "Super Edge"를 선택한다. 그리고 경계조건 추가 하고자 하는 요소의 Edge를 선택한다. 경계조건은 X방향, Y방향, Rotation 등이다. 이때 경사계 데이터가 존재하는 Super Edge는 Rotation 경계조건를 Fixed로 설정한다. Roation 경계조건에 대하여 Rotation 값을 클릭하면 아래와 같이 경사계 데이터를 입력하도록 하였다. 분석하기 위해서 는 Tool - Analyze Slip Line Tiltmeter를 클릭한다.(경사계 데이터의 Time은 모든 센서가 동일 Time Series 값을 넣도록 맞춰서 입력한다.) 아래 그림은 실시간 분석 설정화면이다.

실시간 분석 데이터 베이스 설정 💭를 클릭하여 데이터 베이스 설정을 한다.

- 기본정보 : 현장명과 자동분석 저장 옵션 적용이 가능
- 데이터정보 : 분석기간 및 데이터 시간간격 적용이 가능
- 형상 및 위치설정 : 해당 현장의 좌표기입 옵션

- 센서 1 ~ 5 : 경사계의 위치를 좌표로 선택할 수 있으며 실시간 분석을 하고자 하는 해당 센서 코드를 입력
- Get Measure Data 클릭시 센서 코드에 해당하는 실시간 데이터를 불러와 분석을 실행
- 분석결과 화면은 아래와 같으며 💭를 클릭하여 데이터베이스 설정

표 2-99 실시간 분석 설정 화면

경계조건 추가를 위한 Supe	er Edge 선택 화면	실시간 분석 데이터 베이스 설정(예시)			
19 H H H H H H H H H H H H H	First Node No. No	및 +000444.2.013 10.10230.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8239.2.013 10.8249.2.013	Core Anacure Data #24 12936 Fatare 2020-09-12 1 17.900-09 17.900-09 17.900-09 18.903-09 19.903-09 19.903-09 19.903-09 19.903-09 19.903-09 19.903-09 19.903-09 19.903-09 19.903-09 19.903-09 19.905-09 1		

라) 분석 및 분석 결과

아래 그림은 실시간 분석 실행 및 분석 결과 예시이다.

표 2-100 분석 실행 및 분석 결과(예시)

(나) 설계 및 계측 모니터링 지원시스템의 유지관리

1) 목적

연약지반 저수지 설계지원시스템의 유지관리란 구축된 시스템의 기능을 보전하고 안정성을 높이기 위해 일상적인 점검 및 정비를 시행하여 손상된 부분 또는 비상시에 원상복구시간을 최소화한다. 또 한 시간 경과에 따른 시스템 노후화 및 시스템 장애에 따른 데이터의 손실 등을 최소화하고자 한다.

- 유지관리 지침서를 작성하여 효율적 유지관리를 시행
- 계측관리프로그램을 통한 계측데이터의 정상 출력 상태 확인
- 계측기기함을 습기와 오염으로부터 보호
- 설치된 계측기기와 측정장치의 고정상태 확인
- 기기오염 및 고장여부를 확인하고, 바로 보수 및 교체를 실시

2) 유지관리 요령(안)

가) 시스템 관리자 준수사항

유지관리 관리업무에 종사하는 자는 다음과 같은 사항을 준수해야 한다.

- 센서, 통신, 시스템 운영소프트웨어의 결함이나 파손을 초래하는 요인을 사전에 조사하여 고장 발생을 미리 방지하도록 최선을 다하여야 한다
- 센서, 통신, 시스템 운영소프트웨어 이상 유무를 조기에 발견하고 발견 즉시 조치하여야 한다.
- 안전을 최우선으로 하여 작업을 진행하며 현장 및 구조물의 현황을 고려한 작업 계획을 수립하여 최대의 작업효과가 있도록 하여야 한다.

나) 운영방침 수립

유지관리 업무를 효과적이고 체계적으로 수행하기 위해서는 다음과 같은 운영방침을 수립하여야 한다.

- 설치시스템에 대한 지속적인 점검과 정비를 효과적이고 체계적인 방법으로 실시
- 센서나 통신, 시스템 운영소프트웨어의 관리를 우선으로 하고, 부속 시설물(무선방송시스템, 케이블 등)도 정비를 철저히 하여야 한다.
- 정비를 효과적으로 수행하기 위해서는 보수의 타당성을 사전에 충분히 판단한 후, 적정한 규모
 와 경제적인 방법으로 적기에 시행한다.

(다) 단계별 계측시스템 유지관리

효율적인 시스템의 유지관리를 위해 다음과 같이 단계별 유지관리가 필요하다.

1) 일상점검

일 1회 이상 운영 프로그램을 통해 전체시스템을 확인하며, 데이터의 저장 및 통신상태를 점검, 이상 발견시 보고체계에 의한 상황전파를 하며 센서, 통신, 프로그램 및 현장장비의 이상유무를 확 인 조치한다. 일상관리의 점검 항목으로는 시스템의 작동상태, 게이트웨이의 작동상태. 케이블 연결 상태 및 전원 공급상태 등이 있다.

2) 정기점검

연 2회 이상 계측센서 및 통합방재시스템 이상유무, 데이터 저장 및 통신상태, 운영 소프트웨어의 작동상태, 센서, 계측기, 계측기와 센서 연결케이블의 이상유무 등을 점검한다.

3) 정밀점검

일상점검과 정기점검을 기초로 전체 시스템에 대한 정밀점검을 실시한다.

4) 긴급점검

이상변위 발생 및 계측값의 관리기준치 초과시, 천재지변(지진, 대홍수, 태풍 등) 구조물 사고발생 (화재발생, 충돌 등) 및 인접지역의 굴착공사 등 긴급사항 발생시 전 시스템을 정밀점검한다.

표 2-101 유지관리 관련 보고서 및 점검현황표 예시

유지관리 보고서 및 보고자료	계측센서 점검현황표 예시					계=	측시스	템 점	검현횡	田	예
			< 점검 현황표 >					< 점검	현황표 >		
보 고 자 료	+	1.8	한 와 단계				- 2		11 15 15 10	81.55	10. N
2020-09		2 Tr	저 문			-	25		H B		8.9
. 개요	No.	89.04		£ 8	*				1		
월성교 누교 및 문무의 효율적인 유지관리를 위해 구속한 동합망재시스템의 현재 상태를 믿히 점검하고, 통합방재시스템을 안정화 및 화장하며 성능을 개선함.		NAdH	DO X OVERN PD				1.999.018		485	12.18	
			antation of	-		.1	동작선서	지만 및 인	상상태로 한단		
. 개선내용 (붙임 #1 참조)	3	N28 NA	이상유부와 의관상 변형정도의 환단			2	2888888	PE % 6	化化量量 教授		
* 물리당 검을상지, 통합 방새캔서, 고파실 방상감사상지 섬검 및 상동개인) 문귀라 건축자회 저긴 및 비스	3	Connector	죄순 및 철학 여부의 환왕				70,840	NE % É	응상해의 환단		
2) 동합 방재센서의 데이터로깅 장치 교체설치	*	Hol#	파손 및 월만 상태의 한만				zię wa	물리날째에서 선명왕동5	1의 이상 유부로 무관성 1 원단		
· 고화질 영상감시장치	5	144.45	의이라 잔송 및 자장상태 확인			5	100 8	ne s s	은 목해의 환문		
				-						-	
안전점검 보고서 (예시)	e	2(0)58.23	채널릴 결선 상태 확인, 통신 상태 확인			4	BRHM	350184 전문	및 자장상태 확인		
안전점검 보고서 (예시)	e 7	Nat 2	채널볼 같은 상태 확인, 동산 상태 확인 통산상대 확인	-		-6 17	स्त्रम्भ अक्ष्म्म	30(8) 전문	및 자장상태 확인 및 자장상태 확인		
안전점검 보고서 (예시)	e 7	NOREX Nor 2 FUEDH	해남봄 잘선 상태 확인, 동산 상태 확인 통산상태 확인			16 17 18	হা-চাইনাম প্রকার প্রথায়	30(6) 단종 30(6) 단종 30(6) 단종	및 차량상태 확인 및 차량상태 확인 및 차량상태 확인		
안전점검 보고서 (예시) 1) 8월 병제시스템용 모래필 프로그램 개발 (언트로이드용) 2. 제축 및 통합병제시스템 유제관리	6 7 8	HOREX HERE FORME Power Supply	해상품 공연 상태 확인, 동안 상태 확인 동안상태 확인 일 준택이 정상인지의 전쟁			4 7 8 9	99449 34449 2405499 8055499 805499	3008 전문 2008 전문 2008 전문 분선	및 자랑상태 확인 및 자랑상태 확인 및 자랑상태 확인 및 자랑상태 확인		
안전점검 보고서 (예시) 9) 통합 병자시스템용 모바일 프로그램 개발 (언트로이드용) 1. 저축 및 통법행자시스텔 유자관리 1) 저측관리 및 분석 9 대자관레인 및 변성	6 7 8 8	HOREX Har S FUENHE Power Supply RE	파일을 공선 상태 부인, 동산 상태 부인 동산상태 부인 실 출력이 정상인지의 전쟁 자순 상대 부인, 철지선 단락 상대 전쟁			4 7 8 9 10	영상/101 3년4-101 호나라동서대 통산위의 및 분 음수산문의 Power Supply	3008 전문 2008 전문 2008 전문 문신 일, 문제이	및 20월468 8 일 및 20월468 8 일 및 20월468 8 일 상태 8 일 Wyletan 관점		
안전점검 보고서 (예시) 30 통합 방재사설명 모대명 프로그램 개발 (인트로이드명) 4. 제축 및 출방방재사설 유재관리 1) 처료리 및 문과 2) 유지관리방안 및 비용	6 77 8 9 10	HONEX ANT S FUEDANE Power Supply Re MOLE MER	파일을 공신 아파 주인, 동신 아파 주인 동소양과 북인 지순 양파 전망전지도 전망 지순 양파 북인, 일지선 전북 영제 전쟁 전쟁 북인, 일지선 전북 영제			4 7 8 9 10 11	영상/101 104/01 호나아동시01 동안405 동 양 등수산당시 PowerSupply Qg	308 전문 308 전문 308 전문 82 82 82 82 82 82 82 82 82 82 82 82 82	및 지정상대 확인 및 지정상대 확인 및 지정상대 확인 상대 확인 상대 확인 당당인지는 한국 이 및 지성 관락 상태		
안전점검 보고서 (예시) 양 방제시스템용 모바일 프로그램 개발 (언트로이드용) 가격 및 통법방제시스템 유지관리 가격관리 및 분석 아 유지관리법 및 비용 ································	6 7 8 9 10	HONERY ANT S FUDDAN Power Supply Gas MOLE XIII DOM NIE	월년 84 8 년 전월 4 84 8 9 년 44 8년 전월 4 84 8 9년 44 8년 종년(18 8년) 종년(18 8년) 8년) 8년) 8년) 8년) 8년) 8년) 8년) 8년) 8년)			4 7 8 9 10 11	명당가의 3(목시의 도니(6동시의 로그(6동시의 로그(6동시의 로 문그(6동시의 문 모(6동시의 모(6 모(6 모(6 모(6)) 모(6 모(6)) 모(6)) 모(6) 모(6	2018년 28년 2018년 28년 2018년 28년 21년 28년 28년 21년 28년 28년 21년 28년 28년 21년 28년 28년 21년 28년 28년 28년 28년 28년 28년 28년 28년 28년 28	및 가장상대 #인 및 가장상대 #인 및 가장상대 #인 및 가장상대 #인 상태 #인 상태 #인 및 가장 산태 관망 및 가운 아루 한당		
안전점검 보고서 (예시) 1) 통합 방지사용명 로개월 로그명 개발 (인트로이트명) 1. 체험 및 통합했지소설 유지관력 1) 취급리 및 방법 1) 취급리 및 방법 2. 구상도	6 7 8 9 10 11 12	이야도 사이 및 <u>주산인하</u> 년 <u>주산인하</u> 년 <u>주산</u> 인하년 역표 역표 전문 제0분 단문 제0분 LPS	응가 20 전 4 10 10 10 10 10 10 10 10 10 10 10 10 10			4 7 8 9 10 11 12 13	명당 HH	2018년 전문 2018년 전 2018년 전 2018년 전 2018년 711 2018년 711 2018년 711 2018년 711 2018년 711 2018년 711 2018년 711 2018 2018 2018 2018 2018 2018 2018 20	및 가장상대 #인 및 가장상대 #인 및 가장상대 #인 및 가장상대 #인 상태 #인 사망가는 안약 상태 인외 및 가운 이후 한당 상태 #인		
안전점검 보고서 (예시) 3 8월 명시-6월 오리엘 프로 18 개월 (전드 루이드월) 7. 4월 \$ 8월 8년 44-45 용자리의 1) 계승권과 및 문서 2) 유지권방안 및 방송 3. 구성도 전화는 1990 - 11 - 11 - 11 - 11 - 11 - 11 - 11	6 7 8 9 10 11 12 13	ROBSEX Attr 및 #02004 PowerSuppy Q& 048 MOIN XIIP 128 MOIN UPS NA2(2)8	··································			4 7 8 9 10 11 12 13 14	영상 HM 지옥-HM 도-10동-HM 동2(HM 동 동2(HM 동 동2(HM 동 동2(HM S) 동2(HM S) 동2(HM S) 지유 도-10동(HM S) 다음 (HS) (HS)		및 가장상대 바인 및 가장상대 바인 및 가장상대 바인 일 가장상대 바인 일 가장상대 바인 상태 바인 및 가운 아바 환장 상태 바인 고가성 (북학) () 월 가방 가하 환장		

(라) 유지관리 항목

1) 계측시스템 유지관리

구축된 계측시스템에 대한 유지관리항목 중 계측데이터 단계별 관리항목은 다음과 같다.

○ 일상점검

- 관리항목 : 실시간 계측데이터, 일일 저장 계측데이터 및 계측시스템

- 관리빈도 : 1일 2회 이상

- 관리방법 : 계측관리 프로그램상의 관리기준치를 모니터링을 통해 판단
- 점검방법 :
- · 이상이 발생된 경우 일시적 데이터 이상인지 계속적 데이터 이상 발생 여부 확인
- 이상이 지속되지 않을경우 상황 종료
- · 이상이 수시로 발생할 경우 계측시스템 점검 및 현장점검 실시
- 현장점검은 점검 항목에 따라 점검 실시
- · 경보발생되면 비상시 행동요령에 따라 행동
- 정기점검
- 관리항목 : 장기저장 계측데이터
- 관리빈도 : 연 2회 이상
- 관리방법 : 계측관리 프로그램상의 장기계측 이력데이터를 통해 판단
- 판단기준 : 그래프상의 관리한계치 초과 여부를 확인
- 점검방법 :
- · 장기 계측이력에서 관리기준치 초과여부 판단
- · 관리기준치 초과가 자주 발생시 계측시스템점검 및 현장점검 실시
- · 계측시스템 점검은 계측사와 문의하여 전달 및 실시
- 현장점검은 점검항목에 의거하여 점검 실시
- 정밀점검
- 관리항목 : 실시간 계측데이터, 일일저장 계측데이터 및 계측시스템
- 관리빈도 : 연1회 이상
- 관리방법 :
- · 계측관리 프로그램상의 장기계측 이력데이터를 통해 판단 및 현장방문을 통해 일상점검과 정 기점검을 기초로 전체 시스템에 대한 정밀 점검을 실시

○ 긴급점검

- 관리항목 : 실시간 계측데이터, 일일저장 계측데이터 및 계측시스템
- 관리빈도 : 긴급 이상 발생시
- 관리방법 : 일상점검과 정기점검을 기초로 전체 시스템에 대한 긴급점검을 실시
- 계측관리 프로그램상의 장기계측 이력데이터를 통해 판단 및 현장방문을 통해 일상점검과 정

기점검을 기초로 전체 시스템에 대한 정밀 점검을 실시

- · 계측시스템 점검은 계측사와 문의하여 전달 및 실시
- 현장점검은 점검항목에 의거하여 점검 실시

그림 2-148 연약지반 저수지 설계지원시스템 유지관리(안)

가) 계측기기(센서) 및 통신 점검

아래 표는 구축된 계측기기에 대한 세부 점검내용 및 점검 방법에 나타내었다.

표 2-102 계측시스템 유지관리 점검내용(안)

구분	점검 대상	점검 내용	점검 방법
	센서, 케이블	파손 및 절단상태의 판단	육안검사
	현장장비 및 케이블	파손 및 절단상태의 판단	육안검사
	보호용 박스	설치 상태에서의 이상유무와 외관상 변형정도의 판단	육안검사
이이희이	커넥터	파손 및 굴곡에 의한 탈착 여부의 판정	육안검사
육안확인	게이트웨이	점등 표시, 배선과 기기의 파손 등이 보이는지의 판정	육안검사
	서버	점등 표시, 배선과 기기의 파손 등이 보이는지의 판정	육안검사
	모니터	점등 표시, 배선과 기기의 파손 등이 보이는지의 판정	육안검사
	전원	접속코드 및 배터리 구동시 충전액이 충분한 지의 판정	육안검사
절연상태	센서, 케이블	커넥터간 일정량 이상의 절연저항 확인	Tester
	지시치	초기 설정에서 예상 이상의 지시치 발생되는 지의 판정	계측서버 원격지 PC
기능확인 (센서)	계측 결과	계측 결과의 정상여부 이상치가 발생되는지의 판정	계측서버 원격지 PC
	파형	차량 통행등 상시계측시 파형이 정상으로 표시되는지의 판정	계측서버 원격지 PC
전원확인	전원	규정전압(110/220V)의 출력 Power Supply 배터리액의 충전상태	전원 표시기 충전기의 램프

나) 운영 소프트웨어의 유지보수

운영중인 시스템의 보안관리 및 지속적인 유지를 위하여 보안기술을 적용하여 하드웨어(센서/현장 경보 발령장치) 및 소프트웨어(DB/운영 소프트웨어의 지속적인 보완과 업그레이드 필요하며, 이를 확인하고 관리하기 위한 유지가 필요하다. 'SW사업 대가산정 가이드(2023년 개정판)'에 따르면 유 지관리 및 운영업무의 세부 업무 내용은 다음과 같다.

○ 수정적 유지보수

운영중인 소프트웨어에서 오류와 에러 등의 소프트웨어 문제가 있다면 수정적 소프트웨어 유지 보 수가 필요하다. 이는 소프트웨어 기능에 광범위한 영향을 미칠 수 있으므로 가능한 한 빨리 해결해 야한다. 오류 확인 후 사용자는 오류보고서를 소프트웨어 공급기업에게 전달하여 수정적 유지관리가 필요한 문제를 해결할 수 있다. 소프트웨어 공급기업은 사용자가 오류를 발견하기 전에 먼저 인식하 고 처리할 수 있도록 한다.

○ 예방적 유지보수

예방적 소프트웨어 유지 보수는 필요한 변경 및 조정 작업과 업그레이드를 수행하는 것이다. 지금 은 별다른 문제가 없더라도 미래에는 더 큰 문제로 변할 수 있는 작은 문제를 예방적 소프트웨어 유지 보수로 해결한다. 이러한 오류를 잠재적 오류라고 하며, 이를 제거하기 위해 소프트웨어를 수 정하며 실질적인 오류로 바뀌지 않도록 검출하고 수정한다.

○ 완전형 유지보수

완전형 소프트웨어 유지 보수는 필요에 따라 새로운 기능을 추가하고, 관련 없거나 효과적이지 않 은 기능을 제거하여 소프트웨어를 변경한다. 시장과 사용자 요구의 변화에 따라 소프트웨어를 적절 한 상태로 유지하는 프로세스이며 성능, 유지관리성 및 소프트웨어의 다양한 속성들을 향상하기 위 하여 소프트웨어를 개선한다.

○ 적응형 유지관리

적응형 소프트웨어 유지 보수는 소프트웨어 관련 정책과 규정과 운영 체제 변화와 클라우드 저장 소, 하드웨어 등에서 변화가 일어나면 변화된 환경(H/W, OS, N/W 등)에서 사용할 수 있도록 소프 트웨어를 수정한다.

2) 조기경보 발령기준

가) 개요

지자체가 지정한 조기경보 발령의 기준에 의거, 운영 소프트웨어 데이터베이스에 저장된 설계기준 과 실시간 모니터링을 기반으로 분석한 결과로 예·경보를 발령한다. 현장의 계측장비 데이터 수집 및 통합, 모니터링 임계값 설정 관리, 재난 예·경보 장비로 조기경보방송 송출하여 위험지역 주민들 의 대피를 위한 선제적 대응을 실시하여 주민의 생명과 재산보호 등 피해를 최소화하고자 한다.

현재 구축된 예·경보 시스템은 지자체별로 구축, 운영하고 있으며 피해가 우려될 때 마을회관 방 송, 전광판 등을 활용하여 주민 대피 및 안내하고 있다. 현재의 재난 예·경보 시스템은 잠재적, 돌발 적 위험 상황을 조기에 예측, 분석하여 신속한 의사결정을 내리는 데 한계가 있다. 이러한 점을 보 완하기 위해 지역의 특성에 맞춘 디지털 관측기와 계측기를 설치하여 맞춤형 관찰 체계를 구축해 설치된 관측기와 계측기에서 이상 징후(설계기준 이상, 실시간 모니터의 징조가 예측될 경우)가 예측 될 경우 조기경보 체계를 가동하는 것을 목적으로 한다.

그림 2-149 재난관리 주관기관과의 경보 발령 연계(안)

나) 관련근거

- 『재난 및 안전관리 기본법』 제 38조(위기경보의 발령 등)
- ① 재난관리주관기관의 장은 대통령령으로 정하는 재난에 대한 징후를 식별하거나 재난발생이 예상되는 경우에는 그 위험 수준, 발생 가능성 등을 판단하여 그에 부합되는 조치를 할 수 있도록 위기 경보를 발령할 수 있다. 다만, 제34조의5 제1항 제1호 단서의 상황인 경우에는 행정안전부장관이 위기경보를 발령할 수 있다
- ② 제1항에 따른 위기경보는 재난 피해의 전개 속도, 확대 가능성 등 재난상황의 심각성을 종 합적으로 고려하여 관심·주의·경계·심각으로 구분할 수 있다. 다만, 다른 법령에서 재난 위기경보의 발령기준을 따로 정하고 있는 경우에는 그 기준을 따른다.
- 『간이무선국·우주국·지구국의 무선설비 및 전파 탐지용 무선설비 등 그 밖의 업무용 무선설비 - 150 -

의 기술기준』

- 제3조(정의) 제1항 3. "마을 공지사항 안내용 간이무선국"이란 읍·면·동사무소 또는 마을 이장 이 간단한 행정안내 및 마을 공지사항 전달을 목적으로 개설하는 무선국을 말한다.
- 『무선설비의 접속사용』 제2조(무선설비의 접속 사용 허용 범위)
- 다음 각 항목의 어느 하나의 경우에 해당하는 자가 지정한 전화번호의 이동통신망을 통해 마을
 공지사항 안내용 간이무선국 무선설비와 접속하여 사용하는 경우
- (다만, 타인의 통신을 매개하거나 타인의 통신용으로 제공하여서는 아니 된다)
- 가. 마을이장 또는 읍·면·동사무소 근무자가 마을 공지사항을 전달하는 경우
- 나. 시·군·구 재난 안전 공무원이 재난의 예방·대비·대응 및 복구에 관한 사항을 전달하는 경우

3) 조기경보 단계 및 발령기준 검토

가) 추진배경 및 발령 주체

현재는 위기, 재난, 기상 관련 예·경보 발령기준은 분야별로 상이하여 일관된 기준이 없고, 위기경 보(관심-주의-경계-심각)와도 혼용한다. 재난대응을 위한 조기경보의 단계 및 발령/해제에 대한 통 일된 기준을 마련하여 조기경보시스템 구축 및 활용 효율성과 일관성 도모하며 재난발생 가능성이 크거나 재난상황에서 위험지역 내 주민에게 대피 등의 메시지를 전달함으로써 인명 및 재산 피해 최소화하고자 한다. 발령 주체는 재난발생 전후, 피해가 우려되거나 발생했을 때 위험지역 내 주민 이 대비하거나 대피할 수 있도록 재난관리책임기관의 장이 발령하도록 한다.

나) 조기경보와 위기경보 구분

- 「재난안전법」제38조에 따라 위기경보(관심·주의·경계·심각)는 재난관리주관기관(중앙행정기관) 이 발령한다.
- 「재난안전법」제38조의2에 따라 재난 예·경보체계의 운영주체는 재난관리책임기관(지방자치단 체 및 공공기관 등)이므로 위기경보와는 분리 필요하다.

〈 재난 및 안전관리 기본법 〉

제38조(위기경보의 발령 등) ① 재난관리주관기관의 장은 대통령령으로 정하는 재난에 대한 징후를 식별하거나 재난발생이 예상되는 경우에는 그 위험 수준, 발생 가능성 등을 판단하여 그에 부합되는 조치를 할 수 있도록 위기경보를 발령할 수 있다 제38조의2(재난 예보·경보체계 구축·운영 등) ① 재난관리책임기관의 장은 사람의 생명·신체 및 재산에 대한 피해가 예상되면 그 피해를

예방하거나 줄이기 위하여 재난에 관한 예보 또는 경보 체계를 구축·운영할 수 있다.

다) 조기경보 발령기준

「재난 및 안전관리 기본법」(법률 제16301호) 제38조의제2항에 따라 재난 예·경보 체계의 운영주 체는 재난관리책임기관(지방자치단계 및 공공기관 등)으로 각 위험지역의 위험요인과 지역 및 기상 특성이 서로 상이하여 경보 발령의 일괄적인 기준 수립이 불가하다. 적용하고자 하는 지역의 기상 특성, 기후 변화, 위험요인 등을 고려하여 분석결과, 계측값과 예측값에 근거한 지자체별 조기경보 발령 기준 수립이 필요하다.

현재, 농업용 댐과 저수지의 형식은 99.3%가 필댐(흙댐, 석괴댐, 사력댐 등)이고 일반적으로 필댐 의 주요 붕괴형태는 외부로 흐르는 물(월류) 또는 제체내부 누수(파이핑)에 의해 재료가 침식되어 발 생한다. 위험저수지 경보 발령 기준은 저수지 월류에 영향을 미치는 수리·수문 요인과 파이핑, 제체 사면활동, 부속 구조물(여수로, 복통 등)의 파괴 등으로 구분하며 위험저수지에 대하여 조기경보 발 령 기준은 다음 사항을 고려하여 정립한다.

- 강우량에 의한 경보 발령기준은 기상청의 주의보, 경보의 강수량과 지역의 기상·수문학적 특성
 및 해당 저수지의 지형적 특성을 고려하여 강우지속시간과 예상 강우량으로 표현
- 저수지 수위에 의한 경보 발령기준은 제체 월류붕괴에 관하여 가장 직접적으로 위험성을 판단
 하는 기준으로 저수지 만수위 및 홍수위까지 도달여부와 제당 월류발생 여부를 기준으로 판단
- 누수량계에 경보 발령기준은 제체의 파이핑과 같은 내부침식에 따른 누수량으로 저수지 붕괴 위험성을 판단하는 기준이며 누수량은 저수지의 형식, 축조재료, 다짐방식 등을 고려한 침투수 량의 기준값을 산정하여 변화량 크기로 판단
- 지표변위계에 의한 경보 발령 기준 설정은 일반적 파괴모델의 변곡점 기준으로 구분하여 누적 변위와 변위속도(일/mm)의 크기로 판단

7 H			발령 기준		1 17
	千문	주의보	경 보	대 피	비고
호-의 예산	우특보 및 상 강우량	- 호우 주의보/경보 발령 시	- 설계강우량 이상	-	예상 강우량에 의한 대피 발령 없음
	강우량 (월류)	- 설계강우량 50% 이상	- 설계강우량 75% 이상	- 설계강우량 90% 이상	설계강우량 고려
N	저수위 (월류)	- 만수위 이상	- 홍수위 이상	- 월류 예상 수위	방류량과 유입유량과의 비교 조건 고려
계 측 값	누수량 (파이핑)	- 정상 침투 수량 50% 이상	- 정상 침투 수량 75% 이상	- 정상 침투 수량 90% 이상	일정기간동안 정상침투수량 이상 누수량 발생 기준
쉾	변위량 (사면활동)	- 누적변위이상 - 변위속도이상	- 누적변위이상 - 변위속도이상	- 누적변위이상 - 변위속도이상	지진에 의한 변위 별도 고려
	방류량	- 침수 미발생 유량 방류시	- 계획홍수위 이상 발생 방류시	- 침수 발생 유량 방류시	방류량에 따른 하류부 침수지역 고려

표 2-103 저수지의 계측값에 따른 조기경보 발령 기준(안)

- 만수위 : 평상시 저수지에 물이 가득 찼을 때 수위

- 홍수위 : 예상되는 최대 홍수가 발생할 때의 최고 수위

- 여수로 : 홍수 시 만수위를 넘는 수량을 안전하게 방류하기 위해 만든 시설

라) ○○군 △△저수지 조기경보 발령 기준 예시

○ △△저수지 호우특보, 예상 강우량 및 방재성능목표 강우량

상기 기준에 의거 과업대상 재해위험저수지의 발령기준 주의보 및 경보 기준을 준용해야 하며, 계 측값 기준인 강우량 즉, 방재성능목표(1~3시간) 강우량의 발령기준과 비교하여 적용해야 한다. 과업 대상 지구가 위치하는 우리나라의 호우주의보 및 경보의 기준 및 〇〇군의 방재성능 목표 강우량은 다음과 같다.

표 2-104 〇〇군 방재성능 목표 강우량 및 우리나라 호우 기준

7 8	지속	ਸੀ ਹ			
T Ť	1시간	2시간	3시간	비꼬	
○○군 방재성능목표강우량	85.0	115.0	145.0		
※ 호우주의보		※ 호우경보			
- 3시간 강우랑 60mm 이상		- 3시간 강우랑 60mm 이상			
- 12시간 강우랑 120mm 이상		- 12시간 강우랑 120mm 이상			

주) 자료 : 지역별 방재성능목표 설정·운영 기준(2017.12, 행정안전부)

○ △△저수지 강우량 검토

○○제에 대해 200년 빈도×1.2배 홍수량을 적용하여 저수지 홍수추적 결과 강우지속시간 80분부 터 제방을 월류하는 것으로 검토되었으며, 10년 빈도 및 30년 빈도일 때 제방월류는 발생하지 않으 나 제방 사면보호공(EL. 90.91m)을 초과하는 것으로 검토되었다. 저수지 홍수추적 결과 및 현재 ○ ○제의 상태(사면보호공 위치)를 고려하여 금회 검토에서는 조기경보 발령기준설정을 위한 수위조건 설정시 농업용저수지와 같은 흙댐은 붕괴발생시 외부로 흐르는 물(월류) 또는 제체내부 누수의 의해 재료가 침식되어 피해가 발생하는 점을 감안하여 수위조건을 설정하였다.

또한, 강우량 기준으로 조기경보 발령기준 설정시 현재의 저수지 제원(저수량, 여수로, 제방고 등) 은 제시된 강우량 기준을 충족하지 못할 것으로 판단되어 금회 검토에서는 수위기준에 의한 경보발 령 기준을 설정하였다. 아래 표는 〇〇제의 설계강우량 및 조기경보 발령기준을 정리하였다

강우지속시간 (hr)		ਸੀ ਹ			
	200년×1.2	50%	75%	90%	비고
1시간	125.2	62.58	93.87	112.64	
2시간	180.4	90.18	135.27	162.32	
3시간	222.5	111.24	166.86	200.23	
해당빈도	-	약 10년	약 80년	200년 이상	00관측소

표 2-105 〇〇제 설계 강우량 검토

표 2-106 〇〇제 조기경보 발령기준 검토

저수지명 (위치)	구 분			검토기준	강우량 및 홍수위		행동지침
				설계강우량 50% 이상	1시간	62.58mm	
		주의	의보	(설계강우200년빈도×1.2배) 1시간 : 125.2mm, 2시간 : 180.4mm	2시간	90.18mm	"조심 하라"
				2시간 : 100.4mm, 3시간 : 222.5mm)	3시간	111.24mm	
					1시간	93.87mm	
	강우량	경	보	설계강우량 75% 이상	2시간	135.27mm	"대비 하라"
					3시간	166.86mm	
					1시간	112.64mm	
		대	피	설계강우량 90% 이상	2시간	162.32mm	"대피 하라"
∩∩ঝা					3시간	200.23mm	
00/4		주의보		만수위 이상 (여수로 상단표고)	EL. 89.90m		"조심 하라"
	수위	경 보		홍수위 이상 (사면보호공)	EL. 90.90m	1시간:93mm, 2시간:134mm 3시간:165mm	"대비 하라"
		대	피	월류 예상 (200년 빈도 이상)	EL. 91.60m	5 - <u>C</u> 10911111	"대피 하라"
	▶र्यम				누적변위 경사도(Deg.)	일변위 경사도(Deg.)	
	변위계 (매립형 /	, 위계 립형 주의보 /		주민대피관리기준 제정·운영지침 (국민안전처, 2015) 일본 사면안정소위원회의 과리기주 일본 구토교통서	0.6°	0.1°/day	"조심 하라"
	경사계 타입) ▶그즈므	 경 보 므		지반경사계 산사태 판정기준, 국내의 급경사지 경사계 관리기준 등을 종합·분석하여	1.2°	0.3°/day	"대비 하라"
	▶구조물 경사계		피	선정함	1.7°	0.5°/day	"대피 하라"

주) 수위에 해당하는 강우량은 참고치이므로 수위기준으로 경보기준을 설정

표 2-107 저수지의 계측값에 따른 조기경보 발령 기준(안)

78				비고	
	ずぜ	주의보	경 보	대 피	비꼬
호우 예상	'특보 및) 강우량	- 호우 주의보/경보 발령 시	- 설계강우량 이상	-	예상 강우량에 의한 대피 발령 없음
	강우량 (월류)	- 설계강우량 50% 이상	- 설계강우량 75% 이상	- 설계강우량 90% 이상	설계강우량 고려
1Ì	저수위 (월류)	- 만수위 이상	- 홍수위 이상	- 월류 예상 수위	방류량과 유입유량과의 비교 조건 고려
계 측 가	누수량 (파이핑)	- 정상 침투 수량 50% 이상	- 정상 침투 수량 75% 이상	- 정상 침투 수량 90% 이상	일정기간동안 정상침투수량 이상 누수량 발생 기준
값	변위량 (사면활동)	- 누적변위이상 - 변위속도이상	- 누적변위이상 - 변위속도이상	- 누적변위이상 - 변위속도이상	지진에 의한 변위 별도 고려
	방류량	- 침수 미발생 유량 방류시	- 계획홍수위 이상 발생 방류시	- 침수 발생 유량 방류시	방류량에 따른 하류부 침수지역 고려

단계별 대응 방안

계측빈도	1시간 (평시 유지)	30분	10분	
상황보고 기관	관련기관 (예) 시설처, 시설사무소 등)	관련기관 (예〉시설처, 시설사무소 등)	관련기관 (예〉시설처, 시설사무소 등)	시군구내 관련 공무원 및 저수지 담당자
상황보고 방법	주의단계 10일 이상일 경우 유선통보	경보단계 5일 이상일 경우 유선통보	분석을 통해 위험 단계시 SMS, 경보방송 등 전송	시군구내 관련 공무원 및 저수지 담당자
현장확인(점검)	필요시 현장 육안점검	필요시 현장 육안점검	현장 육안점검	시군구내 관련 공무원 및 저수지 담당자
주요조치사항	CCTV 현장영상확인 센서이상유무 확인 타센서 계측값 비교검토	데이터 변이 추이 검토	현장합동점검 후 정밀진단 요청	

- 만수위 : 평상시 저수지에 물이 가득 찼을 때 수위

- 홍수위 : 예상되는 최대 홍수가 발생할 때의 최고 수위

- 여수로 : 홍수 시 만수위를 넘는 수량을 안전하게 방류하기 위해 만든 시설

(9) 연약지반 저수지 지반 거동 설계지원시스템 개발 효과

(가) 비즈니스 모델

1) 시장 조사 및 수익성

가) 국내시장

한국농어촌공사에 따르면 공사가 관리하는 전국 3,421곳 저수지 가운데 88.1%(3,014개소)가 건 설한지 30년 이상 된 노후 저수지이다. 그중 50년 이상 된 저수지가 75.2%(2,572개소)로 대부분을 차지한다. 또한 지방관리단체가 관리하는 시설을 포함해 전국 1만 7,000여 개의 저수지 대부분이 마찬가지 상황이다. 저수지는 댐, 철도, 항만 등 다른 주요 기반 시설보다 오래된 곳이 많은 편으로 저수지 안정성을 위해 지속적인 유지관리가 필수이다. 저수지의 내구연한은 약 70년으로 내구연한 이 지난 저수지의 전면 재구축도 추진 중이며 행정안전부에서는 재해에 취약한 지역을 재해위험지 구, 급경사지, 재해위험저수지, 풍수해 생활권으로 지구 지정, 열악한 지방재정으로 적시에 정비되지 못하는 문제를 해소하기 위하여 국고보조사업으로 추진 중이다.

나) 국외시장

국외 현황으로는 먼저 중국은 1950년대부터 대규모의 댐과 저수지를 건설하였고, 96,942개의 댐 과 저수지가 있으며 저수용량에 따라 구분된다. 캐나다는 1830년대 처음 저수지를 축조한 이래로 현재까지 14,000개 이상의 저수지가 준공되었으며 미국은 1900년도 이전에 저수지를 축조한 이후 현재까지 74,096개가 준공되어있다. 미국, 호주, 유럽 등 선진국에서는 2000년대 이후로 기본 안정 성 분석 방법에서 나아가 파괴확률, 관련 피해도, 다양한 하중조건 등을 통합한 위험도 해석을 통해 댐의 안전도를 종합적으로 평가하는 방안이 채택되고 있다.

다) 연구 개발품의 필요성

현재의 연약지반 저수지의 계측관리는 시공중/유지관리 중 안정성 변화를 감시하여 붕괴 등으로 인한 재난·재해 방생 예방을 위하여 계측관리 기준을 설정하여 관리기준을 토대로 안전관리를 수행 하고 있다. 하지만 설정된 관리기준조차 저수지 댐의 계측관리기준, 지침은 과거에 수립된 기준이 준용되고 있다.

축조된 한국 저수지 대부분이 축조 당시 주로 100~200년 동안 내릴 가능성이 있는 가장 큰 비의 양을 예상해 이를 설계한다. 하지만 최근 이상기후 변화로 인해 집중호우 등으로 저수지 붕괴 우려 가 증대되고 있다. 최근 이어진 전국적인 집중호우는 축조 당시 설계 최대강우량을 한참 넘어선 최 대 강수량으로 과거에 수립된 기준을 토대로 축조된 저수지의 안정성을 위협하고 있다. 단순 계측 결과에 적용한 관리기준만으로 즉각적인 저수지의 안정성을 평가하기에는 어렵고 관리자의 주관적인 판단으로 평가할 가능성이 있다. 이러한 단점 보완을 위해 계측자료 기반의 제체 안정성 평가 및 분 석을 통해 조기 경보 발령, 빠른 초기 대응 등을 통해 인근 지역 및 주민들을 보호하여야 한다.

2) 비즈니스 모델 수립

본 연구에서 개발된 지반 거동 모니터링 시스템은 실시간 계측데이터 분석을 통한 위험도평가 및 분석, 재난 대응형 센서 및 통신 연계, 위험도 기반 관리 및 운영시스템 등을 제공한다. 마케팅 대 상으로는 급경사지, 옹벽, 재해위험지구, 공공기관, 지방자치단계, 계측사 등이다. 기존 기술은 최소 1천만원 이상의 고가이며 유지보수성(전문가 설치, 설정의 어려움)이 떨어지지만 해당 기술은 기존 대비 50%가량의 비용을 절감하였으며 기존시스템 및 유지관리 연계 기관과 호환이 가능하다.

	"연약지반 저	수지 지	반거동 모니티	러링시스템" 니	비즈니	스 모델 캔비	너스		
		(Business M	odel Canva	us)				
핵심 파트너(KP)	핵심 홬동	KA)	가치지	∥안(VP)	고	객 관계(CR))	고객(CS)	
Key	Kev Acti	Key Activities		alue		Customer		Customer	
Partnerships	Key heth	vities	Propo	ositions		Relation		Segment	
■ 계측 S/W 제조사	■ 저비용 : 5	백만원/개	소│ ■ 기존 대	비 50% 가격		마케팅/영업관	±리│ ■	공공기관	
■ 정부출현기관	■ 고효율 : 용	ŀ역→패키	지│ (용역→	패키지)	∎ - Ę	블로그 소개	/ (ð	한국농어촌공사,	
■ 계측 H/W 제조사	■ 마케팅 : 정	부조달등	록 🔹 기존시	스템 호환성	크	·내외전시회	참가 지	방자치단체 등)	
■ 통신사	인터넷(블러.	그, 유투!	브) <i>(</i>)존 쟤	듣거, IoT 호환)	∎	공공기관에 기	' 술 ■	정부출현연구기관	
■ 컴퓨터관련	전시회 개초], 논문·	등 ■ 수요자	요구사항 반영	ד	헤안/소개		(KRRI, ETRI,	
H/W 제조사			(GIS기반	, 논문용 차트,	■ 지	네계약 성공률 -	높임	EKR, NDMI 등)	
			즉시 출력	보고서.	(품	질, 사후관리	철저) ■	건설설계사	
		1()	경보 및	상황전파,			•	건설시공사	
	핵심 자원	<u>4</u> (KR)	구조물 두	·면UI)	н П	-동재널(CH)	(ל	현대건설.	
	Key Resc	ources		최고속도 확보		Channels	ù	H우건설.	
	■ 핵심 개빌	<u> 1</u> 명	(대량데이터 효율전송			마케팅/영업	소	삼성물산 등)	
	■ AS 및 기章	술지원 1	명 빈데이	Ⅰ 마춘전송 티 마춘전송	■ ス	내계약 수요		계측사 등	
	■ 분석 및 耳	평가자 1	명 별목 모니	- 김 - 드 0 그터링 및 해소)	(선·	순환 구조 지]향)		
	■ 전문가 지	문 풀	■ 여구ス	- 기원 - 지원	• 3	조달청,나라징)터		
	■ R&D, 대	기업 수	탁 (아저서	· · · · 부선 및 펴가)	■ 위	궼, 홈페이지			
	■ 지식재산	권(특허)							
비용구조	(C\$) Cost St	ructure	S		수익원	l(R\$) Rever	nue Stre	eams	
■ 판매 원가 : 약	2,000천원/기	소		■ 예정 사	업:5	3개소(예산	활동 및	시행 예정 사업)	
····· 항 목	단가	수 량	소계	발주치	처	사업	김명	수량 시행년도	
프로그램석치(중급개)	박자) 239천원	2일	478천원		혼공사	재해위험지역계	측관리프로	그램 13 '24~	
파매믹시(《주그개비	는 <u>230천위</u> 	201	<u>/7</u> 8처의	지방자치	단쳬	새해위엄시구,	<u> </u>	<u> 등 20 24~</u>	
	이기 237년년	실 근 1100/	4/01년	 게츠시	J-	시골 중 유지패	1월 세득원 리 준 모나!	<u>11 10 20~</u> 크린 10 산시	
관리 간십미	<u>빈선미</u>	110%	1,051선원		1	<u>10 0, 11 10</u> 소 계		53	
	신계		2,007전원	■ 예상 수	-익 : :	1.4억원(~'2	3년도), 여	예상(B/C) : 2.5	
※ S/W는 패키지	형으로 프로그	램 설치	및 설정후	· · · · · · · · · · · · · · · · · · ·		다 가	수량	소계	
구동함으로 개	발비용을 최소	.와 할 수	> 있음	판매 가	격 5	.000천원/개소	53	<u>265,000천원</u>	
				판매 원	가 2	,007천원/개소	53	106,371천원	
					वो	상 수익		158,629천원	

표 2-108 지반 거동 모니터링 시스템 비즈니스 모델 캔버스

※ 모니터링 프로그램의 시장가는 약 7,000천원임 모니터링 프로그램의 설계가는 약 28,750천원임

2.5

수익률(B/C)

(나) 사업화 방안

1) 제품의 정의

연약지반 저수지 지반 장기거동 모니터링 시스템(설계지원시스템)은 취득한 센서 데이터를 통하여 저수지의 안정성을 분석 및 평가한다. 잔류침하량, 제체 활동 안전율, 간극수압 평가 모듈을 통해 조기에 관계자에게 경보가 가능하게 하여 재해를 예방하고 대응할 수 있도록 하는 시스템이다.

지반 거동 모니터링 시스템은 시설물 개별 계측 모니터링 시스템, 통합 계측 모니터링 시스템, 경 보 및 상황전파 시스템, 위험도 분석 및 평가 시스템, 시공 중 모니터링 시스템, 유지관리 중 모니 터링 시스템, 재해관리시스템, 연구용 시설물 성능평가 시스템 등으로 구분하여 판매가 가능하다.

그림 2-150 연약지반 저수지 설계지원시스템 활용 계획 및 방안

2) 제품 특징 및 강점

가) 연약지반 저수지 설계지원시스템

본 연구에서 개발한 설계지원시스템은 1. 관리기준치 기반 평가 모듈, 2. 잔류침하량 평가 모듈 (침하량 기반), 3. 제체 활동 안전율 평가 모듈(지표 경사 기반), 4. 간극수압 평가 모듈(과잉간극수 압비 기반)을 탑재하여 계측자료를 활용한 지반 거동 평가 모듈을 구축하였다. 실시간으로 평가 및 분석하여 솔루션을 제공하며 건설단계 및 운영주체 연계 호환을 통해 조기경보 시스템 구축이 가능 하여 실시간 대응이 가능하다. 또한 단순 계측 결과에 의해 재해를 평가하는 현행기술을 벗어나 추 후 제체 안정성 평가 모듈을 종합적으로 분석하여 시설물의 상태를 객관적으로 판단할 수 있다.

계측 모니터링 시스템은 시설물 개별/통합 계측 모니터링, 시공중/유지관리 모니터링, 위험도 분 석 및 평가, 경보 및 상황전파, 재해관리 등 적용 현장에 맞게 솔루션이 제공되는 특징을 가진다. 가격적인 측면에서는 기존 모니터링 S/W대비 10~20%의 가격으로 책정하여 지점당 약 500~700만 원 수준으로 판매하여 저비용 고효율의 시스템을 제공할 예정이다.
표 2-109 기존시스템 대비 차별성

항목	기존 시스템	개발 시스템
경제성	■고가(최소1천만원 이상)	■ 저가(기존가격의 50%)
성능	■단순 데이터 측정 (변위·응력 등)	■데이터 측정, 분석, 평가 기능 제공 (관리기준치, 간극수압, 안전율, 잔류침하 평가)
유지보수성	■전문가 설치 필요 ■재사용 어려움 ■초기 설정 어려움 ■웹·앱 연계 전문가 필요	■일반인 설치 가능 ■재사용 가능 ■초기 설정 간편 ■웹·앱 연계 간편
관리기준치 기반 평가	■단일 센서 기준으로 절대 관리 기준치로 평가	•센서 오측으로 인한 경보를 방지하기 위해 연속하여 2~10(센서별 설정) 이상 계속하여 관리기준치를 초 과할 경우 경보 발생 기능 구현
잔류침하량 평가	■쌍곡선법, Asaoka법, Hoshino 법 등 탑재	 쌍곡선법, Asaoka법, Hoshino법 등 탑재 허용잔류침하량(ARS), 현재 잔류침하량(a), 예상 잔 류침하량(b)을 활용한 현재 및 예측 잔류침하량과 허 용잔류침하량 비교하여 안정성 평가
제체 활동 안전율 평가	■ 절대 관리기준치로 평가	 다수의 센서가 설치된 위치정보와 실시간으로 측정된 지표면 경사 정보를 분석하여 안전율을 정량적으로 평가
간극수압 평가	■ 참고 자료로 활용	■과잉 간극수압비(Ru)에 따른 안정성 평가
조기경보 시스템	 계측 이상치 검출 및 경보 필터 링 기술 센서 노이즈 필터 및 오측 제거 기술 상시 계측 관리체계에 따라 예 경보 시스템 	 연속하여 2~10(센서별 설정)이상 계속하여 관리기준 치 초과 할 경우 경보 발생 기능 구현 낙뢰 등으로 발생되는 센서 오측을 3단계의 과정을 거쳐 제거하거나 감소시키는 방법 적용 사이렌, 마을방송, 자동음성통보시스템, 문자 알림, 전광판 등을 통해 최단시간 내 대피 유도. 안전 확보

3) 과업 종료 후 예상 매출

시장 조사 결과 가시적으로 상품화할 수 있는 대상 시스템은 행정안전부의 급경사지, 재해위험지 구, 연약지반 저수지 노후화 개선사업 등으로 조사되었다. 시장조사결과 상품화 대상 시스템의 매년 예상 매출액은 약 2.0억원이며 수익은 1.2억원으로 분석되었으며 아래 표와 같이 정리하였다.

표 2-110 사업화 계획에 따른 예상 매출 규모

	성과물		연약지약 저수지 거동 모니터링 및 조기경보 시스템						
	사업화 소	요기간(년)	3년						
	소요예	산(천원)		200,000천원					
	خات ادات		현재까지	3년 후	5년 후				
	예상 매술규모(전원)		약 50,000	약 100,000	약 200,000				
	시장 점유율	단위(%)	현재까지	3년 후	5년 후				
사업화 계획		국내	5%	10%	15%				
		국외							
	향후 관련기술, 제품을 응용한 타 모델, 제품 개발계획		장래침하예측, 사면안정성평가, 적정 성토고 산정 등의 범위까지 확대하여 계측 솔루션 제공 시설물 개별/통합 계측, 경보 및 상황전파. 위험도 분석 및 평가, 시공중/유지관리 모니터링, 재해관리 등 현장에 맞게 솔루션 제공						

그림 2-151 구성 기술에 따른 사업화 전략

(10) 소결

① 연약지반 저수지 설계 및 계측자료 수집

한국농어촌공사에서 저수지를 시공 및 관리하면서 수 년간 누적된 정밀안전진단보고서 등 자료를 분석하여 시공 당시 난관을 경험한 저수지들을 분석하였다. 또한, 지반 거동 계측자료, 계측 단면, 계측데이터, 설계자료, 정밀안전점검 보고서, 제체 해석 자료 등 수집 및 검토하여 구축하였다.(탄동 저수지, 대야저수지, 모항저수지, 예당저수지 등)

② 지반 거동 계측자료 데이터베이스 구축

데이터베이스에 센서 정보, 계측데이터, 설치 위치 등 계측 관련 테이블의 다이어그램과 GIS 관련 테이블 등을 설계 구축하였다. 또한, 대야지구 제체, 탄동지구 제당, 모항저수지, 예당저수지의 계측 데이터를 연동하여 모니터링 시스템에 표출하였다.

③ 지반 거동 모니터링 평가 모듈 개발

저수지 설계자료 및 계측자료를 기반으로 강우, 수위, 지반 침하 및 변위, 간극수압 등의 변화량 에 따라 제체 안정성(관리기준치, 잔류침하량 평가, 제체 활동 안전율, 과잉간극수압비 등)을 계산하 여 실시간 모니터링 및 조기경보에 활용하기 위해 시스템에 모듈을 구현하였다.

④ 지반 거동 경보발령 모델 개발

재해가 발생하거나 발생할 우려가 있는 경우 위기상황에 신속하고 정확하게 작동하는 조기경보 체 계 구축을 위해 시·군의 재해위험지구 상시계측 관리체계에 따라 예·경보 시스템(경광등, 마을 방송, 자동음성통보시스템(경보음성), 문자알림, 전광판)을 통한 경보발령 모듈 개발 및 적용하였다.

장기거동 및 과잉간극수압, 침하 예측, 제체 안정성 평가 등의 기준에 따라 경보를 발령한다. 피 해가 우려될 경우 해당 지역의 주민이나 위험지역에 있는 자에게 사이렌(경광등), 마을 방송, 자동음 성통보시스템(경보음성), 문자알림, 전광판 등 최단시간 내 위험지역 내에 설치된 예·경보 시스템을 통하여 주민에게 대피를 안내하거나 대피를 유도하여 주민의 안전을 확보할 수 있다.

⑤ 설계지원시스템 구축 및 현장 적용

기술실시 및 제품화를 통한 사업화로 연약지반 거동 모니터링 및 조기경보시스템을 시·군 통합 조 기경보시스템에 연계하여 모니터링 및 조기경보를 전파하고 있다. 위험저수지 계측 센서의 데이터를 데이터 로거로 수집하여 계측운영서버(연약지반 저수지 거동 모니터링 및 조기경보시스템)로 전송하 여 운영자 PC, 재난경보 시스템으로 모니터링 및 조기경보 서비스를 제공한다. 사업화로 인해 위험 저수지 대상으로 매출이 더 확대될 것으로 기대된다.

대상 시·군은 영동군, 보은군, 화순군, 곡성군, 청주시, 기장군, 무안군, 장흥군, 강진군, 삼척시 등 이다. 총 19개소의 저수지에 연약지반 저수지 거동 모니터링 및 조기경보시스템을 적용하였으며 9 개 시·군 조기경보시스템(시·군 관리)에 연계하여 조기경보를 전파하고 있다. 현장 적용에 따른 장애 사례 및 조치 이력을 검토하여 개선방안을 제시하였다.

표 2-111 사업화 계획에 따른 예상 매출 규모

구분	항목	수량	○○군 ○○저수지 연계 표출화면						
위치	위험저수지	19개소							
센서	강우량계	19개							
센서	수위계	19개							
센서	경사계	69개							
센서	구조물경사계	22개							

⑥ 설계지원시스템 운영 매뉴얼

연약지반 저수지 설계지원시스템의 유지관리란 구축된 시스템의 기능을 보전하고 안정성을 높이기 위해 일상적인 점검 및 정비를 시행하여 손상된 부분 또는 비상시에 원상복구시간을 최소화한다. 본 연구에서는 시스템 관리자의 준수사항, 운영방침 수립 및 단계별 계측시스템 유지관리(일상, 정기, 정밀, 긴급점검)등을 제시하였다.

설계지원시스템 유지관리 항목, 조기경보 발령기준, 조기경보 단계 및 발령기준을 현안(『재난 및 안전관리 기본법』 제 38조(위기경보의 발령 등))을 참고하여 검토하였으며 시간 경과에 따른 시스템 노후화 및 시스템 장애에 따른 데이터의 손실 등을 최소화하고자 운영 매뉴얼을 제시하였다.

⑦ 설계지원시스템 개발 효과

본 연구에서 개발한 설계지원시스템은 1. 관리기준치 기반 평가 모듈, 2. 잔류침하량 평가 모듈 (침하량 기반), 3. 제체 활동 안전율 평가 모듈(지표 경사 기반), 4. 간극수압 평가 모듈(과잉간극수 압비 기반)을 탑재하여 계측자료를 활용한 지반 거동 평가 모듈을 구축하였다. 실시간으로 평가 및 분석하여 솔루션을 제공하며 건설단계 및 운영주체 연계 호환을 통해 조기경보 시스템 구축이 가능 하여 실시간 대응이 가능하다. 또한 단순 계측 결과에 의해 재해를 평가하는 현행기술을 벗어나 추 후 제체 안정성 평가 모듈을 종합적으로 분석하여 시설물의 상태를 객관적으로 판단할 수 있다.

계측 모니터링 시스템은 시설물 개별/통합 계측 모니터링, 시공중/유지관리 모니터링, 위험도 분 석 및 평가, 경보 및 상황전파, 재해관리 등 적용 현장에 맞게 솔루션이 제공되는 특징을 가지며 기 존 대비 50%가량의 비용을 절감하였으며 기존시스템 및 유지관리 연계 기관과 호환이 가능하다.

비즈니스 모델 수립 결과 모니터링 프로그램의 시장가는 약 7,000천원이며 모니터링 프로그램의 설계가는 약 28,750천원으로 예상(B/C)는 2.5이다.

3. 연구개발과제의 수행 결과 및 목표 달성 정도

- 가. 연구수행 결과
- (1) 정성적 연구개발성과
- (가) 기존 저수지 지반거동 사례 분석 데이터베이스 구축 및 연동 표출
 - 한국농어촌공사에서 저수지를 시공 및 관리하면서 수 년간 누적된 정밀안전진단보고서 등 자 료를 분석하여 시공 당시 난관을 경험한 저수지들을 분석하였음.
 - 지반 거동 계측자료 구축(계측, 설계도서 등 4개소)
 - 계측 단면, 계측데이터, 설계자료, 정밀안전점검 보고서, 제체 해석 자료 등 수집 및 검토(탄동 저수지, 대야저수지, 모항저수지, 예당저수지 등)
 - 연약지반 저수지 설계 및 시공 관련 도서(2개소)
 - 활동 파괴 이력이 있는 탄동저수지, 대야지구 제체 등 계측자료 및 설계도서 수집 및 검토
 - · 활동 파괴당시 계측 이력, 활동 검토보고서, 활동사진 등의 자료수집 및 검토
 - 탄동저수지('03년 05월 ~ '07년 08월), 대야저수지('01년12월 ~ '03년 05월), 예당저수지 ('19년 12월 ~ '21년 10월) 데이터 확보 및 설계지원시스템 연동 표출
- (나) 연약지반 거동 실증평가를 위한 시범지구 선정
 - 분석한 저수지들 중에서 대야, 중장, 탄동 저수지를 실증 평가를 위한 시범지구로 선정하여 저 수지 제체 하부의 지반조사를 실시하였음.
- (다) 주요 저수지의 다년간 지반거동 계측자료 분석 및 설계인자 평가
 - 시범지구의 지반조사 결과를 분석하여 연약지반 하부가 설계보다 압밀이 지연되고 있음을 확 인하였음.
 - 지반 거동 계측자료 데이터베이스 구축(4개소 159개 센서)
 - 지반 거동 모니터링시스템 구축(탄동저수지, 대야저수지, 모항저수지, 예당저수지 등 4개소)
 - 연약지반 저수지 센서 및 데이터 총 159개 데이터베이스 구축 및 연동
 - 대야저수지 간극수압(14개), 지표침하판(5개), 경사계(16개)
 - 탄동저수지 경사계(16개), 수위계(2개), 간극수압계(14개), 토압계(15개), 침하계(11개)
 - · 모항저수지 경사계(8개), 수위계(2개), 침하계(4개), 간극수압계(8개), 토압계(4개), 지표침하판(8개)
 - · 예당저수지 지하수위계(4개), 이음계(4개), 변형률계(18개), 구조물경사계(2개), 간극수압계(4개)
 - 간극수압, 장래침하 등 데이터 확보를 위한 계측 관련 데이터베이스 및 GIS 관련 데이터베이

스 등 구축

- 탄동저수지('03년 05월 ~ '07년 08월), 대야저수지('01년12월 ~ '03년 05월), 예당저수지 ('19년 12월 ~ '21년 10월) 데이터 확보
- (라) 연약지반 기초 거동 관련 설계기준 정책 제안
 - 실계에 적용한 압밀이론이 실제 장기거동과 일치하지 않고 Terzaghi의 압밀이론은 계단식 성 토과정을 모사하기 어려우며 관행적으로 수치해석에 많이 사용하고 있는 modifed cam clay 모델은 장기거동에 필수적으로 수반되는 2차 압축 현상을 모사할 수 없으므로 최신 수치해석 모델인 Soft soil creep 모델을 사용하여 설계하도록 설계기준 또는 설계기준 해설서에 반영 할 것을 제안하였음.
 - 지반거동 모니터링 방안수립
 - 계측자료를 활용한 지반거동 평가방안 도출 및 개발(4종)
 - · 관리기준치 기반 평가방안 도출 및 모듈 개발
 - 잔류침하량 평가방안 도출 및 모듈 개발(침하량 기반)
 - 제체 활동 안전율 평가방안 도출 및 모듈 개발(지표 경사 기반)
 - 간극수압 평가방안 도출 및 모듈 개발(과잉간극수압비 기반)
 - 모니터링 및 조기경보 지원 방안 수립(2종)
 - · 웹 및 애플리케이션 기반으로 실시간 계측데이터 표출, 관리기준 설정, 데이터 분석 그래프, 계측보고서, 경보 설정, 침하 예측 자동 모듈(4종) 등을 이용한 모니터링 지원
 - · 사용자에 따라 경보 메시지 설정 및 경보 방법(E-mail, SMS, 앱 등)설정을 통해 조기경보를 지원
 - · 연구개발성과를 사업화를 통해서 재해 예방사업으로 구축한 시·군 조기경보 시스템에 연약지 반 거동 모니터링 및 조기경보 시스템을 연계하여 모니터링 지원 및 조기경보 전파
 - 장기거동 계측시스템 적용(시·군 조기경보시스템 연계 8개소, 현장 적용 저수지 17개소, 비전 기식 간극수압계 특허 1건)
 - 시공·유지관리 계측현장 적용 및 활용(19개소)
 - · 9개 시·군 조기경보시스템(시·군관리)에 연계하여 19개소 총 129개의 센서를 연동
 - 실시간 모니터링 및 조기경보 전파 시스템 구축
 - 지반거동 모니터링 및 조기경보 시스템 적용
 - 계측자료를 활용한 지반거동 평가방안 적용
 - · 웹 및 애플리케이션 기반으로 실시간 계측데이터 표출, 관리기준 설정, 데이터 분석 그래프, 계측보고서, 경보 설정, 침하 예측 자동 모듈(4종) 등을 이용한 모니터링 지원
 - 제체 활동 안전율 평가 시스템 적용

- 모니터링 및 조기경보 지원(1식)
- · 사용자에 따라 경보 메시지 설정 및 경보 방법(E-mail, SMS, 앱 등)설정을 통해 조기경보를 지원
- · 시·군의 재해위험지구 상시계측 관리체계에 따른 예·경보 시스템(경광등, 마을 방송, 자동음 성통보시스템(경보음성), 문자알림, 전광판)을 통한 경보발령 지원
- 연약지반 저수지 설계지원시스템 적용
- 연구개발품 현장적용에 따른 문제점 및 개선방안 제시(1건)
- · 9개 시·군 조기경보시스템(시·군관리)에 연계하여 19개소 총 129개의 센서를 연동. 실시간 모니터링, 분석 및 조기경보 전파 시스템 구축 및 적용
- · 연구개발성과 사업화를 통해서 재해 예방사업으로 구축한 시·군 조기경보 시스템에 연약지반 거동 모니터링 및 조기경보 시스템을 연계하여 모니터링 지원 및 조기경보 전파
- 연구개발품 현장 적용에 따른 문제점 및 개선방안 제시
- 연약지반 저수지 설계지원시스템 운영 매뉴얼(1건)
- 설계 및 계측 모니터링 지원시스템의 유지관리 제시
- 계측시스템 단계별 유지관리 방안 제시
- · 프로그램(지원시스템) 단계별 유지관리 방안 제시
- 조기경보 발령기준 및 대응방안 제시
- · 위험저수지 기반 조기발령 기준(안) 제시
- · 조기경보 발령에 따른 대응 방안(안) 제시
- (마) 원심모형실험을 이용한 연약지반에 축조된 저수지 제체의 안정성 평가
 - 연직배수재가 설치되지 않은 지반에서 저수지 제체를 성토하는 과정을 원심모형실험으로 모사
 - 과거 시공 실패 사례를 재현하여 연약지반에 축조된 저수지 제체의 안전에 대한 취약성을 확
 인.
- (바) 저수지 제체를 성토하는 연약지반에 대한 연직배수재 설계 모델 제시
 - 연약지반에 연직배수재를 설치하는 경우에 압밀에 의해 배출된 공극수를 성토체 밖으로 유도 하기 위해서 설치하는 수평배수층이 저수지에 적용하지 못하는 원인임.
 - 원심모형실험을 통해서 수평배수층이 없는 경우에도 연직 압밀이 원할하게 진행이 되고 저수
 지의 안정성도 확보할 수 있다는 것을 증명
- (사) 연약지반 준공 이후 장기거동 계측을 위한 비전기식 공극수압측정장치 개발
 - 기존의 저수지나 연약지반에 설치하여 저수지 생애주기 동안(60년 이상) 반영구적으로 간극수

압을 측정할 수 있게 고안

 기존 제품 대비 간소화로 잘못된 측정 및 고장을 최소화하여 정확한 측정과 장기간 측정이 가 능하도록 고안

(2) 정량적 연구개발성과(해당 시 작성, 연구개발과제의 특성에 따라 수정 가능합니다)

		-1	4-1 3	a1 -7		(단위 : 건, 천원)
र्भ जो जो ज गर		연도	1단계	2단계	계	가중지
<u> </u>		ए ए (न न) भी)	(2021~2022)	(2023)		(%)
	특허춬워	녹표(난계벌)	1		1	
		실적(누적)	1		1	30
	논문(SCI)	목표(단계별)	1		1	
		실적(누적)	4		4	
	ь П(н)ссі)	목표(단계별)	1	2	3	
전담기관 등록·기탁 지표1」	~군군(미301)	실적(누적)		3	3	
	키스바고	목표(단계별)	4	2	6	25
	약굴발표	실적(누적)	4		4	
	소프트웨어 등록	목표(단계별)	-		-	
		실적(누적)	1		1	
	정책활용	목표(단계별)		1	1	5
		실적(누적)		1	1	
	키 스 리 기(키 스)	목표(단계별)	1		1	10
	기물질시(친구)	실적(누적)	1		1	
연구개발과제 특성 반영 지표	게표청	목표(단계별)	-		-	
2」	세쿰와	실적(누적)	2		2	
	사업화(매출액,	목표(단계별)	40,000	40,000	80,000	20
	백만원	실적(누적)	43,670	43,105	86,775	
	コのええ	목표(단계별)	1		1	10
	<u> </u>	실적(누적)	1		1	
계					100	

(3) 세부 정량적 연구개발성과

[과학적 성과]

□ 논문(국내외 전문 학술지) 게재

번호	논문명	학술지명	주저자명	호	국명	발행기관	SCIE 여부	게재일	등록번호 (ISSN)	기여율
1	A Study on Behavioral Characteristics of Core-Based Dam Subjected to Variable Water Level Fluctuation Rates	Internationa l Journal of Civil Engineering	Yongseong KIM	4	미국	Springer	SCIE	2022.04	1735-0522	100
2	Acceleration Amplification and Settlement Behaviors of Earth-Filled Embankments with Deteriorated Core during Seismic Waves	Acta Geotechnica	Yongseong KIM	_	미국	Springer	SCIE	2022.08	1861-1133	100
3	Performance evaluation of ultrafine cement as a grout for reservoir impermeability improvement	Internationa l Journal of Civil Engineering	Yongseong KIM	9	미국	Springer	SCIE	2022.09	1735-0522	100
4	Undrained monotonic shear behavior of sand mixed with a small amount of fines content	Acta Geotechnica	Yongseong KIM	18	미국	Springer	SCIE	2022.12	2915-2927	100
5	대심도 지반굴착을 위한 벽강관말뚝 흙막이공법의 설계 사례 연구	한국지반신소 재학회논문집 = Journal of the Korean Geosyntheti cs Society	Byung-Il Kim	_	대한 민국	Korean Geosynth etics Society	_	2023.03	2508-2876 2287-9528	100
6	표준압밀시험에 의한 점토의 초기탄 성계수 산정	한국농공학회 논문집	권병해, 임 성훈	1	대한 민국	한국농공 학회	_	2024.03	1738-3692 7093-7709	100
7	압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교	한국농공학회 논문집	권병해, 임 성훈	2	대한 민국	한국농공 학회	_	2024.03	1738-3692 (Print) 7093-7709 (Online)	100

□ 국내 및 국제 학술회의 발표

번호	회의 명칭	발표자	발표 일시	장소	국명
1	2021 한국농공학회 학술발표대회 (원심모형실험을 이용한 수위변동에 따른 필댐의 거동 특성)	김기환, 타망비벡, 김용성	2021. 11.04	솔비치 진도	한국
2	2021 한국농공학회 학술발표대회 (저수지 제체 규모에 따른 지진 시 응답가속도 특성)	이무재, 박찬영, 김용성	2021. 11.04	솔비치 진도	한국
3	2021 한국농공학회 학술발표대회 (Analysis of shear behavior of mised soil by constitutive model)	비벡타망, 김기환, 이승주, 쓰레스, 김용성	2021. 11.04	솔비치 진도	한국
4	2022 한국농공학회 학술발표대회 (원심모형실험을 이용한 PBD 공법이 적용된 연약지반 거동 분석)	박찬영, 이승주, 문범수, 쓰 레스, 김용성	2022.	인터불 고호텔 대구	한국

□ 기술 요약 정보

연도	기술명	요약 내용	기술 완성도	등록 번호	활용 여부	미활용사유	연구개발기관 외 활용여부	허용방식

🗌 보고서 원문

연도	보고서 구분	발간일	등록 번호		

□ 생명자원(생물자원, 생명정보)/화합물

번호	생명자원(생물자원, 생명정보)/화합물 명	등록/기탁 번호	등록/기탁 기관	발생 연도

[기술적 성과]

□ 지식재산권(특허, 실용신안, 의장, 디자인, 상표, 규격, 신품종, 프로그램)

번호	지식재산권 등 명칭 (건별 각각 기재)	국명	출원				등록			기어 0	활용 여
			출원인	출원일	출원 번호	등록 번호	등록인	등록일	등록 번호	기역율	부
1	부표를 이용한 비전기식 공극수압 측정장치	대한민국	㈜지구환 경전문가 그룹	2022.07. 18.	10-2022 -008856 5					100%	

ㅇ 지식재산권 활용 유형

※ 활용의 경우 현재 활용 유형에 √ 표시, 미활용의 경우 향후 활용 예정 유형에 √ 표시합니다(최대 3개 중복선택 가능).

번호	제품화	방어	전용실시	통상실시	무상실시	매매/양도	상호실시	담보대출	투자	기타

□ 저작권(소프트웨어, 서적 등)

번호	저작권명	창작일	저작자명	등록일	등록 번호	저작권자명	기여율
1	연약지반 저수지 거동 모니터링 및 조기경보 시 스템	22.07.06.	㈜지구환경전문 가그룹	22.10.11	C-2022-03996 5	㈜지구환경전문 가그룹	100%

🗆 신기술 지정

번호	명칭	출원일	고시일	보호 기간	지정 번호

□ 기술 및 제품 인증

비호 이즈비아		이즈 기파	인증	내용	이즈 히드이	- <u>-</u>	
빈오	민오 인증 분야	인증 기관	인증명	인증 번호	인당 획득일	4/18	

□ 표준화

ㅇ 국내표준

번호	인증구분1」	인증여부2」	표준명	표준인증기구명	제안주체	표준종류3」	제안/인증일자

ㅇ 국제표준

번호	표준화단계구분1	표준명	표준기구명2」	표준분과명	의장단 활 동여부	표준특허 추 진여부	표준개발 방식3」	제안자	표준화 번호	제안일자

[경제적 성과]

□ 시제품 제작

번호	시제품명	출시/제작일	제작 업체명	설치 장소	이용 분야	사업화 소요 기간	인증기관 (해당 시)	인증일 (해당 시)

□ 기술 실시(이전)

버충	배충 기스 이겨 0처	<u> 기</u> 스 시기 페이며	기술 실시	기술 실시	기술료(천원)	누적
민오 기술 이신 유영		기울 실시 세탁당	대상 기관	발생일	(해당 연도 발생액)	징수 현황
		어야기바 지스기 기도 ㅁ니	(조)기 기 히 거 거 ㅁ		(86,775(성과 매출액)*20%(기술 기여도)	
1	1 직접 실시	한탁시민 지구지 가중 포닉	에서구환경신군	22.07.18	*5%(중소기업 기술료율)*20%(감면율 80%))	-
	터팅 및 소기경모시스템	가그쿱		173.55		

□ 사업화 투자실적

번호	추가 연구개발 투자	설비 투자	기타 투자	합계	투자 자금 성격*

□ 사업화 현황

							매출	액	ᆒᅕ	기스
번호	사업화 방식1」	사업화 형태2」	지역3」	사업화명	내용	업체명	국내	국외	배굴	기술
							(천원)	(달러)	발생 연도	수명
1	자기실시	기존 제품 개선	국내	재해위험지구(위험저 수지) 모니터링 및 유 지관리, 조기경보시스 템 구축	상황전파 및 현장대 응이 가능한 스마트 조기경보시스템 구축	㈜지구환 경전문가 그룹	86,775		2022 2023	

🗆 매출 실적(누적)

्राभुश्रम	ਸ਼⊦ਸ਼ੀ cel r	मोई	출액	रूं।-ग	<u> १</u> ८२१ मन्म
ላቴታሪ	철생 인도	국내(천원)	국외(달러)	입계	10 0 H
장흥군 1개지구, 강진군 6개지구 계측 관리 프로그램 개발	2022	23,760		23,760	
기장군 3개지구, 무안군 2개지구 계측 관리 프로그램 개발	2022	19,910		19,910	
화순군 가수 1지구, 율곡지구 추가 계 측관리 프로그램 개발	2023	4,125		4,125	
하상도로(위험저수지) 침수차단 자동 안내시스템 프로그램 개발	2023	29,400		29,400	
삼척시 (위험저수지) 2개지구 계측관 리 프로그램 개발	2023	9,580		9,580	
합계		86,775		86,775	

□ 사업화 계획 및 무역 수지 개선 효과

	성과		연약지약 저수지 거동 모니터링 및 조기경보 시스템			
	사업화 소	느요기간(년)	3년			
	소요예	산(천원)		200,000천원		
	പില്ചിര്		현재까지	3년 후	5년 후	
	예상 배술규모(선원)		약 50,000	약 100,000	약 200,000	
사업화 계획	시장 점유율	단위(%)	현재까지	3년 후	5년 후	
		국내	5%	10%	15%	
		국외				
	향후 관련기술	, 제품을 응용한	장래침하예측, 사면안정성평가, 적정 성토고 산정 등의 범위까지 확대하여 계측			
	타 모델, 저	품 개발계획	솔루션 제공			
	人 01 11	刊(11)人)	현재	3년 후	5년 후	
무역 수지	구입대제(대구)					
개선 효과(전원)	수	출				

🗆 고용 창출

٨ш	기이크며	가이는 이제	고용창출 인원(명)	- 합계	
군민	ላያትዳ	사업와 업세	2022년		
1	재해위혐지구(위혐저수 지) 모니터링 및 유지 관리, 조기경보시스템 구축	지구환경전문가그룹	1	1	
합계			1	1	

🗆 고용 효과

	7	고용 효과(명)	
고용 효과	ગોમો- ત્રો	연구인력	
	개월 전	생산인력	
	개발 후	연구인력	
		생산인력	

□ 비용 절감(누적)

순번	사업화명	발생연도	산정 방법	비용 절감액(천원)

□ 경제적 파급 효과

(단위: 천원/년)

구분	사업화명	수입 대체	수출 증대	매출 증대	생산성 향상	고용 창출 (인력 양성 수)	기타
해당 연도							
기대 목표							

□ 산업 지원(기술지도)

순번	내용	기간	참석 대상	장소	인원

🗆 기술 무역

(단위: 천원)

번호	계약 연월	계약 기술명	계약 업체명	계약업체 국	기 징수액	총 계약액	해당 연도 징	향후	수출/
				가			수액	예정액	수입

[사회적 성과]

□ 법령 반영

번호	구분 (법률/시행령)	활용 구분 (제정/개정)	명 칭	해당 조항	시행일	관리 부처	제정/개정 내용

□ 정책활용 내용

번호	구분 (제안/채택)	정책명	관련 기관 (담당 부서)	활용 연도	채택 내용
1	제안	연약지반 저수지 제체 의 장기거동 분석 및 설계 모델 개발 연구결 과 적용 요청	한국농어촌공사 농어촌연구원	2024	미정

□ 설계 기준/설명서(시방서)/지침/안내서에 반영

번호	구 분 (설계 기준/설명서/지침/안내서)	활용 구분 (신규/개선)	설계 기준/설명서/ 지침/안내서 명칭	반영일	반영 내용

□ 전문 연구 인력 양성

버승	비근	키고 여도	dr 현황										
민오	रंग	기군 윈도	학위별			성	별				지역별		
			박사	석사	학사	기타	남	વે	수도권	충청권	영남권	호남권	기타

□ 산업 기술 인력 양성

번호	프로그램명	프로그램 내용	교육 기관	교육 개최 횟수	총 교육 시간	총 교육 인원

□ 다른 국가연구개발사업에의 활용

번호	중앙행정기관명	사업명	연구개발과제명	연구책임자	연구개발비

□ 국제화 협력성과

번호	구분 (유치/파견)	기간	국가	학위	전공	내용

□ 홍보 실적

번호	번호 홍보 유형		제목	홍보일	

□ 포상 및 수상 실적

번호	종류	포상명	포상 내용	포상 대상	포상일	포상 기관
1	수상	우수논문발표상	2021 한국농공학회 학술발표대회 우 수논문 발표상	강원대 연구팀 (원심모형실험을 이용한 수위변동에 따른 필댐 의 거동 특성)	2021. 11.05	한국 농공학회
2	수상	우수논문발표상	2021 한국농공학회 학술발표대회 우수논문발표상	강원대 연구팀 (Analysis of shear behavior of mised soil by constitutive model)	2021. 11.05	한국 농공학회

[인프라 성과]

□ 연구시설・장비

구축기관	연구시설/ 연구장비명	규격 (모델명)	개발여부 (〇/×)	연구시설·장비 종 합정보시스템* 등 록여부	연구시설·장비 종 합정보시스템* 등 록번호	구축일자 (YY.MM.DD)	구축비용 (천원)	비고 (설치 장소)

[그 밖의 성과](해당 시 작성합니다)

(4) 계획하지 않은 성과 및 관련 분야 기여사항

소프트웨어 등록 1건 제품화 2건

나. 목표 달성 수준

추 진 목 표	달 성 내 용	달성도(%)
특허출원 1건	특허출원 1건	100%
기술실시 1건	기술실시 1건	100%
제품화	제품화 2건	추가 성과
소프트웨어 등록	소프트웨어 등록 1건	추가 성과
사업화 매출(80백만원)	사업화 매출(86백만원)	100%
고용창출 1명	고용창출 1명	100%
논문(SCI) 1편	논문 4편	초과달성
논문(비SCI) 3편	논문 3편	100%
학술발표 6건	학술발표 4건	66%
정책활용 1건	정책건의 1건	100%

4. 목표 미달 시 원인분석

가. 목표 미달 원인(사유) 자체분석 내용

학술발표 목표 달성도가 66% 였으나 SCI 논문 실적 달성도 300%이므로 전체적으로 목표치 보다 더 높은 수준의 학술적 성과를 달성하였음.

나. 자체 보완활동

없음.

다. 연구개발 과정의 성실성

제한된 기간과 연구비 범위에서 연약지반 저수지 설계 및 관리 기술 수준을 향상시키기 위해서 최선의 노력을 하였음.

5. 연구개발성과의 관련 분야에 대한 기여 정도

○ 산업적 측면

- 연약지반 저수지의 시공·유지관리 중 실시간 모니터링 및 침하 예측으로 지반파괴, 부등침하
 등을 사전에 대응할 수 있도록 하여 사회적, 경제적 손실 저감에 기여
- 연약지반 저수지의 지반거동 관련 설계자료 등을 기술적/통계적으로 정량화하여 데이터베이스 화함.
- 사업화 및 현작적용에 의한 연약지반 저수지 지반거동 및 조기경보 모니터링 시스템 구현 및 실용화 도모
- 개발 기술 및 시스템의 다양한 분야의 시장 진출 기회제공 등 관련 지원 추진

○ 과학기술적 측면

- 실시간 모니터링 및 분석에 따른 조기경보를 웹, 앱, SMS, E-mail 등으로 실시간 전파하여 빠 른 대처가 가능하도록 함.
- 실시간 측정 데이터를 활용하여 침하량, 지표경사, 과잉간극수압비를 기반으로 지반거동 평가
 를 정량적으로 해석이 가능하도록 함.
- 실시간 모니터링 중 지반 거동(관리기준치, 잔류침하량 평가, 제체 활동 안전율 평가, 간극수압 평가)에 대한 평가를 정량적으로 실시하여 이벤트 발생에 따른 경보발령 여부를 신속한 의사결 정이 가능하도록 함.

○ 사회적 측면

- 시·군구의 상시 계측 관리 체계에 따라 예·경보 시스템(사이렌, 마을방송, 자동음성통보시스템, 문자알림. 전광판)을 소프트웨어에 연동. 자동경보를 통해 신속하게 위험지역의 주민이나 지역 내 있는 자에게 대피를 안내하거나 유도하여 주민의 안전 확보에 기여.
- 평시, 재난 시 수집정보를 통해 위험도를 분석하고 이상 시 유연하고 신속한 대처를 가능하게 하는 지반거동 조기경보 관리체계 구축.
- 저비용 자연재해 대비기술 확보로 인명피해 저감 기대.

6. 연구개발성과의 관리 및 활용 계획

- 기존 계측 현장과 연계하여 계측 및 설계자료 체계적 관리하여 활용
- 시공 중에는 실시간 계측데이터를 통해 과잉간극수압, 침하 예측, 안정성 검토
- 유지관리 중에는 설계자료와 연계하여 지반 거동 평가, 실시간 모니터링 및 자동 경보 시스템 활용
- 계측데이터 표출, 실시간 영상감시 표출, 관리기준 설정, 분석 그래프 표출, 보고서 출력 등 기
 능 구현
- 시설물 개별 계측 모니터링 시스템, 통합 계측 모니터링 시스템, 경보 및 상황 전파 시스템,
 위험도 분석 및 평가시스템, 시공 중, 유지관리 중 모니터링 시스템, 재해관리시스템 등 현장에
 맞게 솔루션을 제공하여 사업화 중
- 기존 모니터링 S/W대비 50%의 가격으로 책정하여 저비용 고효율의 시스템 제공(프로그램 모 듈화, 자체 제작 S/W 사용)
- 실시간 분석 결과에 따라 예·경보 시스템(사이렌, 마을방송, 자동음성통보시스템, 문자알림. 전 광판)을 통해 위험지역의 주민이나 지역 내 있는 자에게 피해 위험 최소화.

7. 참고문헌

- 1. Alpan, I., 1967. The empirical evaluation of the coefficient K_0 and K_{0R} . Soil and Foundation 7(1): 31-40.
- 2. American Standard Testing Material, 2020. ASTM D4767-11 : 2020 Standard test method for consolidated undrained triaxial compression test for cohesive soils
- 3. Brooker, E. W., and H. O. Ireland, 1965. Earth pressures at rest related to stress history. Canadian Geotechnical Journal 2(1): 1-15.
- 4. Duncan, J. M., and C. Y. Chang, 1970. Nonlinear analysis of stress and strain in soils. Jounal of the soil mechanics and foundation division 96(SM5): 1629-1653,
- 5. Kenney, T. C., 1959. Discussion of "Geotechnical properties of glacial lake clays". Journal of the Soil Mechanics and Foundations Division 85(3): 67-79.
- Kim, Y. S., and D. M. Kim. 2004. Characteristics of undrained static shear behavior for sand due to aging effect. Journal of the Korean Geotechnical Society 20(6): 137-150 (in Korean).
- 7. Korean Agency for Technology and Standards, 2022. KS F 2346 : 2022 Test method for unconsolidated undrained strength of cohesive soils in triaxial compression test (in Korean).
- 8. Kwon, B. H., and S. H. Eam, 2023. A Study on the beginning point of secondary compression in consolidation theory. Journal of the Korean Society of Agricultural Engineers 65(6): 51-63 (in Korean).
- 9. Lee, K. S., K., N. S., and W. W. H., 2007. The estimation of the constrained modulus and the coefficient of consolidation from the piezocone penetraition test data. Journal of the Korean Geoenvironmental society 8(4): 47-55 (in Korean).
- Leonards, G. A., and A. G. Altschaeffl, 1964. Compressibility of clay. Journal of the Soil Mechanics and Foundations Division 90(SM5): 133-155.
- 11. Lim, S. H., 1999. Final settlement prediction methods of embankment on soft clay by back analysis. A thesis for the degree of Master of Agriculture : Chungnam National University (in Korean).
- 12. Mesri, G., 1973. Coefficient of secondary compression. Journal of Soil Mechanics and Foundations Division ASCE 99(SM1): 123-137.
- 13. MIDAS. GTS NX USER MANUAL > Mesh > Property, Coordinate, Function > Material

> Material Property(General).

http://manual.midasuser.com/KR/GTS%20NX/340/GTX.htm. Accessed 27Oct. 2023

- Oh, B. S., 2012. Evaluation of deformation characteristics of residual soils under K0 condition at full strain ranges. Journal of The Korean Society of Hazard Mitigation 12(5): 121-126 (in Korean).
- Park, C. S., and J. G. Jeong, 2018. Characteristics of shear strength parameters of various soils by direct shear test. Tunnel and Underground Space 31: 584-595 (in Korean).
- Roscoe, K. H., and J. B. Burland, 1968. On the generalized stress-strain behavior of 'wet' clay. In engineering Plasticity ed Heyman, J., and F. A. Leckie, des, 535-609. Cambridge University Press, Cambridge
- Roscoe, K. H., Schofield, A. N., and C. P. Wroth, 1958. On the Yielding of Soils. Geotechnique 8: 22-53.
- Tan, S. A., 1994. Hyperbolic method for settlement in clays with vertical drains, Canadian Geotechnical Journal 31: 125-131.
- Terzaghi, K., 1923, Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der Hydrodynamischen Spannungserscheinungen, Sitz, Akademie der Wissenschaften, Mathematish-Naturwissenschaftliche, 132, 125-138. Klasse, Vienna, Austria, Part IIa
- 20. Sharma, L. K., Singh, R., Umrao, R.K., Sharma, K. M., and T. N. Singh, 2017. Evaluating the modulus of elasticity of soil using soft computing system. Engineering with Computer: An International Journal for Simulation-Based Engineering 33(3): 497-507.
- 21. Yoon, H. K., Kim, D. H., Lee, W. J., and J. S. Lee, 2010. Field elastic wave and electrical resistivty penetrometer for evaluation of elastic moduli and void ratio. Journal of the Korean Society of Civil Engineers C 30(2C): 85-93 (in Korean).
- 22. Adachi, T. and F. Oka, 1982. Constitutive equations for normally consolidated clay based on elastoviscoplasticity. Soils and Foundations 22(4): 57-70.
- 23. Adachi, T. and M. Okano, 1974. A constitutive equation for normally consolidated clay. Soils and Foundations 14(4): 55-73.
- 24. Atkinson, J. H., and P. L. Bransby, 1978. The Mechanics of Soils, 190. McGraw-Hill Book Co. Ltd.

- Atkinson, J., 1993. An Intruduction to the Mechanics of Soils and Foundations, 111. McGRAW-HiLL BOOK Co. London.
- 26. Bjerrum, L. 1967. Engineering geology of Norwegian normally consolidated marine clays as related to settlements of buildings. Géotechnique 17(2): 81-118.
- Buisman, A. S. 1936. AResults of long duration settlement tests. Proceedings 1st International Conference on Soil Mechanics and Foundation Engineering Cambridge 1: 103-107.
- 28. Garlanger, J. E. 1972. The consolidation of soils exhibiting creep under constant effective stress. Géotechnique 22(1): 71-78.
- 29. Jeong, W. K., 2020. The Analysis of long-term consolidation characteristics on coft clayey ground using elasto-viscous consolidation theory. Ph. D. diss. Rural and Biosystems Engineering Graduate School of Chonnam National University.
- 30. Kang, M. S., Jeon, S. O., and S. H. Eam, 2009. Estimation of settlement caused by lateral displacement by means of the differences of settlements from consolidation theory and field measurement. Journal of the Korean Society of Agricultural Engineers 51(5): 59-68 (in Korean).
- 31. Kim, C. S., and S. H. Eam, 2014. The study on determination of the coefficient of Terzaghi's consolidation by curve fitting. Journal of the Korean Society of Agricultural Engineers 56(1): 101-107 (in Korean).
- 32. Korean Agency for Technology and Standards, 2022. KS F 2316 : 2022 Test method for one dimensional consolidation test (in Korean)
- 33. Kwon, B. H., and S. H. Eam, 2023. A study on the beginning point of secondary compression in consolidation theory. Journal of the Korean Society of Agricultural Engineers 65(6): 51-63 (in Korean).
- 34. Kwon, B. H., and S. H. Eam, 2024. The estimation of initial elastic modulus of clay by standard consolidatiaonb test. Journal of the Korean Society of Agricultural Engineers 66(1): 15-24 (in Korean).
- 35. Lee, S. C., and K. H. Cho, 2016. Analysis of the relationship between concrete slab track life and socendary compression characteristics in soft clay. Journal of the Korean Society for Railway 19(2): 195-203.
- 36. Leoni, M., Karstunen, M., and P. A. Vermeer, 2008. Anisotropic creep model for soft soils. Géotechnique 58(3): 215-226.

- 37. Malvern, L. E. 1951. The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain rate effect. Journal of Applied Mechanics 18(2): 203-2087
- 38. Mesri, G., 1973. Coefficient of secondary compression. Journal of Soil Mechanics and Foundations Division ASCE 99(SM1): 123-137.
- 39. Mesri, G., and A. Rokhsar, 1974. Theory of consolidation for clays. Journal of the Geotechnical Engineering Division 100(8): 889-904.
- 40. MIDAS. GTS NX USER MANUAL > Mesh > Property, Coordinate, Function > Material
 > Material Property(General). http://manual.midasuser.com/KR/GTS%20NX/340/GTX.htm. Accessed 27 Oct. 2023
- Nova, R., 1982. A viscoplastic constitutive model for normally consolidated clays. Proceedings IUTAM Conference on Deformation and Failure of Granular Materials, Delft, 287-295.
- 42. Ortigao, J. A. R., 1995. Soil Mechanics in the Light of Critical State Theories, 77.A. A. Balkema.
- Perzyna, P., 1966. Fundamental problems in viscoplasticity. In Advances in Applied Mechanics ed. G. Kuerti, vol 9. New York: Academic Press, 243-377.
- 44. Roscoe, K. H., and J. B. Burland, 1968. On the generalized stress-strain behavior of 'wet' clay. In engineering Plasticity ed Heyman, J., and F. A. Leckie, des, 535-609. Cambridge University Press, Cambridge
- 45. Roscoe, K. H., Schofield, A. N., and C. P. Wroth, 1958. On the Yielding of Soils. Geotechnique 8: 22-53.
- Schofield, A., and P. Wroth, 1968. Critical State Soil Mechanics, 109. McGraw-Hill Book Co. Ltd.
- 47. Sekiguchi, H., and H. Ohta, 1977. Induced anisotropy and time dependency in clays. Proceedings 9th International Conference on Soil Mechanics Founddation Engineering, Tokyo, Spec. Session 9, 229–238.
- 48. Taylor, D. W., 1948. Fundamentals of soil mechanics, John Wiley and Sons, Inc. New York, 700pp.
- Terzaghi, K., 1923, Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der Hydrodynamischen Spannungserscheinungen, Sitz, Akademie der Wissenschaften, Mathematish-Naturwissenschaftliche, 132, 125-138. Klasse, Vienna,

Austria, Part IIa

- Vermeer, P. A., and H. P. Neher, 1999. A soft soil model that accounts for creep. Beyond 2000 in Computational Geotechnics, ed. Brinkgreve Ronald B. J. Brinkgreve eBook Routledge. London
- 51. Wood, D. M., 1990. Soil Behaviour and Critical State Soil Mechanics, 264, 267, 271, 321, 356, 379, 387, 416. Cambridge University Press
- 52. Yin, J. H., and J. Graham, 1999. Elastic viscoplastic modelling of the time dependent stress-strain behaviour of soils. Canadian Geotechnical Journal 36(4): 736-745.
- 53. Yoshikuni, H., Kusakabe, O., Hirao, T., and S. Ikegami, 1994. Elasto-viscous modeling of time dependent behaviour of clay. Proceedings of the 13th ICSMFE New Delhi 1: 417-420.
- 54. Lee, D. W., and Oh, B. H. 2000. Stabilization management techniques of agricultural reservoir system by field measurement, Agricultural Science Research 30(4): 164-174.
- 55. Cho, K. S. 2005. Characteristics and smear effect studies of plastic board drain (PBD) method in soft ground, ChungAng University master's thesis.
- 56. Min, H. G. 2007. Prediction of Excess Pore Water Pressure of Reservoir Embankment on Soft Ground. Chungnam National University Ph.D.
- 57. Choi, H. G. 2009. A Study on Behavioral Characteristics Using Centrifugal Model Experiment and Numerical Analysis of PBD Construction Ground, Facilities Safety Management Institute 36: 89-116.
- 58. Jeong, H. B. 2020. A technique for predicting the amount of subsidence on the soft ground in the estuary of the Nakdonggang River improved by vertical drainage method, Changwon University Ph.D.

 이 보고서는 농림축산식품부에서 시행한 농업기반 및 재해대응 기술개발사업의 연구보고서 입니다.

- 이 보고서 내용을 발표하는 때에는 반드시 농림축산식품부에서 시행한 농업기반 및 재해대
 응 기술개발사업의 연구결과임을 밝혀야 합니다.
- 3. 국가과학기술 기밀 유지에 필요한 내용은 대외적으로 발표 또는 공개하여서는 안 됩니다.