고기능성·고품질 한우육 생산기술 개발	발간등록번호 11-1543000-000642-01 고기능성 고품질 한우육 생산기술 개발 (Development of production technologies for high quality & nutritional values of beef in Hanwoo)
	영남대학교 산학협력단
농인민수구사라시기품보다	농림축산식품부

제 출 문

농림축산식품부 장관 귀하

이 보고서를 "고기능성·고품질 한우육 생산기술 개발" 과제 (

제1세부과제 "통계유전학적기법을 적용한 한우 고기능성고품질 유전체 정보발굴,

제1협동과제 "유전등급 맞춤형 단기성장, 고품질, 고기능성 사양프로그램 및 한우육의 고품질고기능성 성분 탐색 개발.

제2협동과제 "대용량 SNP chip을 이용한 유전자형분석 및 진단기술 개발,

제3협동과제 "생물정보학적기법을 이용한 한우 SNP 기능분석 및 유전체 정보관리 시스템 구축"에 관한 연구")의 보고서로 제출합니다.

2014년 9월 18일

주관연구기관명: 영남대학교 산학협력단

주관연구책임자: 김 종 주

연 구 원:이윤미

연 구 원: 형기은

연 구 원: 김유삼

연 구 원: 박윤기

연 구 원: 강전모

협동연구기관명: 순천대학교 산학협력단

협동연구책임자: 이 상 석

협동연구기관명: (주)디엔에이링크

협동연구책임자: 이 종 은

협동연구기관명: (주)인실리코젠

협동연구책임자: 이 기 용

요 약 문

- I. 제 목 : 고기능성 고품질 한우육 생산기술 개발
- Ⅱ. 연구개발의 목적 및 필요성:

최종 목표:

한우 유전체 정보와 SNP 대용량 분석을 통한 고기능성·고품질 형질과 관련된 SNP를 대량 발굴하고, 발굴된 SNP 정보를 바탕으로 고기능성 및 단기성장·고품질 맞춤형 사양 프로그램을 개발하여 한우 최고급육 분자육종/사양 조합 생산기술을 확립

Ⅲ. 연구개발 내용 및 범위

- 1단계: 고기능성·고품질 SNP 대량 발굴, 단기 고성장 사양프로그램 개발
- 국내 양질사료 기반 TDN 및 사료영양학적 평가로 육성단계 사양프로그램 개발
- 시험집단 시료확보 및 고기능성·고품질특성분석 (지방산, 아미노산, 핵산, 관능도)
- 대용량 (648k) SNP chip을 시험집단에 적용하여 고기능성 · 고품질 관련 SNP 대량 발굴
- 생물정보학적분석을 통한 한우유전체 변이 및 고기능성·고품질 SNP contents 발굴
- 발굴된 단기고성장 SNP 정보를 활용한 비육우 개체들의 유전적 등급화 및 각 등급별로 맞춤형 사양관리 프로그램 개발 및 적용
- 2단계: 고기능성·고품질 SNP 마커효과검증 및 사양프로그램 개발
 - 발굴된 고기능성·고품질 SNP 마커를 적용집단에 적용하여 SNP 효과의 평가 및 검증
 - 발굴된 고기능성·고품질 SNP 정보를 활용한 비육우 개체들 유전적 등급화 및 각 등급별로 맞춤형 고기능성·고품질육 사양관리 프로그램 개발 및 적용
- 3단계: 한우육 고기능성·고품질·단기성장 SNP Kit개발 및 최고급육 생산을 위한 분자육 종/사양 조합 프로그램 확립
 - 조기진단용 고기능성·고품질·단기성장 SNP kit 제작
 - 최적 선발을 위한 고기능성·고품질·단기성장 SNP 효과를 조합한 선발지수식 설정
 - 유전적 등급에 따른 고기능성·고품질·단기성장 한우육 생산을 위한 맞춤형 사양 표준 설정
 - 한우 개체, 유전체, 표현형, 기능성 SNP 등과 관련된 자료들의 통합 DB 구축

IV. 연구개발결과

- 1) 통계유전학적기법을 적용한 한우 고기능 · 고품질 유전체정보 발굴
- 대용량 648K SNP chip을 이용하여 한우, 흑우, 칡소 품종 특이 SNP를 대량 발굴하였고

호주산, 미국산 수입육과 구별할 수 있는 SNP를 대량 발굴 하였음

- 한우 고급육·고기능성 성분과 관련된 SNP를 대량 발굴
- 고급육·고기능성 성분에 유의적인 SNP 마커를 적용시 분자육종가 예측의 정확도는 평균 43%였으며 18개 형질에서는 정확도가 50%로 높게 나타남
- 지방산 성분의 경우 중정도의 유전력을 가지고 봉화 거세우의 경우 주요 포화/불포화 지방산 성분이 유의적으로 다르게 나타남. 이는 지방산 성분의 유전적 개량 가능성을 제시하여 중
- 2) 유전적등급에 따른 맞춤형 고기능성 및 단기 고성장 · 고품질 사양프로그램 확립
- 국내 양질조사료 기반 및 TDN 함량 및 DMI 증진으로 육성기 단계 및 비육전기의 고성 장·고품질 사양관리 프로그램 개발 완료
- 성장·육질에 대하여 유전적 등급별로 한우의 비육단계별 단기 사양관리 프로그램 개발 완료
- 기능성물질 첨가에 따른 육량·육질 개선효과 분석 완료
- 고기능성·고품질 특성에 대한 유전적 등급별로 기능성 사양관리 프로그램 개발완료
- 적용집단을 이용한 고기능성·고품질 맞춤형 사양급여 프로그램 효과 검증완료
- 3) 대용량 SNP chip을 이용한 유전자형분석 및 진단기술 개발
- 고밀도 Affymetrix bovine 640K SNP array를 이용한 한우육 743두를 분석하였음
- 발굴되어진 고기능성, 단기고성장, 고품질 관련 조기진단용 SNP kit를 개발 하였음
- 4) 생물정보학적 분석을 이용한 한우 SNP 기능분석 및 유전체 정보관리 시스템 구축
- 한우 유전체 정보 데이터베이스를 구축하였음
- 한우 유전체의 주요 SNP를 기능분석을 수행하였음

V. 연구성과 및 성과활용 계획

- 1) 한우 다목적용도용 SNP chip제작 및 국가 보증종모우 암소검정사업에 적용
- 2) 한우 유전체데이터베이스를 구축하여 한우의 유전체정보를 효율적으로 활용
- 3) 출하일령 단축(26-27개월령) 사양관리 및 사료 개발로 생산비절감 및 고급육 생산
- 4) 향후 소비자 요구를 토대로 기능성웰빙 한우육 생산 및 단기사육으로 인한 사료효율 증진 및 분뇨절감으로 인한 친환경 한우육 생산의 토대를 마련
- 5) 특정 브랜드, 조합 또는 농가에서 요구하는 특정 형질 또는 형질 조합에 따른 적절한 육 종/맞춤형 사양 조합 시스템을 제공
- 6) 육질 개선은 물론 불포화지방산함량, HDL, 콜레스테롤, CLA 함량 등을 증가시켜 맛과 건강이 고려된 한우 고급육 생산기술을 개발·보급함으로서 고부가가치 한우육을 창출하 여, 한우육 브랜드에 사업화를 통한 소비자들의 한우육 구매 촉진

SUMMARY

I. Title: Development of production technologies for high quality & nutritional values of beef in Hanwoo

II. Goal of Study

- Detection of a great amount of SNPs for high quality and nutritional components of beef using the information of Hanwoo genome and high-thoroughput SNP genotyping analysis,
- 2) based on the genome (SNP) information, development of feeding management programs for short-term growth, high quality and nutritional values of beef,
- 3) so as to establish a combined breeding/feeding technology for the production of Hanwoo beef with high quality and nutritional components.

III. Contents of Study

Phase I: Detection of large amount of SNPs for the beef of high quality nutrients and
development of a feeding management program for fast growth
O Development of feeding program for growth stage based on domestic TDN feeds
and feed nutrients
O Construction of reference population with phenotypes for nutrional components
O Detection of SNPs for high quality and nutrional values of beef using the
Affymetrix 648K SNP chips
O Detection of SNP contents in Hanwoo genomes using bioinformatics tools
O Classification of Hanwoo steers into different groups based on the detected SNPs
for fast growth, and application of differenticated feeding programs to each group

- Phase II: Cross-validation of the SNP markers for high quality and nutrients of Hanwoo beef and development of a feeding management program for the nutritious beef
 - O Evaluation and cross-validation of the SNPs for high quality and nutrients in a commercial Hanwoo population
 - Classification of Hanwoo steers into different groups of beef based on the detected SNPs for high quality, and application of feeding programs to each group
- Phase III: Development of SNP kit for fast growth, high meat quality & nutrional components and establishment of a combined breeding/feeding technology for the production of Hanwoo beef with high quality and nutritional components.

 Construction of SNP kits for fast growth, high meat quality & nutritional components Selection index of the SNPs for optimum selection
C Establishment of customized feeding standards for fast growth, high quality &
nutrient beef according to different genetic groups
O Construction of database for individuals, genomes, phenotypes and SNPs
IV. Research and Development Outcomes
1) Detection of genome information for high quality & nutrient Hanwoo beef using statistical genetics tools
O Using the Affymetrix 648K SNP chips, a large amount of SNP was detected to breed specific SNPs for Hanwoo, Black, and Brindle Cattle as well as for
imported beef (US and Australia)
 A large amount of SNP was detected for high quality & nutrient beef of Hanwoo
○ The average prediction accuracy of marker-assisted breeding values for the
high quality & nutritional values of beef was 43%. Among the components, 18
traits had breeding values accuracies greater than 50%.
There is a possibility of genetic improvement of the beef nutritional
components due to the fact that the heritablities of the traits were
intermediate, and that the Bongwha Hanwoo steers had significantly different
compositions for the major fatty acid components.
2) According to genetic and functional level, short-term high-growth and high-quality specifications established program
O Complete of growing period to fattening period of specification program
development Basis on the high-quality domestic forage and enhancement of TDN content, DMI
 Complete of short term feeding management program development according to the genetic level of growth and meat quality
 Complete of analysis of the added effect of improving meat quality, functional
materials
 Complete of high functional, high-quality feeding program effective verification
3) High thoroughput genotyping with high density SNP chips and development of
SNP Kit for prediction at early stage
○ The 743 Hanwoo steers were genotyped with the Affymetrix bovine 640K
SNP arrays

- The SNP kits were developed to predict fast growth, high quality and nutritional components of Hanwoo beef at early stage
- 4) Functional analysis of Hanwoo SNPs using bioinformatics tools and database construction of Hanwoo genome
 - O Database of Hanwoo genome information was constructed
 - O Functional studies for major SNPs in Hanwoo genomes were performed

V. Proposals on Practical Application

- 1) Construction of SNP chips for multi-purose Hanwoo production and the application of the chips to sire and dam genetic evaluation program in Hanwoo
- 2) Establishment of Hanwoo genome database to efficiently exploit Hanwoo genome information
- 3) Specification management for shortened slaughter age (26-27 months of age) and quality meat production by feed development
- 4) Functional / wellness beef meat production that consumers are demanding in future and environmentally friendly beef meat production by short-term feeding program
- 5) Suitable breed and customized specifications system of Provide according to combination of specific traits and specific brand that Required by farmers
- 6) Beef meat considered delicious and healthy production system of technology development by Improve the quality of meat, as well as unsaturated fatty acids, such as content, High-Density Lipoprotein Cholesterol, Conjugated linoleic acid

목 차

제 1 장 연구개발과제의 개요

제1절 경제·사회·산업적 필요성 ······15
제2절 한우육의 맛·품질·기능성15
제3절 한우육 맛·품질·기능성 개량17
제 2 장 국내외 기술개발 현황
제1절 유전체 정보 활용 기술20
제2절 유전체 정보를 활용한 육우 건강지향적 고급육 생산기술21 1. 미국 앵거스 육21
2. 일본 화우육 ···································
제3절 올레인산 함량에 근거한 일본 화우 고급육 생산 기술22
제 3 장 연구개발수행 내용 및 결과23
제1절 통계유전학적기법을 적용한 한우 고기능고품질 유전체정보 발굴24 1. 고밀도 대용량 SNP chip에 있는 SNP들 중에서 한우품종에 유용한 SNP 선별24 가. 고밀도 대용량 SNP chip 선별: The Affymetrix Bovine Axium 648,000 SNP
Array
2. 한우, 흑우 및 칡소에서 유용한 SNP들간의 연관불균형(LD) 분석26 가. 한우에서 유용한 SNP들간의 연관불균형 분석26 나. 한우, 흑우 및 칡소 품종들간의 연관불균형 비교29
3. 한우, 흑우 및 칡소 미토콘드리아(mtDNA) 분석 및 품종 특이 SNP 대량 발굴 ·····30 가. 미토콘드리아 DNA 서열 비교분석을 통한 한우, 칡소, 흑우 종의 집단 유전학적 특성 ····································
다. 대용량 SNP 정보를 활용하여 한우 품종 특이성 규명31 다. 대용량 SNP 정보를 활용하여 한우, 칡소, 흑우 종의 집단유전학적 특성32

4. 대용량 SNP chip을 이용한 고급육·고기능성 QTI	
가. 시료 수집 및 형질 기초 통계량 조사	
나. 대용량 Affymetrix bovine 640K SNP array를	
전장연관분석(GWAS)	
다. 전장연관분석(GWAS)결과 형질별 유의적인 SN	
라. 전장연관분석(GWAS) 결과 고급육·고기능성 약	
조사	·····57
5. 전장연관분석결과 형질과 관련된 SNP 마커를 이용	
선발반응 평가	
가. 분자 육종가 추정 분석 방법 ···································	
다. 수정된 문자 육종가 정확도 평가 경립	
다. 구성된 군사 육동가 성복도 청가 결과 라. 형질관련 유의적인 SNP로 선발시 선발반응 평기	
다. 형실선인 뉴의적인 SIVE도 선일시 선일인당 정기	7
6. 탐색된 고기능성·고품질관련 SNP 마커들의 효과ೣ	를 적용집단에서 검증66
가. 봉화축협 거세우 표현형 분석 ···································	
나. 종화축협 거세우 집단의 지방산 성분 주요 SNP	
제2절 유전등급 맞춤형 단기성장·고품질·고기능성	사양프로그램 개발70
1. 반추위 최적 발효조건 확립을 위한 반추위 <i>in vitro</i>) 발효특성 및 소화율 비교
시험	······70
가. 반추위 최적 발효조건 확립을 위한 TMR과 TM	F사료의 발효특성 및 소화율 비교
시험	70
나. 한우용 TMR 및 TMF 사료의 저장기간에 따른	발효 선상의 변화72
다. 발효사료(TMF) 첨가가 거세 육성한우의 생산성	, 발효 및 혈액 성상에 미치는
영향	78
라. 양질 조사료원 급여 및 가소화총량 및 영양소 조	:절을 통한 국내단기사육 TMR
사료개발	83
마. 사료의 TDN 수준 차이가 <i>in vitro</i> 배양에서 반	
효과	
바. 기능성물질(GABA)을 첨가하여 <i>in vitro</i> 반추위	
에 미치는 영향	
사. 한우 생산비 절감 및 고급육 생산을 위한 육종기	
미치는 영향	
아. AFS(Adjusted auto feeding system)을 이용형	
램 평가	109

제3절 한우육의 고품질 고기능성 성분 탐색 개발113
1. 시험·적용집단 한우육 시료확보, 고품질 형질 자료 수집 및 분석 ······113
2. 육질등급에 따른 한우육의 고품질 고기능성 성분 차이114
3. 출하월령에 따른 한우육의 고품질 고기능성 성분 차이121
4. 수입육과 한우육의 고품질 고기능성 성분 차이126
제4절 대용량 SNP chip을 이용한 유전자형분석 및 진단기술개발129
1. 고밀도 Affymetrix bovine 640K SNP array를 이용한 분석 ······129
가. 시험집단 한우육을 대상으로 고밀도 Bovine SNP array 분석129
2. 발굴된 SNP 마커의 검증분석 및 조기진단용 kit 개발130
가. 고기능성, 단기 고성장·고품질 관련 SNP 조기진단용 키트 개발 ·······130
제5절 생물정보학적 분석을 이용한 한우 SNP 기능분석 및 유전체 정보관리 시스템
구축132
1. 한우 유전체 정보 데이터베이스 구축 ······132
가. 육종을 위한 국내 한우의 2,473,884 SNPs 데이터 베이스 ···································
102
2. 한우 유전체 및 SNP tagging 브라우저 기능134
2. 27 11 2 11 2 11 2 11 2 11 2 11 2 11 2
3. Functional category 및 pathway에 의한 유전자 및 SNP 분포 조회136
4. 다양한 QTL 및 SNP 통계정보 조회140
5. SNP chip 실험 정보 연계 조회 ······145
제 4 장 목표달성도 및 관련분야에의 기여도 ······148
제 5 장 연구개발 성과 및 성과활용 계획
제1절 연구개발 성과152
1. 연구성과 목표152
2. 논문게제 성과153
3. 특허 성과155
4. 상품화 ···································
5. 기술이전156
6. 교육157
7. 홍보 ···································

제2절 연구성과 실용화·산업화 계획160 1. 한우 다목적용도 SNP 대량 발굴 및 현장 적용 전략160
가. 한우 다목적용 SNP contents 확보 및 고기능성, 풍미, 단기성장 SNP kit 제작 ····································
나. 국가 보증 종모우 선발 프로그램에 적용160
다. 국가 암소 검정사업 프로그램에 적용161 라. 수익 기대 효과162
2. 한우 유전체 데이터베이스를 활용한 분자 유전학적 육종 시스템 개발162
3. 한우육의 고품질 고기능성 성분 탐색163
4. 유전등급 맞춤형 단기성장, 고품질, 고기능성 사양프로그램163
제 6 장 연구개발과정에서 수집한 해외과학기술정보165
제1절 유전체 선발에 대한 연구 현황165
제2절 분자유전정보를 활용한 연구 현황168
제3절 미국 앵거스육 고급육 향상169
제 7 장 연구시설·장비 현황 ·······171
제 8 장 참고무헌172

CONTENTS

Chapter I . Overview of R&D projects

Part 1. Economic, social and industrial needs	
Part 2. Taste, quality, nutritional values of Hanwoo meat	····1 5
Part 3. Improvement of taste, quality, nutritional values of Hanwoo meat	····17
Chapter II. Current trends in the technology and development of research	
Part 1. Application of genomic information	····20
Part 2. Production technology of healthy meat cow by genome information 1. Angus meat in United States 2. Waygu meat in Japan	····21
Part 3. Production technology of high quality meat of Waygu using oleic acid contents	····22
Chapter III. Contents and Results of the Study	·····23
Part 1. Genome information of high quality & nutrients of Hanwoo meat using Statistical genetics tools 1. Selection of SNPs available in Hanwoo in the high density chip a. Selection of SNPs using the Affymetrix Bovine Axiom 648,000 SNP Array	····24
b. Comparison of SNPs between Hanwoo, Black and Brindle cattle	
LD analysis using SNPs between Hanwoo, Black and Bringle cattle a. LD analysis in Hanwoo b. Comparison of LD between Hanwoo, Black and Brindle cattle	····26
mtDNA analysis and detection of large SNPs in Hanwoo	30 31

4. GWAS to detect QTL for high quality and nutrients with HD SNP chips …33 a. Data collection and basic statistics of phenotypes33 b. GWAS using the Affymetrix bovine 640K SNP array39 c. Significant SNPs after GWAS results44 d. Candidate genes near the QTL for high quality and nutrients57	
5. Prediction of molecular breeding values and selection response ——61 a. Prediction methods of molecular breeding values ——61 b. Accuracy evaluation of the predicted molecular breeding values ——61 c. Results on accuracy evaluation of molecular breeding values ——62 d. Evaluation of selection response using the significant SNPs ——64	
6. Validation of the detected SNPs for high quality and nutrients of beef66 a. Analysis of phenotypes in Bongwha Hanwoo steers66 b. Allele frequencies of the SNPs for fatty acids in Bongwha steers69	
Part 2. Feeding programs for fast growth, high quality & nutrients that are fitted to different genetics of Hanwoo steers	
Part 3. Detection of high quality & nutrients in Hanwoo meat	
Part 4. Genotyping with high density SNP chips and SNP kit129 1. Genotyping with high density Affymetrix bovine 640K SNP array129 a. analysis with the bovine SNP array in Hanwoo reference population129	
2 Dayslanment of SNP kit for early prediction on Hanwag most	

a. SNP kit for early prediction of fast growth, high quality & nutrients130
Part 5. Genome database for functioning SNPs using bioinformatics tools …132
1. Construction of Hanwoo genome database132
a. Database of the 2,473,884 SNPs for breeding in Hanwoo132
2. Function of browser in Hanwoo genomes & SNP tagging ······134
3. Functional category & pathways of genes and SNPs in Hanwoo136
4. Query for various QTL and SNPs140
5. Query of SNP chips ————————————————————————————————————
Chapter IV. Achievement of goal and contribution to the research field148
Chapter V. Research product and plan of practical application
Part 1. Research product152
1. Goal of research product152
2. Publication ————————————————————————————————————
3. Patent155
4. Common product ————————————————————————————————————
5. Technology transfer ————————————————————————————————————
6. Education157
7. Advertisement ——158
Part 2. Production of research development160
1. Detection of large amount of SNPs for multi-purpose in Hanwoo160
a. SNP contents for fast growth, good taste & nutrients and SNP kit160
b. Application to national sire evaluation program160
c. Application to national cow evaluation program161
d. Expectation of income
2. Hanwoo breeding system using the genome database ······162
3. High quality & nutritional components of Hanwoo beef163
4. Feeding for fast growth, high quality and nutrients for different genetics 163
Chapter VI. Science and technology information in other countries

Part 1. Genome selection165	
Part 2. Molecular breeding program168	
Part 3. Angus beef in US for high meat quality169	
Chapter VII. Research facilities and equipment171	
Chapter VII. Reference	

제 1 장 연구개발과제의 개요

제 1 절 경제·사회·산업적 필요성

- 한우 산업은 국내 축산물 생산액의 30%이상으로 경제적 부가가치 뿐만 아니라 국가 원천 종자 및 국가 브랜드로서의 가치가 있는 생물 자원임.
- 최근 FTA, 수입산 쇠고기 증가, 곡물가격상승으로 생산비 증가, 반추위 메탄가스 생성으로 인한 온난화의 요인으로 간주하는 등 한우 산업의 경쟁력 제고의 필요성.
- 현재 한우 거세우 1등급(고급육)이상 출현율이 80%를 도달하지만 등급은 주로 지방의 함량과 밀접한 관련이 있는데, 이는 30개월 이상 비대 사육을 초래하여 과도한 사료소모와 한우육에 과도한 포화지방이 침착되어, 노인층의 증가 및 건강 지향적인 웰빙 소비자층이 대두되는 가까운 미래에는 배척 사유가 될 수 있음.
- 현대인들은 건강에 대한 관심이 증대되면서 식품소재는 인체 활동의 유지 및 성장을 위한 단순한 에너지 공급 및 기초적 영양원으로서의 역할뿐만 아니라 인간이 누릴 수 있는 이로운 역할을 할 수 있는 생체기능성 물질(bioacitive compounds)의 원천으로 관심이 모아짐.
- 2009년 우리나라의 65세 이상 노인인구 비중은 10.7%로 '고령화 사회'에 진입하였고, 2026년에는 20%, 2050년에는 38%에 이르는 '초고령화 사회'에 이를 것으로 전망 됨.
- 따라서 소비의 주체가 웰빙선호층 및 노인층으로 전환됨에 따라 육류에 대한 선택기준도 현재의 고기 양 또는 맛 뿐만 아니라 성인층의 비만과 고혈압, 뇌졸중과 같은 심혈관질환을 극복하기 위한 지방 및 에너지 섭취의 제한, 포화지방산의 섭취 제한 및 능동적인 기능성 물질의 섭취와 같은 건강 지향적으로 전향될 것 임.
- 따라서 조기에 출하하여(예:31->28개월) 사료비용을 절감하는 동시에, 맛을 포함한 고품 질을 가짐과 동시에 '건강·영양' 지향적인 고기능성 성분을 함유하는 한우 고급육 개발 의 필요성.

제 2 절 한우육의 맛·품질·기능성

- 한우육은 국가 명절에 가장 인기 있는 선물세트로 판매되고 있는데 이는 한우육의 맛과 품질의 우수성을 소비자들이 인정하는 사례임.
- 고기의 맛(palatability)은 풍미에 관계되는 성분에 의해 결정되는데, 지방산 (palmitic_(C16:0), stearic_(C18:0), oleic_(C18:1), linoleic aicd_(C18:2)), 단일불포화지방산/포화지방산 사 비율), 유리아미노산(taurine, arginine, glutamic acid 등), 당단백질, 핵산(IMP, hypoxanthine 등) 같은 화학성분이 관여하며, 특히 근내지방(intramuscular fat)는 고기의 맛과 식감에 큰 영향을 줌 (Jo et al., 2012).

- Jo 등 (2012)은 근내지방도가 높을수록 풍부한 풍미를 느끼며 상대적으로 근육조직이 연하고 다즙하며 부드러운 식감을 갖게 되므로, 한우육도 높은 근내지방 함량 중심의 소비 취향과육색을 비롯한 기타 육질 요소를 중심으로 소비자의 관심이 집중되어 왔다고 보고.
- 한편 우리나라의 쇠고기 소비자는 이러한 높은 수준의 근내지방도를 요구하고 있는 반면, 외국 일부소비자 층은 비만 등의 다이어트를 걱정하여 오히려 낮은 지방함량의 고기를 선 호하고 있으며 일부 외국의 육가공 업계에서도 가공적성이 우수한 낮은 함량의 근내지방을 선호하는 경우도 있음 (Scollan 등, 2006; Arihara 2006).
- 근내지방에 의한 마블링 상태가 우수하고, 높은 연도와 보수력에 의한 탁월한 조직감, 지방산 분해에 의한 휘발성물질(volatiles), IMP, inosine 등의 핵산계 풍미물질, glutamic acid 등의 아미노산 성분들이 복합적으로 관여되어 소비자의 관능적 취향을 좌우함.
- 쇠고기의 근내지방은 2~8%로 상대적으로 낮은 편이나 최근 국내소비자의 편향된 식습관과 쇠고기 등급제의 영향으로 높은 지방함량을 지닌 하이마블링 쇠고기의 생산이 중심이 되어 왔으며 이는 쇠고기의 연도, 다즙성, 풍미 등과 같은 관능적 품질요인에서 우수한 평가를 받고 있으나 건강지향적 식습관과는 다소 거리가 먼 추세로 볼 수 있음 (Biesalski, 2005)
- 쇠고기는 대표적인 양질의 단백질 공급원일 뿐만 아니라, 다양한 건강·영향 지향적 생리기 능이 밝혀진 생리활성물질(bioactive compounds)이 존재함에도 불구하고, 상대적으로 높은 포화지방산을 지닌 지방과 적색육의 암 발생과의 인과관계 등의 마이너스적인 영양가치도 대두되고 있는 실정임.
- 쇠고기의 다가불포화 : 포화지방산 비율은 0.1 정도로(Choi 등, 2001) 다른 축종에 비해 높은 포화지방산에 대한 논란이 있는 실정이나, 실질적으로 쇠고기에는 더 많은 함량의 불 포화지방산도 존재하며, 특히 건강에 이로운 기능적 특성이 밝혀진 omega-3 지방산을 비롯한 다가불포화지방산도 전체지방산의 약 11~29%가 존재하며 omega-3 지방산은 돼지나 닭고기에 비해 쇠고기에 상대적으로 더 많이 함유됨 (Williams and Burdge, 2006).
- 쇠고기에 존재하는 conjugated linoleic acid(CLA)는 다양한 생리활성(항산화, 면역조절 등) 기능이 밝혀졌으며, 반추 미생물에 의해 linoleic acid로부터 CLA가 전변되기 때문에 쇠고 기는 우수한 동물성 CLA 공급원임 (Dannenberger 등, 2004).
- 식육에 존재하는 기능성 아미노산인 taurine(항산화, 항고혈압, 항콜레스테롤)은 쇠고기 100g 당 평균적으로 77mg이 존재하는 것으로 알려져 있으며, 고기는 가장 풍부한 taurine의 공급처이며 methionine 및 cysteine 대사로부터 합성되기도 함 (Mou et al., 2002).
- Carnosine 및 anserine은 대표적인 항산화 기능을 지닌 histydyl dipeptide로 근육 내 존 재하는 가장 풍부한 천연 항산화물질로 항노화(antiaging) 효과가 있으며, carnosine의 경

우 쇠고기 등심근 100g 당 약 375mg 존재함 (Hipkiss, 2009).

- 특히, 한우육은 서양육우(예, 앵거스)보다 마블링이 우수하고, 불포화지방산이 높으며 콜레스테롤이 낮는 등, 우수한 맛과 고기능성 특징을 가지고 있어 세계적인 경쟁력을 가질 수 있는 잠재성을 지니고 있음 (미국 텍사스주립대 스미스교수 언론대담 2009년 12월; 동물자원과학회지 2009년).
- 따라서 지방의 불포화도가 높고 생리활성 물질을 다량 함유한 한우 고급육의 지속적인 개발 은 FTA 시대에서 한우가 생존할 수 있는 국내·국제 경쟁력을 가지게 될 것임.
- 고품질과 고기능성분은 독립적 특성과 공통적 특성을 가지고 있음. 예로 관능평가의 기호도는 전적으로 고기의 품질에 관한 특성이며, CLA, carnosine같은 물질은 근육내 매우 미량으로 존재하여 기호적 특성보다는 건강과 관련된 기능적 특성을 지닌 물질임. 한편 불포화지방산의 경우 건강에 미치는 영향뿐만 아니라 성분 특유의 풍미와 같은 기호 품질 특성에도 관여함

항목	품질						고기능성		
도체특성	육량등급	육질등급	마블링지수						
<mark>일반성</mark> 분	수분			회분		지방	단백질	콜레	스테를
육색, pH	L*	a*	b*	전단력	pН				
수분 관련	보수력	드립감량	가열감량						
단백질 관련		free amino acids				creatinine	creatine	anserine	carnosine
지방 관련		SFA	oleic acid	UFA		PUFA	n-3 FA		CLA
핵산 관련		AMP	IMP	inosine	hypox	anthine			
관능평가	기호도	색깔	풍미	연도	다즙성				

제 3 절 한우육 맛·품질·기능성 개량

- 한우육의 고품질·고기능성과 관련된 SNP를 대량 발굴하고 효율적인 개량효과를 얻기 위해서는, 주어진 품질·기능성 형질에서 한우 개체들간의 유전적인 변이 폭이 커야함. 즉 해당 형질에 대하여 높은 유전력을 가질수록 효율적인 유전적 개량효과를 가져올 수 있음.
- 한우에서 고품질·고기능성 형질에 (예: 불포화지방산함량, 콜레스테롤, CLA 등) 관한 대량의 SNP 발굴에 관한 연구는 전무한 실정인데, 그 이유는 시료 수집의 어려움 및 기능성 형질을 대량 분석시 에 소요되는 경비와 대용량 시료를 분석할 수 있는 실험 규모의 제한 때문임.
- 서양 육우들의 기능성 및 고기 품질 성분 조사 결과, 일반적으로 중~고도의 유전력 (20~70%)을 나타내며, 특히 한우와 유전적 근연관계가 높은 일본 흑모우에서는 높은 유

전력을 나타냄 (아래표 참조). <육우 품종들에서 고기 품질과 기능성 성분에 대한 유전력 추정치(%)>

기능성·품질성분	연구 1	연구 2	연구 3	연구 4	연구 5	연구 6	연구 7	연구 8	연구 9	연구 10	연구 11	연구 12
근내지방도(Marbling	73	15	46	44	18	35	46	68	61	37	64	51
전단력(Shear Force)	37	-	22	-	-	16	29	40	-	29	-	-
연도(tenderness)	50	-	28	-	-	25	26	37	-	-	-	-
다즙성(Jiuciness)	-	-	-	-	-	24	1	46	-	-	-	-
풀미(flavor)	19	-	-	-	-	40	5	7	-	-	-	-
지방색(Fat color)	-	-	-	-	33	-	-	-	-	-	-	-
지방융점(°C)	-	20	-	-	28	-	-	-	-	-	63	-
Palmitic 산(C16:0)	-	13	-	-	21	-	-	_	-	-	65	65
stearic 산(C_18:0)	-	12	-	-	14	-	-	-		-	71	59
oleic 산(C18:1)	-	9	-	-	17	-	-	-	-	-	73	78
전체포화지방산	-	30	-	-	27	-	-	-	-	-	75	66
육색(meat color)	-	-	-	-	-	-	-	-	31	-	-	-
육광(meat brightness)	-	-	-	-	-	-	-	-	56	-	-	-
육질(meat firmness)	-	-	-	-	-	-	-	-	51	-	-	-
육조직(meat texture)	-	-	-	-	-	-	-	-	48	-	-	-

※ 연구1: Wheeler 등, J. Anim.Sci. 1996

연구3: J. K. Bertrand 등 JAS 2001

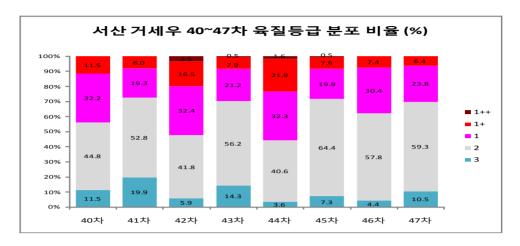
연구5: Pitchford 등, JAS 2002. 연구7: Nephawe등, JAS 2004

연구9: Shojo 등, JAS 2006 (일본화우)

연구11: K. Inoue등 The Animal Consortium 2011 (일본화우)

연구2: A. E. O. Malau-Aduli 등 J. Anim. Nutr. 2000

연구4: D. G. Riley 등 JAS. 2002 연구6: Wheeler 등, JAS 2004


연구8: Dikeman 등, JAS 2005

연구10: T. Smith 등 JAS 2007 (Brahman)

연구12: T. Nogi등 J. Anim Sci 2011 (일본화우)

- 이러한 결과는 한우에서도 품질·기능성 성분에 대하여 개체들 간의 유전적 조성이 다양하여 품질·기능성 관련 SNP를 다량 발굴하고 유전적으로 우수한 기능성·고급육 유전자형을 가진 개체들을 효율적으로 선발하여 높은 유전적 개량 효과를 가져올 것으로 기대 됨.
- 축산물품질평가원의 등급판정 성적을 종합 분석한 결과에 따르면 거세한우의 1등급 이상 출현율은 79%로 육질, 육량 모두에서 분명한 수준향상이 되고 있지만, 한우 고급육 생산을 위한 우량 밑소 및 자가생산비육체계로 전환하는 농장의 증가로 사육방법이 차별화가 요구되고 있으며 경영비절감을 위한 사양체계 개발이 필요함.
- 한우 출하월령별 경제석 분석결과에 따르면 25~28개월령 출하시 1++ 등급이 전체 27.7%로 고급육 출현율이 낮지 않았으며, 출하월령 단축시 사료비용절감이 13% 감소함으로 두당 수익도 28~32개월 출하농가와 거의 차이가 없는 것으로 조사됨.
- 또한, 서산 한우개량사업소에서 2007년부터 수행된 종모우 검정사업에 이용된 거세우들을 (40~47차) 조사한 결과, 24개월령에 도축시 1등급이상 고급육 출현율이 38% (1+이상 출현율, 12%)로 나타났는데 이러한 결과는 유전적으로 우수한 개체선발과 적절한 단기사양

프로그램을 수행할 경우 조기 출하시에도 고급육 출현빈도를 높일 수 있는 근거를 제시하여 줌.

- 사양관리시 농후사료와 조사료의 급여량과 종류에 따라 마블링은 현저히 차이가 보이는데, 사료의 급여방법이 점차 TMR 사양과 조사료위주의 사양관리로 증가하는 상황에서 국내 생 산 양질의 조사료를 활용한 고급육생산이 필요함.
- 미국, 캐나다를 중심으로 농산부산물을 활용한 비육우의 육질개선을 위한 다양한 연구가 진행되고 있으며, 최근에도 알코올 생산시 나오는 습고형주정박(WDGS) 사용 등 부산물을 활용한 원료사용이 육질개선의 효과가 있는 것으로 연구됨.

제 2 장 국내외 기술개발 현황

제 1 절 유전체 정보 활용 기술

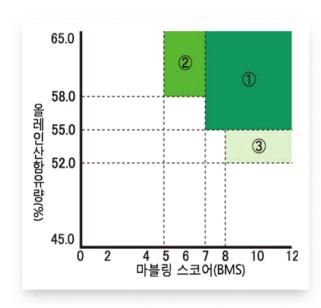
- 생명공학기술의 급속한 발전으로 인간게놈프로젝트 및 유전체학 분야의 급속한 발전으로 가축의 경우에도 주요 생산형질에 관련된 유전자 기능을 구명하여 산업에 적용하는 방향으로 진행되고 있음.
- 최근 차세대 염기서열(NGS) 분석을 이용한 유전체 서열자료를 활용하여 대다수 생물체에 서 기존보다 저비용으로 유전체를 해독하는 연구가 일반화 해 가는 추세임.
- 소의 경우, 2003년 헤어포드 소품종을 이용하여 국제 소 게놈 컨소시엄 주도로 genome project가 진행되었는데 그 결과 99%이상의 유전체가 해독되었고 (2010, Science), 그 후 독일 뭰헨대학교 연구팀에서 플렉비 젖소 품종 유전체를 해독하였으며(2010, Genome Biology), 국내 연구진들도 한우유전체를 해독하여 310만여개에 달하는 단일돌연변이(SNP)를 발굴하였음.
- 이와 같이 대량으로 발굴되어진 SNP 정보들은 가축개량에 혁신적인 원천 대량 유전정보를 가져다 주었는데, 과거 제한되게 발굴되어진 SNP 양으로는 형질과 관련된 단일 또는 소수의 유전자를 검정할 수 밖에 없었지만, 대량의 SNP를 이용할 경우 대용량 SNP 칩을 이용하여 (예, Illumina 50k, 770k, Affymetrix 640k array) 경제 형질과 관련된 대량의 마커들을 발굴할 수 있어, 높은 신뢰도를 가진 분자 육종가(Molecular Breeding Value) 또는 유전체육종가(Genome-based Estimated Breeding Value)를 추정하여 개량의 정확도 및 효율성을 높일 수 있음.
- 국내에서도 대용량 SNP chip을 이용하여 전장연관분석(genome—wide association study, GWAS)을 통한 한우 고급육과 관련된 SNP를 대량 발굴한 사례가 있음.
- 미국, 호주, 뉴질랜드 같은 낙농선진국의 경우 젖소 개량에서 기존의 전통육종방법, 즉 혈통정보와 자손의 표현형을 이용한 고전적 육종방법인 후대검정을 지양하고, 해당 개체를 송아지(12개월령) 때에 SNP chip을 이용한 분자육종가값을 추정하여 조기선발을 하는 게놈(유전체)선발 방법을 적용하고 있으며, 미국, 호주 등에서도 육우에 대한 게놈선발 연구가 활발히 진행되고 있음.
- 오랜 검정시간과 이에 따른 막대한 검정 경비가 지출되는 고전적 후대검정방법과는 달리, 게놈선발은 조기에 해당개체를 선발할 수 있는 검정 경비를 줄이면서 높은 신뢰도의 분자육종가를 추정하여 선발의 정확도를 높이는데 기여함 (아래 그림 참조).
- 그러므로, 한우 유전체 정보를 활용할 경우 기존 한우 생산성의 한계를 극복하는데 있어서 가장 큰 혜택은 개체의 특정 형질에 대한 유전적 자질을 조기에 예측할 수 있으며, 이 예측 결과에 따른 적절한 (맞춤형) 사양 조건을 선택하는 정보를 제공하여 줌.
- 따라서 향후 최고급 한우육 생산기술은 육종과 사양이 별도로 진행되었던 기존의 한우 생산 구조를 바꾸어 육종과 사양을 조합한 구조로 전환될 것임.

○ NGS를 이용한 대용량 유전체 시퀀싱 기술의 발전으로 인해 SNPchip을 활용한 한정적 유전체 다양성 연구에서 벗어나 다양한 표현형, 다양한 환경적 요인에 노출된 많은 개체수의 집단적 다양성 연구가 활발해 지고 있음. 그러나 개별적으로 진행되고 있는 다양성 연구는 생물학적 의미를 갖지 못하고 개별적인 데이터형태로 남겨지고 있어 이들 데이터의 통합적 유기적 분석이 절실하며 이를 위해서는 일원화된 데이테베이스 창출이 필수적임.

제 2 절 유전체 정보를 활용한 육우 건강지향적 고급육 생산기술

- 1. 미국 앵거스 육
- 미국의 육우시장에서 최고급 앵거스육의 경우 기존의 연도, 마블링에서 소비자 건강을 고려 한 건강성분 지향 앵거스육을 생산하고자 유전체 정보를 활용한 연구 사례가 있음
- 아이오와주립대 James Reecy교수팀에 의하여 2002년부터 2008년에 생산된 비거세우, 거세우 및 암소 2,100두를 가지고 Illumina 50K SNP chip을 이용하여 유전자를 분석하였 으며 일반적인 도체 품질, 지방산, 콜레스테롤, 광물질, 비타민, 카놀신 같은 dipeptide등 다 양한 건강·영양적 가치성분들을 분석하여 전장연관분석을 통하여 주요 SNP 마커를 발굴 하였음.
- 전장연관분석결과 일부의 결과를 아래와 같은 국제 SCI 저널에 게재하였음

2. 일본 화우육


○ 일본 화우의 경우에도 화우육에 마블링 개량과 더불어 건강성분인 불포화지방산인 올레인 산의 함량을 개량하고자 대용량 SNP chip을 이용하여 주요 올레인산 SNP를 발굴하였음 Whole-genome association study for fatty acid composition of oleic acid in Japanese Black cattle

Y. Uemoto*, T. Abe*, N. Tameoka*, H. Hasebe*, K. Inoue*, H. Nakajima[†], N. Shoji[†], M. Kobayashi[†] and E. Kobayashi*

*National Livestock Breeding Center, Nishigo, Fukushima 961-8511, Japan. †Yamagata Prefectural Animal Industrial Institute, Agricultural Research Center, Shinjo, Yamagata 996-0041, Japan

제 3 절 올레인산 함량에 근거한 일본 화우 고급육 생산 기술

- 일본 화우육의 맛을 결정하는 요인은 근내지방도 즉 마블링과 더불어 주요 지방산 성분인 올레인 산이 크게 좌우한다는 연구 결과를 바탕으로, 나가노현에서는 쇠고기 맛 품질표시제 도를 도입하여 신슈(信州) 프리미엄 쇠고기 브랜드로 현내외 정육점과 음식점에 제공되고 있음
- 즉 마블링 점수가 5~8점과 올레인산 함량이 53~58% 이상인 경우 신슈 프리미엄 쇠고기 로 인증함

프리	미엄	올레인산	마블링스코어			
둥	급	함유량	(BMS)			
	1	55% 이상	7이상			
	2	58% 이상	5이상			
	3	52% 이상	8이상			

- 신슈 프리미엄 쇠고기육은 사단법인 일본식육등급협회에서 인증하고 있으며, 인증되어진 쇠고기는 1kg당 전체 평균거래 가격인 2,060엔보다 높은 2,140엔 (최고 4,700엔)에 거래되고 있음
- 위와 같은 사례에 비추어, 본 연구과제에서 얻어진 결과는 한우육의 맛, 건강 지향적인 프 레미움 한우육의 설정에 중요한 원천기반 정보를 제공하여 줄 것임.

제 3 장 연구개발수행 내용 및 결과

최종 목표:

한우 유전체 정보와 SNP 대용량 분석을 통한 고기능성·고품질 형질과 관련된 SNP를 대량 발굴하고, 발굴된 SNP정보를 바탕으로 고기능성 및 단기성장·고품질 맞춤형 사양 프로그램을 개발하여 한우 최고급육 분자육종/사양 조합 생산기술을 확립

주요내용

- 한우 시료 수집 및 한우육의 고기능성·고품질·단기고성장 탐색
 - 고기능성 SNP 발굴을 위한 500두 규모의 시험집단의 개체정보 및 시료 확보
 - 고기능성 SNP 효과 검증을 위한 1000두 규모의 적용집단 개체정보 및 시료확보
 - 시험집단 및 적용집단에서 고기능성·고품질 성분 분석 및 대표 기능성·품질 성분 설정
- 통계유전학적방법을 적용하여 최고급육 관련 SNP 대량 발굴 및 평가
 - 전장연관분석(GWAS) 방법을 적용하여 시험집단에서 대용량 SNP chip을 이용한 고기능성·고품질 형질관련 SNP (QTL) 발굴
 - 탐색된 SNP (QTL)에 대하여 적용집단에서 고기능성·고품질 형질에 대한 효과 검증
 - 마커도움선발(MAS)를 위한 선발지수식 개발 및 선발반응 평가
- 유전적등급에 따른 맞춤형 고기능성 및 단기 고성장·고품질 사양프로그램 확립
 - 국내 양질조사료 기반으로 TDN 함량 및 DMI 증진으로 육성기 단계 및 비육전기의 고성 장·고품질 사양관리 프로그램 개발
 - 성장·육질에 대하여 유전적 등급별로 비육단계별 단기 사양관리 프로그램 개발
 - 기능성물질 첨가에 따른 육량·육질 개선효과 분석
 - 고기능성·고품질 특성에 대한 유전적 등급별로 기능성 사양관리 프로그램 개발
 - 적용집단을 이용한 고기능성·고품질 맞춤형 사양급여 프로그램 효과 검증
- 고기능성/단기 고성장·고품질 향상을 위한 분자육종/사양 조합프로그램 구축
 - 형질별 분자육종/사양 조합실험 수행결과로 성장, 기능성, 품질 향상 평가
 - 주요 형질들을 조합한(예: 성장+기능성) 적절한 분자육종/사양 조합프로그램 도출
- 생물정보학적기법을 적용한 한우유전체정보 분석 및 DB 시스템 구축
 - 기 발굴되어진 한우 310만개 SNP를 대상으로 구조분석 및 기능분류
 - 비교유전체 및 고기능성·고품질 SNP부위 분석을 통한 고기능성 SNP contents 발굴
 - 한우 개체, 유전체, 표현형, 기능성 QTL (SNP) 등과 관련된 자료들의 통합 DB 구축
- 대용량 SNP chip 및 고기능성·고성장·고품질 관련 SNP 분석 및 kit 제작
 - 한우유전체 정보를 포함하고 있는 대용량 SNP chip을 시험집단에 적용
 - 고기능성·고성장·고품질 한우육 식별 간편 진단 DNA kit 개발

제1절 통계유전학적기법을 적용한 한우 고기능고품질 유전체정보발굴

○ 목표: 한우에서 고기능성 고품질 형질과 관련된 SNP를 통계유전학적 기법으로 다량 발굴

1. 고밀도 대용량 SNP chip에 있는 SNP들중에서 한우품종에 유용한 SNP 선별

- 가. 고밀도 대용량 SNP chip 선별: The Affymetrix Bovine Axium 648,000 SNP Array
- 제 2협동과제에서 Affymetix bovine 640K SNP chip을 이용하여 1차년도 250두, 2차년도 250두, 3차년도 243두, 총 743두 한우개체들의 유전자형을 분석하였음. 각 개체들은 혈연관계가 적은 임의의 개체들로 선별하였음.
- 유용 SNP 선별조건:
 - 빈도가 작은 대립인자 빈도가(minor allele frequency, MAF) > 0.05
 - 하디-와인버그(H-W) 평형테스트 χ^2 값에 상응하는 P 값이 >0.001
 - call rate: test되어진 전체 개체들 중에서 missing genotype 비율 < 0.1
- 유용 개체 선별 조건: test되어진 전체 SNP들 중에서 missing genotyped SNP 비율 <0.1
- 결정된 유용한 SNP들과 바로 옆에 위치하는 SNP들간의 거리(kbp) 간격은 다음과 같음

		한우의 유용한 SNF	개수		adjacent SNP들간	평균간격(kbp)
BTA	chip내의 SNP 수	유용SNP개수	%	BTA	평균	표준편치
1	39,393	28,110	71.4	1	5.63	6.61
2	33,689	24,220	71.9	2	5.64	6.78
3	28,786	21,378	74.3	3	5.68	6.98
4	31,778	23,666	74.5	4	5.11	6.50
5	26,684	19,484	73.0	5	6.22	8.16
6	28,436	21,215	74.6	6	5.63	8.12
7	26,574	19,060	71.7	7	5.91	11.46
8	28,153	19,920	70.8	8	5.69	7.40
9	27,056	19,377	71.6	9	5.45	6.72
10	28,420	20,185	71.0	10	5.16	6.68
11	26,629	18,759	70.4	11	5.72	7.59
12	22,734	16,841	74.1	12	5.41	9.28
13	20,179	14,694	72.8	13	5.73	7.31
14	18,431	12,993	70.5	14	6.47	9.33
15	21,737	15,939	73.3	15	5.34	6.87
16	19,847	14,389	72.5	16	5.66	7.43
17	17,617	12,253	69.6	17	6.12	10.18
18	15,733	11,582	73.6	18	5.69	8.25
19	13,446	9,311	69.2	19	6.87	8.94
20	18,292	13,258	72.5	20	5.42	6.57
21	18,366	13,150	71.6	21	5.44	8.17
22	15,183	10,981	72.3	22	5.59	7.77
23	17,624	13,600	77.2	23	3.86	5.95
24	17,120	12,386	72,3	24	5.05	6.22
25	11,442	8,525	74.5	25	5.02	8.27
26	15,219	10,983	72.2	26	4.70	6.07
27	14,725	10,492	71.3	27	4.33	7.94
28	13,662	9,975	73.0	28	4.63	6.00
29	14,018	10,408	74.2	29	4.93	7.63
합계	630,973	457,134	72.5	평균	5.45	7.63

○ 총 630,973 SNP 중에서 한우 유용한 SNP 수는 457,134개로, 제작되어진 chip에 심어져 있는 것

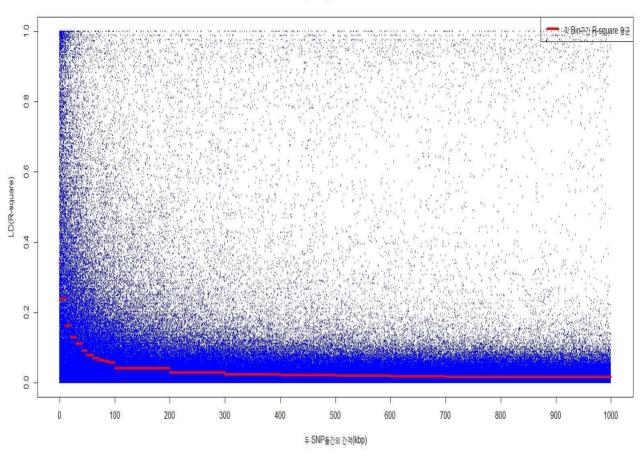
들 중에 72.5%만이 한우품종에 유용함. 이러한 결과는 나머지 27.5%에 해당되는 SNP는 유용성이 없으며 불필요한 분석비용만 초래 되므로 한우에만 유용한 SNP chip 제작의 필요성을 제시해 줌

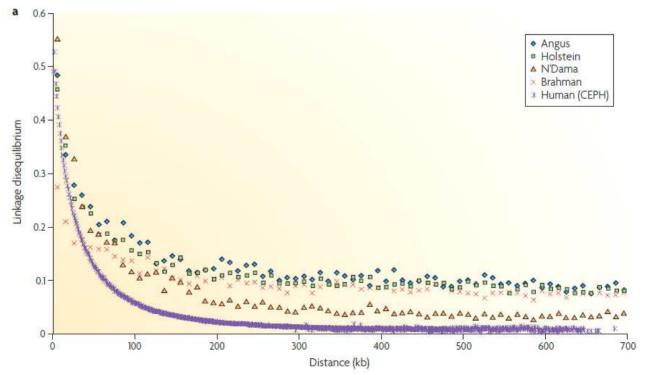
○ 유용한 SNP들을 이용하여 바로 옆에 위치하는 SNP pair들간의 거리(kbp)를 조사한 결과, 모든 adjacent SNP들간 전체 평균은 5.45 kbp였으며 표준편차는 7.63kbp 였음. 이는 평균적으로 SNP 들간의 간격이 5,450 bp임을 뜻하며 간격들의 95%는 2*7.63= 15,260bp 이내에 존재함

나. 한우, 흑우 및 칡소에서 고밀도 대용량 SNP chip을 이용하여 유용한 SNP 개수 비교

		각	종별로	로 유용한 9	SNP	개수			유용한 SNP간의 평균간격 및 표준편차 (kbp)					
BTA	chip내의 SNP수	한우	%	칡소	%	흑우	%	BTA	한우	표준편차	칡소.	표준편차	흑우	표준편차
1	39,393	24,308	62	20,970	53	20,622	52	1	6.51	7.60	7.55	9.21	7.68	9.40
2	33,689	20,702	61	17,922	53	17,097	51	2	6.60	7.97	7.63	9.75	7.99	10.40
3	28,786	18,226	63	15,101	52	14,634	51	3	6.66	8.01	8.04	10.06	8.29	10.59
4	31,778	20,135	63	17,498	55	16,607	52	4	6.00	7.28	6.90	8.75	7.27	9.31
5	26,684	16,987	64	14,698	55	14,090	53	5	7.13	8.98	8.24	11.12	8.60	11.55
6	28,436	18,599	65	15,801	56	15,603	55	6	6.42	8.90	7.55	10.98	7.65	11.08
7	26,574	16,606	62	13,666	51	13,911	52	7	6.78	12.64	8.24	15.61	8.10	15.00
8	28,153	17,162	61	14,761	52	14,355	51	8	6.60	8.40	7.68	10.24	7.89	10.71
9	27,056	16,858	62	14,050	52	14,174	52	9	6.27	7.54	7.52	9.62	7.45	9.53
10	28,420	17,414	61	14,755	52	14,407	51	10	5.99	7.81	7.06	9.51	7.23	10.03
11	26,630	16,098	60	13,670	51	13,015	49	11	6.66	8.31	7.84	10.48	8.24	11.39
12	22,734	14,508	64	12,595	55	11,923	52	12	6.28	10.02	7.23	12.53	7.64	12.87
13	20,179	12,616	63	10,541	52	10,251	51	13	6.67	8.43	7.98	11.09	8.21	11.41
14	18,431	11,319	61	10,005	54	9,187	50	14	7.42	10.50	8.40	12.48	9.15	13.64
15	21,737	13,816	64	12,048	55	11,525	53	15	6.17	7.69	7.07	9.02	7.39	9.76
16	19,847	12,198	61	10,532	53	9,802	49	16	6.67	8.58	7.73	10.72	8.31	11.51
17	17,617	10,771	61	9,058	51	8,526	48	17	6.96	10.86	8.27	13.12	8.80	13.93
18	15,733	9,943	63	8,123	52	7,701	49	18	6.63	9.13	8.10	12.54	8.55	13.39
19	13,446	7,962	59	6,864	51	6,152	46	19	8.03	9.71	9.31	12.15	10.39	13.98
20	18,292	11,535	63	10,082	55	9,451	52	20	6.23	7.37	7.12	8.94	7.59	9.89
21	18,366	11,515	63	9,736	53	9,257	50	21	6.21	8.62	7.34	10.92	7.72	11.78
22	15,183	9,617	63	7,880	52	7,625	50	22	6.38	8.30	7.79	11.19	8.05	11,62
23	17,624	11,839	67	10,379	59	9,438	54	23	4.44	6.44	5.06	8.03	5.56	8.63
24	17,120	10,690	62	9,330	54	8,863	52	24	5.84	7.22	6.70	8.67	7.05	9.01
25	11,442	7,515	66	6,216	54	5,997	52	25	5.70	8.18	6.88	10.84	7.14	11.23
26	15,219	9,430	62	7,858	52	7,380	48	26	5.48	7.47	6.57	9.52	7.00	10.36
27	14,725	9,089	62	7,910	54	7,441	51	27	5.00	8.68	5.74	9.83	6.10	10.94
28	13,662	8,750	64	7,449	55	7,080	52	28	5.28	6.56	6.20	7.88	6.53	8.38
29	14,018	8,837	63	7,734	55	7,042	50	29	5.83	8.38	6.66	10.25	7.31	12.08
seudoX	280	105	38	91	33	86	31	PseudoX	1428	2434	1629	3071	1747	3263
Χ	16,602	5,662	34	5,387	32	4,814	29	X	26,28	49.83	27.62	43.87	30.91	51.23
합계	647,856	400,812	62	342,710	53	328,056	51	평균	7.00	9.67	8.19	11.79	8.56	12.45

- 연구 1년차에 조사되어진 한우 개체 250두와 칡소(Brindle) 및 흑우(Black) 각각 18두를 분석한 결과는 위 표에 나타나 있음.
- 연구 1년차 결과와 비교분석 해 보면 1년차보다는 유용한 SNP수는 증가하였는데 이는 3년간 시료 크기가 743두로 많이 증가되어 MAF를 기준을 충족하여 유용한 SNP로 결정되어진 SNP들이 증가된 것으로 기인됨.

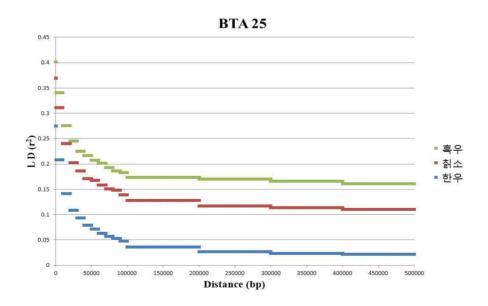

2. 한우, 흑우 및 칡소에서 유용한 SNP들간의 연관불균형(LD) 분석


- 가. 한우에서 유용한 SNP들간의 연관불균형 분석
- 각 염색체별로 유용한 SNP들을 선별한 후 주어진 염색체에 위치하는 모든 SNP pair 들간 연관불균형(linkage disequilbrium, LD) 정도를 조사하였음. 조사대상 SNP pair는 조사대상의 두 SNP 거리가 최대 10Mb (1x10⁷bp)이내인 것들에 대하여 조사하였고 LD 측정치는 r² 값을 사용하였는데 다음과 같은 공식을 이용하여 GOLD 프로그램을 구동하였음
- 여기서 p_i 는 첫 번째 마커 대립인자 *i* (예: 1st SNP allele '1')의 빈도를 말하며 qj는 두 번째 마커 대립인자 *j*의 (예: 2nd SNP allele '1') 빈도를 가리킴. 따라서 마커 한 쌍당 총 4개의 haplotype이 (11, 12, 21, 22) 존재하며. hij는 두 마커에 있는 *ij* hapltoype의 빈도를 나타냄.
- 각 염색체별로 두 마커간의 거리를 0~1kbp, 1~10kbp, 10~20kbp, 20~30kbp, 30~40kbp, 40~50kbp, 50~60kbp, 60~70kbp, 70~80kbp, 80~90kbp, 90~100kbp, 100~200kbp, 200~300kbp, ~~, 900~1,000kbp (1Mb), 1Mb~2Mb, ~~, 9Mb~10Mb로 구분하였음
- 모든 상동염색체(29개)에 위치하는 유용한 SNP들간의 r²값을 계산하였고 한 염색체 (BTA)19번과 전체 모든 상동염색체(29개)의 평균을 SNP pair 간격별 평균 r² 값은 다음 표와 그림에 도식되어 있음
- 1 kbp 이내의 거리에 있는 두 SNP들의 경우 평균 r² 값은 0.317였으며 10kbp이내인 경우 0.242였음. 그 이후로 두 마커간의 거리가 점점 멀어짐에 따라서 연관불균형(LD) 정도는 점점 낮아 지는 경향을 보였으며 50kbp 이상인 경우 0.1이하로 나타 났음
- 이러한 결과는 유의적인 r² 값을 0.2로 설정하였을 경우, 한우집단에서 고급육, 고기능성과 관련된 유전자(QTL)를 발굴하고자 할 경우에, 이 QTL과 유의적인 연관불균형을 가지는 SNP 마커들을 발굴하기 위해서는 SNP 마커간격이 최소 10kb 이내여야 함을 제시해 줌. 분석결과, Affymetrix bovine Axiom 640k array를 사용할 경우 평균 간격이 5.45kb로 나타났으므로 마커와 형질과의 유의적인 연관성이 평균적으로 탐색되어질 걸로 기대됨
- 연관불균형 정도(r²)는 주어진 마커 간격에 대하여 염색체 마다 다소의 차이는 있었지만 전반적으로 염색체별로 평균과 표준편차(변이정도)는 큰 차이를 나타내지 않았음 (아래 표 참조)
- 연관불균형 정보는 집단의 유전적 특성(예: 유효집단 크기), 연관분석, QTL 탐색 및 형질관련 원인 유전자 발굴에 관한 기초 정보를 제공하여 줌. 한우의 경우 서양 품종(예: 앵거스, 홀스타인, 브라만 종)에 비해 LD가 높지 않음. 아래 두 LD 그림을 비교해 보면 근거리(예 <50kb)에서 한우는 값이 앵거스나 홀스타인에 비하여 낮게 나타남. 이 두 서양 품종의 경우 오랜 기간동안 지속적인 우수한 소수 종모우들의 선발로 인하여 유효집단의 크기가 감소하였고 따라서 비교적 원거리에 위치해 있는

SIMP	nair	7174		전성	동염색치	네			ВТ	A(염색:	체)19	
	pair	स्य ।	SNP pai		가중평균		준편차	SNP	pair 수			표준편치
C	0~1kb	p	71,	754	0.317	V	0.327		1,166		41	0.335
1	~10kb	р	558,	521	0.242	2	0.284		8,979	0.2	238	0.292
10	0~20k	bp	585,	836	0.175	5	0.231		9,305	0.1	62	0.232
20	0~30k	bp	580,	128	0.140)	0.199		9,329	0.1	28	0.196
30	0~40k	bp	569,	356	0.118	3	0.176		9,090	0.1	10	0.180
40	0~50k	bp	564,	772	0.102	2	0.159		8,885	0.0	92	0.158
50	0~60k	bp	559,	990	0.090)	0.144		8,967	0.0	79	0.142
60	0~70k	bp	555,	661	0.080)	0.133		8,661	0.0	70	0.132
70	0~80k	bp	553,	463	0.072	2	0.122		8,528	0.0	65	0.125
80	0~90k	bp	550,	191	0.066	5	0.114		8,805	_	062	0.125
90	~100k	bp	551,	181	0.061	Ĺ	0.107		8,529	0.0	58	0.122
100	0~200	kbp	5,416,	817	0.043	3	0.082		84,008	0.0	142	0.096
	300kb	pp	5,339,	101	0.028	3	0.057		84,773	0.0	129	0.078
~	400kb	pp	5,280,	967	0.022	2	0.046		83,746	0.0	123	0.068
~~	500kb	pp	5,243,	840	0.019	•	0.040		82,025	0.0	21	0.068
~	600kb	р	5,213,		0.017		0.037		82,361	0.0	19	0.062
	700kb		5,176,	888	0.016		0.035		81,896	0.0	18	0.059
	800kb		5,149,		0.015	9	0.033		81,457	-	17	0.057
	900kb		5,137,		0.015		0.033		80,317		16	0.054
	00kbp(5,113,	12.5	0.015		0.032		79,652		16	0.056
	~2Mb		50,322,		0.014		0.030		73,700		15	0.056
	~3Mb		49,095,		0.012	2	0.028	- 100	29,827	-	14	0.057
	~4Mb		48,285,		0.012		0.026		99,621		13	0.057
	~5Mb		47,449,		0.011		0.025	100	79,401	1	12	0.055
	~6Mb		46,677,		0.010		0.024		61,053		12	0.059
	~7Mb		45,867,	397	0.010		0.024	6	42,596	1	12	0.057
	~8Mb		45,067,		0.009		0.023		34,066		11	0.057
	~9Mb		44,357,		0.009		0.023		511,521	1	11	0.059
	~10M	D	43,584,	273	0.009	,	0.022	6	03,806	0.0	10	0.055
r ² 값												
	두 SNP	마커 간격										
염색체	0~1kbp	立ろ冠ましの。	1kb) 1 10kb	40 2011	I a service a service at							
	Section of the section of	표군건시(0~	IKU) I~IUKU	0 10~20KDP	20~30kbp	30~40kbp	40~50kbp	50~60kbp	60~70kbp	70~80kbp	80~90kbp	90~100kb
BTA1	# (decaptawate)	STATE OF THE PARTY	EL COMPANDO CHOCA PARTICIO	ACTUAL CONTRACTOR	COMPANIES CONTRACTOR	TO COLUMN COMP	Secretary and secretary	Activities and a second	60~70kbp		A CONTRACTOR OF THE PARTY OF TH	THE RESERVE OF THE PERSON NAMED IN
BTA1	0.326	0.333	0.258	0.193	0.156	0.131	0.115	0.100	0.090	0.080	0.075	0.069
BTA1 BTA2	0.326 0.324	0.333 0.332	0.258 0.257	0.193 0.192	0.156 0.155	0.131 0.132	0.115 0.117	0.100 0.102	0.090 0.092	0.080 0.084	0.075 0.079	0.069 0.071
BTA1 BTA2 BTA3	0.326 0.324 0.311	0.333 0.332 0.327	0.258 0.257 0.234	0.193 0.192 0.172	0.156 0.155 0.137	0.131 0.132 0.116	0.115 0.117 0.101	0.100 0.102 0.089	0.090 0.092 0.079	0.080 0.084 0.071	0.075 0.079 0.066	0.069 0.071 0.059
BTA1 BTA2 BTA3 BTA4	0.326 0.324 0.311 0.316	0.333 0.332 0.327 0.327	0.258 0.257 0.234 0.237	0.193 0.192 0.172 0.177	0.156 0.155 0.137 0.141	0.131 0.132 0.116 0.118	0.115 0.117 0.101 0.101	0.100 0.102 0.089 0.091	0.090 0.092 0.079 0.080	0.080 0.084 0.071 0.073	0.075 0.079 0.066 0.065	0.069 0.071 0.059 0.061
BTA1 BTA2 BTA3 BTA4 BTA5	0.326 0.324 0.311 0.316 0.326	0.333 0.332 0.327 0.327 0.333	0.258 0.257 0.234 0.237 0.242	0.193 0.192 0.172 0.177 0.179	0.156 0.155 0.137 0.141 0.144	0.131 0.132 0.116 0.118 0.123	0.115 0.117 0.101 0.101 0.106	0.100 0.102 0.089 0.091 0.094	0.090 0.092 0.079 0.080 0.084	0.080 0.084 0.071 0.073 0.080	0.075 0.079 0.066 0.065 0.071	0.069 0.071 0.059 0.061 0.066
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6	0.326 0.324 0.311 0.316 0.326 0.311	0.333 0.332 0.327 0.327 0.327 0.333	0.258 0.257 0.234 0.237 0.242 0.246	0.193 0.192 0.172 0.177 0.179 0.184	0.156 0.155 0.137 0.141 0.144 0.150	0.131 0.132 0.116 0.118 0.123 0.127	0.115 0.117 0.101 0.101 0.106 0.108	0.100 0.102 0.089 0.091 0.094 0.098	0.090 0.092 0.079 0.080 0.084 0.089	0.080 0.084 0.071 0.073 0.080 0.078	0.075 0.079 0.066 0.065 0.071 0.071	0.069 0.071 0.059 0.061 0.066 0.065
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7	0.326 0.324 0.311 0.316 0.326 0.311 0.317	0.333 0.332 0.327 0.327 0.333 0.319 0.326	0.258 0.257 0.234 0.237 0.242 0.246 0.253	0.193 0.192 0.172 0.177 0.179 0.184 0.182	0.156 0.155 0.137 0.141 0.144 0.150 0.148	0.131 0.132 0.116 0.118 0.123 0.127 0.122	0.115 0.117 0.101 0.101 0.106 0.108 0.105	0.100 0.102 0.089 0.091 0.094 0.098 0.095	0.090 0.092 0.079 0.080 0.084 0.089 0.084	0.080 0.084 0.071 0.073 0.080 0.078 0.074	0.075 0.079 0.066 0.065 0.071 0.071	0.069 0.071 0.059 0.061 0.066 0.065 0.066
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8	0.326 0.324 0.311 0.316 0.326 0.311 0.317	0.333 0.332 0.327 0.327 0.333 0.319 0.326 0.330	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.112	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088	0.080 0.084 0.071 0.073 0.080 0.078 0.074	0.075 0.079 0.066 0.065 0.071 0.071 0.070 0.073	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315	0.333 0.332 0.327 0.327 0.333 0.319 0.326 0.330 0.325	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.122	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.112 0.105	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079	0.075 0.079 0.066 0.065 0.071 0.071 0.070 0.073 0.068	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321	0.333 0.332 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.122 0.127 0.123 0.114	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.112 0.105 0.100	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.083	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075	0.075 0.079 0.066 0.065 0.071 0.071 0.070 0.073 0.068	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321	0.333 0.332 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.112 0.105 0.100 0.112	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.083 0.079	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072	0.075 0.079 0.066 0.065 0.071 0.071 0.070 0.073 0.068 0.064	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329	0.333 0.332 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.338	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.112 0.105 0.100 0.112 0.094	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.083 0.079 0.088	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13	0.326 0.324 0.311 0.316 0.326 0.317 0.326 0.315 0.321 0.329 0.294	0.333 0.332 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.154 0.134 0.151 0.130 0.137	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.105 0.100 0.112 0.094 0.101	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.083 0.079 0.088 0.075	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.065	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067 0.055 0.067
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.294 0.316 0.332	0.333 0.332 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332 0.329	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.112 0.105 0.100 0.112 0.094 0.101	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.083 0.079 0.088	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13	0.326 0.324 0.311 0.316 0.326 0.317 0.326 0.315 0.321 0.329 0.294	0.333 0.332 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.154 0.134 0.151 0.130 0.137	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.105 0.100 0.112 0.094 0.101	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.083 0.079 0.088 0.075	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.065	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067 0.055 0.067
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.294 0.316 0.332	0.333 0.332 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332 0.329	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130 0.137 0.149	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.112 0.105 0.100 0.112 0.094 0.101	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.079 0.088 0.075 0.075	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.065 0.066	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067 0.055 0.061
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.294 0.316 0.332 0.306	0.333 0.332 0.327 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332 0.329 0.329	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130 0.137	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.112 0.105 0.100 0.112 0.094 0.101 0.107 0.103	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089 0.093	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.079 0.088 0.075 0.075 0.083	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.065 0.066	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067 0.055 0.061
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA16	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.294 0.316 0.332 0.306	0.333 0.332 0.327 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332 0.329 0.322 0.341	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130 0.137 0.149 0.137	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089 0.093 0.092	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.079 0.088 0.075 0.075 0.075 0.083 0.075	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.075	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.065 0.066 0.066	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067 0.055 0.061 0.058
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA16 BTA17	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.294 0.316 0.332 0.306 0.336	0.333 0.332 0.327 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332 0.329 0.322 0.341 0.332	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234 0.252	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.154 0.134 0.151 0.130 0.137 0.149 0.137 0.139 0.152	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119 0.117	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098 0.111	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089 0.093 0.092 0.083	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.079 0.088 0.075 0.075 0.083 0.075 0.083	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.075	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.065 0.066 0.066	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067 0.055 0.061 0.058 0.062
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA15 BTA16 BTA17	0.326 0.324 0.311 0.316 0.326 0.317 0.326 0.315 0.321 0.329 0.294 0.316 0.332 0.306 0.336 0.326 0.326	0.333 0.332 0.327 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332 0.329 0.322 0.341 0.332 0.329	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234 0.252 0.234	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174 0.186 0.162	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130 0.137 0.149 0.137 0.139 0.152 0.133	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119 0.117 0.122 0.111	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098 0.111 0.094	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.093 0.092 0.083 0.096 0.081	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.079 0.088 0.075 0.075 0.083 0.075 0.083 0.076 0.088	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.066 0.076 0.076 0.076	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.065 0.066 0.066 0.066	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067 0.055 0.061 0.058 0.062 0.054
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA16 BTA17 BTA18 BTA18	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.294 0.316 0.332 0.306 0.336 0.326 0.320 0.320	0.333 0.332 0.327 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.332 0.322 0.341 0.332 0.329 0.322 0.341 0.332 0.329	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234 0.252 0.234 0.253	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174 0.186 0.162 0.162	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130 0.137 0.149 0.137 0.139 0.152 0.133 0.152	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119 0.117 0.122 0.111	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098 0.111 0.094 0.092 0.108	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.093 0.092 0.083 0.096 0.081 0.079	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.079 0.088 0.075 0.075 0.083 0.075 0.083 0.076 0.088	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.066 0.076 0.076 0.076 0.076	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.065 0.066 0.066 0.066 0.066	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067 0.055 0.061 0.058 0.062 0.054 0.065 0.058
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA16 BTA17 BTA18 BTA19 BTA10 BTA11	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.294 0.316 0.332 0.306 0.336 0.326 0.320 0.321	0.333 0.332 0.327 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332 0.329 0.322 0.341 0.332 0.329 0.325	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234 0.252 0.234 0.255 0.234 0.255 0.228	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174 0.186 0.162 0.162 0.186 0.174	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130 0.137 0.149 0.137 0.139 0.152 0.133 0.128 0.148 0.140	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119 0.117 0.122 0.111 0.110 0.124 0.116	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098 0.111 0.094 0.092 0.108	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089 0.092 0.083 0.096 0.081 0.079 0.094	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.079 0.088 0.075 0.075 0.083 0.076 0.083 0.076 0.088	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.066 0.076 0.065 0.065	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.066 0.066 0.066 0.061 0.061 0.062 0.068	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.058 0.067 0.055 0.061 0.058 0.062 0.054 0.065 0.058 0.065
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA16 BTA17 BTA18 BTA19 BTA12 BTA12 BTA12 BTA13	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.316 0.332 0.306 0.336 0.326 0.320 0.321 0.320 0.321	0.333 0.332 0.327 0.327 0.323 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332 0.329 0.322 0.341 0.332 0.329 0.325	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234 0.252 0.237 0.238 0.251 0.240 0.251	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174 0.186 0.162 0.162 0.186 0.174 0.186	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130 0.137 0.149 0.137 0.139 0.152 0.133 0.128 0.148 0.140 0.136	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119 0.117 0.122 0.111 0.110 0.124 0.116 0.109	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098 0.111 0.094 0.092 0.108	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.093 0.092 0.083 0.096 0.081 0.079 0.094	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.079 0.088 0.075 0.075 0.083 0.076 0.083 0.076 0.088 0.074 0.070 0.085 0.081	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.066 0.076 0.065 0.065 0.074 0.074 0.074	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.066 0.066 0.066 0.061 0.061 0.062 0.068	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067 0.055 0.061 0.058 0.062 0.054 0.065 0.058 0.065
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA16 BTA17 BTA18 BTA19 BTA12 BTA12 BTA13	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.316 0.332 0.306 0.326 0.320 0.321 0.320 0.320 0.321	0.333 0.332 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332 0.329 0.322 0.341 0.332 0.329 0.325	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234 0.259 0.237 0.238 0.251 0.240 0.242 0.205	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174 0.186 0.162 0.162 0.186 0.174 0.186	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130 0.137 0.149 0.137 0.139 0.152 0.133 0.128 0.148 0.140 0.136 0.108	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119 0.117 0.122 0.111 0.110 0.124 0.116 0.109 0.089	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098 0.111 0.094 0.092 0.108 0.101 0.094 0.092 0.108	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089 0.092 0.083 0.096 0.081 0.079 0.094 0.095 0.	0.090 0.092 0.079 0.080 0.084 0.089 0.084 0.088 0.079 0.088 0.075 0.075 0.083 0.076 0.088 0.076 0.088 0.074 0.070 0.085 0.081 0.075	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.066 0.076 0.065 0.065 0.074 0.074 0.068	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.066 0.066 0.066 0.061 0.061 0.062 0.068 0.066 0.066	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.058 0.067 0.058 0.061 0.058 0.062 0.054 0.058 0.058 0.065 0.058
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA16 BTA17 BTA18 BTA19 BTA20 BTA21 BTA22 BTA23 BTA24	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.316 0.332 0.306 0.326 0.320 0.320 0.321 0.320 0.321 0.321 0.321	0.333 0.332 0.327 0.327 0.333 0.319 0.326 0.330 0.325 0.329 0.328 0.322 0.341 0.332 0.329 0.322 0.341 0.332 0.329 0.325	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234 0.259 0.237 0.238 0.251 0.240 0.242 0.205 0.241	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174 0.186 0.162 0.162 0.186 0.174 0.186 0.174 0.187 0.180 0.174 0.180 0.161 0.174 0.180 0.162 0.162 0.180 0.174 0.171 0.140 0.172	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.154 0.151 0.130 0.137 0.149 0.137 0.139 0.152 0.133 0.128 0.148 0.140 0.136 0.137	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119 0.117 0.122 0.111 0.110 0.124 0.116 0.109 0.089 0.117	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098 0.111 0.094 0.092 0.108 0.101 0.094 0.092 0.108	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089 0.093 0.092 0.083 0.096 0.081 0.079 0.094 0.095 0.090 0.083	0.090 0.092 0.079 0.080 0.084 0.088 0.083 0.079 0.088 0.075 0.075 0.083 0.076 0.088 0.076 0.088 0.074 0.070 0.085 0.071	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.066 0.076 0.065 0.065 0.074 0.074 0.068 0.074 0.074 0.068	0.075 0.079 0.066 0.065 0.071 0.071 0.070 0.068 0.064 0.071 0.063 0.066 0.066 0.066 0.061 0.062 0.068 0.066 0.066 0.066 0.066	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.058 0.067 0.058 0.061 0.058 0.062 0.058 0.062 0.058 0.062 0.058 0.065
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA16 BTA17 BTA18 BTA19 BTA20 BTA21 BTA22 BTA23 BTA22 BTA23 BTA24 BTA25	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.316 0.332 0.306 0.326 0.320 0.320 0.321 0.320 0.321 0.320 0.321 0.320 0.321 0.320 0.321 0.320 0.321 0.320 0.321 0.320 0.320 0.321 0.320 0.00 0.0	0.333 0.332 0.327 0.327 0.323 0.319 0.326 0.330 0.325 0.329 0.328 0.322 0.341 0.332 0.329 0.322 0.329 0.322 0.329 0.322 0.323 0.323 0.328 0.324 0.302 0.323 0.323	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234 0.255 0.237 0.238 0.251 0.240 0.242 0.205 0.241 0.225	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174 0.186 0.162 0.162 0.186 0.174 0.186 0.174 0.187 0.180 0.174 0.180 0.161 0.174 0.180 0.162 0.162 0.180 0.174 0.171 0.140 0.172 0.151	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130 0.137 0.149 0.137 0.139 0.152 0.133 0.128 0.148 0.140 0.136 0.108 0.137	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119 0.117 0.122 0.111 0.110 0.124 0.116 0.109 0.089 0.117 0.096	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098 0.111 0.094 0.092 0.108 0.101 0.094 0.092 0.108	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089 0.093 0.092 0.083 0.096 0.081 0.079 0.094 0.095 0.097 0.098	0.090 0.092 0.079 0.080 0.084 0.088 0.083 0.079 0.088 0.075 0.075 0.083 0.076 0.088 0.076 0.088 0.074 0.070 0.085 0.074	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.066 0.076 0.065 0.065 0.074 0.068 0.074 0.074 0.068 0.074 0.074 0.068	0.075 0.079 0.066 0.065 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.066 0.066 0.066 0.061 0.062 0.068 0.068 0.064 0.071 0.062 0.068 0.064 0.065 0.066	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.058 0.067 0.058 0.061 0.058 0.062 0.058 0.062 0.058 0.062 0.058 0.058 0.059 0.058 0.059 0.059 0.059 0.059 0.059 0.059 0.061 0.059 0.061 0.061 0.061 0.061 0.062 0.065 0.067 0.062 0.065 0.067 0.065 0.067 0.065 0.067 0.067 0.065 0.067 0.065 0.067 0.067 0.067 0.065 0.067 0.062 0.067 0.062 0.065 0.067 0.062 0.065 0.066 0.067 0.062 0.065 0.067 0.062 0.058 0.062 0.058 0.062 0.058 0.062 0.058 0.062 0.058 0.065
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA16 BTA17 BTA18 BTA19 BTA18 BTA19 BTA20 BTA21 BTA22 BTA23 BTA22 BTA23 BTA24 BTA25 BTA26	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.316 0.320 0.336 0.326 0.320 0.320 0.321 0.320 0.321 0.320 0.321 0.323 0.321 0.323 0.321 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.324 0.325	0.333 0.332 0.327 0.327 0.323 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332 0.329 0.322 0.341 0.332 0.329 0.325 0.329 0.322 0.329 0.322 0.341 0.332 0.329 0.325 0.329 0.325 0.329 0.326 0.333	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234 0.259 0.237 0.238 0.251 0.240 0.242 0.205 0.241 0.225 0.257	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174 0.186 0.162 0.162 0.186 0.174 0.186 0.174 0.181 0.180 0.174 0.181 0.180 0.174 0.181 0.181 0.181	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.154 0.142 0.134 0.151 0.130 0.137 0.149 0.137 0.139 0.152 0.133 0.128 0.148 0.140 0.136 0.108 0.137 0.108	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119 0.117 0.122 0.111 0.110 0.124 0.116 0.109 0.089 0.117 0.096 0.118	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098 0.111 0.094 0.092 0.108 0.101 0.094 0.092 0.108 0.101 0.094 0.092 0.108 0.101 0.094 0.092 0.108	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089 0.093 0.092 0.083 0.096 0.081 0.079 0.094 0.095 0.070 0.086 0.071 0.087	0.090 0.092 0.079 0.080 0.084 0.088 0.083 0.079 0.088 0.075 0.075 0.083 0.076 0.088 0.076 0.088 0.074 0.070 0.085 0.074 0.075 0.085 0.075	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.066 0.076 0.065 0.074 0.068 0.074 0.074 0.068 0.074 0.074 0.068	0.075 0.079 0.066 0.065 0.071 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.066 0.066 0.066 0.066 0.061 0.062 0.068 0.066 0.066 0.064 0.052 0.063 0.051 0.064	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067 0.055 0.061 0.058 0.062 0.058 0.062 0.058 0.062 0.058 0.062 0.058 0.065 0.058 0.063 0.062 0.057 0.048 0.057
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA16 BTA17 BTA18 BTA19 BTA20 BTA21 BTA22 BTA23 BTA22 BTA23 BTA22 BTA23 BTA24 BTA25 BTA26 BTA27	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.316 0.332 0.306 0.326 0.320 0.326 0.320 0.321 0.320 0.321 0.323 0.321 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.332 0.332	0.333 0.332 0.327 0.327 0.323 0.319 0.326 0.330 0.325 0.329 0.328 0.322 0.341 0.332 0.329 0.322 0.341 0.332 0.329 0.325 0.329 0.323 0.326 0.333	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234 0.259 0.237 0.238 0.251 0.240 0.242 0.205 0.241 0.225 0.257 0.247	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174 0.186 0.162 0.162 0.186 0.174 0.187 0.180 0.171 0.140 0.172 0.151 0.183 0.168	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130 0.137 0.149 0.137 0.139 0.152 0.133 0.128 0.148 0.140 0.136 0.108 0.137 0.108	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119 0.117 0.122 0.111 0.110 0.124 0.116 0.109 0.089 0.117 0.096 0.118 0.108	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098 0.111 0.094 0.092 0.108 0.101 0.094 0.092 0.108 0.101 0.094 0.092 0.108	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089 0.093 0.092 0.083 0.096 0.081 0.079 0.094 0.092 0.085 0.070 0.086 0.071 0.087	0.090 0.092 0.079 0.080 0.084 0.088 0.083 0.079 0.088 0.075 0.075 0.083 0.076 0.088 0.076 0.088 0.074 0.070 0.085 0.071 0.075 0.085 0.071 0.070 0.085	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.066 0.076 0.065 0.074 0.068 0.074 0.074 0.068 0.074 0.074 0.068 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.075 0.076 0.075 0.076 0.075 0.076 0.075 0.076 0.075 0.076 0.075 0.076 0.068 0.	0.075 0.079 0.066 0.065 0.071 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.066 0.066 0.066 0.061 0.062 0.068 0.066	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067 0.055 0.061 0.058 0.062 0.054 0.065 0.058 0.062 0.058 0.062 0.058 0.058 0.063 0.062 0.057 0.048 0.057 0.045 0.057
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA16 BTA17 BTA18 BTA19 BTA20 BTA21 BTA22 BTA23 BTA22 BTA23 BTA22 BTA23 BTA24 BTA25 BTA25 BTA26 BTA27 BTA28	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.316 0.332 0.306 0.326 0.320 0.326 0.320 0.321 0.320 0.321 0.322 0.323 0.326 0.323 0.326 0.326 0.326 0.326 0.326 0.326 0.336 0.327 0.327	0.333 0.332 0.327 0.327 0.323 0.319 0.326 0.330 0.325 0.329 0.338 0.314 0.332 0.329 0.322 0.341 0.332 0.329 0.325 0.329 0.323 0.326 0.333	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234 0.259 0.237 0.238 0.251 0.240 0.242 0.205 0.241 0.225 0.225 0.2247 0.225	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174 0.186 0.162 0.162 0.186 0.174 0.171 0.140 0.172 0.151 0.183 0.168 0.157	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130 0.137 0.149 0.137 0.139 0.152 0.133 0.128 0.148 0.140 0.136 0.108 0.137 0.115 0.143 0.129 0.128	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119 0.117 0.122 0.111 0.110 0.124 0.116 0.109 0.089 0.117 0.096 0.118 0.108 0.107	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098 0.111 0.094 0.092 0.108 0.101 0.096 0.080 0.099 0.080 0.102 0.090 0.090	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089 0.093 0.092 0.083 0.096 0.081 0.079 0.094 0.092 0.085 0.070 0.086 0.071 0.087 0.079 0.080	0.090 0.092 0.079 0.080 0.084 0.088 0.083 0.079 0.088 0.075 0.075 0.083 0.076 0.083 0.076 0.088 0.074 0.070 0.085 0.071 0.062 0.078 0.063	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.066 0.076 0.065 0.065 0.074 0.074 0.068 0.074 0.074 0.068 0.074 0.074 0.074 0.068 0.074 0.074 0.075 0.076 0.076 0.076 0.075 0.074 0.074 0.074 0.074 0.074 0.075 0.075 0.076 0.076 0.076 0.077 0.076 0.	0.075 0.079 0.066 0.065 0.071 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.065 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.065 0.066 0.066 0.065 0.066	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.058 0.067 0.055 0.061 0.058 0.062 0.058 0.062 0.058 0.062 0.058 0.062 0.058 0.062 0.058 0.058 0.063 0.062 0.057 0.048 0.057 0.045 0.057 0.051 0.054
BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 BTA14 BTA15 BTA16 BTA17 BTA18 BTA19 BTA18 BTA19 BTA20 BTA21 BTA22 BTA23 BTA22 BTA23 BTA24 BTA25 BTA26 BTA27	0.326 0.324 0.311 0.316 0.326 0.311 0.317 0.326 0.315 0.321 0.329 0.316 0.332 0.306 0.326 0.320 0.326 0.320 0.321 0.320 0.321 0.323 0.321 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.332 0.332	0.333 0.332 0.327 0.327 0.323 0.319 0.326 0.330 0.325 0.329 0.328 0.322 0.341 0.332 0.329 0.322 0.341 0.332 0.329 0.325 0.329 0.323 0.326 0.333	0.258 0.257 0.234 0.237 0.242 0.246 0.253 0.249 0.239 0.241 0.255 0.228 0.243 0.252 0.234 0.259 0.237 0.238 0.251 0.240 0.242 0.205 0.241 0.225 0.257 0.247	0.193 0.192 0.172 0.177 0.179 0.184 0.182 0.188 0.178 0.173 0.186 0.165 0.174 0.188 0.169 0.174 0.186 0.162 0.162 0.186 0.174 0.187 0.180 0.171 0.140 0.172 0.151 0.183 0.168	0.156 0.155 0.137 0.141 0.144 0.150 0.148 0.154 0.142 0.134 0.151 0.130 0.137 0.149 0.137 0.139 0.152 0.133 0.128 0.148 0.140 0.136 0.108 0.137 0.108	0.131 0.132 0.116 0.118 0.123 0.127 0.122 0.127 0.123 0.114 0.129 0.110 0.115 0.122 0.119 0.117 0.122 0.111 0.110 0.124 0.116 0.109 0.089 0.117 0.096 0.118 0.108	0.115 0.117 0.101 0.101 0.106 0.108 0.105 0.105 0.100 0.112 0.094 0.101 0.107 0.103 0.098 0.111 0.094 0.092 0.108 0.101 0.094 0.092 0.108 0.101 0.094 0.092 0.108	0.100 0.102 0.089 0.091 0.094 0.098 0.095 0.100 0.091 0.088 0.099 0.084 0.089 0.093 0.092 0.083 0.096 0.081 0.079 0.094 0.092 0.085 0.070 0.086 0.071 0.087	0.090 0.092 0.079 0.080 0.084 0.088 0.083 0.079 0.088 0.075 0.075 0.083 0.076 0.088 0.076 0.088 0.074 0.070 0.085 0.071 0.075 0.085 0.071 0.070 0.085	0.080 0.084 0.071 0.073 0.080 0.078 0.074 0.079 0.075 0.072 0.079 0.066 0.071 0.073 0.075 0.066 0.076 0.065 0.074 0.068 0.074 0.074 0.068 0.074 0.074 0.068 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.075 0.076 0.075 0.075 0.076 0.077 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.077 0.076 0.068 0.	0.075 0.079 0.066 0.065 0.071 0.071 0.070 0.073 0.068 0.064 0.071 0.063 0.066 0.066 0.066 0.061 0.062 0.068 0.066	0.069 0.071 0.059 0.061 0.066 0.065 0.066 0.067 0.062 0.058 0.067 0.055 0.061 0.058 0.062 0.054 0.065 0.058 0.062 0.058 0.063 0.062 0.057 0.048 0.057 0.045 0.057 0.045

SNP들간에도 연관불균형이 형성됨을 의미함. 이러한 결과는 한우에서 형질 QTL을 발굴할 경우 서

한우 R-square BTA 19



<hayes & Goddard, 2009, Nat. Rev. Genet.>

- 나. 한우, 흑우 및 칡소 품종들간의 연관불균형 비교
- 고기능성 관련 SNP를 대량 발굴을 위하여 수집된 시료, (황색) 한우 250두, 흑우 및 칡소 각각 18 두의 시료를 수집하여 DNA를 추출하여 Affymetrix bovine 640K SNP array 분석을 수행하였음.
- 한우, 흑우, 칡소 염색체(BTA) 25번에 위치하는 유용한 SNP 각각 7,515, 6,216, 5,997개 들 간의 SNP pair들에 대하여 거리 간격별 평균 r² 값은 다음 표와 그림에 도식되어 있음

	BTA25 SNPs	한우		흑우(HW)		칠소(CW)	
Bin	SNP pair간격	평균 r² 값	표준편차	평균 r² 값	표준편차	평균 r² 값	표준편치
1	0~1kbp	0.275	0.315	0.402	0.369	0.370	0.363
2	1~10kbp	0.208	0.268	0.341	0.341	0.312	0.326
3	10~20kbp	0.141	0.207	0.276	0.299	0.241	0.276
4	20~30kbp	0.109	0.170	0.246	0.276	0.202	0.240
5	30~40kbp	0.093	0.154	0.225	0.258	0.186	0.223
6	40~50kbp	0.079	0.137	0.217	0.250	0.172	0.211
7	50~60kbp	0.071	0.125	0.208	0.240	0.168	0.206
8	60~70kbp	0.064	0.121	0.202	0.234	0.158	0.195
9	70~80kbp	0.057	0.110	0.193	0.226	0.151	0.189
10	80~90kbp	0.053	0.103	0.186	0.221	0.149	0.186
11	90~100kbp	0.048	0.096	0.183	0.218	0.139	0.174
12	100~200kbp	0.036	0.081	0.174	0.207	0.128	0.158
13	~300kbp	0.027	0.070	0.170	0.202	0.118	0.146
14	~400kbp	0.023	0.064	0.166	0.196	0.114	0.139
15	~500kbp	0.022	0.062	0.161	0.191	0.110	0.134
16	~600kbp	0.022	0.064	0.160	0.191	0.109	0.132
17	~700kbp	0.021	0.063	0.159	0.190	0.110	0.133
18	~800kbp	0.020	0.061	0.159	0.190	0.110	0.133
19	~900kbp	0.020	0.062	0.155	0.186	0.107	0.130
20	~1000k(1Mb)	0.020	0.060	0.151	0.184	0.108	0.132
21	~2Mb	0.019	0.056	0.149	0.181	0.108	0.131
22	~3Mb	0.017	0.051	0.143	0.174	0.103	0.125
23	~4Mb	0.016	0.047	0.140	0.170	0.101	0.123
24	~5Mb	0.015	0.043	0.137	0.165	0.098	0.120
25	~6Mb	0.015	0.044	0.135	0.163	0.096	0.117
26	~7Mb	0.014	0.044	0.132	0.159	0.095	0.115
27	~8Mb	0.013	0.041	0.130	0.158	0.092	0.111
28	~9Mb	0.013	0.041	0.127	0.154	0.092	0.110
29	~10Mb	0.013	0.040	0.123	0.149	0.090	0.109

- 1 kbp 이내의 거리에 있는 두 SNP들의 경우 한우, 흑우, 칡소에서 평균 값이 각각 0.28, 0.40 및 0.37로 흑우집단에서 LD 정도가 가장 높았으며 그 다음 칡소 및 한우 순으로 나타남.
- 두 마커간의 거리가 점점 멀어짐에 따라서 연관불균형(LD) 정도는 점점 낮아지는 경향을 보였는데 한우의 경우 SNP 간격이 10kb인 경우 0.21로, 흑우와 칡소의 경우 각각 0.34 및 0.31로 나타났다.

- 전반적으로 한우보다는 흑우와 칡소에서 연관불균형 정도가 높게 나타났는데 이는 제한된 시료크기 (N=18), 두 품종을 복원하기 위하여 소수의 1세대 집단만을 이용하여 최근에 해당 품종을 복원하기 위하여 형성된 집단이어서 짧은 세대만이 경과되어진 젊은 집단 특성으로 기인된 것으로 보임.
- 따라서 흑우와 칡소 집단의 경우 한우집단 보다 높은 연관불균형을 보이기 때문에 성장, 번식 및 고급육과 관련된 QTL 부위를 발굴하는데 있어서 한우보다 더 적은 수의 SNP를 활용하여도 탐색율이 높을 것으로 기대 됨. 하지만 제한된 시료크기로 인하여 결과의 신뢰도가 높지 않으므로 추가적인 시료확보 및 분석의 필요성
- 한우집단의 경우, 흑우와 칡소보다 연관불균형이 낮기 때문에 고급육과 관련된 원인유전자를 발굴하기 위해서는 보다 많은 시료크기(sample size)뿐만 아니라 원인유전자와 연관불균형을 이루는 SNP(QTL)을 탐색하기 위해서는 고밀도 지도가 필요함. 하지만 앞선 결과에서 보였듯이 r²값이 유의적인 0.2이상인 SNP 평균 간격이 10kbp이내이며, 본 연구에 활용된 Affymetrix bovine 640K array에 있는 한우 유용 SNP들의 평균 간격은 7kbp이므로 적절한 시료크기가 주어질 경우 형질과 연관된 QTL(SNP)를 탐색할 확률이 높을 것으로 기대됨.

3. 한우, 흑우 및 칡소 미토콘드리아(mtDNA) 분석 및 품종 특이 SNP 대량 발굴

- 흑우 및 칡소가 품종으로 정립되기 위해서는 각 품종마다 품종 고유한 유전적 특성을 가지고 있다는 과학적 증거를 제시해야 함. 따라서 본 연구에서는 한우, 흑우 및 칡소종에 대하여 미토콘드리아 DNA(mtDNA) 서열의 비교분석 및 Affymetrix사 bovine 640K SNP 유전자형 분석을 통한 각 품종들의 특성을 조사하였음.
- 가. 미토콘드리아 DNA 서열 비교분석을 통한 한우, 칡소, 흑우 종의 집단유전학적 특성
- 제주흑우(JEB, 19두), 한반도본토에 있는 흑우(KB, 18두), 쵥소(BRI, 19) 총 56두 시료를 수집하여 mtDNA 910bp에 해당하는 영역을 서열 해독하였고, CLUSTALW를 이용하여 상동성 분석을 수행하였음. 전형적인 황색 한우(BRO)의 경우, 27두에 해당하는 mtDNA 서열은 GenBank에서 수집하였음 (Accession No. AF499238-AF499264). 집단간의 유전적 다양성 또는 분화 정도를 추정하기 위하여 Fu의 F 통계량을 이용하였고 Arlequin 프로그램을 구동하였음.
 - Haplotype분석 결과 KB가 가장 낮은 다양성을 나타내었고(h=0.368), 칡소(BRI)와 황색한우 (BRO)는 각각 0.94 및 0.97로 높은 다양성을 나타내었음. (아래 표2 참조)

Table 2. mtDNA genetic diversity and pairwise F_{st} estimated values for Korean cattle populations

Population <i>₽</i>	$\mathbf{n}\varphi$	Variable sites₽	$\mathbf{P}_{4^{2}}$	S₽	#h₽ ₽	h_{ϕ}	π +	KB₽	JEB₽	BRI₽	BRO ₀
KB ₽	18₽	5₽	2€	3₽	30 0	0.368±0.125₽	0.001	-φ φ		P	ė
JEB ₽	19+	15₽	14₽	1+2	70 p	0.871±0.030₽	0.005	0.151****	-ψ	P	₽ ³
BRI ₽	19+3	19₽	16₽	3₽	12₽ ₽	0.940±0.029	0.005	0.162****	0.005 ^{ns+3}	-47	43
BRO₽	27₽	33₽	13₽	20₽	21€ €	0.971±0.019¢	0.005₽	0.121****	0.069****	0.014ns+3	-47

n = Number of samples; P = Parsimony informative sites; S = Singleton variable sites; #h = Number of haplotypes.

h = haplotype diversity; $\pi = \text{Nucleotide diversity}$; the level of significance depicted as * donates significance at * p<0.001.

Donates not significant at p>0.05.₽

(Dadi 등, 2012, Asian-Aust. J. Anim. Sci.)

- F_{ST} 통계량을 이용하여 집단간의 유전적 분화(genetic differentiation)를 품종간 비교 분석한 결과 황색한우(BRO)와 칡소(BRI)간의 F_{ST}값은 0.014로 매우 낮았으며, 칡소(BRI)와 제주훅우(JEB)간 의 F_{ST}값도 0.005로 매우 낮게 나타났음.
- 이러한 결과는 mtDNA 서열정보를 활용하여 황색한우, 흑우 및 칡소 품종 정립 또는 품종 내 개체 를 식별하는데 충분하지 않은 유전적 원천 정보를 제공하여 주며, 따라서 유전적 변이 요소가 많은 다형성 마커를 (예, SNP) 활용해야 하는 필요성을 제시하여 줌.

나. 대용량 SNP 정보를 활용하여 한우 품종 특이성 규명

- FTA로 인한 지속적인 외래 수입육의 증가로 인한 한우와 외래 상용 소 품종들과 차별할 수 있는 방법의 개발 필요성 및 한우종 특이 SNP 발굴 및 한우가 고유품종이라는 유전적 증거를 제시할 필요성이 있음.
- 농협소재 한우 시료 50두, 홀스타인 젖소 50두의 혈액을 채취하여 DNA를 분리하였고 Illumina bovine 50K SNP chip을 이용하여 유전자형을 분석하였음. 미국, 호주 등에서 수입되는 쇠고기의 주 Bos taurus종인 샤롤레, 앵거스, 시멘탈 및 리무진종에 대해서는 Decker등 (2009, PNAS)에서 보고되어진 Illumina 50K SNP 유전자형을 이용하여 분석하였음.
- SNP 빈도 변이분석은 SPSS 통계팩키지를 이용하였으며, 품종 평균, 대립인자 빈도 등을 조사하여 Chi-square 통계량을 이용하여 유의도를 조사하였음.
- Illumina bovine chip에 있는 52,678 SNP들 중에서 여섯 품종에 모두 유용한 common SNP수는 37,370으로 72%를 차지하였고 22% (11,454) SNP들은 품종 특이성, 즉 한 품종에서는 고정되어 있고 다른 나머지 품종에서는 다형성(대립인자가 두 개를 가지는 변이형태)을 보였음. 한우의 경우 다형성을 가진 SNP수가 가장 낮았고 따라서 고정된 SNP 수 가 가장 많았음. (아래 그림 참조)

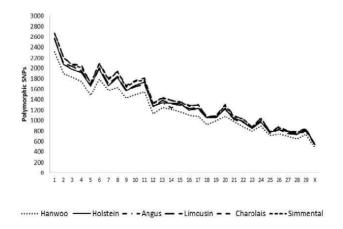


Figure 2. Polymorphic SNPs dynamics across the chromosomes of different cattle breeds, unknown chromosomes were excluded (Polymorphic, ≥0.05-≤0.95).

○ 또한 한우 품종 특이 SNP를 조사한 결과 총 530개 SNP를 발굴하였는데 각 외국 품종에 대하여 한 우 품종 특이 SNP 특성은 아래 표에 나타나 있음. 이러한 결과는 수입육과 차별화 되고 구분되어 지는 한우육의 유전적 고유 특이성을 가지고 있으며 수입 둔갑육 차단 및 한우 또는 수입육을 판단할 수 상용마커의 원천정보를 제공할 수 있음.

Table 2. The number of private SNPs found in Hanwoo compared to each breed genotyped by the Boyine SNP50K assay

Breed	Number	Alleles	Alleles frequency in Hanwoo							
Breed	of SNP	Minimum	Maximum	Mean						
Angus	91	0.01	0.280	0.05						
Limousine	39	0.01	0.278	0.06						
Charolais	207	0.01	0.406	0.047						
Simmental	15	0.01	0.213	0.05						
Holstein	178	0.01	0.277	0.042						

(Dadi 등, 2012, Asian-Aust. J. Anim. Sci. 25(1):28-32)

다. 대용량 SNP 정보를 활용하여 한우, 칡소, 흑우 종의 집단유전학적 특성

- 고기능성 관련 SNP를 대량 발굴을 위하여 수집된 시료, (황색) 한우 250두와 흑우 및 칡소 각각 18두의 시료를 수집하여 DNA를 추출하여 Affymetrix bovine 640K SNP array 분석을 통하여 각 SNP들의 구조, 즉 대립인자(allele) 고정/빈도의 차이 정도를 품종별로 비교 분석하였음.
- 분석 결과, 총 647,856개 SNP들 중에서 적어도 한우-칡소, 한우-흑우, 칡소-흑우 품종간에서 주어 진 대립인자 빈도차이가 0.4이상인 SNP를 42,173개를 발굴하였고, 그 중에서 대립인자 빈도차이가 0.5이상인 SNP 개수는 각각의 품종간 비교별로 1,143개, 2,518개 및 16,155개로 나타났음.
- 이러한 결과는 흑우와 칡소는 한우와 확연히 다른 유전적 구조 특성을 가지고 있음을 나타내주고 있으며 품종으로 유전적 고유 특성을 가진 SNP를 선별하여 활용할 경우, 흑우 및 칡소 품종 정립에 유용한 유전정보를 제공해 줄 것임. 또한 한우와 차별화 할 수 있는 흑우 및 칡소의 외형(색상, 형태) 및 경제 형질(예: 육질)에 관련된 유전적 원천정보를 제공하여 줌.

2							대립인자빈	도(Allele F		CHS	립인자빈도	나이
3	num	SNP_ID	BTA	위치(bp)	SNP	Allele	취소	흑우	한우	한우-칡소	한우-흑우	취소-흑의
4	28326	AX-21315504	17	35,671,098	A/G	A	0.056	0.222	0.996	0.940	0.774	0.167
5	12505	AX-26892321	7	28,223,951	/T/C	T	0.143	0.308	1.000	0.857	0.692	0.165
6	1236	AX-18289050	1	76,489,706	A//G	A	0.000	0.318	0.728	0.728	0.410	0.318
7	19290	AX-19003790	10	96,948,470	A/G	A	0.056	0.833	0.762	0.707	0.071	0.778
8	39502	AX-24375033	27	21,137,214	T/G	T	0.194	0.722	0.899	0.705	0.177	0.528
9	39501	AX-24375029	27	21,137,008	A/C	A	0.806	0.306	0.101	0.705	0.205	0.500
10	40085	AX-24500097	28	5,168,078	A/G	A	0.088	0.944	0.783	0.695	0.162	0.856
11	23271	AX-20032146	13	46,343,571	/A/G	A	0.722	0.000	0.032	0.690	0.032	0.72
12	23884	AX-20187585	13	80,747,113	T/C	T	0.917	0.139	0.228	0.689	0.089	0.77
13	295	AX-18060829	1	15,796,401	A/G	A	0.167	0.528	0.851	0.684	0.323	0.36
14	894	AX-18203703	1	55,180,234	A/C	A	0.861	0.417	0.179	0.682	0.238	0.444
15	8285	AX-25747724	4	96,827,065	T/G	T	0.167	0.850	0.848	0.682	0.002	0.68
16	13638	AX-27136986	7	89,759,474	/A/G	A	0.917	0.000	0.238	0.679	0.238	0.91
17	14515	AX-27272516	8	11,111,857	A/G	A	0.125	0.533	0.798	0.673	0.265	0.40
18	34392	AX-23262572	22	32,020,919	A/G	A	0.833	0.063	0.161	0.673	0.098	0.77
19	5317	AX-25048882	3	41,026,901	T/G	T	0.806	0.167	0.134	0.672	0.033	0.63
20	16304	AX-27708338	9	10,425,327	T/G	T	0.861	0.639	0.191	0.670	0.448	0.22
21	34302	AX-23246683	22	28,309,103	A/G	A	0.861	0.111	0.195	0.666	0.084	0.75
22	14856	AX-27350081	8	31,248,813	C/G	C	0.194	0.917	0.859	0.664	0.058	0.72
23	15713	AX-27582760	8	91,273,110	/C/G	C	0.306	1.000	0.970	0.664	0.030	0.69
24	1347	AX-18310962	1	81,908,736	A/G	A	0.265	0.750	0.929	0.664	0.179	0.48
25	13221	AX-27087114	7	76,615,793	T/C	T	0.813	0.344	0.149	0.663	0.195	0.46
26	5949	AX-25156114	3	70,416,123	/T/C	T	0.222	1.000	0.885	0.662	0.115	0.77
27	296	AX-18060831	1	15,796,955	T/G	T	0.824	0.500	0.166	0.658	0.334	0.32
28	40175	AX-24512026	28	7,940,185	T/G	T	0.765	0.118	0.111	0.654	0.007	0.64
29	13491	AX-27122829	7	85,856,948	T/G	T	0.167	0.583	0.821	0.654	0.237	0.41
30	5948	AX-25156107	3	70,413,766	/A/G	A	0.235	1.000	0.889	0.654	0.111	0.76
31	19769	AX-19112353	11	17,976,826	/T/C	T	0.844	0.000	0.193	0.650	0.193	0.84
32	34387	AX-23262449	22	31,991,205	T/C	T	0.806	0.028	0.156	0.650	0.128	0.77
33	13207	AX-27086319	7	76,369,621	T/C	T	0.235	0.722	0.882	0.647	0.160	0.48
34	23023	AX-19966562	13	31,501,763	A/G	A	0.853	0.735	0.206	0.646	0.529	0.11
35	14860	AX-27350180	8	31,275,578	T/C	T	0.861	0.194	0.216	0.645	0.021	0.66
36	23103	AX-19984954	13	35,887,793	A/C	A	0.778	0.028	0.134	0.644	0.106	0.75
37	404	AX-18095090	1	24,941,622	A/G	A	0.167	0.944	0.809	0.642	0.136	0.77
38	13658	AX-27141137	7	90,804,586	A/C	A	0.944	0.500	0.302	0.642	0.198	0.44
39	23878	AX-20187285	1.3	80,689,687	T/C	т	0.861	0.111	0.220	0.642	0.108	0.75
40	40176	AX-24512034	28	7,940,937	T/C	T	0.250	0.889	0.891	0.641	0.002	0.63
41	19771	AX-19112382	11	17,982,440	/T/C	T	0.167	1.000	0.805	0.639	0.195	0.83
42	14513	AX-27272469	8	11.094.103	A/C	A	0.139	0.500	0,777	0.638	0.277	0.363

4. 대용량 SNP chip을 이용한 고급육·고기능성 QTL(SNP) 발굴 위한 전장연관분석

- 가. 시료 수집 및 형질 기초 통계량 조사
- 시료는 2011년 11월부터 2014년 5월 기간동안 농협 축산연구원(안성)에서 도축되어진 한우 거세 우들 중에서 개체 743두를 확보하여 육질 등급별로 다양한 한우 등심육을 수집하였음 (자세한 내용 은 제 1협동과제 내용 참조)
- 해당 개체의 등심육으로부터 고급육과 관련된 형질들 즉 도체중(weight), 등지방두께(BFT), 육질등 급(Qgrade), 육량지수, 등심단면적(EMA), 근내지방도(Marb)과 고품질·고기능성 특성과 관련된 성분 65개 형질들을 1협동과제에서 분석하여 표현형 값을 수집하였음.
- 형질별로 수집된 자료들의 기초 통계량은 연구 년차별로 다음 표에 도식되어 있음.

도축년월	두수	도축월령	1 년차	2년차	3년차	합계
1년차						
201111	82	도축두수	250	250	243	743
201112	122	평균	31.3	32.5	32.0	31.9
201201	32	표준편차	3.3	3.4	4.0	3.6
201202	14	최소값	22.3	20.0	23.1	20.0
2년차		최소값	43.9	44.8	71.5	71.5
201303	138	변이계수%	10.6	10.6	12.5	11.2
201304	88					
201305	24	도축일령	1 년차	2년차	3년차	합계
3년차						
201402	10	도축두수	250	250	243	743
201403	150	평균	938	976	959	958
201404	39	표준편차	100	103	120	108
201405	37	최소값	670	601	694	601
201406	7	최대값	1317	1343	2145	2145
합계	743	변이계수%	11	11	13	11

1,2,3,년차		\$201			
육량/육질	1++	1+	1	2	합계(%)
Α	8	33	70	59	170 (23)
В	44	73	133	54	304 (41)
C	38	77	106	48	269 (36)
합계 (%)	90 (12)	183 (<mark>25</mark>)	309 (42)	161 (22)	743(100)

No	Trait name	연구년차	N	Mean	stdev	Min	Max	변이계수
T1	Qgrade(1++,1+,1,2 => 1,2,3,4)	1	250	2.68	0.92	1.00	4.00	0.34
		2	250	2.72	1.03	1.00	4.00	0.38
		3	243	3.12	1.23	1.00	5.00	0.40
		1,2,3	743	2.83	1.08	1.00	5.00	0.38
T3	도체중 (kg)	1	250	401.28	52.07	213.00	484.00	0.13
		2	250	421.40	48.16	276.00	562.00	0.11
		3	243	421.87	52.66	220.00	546.00	0.12
		1,2,3	743	414.79	51.82	213.00	562.00	0.12
T4	육량지수 (0~100)	1	250	2.02	0.77	1.00	3.00	0.38
		2	250	2.15	0.74	1.00	3.00	0.35
		3	243	2.23	0.75	1.00	3.00	0.33
		1,2,3	743	64.42	3.90	47.07	73.27	0.06
T5	배장근단면적 (cm²)	1	250	89.00	9.55	58.00	114.00	0.11
		2	250	88.85	10.16	53.00	132.00	0.11
		3	243	86.31	10.32	62.00	114.00	0.12
		1,2,3	743	88.07	10.07	53.00	132.00	0.11
T6	등지방두께 (mm)	1	250	13.44	5.51	3.00	31.00	0.41
		2	250	13.70	5.39	2.00	36.00	0.39
		3	243	13.57	5.28	3.00	42.00	0.39
		1,2,3	743	13.57	5.39	2.00	42.00	0.40
T7	Marb (1~9)	1	250	5.02	1.84	2.00	9.00	0.37
		2	250	4.97	1.99	2.00	9.00	0.40
		3	243	4.87	1.70	2.00	9.00	0.35
		1,2,3	743	4.96	1.85	2.00	9.00	0.37

일반성분								
No	Trait name	연구년차	N	Mean	stdev	Min	Max	변이계수
T8	수분 (%)	1	250	64.00	4.96	51.62	78.67	0.08
		2	250	61.52	4.43	45.51	71.33	0.07
		3	243	50.80	6.99	22.28	65.89	0.14
		1,2,3	743	58.85	7.96	22.28	78.67	0.14
T9	단백질 (%)	1	250	19.36	1.81	13.64	25.32	0.09
		2	250	19.91	1.81	15.04	29.03	0.09
		3	243	16.63	2.93	6.67	25.14	0.18
		1,2,3	743	18.65	2.65	6.67	29.03	0.14
T10	지방 (%)	1	250	15.04	4.99	6.19	25.94	0.33
		2	250	17.21	5.49	5.59	32.45	0.32
		3	243	32.20	9.54	11.51	63.95	0.30
		1,2,3	743	21.38	10.29	5.59	63.95	0.48
T11	회분 (%)	1	250	1.07	0.23	0.55	2.67	0.22
		2	250	1.12	0.37	0.00	5.65	0.33
		3	243	1.05	0.38	0.45	2.67	0.36
		1,2,3	743	1,08	0.33	0.00	5.65	0.31
T12	Cholesterol (mg/100g)	1	250	60.83	5.80	47.38	91.06	0.10
		2	250	58.84	6.32	46.28	76.66	0.11
		3	243	54.03	10.17	30.88	83.71	0.19
		1,2,3	743	57.94	8.15	30.88	91.06	0.14

욱색								
No	Trait name	연구년차	N	Mean	stdev	Min	Max	변이계수
T13	pH	1	250	5.67	0.29	5.07	6.44	0.05
		2	250	5.85	0.08	5.65	6.01	0.01
		3	243	5.54	0.07	5.39	5.87	0.01
		1,2,3	743	5.69	0.22	5.07	6.44	0.04
T14	L*	1	250	39.19	2.91	33.25	49.45	0.07
		2	250	39.10	3.35	28.47	48.13	0.09
		3	243	38.86	3.46	27.90	48.93	0.09
		1,2,3	743	39.05	3.25	27.90	49.45	0.08
T15	a*	1	250	21.66	2.02	15.64	28.25	0.09
		2	250	18.89	2.76	11.63	25.69	0.15
		3	243	18.18	2.60	11.58	25.62	0.14
		1,2,3	743	19.59	2.90	11.58	28.25	0.15
T16	b*	1	250	13.24	1.60	9.43	17.59	0.12
		2	250	9.19	1.53	4.80	13.08	0.17
		3	243	7.99	1.52	2.32	11.82	0.19
		1,2,3	743	10.16	2.73	2.32	17.59	0.27

육품질								
No	Trait name	연구년차	N	Mean	stdev	Min	Max	변이계수
T17	WHC (%)	1.	250	70.42	4.67	55.91	81.99	0.07
		2	250	20.26	3.99	8.40	28.60	0.20
		3	243	15.83	5.48	4.40	29.00	0.35
		1,2,3	743	35.69	25.26	4.40	81.99	0.71
T18	Drip loss (%)	1	250	18.48	2.49	11.80	24.70	0.13
		2	250	12.48	3.06	6.82	28.08	0.25
		3	243	19.27	4.52	9.77	31.38	0.23
		1,2,3	743	16.72	4.60	6.82	31.38	0.28
T19	Heating loss (%)	1	250	21.43	3.03	12.43	30.50	0.14
		2	250	15.51	2.71	9.23	27.56	0.17
		3	243	14.34	3.44	3.96	27.28	0.24
		1,2,3	743	17.12	4.37	3.96	30.50	0.26
T20	Shearing force (kg)	1	250	26.27	7.71	9.90	54.43	0.29
		2	250	87.45	18.30	47.75	136.53	0.21
		3	243	61.43	31.18	18.69	180.62	0.51
		1,2,3	743	58.35	32.94	9.90	180.62	0.56

관능평가								
No	Trait name	연구년차	N	Mean	stdev	Min	Max	변이계수
T21	color	1	250	5.20	0.88	1.67	7.33	0.17
		2	250	5.30	1.09	2.75	8.00	0.21
		3	243	5.33	0.72	3.50	8.00	0.14
		1,2,3	743	5.28	0.91	1.67	8.00	0.17
T22	flavor	1	249	4.97	1.21	1.00	7.67	0.24
		2	250	5.25	1.34	1.50	8.25	0.26
		3	243	5.35	0.82	3.25	8.00	0.15
		1,2,3	742	5.19	1.15	1.00	8.25	0.22
T23	tenderness	1	250	4.99	1.39	1.00	8.67	0.28
		2	250	5.28	1.43	0.00	8.75	0.27
		3	243	5.41	1.03	0.00	8.00	0.19
		1,2,3	743	5.23	1.31	0.00	8.75	0.25
T24	juiciness	1	250	5.11	1.33	1.67	0.00 8.75 1.67 8.67	0.26
		2	250	5.28	1.43	0.00	8.50	0.27
		3	243	5.46	0.90	3.00	8.00	0.16
		1,2,3	743	5.28	1.25	0.00	8.67	0.24
T25	preference	1	250	4.95	1.34	1.00	8.33	0.27
		2	250	5.21	1.48	1.50	8.50	0.28
		3	243	5.43	0.95	3.00	8.00	0.18
		1,2,3	743	5.20	1.29	1.00	8.50	0.25

No	Trait name	연구년차	N	Mean	stdev	Min	Max	변이계수
T26	AMP	1	250	6.89	1.58	3.03	11.83	0.23
		2	233	0.15	0.04	0.06	0.29	0.30
		3	243	1.43	0.62	0.38	5.19	0.43
		1,2,3	726	2.90	3.11	0.06	11.83	1.07
T27	IMP	1	250	108.54	50.02	5.33	230.70	0.46
		2	234	126.26	21.49	63.28	188.79	0.17
		3	243	78.64	28.13	11.77	145.03	0.36
		1,2,3	727	104.25	40.65	5.33	230.70	0.39
T28	Inosine	1	250	27.16	7.74	12.41	54.63	0.29
		2	234	22.63	3.09	13.24	31.92	0.14
		3	243	30.40	7.92	4.04	50.36	0.26
		1,2,3	727	26.79	7.38	4.04	54.63	0.28
T29	Hypoxanthine	1	250	21.39	6.12	0.48	41.82	0.29
		2	234	16.14	2.61	6.72	24.60	0.16
		3	243	24.30	6.06	7.59	67.21	0.25
		1,2,3	727	20.67	6.20	0.48	67.21	0.30

No	Trait name	연구년차	N	Mean	stdev	Min	Max	변이계수
T30	Ala	1	250	47.91	15.21	14.76	100.41	0.32
		2	250	29.87	6.42	13.29	44.39	0.21
		3	243	25.78	7.67	6.95	51.15	0.30
		1,2,3	743	34.60	14.26	6.95	100.41	0.41
T31	Arg	1	250	298.19	81.72	152.37	610.51	0.27
		2	250	277.00	41.40	1.20	392.77	0.15
		3	243	223.51	60.02	59.59	403.01	0.27
		1,2,3	743	266.64	70.51	1.20	610.51	0.26
T32	Asp	1	250	2.23	1.57	0.00	9.45	0.70
		2	NA	NA	NA	NA	NA	NA
		3	242	0.10	0.55	0.00	4.35	5.56
		1,2,3	492	1.18	1.59	0.00	9.45	1.35
T33	Cys	1	250	5.82	3.63	0.74	22.74	0.62
		2	169	4.48	3.07	1.02	25.53	0.68
		3	243	7.28	4.11	0.00	19.63	0.56
		1,2,3	662	6.01	3.84	0.00	25.53	0.64
T34	Glu	1	250	12.17	7.19	2.14	43.38	0.59
		2	234	6.58	2.84	2.72	24.30	0.43
		3	243	8.48	4.41	0.00	25.25	0.52
		1,2,3	727	9.14	5.68	0.00	43.38	0.62
T35	Gly	1	250	11.61	4.57	5.14	33.22	0.39
		2	250	7.93	3.49	3.12	38.93	0.44
		3	242	6.89	1.85	2.84	16.01	0.27
		1,2,3	742	8.83	4.04	2.84	38.93	0.46

No	Trait name	연구년차	N	Mean	stdev	Min	Max	변이계수
T36	His	1	250	105.07	38.49	35.78	283.30	0.37
		2	250	34.76	8.72	9.45	66.56	0.25
		3	243	30.06	9.57	7.28	63.69	0.32
		1,2,3	743	56.88	41.66	7.28	283.30	0.73
T37	iLe	1	250	5.79	3.48	2.23	23.45	0.60
137	TEC .	2	250	4.90	1.64	0.32	10.10	0.33
		3	243	6.24	1.67	0.00	13.44	0.27
		1,2,3	743	5.64	2.49	0.00	23.45	0.44
T38	Leu	1	250	10.16	5.72	4.05	39.24	0.56
		2	250	9.28	3.32	1.71	19.55	0.36
		3 1,2,3	243 743	9.53 9.66	2.83 4.17	3.21 1.71	20.29 39.24	0.30
		1517/5	10.13.46	15.15.5	0.00			3,05
T39	Lys	1	250	12.29	5.60	1.25	40.81	0.46
		2	250	9.15	3.09	2.18	19.80	0.34
		3	243	9.81	3.48	3.65	22.56	0.35
		1,2,3	743	10.42	4.42	1.25	40.81	0.42
T40	Met	1	250	4.56	2.97	1.39	19.91	0.65
		2	250	4.26	1.40	1.25	8.80	0.33
		3	243	6.27	1.62	0.00	12.47	0.26
		1,2,3	743	5.02	2.29	0.00	19.91	0.46
430				1212/2				
T41	Phe	1	250	6.22	3.65	2.32	24.97	0.59
		2	250	6.13	2.09	1.89	13.35	0.34
		3	243	7.62	2.05	3.04	21.94	0.27
		1,2,3	743	6.65	2.79	1.89	24.97	0.42
T42	Pro	1	250	5.64	2.08	2.35	15.16	0.37
		2	249	2.37	0.65	0.00	5.01	0.28
		3	243	4.88	1.67	0.00	14.04	0.34
		1,2,3	742	4.30	2.12	0.00	15.16	0.49
T42	· ·		250	12.40	CAC	F 00	42.00	0.40
T43	Ser	2	250 247	13.49 8.14	6.46 2.40	5.88 2.97	43.09 15.83	0.48
		3	241	8.53	2.90	1.90	22.22	0.23
		1,2,3	738	10.08	4.98	1.90	43.09	0.49
T44	Thr	1	250	35.34	14.89	14.82	110.74	0.42
		2	250	60.21	16.29	25.85	209.01	0.27
		3	243	57.93	22.83	8.26	174.90	0.39
		1,2,3	743	51.10	21.46	8.26	209.01	0.42
T45	Tyr	1	250	6.76	3.44	2.24	22.64	0.51
143	Tyl	2	250	8.20	3.21	0.89	17.11	0.31
		3	243	8.76	2.57	2.49	19.54	0.39
		1,2,3	743	7.90	3.21	0.89	22.64	0.29
		1,2,3	7,10	7.50	5,21	0.03	22.01	0.11
T46	Val	1	250	8.37	4.86	3.38	36.56	0.58
		2	250	7.40	2.33	2.71	15.45	0.32
		3	243	8.08	2.54	2.79	18.21	0.31
		1,2,3	743	7.95	3.47	2.71	36.56	0.44
T.47	A		255	120.25	F 4 20	24.00	220.42	
T47	Anserine	1	250	120.35	54.39	34.88	339.43	0.45
		2	238	114.76	64.59	10.59	408.06	0.56
		1,2,3	243 731	339.46	101.79 129.38	85.62 10.59	663.91	0.30
		1,2,3	/31	191.37	129.56	10.59	663.91	0.68
T48	Carnosine	1	250	709.14	152.80	226.43	1228.02	0.22
		2	250	881.35	176.49	226.36	1592.98	0.20
		3	243	704.70	217.89	188.09	1319.46	0.31
		1,2,3	743	765.63	201.43	188.09	1592.98	0.26
T49	Creatine	1	250	1509.50	139.07	878.58	2000.28	0.09
		2	250	1674.67	190.80	1039.75	2478.26	0.11
		3	243	1451.55	219.40	962.67	2250.85	0.15
		1,2,3	743	1546.12	208.22	878.58	2478.26	0.13
		040	g 28 - 4.75 × 1		200000	80772		W1020-1
T50	Creatinine	1	250	18.76	8.03	3.97	51.05	0.43
		2	250	49.58	6.27	34.59	87.30	0.13
		3	243	18.07	7.26	1.56	42.24	0.40
	Name of the last o	1,2,3	743	28.91	16.40	1.56	87.30	0.57

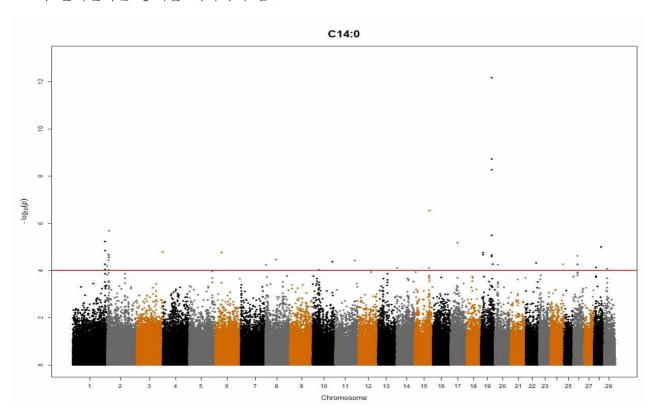
No	성 (%) Trait name	연구년차	N	Mean	stdev	Min	Max	변이계수
T51	C10_0	1	250	0.04	0.01	0.00	0.07	0.27
		2	250	0.05	0.02	0.03	0.31	0.43
		3	225	0.04	0.01	0.02	0.08	0.28
		1,2,3	725	0.04	0.02	0.00	0.31	0.37
T52	C12_0	1	250	0.08	0.03	0.02	0.22	0.3
		2	250	0.10	0.04	0.04	0.41	0.39
		3	238	0.09	0.03	0.05	0.19	0.29
		1,2,3	738	0.09	0.03	0.02	0.41	0.37
TEO	614.0		250	2.52	0.55	1.22	4.52	0.22
T53	C14_0	2	250 250	2.53 3.40	0.55	0.02	4.52 5.67	0.22
		3	243	3.38	0.58	2.12	5.17	0.1
		1,2,3	743	3.10	0.71	0.02	5.67	0.2
		2,2,0	7,1146				9,57	
T54	C14_1	1	250	0.76	0.27	0.04	1.72	0.3
		2	250	1.11	0.33	0.44	2.11	0.3
		3	243	1.06	0.32	0.37	2.23	0.3
		1,2,3	743	0.98	0.35	0.04	2.23	0.3
T55	C15_0	1	250	0.23	0.09	0.00	1.11	0.4
		2	250	0.29	0.06	0.17	0.57	0.2
		3	241	0.25	0.06	0.14	0.48	0.2
		1,2,3	741	0.25	0.08	0.00	1.11	0.3
TEC	616.0	>	255	22.02	1.00	17.00	20.12	A 2
T56	C16_0	1	250	22.93	1.96	17.63 15.68	30.13	0.0
		2	250 243	26.65 26.29	1.90 1.84	20.85	32.75 31.23	0.0
		1,2,3	743	25.28	2.54	15.68	32.75	0.1
		1,2,5	7,43	23.20	2.54	15.00	32.73	0.1
T57	C16_1	1	250	3.77	1.20	0.11	6.25	0.3
		2	250	4.49	0.82	2.15	7.45	0.1
		3	243	4.60	0.79	2.82	8.16	0.1
		1,2,3	743	4.28	1.02	0.11	8.16	0.2
T58	C17_0	1	250	0.60	0.15	0.35	1.34	0.2
		2	250	0.53	0.10	0.33	1.04	0.1
		3	243	0.55	0.13	0.17	1.27	0.2
		1,2,3	743	0.56	0.13	0.17	1.34	0.2
T59	C17_1	1	250	0.67	0.17	0.39	1.61	0.2
		2	250	0.64	0.12	0.36	1.28	0.1
		3	243	0.63	0.15	0.09	1.20	0.2
		1,2,3	743	0.64	0.15	0.09	1.61	0.2
TCO	C18 0		250	10.44	2.01	F 27	1014	0.1
T60	C18_0	1 2	250	10.44	2.01	5.27	19.14	0.1
		3	250 243	10.27 10.30	1.38 1.45	6.70 6.94	14.40 17.99	0.1
		1,2,3	743	10.34	1.64	5.27	19.14	0.1
		1,2,5	/43	10.54	1.04	3.27	19.14	0.1
T61	C18_1	1	250	43.71	3.23	30.05	51.74	0.0
101	C18_1	2	250	43.71	2.22	38.09	49.55	0.0
		3	243	44.54	2.34	37.63	50.84	0.0
		1,2,3	743	44.05	2.66	30.05	51.74	0.0
		4,2,0	, , , ,	,,,,,,,	2.00	50.05	V-111	0,0
T62	C18_1_11t	1	250	2.10	0.77	0.16	7.93	0.3
		2	250	1.65	0.28	1.04	2.68	0.1
		3	243	1.86	0.68	0.16	8.40	0.3
		1,2,3	743	1.87	0.64	0.16	8.40	0.3
T63	C18_2	1	250	2.97	1.05	0.05	7.36	0.3
		2	250	2.06	0.54	0.95	3.81	0.2
		3	242	1.89	0.46	0.77	5.00	0.2
		1,2,3	742	2.31	0.87	0.05	7.36	0.3
T64	C20_0	1	250	0.05	0.02	0.00	0.11	0.4
		2	250	0.06	0.05	0.04	0.63	0.7
		3	NA	NA	NA 0.04	NA	NA	N .
		1,2,3	500	0.06	0.04	0.00	0.63	0.6
T65	C18 3	:1	250	0.10	0.06	0.02	0.64	0.6
103	C18_3	2	250 250	0.10	0.08	0.02	0.64	0.6
		3	176	0.08	3.67	0.03	48.82	9.9
		1,2,3	676	0.16	1.87	0.02	48.82	11.5
T66	CLA_9c11t	1	250	0.34	0.15	0.00	1.82	0.4
		2	250	0.25	0.06	0.10	0.45	0.2
		3	242	0.48	3.19	0.12	49.84	6.6
		1,2,3	742	0.35	1.82	0.00	49.84	5.1

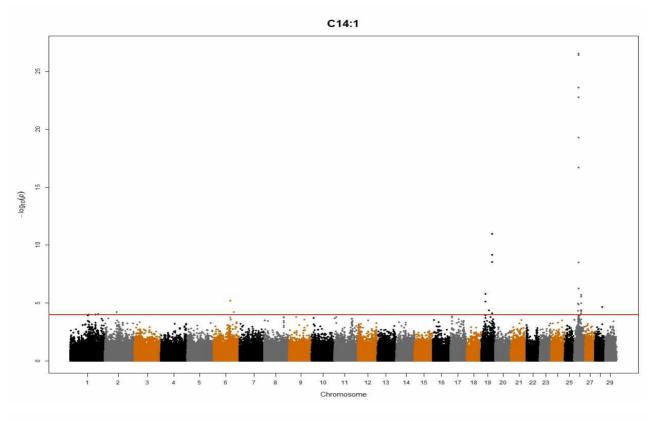
No	Trait name	연구년차	N	Mean	stdev	Min	Max	변이계수
T67	C20_1	1.	250	0.32	0.11	0.08	0.89	0.34
		2	250	0.39	0.14	0.19	1.88	0.35
		3	159	0.36	0.10	0.18	0.79	0.27
		1,2,3	659	0.35	0.12	0.08	1.88	0.34
T68	CLA_10t12c	1	250	0.02	0.02	0.00	0.25	0.95
100	CLA_10(12C							
		2	250	0.02	0.02	0.01	0.22	0.66
		3	NA	NA	NA	NA	NA	NA 0.01
		1,2,3	500	0.02	0.02	0.00	0.25	0.81
T69	C20_2	1	250	0.15	0.27	0.00	1.39	1.79
		2	250	0.03	0.02	0.01	0.23	0.51
		3	NA	NA	NA	NA	NA	NA
		1,2,3	500	0.09	0.20	0.00	1.39	2.20
T70	C20_3	1	250	0.31	0.12	0.13	0.95	0.38
		2	250	0.20	0.07	0.07	0.64	0.36
		3	242	0.40	3.22	0.09	50.25	8.10
		1,2,3	742	0.30	1.84	0.07	50.25	6.10
T71	C20_4	1	250	0.62	0.34	0.00	2.17	0.54
1/1	C20_4	2		0.40	0.19	0.10		0.34
		3	250				1.25	5.49
			242	0.64	3.51	0.15	54.89	
		1,2,3	742	0.55	2.02	0.00	54.89	3.64
T72	C24_1	1	250	0.17	0.07	0.03	0.55	0.42
		2	250	0.10	0.04	0.04	0.28	0.37
		3	234	0.34	3.67	0.04	56.16	10.91
		1,2,3	734	0.20	2.07	0.03	56.16	10.52
T73	SFA	1	250	36.88	3.23	29.03	48.38	0.09
173	31.0	2	250	41.36	2.71	26.23	48.60	0.07
		3	243	41.04	3.47	32.64	75.03	0.08
		1,2,3	743	39.75	3.75	26.23	75.03	0.09
		3,2,2		F-6.000	## ## ## ## ## ## ## ## ## ## ## ## ##			
T74	USF	1	250	56.01	3.45	43.79	63.89	0.06
		2	250	55.33	2.40	48.71	61.51	0.04
		3	243	56.76	16.81	17.61	312.02	0.30
		1,2,3	743	56.03	9.92	17.61	312.02	0.18
T75	MUFA	1	NA	NA	NA	NA	NA	NA
		2	NA	NA	NA	NA	NA	NA
		3	243	52.47	4.83	15.40	106.48	0.09
		1,2,3	243	52.47	4.83	15.40	106.48	0.09
770	DUEA	-	250	4.51	1.40	1 10	11.10	0.22
T76	PUFA	1	250	4.51	1.43	1.18	11.16	0.32
		2	250	3.04	0.77	1.52	6.09	0.25
		3	243	3.66	12.99	0.62	205.10	3.55
		1,2,3	743	3.74	7.50	0.62	205.10	2.01
T77	UFA/SFA	1	250	1.54	0.21	0.94	2.07	0.13
5.7(8)	1 2 mar 6% 578 2 4 2 K	2	250	1.35	0.15	1.01	2.05	0.11
		3	243	1.39	0.40	0.23	7.03	0.29
		1,2,3	743	1.43	0.40	0.23	7.03	0.29
		+1-10	*****	1,10	3.25	212.0	,,,,,,	5.20
T78	n-6/n-3	1	249	9.11	1.83	1.59	13.81	0.20
		2	250	9.08	1.25	4.55	15.77	0.14
		3	243	9.60	3.34	0.57	29.74	0.35
		1,2,3	742	9.26	2.31	0.57	29.74	0.25

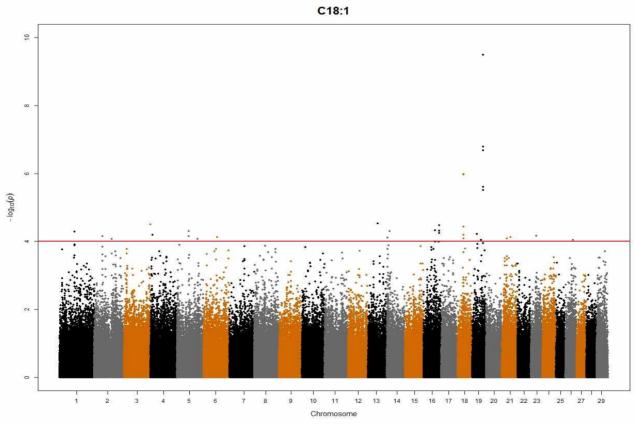
1	C10:0	Capric acid		카프릭산	SFA						
2	C12:0	Lauric acid		라우르산	SFA						
3	C14:0	Myristic acid		미리스트산	SFA						
5	C15:0	Pentadecylic acid		펜타데실산	SFA						
6	C16:0	Palmitic acid		팔미트산	SFA						
8	C17:0	Margaric acid		마르가르산	SFA						
10	C18:0	Stearic acid		스테아르산	SFA						
14	C20:0	Arachidic acid		아라키드산	SFA						
4	C14:1	Myristoleic acid		미리스트올레산	USFA						
7	C16:1	Palmitoleic acid		팔미톨레인산	USFA						
9	C17:1	Heptadecenoic acid		혭타데센산	USFA						
11	C18:1	oleic acid		올레인산	USFA	오메가 9계	지방산				
12	C18:1, 11t	elaidic acid		엘라이딘산	USFA	오메가 9계	지방산				
13	C18:2	Linoleic Acid		리놀레인산	USFA	오메가 6계	지방산				
15	C18:3	Linolenic Acid		리놀레닌산	USFA	오메가 3계	지방산				
17	C20:1	Eicosenic acid		아이코센산	USFA						
19	C20:2	Eicosadienoic acid		에이코사디에노산	USFA						
20	C20:3	Eicosatrienoic acid		에이코사트리엔산	USFA	오메가 6계	지방산				
21	C20:4	Arachidonic acid		아라키돈산	USFA	오메가 6계	지방산				
22	C24:1	Nervonic acid		네르본산	USFA	오메가 9계	지방산				
16	CLA, 9c11t	Conjugated linoleic acid		공액리놀레산		11.00					
18	CLA 10t12c	Conjugated linoleic acid									
CLA	리놀레인산의	의 위치적 기하학적 이	성질체이다	 							
		동매경화할성, 항산회									
	화학적으로			1							
포화지방신	⊦(Saturated	_Fatty_Acids, SFA)	지방산사설	들에 있는 탄소들이	모두 단	일 결합으로	로 연결(C-(C로 표시)			
불포화지병	방산(Unsatur	rated, USFA)	탄소간에	이중결합 존재	C14:	0 14는 탄소	수; 0은 0	중결합수			
·일불포호	가지방산	*	12 18 1			38(2)(8)	1000				
		F오메가 3계 지방산	혈액 내의	중성지방치와 혈액	이 엉키	는 성질을 집	감소시켜	심장질환 발병	병 위험 낮춤		
		오메가 6계 지방산				The state of the s		The second secon			
		" " " 10-2		시 혈액 내의 콜레스					하느 콘레.	스테로/니	DI)은 나격

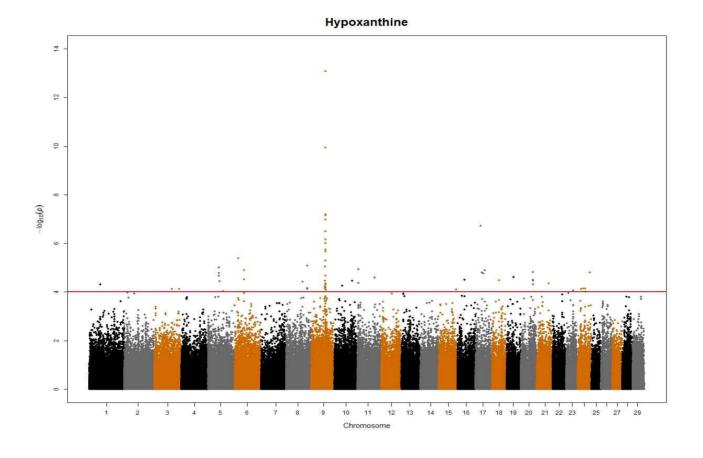
- 나. 대용량 Affymetrix bovine 640K SNP array를 이용한 형질과의 전장연관분석(GWAS)
- SNP array에 있는 한우에서 유용한 각각의 SNP에 대하여 형질과 연관분석을 최소자승법을 이용하여 다음 두 단계로 GWAS를 수행하였음
 - (1) 공변이효과 보정: 표현형에 영향하는 공변이 효과(도체일령)를 일반선형모델을 적용하여 보정하였는데 SAS 9.0을 실시하여 수행하였음. 본 시료는 농협 축산과학원에서 도체된 거세우들 중에 임의로 선택되어진 시료이기에 유전적 관계는 독립적이라 가정하였음. 모델은

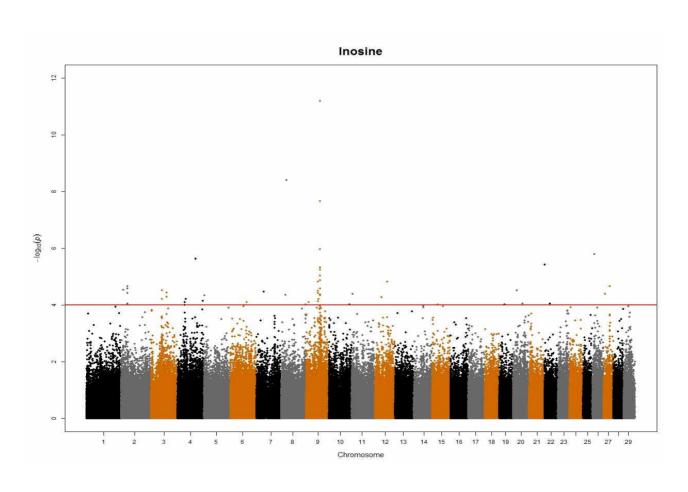
 $Y = \mu + \sum \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1$


- (2) SNP와 형질과의 연관분석
- 위 (1)에서 SAS를 이용하여 유의적인(P<0.05) 고정 또는 공변이 효과를 모델에 보정한 후, 얻은 표현형 잔차값을 표현형으로 간주하여 각 SNP에 대하여 연관분석을 다음과 같이 실시하였음.
 - 해당모델은 단순 회귀분석 형태로 다음과 같으며 PLINK 프로그램을 구동하였음 $Y(표현형 \ \, \hbox{잔차}) \,=\, \mu \,\,+\,\, \beta\, \hbox{X} \,+\, e, \quad \hbox{X} \,=\, 1,\,\, 0,\,\, -1 \,\, \hbox{for} \,\,\, \hbox{각 SNP의 AA, AB, BB} \,\,\, \hbox{유전}$ 자형
 - $-\beta$ 는 해당 표현형에 대하여 SNP의 상가적(additive) 효과를 나타냄
 - 앞서 한우에서 유용한 Affymetix SNP array에 있는 457천개 SNP들에 대하여 각 형질별로 연관 분석을 수행하였고, 검정결과 유의수준이 $1x10^{-6}$ 이하인 P 값을 가진 SNP를 해당 형질과 통계적 유의도를 가진 연관성을 보인다고 결론을 내리고 선별하였음
- 전장분석 결과 총 75개 고급육·고기능성 성분형질과 관련된 유의적인 SNP 개수는 아래 표 에 도식되어 있음 (아래 표 참조)


ui ÷	+1 +1	유의	적인 SNP 7	H수	O 71 74 d. 2)	u +	+1 +1	유의	적인 SNP 기	개수	0.1114.2
번호	형질 -	p<10 ⁻⁶	p<10 ⁻⁵	p<10 ⁻⁴	유전력(h²)	번호	형질	p<10 ⁻⁶	p<10 ⁻⁵	p<10 ⁻⁴	유전력(h ²
T1	도체중	0	0	22	0.303	T28	Leu	36	68	130	0.257
T2	BFT	0	11	93	0.000	T29	Lys	16	34	101	0.201
T3	EMA	0	1	19	0.216	T30	Met	34	64	133	0.261
T4	Marb	0	9	39	0.023	T31	Phe	33	66	128	0.225
T5	Chol	23	43	91	0.000	T32	Pro	23	39	119	0.089
T6	рН	5	18	72	0.042	T33	Ser	46	77	173	0.210
T7	Color	0	3	42	0.013	T34	Thr	1	15	66	0.034
T8	Flavor	0	3	22	0.000	T35	Tyr	5	17	47	0.276
T9	Tender	1	4	25	0.013	T36	Val	46	69	146	0.260
T10	Juciness	1	4	59	0.000	T37	Anserine	2	5	31	0.197
T11	Preference	0	2	31	0.047	T38	Carnosine	0	2	20	0.201
T12	col_L	0	.3	37	0.000	T39	Creatine	0	3	49	0.068
T13	col_a	1	4	37	0.052	T40	Creatinine	0	2	22	0.154
T14	col_b	0	3	29	0.004	T41	C14_0	4	8	43	0.352
T15	WHC	1	5	40	0.000	T42	C14_1	15	20	34	0.517
T16	Driploss	0	2	30	0.004	T43	C16_0	0	1	24	0.307
T17	Heatloss	2	5	37	0.133	T44	C16_1	3	7	25	0.435
T18	WBSF	148	205	349	0.111	T45	C18_0	1	7	37	0.410
T19	AMP	3	16	57	0.278	T46	C18_1	3	7	32	0.262
T20	IMP	3	6	28	0.457	T47	C18_1_11t	9	24	76	0.470
T21	Inosine	3	10	50	0.182	T48	C18_2	1	11	47	0.152
T22	Нуро	9	16	66	0.197	T49	SFA	7	28	79	0.334
T23	Ala	21	41	111	0.103	T50	USF	24	50	142	0.289
T24	Arg	5	13	53	0.225	T51	PUFA	1	8	59	0.106
T25	Gly	25	50	133	0.140	T52	UFA/SFA	0	4	24	0.225
T26	His	7	25	129	0.000	T53	n-6/n-3	7	23	81	0.009
T27	iLe	40	73	152	0.266	합계		615	1,234	3,721	


- 전장연관분석(GWAS) 결과, 고급육 · 고기능성 형질과 유의적으로 관련되어진 SNP수는 $P=10^{-6}$ 유의수준에서 615개가 탐색되었고, $P=10^{-5}$ 유의수준에서는 1,234개의 또 다른 SNP들이 탐색되었음
- 일반적으로 단백질조성과 관련된 형질들에서 많은 SNP들이 발굴되었으며, 핵산성분에서 도 적지 않은 유의적인 SNP들이 발굴되었음
- 맛과 관능평가와 관련된 형질에서는 연도(tender)와 다즙성(juiciness)와 관련된 2여개


SNP들이 발굴되었고 도체중/등지방두께/등심단면적/근내지방도의 경우 P=10⁻⁶ 유의수준에서 발굴되지 않았음


- 맛에 관여하는 주요 성분인 지방산 성분의 경우 P =10⁻⁶ 유의수준에서 36개 SNP들이 발굴되었는데 특히 C14_0(Myrist산), C14_1(Myristolic산), C16_1(Stearic산), C18_1(Oleic산), C18_1_11t(Elaidic산)와 연관된 유의적인 SNP들이 다수 발굴되었음.
- 각 형질별로 발굴되어진 마커의 크기는 해당 형질의 표현형 분산 대비 발굴되어진 마커들에 의하여 설명되어지는 분산의 비율임. 아래 표에서 보이듯이 각 형질별로 가장 유의적인마커 SNP 10개를 설명하였는데 일반적으로 표현형 분산의 35% ~ 60%를 차지하여 상당히 높은 비율로 나타났음. 하지만 이러한 결과는 제한된 시료 크기로 인하여마커 효과의값이 부풀려 있을 가능성이 높음. 추후에 베이지안 분석방법을 적용하여 추정되는 마커효과 편향을 줄이는 분석방법을 적용할 필요성이 있음.
- C18:1이나 C14:1, Hypoxanthin의 GWAS 분석결과 특정 염색체 한 지역에서 대단히 크게 관여하는 SNP들을 발굴 하였음 (아래 표와 Manhatten plot 참조). 예로 Uemoto 등 (2010)은 C18:1에 대하여 일본 화우 집단에서 GWAS 분석결과 염색체 19번 (52,722kbp)에서 아주 높은 유의도를 가진 SNP를 발굴하였음(아래표 참조).
- 이러한 결과는 지방산 성분 형질의 특성, 즉 고급육/도체형질과 같은 양적형질의 경우 아주 작은 크기의 효과를 가진 다수의 유전자가 관여하는 특성이 아닌, 소수의 주요 유전자가 관여하다는 증거를 제시하여 줌.

다. 전장연관분석(GWAS)결과 형질별 유의적인 SNP 정보

T1_CWT											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-26386478	[C/T]	6	16,863,356	-28.44	6.59	0.00002	4.74	0	24	640	0.028
AX-26386632	[T/G]	6	16,902,148	-27.99	6.46	0.00002	4.77	0	25	639	0.028
AX-27012090	[G/A]	7	58,717,642	-7.69	1.76	0.00001	4.85	93	280	291	0.026
AX-27446913	[A/G]	8	57,340,326	-13.06	3.08	0.00002	4.60	4	112	548	0.027
AX-27758911	[T/C]	9	23,401,421	27.03	6.21	0.00002	4.81	1	23	640	0.026
AX-27857129	[A/G]	9	49,641,155	13.63	3.14	0.00002	4.78	6	95	563	0.027
AX-20311536	[T/C]	14	28,690,060	7.42	1.79	0.00004	4.41	97	314	253	0.025
AX-22782669	[T/C]	20	60,395,865	-9.64	2.28	0.00003	4.58	18	223	423	0.028
AX-23876447	[A/G]	24	61,034,474	-9.14	2.20	0.00004	4.44	25	211	428	0.026
AX-24113572	[T/C]	26	11,124,082	27.82	6.73	0.00004	4.39	0	23	641	0.026
										Σ	0.267

T2_BFT											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-18107780	[A/G]	1	28,344,450	1.62	0.33	0.00000	5.83	1	82	581	0.036
AX-18111920	[T/C]	1	29,437,303	1.38	0.31	0.00001	5.06	5	81	578	0.028
AX-18192529	[A/C]	1	52,128,279	1.61	0.34	0.00000	5.50	5	58	601	0.029
AX-27154489	[A/G]	7	94,333,743	3.30	0.73	0.00001	5.11	0	16	648	0.030
AX-19497235	[A/G]	12	4,889,853	3.12	0.69	0.00001	5.14	1	14	649	0.027
AX-20490823	[A/G]	14	78,816,260	3.06	0.66	0.00000	5.41	0	20	644	0.032
AX-20953590	[A/C]	16	25,325,559	2.86	0.61	0.00000	5.42	0	23	641	0.032
AX-21227556	[T/C]	17	10,074,494	1.88	0.38	0.00000	5.95	2	54	608	0.034
AX-23283069	[A/G]	22	36,928,974	1.88	0.40	0.00000	5.44	1	52	611	0.032
AX-23283964	[C/T]	22	37,119,273	0.81	0.17	0.00000	5.37	57	265	342	0.031
										Σ	0.312

T3_EMA											
SNP ID	SNP (MinorA/MajorB)	BTA	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-27445696	[G/C]	8	56,977,033	1.98	0.42	0.00000	5.66	73	292	299	0.033
AX-20324312	[A/G]	14	32,082,781	1.87	0.47	0.00007	4.17	37	207	420	0.022
AX-21300362	[T/G]	17	31,223,381	-3.59	0.85	0.00003	4.55	2	71	591	0.026
AX-21562835	[T/C]	18	21,840,377	1.95	0.49	0.00007	4.15	30	189	445	0.022
AX-23172506	[A/G]	22	10,764,368	1.94	0.45	0.00002	4.76	45	273	346	0.028
AX-23635776	[C/T]	24	3,485,513	2.71	0.66	0.00004	4.35	6	120	538	0.025
AX-23635781	[A/G]	24	3,485,985	2.69	0.65	0.00004	4.36	7	118	539	0.025
AX-23635830	[C/T]	24	3,498,672	2.88	0.71	0.00006	4.21	4	103	557	0.024
AX-23861004	[A/G]	24	57,725,849	-2.46	0.61	0.00006	4.23	9	140	515	0.024
AX-24614011	[A/G]	28	33,093,881	7.50	1.87	0.00007	4.16	0	15	649	0.024
										Σ	0.254

T4_Marb											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-26490559	[T/C]	6	44,818,145	0.19	0.04	0.00000	5.33	10	153	501	0.032
AX-27602496	[A/G]	8	96,743,576	0.41	0.09	0.00001	5.02	0	33	631	0.030
AX-28002650	[G/T]	9	87,889,948	0.47	0.10	0.00000	5.35	0	26	638	0.032
AX-28063487	[G/A]	9	102,100,253	-0.17	0.04	0.00001	5.13	15	192	457	0.031
AX-28063503	[C/T]	9	102,105,547	-0.16	0.03	0.00000	5.54	36	226	402	0.032
AX-18943118	[T/C]	10	82,807,390	-0.19	0.04	0.00000	5.97	11	206	447	0.039
AX-19868693	[G/A]	13	8,088,416	0.13	0.03	0.00001	5.26	78	236	350	0.027
AX-20637281	[C/T]	15	32,345,923	0.12	0.03	0.00001	4.99	150	321	193	0.028
AX-24213852	[G/A]	26	34,807,090	-0.12	0.03	0.00001	5.01	123	312	229	0.028
AX-24752742	[C/T]	29	20,001,080	0.20	0.04	0.00000	5.53	8	161	495	0.034
										Σ	0.312

T5_Cholesterol											
SNP ID	SNP (MinorA/MajorB)	BTA	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-25022262	[T/G]	3	33,713,982	6.33	1.06	0.00000	8.36	0	45	618	0.053
AX-25185988	[A/G]	3	79,021,823	5.77	1.05	0.00000	7.29	0	47	616	0.046
AX-25737918	[T/C]	4	94,469,150	6.62	1.22	0.00000	7.12	0	34	629	0.044
AX-26105288	[C/T]	5	66,626,756	10.30	1.74	0.00000	8.26	0	16	647	0.051
AX-27287052	[A/G]	8	15,051,798	5.32	0.93	0.00000	7.79	4	43	616	0.042
AX-28480796	[C/A]	8	39,071,586	5.63	1.06	0.00000	6.86	0	46	617	0.043
AX-28051721	[T/G]	9	99,413,797	7.31	1.36	0.00000	6.98	0	27	636	0.043
AX-21591937	[T/G]	18	28,448,350	7.18	1.18	0.00000	8.73	0	36	627	0.055
AX-23113902	[C/G]	21	68,316,707	3.39	0.63	0.00000	6.95	8	113	542	0.040
AX-24327721	[T/G]	27	9,561,488	6.48	1.18	0.00000	7.23	1	32	630	0.042
										Σ	0.457

T6_pH											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-22048044	[T/C]	2	12,103,206	0.08	0.01	0.00000	7.06	0	66	598	0.045
AX-26178563	[A/G]	5	85,124,087	0.11	0.02	0.00000	7.05	0	31	633	0.043
AX-26221363	[T/C]	5	96,243,286	0.14	0.03	0.00000	6.03	0	15	649	0.036
AX-26381762	[C/T]	6	15,614,673	0.14	0.03	0.00000	5.72	0	15	649	0.034
AX-27090623	[T/C]	7	77,568,763	0.08	0.02	0.00000	6.58	2	45	617	0.037
AX-27356303	[A/G]	8	33,044,300	0.12	0.02	0.00000	5.94	0	20	644	0.036
AX-27702048	[T/C]	9	8,836,620	0.11	0.02	0.00000	5.91	0	22	642	0.035
AX-21275167	[G/A]	17	23,438,203	0.05	0.01	0.00000	5.82	5	112	547	0.035
AX-21275214	[T/C]	17	23,453,982	0.05	0.01	0.00000	5.96	5	111	548	0.036
AX-22911289	[C/T]	21	19,450,293	-0.13	0.03	0.00000	6.18	0	17	647	0.037
		1				10				Σ	0.374

T7_Color											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-18204219	[T/C]	1	55,341,150	0.36	0.07	0.00000	5.77	5	94	565	0.033
AX-25533111	[C/A]	4	42,949,828	-0.21	0.05	0.00002	4.66	34	213	417	0.026
AX-25718977	[A/G]	4	89,816,176	0.21	0.05	0.00001	4.85	41	244	379	0.028
AX-26351842	[A/G]	6	7,437,210	-0.18	0.04	0.00001	5.10	119	318	227	0.029
AX-26762976	[T/G]	6	115,860,181	-0.25	0.06	0.00003	4.56	13	165	486	0.026
AX-27762187	[T/G]	9	24,248,516	-0.61	0.14	0.00001	4.98	2	22	640	0.025
AX-18720825	[A/G]	10	26,748,925	0.27	0.06	0.00001	5.22	14	148	502	0.030
AX-21194198	[A/G]	17	805,459	0.81	0.19	0.00002	4.70	0	16	648	0.027
AX-23476995	[T/C]	23	20,125,978	0.73	0.17	0.00003	4.55	0	19	645	0.026
AX-23871690	[C/T]	24	60,038,006	-0.23	0.05	0.00002	4.70	21	184	459	0.027
						10				2	0,278

T8_Flavor											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-18459324	[C/T]	1	121,384,033	-0.28	0.06	0.00001	5.00	25	255	384	0.032
AX-25474350	[T/C]	4	26,684,206	-0.27	0.06	0.00000	5.35	43	229	392	0.030
AX-26762976	[T/G]	6	115,860,181	-0.30	0.07	0.00005	4.32	13	165	486	0.025
AX-26763001	[G/T]	6	115,864,052	-0.36	0.09	0.00003	4.46	12	79	573	0.022
AX-27332778	[T/C]	8	26,844,904	-0.72	0.18	0.00005	4.26	0	28	636	0.025
AX-18870574	[T/C]	10	65,007,725	-0.24	0.06	0.00005	4.27	39	244	381	0.024
AX-19506885	[C/A]	12	7,729,177	0.26	0.06	0.00003	4.53	30	239	395	0.027
AX-19874673	[C/A]	13	9,586,153	0.22	0.05	0.00002	4.65	109	327	228	0.027
AX-19874678	[T/C]	13	9,586,382	0.24	0.05	0.00001	5.25	91	325	248	0.032
AX-23782470	[C/T]	24	40,023,824	-0.32	0.08	0.00003	4.48	13	129	522	0.024
										Σ	0.268

T9_Tender											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-25179852	[C/T]	3	77,481,501	0.65	0.14	0.00000	5.67	1	49	614	0.033
AX-26757292	[T/C]	6	114,557,897	-0.37	0.08	0.00001	4.87	6	138	520	0.029
AX-27197589	[A/G]	7	105,385,221	-0.29	0.07	0.00001	5.01	25	214	425	0.029
AX-27267281	[C/T]	8	9,931,240	0.83	0.16	0.00000	6.59	0	38	626	0.041
AX-18785106	[A/G]	10	43,278,813	-0.23	0.05	0.00003	4.59	93	318	253	0.027
AX-19060779	[A/G]	11	5,389,421	-0.27	0.06	0.00003	4.56	30	225	409	0.026
AX-19697477	[A/G]	12	56,187,594	0.23	0.05	0.00003	4.51	129	342	193	0.027
AX-20310292	[G/A]	14	28,377,449	0.34	0.08	0.00001	5.15	13	160	491	0.030
AX-20818545	[A/G]	15	75,654,844	-0.37	0.09	0.00002	4.63	12	95	557	0.024
AX-21814435	[G/A]	19	17,681,372	0.28	0.07	0.00003	4.50	24	216	424	0.026
										Σ	0.293

T10_Juciness											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-25076819	[A/G]	3	48,580,614	-0.45	0.10	0.00000	5.35	5	78	581	0.030
AX-25179852	[C/T]	3	77,481,501	0.56	0.13	0.00001	4.83	1	49	614	0.028
AX-26097056	[C/T]	5	64,639,615	-1.10	0.24	0.00000	5.42	0	15	649	0.032
AX-27267281	[C/T]	8	9,931,240	0.77	0.15	0.00000	6.45	0	38	626	0.040
AX-18665432	[T/C]	10	13,156,315	-0.23	0.05	0.00001	4.87	84	327	253	0.030
AX-19775800	[C/T]	12	77,477,113	-0.41	0.09	0.00002	4.72	4	92	568	0.027
AX-20472022	[A/G]	14	73,407,532	-0.68	0.14	0.00000	5.56	0	42	622	0.034
AX-22658642	[C/T]	20	27,748,175	-0.22	0.05	0.00002	4.78	85	295	284	0.027
AX-24151946	[G/A]	26	20,384,845	-1.06	0.24	0.00002	4.72	0	14	650	0.028
AX-24640005	[T/C]	28	38,997,960	-0.58	0.13	0.00002	4.78	1	46	617	0.027
		3			1	10				Σ	0.302

T11_Prefernce											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-18544689	[A/G]	1	143,426,578	-0.74	0.18	0.00003	4.50	0	24	640	0.026
AX-25179852	[C/T]	3	77,481,501	0.50	0.12	0.00004	4.41	1	49	614	0.025
AX-25474350	[T/C]	4	26,684,206	-0.23	0.05	0.00002	4.78	43	229	392	0.026
AX-26441856	[A/G]	6	31,717,838	-0.21	0.05	0.00002	4.73	87	308	269	0.027
AX-26441863	[A/C]	6	31,719,539	-0.21	0.05	0.00002	4.67	90	307	267	0.027
AX-26757292	[T/C]	6	114,557,897	-0.33	0.07	0.00001	5.03	6	138	520	0.030
AX-27267281	[C/T]	8	9,931,240	0.65	0.14	0.00000	5.33	0	38	626	0.032
AX-18834722	[A/G]	10	55,442,058	-0.21	0.05	0.00003	4.55	81	306	277	0.026
AX-22658642	[C/T]	20	27,748,175	-0.20	0.05	0.00004	4.45	85	295	284	0.025
AX-24191664	[C/T]	26	29,659,278	0.20	0.05	0.00003	4.52	86	306	272	0.026
										2	0,272

T12_col_L											
SNP ID	SNP (MinorA/MajorB)	BTA	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-22440648	[A/G]	2	113,932,045	-0.75	0.17	0.00002	4.76	47	200	417	0.024
AX-26006760	[A/G]	5	40,707,662	-0.80	0.19	0.00002	4.72	30	208	426	0.026
AX-26091844	[A/G]	5	63,310,305	-0.76	0.17	0.00002	4.77	43	254	367	0.028
AX-27597650	[T/C]	8	95,454,069	-0.86	0.20	0.00001	4.91	22	207	435	0.029
AX-21230784	[A/C]	17	10,902,649	-0.82	0.19	0.00001	4.86	27	223	414	0.029
AX-22988737	[T/C]	21	37,564,204	1.06	0.24	0.00001	5.00	10	126	528	0.028
AX-23889359	[T/C]	25	1,458,086	0.84	0.18	0.00000	5.39	34	227	403	0.031
AX-24327721	[T/G]	27	9,561,488	-2.34	0.48	0.00000	5.79	1	30	633	0.033
AX-24526169	[C/T]	28	11,527,674	0.69	0.16	0.00002	4.67	66	244	354	0.025
AX-24789253	[T/C]	29	28,887,293	0.75	0.17	0.00002	4.66	43	257	364	0.027
										Σ	0.280

T13_col_a											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-24918009	[A/G]	3	7,761,481	0.57	0.13	0.00003	4.57	64	282	318	0.026
AX-24918102	[C/A]	3	7,783,947	0.55	0.13	0.00004	4.41	69	274	321	0.024
AX-24918121	[A/G]	3	7,787,893	0.57	0.14	0.00003	4.59	61	278	325	0.026
AX-27153902	[G/A]	7	94,181,023	0.54	0.13	0.00004	4.42	116	343	205	0.027
AX-19054135	[T/C]	11	3,875,546	-0.96	0.21	0.00001	5.07	7	104	553	0.029
AX-19357699	[G/A]	11	79,209,884	-0.63	0.14	0.00001	5.14	51	273	340	0.030
AX-20347974	[T/C]	14	38,750,861	-0.60	0.14	0.00003	4.51	45	264	355	0.026
AX-21177897	[G/A]	16	78,412,580	-0.66	0.13	0.00000	6.17	69	290	305	0.037
AX-22998390	[T/C]	21	40,425,717	0.64	0.15	0.00002	4.81	37	222	405	0.027
AX-23046314	[T/C]	21	52,990,616	0.71	0.15	0.00001	5.27	25	242	397	0.033
						1				Σ	0.285

T14_col_b											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-25877506	[T/C]	5	6,796,841	-0.46	0.10	0.00001	5.27	21	199	444	0.031
AX-25877597	[A/C]	5	6,813,328	-0.58	0.13	0.00001	4.93	5	126	533	0.030
AX-25877621	[T/C]	5	6,819,337	-0.53	0.12	0.00001	4.83	6	157	501	0.030
AX-25877624	[T/G]	5	6,820,425	-0.52	0.12	0.00001	4.88	7	157	500	0.030
AX-26084632	[T/C]	5	61,578,247	-0.38	0.09	0.00002	4.73	47	239	378	0.026
AX-19848303	[C/T]	13	2,923,796	0.46	0.11	0.00001	4.84	17	181	466	0.028
AX-22998390	[T/C]	21	40,425,717	0.42	0.09	0.00001	5.21	37	222	405	0.029
AX-23730864	[C/T]	24	27,727,284	0.58	0.13	0.00001	5.15	8	120	536	0.029
AX-23730873	[C/T]	24	27,729,208	0.57	0.13	0.00001	4.94	8	115	541	0.028
AX-23963588	[C/T]	25	17,917,063	-0.35	0.08	0.00002	4.65	71	285	308	0.026
						10				Σ	0.288

T15_WHC											
SNP ID	SNP (MinorA/MajorB)	BTA	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-18431001	[T/C]	1	113,934,887	1.01	0.22	0.00000	5.39	145	328	191	0.031
AX-18431103	[T/C]	1	113,968,500	-0.95	0.22	0.00001	4.89	163	332	169	0.028
AX-18431106	[C/T]	1	113,969,069	-0.95	0.22	0.00001	4.89	163	332	169	0.028
AX-18431167	[A/G]	1	113,984,020	1.01	0.22	0.00000	5.39	145	328	191	0.031
AX-25564639	[T/C]	4	51,294,382	1.31	0.30	0.00002	4.77	12	196	456	0.029
AX-25782361	[T/C]	4	105,173,150	-1.39	0.32	0.00002	4.75	10	163	491	0.028
AX-26981762	[T/C]	7	50,709,941	-1.23	0.24	0.00000	6.25	50	271	343	0.038
AX-27887934	[G/A]	9	58,260,151	-3.41	0.74	0.00000	5.32	0	30	634	0.032
AX-21158308	[C/A]	16	73,955,905	3.59	0.79	0.00001	5.16	0	26	638	0.031
AX-24752437	[C/T]	29	19,924,984	-1.11	0.25	0.00002	4.81	39	231	394	0.027
			li .			1				2	0.304

T16_Driploss											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-25705067	[T/C]	4	86,339,366	-0.86	0.20	0.00002	4.61	32	189	443	0.025
AX-28459191	[A/G]	4	86,354,358	-0.85	0.20	0.00003	4.58	32	190	442	0.024
AX-26442407	[A/G]	6	31,891,131	3.81	0.81	0.00000	5.53	0	14	650	0.033
AX-27042054	[T/C]	7	65,578,897	2.21	0.51	0.00002	4.74	1	32	631	0.026
AX-27042086	[T/C]	7	65,587,678	2.21	0.51	0.00002	4.74	1	32	631	0.026
AX-27262801	[A/G]	8	8,940,294	-0.70	0.17	0.00003	4.52	139	331	194	0.026
AX-18780159	[A/G]	10	42,015,727	-2.19	0.48	0.00001	5.20	1	37	626	0.030
AX-19507690	[A/T]	12	7,961,625	2.83	0.64	0.00001	4.99	0	23	641	0.029
AX-20597352	[A/G]	15	23,717,163	1.36	0.32	0.00003	4.60	4	85	575	0.026
AX-24761852	[C/T]	29	22,455,840	0.87	0.20	0.00002	4.77	30	227	407	0.028
										Σ	0.274

T17_Heatloss											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-18585984	[A/C]	1	152,566,977	1.65	0.35	0.00000	5.69	1	48	615	0.033
AX-18585992	[A/C]	1	152,568,848	1.59	0.34	0.00000	5.40	1	49	614	0.032
AX-22425365	[A/G]	2	110,113,351	0.75	0.15	0.00000	6.10	43	278	343	0.038
AX-22425465	[T/C]	2	110,139,283	0.82	0.16	0.00000	6.60	31	265	368	0.043
AX-22425700	[T/G]	2	110,200,764	-0.59	0.14	0.00002	4.68	82	291	291	0.026
AX-26488637	[T/C]	6	44,304,176	0.97	0.21	0.00001	5.29	6	139	519	0.032
AX-20043540	[A/G]	13	49,113,272	0.60	0.14	0.00003	4.55	64	262	338	0.025
AX-20232600	[T/C]	14	8,457,486	-0.85	0.19	0.00001	4.93	10	167	487	0.030
AX-23950107	[T/C]	25	14,833,940	-0.55	0.13	0.00002	4.65	162	320	182	0.026
AX-24471020	[T/C]	27	43,317,059	-0.66	0.15	0.00002	4.71	38	257	369	0.028
										Σ	0.313

T18_WBSF											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-18035623	[T/C]	1	8,812,674	17.08	2.23	0.00000	13.18	0	56	608	0.085
AX-26385329	[C/A]	6	16,589,603	21.14	2.53	0.00000	15.47	0	42	622	0.099
AX-26469526	[A/G]	6	39,438,580	19.49	2.55	0.00000	13.16	0	42	622	0.084
AX-26611277	[T/C]	6	76,696,893	21.73	2.62	0.00000	15.24	0	39	625	0.097
AX-28480796	[C/A]	8	39,071,586	21.97	2.40	0.00000	18.19	0	46	618	0.116
AX-19636586	[T/C]	12	39,410,311	18.86	2.23	0.00000	15.78	0	55	609	0.102
AX-20280611	[A/G]	14	20,633,352	19.01	2.25	0.00000	15.75	0	54	610	0.102
AX-22692033	[A/G]	20	36,537,821	19.05	2.25	0.00000	15.83	0	54	610	0.102
AX-23952173	[G/T]	25	15,314,457	20.44	2.32	0.00000	16.98	0	50	614	0.109
AX-24563091	[T/C]	28	20,843,991	18.86	2.23	0.00000	15.78	0	55	609	0.102
										Σ	0.998

T19_AMP											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-18561334	[T/C]	1	147,069,807	0.56	0.12	0.00001	5.27	0	32	631	0.032
AX-26406169	[T/C]	6	22,105,777	0.77	0.16	0.00000	5.97	0	19	644	0.036
AX-26422666	[T/C]	6	26,553,317	0.95	0.16	0.00000	7.93	0	17	646	0.049
AX-26512952	[A/G]	6	50,424,327	0.97	0.19	0.00000	6.48	0	13	650	0.039
AX-18631076	[G/A]	10	5,142,440	0.77	0.16	0.00000	5.62	0	18	645	0.034
AX-18823304	[G/A]	10	52,401,668	0.69	0.15	0.00000	5.49	0	22	641	0.033
AX-18892081	[C/T]	10	70,314,867	0.77	0.16	0.00000	5.91	0	19	644	0.035
AX-19593123	[T/C]	12	28,517,710	-0.74	0.16	0.00000	5.31	0	18	645	0.032
AX-23589064	[G/A]	23	45,532,849	-0.25	0.05	0.00000	5.32	10	160	493	0.032
AX-28537043	[T/G]	25	41,667,475	0.85	0.14	0.00000	8.75	0	24	639	0.054
						1				2	0.375

T20_IMP											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-25084591	[A/G]	3	50,595,045	-6.93	1.62	0.00002	4.67	15	110	538	0.024
AX-25768112	[T/G]	4	101,715,156	-17.02	3.91	0.00002	4.81	0	25	638	0.028
AX-25860032	[G/T]	5	2,287,259	-19.43	3.97	0.00000	5.90	0	24	639	0.036
AX-26255613	[T/C]	5	104,917,013	20.57	4.58	0.00001	5.08	0	18	645	0.030
AX-26672531	[G/T]	6	94,105,680	12.79	3.03	0.00003	4.56	0	43	620	0.027
AX-27322264	[C/T]	8	24,242,477	-19.54	3.61	0.00000	7.05	0	29	634	0.043
AX-27911877	[G/T]	9	64,392,539	-4.80	1.06	0.00001	5.10	114	319	230	0.029
AX-22615245	[T/C]	20	16,842,335	-29.23	5.33	0.00000	7.23	0	13	650	0.044
AX-23131382	[C/T]	22	1,028,209	-23.21	4.22	0.00000	7.27	0	21	642	0.044
AX-24178839	[G/A]	26	26,402,625	-16.08	3.77	0.00002	4.64	0	27	636	0.027
										Σ	0.333

T21_Inosine											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-25689260	[T/C]	4	82,274,539	-2.77	0.58	0.00000	5.62	4	79	580	0.032
AX-27322264	[C/T]	8	24,242,477	5.98	1.00	0.00000	8.41	0	29	634	0.052
AX-27911877	[G/T]	9	64,392,539	1.37	0.30	0.00000	5.33	114	319	230	0.031
AX-27912875	[A/G]	9	64,697,539	2.03	0.29	0.00000	11.20	151	337	175	0.070
AX-27912941	[T/A]	9	64,716,608	1.62	0.35	0.00001	5.24	31	237	395	0.031
AX-27913166	[A/G]	9	64,782,508	1.71	0.35	0.00000	5.96	34	239	390	0.036
AX-27913315	[G/C]	9	64,830,306	1.67	0.37	0.00001	5.03	20	250	393	0.033
AX-27913716	[T/C]	9	64,927,821	-1.67	0.30	0.00000	7.66	134	338	191	0.048
AX-23131382	[C/T]	22	1,028,209	5.51	1.18	0.00000	5.42	0	21	642	0.032
AX-24103222	[C/T]	26	8,534,383	4.47	0.92	0.00000	5.79	0	35	628	0.035
						10				Σ	0.400

T22_Hypoxanthii	ne										
SNP ID	SNP (MinorA/MajorB)	BTA	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-27912473	[A/C]	9	64,571,219	1.23	0.25	0.00000	6.00	40	253	370	0.036
AX-27912574	[A/G]	9	64,604,308	1.25	0.25	0.00000	6.16	41	263	359	0.038
AX-27912875	[A/G]	9	64,697,539	1.62	0.21	0.00000	13.07	151	337	175	0.082
AX-27912941	[T/A]	9	64,716,608	1.41	0.26	0.00000	7.15	31	237	395	0.044
AX-27913166	[A/G]	9	64,782,508	1.40	0.26	0.00000	7.20	34	239	390	0.044
AX-27913315	[G/C]	9	64,830,306	1.47	0.27	0.00000	6.98	20	250	393	0.047
AX-27913617	[G/A]	9	64,899,782	1.19	0.25	0.00000	5.74	44	247	372	0.033
AX-27913675	[G/A]	9	64,915,912	1.35	0.26	0.00000	6.50	30	248	385	0.041
AX-27913716	[T/C]	9	64,927,821	-1.41	0.22	0.00000	9.94	134	338	191	0.063
AX-21275346	[G/A]	17	23,503,448	5.37	1.02	0.00000	6.71	0	15	648	0.041
										Σ	0.468

T23_Ala											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-18402082	[T/C]	1	106,305,353	13.74	2.32	0.00000	8.32	0	14	650	0.051
AX-18502845	[T/C]	1	132,861,279	10.81	1.82	0.00000	8.33	0	23	641	0.051
AX-25319135	[A/G]	3	110,487,238	14.69	2.40	0.00000	8.81	0	13	651	0.054
AX-26381762	[C/T]	6	15,614,673	15.46	2.22	0.00000	11.11	0	15	649	0.069
AX-26998092	[A/G]	7	55,059,474	10.18	1.62	0.00000	9.18	0	29	635	0.057
AX-27322264	[C/T]	8	24,242,477	10.35	1.57	0.00000	10.07	0	31	633	0.063
AX-27772067	[T/C]	9	26,876,269	12.79	2.10	0.00000	8.69	0	17	647	0.053
AX-19693559	[A/G]	12	55,180,437	7.20	1.21	0.00000	8.32	1	50	613	0.050
AX-19722625	[T/C]	12	63,261,957	14.50	2.31	0.00000	9.21	0	14	650	0.057
AX-23563959	[T/C]	23	40,199,166	14.30	2.03	0.00000	11.34	0	18	646	0.071
				1		10				2	0.577

T24_Arg											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-18018714	[T/C]	1	4,369,855	23.10	5.03	0.00001	5.27	7	55	602	0.027
AX-18055707	[A/C]	1	14,350,694	51.88	11.09	0.00000	5.46	0	16	648	0.032
AX-18474871	[G/A]	1	125,943,303	-12.94	2.76	0.00000	5.47	47	313	304	0.036
AX-25319135	[A/G]	3	110,487,238	68.41	12.18	0.00000	7.54	0	13	651	0.046
AX-26381762	[C/T]	6	15,614,673	64.96	11.35	0.00000	7.80	0	15	649	0.048
AX-26503246	[G/A]	6	47,840,338	58.17	9.85	0.00000	8.25	0	20	644	0.051
AX-27322264	[C/T]	8	24,242,477	41.57	8.03	0.00000	6.53	0	31	633	0.040
AX-23079860	[G/A]	21	60,989,733	39.71	8.61	0.00000	5.32	0	27	637	0.032
AX-23563959	[T/C]	23	40,199,166	55.64	10.42	0.00000	6.90	0	18	646	0.042
AX-24327721	[T/G]	27	9,561,488	-36.68	7.68	0.00000	5.65	1	30	633	0.032
										Σ	0.384

T25_Gly											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-18502845	[T/C]	1	132,861,279	4.23	0.63	0.00000	10.49	0	23	641	0.065
AX-26381762	[C/T]	6	15,614,673	6.07	0.76	0.00000	14.12	0	15	649	0.088
AX-26503246	[G/A]	6	47,840,338	4.34	0.67	0.00000	9.67	0	20	644	0.060
AX-27322264	[C/T]	8	24,242,477	3.91	0.54	0.00000	11.84	0	31	633	0.075
AX-27772067	[T/C]	9	26,876,269	4.68	0.73	0.00000	9.61	0	17	647	0.059
AX-20614423	[G/A]	15	27,385,524	4.00	0.66	0.00000	8.65	0	21	643	0.053
AX-20804169	[T/G]	15	72,340,990	4.18	0.76	0.00000	7.35	0	16	648	0.045
AX-22615245	[T/C]	20	16,842,335	5.46	0.83	0.00000	10.03	0	13	651	0.062
AX-23079860	[G/A]	21	60,989,733	3.20	0.59	0.00000	7.17	0	27	637	0.044
AX-23563959	[T/C]	23	40,199,166	4.57	0.71	0.00000	9.66	0	18	646	0.060
		3				10				Σ	0.612

T26_His											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-18190772	[C/T]	1	51,660,552	23.30	4.36	0.00000	6.89	0	26	638	0.042
AX-25373812	[T/C]	4	1,120,424	-21.05	4.02	0.00000	6.67	0	31	633	0.041
AX-25401694	[A/G]	4	8,209,624	28.38	5.71	0.00000	6.06	0	15	649	0.036
AX-26381762	[C/T]	6	15,614,673	27.62	5.72	0.00000	5.77	0	15	649	0.034
AX-27732222	[A/G]	9	16,353,122	25.94	4.62	0.00000	7.54	0	23	641	0.046
AX-27772067	[T/C]	9	26,876,269	26.10	5.38	0.00000	5.82	0	17	647	0.035
AX-18964017	[T/C]	10	87,554,550	25.41	5.09	0.00000	6.12	0	19	645	0.037
AX-19197407	[C/T]	11	39,136,307	28.74	5.71	0.00000	6.20	0	15	649	0.037
AX-23435950	[T/G]	23	11,171,182	25.36	5.23	0.00000	5.81	0	18	646	0.035
AX-23563959	[T/C]	23	40,199,166	28.80	5.20	0.00000	7.34	0	18	646	0.045
		3			1	10				Σ	0.388

T27_iLe											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-26381762	[C/T]	6	15,614,673	3.47	0.45	0.00000	13.39	0	15	649	0.084
AX-26503246	[G/A]	6	47,840,338	2.90	0.39	0.00000	12.40	0	20	644	0.078
AX-27322264	[C/T]	8	24,242,477	2.60	0.31	0.00000	15.14	0	31	633	0.096
AX-27772067	[T/C]	9	26,876,269	3.00	0.42	0.00000	11.34	0	17	647	0.071
AX-18760894	[T/C]	10	36,871,587	2.76	0.44	0.00000	9.16	0	16	648	0.057
AX-19555781	[C/T]	12	19,367,988	2.67	0.43	0.00000	9.09	0	17	647	0.056
AX-19693559	[A/G]	12	55,180,437	1.57	0.25	0.00000	9.50	1	50	613	0.058
AX-23079860	[G/A]	21	60,989,733	2.23	0.34	0.00000	9.90	0	27	637	0.062
AX-23563959	[T/C]	23	40,199,166	2.69	0.42	0.00000	9.73	0	18	646	0.060
AX-24158606	[T/C]	26	21,853,792	3.43	0.45	0.00000	13.10	0	15	649	0.082
										2	0.702

T28_Leu											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-26381762	[C/T]	6	15,614,673	6.09	0.77	0.00000	14.05	0	15	649	0.088
AX-26503246	[G/A]	6	47,840,338	4.90	0.67	0.00000	12.10	0	20	644	0.076
AX-27322264	[C/T]	8	24,242,477	4.38	0.54	0.00000	14.66	0	31	633	0.093
AX-27772067	[T/C]	9	26,876,269	5.10	0.73	0.00000	11.20	0	17	647	0.070
AX-18760894	[T/C]	10	36,871,587	4.59	0.76	0.00000	8.64	0	16	648	0.053
AX-19555781	[C/T]	12	19,367,988	4.65	0.73	0.00000	9.37	0	17	647	0.058
AX-19693559	[A/G]	12	55,180,437	2.63	0.42	0.00000	9.04	1	50	613	0.055
AX-23079860	[G/A]	21	60,989,733	3.65	0.59	0.00000	9.07	0	27	637	0.056
AX-23563959	[T/C]	23	40,199,166	4.62	0.71	0.00000	9.75	0	18	646	0.060
AX-24158606	[T/C]	26	21,853,792	5.81	0.77	0.00000	12.81	0	15	649	0.080
										Σ	0.689

T29_Lys											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-25319135	[A/G]	3	110,487,238	5.37	0.91	0.00000	8.16	0	13	651	0.050
AX-26381762	[C/T]	6	15,614,673	5.64	0.85	0.00000	10.23	0	15	649	0.063
AX-26503246	[G/A]	6	47,840,338	4.80	0.74	0.00000	9.84	0	20	644	0.061
AX-27322264	[C/T]	8	24,242,477	4.00	0.60	0.00000	10.38	0	31	633	0.065
AX-27772067	[T/C]	9	26,876,269	5.06	0.80	0.00000	9.35	0	17	647	0.058
AX-18760894	[T/C]	10	36,871,587	4.90	0.83	0.00000	8.32	0	16	648	0.051
AX-19555781	[C/T]	12	19,367,988	4.76	0.80	0.00000	8.33	0	17	647	0.051
AX-20614423	[G/A]	15	27,385,524	4.32	0.72	0.00000	8.42	0	21	643	0.052
AX-23563959	[T/C]	23	40,199,166	5.00	0.78	0.00000	9.63	0	18	646	0.060
AX-24158606	[T/C]	26	21,853,792	4.98	0.85	0.00000	8.07	0	15	649	0.049
						10				Σ	0.560

T30_Met											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-18043309	[C/T]	1	10,784,288	1.45	0.24	0.00000	8.44	. 0	43	621	0.053
AX-26381762	[C/T]	6	15,614,673	2.94	0.40	0.00000	12.39	0	15	649	0.077
AX-26503246	[G/A]	6	47,840,338	2.40	0.35	0.00000	11.02	0	20	644	0.069
AX-27322264	[C/T]	8	24,242,477	2.10	0.28	0.00000	12.78	0	31	633	0.081
AX-27772067	[T/C]	9	26,876,269	2.54	0.38	0.00000	10.55	0	17	647	0.065
AX-18760894	[T/C]	10	36,871,587	2.32	0.39	0.00000	8.39	0	16	648	0.051
AX-19555781	[C/T]	12	19,367,988	2.31	0.38	0.00000	8.77	0	17	647	0.054
AX-23079860	[G/A]	21	60,989,733	1.95	0.30	0.00000	9.73	0	27	637	0.061
AX-23563959	[T/C]	23	40,199,166	2.26	0.37	0.00000	8.88	0	18	646	0.055
AX-24158606	[T/C]	26	21,853,792	2.98	0.40	0.00000	12.75	0	15	649	0.080
										Σ	0.646

T31_Phe											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-26381762	[C/T]	6	15,614,673	3.96	0.53	0.00000	12.49	0	15	649	0.078
AX-26503246	[G/A]	6	47,840,338	3.24	0.46	0.00000	11.11	0	20	644	0.069
AX-27322264	[C/T]	8	24,242,477	2.98	0.37	0.00000	14.21	0	31	633	0.090
AX-27772067	[T/C]	9	26,876,269	3.39	0.50	0.00000	10.43	0	17	647	0.065
AX-18760894	[T/C]	10	36,871,587	3.12	0.52	0.00000	8.39	0	16	648	0.051
AX-19555781	[C/T]	12	19,367,988	3.05	0.51	0.00000	8.53	0	17	647	0.052
AX-20614423	[G/A]	15	27,385,524	2.72	0.46	0.00000	8.31	0	21	643	0.051
AX-23079860	[G/A]	21	60,989,733	2.50	0.41	0.00000	8.94	0	27	637	0.056
AX-23563959	[T/C]	23	40,199,166	3.11	0.49	0.00000	9.30	0	18	646	0.057
AX-24158606	[T/C]	26	21,853,792	3.82	0.53	0.00000	11.64	0	15	649	0.072
				1 1	- 1	10				7	0.642

T32_Pro											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-18502845	[T/C]	1	132,861,279	1.65	0.30	0.00000	7.33	0	23	641	0.045
AX-22231045	[A/C]	2	59,871,413	1.09	0.20	0.00000	7.39	0	56	608	0.046
AX-25319135	[A/G]	3	110,487,238	2.29	0.39	0.00000	8.01	0	13	651	0.049
AX-26381762	[C/T]	6	15,614,673	2.62	0.36	0.00000	11.88	0	15	649	0.074
AX-26503246	[G/A]	6	47,840,338	1.94	0.32	0.00000	8.74	0	20	644	0.054
AX-27322264	[C/T]	8	24,242,477	1.62	0.26	0.00000	9.22	0	31	633	0.058
AX-27772067	[T/C]	9	26,876,269	2.01	0.34	0.00000	8.06	0	17	647	0.049
AX-19693559	[A/G]	12	55,180,437	1.11	0.20	0.00000	7.41	1	50	613	0.045
AX-20804169	[T/G]	15	72,340,990	1.96	0.36	0.00000	7.26	0	16	648	0.044
AX-23563959	[T/C]	23	40,199,166	2.26	0.33	0.00000	10.59	0	18	646	0.066
										Σ	0.530

T33_Ser											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-18502845	[T/C]	1	132,861,279	4.65	0.71	0.00000	9.98	0	23	641	0.062
AX-26381762	[C/T]	6	15,614,673	7.76	0.85	0.00000	18.18	0	15	649	0.114
AX-26503246	[G/A]	6	47,840,338	5.88	0.75	0.00000	13.82	0	20	644	0.087
AX-27322264	[C/T]	8	24,242,477	4.99	0.60	0.00000	15.15	0	31	633	0.096
AX-27772067	[T/C]	9	26,876,269	5,95	0.81	0.00000	12.10	0	17	647	0.075
AX-19555781	[C/T]	12	19,367,988	5.47	0.82	0.00000	10.27	0	17	647	0.064
AX-20614423	[G/A]	15	27,385,524	5.05	0.74	0.00000	10.74	0	21	643	0.067
AX-23079860	[G/A]	21	60,989,733	4.40	0.65	0.00000	10.39	0	27	637	0.065
AX-23563959	[T/C]	23	40,199,166	5.96	0.79	0.00000	12.84	0	18	646	0.080
AX-24158606	[T/C]	26	21,853,792	6.08	0.87	0.00000	11.19	0	15	649	0.070
						11				Σ	0.779

T34_Thr											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-26262288	[A/G]	5	106,428,975	7.97	1.66	0.00000	5.72	5	72	587	0.032
AX-18746427	[A/G]	10	33,224,717	6.14	1.27	0.00000	5.79	12	126	526	0.032
AX-18769685	[T/G]	10	39,082,570	9.60	2.03	0.00000	5.53	2	51	611	0.031
AX-22575025	[T/C]	20	6,813,318	12.11	2.61	0.00000	5.38	0	35	629	0.032
AX-22761859	[A/C]	20	55,540,767	8.05	1.71	0.00000	5.51	8	52	604	0.027
AX-23133264	[A/G]	22	1,567,110	9.53	1.89	0.00000	6.20	4	52	608	0.034
AX-23587337	[A/G]	23	45,155,618	5.10	1.10	0.00000	5.35	26	133	505	0.027
AX-24026091	[G/A]	25	32,579,073	5.25	1.13	0.00000	5.42	17	177	470	0.032
AX-24140890	[C/A]	26	17,843,332	14.15	3.06	0.00000	5.34	0	25	639	0.032
AX-24706146	[T/G]	29	8,539,335	20.32	4.20	0.00000	5.78	0	13	651	0.034
						1				Σ	0.313

T35_Tyr											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-25580996	[G/A]	4	55,884,511	-0.55	0.12	0.00000	5.45	136	318	210	0.031
AX-26381762	[C/T]	6	15,614,673	3.62	0.55	0.00000	9.90	0	15	649	0.061
AX-26503246	[G/A]	6	47,840,338	3.16	0.48	0.00000	9.99	0	20	644	0.062
AX-26506311	[A/G]	6	48,574,614	2.45	0.51	0.00000	5.63	0	18	646	0.034
AX-26506383	[T/C]	6	48,590,702	1.50	0.32	0.00000	5.48	0	49	615	0.033
AX-27322264	[C/T]	8	24,242,477	2.49	0.39	0.00000	9.45	0	31	633	0.059
AX-27772067	[T/C]	9	26,876,269	2.96	0.52	0.00000	7.57	0	17	647	0.046
AX-19555781	[C/T]	12	19,367,988	2.56	0.53	0.00000	5.82	0	17	647	0.035
AX-23563959	[T/C]	23	40,199,166	2.51	0.51	0.00000	5.90	0	18	646	0.035
AX-24158606	[T/C]	26	21,853,792	3.10	0.56	0.00000	7.39	0	15	649	0.045
			li .			- 1				2	0.442

T36_Val											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{\text{(SNP)}}/\sigma^2_{\text{(trait)}}$
AX-26381762	[C/T]	6	15,614,673	5.04	0.64	0.00000	13.69	0	15	649	0.085
AX-26503246	[G/A]	6	47,840,338	4.10	0.56	0.00000	12.02	0	20	644	0.075
AX-27322264	[C/T]	8	24,242,477	3.63	0.45	0.00000	14.34	0	31	633	0.091
AX-27772067	[T/C]	9	26,876,269	4.44	0.61	0.00000	12.05	0	17	647	0.075
AX-19555781	[C/T]	12	19,367,988	4.13	0.61	0.00000	10.47	0	17	647	0.065
AX-19693559	[A/G]	12	55,180,437	2.27	0.35	0.00000	9.56	1	50	613	0.058
AX-20614423	[G/A]	15	27,385,524	3.46	0.56	0.00000	9.08	0	21	643	0.056
AX-23079860	[G/A]	21	60,989,733	3.21	0.49	0.00000	9.95	0	27	637	0.062
AX-23563959	[T/C]	23	40,199,166	4.09	0.59	0.00000	10.84	0	18	646	0.067
AX-24158606	[T/C]	26	21,853,792	5.07	0.64	0.00000	13.86	0	15	649	0.087
										Σ	0.722

T37_Anserine											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-18055998	[A/G]	1	14,431,598	48.15	8.80	0.00000	7.20	0	46	617	0.045
AX-27424731	[G/T]	8	51,344,016	-15.13	3.23	0.00000	5.45	109	318	236	0.032
AX-27424853	[C/T]	8	51,375,304	-14.06	3.11	0.00001	5.14	159	314	190	0.029
AX-27425786	[T/C]	8	51,647,804	-26.47	6.20	0.00002	4.65	5	80	578	0.026
AX-19144806	[G/A]	11	25,933,743	45.54	9.93	0.00001	5.26	0	36	627	0.032
AX-19144908	[T/C]	11	25,963,192	49.53	11.40	0.00002	4.79	0	27	636	0.028
AX-19689338	[C/T]	12	54,186,929	30.84	7.18	0.00002	4.70	3	60	600	0.026
AX-19702222	[T/G]	12	57,591,886	32.72	7.55	0.00002	4.77	6	39	618	0.023
AX-21791204	[A/G]	19	12,185,794	15.46	3.56	0.00002	4.79	51	260	352	0.027
AX-22995714	[T/G]	21	39,673,649	77.36	15.61	0.00000	6.04	0	14	649	0.036
										Σ	0.303

T38_Carnosine											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-22259301	[G/T]	2	66,942,923	75.82	18.24	0.00004	4.44	. 3	40	620	0.023
AX-22429294	[A/G]	2	111,103,057	-64.79	15.47	0.00003	4.50	3	63	597	0.025
AX-26471045	[T/C]	6	39,816,286	-43.04	10.50	0.00005	4.33	13	134	516	0.024
AX-19966177	[A/C]	13	31,417,291	43.05	9.47	0.00001	5.18	20	161	482	0.029
AX-20217663	[T/C]	14	5,079,832	42.79	10.36	0.00004	4.39	13	142	508	0.024
AX-21195642	[A/G]	17	1,374,912	132.90	32.24	0.00004	4.37	0	16	647	0.025
AX-21641050	[A/G]	18	40,519,246	72.39	15.34	0.00000	5.54	1	73	589	0.034
AX-21909627	[T/G]	19	41,061,589	-40.29	9.15	0.00001	4.90	20	200	443	0.029
AX-21909807	[T/C]	19	41,105,089	-39.67	9.45	0.00003	4.52	16	197	450	0.027
AX-23685842	[T/G]	24	16,525,138	53.18	13.03	0.00005	4.30	3	101	559	0.025
										2	0,265

T39_Creatine											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-22054750	[T/C]	2	13,942,131	133.20	29.04	0.00001	5.27	3	14	646	0.024
AX-19965028	[C/T]	13	31,161,823	37.69	8.65	0.00002	4.81	64	271	328	0.027
AX-19965203	[G/A]	13	31,202,062	38.67	8.71	0.00001	4.98	60	255	348	0.027
AX-19965227	[C/T]	13	31,206,865	38.65	8.71	0.00001	4.97	60	253	350	0.027
AX-19965240	[G/A]	13	31,209,286	37.88	8.74	0.00002	4.77	59	253	351	0.026
AX-19965291	[T/C]	13	31,219,235	38.20	8.88	0.00002	4.71	54	250	359	0.026
AX-20217663	[T/C]	14	5,079,832	52.23	11.91	0.00001	4.87	13	142	508	0.027
AX-21730315	[A/G]	18	61,162,624	154.20	35.01	0.00001	4.91	0	18	645	0.029
AX-24303291	[A/G]	27	2,656,631	53.22	10.86	0.00000	5.92	19	170	474	0.034
AX-24303313	[G/A]	27	2,661,659	52.38	10.89	0.00000	5.73	19	168	476	0.033
				1 1	- 1	10				2	0.281

T40_Creatinine											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-25140449	[A/G]	3	66,243,494	5.39	1.23	0.00001	4.83	1	18	644	0.026
AX-27999095	[G/A]	9	87,069,561	1.51	0.33	0.00001	5.16	66	258	339	0.028
AX-27999116	[G/A]	9	87,074,303	1.47	0.34	0.00001	4.86	63	261	339	0.027
AX-27999153	[T/G]	9	87,080,565	1.42	0.33	0.00002	4.69	72	278	313	0.026
AX-20562681	[T/C]	15	14,495,324	2.16	0.46	0.00000	5.40	12	146	505	0.031
AX-20652886	[T/C]	15	35,789,851	2.37	0.54	0.00001	4.93	7	108	548	0.028
AX-20652920	[T/C]	15	35,797,810	2.33	0.53	0.00001	4.89	8	107	548	0.027
AX-22758170	[A/G]	20	54,523,949	1.81	0.42	0.00002	4.77	20	179	464	0.027
AX-22758676	[C/T]	20	54,671,001	1.63	0.40	0.00004	4.38	27	192	444	0.024
AX-23671931	[C/T]	24	12,610,081	5.14	1.24	0.00004	4.42	0	22	641	0.026
										Σ	0.270

T41_C14_0											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-28441631	[T/C]	1	147,920,597	-0.10	0.02	0.00001	4.84	64	304	295	0.029
AX-18565582	[G/T]	1	147,983,814	-0.10	0.02	0.00001	5.22	66	302	295	0.032
AX-22034875	[T/C]	2	8,141,614	0.17	0.04	0.00000	5.67	6	109	548	0.033
AX-28597226	[G/A]	15	68,135,423	-0.11	0.02	0.00000	6.54	155	324	184	0.038
AX-21307939	[C/G]	17	33,468,304	0.16	0.04	0.00001	5.16	5	115	543	0.031
AX-21948438	[C/G]	19	50,782,987	-0.34	0.07	0.00000	5.48	0	28	635	0.033
AX-21950135	[T/C]	19	51,317,647	0.19	0.03	0.00000	8.71	9	153	501	0.054
AX-21950176	[A/G]	19	51,326,750	0.18	0.03	0.00000	8.27	9	155	499	0.052
AX-21950207	[T/C]	19	51,333,432	0.20	0.03	0.00000	12.17	17	186	460	0.076
AX-24609752	[A/G]	28	32,121,352	-0.33	0.07	0.00001	5.00	1	22	640	0.027
						11				Σ	0.405

T42_C14_1											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-24155165	[C/T]	26	21,138,161	0.07	0.01	0.00000	16.68	128	330	205	0.104
AX-24155168	[G/A]	26	21,138,509	0.08	0.01	0.00000	23.59	156	338	169	0.148
AX-24155170	[C/T]	26	21,139,360	0.08	0.01	0.00000	23.59	156	338	169	0.148
AX-24155173	[C/T]	26	21,139,545	0.08	0.01	0.00000	22.75	155	337	171	0.142
AX-24155174	[C/T]	26	21,139,834	0.08	0.01	0.00000	23.59	156	338	169	0.148
AX-24155175	[T/C]	26	21,140,035	0.08	0.01	0.00000	19.26	108	335	220	0.124
AX-24155177	[T/C]	26	21,140,458	0.09	0.01	0.00000	26.40	131	338	194	0.166
AX-24155183	[C/A]	26	21,141,471	0.09	0.01	0.00000	26.54	137	343	183	0.169
AX-24155201	[G/A]	26	21,144,708	0.09	0.01	0.00000	26.55	137	343	183	0.169
AX-24155202	[A/G]	26	21,144,824	0.09	0.01	0.00000	26.55	137	343	183	0.169
						10				Σ	1.486

T43_C16_0											
SNP ID	SNP (MinorA/MajorB)	BTA	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-22315135	[T/C]	2	81,579,957	-0.69	0.17	0.00003	4.48	1	68	594	0.026
AX-22315324	[C/T]	2	81,645,767	-0.69	0.16	0.00002	4.64	2	67	594	0.027
AX-25647784	[C/T]	4	71,967,317	0.33	0.08	0.00002	4.66	87	315	261	0.027
AX-26170048	[T/C]	5	83,000,055	-0.34	0.08	0.00001	4.91	93	325	245	0.029
AX-26551659	[C/T]	6	61,087,517	0.35	0.08	0.00003	4.50	47	230	386	0.024
AX-19244529	[A/G]	11	50,368,798	-0.33	0.08	0.00002	4.74	118	342	203	0.029
AX-21950207	[T/C]	19	51,333,432	0.48	0.10	0.00000	5.88	17	186	460	0.035
AX-24080674	[C/T]	26	2,292,148	-0.38	0.09	0.00001	4.86	34	233	396	0.028
AX-24609752	[A/G]	28	32,121,352	-1.10	0.27	0.00004	4.45	1	22	640	0.024
AX-24775686	[T/C]	29	25,639,268	1.27	0.29	0.00002	4.73	0	21	642	0.028
			li .							2	0.278

T44_C16_1											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-25123909	[T/C]	3	61,433,639	-0.14	0.03	0.00001	4.94	125	346	192	0.030
AX-26878255	[T/G]	7	24,654,879	0.23	0.05	0.00001	4.83	2	116	545	0.030
AX-27850122	[T/C]	9	47,589,255	-0.48	0.11	0.00001	5.13	0	27	636	0.031
AX-20917174	[G/A]	16	15,825,216	-0.67	0.13	0.00000	6.64	0	18	645	0.040
AX-21948438	[C/G]	19	50,782,987	-0.55	0.10	0.00000	6.82	0	28	635	0.042
AX-21950135	[T/C]	19	51,317,647	0.20	0.04	0.00001	5.24	9	153	501	0.031
AX-21950176	[A/G]	19	51,326,750	0.19	0.04	0.00001	4.84	9	155	499	0.029
AX-21950207	[T/C]	19	51,333,432	0.22	0.04	0.00000	7.22	17	186	460	0.044
AX-23191214	[T/C]	22	14,972,151	-0.53	0.11	0.00000	5.37	0	23	640	0.032
AX-24325138	[C/T]	27	8,771,898	-0.56	0.12	0.00001	5.27	0	20	643	0.031
										Σ	0,340

T45_C18_0											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-22012942	[A/G]	2	2,479,388	0.43	0.10	0.00001	4.93	4	102	557	0.029
AX-25028473	[G/A]	3	35,278,329	1.25	0.24	0.00000	6.53	1	12	650	0.034
AX-19541019	[G/T]	12	15,803,262	-0.24	0.05	0.00001	4.92	99	311	253	0.028
AX-19541031	[C/T]	12	15,805,907	-0.24	0.05	0.00001	4.92	100	312	251	0.028
AX-22588624	[T/C]	20	9,919,863	1.16	0.25	0.00001	5.29	0	15	648	0.031
AX-24155175	[T/C]	26	21,140,035	-0.25	0.05	0.00001	5.19	108	335	220	0.032
AX-24155177	[T/C]	26	21,140,458	-0.25	0.05	0.00000	5.36	131	338	194	0.032
AX-24155183	[C/A]	26	21,141,471	-0.25	0.05	0.00000	5.32	137	343	183	0.032
AX-24155201	[G/A]	26	21,144,708	-0.25	0.05	0.00001	5.16	137	343	183	0.031
AX-24155202	[A/G]	26	21,144,824	-0.25	0.05	0.00001	5.16	137	343	183	0.031
										Σ	0.310

T46_C18_1											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-25369923	[T/C]	3	121,373,751	0.83	0.20	0.00003	4.51	1	100	562	0.028
AX-20025661	[C/G]	13	44,986,332	0.59	0.14	0.00003	4.53	18	168	477	0.025
AX-21152153	[C/A]	16	72,582,067	-1.31	0.31	0.00003	4.48	0	37	626	0.027
AX-21583275	[C/T]	18	26,258,593	-0.51	0.10	0.00000	5.98	123	330	210	0.036
AX-21583288	[C/T]	18	26,261,965	0.51	0.10	0.00000	5.97	156	341	166	0.036
AX-21950034	[T/C]	19	51,296,645	-0.52	0.11	0.00000	5.51	56	249	358	0.031
AX-21950049	[T/C]	19	51,299,813	-0.52	0.11	0.00000	5.61	59	246	358	0.031
AX-21950135	[T/C]	19	51,317,647	-0.81	0.15	0.00000	6.79	9	153	501	0.042
AX-21950176	[A/G]	19	51,326,750	-0.80	0.15	0.00000	6.68	9	155	499	0.041
AX-21950207	[T/C]	19	51,333,432	-0.87	0.14	0.00000	9.49	17	186	460	0.059
		3			1	10				Σ	0.355

T47_C18_1_11t											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(trait)}$
AX-18251673	[T/C]	1	67,509,898	0.47	0.09	0.00000	6.55	0	14	649	0.040
AX-25773307	[C/T]	4	103,095,211	0.47	0.08	0.00000	7.48	1	12	650	0.040
AX-26175706	[A/C]	5	84,394,173	0.38	0.06	0.00000	10.38	0	35	628	0.065
AX-26175813	[A/G]	5	84,417,977	0.33	0.05	0.00000	11.37	3	41	619	0.064
AX-26175984	[G/A]	5	84,460,649	0.30	0.05	0.00000	7.69	0	42	621	0.048
AX-26362672	[G/A]	6	10,609,153	0.19	0.03	0.00000	7.29	4	90	569	0.043
AX-27247445	[A/G]	8	5,258,690	0.46	0.08	0.00000	7.58	0	17	646	0.046
AX-27247472	[T/C]	8	5,263,988	0.51	0.09	0.00000	8.14	0	15	648	0.050
AX-27690902	[A/G]	9	5,551,825	0.37	0.07	0.00000	6.93	0	24	639	0.042
AX-24256331	[T/C]	26	44,146,351	0.29	0.06	0.00000	5.81	3	21	639	0.028
						1				2	0.467

T48_C18_2											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trait)}$
AX-18281815	[G/A]	1	74,558,517	0.65	0.14	0.00000	5.32	0	18	645	0.032
AX-24930045	[A/G]	3	10,821,710	0.60	0.13	0.00001	5.16	0	21	642	0.031
AX-25539361	[T/C]	4	44,662,461	0.29	0.06	0.00000	5.47	4	89	570	0.032
AX-27041288	[A/C]	7	65,384,563	0.79	0.17	0.00000	5.63	0	13	650	0.033
AX-27322264	[C/T]	8	24,242,477	0.52	0.11	0.00000	5.40	0	29	634	0.032
AX-27601628	[T/C]	8	96,531,130	0.68	0.15	0.00001	5.15	0	16	647	0.030
AX-19026965	[C/T]	10	102,256,483	0.83	0.15	0.00000	6.99	0	15	648	0.042
AX-20031373	[G/A]	13	46,174,079	0.18	0.04	0.00001	5.14	29	210	424	0.029
AX-23398089	[C/A]	23	2,111,069	0.47	0.10	0.00001	5.04	0	34	629	0.030
AX-24442581	[T/C]	27	37,228,495	0.62	0.13	0.00000	5.50	0	21	642	0.033
										Σ	0.325

T49_SFA											
SNP ID	SNP (MinorA/MajorB)	ВТА	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(trail}$
AX-25812141	[G/A]	4	112,255,049	3.72	0.54	0.00000	10.76	1	11	651	0.0
AX-25812348	[T/C]	4	112,297,194	2.75	0.55	0.00000	6.08	1	11	651	0.0
AX-26785405	[T/G]	7	1,510,073	3.00	0.45	0.00000	10.13	1	18	644	0.0
AX-26786782	[T/G]	7	1,847,161	2.31	0.47	0.00000	5.98	1	17	645	0.0
AX-27048193	[T/C]	7	67,097,956	3.26	0.51	0.00000	9.36	1	13	649	0.0
AX-27068533	[T/C]	7	71,994,126	2.23	0.37	0.00000	8.65	3	22	638	0.0
AX-27114095	[G/A]	7	83,594,165	1.43	0.29	0.00000	5.88	2	49	612	0.0
AX-27230875	[T/C]	8	952,227	2.90	0.59	0.00000	5.87	0	13	650	0.0
AX-18856018	[C/T]	10	61,213,939	2.20	0.41	0.00000	7.02	1	24	638	0.0
AX-23099192	[A/G]	21	65,157,100	2.37	0.46	0.00000	6.53	1	18	644	0.0
										Σ	0,
T50_USF	CND										
SNP ID	SNP (MinorA/MajorB)	BTA	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)/}\sigma^2_{(tra}$
AX-25812141	[G/A]	4	112,255,049	-4.22	0.57	0.00000	12.57	1	11	651	0.0
AX-25812348	[T/C]	4	112,297,194	-3.38	0.57	0.00000	8.21	1	11	651	0.0
AX-26785405	[T/G]	7	1,510,073	-3.37	0.47	0.00000	11.62	1	18	644	0.0
AX-27048193	[T/C]	7	67,097,956	-3.68	0.54	0.00000	10.87	1		649	0.0
X-27068533	[T/C]	7	71,994,126	-2.44	0.38	0.00000	9.48	3		638	0.
XX-27000333	[C/T]	7	73,692,604	-3.14	0.54	0.00000	8.02	1		649	0.
AX-27114095	[G/A]	7	83,594,165	-1.79	0.30	0.00000	8.28	2		612	0.0
AX-18856018	[C/T]	10	61,213,939	-2.50	0.30	0.00000	8.18	1		638	0.
AX-18836018 AX-23092797	18.31.31	21	Control Water Street Control	-2.50	0.42	0.00000	7.97	1		639	0.
AX-23092797 AX-23099192	[A/G]		63,698,095	-2.50	0.43	0.00000					
4X-23099192	[A/G]	21	65,157,100	-2./3	0.48	0.00000	7.78	1	18	644	0.
T51_PUFA	SNP	DTA	D. W. A.A.	Antique	er Ir	n de	/31.0.C10D	NIA A	NIAD	NDD	2 2
SNP ID	(MinorA/MajorB)	BTA	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(tr}$
AX-24930045	[A/G]	3	10,821,710	0.89	0.19	0.00000	5.40	0	21	642	0.
AX-27925261	[T/G]	9	68,093,688	1.07	0.22	0.00000	5.64	0	15	648	0.
AX-19026965	[C/T]	10	102,256,483	1.07	0.22	0.00000	5.67	0	15	648	0.
X-20031373	[G/A]	13	46,174,079	0.29	0.06	0.00000	6.02	29	210	424	0.
AX-20031683	[T/C]	13	46,239,050	-0.21	0.05	0.00001	5.17	110	300	253	0.
AX-21448597	[A/G]	17	70,225,291	0.60	0.14	0.00001	4.90	1	39	623	0.
AX-23046539	[C/T]	21	53,059,305	-0.77	0.17	0.00001	5.04	0	26	637	0.
AX-23398089	[C/A]	23	2,111,069	0.70	0.15	0.00000	5.31	0	34	629	0.
AX-24442581	[T/C]	27	37,228,495	0.90	0.19	0.00000	5.57	0	21	642	0.0
AX-24464499	[G/T]	27	41,981,338	1.06	0.24	0.00001	4.88	0	13	650	0.
										Σ	0,
r52_UFA/SFA	SNP										Viv
SNP ID	(MinorA/MajorB)	BTA	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	σ ² _{(SNP)/} σ ² _{(tr.}
X-25812141	[G/A]	4	112,255,049	-0.16	0.04	0.00000	5.37	1		651	0.
X-26706723	[A/G]	6	102,496,931	0.08	0.02	0.00001	4.95	3		602	0.
AX-26785405 AX-27068533	[T/G]	7	1,510,073	-0.14 -0.11	0.03	0.00000	5.47 5.34	1		644	0. 0.
AX-27068533 AX-27114095	[T/C]	7	71,994,126 83,594,165	-0.11	0.02	0.00000	4.77	2		612	0.
AX-2/114095 AX-20201243	[G/A] [T/C]	13	83,594,165	0.03	0.02	0.00002	4.77	79		305	0.
AX-20201243 AX-20217259	[I/C] [G/A]	14	4,982,761	-0.06	0.01	0.00003	5.74	79		519	0.
AX-20217239 AX-20223320	[C/T]	14	6,324,435	-0.03	0.01	0.00000	4.74	79		284	0.
AX-20223320 AX-21978787	[G/A]	19	58,200,628	-0.03	0.01	0.00002	4.74	67	298	298	0.
XX-23023406	[A/G]	21	46,856,948	0.06	0.02	0.00002	4.42	3		584	0.
										Σ	0.
T53_n-6/n-3	SNP										V _D
SNP ID	(MinorA/MajorB)	BTA	Position(bp)	Additive	StdErr	P-value	(-)LOG10P	NAA	NAB	NBB	$\sigma^2_{(SNP)}/\sigma^2_{(tr}$
AX-26288105	[T/C]	5	111,660,949	2.32	0.44	0.00000	6.77	1		644	0.
AX-19007753	[A/G]	10	97,917,534	2.54	0.53	0.00000	5.65	0		648	0.
	[C/G]	18	59,762,878	2.62	0.46	0.00000	7.71	0		643	0.
AX-21725477	[C/T]	18	60,136,641	1.57	0.31	0.00000	6.14	0		618	0.
AX-21725477 AX-21726620		18	61,027,640	1.54	0.30	0.00000	6.49	0		613	0.
AX-21725477 AX-21726620 AX-21729752	[T/C]					0.00000	6.21	0	49	614	0.
AX-21725477 AX-21726620 AX-21729752 AX-21729760	[T/C] [T/C]	18	61,029,219	1.52	0.30						
AX-21725477 AX-21726620 AX-21729752 AX-21729760 AX-21730830	[T/C] [T/C] [T/C]	18 18	61,272,207	1.86	0.38	0.00000	5.86	0	30	633	0.
AX-21725477 AX-21726620 AX-21729752 AX-21729760 AX-21730830 AX-22924906	[T/C] [T/C] [T/C] [C/T]	18 18 21	61,272,207 22,487,251	1.86 2.13	0.38 0.41	0.00000 0.00000	5.86 6.63	0	30 26	633 637	0. 0.
AX-21725477 AX-21726620 AX-21729752 AX-21729760 AX-21730830	[T/C] [T/C] [T/C]	18 18	61,272,207	1.86	0.38	0.00000	5.86	0	30 26 18	633	0.

- 라. 전장연관분석(GWAS) 결과 고급육·고기능성 연관 SNP 주변의 후보유전자 조사
- 전장연관분석(GWAS) 결과 고급육·고기능성과 연관되어 유의적으로 발굴되어진 SNP 주변의 후보 유전자를 NCBI 사이트에서 생물정복학적 도구를 이용하여 발굴하였으며 아래표에 나타나 있음
 - 이러한 결과는 차년도 자료를 수집 통합하여 고급육·고기능성에 영향하는 원인 유전자를 발굴하는 데 부가적인 정보를 제공해 줄 것으로 기대됨

Trait	SNP ID	SNP	BTA	position(bp)	Gene ID	Symbol	Description		
AMP	AX-25251120	A/G	3	94,602,302	613,428	ZFYVE9	zinc finger, FYVE domain contain	ning 9	
AMP	AX-21228857	C/T	17	10,389,610	510,704	ARHGAP10	Rho GTPase activating protein 1	0	
AMP	AX-23947669	T/C	25	14,316,609	530,050	MYH11	myosin, heavy chain 11, smooth	muscle	
Arg	AX-27393057	C/T	8	42,990,741	540,904	SMARCA2	SWI/SNF related, matrix associate	ed, actin	
Arg	AX-27393120	G/A	8	43,003,529	540,904	SMARCA2	dependent regulator of chroma	tin, subfamily a,	
Arg	AX-27393413	T/C	8	43,074,098	540,904	SMARCA2	member 2Locus tagBOS_8813		
Arg	AX-19505018	A/C	12	7,148,927	100,848,938	LOC100848938	SCAN domain-containing protei	n 3-like	
BFT	AX-20188782	T/C	13	80,991,041	100,140,064	LOC100140064	uncharacterized LOC100140064		
C10_0	AX-18138304	C/T	1	37,088,650	537,951	EPHA3	EPH receptor A3		
C10_0	AX-18271028	G/A	1	72,068,222	539,803	MFI2	antigen p97 (melanoma associa	ted) identified by	monoclonal anti
C10_0	AX-18475843	A/G	1	126,183,969	535,743	SLC9A9	solute carrier family 9, subfamily	A (NHE9, cation	proton antiport
C10_0	AX-26786496	T/C	7	1,795,452	100,848,503	LOC100848503	40S ribosomal protein S4-like		
C10_0	AX-27292386	G/A	8	16,387,599	784,112	LOC784112	testis-specific Y-encoded protein	1-like	
C10_0	AX-27292518	A/G	8	16,422,013	784,112	LOC784112	testis-specific Y-encoded protein	1-like	
C10_0	AX-27292563	C/T	8	16,431,196	784,112	LOC784112	testis-specific Y-encoded protein	1-like	
C10_0	AX-27292642	G/A	8	16,459,953	784,112	LOC784112	testis-specific Y-encoded protein	1-like	
C10_0	AX-27292662	C/A	8	16,463,743	784,112	LOC784112	testis-specific Y-encoded protein	1-like	
C10_0	AX-27292681	T/C	8	16,466,558	784,112	LOC784112	testis-specific Y-encoded protein	1-like	
C10_0	AX-27653715	T/C	8	108,610,606	281,536	TLR4	toll-like receptor 4		
C10_0	AX-18729794	A/C	10	28,944,433	539,899	RYR3	ryanodine receptor 3		
C10_0	AX-18851216	G/A	10	59,866,957	514,642	TRPM7	transient receptor potential catio	on channel, subf	amily M, member
C10_0	AX-19078515	T/C	11	9,344,952	100,848,188	LOC100848188	uncharacterized LOC100848188		
C10_0	AX-19273396	C/T	11	58,453,657	521,137	LRRTM4	leucine rich repeat transmembra	ane neuronal 4	
C10_0	AX-19273845	A/G	11	58,579,511	521,137	LRRTM4	leucine rich repeat transmembra	ane neuronal 4	
C10_0	AX-19273932	G/A	11	58,601,271	521,137	LRRTM4	leucine rich repeat transmembra	ane neuronal 4	
C10_0	AX-19927939	A/G	13	22,138,761	100,848,730	LOC100848730	uncharacterized LOC100848730		
C10_0	AX-20561872	G/A	15	14,319,119	521,194	MAML2	mastermind-like 2 (Drosophila)		
C10_0	AX-20562003	G/A	15	14,346,566	521,194	MAML2	mastermind-like 2 (Drosophila)		
C10_0	AX-20911600	C/A	16	14,184,421	613,624	RGS18	regulator of G-protein signaling	18	
C10_0	AX-21693055	G/A	18	52,252,428	526,915	LOC526915	histone cluster 1, H2bh-like		
C10_0	AX-23201374	T/C	22	17,183,599	532,578	SETD5	SET domain containing 5		
C10_0	AX-24504006	A/G	28	6,066,812	528,971	PCNXL2	pecanex-like 2 (Drosophila)		
C10_0	AX-24701757	T/C	29	7,483,203	352,958	CTSC	cathepsin C		
C12_0	AX-18187550	C/T	1	50,846,287	525,906	CBLB	Cas-Br-M (murine) ecotropic ret	roviral transform	ing sequence b
C14_0	AX-21950207	C/T	19	51,333,432	518,878	CCDC57	coiled-coil domain containing 5	7	
C14_1	AX-25880686	G/T	5	7,538,015	528,870	NAV3	neuron navigator 3		
C14_1	AX-21818010	C/A	19	18,538,900	538,774	SUZ12	suppressor of zeste 12 homolog	g (Drosophila)	
C14_1	AX-21818011	G/A	19	18,539,339	538,774	SUZ12	suppressor of zeste 12 homolog	(Drosophila)	

	SNP ID	SNP	BTA	position(bp)	Gene ID	397000000	Description		
4_1	AX-21950207	C/T	19	51,333,432	518,878	CCDC57	coiled-coil domain containing 5	7	
4_1	AX-22614232	C/T	20	16,597,806	538,236	IPO11	importin 11		
4_1	AX-24155165	T/C	26	21,138,161	280,924	SCD	stearoyl-CoA desaturase (delta-	9-desaturase)	
4_1	AX-24155168	G/A	26	21,138,509	280,924	SCD	stearoyl-CoA desaturase (delta-	9-desaturase)	
4_1	AX-24155170	C/T	26	21,139,360	280,924	SCD	stearoyl-CoA desaturase (delta-	9-desaturase)	
4_1	AX-24155173	C/T	26	21,139,545	280,924	SCD	stearoyl-CoA desaturase (delta-	9-desaturase)	
4_1	AX-24155174	C/T	26	21,139,834	280,924	SCD	stearoyl-CoA desaturase (delta-	9-desaturase)	
4_1	AX-24155175	C/T	26	21,140,035	280,924	SCD	stearoyl-CoA desaturase (delta-	9-desaturase)	
4_1	AX-24155177	C/T	26	21,140,458	280,924		stearoyl-CoA desaturase (delta-		
4_1	AX-24155183	A/C	26	21,141,471	280,924		stearoyl-CoA desaturase (delta-		
4_1	AX-24155201	A/G	26	21,144,708	280,924		stearoyl-CoA desaturase (delta-		
4_1	AX-24155202	G/A	26	21,144,824	280,924		stearoyl-CoA desaturase (delta-		
	AX-24155363						-		
4_1		T/C	26	21,192,152	280,924		stearoyl-CoA desaturase (delta-		DE-
4_1	AX-24207088	C/T	26	33,385,494	780,850		vesicle transport through intera	ction with t-SNA	KES
4_1	AX-24207090	A/G	26	33,386,212	780,850		homolog 1A (yeast)		-
5_0	AX-18833805	A/G	10	55,189,586	783,948		ribosomal L24 domain containir		
5_0	AX-18833942	G/A	10	55,217,409	783,948		ribosomal L24 domain containir		The same of the sa
6_1	AX-25894082	A/C	5	11,047,989	536,906		protein tyrosine phosphatase, r		
6_1	AX-27095942	A/G	7	79,037,287	785,099	LOC785099	calcium-binding mitochondrial	carrier protein SC	aMC-3-like
6_1	AX-27198338	C/T	7	105,566,086	787,122	LOC787122	ADP/ATP translocase 1-like		
7_0	AX-18417355	G/A	1	110,376,357	525,900	SHOX2	short stature homeobox 2		
8_0	AX-26045203	T/C	5	50,810,707	614,880	PPM1H	protein phosphatase, Mg2+/Mr	12+ dependent,	1H
8_0	AX-22625740	T/C	20	19,339,914	539,556	PDE4D	phosphodiesterase 4D, cAMP-s	pecific	
8_0	AX-22625746	A/G	20	19,341,257	539,556		phosphodiesterase 4D, cAMP-s		
8_0	AX-24155175	C/T	26	21,140,035	280,924		stearoyl-CoA desaturase (delta-		
8_1	AX-20605913	C/T	15	25,495,619	782,358		neurexophilin and PC-esterase		ember 2
8_1	AX-21950049	C/T	19	51,299,813	518,878		coiled-coil domain containing 5	S-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
							171		
8_1	AX-21950207	C/T	19	51,333,432	518,878		coiled-coil domain containing 5		
8_1	AX-21978787	A/G	19	58,200,628	100,336,619		sidekick cell adhesion molecule		11. 11.10 (11.10 (11.10 (11.10 (11.10 (11.10 (11.10 (11.10 (11.10 (11.10 (11.10 (11.10 (11.10 (11.10 (11.10 (11.10
8_1	AX-23134316	T/C	22	1,860,475	510,209		solute carrier family 4, sodium I	20 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1_11t	AX-23484977	G/A	23	22,044,073	100,271,839		chromosome 23 open reading	trame, human C6	iorf141
8_2	AX-25539361	C/T	4	44,662,461	100,138,038	ARMC10	armadillo repeat containing 10		
8_2	AX-28468302	A/G	5	19,015,523	100,138,578	LOC100138578	60S ribosomal protein L7-like 1-	like	
8_2	AX-20031373	A/G	13	46,174,079	788,075	LOC788075	60S ribosomal protein L17-like		
8_3	AX-27926911	G/T	9	68,562,029	100,138,434	LAMA2	laminin, alpha 2		jį
0_0	AX-18260125	G/A	1	69,357,577	100,848,917	LOC100848917	kalirin-like		
0_0	AX-18581755	T/C	1	151,628,490	520,743	KCNJ6	potassium inwardly-rectifying ch	nannel, subfamily	J, member 6
0_0	AX-22126452	G/A	2	31,659,833	532,067		COBL-like 1		
	I Service of Control of the Service of Control of Contr					. 0.00000000000000000000000000000000000	AND A CONTROL OF THE PARTY.		
rait	SNP ID	SNP	BTA	A CONTRACTOR OF THE CONTRACTOR	Gene ID		Description		
0_0	AX-22128224	A/G	2	32,136,503	497,029	GRB14	growth factor receptor-bound p	rotein 14	
0_0	AX-22128575	C/T	2	32,247,100	497,029	GRB14	growth factor receptor-bound p	rotein 14	
0_0	AX-22128730	G/A	2	32,285,812	497,029	GRB14	growth factor receptor-bound p	rotein 14	
0_0	AX-25064560	C/T	3	45,283,157	786,305	LOC786305	nucleolar protein of 40 kDa-like		
0_0	AX-26585352	C/T	6	70,057,988	100,847,212	LOC100847212	uncharacterized LOC100847212		
0_0	AX-26649007	G/A	6	88,111,170	530,642		deoxycytidine kinase		
					50 Marit 1990			10	
0_0	AX-26687976	A/G	6	98,011,766	506,971		RasGEF domain family, member		59 D. F. #100 STONE (1997)
0_0	AX-26699062	C/T	6	100,620,777	506,880		non-POU domain containing, oc	tamer-binding p	seudogene
0_0	AX-26767328	C/T	6	116,760,857	617,976		LIM domain binding 2		
0_0	AX-27607974	G/A	8	98,139,171	783,574	LOC783574	60S ribosomal protein L7-like		
0_0	AX-27697115	C/A	9	7,602,328	100,848,047	LOC100848047	cAMP-dependent protein kinase	type 1-alpha red	gulatory subunit-
0_0	AX-27732857	C/T	9	16,503,577	100,295,568		60S ribosomal protein L37 pseu		
0_0	AX-27732883	C/T	9	16,508,535	100,295,568		60S ribosomal protein L37 pseu-	- 17.0 - 17.00 1000	
								1.70	E
0_0	AX-27808319	C/T	9	36,391,522	540,355		heparan sulfate (glucosamine) 3	-U-suitotransfera	.5e 3
0_0	AX-27816529	A/G	9	38,526,454	100,138,380		nucleophosmin-like		
0_0	AX-27963105	G/A	9	77,698,668	536,155	REPS1	RALBP1 associated Eps domain	containing 1	
0_0	AX-27963597	C/T	9	77,824,446	505,914	ABRACL	ABRA C-terminal like		
0_0	AX-27984132	C/T	9	83,340,595	534,358	UTRN	utrophin		
0_0	AX-27987506	A/G	9	84,150,392	534,358		utrophin		
0_0	AX-19544428	C/T	12	16,568,996	505,325		leucine-rich repeats and calponi	n homology (CH	domain contain
								nomology (cn	Jonain Contail
0_0	AX-19786528	A/G	12	79,880,331	616,045		dedicator of cytokinesis 9	1.26.26.20	Little 2007
0_0	AX-20758493	G/A	15	61,428,234	281,880		potassium voltage-gated channe	ei, snaker-related	supramily, memi
0_0	AX-20944917	G/A	16	23,220,404	533,920		lysophospholipase-like 1		
0_0	AX-21811662	G/T	19	17,100,574	617,930	ACCN1	amiloride-sensitive cation chann	el 1, neuronal	
0_0	AX-23043911	T/C	21	52,313,496	539,366	LRFN5	leucine rich repeat and fibroned	tin type III doma	in containing 5
0_0	AX-23087008	G/A	21	62,502,143	617,871	C21H14orf132	chromosome 21 open reading f	rame, human C14	4orf132
0_0	AX-23087025	C/T	21	62,504,784	617,871		chromosome 21 open reading f		
							transcription factor AP-2 delta (a		
0_0	AX-23488509	A/G	23	22,909,969	539,910			reavouring entranc	cr binding prote
0_0	AX-23545459	T/C	23	36,037,356	100,847,951		uncharacterized LOC100847951		
IN IN	AX-23989765	T/C	25	24,361,393	100,848,497		uncharacterized LOC100848497		
0_0	AX-24457569	C/A	27	40,459,747	616,895	RARB	retinoic acid receptor, beta		
0_0	AX-23499532	T/C	23	25,279,637	617,293	ELOVL5	ELOVL fatty acid elongase 5		
	THE RESIDENCE OF STREET OF STREET, STR	C/T	13	25,537,103	513,129		KIAA1217 ortholog		
0_0 0_1	AX-19941483						KIAA1217 ortholog		
0_0 0_1 0_2	AX-19941483		10	25 562 552					
0_0 0_1 0_2 0_2	AX-19941617	G/T	13	25,563,553	513,129		A STATE OF THE STA		
0_0 0_1 0_2 0_2 0_2	AX-19941617 AX-19941717	G/T C/T	13	25,589,173	513,129	KIAA1217	KIAA1217 ortholog		
0_0 0_1 0_2 0_2	AX-19941617	G/T				KIAA1217	A STATE OF THE STA		

Trait	SNP ID	SNP	BTA	position(bp)	Gene ID	Symbol Description
C20_4	AX-19671129	T/C	12	49,522,021	100,847,215	LOC100847215 uncharacterized LOC100847215
C20_4	AX-24375844	C/A	27	21,360,782	100,313,312	MIR383 microRNA mir-383
C20_4	AX-24375863	A/C	27	21,364,422	100,313,312	MIR383 microRNA mir-383
C24_1	AX-19670698 AX-19670860	C/T	12	49,419,674 49,452,757	100,847,215	LOC100847215 uncharacterized LOC100847215 LOC100847215 uncharacterized LOC100847215
C24_1 C24_1	AX-19670925	G/T G/A	12	49,476,187	100,847,215	LOC100847215 uncharacterized LOC100847215
C24_1	AX-19671129	T/C	12	49,522,021	100,847,215	LOC100847215 uncharacterized LOC100847215
Carnosine	AX-26521340	C/T	6	52,893,126	539,158	ATOH1 atonal homolog 1 (Drosophila)
Carnosine	AX-26521403	A/G	6	52,907,402	100,139,828	LOC100139828 UBX domain-containing protein 6-like
Carnosine	AX-26521465	T/C	6	52,926,233	100,139,828	LOC100139828 UBX domain-containing protein 6-like
Carnosine	AX-23939368	C/T	25	12,445,569	100,139,490	SHISA9 shisa homolog 9 (Xenopus laevis)
CLA_10t12c	AX-18314545	G/A	1	82,822,087	615,672	VPS8 vacuolar protein sorting 8 homolog (S. cerevisiae)
CLA_10t12c CLA_10t12c	AX-25992709 AX-26443355	G/A C/T	5	36,791,655 32,157,001	614,719 539,158	TMEM117 transmembrane protein 117 ATOH1 atonal homolog 1 (Drosophila)
CLA_10t12c	AX-27628579	T/G	8	102,950,951	514,357	UGCG UDP-glucose ceramide glucosyltransferase
CLA_10t12c	AX-27628600	C/T	8	102,957,965	514,357	UGCG UDP-glucose ceramide glucosyltransferase
CLA_10t12c	AX-27730026	C/T	9	15,802,561	281,866	IMPG1 interphotoreceptor matrix proteoglycan 1
CLA_10t12c	AX-18728985	G/A	10	28,791,298	539,899	RYR3 ryanodine receptor 3
CLA_10t12c	AX-20188612	A/G	13	80,958,819	539,018	ZFP64 zinc finger protein 64 homolog (mouse)
CLA_10t12c	AX-23581420	T/C	23	43,860,378	281,137	EDN1 endothelin 1
CLA_9c11t CLA_9c11t	AX-25893030	G/A	5	10,777,943	531,552	ACSS3 acyl-CoA synthetase short-chain family member 3
CLA_9c11t	AX-21559792 AX-22939319	A/G C/T	18 21	21,046,339 25,986,348	539,135 100,297,143	TOX3 TOX high mobility group box family member 3 ANKRD34C ankyrin repeat domain 34C
CLA_9c11t	AX-23238762	G/A	22	26,315,000	504,415	CHL1 cell adhesion molecule with homology to L1CAM (close homology
CLA_9c11t	AX-23499532	T/C	23	25,279,637	617,293	ELOVL5 ELOVL fatty acid elongase 5
CLA_9c11t	AX-24636433	G/A	28	38,054,654	539,977	NRG3 neuregulin 3
col_a	AX-22422254	T/C	2	109,323,936	100,336,136	LOC100336136 TIR domain-containing adapter molecule 2-like
Creatinine	AX-18106114	T/C	1	27,875,299	100,848,640	LOC100848640 craniofacial development protein 2-like
Creatinine	AX-25816531	G/A	16	113,221,141	517,496	ZNF777 zinc finger protein 777
Cys	AX-21020775 AX-25602173	G/A C/T	16	42,138,548 61,264,954	540,683 527,805	VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae) LOC527805 uncharacterized LOC527805
Flavor	AX-27126155	T/C	7	86,665,455	538,062	EDIL3 EGF-like repeats and discoidin I-like domains 3
Flavor	AX-27126158	T/G	7	86,666,022	538,062	EDIL3 EGF-like repeats and discoidin I-like domains 3
Flavor	AX-27126254	G/A	7	86,705,135	538,062	EDIL3 EGF-like repeats and discoidin I-like domains 3
Flavor	AX-27126551	A/G	7	86,774,874	538,062	EDIL3 EGF-like repeats and discoidin I-like domains 3
Flavor	AX-27126601	G/A	7	86,786,843	538,062	EDIL3 EGF-like repeats and discoidin I-like domains 3
Flavor	AX-19787687	G/C	12	80,132,782	100,125,312	UBAC2 UBA domain containing 2
Flavor	AX-21134383	C/T	16	68,214,341	521,326	HMCN1 hemicentin 1
Trait	SNP ID	SNP	BTA	position(bp)	Gene ID	Symbol Description
Flavor	AX-21134426	G/A	16	68,222,816	521,326	HMCN1 hemicentin 1
Flavor	AX-21550914	C/T	18	18,992,033	618,586	NKD1 naked cuticle homolog 1 (Drosophila)
Flavor	AX-21646944	C/T	18	41,780,924	540,209	TSHZ3 teashirt zinc finger homeobox 3
Flavor	AX-24248457	T/C	26	42,525,805	518,515	BTBD16 BTB (POZ) domain containing 16
Glu	AX-19168151	C/A	11	31,495,990	281,172	FSHR follicle stimulating hormone receptor
Glu	AX-21553751	T/C	18	19,602,600	514,467	SALL1 sal-like 1 (Drosophila)
Gly	AX-26428013	G/A	6	28,013,275	100,301,359	LOC100301359 DNA fragmentation factor subunit alpha pseudogene
Gly	AX-27659188	T/C	8	109,966,435	538,990	DBC1 deleted in bladder cancer 1
Gly	AX-19275204	T/C	11		521,137	LRRTM4 leucine rich repeat transmembrane neuronal 4
		- 70		59,006,381		
Heatloss	AX-23973572	T/G	25	20,634,745	786,830	LOC786830 protein CWC15 homolog
His	AX-20561145	G/T	15	14,152,846	521,194	MAML2 mastermind-like 2 (Drosophila)
His	AX-23344522	G/C	22	51,025,799	534,029	IP6K1 inositol hexakisphosphate kinase 1
His	AX-23344565	G/A	22	51,035,521	534,029	IP6K1 inositol hexakisphosphate kinase 1
Нуро	AX-27881609	C/A	9	56,458,950	782,448	LOC782448 rab-like protein 2A-like
Нуро	AX-27912629	G/A	9	64,632,307	100,174,924	LOC100174924 uncharacterized LOC100174924
Нуро	AX-27912875	G/A	9	64,697,539	100,174,924	LOC100174924 uncharacterized LOC100174924
Нуро	AX-27912941	A/T	9	64,716,608	100,174,924	LOC100174924 uncharacterized LOC100174924
Нуро	AX-27913166	G/A	9	64,782,508	533,801	SNX14 sorting nexin 14
Hypo	AX-27913315	C/G	9	64,830,306	281,363	NTSE 5'-nucleotidase, ecto(CD73)
Нуро	AX-27913617	A/G	9	64,899,782	100,336,870	LOC100336870 5'-nucleotidase, ecto (CD73)-like
Нуро	AX-27913675	A/G	9	64,915,912	100,336,870	LOC100336870 5'-nucleotidase, ecto (CD73)-like
Нуро	AX-27913716	C/T	9	64,927,821	100,336,870	LOC100336870 5'-nucleotidase, ecto (CD73)-like
11,700		C10	7	44,806,018	512,272	GZMM granzyme M (lymphocyte met-ase 1)
iLe	AX-26956250	G/A				
177	AX-26956250 AX-27175757	T/C	7	99,662,402	540,772	RIOK2 RIO kinase 2 (yeast)
iLe				99,662,402 33,617,436	540,772 617,536	RIOK2 RIO kinase 2 (yeast) TMCO5A transmembrane and coiled-coil domains 5A
iLe iLe iLe	AX-27175757 AX-18747891	T/C A/C	7 10	33,617,436	617,536	V
iLe iLe iLe iLe	AX-27175757 AX-18747891 AX-19978197	T/C A/C T/G	7 10 13	33,617,436 34,397,169	617,536 100,847,632	TMCO5A transmembrane and coiled-coil domains 5A LOC100847632 uncharacterized LOC100847632
iLe iLe iLe iLe iLe	AX-27175757 AX-18747891 AX-19978197 AX-20828646	T/C A/C T/G T/G	7 10 13 15	33,617,436 34,397,169 77,707,095	617,536 100,847,632 504,317	TMCO5A transmembrane and coiled-coil domains 5A LOC100847632 uncharacterized LOC100847632 LRP4 low density lipoprotein receptor-related protein 4
iLe iLe iLe iLe iLe	AX-27175757 AX-18747891 AX-19978197 AX-20828646 AX-21020775	T/C A/C T/G T/G G/A	7 10 13 15 16	33,617,436 34,397,169 77,707,095 42,138,548	617,536 100,847,632 504,317 540,683	TMCO5A transmembrane and coiled-coil domains 5A LOC100847632 uncharacterized LOC100847632 LRP4 low density lipoprotein receptor-related protein 4 VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae)
iLe iLe iLe iLe iLe iLe iLe iLe iLe	AX-27175757 AX-18747891 AX-19978197 AX-20828646 AX-21020775 AX-21043886	T/C A/C T/G T/G G/A T/C	7 10 13 15 16 16	33,617,436 34,397,169 77,707,095 42,138,548 47,309,188	617,536 100,847,632 504,317 540,683 100,848,595	TMCO5A transmembrane and coiled-coil domains 5A LOC100847632 uncharacterized LOC100847632 LRP4 low density lipoprotein receptor-related protein 4 VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae) LOC100848595 calmodulin-binding transcription activator 1-like
iLe	AX-27175757 AX-18747891 AX-19978197 AX-20828646 AX-21020775 AX-21043886 AX-23566248	T/C A/C T/G T/G G/A T/C T/C	7 10 13 15 16 16 23	33,617,436 34,397,169 77,707,095 42,138,548 47,309,188 40,670,615	617,536 100,847,632 504,317 540,683 100,848,595 533,000	TMCO5A transmembrane and coiled-coil domains 5A LOC100847632 uncharacterized LOC100847632 LRP4 low density lipoprotein receptor-related protein 4 VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae) LOC100848595 calmodulin-binding transcription activator 1-like GMPR guanosine monophosphate reductase
iLe	AX-27175757 AX-18747891 AX-19978197 AX-20828646 AX-21020775 AX-21043886	T/C A/C T/G T/G G/A T/C	7 10 13 15 16 16	33,617,436 34,397,169 77,707,095 42,138,548 47,309,188	617,536 100,847,632 504,317 540,683 100,848,595 533,000 281,406	TMCO5A transmembrane and coiled-coil domains 5A LOC100847632 uncharacterized LOC100847632 LRP4 low density lipoprotein receptor-related protein 4 VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae) LOC100848595 calmodulin-binding transcription activator 1-like GMPR guanosine monophosphate reductase PKP4 plakophilin 4
iLe	AX-27175757 AX-18747891 AX-19978197 AX-20828646 AX-21020775 AX-21043886 AX-23566248	T/C A/C T/G T/G G/A T/C T/C	7 10 13 15 16 16 23	33,617,436 34,397,169 77,707,095 42,138,548 47,309,188 40,670,615	617,536 100,847,632 504,317 540,683 100,848,595 533,000	TMCO5A transmembrane and coiled-coil domains 5A LOC100847632 uncharacterized LOC100847632 LRP4 low density lipoprotein receptor-related protein 4 VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae) LOC100848595 calmodulin-binding transcription activator 1-like GMPR guanosine monophosphate reductase
iLe iLe iLe iLe iLe iLe iLe iLe iLe iLH	AX-27175757 AX-18747891 AX-19978197 AX-20828646 AX-21020775 AX-21043886 AX-23566248 AX-22149402	T/C A/C T/G T/G G/A T/C T/C G/T	7 10 13 15 16 16 23 2	33,617,436 34,397,169 77,707,095 42,138,548 47,309,188 40,670,615 37,815,537	617,536 100,847,632 504,317 540,683 100,848,595 533,000 281,406	TMCO5A transmembrane and coiled-coil domains 5A LOC100847632 uncharacterized LOC100847632 LRP4 low density lipoprotein receptor-related protein 4 VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae) LOC100848595 calmodulin-binding transcription activator 1-like GMPR guanosine monophosphate reductase PKP4 plakophilin 4
iLe	AX-27175757 AX-18747891 AX-19978197 AX-20828646 AX-21020775 AX-21043886 AX-23566248 AX-22149402 AX-25408289	T/C A/C T/G T/G G/A T/C T/C G/T A/G T/G	7 10 13 15 16 16 23 2 4	33,617,436 34,397,169 77,707,095 42,138,548 47,309,188 40,670,615 37,815,537 9,864,287 94,105,680	617,536 100,847,632 504,317 540,683 100,848,595 533,000 281,406 511,754 100,300,832	TMCO5A transmembrane and coiled-coil domains 5A LOC100847632 uncharacterized LOC100847632 LRP4 low density lipoprotein receptor-related protein 4 VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae) LOC100848595 calmodulin-binding transcription activator 1-like GMPR guanosine monophosphate reductase PKP4 plakophilin 4 CDK6 cyclin-dependent kinase 6
iLe	AX-27175757 AX-18747891 AX-19978197 AX-20828646 AX-21020775 AX-21043886 AX-23566248 AX-22149402 AX-25408289 AX-26672531 AX-20478355	T/C A/C T/G T/G G/A T/C T/C G/T A/G T/G C/T	7 10 13 15 16 16 23 2 4 6	33,617,436 34,397,169 77,707,095 42,138,548 47,309,188 40,670,615 37,815,537 9,864,287 94,105,680 75,180,205	617,536 100,847,632 504,317 540,683 100,848,595 533,000 281,406 511,754 100,300,832 100,847,513	TMCO5A transmembrane and coiled-coil domains 5A LOC100847632 uncharacterized LOC100847632 LRP4 low density lipoprotein receptor-related protein 4 VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae) LOC100848595 calmodulin-binding transcription activator 1-like GMPR guanosine monophosphate reductase PKP4 plakophilin 4 CDK6 cyclin-dependent kinase 6 LOC100300832 ribosomal protein L23a pseudogene LOC100847513 uncharacterized LOC100847513
iLe	AX-27175757 AX-18747891 AX-19978197 AX-20828646 AX-21020775 AX-21043886 AX-23566248 AX-22149402 AX-25408289 AX-26672531 AX-20478355 AX-21668213	T/C A/C T/G T/G G/A T/C T/C G/T A/G C/T C/A	7 10 13 15 16 16 23 2 4 6 14	33,617,436 34,397,169 77,707,095 42,138,548 47,309,188 40,670,615 37,815,537 9,864,287 94,105,680 75,180,205 46,658,891	617,536 100,847,632 504,317 540,683 100,848,595 533,000 281,406 511,754 100,300,832 100,847,513 785,831	TMCO5A transmembrane and coiled-coil domains 5A LOC100847632 uncharacterized LOC100847632 LRP4 low density lipoprotein receptor-related protein 4 VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae) LOC100848595 calmodulin-binding transcription activator 1-like GMPR guanosine monophosphate reductase PKP4 plakophilin 4 CDK6 cyclin-dependent kinase 6 LOC100300832 ribosomal protein L23a pseudogene LOC100847513 uncharacterized LOC100847513
iLe	AX-27175757 AX-18747891 AX-19978197 AX-20828646 AX-21020775 AX-21043886 AX-23566248 AX-22149402 AX-25408289 AX-26672531 AX-20478355	T/C A/C T/G T/G G/A T/C T/C G/T A/G T/G C/T	7 10 13 15 16 16 23 2 4 6	33,617,436 34,397,169 77,707,095 42,138,548 47,309,188 40,670,615 37,815,537 9,864,287 94,105,680 75,180,205	617,536 100,847,632 504,317 540,683 100,848,595 533,000 281,406 511,754 100,300,832 100,847,513	TMCO5A transmembrane and coiled-coil domains 5A LOC100847632 uncharacterized LOC100847632 LRP4 low density lipoprotein receptor-related protein 4 VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae) LOC100848595 calmodulin-binding transcription activator 1-like GMPR guanosine monophosphate reductase PKP4 plakophilin 4 CDK6 cyclin-dependent kinase 6 LOC100300832 ribosomal protein L23a pseudogene LOC100847513 uncharacterized LOC100847513

Trait	SNP ID	SNP	BTA	position(bp)	Gene ID	Symbol Description
IMP	AX-23568075	G/A	23	41,070,345	506,612	DTNBP1 dystrobrevin binding protein 1
index_meat	AX-18425222	A/G	1	112,420,226	526,133	KCNAB1 potassium voltage-gated channel, shaker-related subfamily, bet
index_meat	AX-26703368	C/A	6	101,666,518	537,096	WDFY3 WD repeat and FYVE domain containing 3
Inosine	AX-24445366	G/A	27	37,887,057	528,057	CSGALNACT1 chondroitin sulfate N-acetylgalactosaminyltransferase 1
Inosine	AX-24474018	T/C	27	43,979,386	789,528	ZNF385D zinc finger protein 385D
Leu	AX-22014438	C/T	2	2,966,881	786,110	LOC786110 40S ribosomal protein S3a-like
Leu	AX-19978197	T/G	13	34,397,169	100,847,632	LOC100847632 uncharacterized LOC100847632
Leu	AX-21020775	G/A	16	42,138,548	540,683	VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae)
Leu	AX-21043886	T/C	16	47,309,188	100,848,595	LOC100848595 calmodulin-binding transcription activator 1-like
Leu	AX-23566248	T/C	23	40,670,615	533,000	GMPR guanosine monophosphate reductase
Lys	AX-22014351	G/A	2	2,944,452	786,110	LOC786110 40S ribosomal protein S3a-like
Lys	AX-22014409	G/A	2	2,961,019 2,966,881	786,110	LOC786110 40S ribosomal protein S3a-like
Lys	AX-22014438	C/A	3		786,110	LOC786110 40S ribosomal protein S3a-like LOC516742 histone cluster 1, H4i-like
Lys	AX-24970039 AX-24970220	C/A G/A	3	20,812,057 20,857,769	516,742 282,227	FCGR1A Fc fragment of IgG, high affinity Ia, receptor (CD64)
Lys	AX-19459351	T/C	11	102,262,202	523,720	NTNG2 netrin G2
Lys	AX-20526300	C/T	15			PDGFD platelet derived growth factor D
Lys	AX-20320300 AX-21043886	T/C	16	4,264,919 47,309,188	525,931	LOC100848595 calmodulin-binding transcription activator 1-like
Lys	AX-21043880 AX-24467285	T/G	27	42,518,482	100,848,595 784,326	UBEZE2 ubiquitin-conjugating enzyme EZE 2
Lys	AX-24881307	C/T	29	49,412,703	784,876	KCNQ1 potassium voltage-gated channel, KQT-like subfamily, member
Lys Marb	AX-19104242	G/A	11	15,646,241	100,336,097	LOC100336097 small nuclear ribonucleoprotein E-like
Met		C/T	2	2,966,881	786,110	LOC786110 40S ribosomal protein S3a-like
Met	AX-22014438 AX-26956250	G/A	7	44,806,018	512,272	GZMM granzyme M (lymphocyte met-ase 1)
Met	AX-26956250 AX-27175757	T/C	7	99,662,402	540,772	RIOK2 RIO kinase 2 (yeast)
Met	AX-2/1/5/5/ AX-18747891	A/C	10	33,617,436		TMCO5A transmembrane and coiled-coil domains 5A
Met	AX-18/4/891 AX-19906562	G/C	13	17,146,581	617,536 505,901	PRKCQ protein kinase C, theta
Met	AX-19900362 AX-19978197	T/G	13	34,397,169	100,847,632	LOC100847632 uncharacterized LOC100847632
Met	AX-20828646	T/G	15	77,707,095	504,317	LRP4 low density lipoprotein receptor-related protein 4
Met	AX-20828040 AX-21020775	G/A	16	42,138,548	540,683	VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae)
Met	AX-21020775 AX-21043886	T/C	16	47,309,188	100,848,595	LOC100848595 calmodulin-binding transcription activator 1-like
Met	AX-21043886 AX-22960916	A/G	21	31,032,863	100,346,393	LOC100337259 calcium and integrin binding family member 2-like
Met	AX-22960910 AX-22960922	T/C	21	31,035,363	100,337,259	LOC100337259 calcium and integrin binding family member 2-like
Met	AX-22900922 AX-23566248	T/C	23	40,670,615	533,000	GMPR guanosine monophosphate reductase
	AX-26446139	G/A	6	32,891,908	536,367	GRID2 glutamate receptor, ionotropic, delta 2
n_6/n_3 n_6/n_3	AX-23734335	C/T	24	28,637,843	281,062	CDH2 cadherin 2, type 1, N-cadherin (neuronal)
n_6/n_3	AX-24152373	G/A	26	20,474,694	538,529	SLC25A28 solute carrier family 25, member 28
Phe	AX-19978197	T/G	13	34,397,169	100,847,632	LOC100847632 uncharacterized LOC100847632
Phe	AX-21020775	G/A	16	42,138,548	540,683	
			-		200.000.000.000.000	VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae)
Phe	AX-21043886	T/C	16	47,309,188	100,848,595	LOC100848595 calmodulin-binding transcription activator 1-like
Phe	AX-23566248	T/C	23	40,670,615	533,000	GMPR guanosine monophosphate reductase
Pro	AX-27254362	C/T	8	7,022,223	541,160	GLRA3 glycine receptor, alpha 3
Pro	AX-27659188	T/C	8	109,966,435	538,990	DBC1 deleted in bladder cancer 1
Pro	AX-19418152	T/A	11	93,027,457	327,710	NDUFA8 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8, 19
Pro	AX-20039610	G/A	13	47,991,609	282,431	PROKR2 prokineticin receptor 2
Pro	AX-20039622	C/T	13	47,993,859	282,431	PROKR2 prokineticin receptor 2
PUFA	AX-27534538	G/T	8	79,043,380	784,831	LOC784831 dual specificity protein phosphatase 5-like
PUFA	AX-20031373	A/G	13	46,174,079	788,075	LOC788075 60S ribosomal protein L17-like
200200		7.00	24		2-2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
PUFA	AX-24375863	A/C	27	21,364,422	100,313,312	MIR383 microRNA mir-383
Ser	AX-22014351	G/A	2	2,944,452	786,110	LOC786110 40S ribosomal protein S3a-like
Ser	AX-22014409	G/A	2	2,961,019	786,110	LOC786110 40S ribosomal protein S3a-like
Ser	AX-22014438	C/T	2	2,966,881	786,110	LOC786110 40S ribosomal protein S3a-like
Ser	AX-19906562	G/C	13	17,146,581	505,901	PRKCQ protein kinase C, theta
SFA	AX-24155175	C/T	26	21,140,035	280,924	SCD stearoyl-CoA desaturase (delta-9-desaturase)
Thr	AX-25864792	T/C	5	3,625,062	777,786	ATXN7L3B ataxin 7-like 3B
Thr	AX-23159361	T/G	22	7,625,003	524,663	SUSD5 sushi domain containing 5
Tyr	AX-22087334	C/T	2	22,088,975	508,266	CHN1 chimerin (chimaerin) 1
-	AX-19713562	C/G	12	60,746,444	100,848,098	LOC100848098 histone-lysine N-methyltransferase SETMAR-like
Tyr	Contract Contract Contract Contract	127/100	32777	Lancate Company Commercial		MATN1 matrilin 1, cartilage matrix protein
USF	AX-28450347	G/A	2	123,795,837	512,059	
USF	AX-21978787	A/G	19	58,200,628	100,336,619	SDK2 sidekick cell adhesion molecule 2
USF	AX-23040722	G/A	21	51,451,506	539,366	LRFN5 leucine rich repeat and fibronectin type III domain containing 5
Val	AX-22014351	G/A	2	2,944,452	786,110	LOC786110 40S ribosomal protein S3a-like
Val	AX-22014409	G/A	2	2,961,019	786,110	LOC786110 40S ribosomal protein S3a-like
Val	AX-22014438	C/T	2	2,966,881	786,110	LOC786110 40S ribosomal protein S3a-like
Val	AX-27175757	T/C	7	99,662,402	540,772	RIOK2 RIO kinase 2 (yeast)
Val	AX-21020775	G/A	16	42,138,548	540,683	VPS13D vacuolar protein sorting 13 homolog D (S. cerevisiae)
Val	AX-21043886	T/C	16			LOC100848595 calmodulin-binding transcription activator 1-like
				47,309,188	100,848,595	
Val	AX-23566248	T/C	23	40,670,615	533,000	GMPR guanosine monophosphate reductase
water	AX-26743830	T/G	6	111,173,723	538,691	HS3ST1 heparan sulfate (glucosamine) 3-O-sulfotransferase 1
WBSF	AX-22256726	C/T	2	66,251,517	100,847,595	LOC100847595 uncharacterized LOC100847595
11772	AX-23050386	A/G	21	54,154,323	787,825	LOC787825 dynein light chain 1-like pseudogene
WBSF	Property Company of the					

- 5. 전장연관분석결과 형질과 관련된 SNP 마커를 이용한 분자 육종가 추정, 정확도 및 선발반응 평가가. 분자 육종가 추정 분석 방법
- 형질별로 발굴된 SNP들을 이용하여 추정되어진 분자 육종가의 정확도를 평가하기 위하여 다음과 같 은 전략을 수립하였음
- 총 663두 시료를 1/10으로 나누어 10개 세트로 분리하여 9개 세트를 Training data로 나머지 1세트를 Testing data set로 임의로 선정하여
- 9개 세트로 구성된 Training Data를 이용하여 각 형질별로 SNP 효과를 다음 모델로 추정 함 $Y = \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + ---- \beta_k X_k + e$ 여기서

Y: 각 형질의 표현형(고정효과를 보정한 잔차값) 벡터

 β_k : k번째 유전자의 효과값(스칼라), 즉 SNP의 상가적(additive) 효과

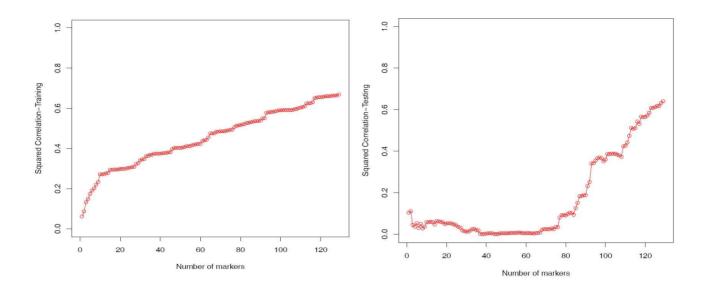
X_k: k번째 유전자의 유전자형에 대한 벡터로 1(AA), 0(AB), 또는 -1(BB)값을 가지며 A와 B는 k번째 SNP의 allele(대립인자)

- 위 모델을 'R' program을 구동하였고 β_k 값을 추정함 (β_{khat})
- 1개 세트의 Testing 자료에 대하여 각 개체별로 해당 형질에 대한 분자육종가는 다음과 같이 추정될 수 있음

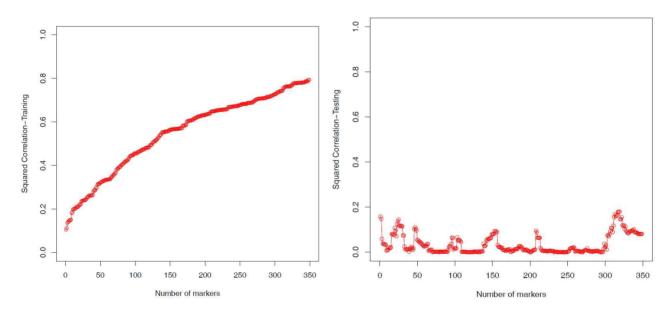
$$Y_{hat} = \beta_{1hat}X_1 + \beta_{2hat}X_2 + \beta_{3hat}X_3 + ---- \beta_{khat}X_k$$
 여기서

 Y_{hat} : 해당 형질의 분자육종가 예측치 벡터로 각 개체의 분자육종가 값을 포함하고 있음 eta_{khat} : 위 Training data 모델에서 측정된 유의적인 k번째 유전자의 효과 값

- 형질별로 유의적인 마커들의 결정은 앞서 GWAS 분석결과로 얻어진 P=10⁻⁴ 유의수준에서 탐색되어진 SNP set들을 적용하였으며, 순환적으로 10개의 testing 세트에 대하여 분자육종가값을 추정함
- 나. 추정된 분자 육종가 정확도 평가 방법
- 분자육종가의 정확도를 추정하는 한 방법으로는 분자육종가 추정치와 표현형과의 상관계수를 구하면 정확도를 평가하는 한 척도가 될 수 있음. 따라서 각 형질에 대하여 다음 두 상관계수를 구하였음
 - 1) Corr (Y(Training set data), Y_{hat} (Training set data))
 - 2) Corr (Y(Testing set data), Y_{hat} (Testing set data))
- 여기서 Corr은 두 변수, X와 Y에 대한 상관계수 값이며 다음과 같이 계산되어 짐
- $-P_{x,y} = \frac{cov(X,Y)}{\sigma_x \times \sigma_y}$ (X, Y: 각각의 표현형 또는 분자육종가, Cov:공변이 값, σ :표준편차)
- 따라서 상관계수 값이 1에 가깝게 높게 나타날수록 분자 육종가 추정값의 정확도가 높은 것을 의미 하여 0에 가깝게 나타 날수록 정확도가 낮다라는 것을 의미함
 - 다음 아래 표는 각 형질들에 대하여 training(TRN)자료와 testing(TST) 자료에 대한 결과를 나


타내고 있음

번호	형질	SNP수(10 ⁻⁴)	Corr(Train Set)	Corr(Test Set)	번호	형질	SNP수(10 ⁻⁴)	Corr(Train Set)	Corr(Test Set)
T1	Cholesterol	91	0.446	0.396	T26	Met	133	0.570	0.208
T2	рН	72	0.552	0.475	T27	Phe	128	0.581	0.298
Т3	Color	42	0.399	0.513	T28	Pro	119	0.541	0.291
T4	Flavor	22	0.269	0.420	T29	Ser	173	0.640	0.214
T5	Tender	25	0.335	0.545	T30	Thr	66	0.515	0.555
T6	Juciness	59	0.452	0.594	T31	Tyr	47	0.313	0.311
T7	Prefernce	31	0.339	0.520	T32	Val	146	0.583	0.247
T8	col_L	37	0.415	0.542	T33	Anserine	31	0.366	0.513
T9	col_a	37	0.356	0.482	T34	Carnosine	20	0.298	0.440
T10	col_b	29	0.314	0.450	T35	Creatine	49	0.449	0.521
T11	WHC	40	0.409	0.551	T36	Creatinine	22	0.253	0.439
T12	Driploss	30	0.353	0.529	T37	C14_0	43	0.382	0.534
T13	Heatloss	37	0.380	0.539	T38	C14_1	34	0.347	0.491
T14	WBSF	349	0.794	0.010	T39	C16_0	24	0.315	0.472
T15	AMP	57	0.579	0.485	T40	C16_1	25	0.284	0.390
T16	IMP	28	0.304	0.421	T41	C18_0	37	0.389	0.546
T17	Inosine	50	0.361	0.441	T42	C18_1	32	0.326	0.516
T18	Нуро	66	0.451	0.524	T43	C18_1_11t	76	0.477	0.405
T19	Ala	111	0.580	0.357	T44	C18_2	47	0.466	0.456
T20	Arg	53	0.420	0.301	T45	SFA	79	0.441	0.507
T21	Gly	133	0.607	0.353	T46	USF	142	0.579	0.492
T22	His	129	0.670	0.546	T47	PUFA	59	0.514	0.416
T23	iLe	152	0.634	0.275	T48	UFA/SFA	24	0.324	0.462
T24	Leu	130	0.588	0.221	T49	n-6/n-3	81	0.542	0.558
T25	Lys	101	0.479	0.298		Average	70	0.439	0.430


번호	형질	SNP수(10 ⁻⁴)	Corr(Train Set)	Corr(Test Set)
T6	Juciness	59	0.452	0.594
T49	n-6/n-3	81	0.542	0.558
T30	Thr	66	0.515	0.555
T11	WHC	40	0.409	0.551
T41	C18_0	37	0.389	0.546
T22	His	129	0.670	0.546
T5	Tender	25	0.335	0.545
T8	col_L	37	0.415	0.542
T13	Heatloss	37	0.380	0.539
T37	C14_0	43	0.382	0.534
T12	Driploss	30	0.353	0.529
T18	Нуро	66	0.451	0.524
T35	Creatine	49	0.449	0.521
T7	Prefernce	31	0.339	0.520
T42	C18_1	32	0.326	0.516
T33	Anserine	31	0.366	0.513
T3	Color	42	0.399	0.513
T45	SFA	79	0.441	0.507

다. 추정된 분자 육종가 정확도 평가 결과

- TRN 자료의 경우 모든 형질에 대한 상관계수 평균값이 0.44였으며 TST 자료에 대하여는 0.43으로 유사하게 나타났음. TRN 자료에서는 상관계수 값이 가장 높은 형질은 WBSF(전단력) (0.794) 및 Histidine (0.670) 순이었고 계수 값이 가장 낮은 형질은 Creatinine (0.253) 이었음. 반면에 TST 자료에서 상관계수 값이 가장 높은 형질은 Juicines(다즙도) (0.594), n−6/n−3 (0.558) 순이었고 계수값이 가장 낮은 형질은 WBSF (0.010) 이었음

- Corr(WBSF(Training), WBSF_{hat}(Training))

- 상관계수 값이 TST 자료보다 TRN 자료에서 보다 높게 나온 이유는 유의적인 마커를 발굴하는데 이용되어진 자료가 TRN 자료이기 때문에 측정된 마커 효과 값이 TST 자료보다 TRN 자료에서 더 잘 설명되어 지기 때문 임
- 하지만 더 관심있는 분자 육종가의 정확도는 TST 자료인데 왜나하면 실제 적용하고자 하는 집단은 분자 육종가를 알지 못하고 예측 하고자 TST 집단이기 때문이기 때문임
- TST 자료를 이용하여 측정되어진 육종가의 정확도, 즉 모든 형질의 상관계수 평균값은 0.43이었으며, 18개 형질의 경우 정확도가 50% 이상으로 나타났으며, 34개 형질에서 40% 이상의 정확도를 보였음. 이러한 결과로 근거하여 볼 때 각 형질별로 유의적인 마커를 발굴하여 조기 선발에 적용할 경우 적지 않은 정확도를 가진 형질의 경우 유전적 개량효과를 가져올 것으로 기대되어짐

- 하지만 본 연구과제에 적용되어진 제한된 시료 크기로 말미암아 형질과 연관된 마커의 제한적인 발굴 또는 마커 효과 측정값의 편향성향을 가질 수 있므로 추가적인 자료 확보 및 분석으로 testing 자료에서 분자 육종가 예측의 정확도를 검증할 필요성
- 마커수와 분자육종가 정확도의 관계: 아래 그림은 조사되어진 75 형질에서 P=10⁻⁴ 유의도 수준으로 발굴되어진 마커수와 분자육종가 정확도(상관계수)와 관계가 도식되어 져 있음. 각 형질별로 유의적으로 발굴되어진 마커 수는 다양한데, TRN 자료에서는 마커 수가 증가 됨에 따라 정확도 비례하게 증가되는 경향을 보인 반면에(상관계수 0.88), TST 자료에서는 마커수가 증가 됨에 따라 정확도가 감소하는 경향을 보였음 (상관계수 -0.74).
 - 이러한 결과는 앞서 언급하였듯이 TRN 자료에서 발굴되어지고 측정된 마커효과 값이 TRN 자료에서 최적으로 설명되어져 모델에 마커가 많이 보정 될수록 표현형을 더 잘 정확히 예측하는 반면에, 마커효과를 독립적인 다른 집단 자료(TST)에 적용할 경우 아주 높은 유의도를 가지고 있는 마커효과가 아닌 이상, 단순히 마커수를 증가 시킨다고 해서 TST자료에서는 분자 육종가의 신뢰도를 증가하지 않는 다는 사실을 제시하여 줌
 - 추후 연구 수행을 통하여 지속적으로 자료 수의 증가로 더 정확한 마커효과 값을 추정하여 TST 자료에 적용할 경우 좀 더 신뢰도가 높은 분자육종가를 예측할 것으로 기대 함

- 라. 형질관련 유의적인 SNP로 선발시 선발반응 평가
- 마커도움선발의 효율성 평가는 다음과 같음.

$$E = R_{MAS}/R_P = (1/h)[q+h^2_{pol}(1-q)]^{1/2}$$

 $R_{MAS} = i r_{g,I} \sigma_{g,E}$ 마커도움선발반응, R_P .표현형 선발 반응을 나타냄.

 h^2 : 해당형질의 유전력, a:유전분산중에서 SNP로 설명되는 비율이며

$$h^2_{pol} = h^2(1-q)/(1-qh^2)$$

- $1x10^{-6}$ 의 유의도를 가지고 발굴되어진 SNP가 있는 형질에 대하여 조사하였으며, 만약 한염색체에 두 개 이상의 SNP가 발굴되어진 경우에는 가장 유의적인 SNP만을 선별하였음
- 주요 형질별로 계산되어진 마커도움선발 효율성은 아래 표에 도식되어 있음

형질	유전력	SNP ID	BTA	Position(bp)	σ ² _(SNP)	sum	q	h ² _{pol}	E
	h ²			77	σ ² _{(phenotype}	9			
C14_0	0.35	AX-28597226	15	68,135,423	0.038	0.114	0.325	0.268	1.20
		AX-21950207	19	51,333,432	0.076				
C14_1	0.52	AX-24155201	26	21,144,708	0.169	0.169	0.327	0.419	1.09
C16_1	0.44	AX-20917174	16	15,825,216	0.040	0.084	0.194	0.383	1.07
		AX-21950207	19	51,333,432	0.044				
C18_0	0.41	AX-25028473	3	35,278,329	0.034	0.034	0.084	0.389	1.04
C18_1	0.26	AX-21950135	19	51,317,647	0.042	0.042	0.160	0.230	1.16
C18_1_11t	0.47	AX-18251673	1	67,509,898	0.040	0.279	0.593	0.265	1.22
		AX-25773307	4	103,095,211	0.040				
		AX-26175813	5	84,417,977	0.064				
		AX-26362672	6	10,609,153	0.043				
		AX-27247472	8	5,263,988	0.050				
		AX-27690902	9	5,551,825	0.042				
C18_2	0.15	AX-19026965	10	102,256,483	0.042	0.042	0.279	0.114	1.54
SFA	0.33	AX-25812141	4	112,255,049	0.058	0.190	0.570	0.177	1.39
		AX-26785405	7	1,510,073	0.057				
		AX-18856018	10	61,213,939	0.040				
		AX-23099192	21	65,157,100	0.036				
USF	0.29	AX-25812141	4	112,255,049	0.068	0.226	0.782	0.082	1.66
		AX-26785405	7	1,510,073	0.066				
		AX-18856018	10	61,213,939	0.047				
		AX-23092797	21	63,698,095	0.045				
PUFA	0.11	AX-20031373	13	46,174,079	0.035	0.035	0.330	0.074	1.89
col_a	0.05	AX-21177897	16	78,412,580	0.037	0.037	0.697	0.016	3.66
Heatloss	0.13	AX-22425465	2	110,139,283	0.043	0.043	0.318	0.095	1.69
AMP	0.28	AX-26422666	6	26,553,317	0.049	0.103	0.369	0.196	1.33
		AX-28537043	25	41,667,475	0.054				
IMP	0.46	AX-27322264	8	24,242,477	0.043	0.132	0.288	0.375	1.10
		AX-22615245	20	16,842,335	0.044				
		AX-23131382	22	1,028,209	0.044				
Inosine	0.18	AX-27322264	8	24,242,477	0.052	0.122	0.674	0.067	1.96
		AX-27912875	9	64,697,539	0.070				
Нуро	0.20	AX-27912875	9	64,697,539	0.082	0.123	0.623	0.085	1.82
		AX-21275346	17	23,503,448	0.041				
Arg	0.23	AX-25319135	3	110,487,238	0.046	0.178	0.792	0.057	1.89
3		AX-26503246	6	47,840,338	0.051				
		AX-27322264	8	24,242,477	0.040				
		AX-23563959	23	40,199,166	0.042				
Tyr	0.28	AX-26503246	6	47,840,338	0.062	0.212	0.770	0.080	1.69
		AX-27322264	8	24,242,477	0.059		e-sessement,		
		AX-27772067	9	26,876,269	0.046				
		AX-24158606	26	21,853,792	0.045				
Anserine	0.20	AX-18055998	1	14,431,598	0.036	0.036	0.183	0.167	1.27

- 분석결과 전반적으로 표현형-혈통 정보에 근거하는 선발보다 발굴되어진 주요 마커를 적용할 경우 선발반응이 더 효율적으로 나타났으며 (E > 1), 몇몇 형질의 경우 (Color_a, Inosine, Arg)의 경우 2배 가까이 선발반응이 증가하게 나타났음.
- 하지만 제한된 시료 크기로 형질별로 발굴되어진 유의적인 마커 수가 제한되어 있고, 마커효과를 고 정효과로 간주하여 분석할 경우 효과값이 부풀려져 선발반응이 편향되게 예측되어 질 수 있음
- 향우 추가적인 시료 수집 및 분석으로 마켜효과 값을 검증하여 선발 반응을 검증할 필요성

6. 탐색된 고기능성 · 고품질관련 SNP 마커들의 효과를 적용집단에서 검증

- 가. 봉화축협 거세우 표현형 분석
- 봉화축협 한우농가에서는 고기의 건강성분을 증진시키고자 한약재 부산물을 사료로 이용하고 있음 따라서 봉화축협에서 출하되어진 거세우 30두의 채끝부위를 시료로 수집하여 성분분석을 수행하여 다른 거세우들고 비교 하였음
- 시료 두수: 일반 거세우 735두, 봉화 거세우 30두

육질	1++	1+	1	2	계
일반거세우	93	192	309	171	765
%	12	25	40	22	100
봉화 거세우	6	11	3	10	30
%	20	37	10	33	100

- 일반성분 분석:
- SAS GLM을 이용하여 도체년월을 고정효과로 도체월령을 공변이효과로 보정하여 분석을 수행

 형질	유의수준	일반거세우	표준오차	봉화거세우	표준오차
월령	0.1126	31.9	0.21	33.1	0.74
육질*	<.0001	2.6	0.05	1.6	0.18
육량	0.6554	2.2	0.04	2.1	0.16
도체중	0.0012	417.4	2.84	455.1	10.50
등심단면적	0.3251	89.1	0.57	91.1	2.03
등지방두께	0.4714	14.1	0.31	13.3	1.11
마블링	<.0001	5.2	0.10	7.0	0.35
수분	0.0010	57.4	0.31	61.1	1.12
조단백질	0.0029	18.3	0.13	19.7	0.46
조지방	0.0002	23.2	0.39	17.9	1.40
조회분	0.0324	1.0	0.02	0.9	0.06
 콜레스테롤	0.1250	58.3	0.43	60.7	1.52
 * 0. 7] 1 / 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2(1) 4(0)			

*육질 1(1++), 2(1+), 3(1), 4(2)

- 분석결과 봉화 거세우육이 육질, 도체중 및 마블링 점수가 일반한우육보다 유의적으로 높게 나타났으며, 일반 조성분 분석 결과 수분, 조단백질 및 조지방 함량도 봉화 거세우육에서 유의적으로 높게 나타났음. 이러한 결과는 부분적으로 시료 추출의 편향성, 즉 봉화육이 일반 한우육보다 육질이 더 우수한 시료를 선택한 결과에 기인되는 것을 보임
- 고기 일반성분 분석:
- 고기 일반성분은 육질 및 육량 요소에 의하여 영향을 받게 되므로 SAS GLM을 이용하여 육질, 육량 및 도체년월을 고정효과로 도체월령을 공변이효과로 보정하여 분석을 수행하였음
- 분석 결과 육색(L, a)의 경우 유의적인 차이를 보였으며 보수력, 가열감량 및 driploss의 경우에도 봉화 한약우에서 유의적으로 좋은 점수를 나타내었음

형질	유의수준	일반거세우	표준오차	봉화거세우	표준오차
рН	0.1992	5.7	0.01	5.7	0.02
Color_L	0.0059	39.2	0.17	41.0	0.64
Color_a	0.0232	19.6	0.15	18.4	0.54
Color_b	0.2207	10.0	0.09	9.6	0.32
보수력	0.0088	34.6	0.24	32.3	0.89
Driploss	<.0001	18.4	0.19	14.8	0.68
가열감량	<.0001	16.7	0.17	20.2	0.61
전단력	0.0999	57.1	1.21	64.5	4.45
육색	0.1280	5.3	0.05	5.5	0.17
$\frac{Q}{\overline{\Delta}}$ \Box	0.4987	5.3	0.09	5.5	0.34
연도	0.3139	5.4	0.06	5.1	0.21
담즙	0.6398	5.4	0.05	5.5	0.20
관능도	0.7541	5.3	0.05	5.4	0.19

○ 고기 아미노산 성분 분석:

- 아미노산 성분의 경우 육질 및 육량 요소에 의하여 영향을 받게 되므로 SAS GLM을 이용하여 육질, 육량 및 도체년월을 고정효과로 보정하여 분석을 수행하였음

형질	유의수준	일반거세우	표준오차	봉화거세우	표준오차
Ala	0.1480	24.5	1.39	29.6	2.64
Arg	0.1467	212.4	7.95	241.9	15.13
Cys	0.0815	4.9	0.49	7.1	0.93
Glu	<.0001	5.4	0.70	12.6	1.34
Gly	0.2612	6.6	0.49	8.0	0.94
His	0.0904	32.9	3.24	46.9	6.16
iLe	0.0280	5.3	0.34	7.2	0.64
Leu	0.0164	8.1	0.57	11.6	1.09
Lys	0.0440	8.5	0.57	11.4	1.08
Met	0.0005	5.0	0.29	7.6	0.55
Phe	<.0001	5.8	0.37	10.0	0.70
Pro	0.0134	4.3	0.22	5.7	0.41
Ser	0.0026	7.2	0.60	11.8	1.14
Thre	0.0515	44.2	2.32	55.7	4.42
Tyr	0.0031	7.3	0.41	10.5	0.79
Anserine	0.0763	269.3	10.44	316.5	19.85
Carnosine	<.0001	764.4	24.04	448.7	45.73
Creatine	0.0190	1466.2	23.12	1327.6	43.99
Creatinine	<.0001	14.7	0.96	29.7	1.82

- 분석결과 Glu, iLe, Leu, Lys, Met, PHe, Pro, Ser, Tyr 성분이 유의적으로 다르게 나타났으며 항

산화물질인 Anserine, Carnosine에서도 유의적으로 다르게 나타났으며 Creatine, Creatinine에서도 봉화 한약우와 일반거세우육간에 유의적으로 다른 성분 비율을 보였음

○ 고기 지방산 성분 분석:

- 아미노산 성분의 경우 육질 및 육량 요소에 의하여 영향을 받게 되므로 SAS GLM을 이용하여 육질, 육량 및 도체년월을 고정효과로 도체월을 공변이 효과로 보정하여 분석을 수행하였음

형질	유의수준	일반거세우	표준오차	봉화거세우	표준오 차
C10_0	0.1865	0.04	0.002	0.03	0.004
C12_0	0.2989	0.10	0.005	0.08	0.009
C14_0	0.0939	3.41	0.083	3.05	0.158
C14_1	0.2762	1.06	0.044	0.94	0.084
C15_0	0.8570	0.25	0.010	0.24	0.019
C16_0	0.0058	26.42	0.271	24.50	0.516
C16_1	0.4243	4.55	0.136	4.27	0.260
C17_0	0.8900	0.56	0.018	0.56	0.035
C17_1	0.0620	0.60	0.021	0.70	0.041
C18_0	0.8299	10.40	0.232	10.53	0.442
C18_1 (올레인산)	0.0375	43.85	0.362	45.78	0.689
C18_1t	0.8827	1.78	0.085	1.74	0.162
C18_2	0.4402	2.01	0.102	2.21	0.195
C18_3	0.8667	0.07	0.007	0.07	0.014
CLA9_c11t	0.1806	0.28	0.015	0.33	0.028
C20_1	0.7187	0.21	0.016	0.20	0.030
C20_3	0.7324	0.20	0.012	0.21	0.023
C20_4	0.6767	0.42	0.035	0.46	0.066
C24_1	0.9391	0.10	0.007	0.10	0.013
SFA(포화지방산)	0.0404	41.18	0.412	39.02	0.783
USF(불포화지방산)	0.0597	55.15	0.394	57.04	0.750
MUFA(다가불포화)	0.0136	51.46	0.442	53.71	0.634
PUFA	0.3760	3.00	0.139	3.31	0.264
UFA/SFA	0.0785	1.35	0.024	1.46	0.046
n-6/n-3	0.0051	9.12	0.321	11.42	0.610

- 분석결과 C16_0에서 봉화한약우가 24.5%로 일반거세우보다 약 2% 낮게 나타났으며 올레인산 (C18_1)의 경우 46%로 일반거세우보다 2% 높은 유의수준으로 나타났음
- 또한 전체포화지방산(SFA)함량, 불포화지방산(USF) 및 다가불포화지방산함량(MUFA)의 경우에서 봉화 한약우가 약 2% 다르게 건강지향적으로 다르게 나타났음.
- 이러한 결과는 한우육 성분이 환경·사양조건에 따라 다르게 나타남을 제시하여 줌
- 또한 유전력 추정결과, 주요 지방산 성분인 C14_0, C14_1, C16_0, C16_1, C18_0, C18_1, SFA,

USF의 유전력이 각각 0.35, 0.52, 0.31, 0.44, 0.41, 0.26, 0.33, 0.28로 추정되어 중정도 이상의 유전력을 보여서 개체들간의 유전적 변이가 적지 않음을 나타내 주고 있는데 이는 선발로 인한 유전적 개량의 효과가 높다는 사실을 제시하여 줌.

- 나. 봉화축협 거세우 집단의 지방산 성분 주요 SNP 마커 빈도 조사
- 앞서 봉화 거세우들과 다른 거세우들간에 특정 지방산 성분이 유의적으로 다르게 나타났는데, 이에 근거하여 지방산 성분에 관여하는 주요 SNP들에 대하여 두 집단간에 대립인자(allele) 빈도 차이 유무를 조사하였음 (두 집단간의 유전자형 차이를 γ^2 테스트 실시)

지방산성분	SNP_ID	SNP	BTA	position(bp)	MAF(일반)	MAF(봉화)	χ ₂ test
		(minor/major)					P_value
C16_0	AX-21950207	[T/C]	19	51,333,432	0.17	0.13	0.4875
C18_1	AX-21950207	[T/C]	19	51,333,432	0.17	0.13	0.4875
SFA	AX-25812141	[G/A]	4	112,255,049	0.01	0.03	0.0583
SFA	AX-26785405	[T/G]	7	1,510,073	0.01	0.10	0.0231
USF	AX-25812141	[G/A]	4	112,255,049	0.01	0.03	0.0583
USF	AX-26785405	[T/G]	7	1,510,073	0.01	0.05	0.0231

- SFA 및 USF 형질에 가장 유의적으로 관여하는 4개의 SNP들에 대하여 봉화거세우집단과 다른 일반 거세우 집단에서 해당 대립인자의 빈도가 유의적으로 다르게 나타남 (P<0.05). 이는 지방상 성분에 관여하는 유전자들에 대하여 봉화거세우 집단의 유전적조성이 다른 일반 한우 거세우 집단과 다르게 분포하고 있음을 제시하여 주며, 유전적 개량을 통해서 고기 지방산 성분을 개선할 수 있는 근거를 제시하여줌.
- 추후 추가적인 시료를 추출하여 유의적으로 유전적 조성이 다른 SNP들을 검증하여 개량에 적용한 다면 고기의 건강 고기능성분을 개선하는 주요 지표가 될 것임.

제 2 절 유전등급 맞춤형 단기성장·고품질·고기능성 사양프로그램 개발

1. 반추위 최적 발효조건 확립을 위한 반추위 In vitro 발효특성 및 소화율 비교 시험

가. 반추위 최적 발효조건 확립을 위한 TMR과 TMF사료의 발효특성 및 소화율 비교 시험

(1) 연구방법 및 내용

성장단계별 사료를 TMF 및 TMR의 형태로 준비하여 직접 비교하였으며, Total Mixed Ration 및 Total Mixed Fermentation의 기본적 영양소 함량은 동일하게 설계 하였다. 실험 방법은 한우 육성우용으로 개발된 TMR 및 TMF에 대하여 반추위에 캐뉼라(누관)가 장착된 소 4두를 이용하여 2 x 2 Cross-over 방법으로 실시하였다.

Table 1. Nutrient composition(%, DM basis) of experimental feeds for Hanwoo steers in growing stage

Type	DM	СР	EE	NDF	Ash
TMR	59.3	13.9	5.1	42.8	9.75
TMF	58.2	14.1	5.5	43.3	10.2

(2) 연구 결과

(가) 반추위내 발효성상

반추위에 누관이 장착된 소에게 사료 급여 전 및 급여 3, 6 및 9시간 후에 반추위액을 채취하여 반추위액의 pH, 암모니아 농도 및 VFA 농도와 조성을 조사한바 다음과 같다. 반추 위액의 pH는 사료급여 후 3시간까지 낮아지다가 그 후로 점차 증가되는 경향을 보였다(Table 2). 급여 6시간을 제외하고는 TMR 급여구가 TMF 급여구보다 다소 높은 경향을 보였으나 사료간 차이는 없었다. 반추위액의 암모니아 농도는 TMR 및 TMF를 동일하게 급여한 후 3시간까지 증가되었다가 이후 시간이 경과할수록 서서히 낮아졌다. 급여 3시간에서 TMR에 비하여 TMF를 섭취한 소의 반추위액 내 암모니아 농도가 다소 높은 경향을 보였으나 대체로 사료간 큰 차이는 보이지 않았다.

Table 2. Comparison of the TMR and TMF for Hanwoo steers of growing stage in pH, NH₃-N, major VFA concentration and its composition in rumen fluid by time.

Items	TMR	TMF	SEM ¹⁾	$Pr > F^{2)}$
	0.5 hour	r		
pН	6.90	6.88	0.915	0.811
Ammonia-N (mg/100mg)	6.82	7.30	0.887	0.286
Total VFA (mmoles/100ml)	46.2	47.1	6.531	0.815
Individual VFAs (mmoles/100mmoles)				
Acetate (C_2)	61.3	62.4	2.324	0.431
Propionate (C ₃)	16.4	16.9	0.121	0.330

Butyrate C_2/C_3	13.4	13.9	2.327	0.461
	4.57	4.49	0.310	0.284
	3 hour			
pH Ammonia-N (mg/100mg) Total VFA (mmoles/100ml) Individual VFAs (mmoles/100mmoles) Acetate Propionate Butyrate	6.71	6.67	0.875	0.543
	16.1	18.1	1.138	0.186
	56.5	67.8	12.868	0.271
	53.4	57.5	1.249	0.076
	18.0	19.2	1.010	0.173
	12.8	13.9	2.177	0.498
C ₂ /C ₃	2.97	2.99	0.123	0.580
	6 hour			
pH Ammonia-N (mg/100mg) Total VFA (mmoles/100ml) Individual VFAs (mmoles/100mmoles) Acetate Propionate Butyrate C ₂ /C ₃	6.75	6.78	0.889	0.754
	6.82	7.01	0.647	0.681
	60.4	69.3	19.237	0.216
	61.9	61.0	2.032	0.319
	17.1	17.6	1.108	0.499
	14.3	14.9	1.674	0.228
	3.62	3.47	0.233	0.484
pH Ammonia-N (mg/100mg) Total VFA (mmoles/100ml) Individual VFAs (mmoles/100mmoles)	6.87 6.33 49.7	6.84 6.74 54.22	0.914 0.432 4.336	0.683 0.213 0.325
Acetate Propionate Butyrate C_2/C_3	66.4	63.5	2.218	0.061
	17.8	17.9	0.827	0.835
	12.2 ^b	14.3 ^a	2.074	0.021
	3.73	3.55	0.283	0.155

¹⁾ Standard error of the means. 2) Probability levels.

반추위액의 VFA 농도는 사료급여 6시간까지 점차 증가되다가 그 이후로 감소되었다. 전체 시료 채취기간에 걸쳐 반추위액내 총 VFA의 농도는 TMR급여구 보다는 TMF급여구의 농도가 다소 높았으나, 통계적인 차이는 없었다. Acetate(C_2) 조성비율의 경우 사료급여 6시간까지 TMF를 섭취한 소에서 다소 높은 경향을 보였으나 9시간에는 오히려 TMR 섭취구에서 다소 높은 경향을 보였다. 그러나 propionate(C_3) 및 butyrate(C_4) 조성 비율에서는 전체 반추위액 채취시간에서 TMF를 섭취한 소에서 다소 높은 경향을 보였는데, 특히 9시간에서 C_4 비율은 TMF 섭취구에서(C_4) 높은 것으로 나타났다. 전체적으로 C_2/C_3 는 TMR에 비하여 TMF 섭취구에서 다소 높았으나 큰 차이는 없었다.

(나) 육성기용 TMR 및 TMF의 반추위내 유효분해율 및 전장소화율

한우 육성우용으로 제조된 TMR 및 TMF 내 주요 성분의 반추위 내 유효 분해율을 조사한

^{ab} Mean values in a row different superscript differ significantly (P<0.05).

바 Table 4에서 보는 바와 같다. TMR에 비하여 TMF의 건물(Dry matter)과 ,세포벽구성 물질(neutral detergent fiber, NDF)의 유효 분해율이 다소 높았으며 조단백질(crude protein, CP)은 유의적으로(P<0.041) 높았다.

Table 3. Comparison of TMR and TMF for Hanwoo steers of growing stage in effective degradability (ED) of major nutrients in the rumen.

ED	TMR	TMF	SEM 1)	$Pr > F^{-2}$
EDDM	57.5	60.7	4.315	0.334
EDCP	$60.4^{\rm b}$	65.3 ^a	2.324	0.041
EDNDF	30.8	32.4	3.216	0.452

¹⁾ Standard error of the means.

(3) 고찰

시험사료 내 주요 성분의 전장소화율을 조사한 바 Table 7에서 보는 바와 같다. 반추위 내 유효분해율에서와 같이 건물을 비롯한 조사된 성분의 전장소화율이 TMR 급여구에 비하여 TMF 급여구에서 다소 높았으나 큰 차이는 없는 것으로 나타났다. 반추위액의 VFA 농도와 유효분해율, 전장소화율의 결과로 미루어 보아 체내에서의 영양소 이용율이 TMR보다는 TMF에서 더 높은 가능성이 있는 것으로 나타났으며, 이러한 결과는 반추위내 발효를 안정화시켜 영양소 이용율을 향상시킨 것으로 사료된다(Kleiber 등, 1952; McGilliard 등 1983; Nocke 등,1988)

Table 4. Comparison of TMR and TMF for Hanwoo steers of growing stage in whole tract digestibility(%) of nutrients

Nutrients	TMR	TMF	SEM	Pr > F
DM	66.9	69.5	4.013	0.057
СР	76.1	75.8	4.260	0.266
NDF	48.3	51.2	6.487	0.137

¹⁾ Standard error of the means.

나. 한우용 TMR 및 TMF 사료의 저장기간에 따른 발효 성상의 변화

(1) 연구방법 및 내용

본 연구는 국내산 조사료를 이용한 습식TMR, 수입산 조사료를 이용한 습식 TMF, 국내산 조사료를 이용한 습식 TMF의 급여방법이 고품질 단기사양에 있어서 적합한지를 규명하기 위함이다. 사료는 전북 고창의 섬유질 사료배합공장에서 제조하였다. 발효사료의 제조

²⁾ Probability levels.

^{ab} Mean values in a row different superscript differ significantly (P<0.05).

²⁾ Probability levels.

는 Rotary type 고체발효기를 이용하여 40℃에서 48시간 고체발효기에서 발효를 시킨 후 TMR 및 TMF에 혼합처리하였다. 시험에 사용한 실험구는 3처리구로 톨페스큐, 양초 및 발효사료를 혼합한 수입 TMF 처리구(T1), 국내산 볏짚, 총체보리와 발효사료를 급여한 국내산 처리구(T2), 국내산 볏짚, 총체보리, 유산균와 효모제제를 혼합하여 처리한 국내산 TMR 급여한 처리구(T3)로 구분하여 제조하였다.

시험 사료는 섬유질 사료배합공장에서 배합 직 후 본 연구실로 운반하여 각기 혐기상태로 저장하였다. 시료의 저장기간는 0일, 5일, 10일, 15일, 20일, 25일, 30일로 구분 하여 채취하였다. 시험사료의 성분과 배합비는 Table 5에서 나타내었다. 본 시험의 T1 및 T2 처리구에 사용된 발효사료는 미강, 소맥피, 효모 0.1%, 유산균 0.1%를 발효사료 혼합기에 넣어 40℃에서 8시간 동안 혐기적으로 발효 시켰으며 발효가 끝난 후 24시간 외부에 저장해 두었다가 사용하였다. 발효사료에 이용된 원료사료의 화학적 조성은 Table 5와 같다. T3의 첨가되는 생균제는 Lactobacillus acidophilus 30SC 1.2 *10⁷ cfu/ml, Saccharomyces cerevisiae ATCC30068 2.1 *10⁶ cfu/ml를 사료내의 0.1% 분사한 후 급여하였다.

Table 5. Chemical composition and formulation of experimental diets

Itoma	T1		Т2		Т3		
Items			Ingredients	(%)			
	Fobber	7.2	Rice straw	7.9	Rice straw	8.5	
	Tall fescue straw	7.2	Beet pulp	9.5	Beet pulp	8.5	
	Whole barley	25.6	W h o l e barley	35.6	Whole barley	42.7	
	Molasses	5.1	Molasses	5.5	Molasses	6.0	
	Lime stone	1.0	Lime stone	0.8	Lime stone	0.9	
	Corn(M)	0.8	Corn(F)	4.0	Malt hulls	8.5	
	Corn(F)	5.1	Rice bran	19.0	Corn(F)	4.3	
	Rice bran	24.5	Ferment feed	17.7	Rice bran	20.5	
	Ferment feed	erment feed 18.4		Prolactin	0.1		
	Water	5.1			_	_	
	Total	100.0		100.0		100.0	
	Ch	iemical	l composition(%)				
Dry Matter	65.00		64.00		64.00		
Crude protein	12.00		12.00		13.00		
Crude fiber	16.00		17.00		17.00		
NDF	45.00		45.00		44.00		
ADF	22.0		24.00		24.00		
Calsium	0.95		0.98		1.12		
Phosphorus	0.42		0.34		0.39		
TDN	69.0		69.00		69.00		

^{*} TDN: Total Digestible Nutrient ** ADF: Acid Detergent Fiber *** NDF: Neutral

Table 6. Chemical composition of crude feed used for fermentation feed

Chemical composition(%)	Content(%)
Dry Matter	59.00
Moisture	41.00
Crude protein	8.80
Crude fiber	8.43
ADF	13.25
NDF	22.44

* TDN: Total Digestible Nutrient

** ADF: Acid Detergent Fiber

*** NDF: Neutral Detergent Fiber

시험사료 25kg을 플라스틱 백에 혐기적으로 보관 유지하며 외부환경 변화에 따른 (0, 5, 10, 15, 20, 25 및 30일) 저장기간에 발효 성상을 측정하였다. 분석항목으로는 일반성분, pH, 생물 균수 변화를 분석하였으며, 본 시험에서 얻은 결과들은 SAS (Statistical Analysis System) 통계 package (1999)의 GLM (General Linear Model) procedure를 이용하여 분산분석을 하였고, Duncan의 다중검정방법으로 평균 간의 유의성을 검정하였다.

(2) 연구 결과

(가) 수분함량 변화

Table 7. Changes of moisture in TMR and TMF

unit: %

Item	T1	Т2	Т3	mean	SEM
day					
0	43.75	46.13	41.59	43.82	1.13
5	43.79	44.20	37.75	41.91	1.47

10	43.55	45.09	38.27	42.30	1.48
15	52.35	49.46	49.32	50.38	3.79
20	52.87	49.17	47.72	50.31	4.08
25	52.87	49.17	47.72	49.09	3.96
30	52.63	47.32	49.28	49.74	3.77

^{*} T1: Fobber, Tall fescue straw, Ferment feed

(나) pH변화

발효사료와 발효제 첨가에 따른 pH의 변화는 Table 10와 같다. 0일차 4.89-5.32에서 30일 경과 후 pH는 4.68-4.79를 나타났다. pH는 T1처리구로 5.32-4.68로 가장 크게 감소하였다. 발효사료를 첨가한 수입 TMF와 국내산 TMF는 국내산 TMR에 비교하여 pH 변화폭이 크게 나타냈으며 이는 발효사료의 첨가에 따라 유산균의 증식속도가 빠르게 진행된 것으로 사료된다 이와 유사한 방안으로 사일리지 제조시 젖산발효는 대부분 사일리지의 발효초기에 발생하여 pH가 낮아지고 이로 인해 유해미생물과 유산균을 제외한 다른 미생물의 생장이 억제하게 되어 저장성이 증가 된다고 보고하고 있다(박 등, 2006).

Table 8. Changes of pH values in TMR and TMF

Item	T1	Т2	Т3	mean	SEM
day					
0	5.32^{a}	4.89^{b}	5.00^{b}	5.07	0.08
5	5.19	4.94	5.06	5.06	0.08
10	5.03	4.95	4.98	4.98	0.11
15	4.94	4.92	5.07	4.98	0.12
20	4.79	4.81	4.93	4.84	0.10
25	4.69	4.73	4.86	4.76	0.11
30	4.68	4.70	4.79	4.72	0.10

^{ab}With each row, means with different superscripts differ significantly (P<0.05)

(다) NDF, ADF의 변화량

NDF, ADF의 함량은 이번 실험에서 일정한 경향을 보이지 않았다(Table 13,14) 그러나 20일의 저장기간이 지난 후 TMR에 비해 TMF 처리구가 ADF 함량이 유의하게 증가하

^{**} T2: Rice straw, Whole barley, Ferment feed

^{***} T3: Rice straw, Whole barley, Prolactin

였으며(P<0.05),전반적으로 저장기간별 ADF 함량이 TMR 처리구에서 높은 경향을 나타내었다. 본 연구결과와 달리 대부분의 ADF와 NDF는 발효시간이 경과함에 따라 감소되며 이런 결과는 발효에 의해 다양한 미생물들이 섬유소의 분해에 관여함으로서 셀룰로스와 헤미셀룰로스가 저장기간동안 분해되는 것으로 추정하며(Moon, 1981; Oi et al., 1981). TMF 종류간, 발효기간 및 수확시기간에 나타낸 영양성분 함량의 변화나 차이를 명확하게 설명하기에 부족하였는데 이는 각 TMF 시험사료의 대량제조에 따른 정밀배합과 시료 채취시 정밀한 채취가 어려워 분석값의 동일성을 유지하지 못했으며 이러한 분석결과의 차이나 변화가내부의 발효기작에 의한 변화인지 오차에 기인한 것인지 알 수 없는 것이다(이 등; 2002).

Table 9. Change of NDF content in TMR and TMF

unit: %

Item	T1	Т2	Т3	mean	SEM
day					
0	30.25^{ab}	$26.32^{\rm b}$	4.46^{a}	32.34	2.63
5	32.76	34.65	41.08	36.16	4.32
10	32.34	33.26	37.10	34.24	2.81
15	35.28	31.66	31.23	32.72	2.77
20	$36.82^{\rm b}$	36.17°	50.13ª	41.04	2.27
25	33.19	31.02	29.80	31.34	1.84
30	33.52	40.89	31.29	32.36	1.89

^{abc}With each row, means with different superscripts differ significantly (P<0.05)

Table 10. Change of ADF content in TMR and TMF

unit %

Item	T1	Т2	T2 T3		SEM
day					
0	14.84	13.70	14.15	14.23	0.28
5	14.41	14.34	14.69	14.48	0.37
10	13.86	15.29	13.43	14.19	0.63
15	19.14	18.89	30.64	22.89	0.63
20	$13.80^{\rm b}$	13.41°	14.84 ^a	14.02	0.21
25	17.67	16.37	17.35	17.13	0.98
30	14.14	13.54	13.80	13.83	0.30

^{abc}With each row, means with different superscripts differ significantly (P<0.05).

(라) 사료의 미생물의 변화

발효사료와 발효제의 첨가가 제조 후 저장기간에 따른 발효 성상변화를 확인하였다. 총 5 종류의 미생물을 전용배지를 이용하여 유산균, 효모, 바실러스, 총 박테리아, 곰팡이를 조사 하였다(Table 7). Lactobacilli는 15일까지 증식 하다가 20일 이후 30일까지 일정한 균수를 유지하였다. 이 중 T2에서 15일까지 가장 높은 수를 나타내다가 20일 이후 유산균 수는 떨 어지면서 30일 이후 6.11 cfu/ml로 떨어졌다. 효모는 15일까지 증식을 하다가 20일 이후 효 모수가 급격히 떨어지는 것을 볼 수 있다. Bacillus spp.는 10일까지 증식하다가 전체적으로 15일 이후 수가 급격하게 감소되었다. 총 박테리아 수는 Table 15에 나타내었다. 총 박테리 아는 10일까지 증식을 하다가 15 일 이후 급격히 떨어지다가 20일 이후 다시 급격히 상승한 것을 볼 수 있다. 초기 TMF 및 TMR 제조시 호기성 세균이 많이 존재한다. 그러나 저장기간 이 진행됨에 따라 호기성 세균은 산소가 감소됨에 따라 일정기간 증가 후 점차 감소하는 경향 을 나타낸다. 본 연구에서도 총세균수는 저장기간 10일까지 증가하는 경향을 보였다. 또한 통성 혐기성균으로 산소가 없는 환경에서 활동이 약한 효모는 저장기간 15일까지 증가하는 경향을 보였으나 그 이후 지속적으로 감소하였다. 호기성균으로 부패 원인이 되는 곰팡이는 초기 세균수를 저장 10일동안 지속적으로 균수를 유지하고 있으나 15일 이후 감소하였다. 전반적으로 산소가 결핍된 조건에서 성장이 느린 곰팡이,효모, 총 세균수는 저장기간 15일 이후 감소하는 경향을 나타내었다.

Table 11. Change of microbial number in TMR and TMF. unit: log

Item	Oday	5day	10day	15day	20day	25day	30day
Lactobacilli							
Т1	6.52	8.85	7.79	7.34	6.11	6.04	6.11
Т2	5.97	6.08	6.36	7.08	6.86	6.49	6.04
Т3	5.99	5.93	5.86	7.26	6.11	5.90	6.75
Yeast							
T1	5.88	7.23	7.60	8.28	5.60	4.96	5.88
Т2	6.23	6.20	6.61	7.18	6.85	3.30	4.15
Т3	4.30	5.60	5.30	6.75	6.62	5.51	3.30
Bacillus spp							
T1	10.56	13.32	13.94	12.64	12.34	12.41	12.08
Т2	10.72	13.18	13.53	12.95	12.65	12.56	12.78
Т3	10.79	13.04	13.49	13.18	11.92	12.66	12.38
Total bacteria							
T1	10.81	12.71	13.38	9.79	12.59	12.15	12.43
Т2	10.86	13.04	13.48	9.59	12.70	12.26	12.41
Т3	9.93	13.11	13.36	9.83	12.70	12.40	12.36
Fungi							
T1	5.49	5.76	5.53	3.38	3.30	4.75	3.04

Т2	4.49	6.04	5.36	3.60	3.30	5.04	3.36
Т3	_	_	4.45	4.49	4.84	4.88	3.78

cfu/ml

(3) 고찰

TMR 배합시 수분함량을 동일하게 조정하였으나 15일 경과 후 수분함량이 증가하였다. 다 른 연구에서는 저장기간이 경과됨에 따라 미생물의 발효에 의해 건물함량이 감소하였다고 하며 (하 등, 1999), 이로 인한 수분함량의 증가가 나타난 것으로 알 수 있다. pH의 가장 큰 변화를 보인 처리구는 T1 처리구로 5.32-4.68(0.64) 변화를 보였는데, 그이유로는 발효사료 의 첨가로 유산균들의 산 생성에 의해 변화를 보인 것으로 사료된다. 다른 보고에서도 저장 기간에 따라 pH가 서서히 감소하였다고 보고되었다 (하 등, 1999). 제조 경과일이 증가할수 록 NDF, ADF의 함량은 다른 보고에 의하면 감소하는 것으로 보고되었지만 (이 등, 2002), 이번 실험에서는 TMR 배합사료의 특성상 시료의 균일한 채취가 이루어지지 않아 일정한 경향을 보이지 않았다. TMR 내에 서식하는 미생물의 균수를 측정한 실험에서 유산균 수는 15일까지 증식을 하다가 20일 이후 안정화 된 것을 볼 수 있다 이 중 T1에서 15일까지 가 장 높은 수를 나타내다가 20일 이후 유산균 수는 떨어지면서 30일 이후 6.11로 떨어졌다. 그러나 T2에서의 유산균 수는 유지되었다. 효모는 15일까지 증식을 하다가 20일 이후 급격 히 떨어지는 것을 _ 알 수 있지만 T1 처리구에서는 효모수가 유지되었다. 바실러스는 10일 까지 증식하다가 전체적으로 15일 이후 안정화가 유지 되었으며, T2 처리구는 전체적으로 높게 나왔다. 총 박테리아는 15일 이후 급격히 떨어지다가 20일부터 다시 상승한 것을 볼 수 있다. 곰팡이 수는 호기 상태에서 10일까지 일정하게 유지되다가 15일 뒤 줄어든 후 일 정하게 유지되었다. 시험 결과 대부분이 15일과 20일 사이 큰 변화가 일어났다. 대부분 유 익균의 증식이 안정화 또는 감소 되어가는 현상을 볼 수 있었다. 이 후 유익균의 증식률이 저하됨에 따라 농가의 생산성에도 영향을 미칠 것으로 보이며, 국내산 볏짚, 총체보리와 발 효사료를 급여한 국내산 처리구(T2)에서 전체적으로 저장성이 가장 높을 것으로 사료된다.

다. 발효사료(TMF) 첨가가 거세 육성한우의 생산성, 발효 및 혈액 성상에 미치는 영향

(1) 연구방법 및 내용

시험에 이용된 공시동물은 6개월령 (160±10kg) 한우 거세우 48두를 공시하였다. 사료급여량은 체중의 약 1.7%를 하루 두 번 (09:00 및 17:00) 나누어 급여하였고, 각 처리구별로 섭취량을 조사하였다. 그리고 물과 무기물은 자유채식 시켰다. 각각의 처리구별로 급여된 사료의 성분 및 배합비는 Table 12와 같고, 화학적 조성은 Table 13에 나타내었다.

Table 12. The ingredant and formula of feedstuff

T1 (%)		T2 (%)		T3 (%)		T4 (%)	
Components	rate	Components	rate	Components	rate	Components	rate
Cereals	28.35	Fobber	7.2	Rice straw	7.9	Rice straw	8.5
Tapioca	5.5	Tall fescue straw	7.2	Beet pulp	9.5	Beet pulp	8.5
Brewer grain	19	Whole barrey	25.6	Whole barrey	35. 6	W h o l e barley	42.7
Vegetability agourd	30.3	Molasses	5.1	Molasses	5.5	Molasses	6.0
Malt hulls	1.5	Lime stone	1.0	Lime stone	0.8	Lime stone	0.9
Fibroid material	5	$Corn(M)^*$	0.8	$Corn(F)^{**}$	4.0	Malt hulls	8.5
Molasses	6.5	Corn(F)**	5.1	Rice bran	19. 0	Corn(F)	4.3
Salt	0.6	Rice bran	24.5	Ferment feed	17. 7	Rice bran	20.5
Lime stone	1.52	Ferment feed	18.4			Probiotics	0.1
Calcium sulfate	0.26	Water	5.1				
Medicine	0.25						
Pobiotics	0.2						
Buhher	0.5						
Mineral mixture	0.25						
Total	100.0	Total	100. 0	Total	100	Total	100. 0

^{*} Corn(M) : Corn Meal

Table 13. Chemical composition of feedstuff

Item	T1	Т2	Т3	T4
Chemical composition (%)			
Dry Matter	87.00	65.00	64.00	64.00
Moisture	13.00	35.00	36.00	36.00
TDN^*	69.00	69.00	69.00	69.00
Crude protein	14.00	12.00	12.00	13.00
Crude fiber	18.00	16.00	17.00	17.00
ADF**	_	22.00	24.00	24.00
NDF***	_	45.00	45.00	44.00
Calcium	0.80	0.95	0.98	1.12
Phosphorus	1.20	0.42	0.34	0.39

^{*} TDN: Total Digestible Nutrient

^{**} Corn(F): Corn Flake

** ADF : Acid Detergent Fiber *** NDF : Neutral Detergent Fiber

본 시험에 이용된 발효사료는 총체보리, 볏짚, 미강, 소맥피, 효모 0.1%, 유산균 0.1%를 발효사료 혼합기에 넣어 40℃에서 8시간 동안 혐기적으로 발효시켰으며 발효가 끝난 후 24시간 외부에 저장해 두었다가 사용하였다. 발효사료에 이용된 원료사료의 화학적 조성은 Table 14에서 나타냈으며, 조사항목으로는 증체량, 사료섭취량 및 혈액성분을 분석하였다.

Table 14 Chemical composition of fermentative source (fermentative feed) used in the TMF feedstuffs

Chemical composition	Content(%)
Dry Matter	59.00
Moisture	41.00
Crude protein	8.80
Crude fiber	8.43
ADF^*	13.25
NDF**	22.44

^{**} NDF: neutral detergent fiber

(2) 연구 결과

(가) 증체량 및 사료섭취량

공시축의 시험 개시체중은 평균 159.6kg이었고, 시험 종료일 최종 공시동물의 체중은 평균 301.3kg으로 나타났다. T2구가 체중이 가장 높게 나타났고, T1 처리구가 가장 적었다. 증체 량에 있어서는 T4처리구가 시험개시일로부터 종료일까지 148.4kg으로 가장 많이 증가하였고, T1처리구가 123.7kg으로 증체량이 가장 낮았다. T1의 농후사료와 다른 처리구의 사료 량을 제한하였기 때문에 각 처리구의 사료섭취량에 있어서 큰 차이가 없었지만, T1처리구의 조사료의 자유채식에 따라 T1처리구가 가장 많은 섭취량을 나타내었고, 또한 이것은 사료요구율에 있어서도 유사한 결과를 나타내었다 (Table 15).

이러한 결과는 반추위내 발효를 안정화 시키고, 영양소 이용효율을 향상시킨 것으로 사료되면 (Kleiber 등, 1952; McGilliard 등, 1983; Noc다 등, 1985), T1 처리구의 결과는 군사형 태의 사양방법은 개체간 사료섭취량의 차이가 발생하기 쉽고, 발육의 균일성이 저하되고 사료섭취량 및 사료요구율이 증가된 것으로 보인다 (농림수산성 2000).

Table 15. Growth performance and feed efficiency of Korean native steers during

^{*} ADF: acid detergent fiber

growth period depending on different feedstuffs

Ti	Treatments						CDM
116	ems	T1	Т2	Т3	T4	Mean	SEM
	Initial (days)	160.30	160.40	158.90	158.60	159.60	2.17
	28	187.90	190.80	182.80	184.70	186.50	2.70
TT7 * 1 .	56	201.20	206.80	191.70	199.00	199.70	2.83
Weight (kg)	84	210.10	221.50	202.80	212.90	211.80	3.12
	112	237.00	252.90	247.30	256.10	248.30	3.25
	140	258.80	275.40	267.60	278.40	270.10	3.64
	168	284.00	308.00	306.10	307.00	301.30	4.09
	eight gain kg)	123.70	147.60	147.20	148.40		
	eight gain kg)	0.74	0.88	0.88	0.88		
	takes/day kg)	6.43	5.63	5.63	5.63		
Feed e	fficiency	0.11	0.16	0.16	0.16	0 7040	

T1, concentrate and rice straw; T2, TMF containing tall fescue; T3, TMF containing barley rise straw; T4, rice straw TMR containing barley and microbial inoculant

(나) 혈액 성상의 변화

각 처리구들의 급여에 따른 혈중 대사물질 및 호르몬 농도에 미치는 영향은 Table 16, 17 및18에과 같다. 혈액 분석은 8주 (56일)간격으로 3회를 걸쳐 실시하였다. 혈중 대사물질 중 albumin 농도의 1차 분석시 3.40-3.49으로 유의성의 차이는 없었으나 24주 3차 분석시 albumin 농도는 3.65-3.89로 유의성을 나타났다. almumin은 근육에서 단백질 합성이 증가함에 따라 감소된다 (Galbraith 등, 1978). 알코올 발효사료를 급여한 한우의 경우 반추위내 propionate 생성량은 증가하고, 혈중 triglyceride, cholesterol 및 glucose 농도가 증가하다고 보고되어 있지만 이러한 결과들은 알코올의 효과로만 추측할 뿐 대산물을 이용한 명확한 근거를 제시하지 못하였다(임 등, 2001).

Table 16. Blood characteristic of Korean native steers depending on feeding of TMR and TMF (56 days)

Itom	Treatments					SEM
ltem	T1	T2	Т3	T4	– Mean	SEM

Total protein (g/dl)	6.65ª	6.11 ^b	6.48ª	6.13 ^b	6.34	0.07
Albumin (g/dl)	3.49	3.40	3.45	3.48	3.46	0.03
SGOT (U/L)	$66.17^{\rm b}$	71.50 ^{ab}	66.42 ^b	78.00ª	70.52	1.92
SGTP (U/L)	25.75	27.67	27.00	26.67	26.77	0.71
Creatinine (mg/dl)	1.53ª	1.36 ^b	$1.32^{\rm b}$	1.20 ^b	1.35	0.03
BUN (mg/dl)	13.57ª	11.89 ^{ab}	9.69°	10.82 ^{bc}	11.49	0.39
Total cholesterol (mg/dl)	113.92 ^{ab}	120.25ª	104.00 ^{ab}	101.17 ^b	109.83	3.03
HDL cholesterol (mg/dl)	55.50	60.25	53.58	53.75	55.77	1.28
LDL cholesterol (mg/dl)	11.83	12.67	10.83	11.58	11.73	0.36
Triglyceride (mg/dl)	27.83	28.08	31.17	26.08	28.29	0.95
Glucose (mg/dl)	89.75 ^{ab}	95.08ª	88.50 ^b	92.75 ^{ab}	91.52	1.08

^{ab} With each row, means with different superscripts differ significantly (P<0.05).

Table 17. Blood characteristic of Korean native steers depending on feeding of TMR and TMF (112 days)

T4		Treati	N/	CEM		
Item	T1	Т2	Т3	Т4	Mean	SEM
Total protein (g/dl)	6.22	5.92	6.20	5.97	6.08	0.06
Albumin (g/dl)	3.46^{b}	3.61 ^a	3.63ª	3.63^{a}	3.58	0.03
SGOT (U/L)	63.17	73.08	76.08	77.33	72.42	2.48
SGTP (U/L)	$22.00^{\rm b}$	25.75ª	23.75^{ab}	$22.25^{\rm b}$	23.44	0.57
Creatinine (mg/dl)	1.34	1.33	1.27	1.28	1.31	0.02
BUN (mg/dl)	10.22 ^{ab}	11.75 ^a	10.17^{ab}	9.03^{b}	10.29	0.31
Total cholesterol (mg/dl)	129.67ª	108.33 ^b	120.58 ^{ab}	111.00 ^b	117.40	2.78
HDL cholesterol (mg/dl)	66.25 ^a	$55.17^{\rm b}$	65.00 ^a	59.58 ^{ab}	61.5	1.31
LDL cholesterol (mg/dl)	12.58	11.42	11.92	10.83	11.69	0.30
Triglyceride (mg/dl)	28.42ª	27.92ª	20.17 ^b	18.83 ^b	23.84	1.13
Glucose (mg/dl)	$97.25^{\rm b}$	101.92 ^{ab}	100.67 ^{ab}	105.67ª	101.38	1.06

^{ab} With each row, means with different superscripts differ significantly (P<0.05).

Table 18. Blood characteristic of Korean native steers depending on feeding of TMR and TMF (168 days)

T4		Treat	Μ	CEM		
Item	T1	Т2	Т3	Т4	- Mean	SEM
Total protein (g/dl)	6.28 ^{ab}	6.11 ^a	6.47ª	6.31 ^{ab}	6.29	0.07
Albumin (g/dl)	3.65°	$3.72^{\rm bc}$	3.89^{a}	$3.84^{\rm bc}$	3.78	0.03
SGOT (U/L)	61.75^{b}	71.33ª	66.00 ^{ab}	69.67ª	67.19	1.35
SGTP (U/L)	$20.75^{\rm b}$	26.50^{a}	23.33^{b}	22.08^{b}	23.17	0.58
Creatinine (mg/dl)	1.28ª	1.33^{b}	$1.27^{\rm b}$	1.23 ^b	1.28	0.02
BUN (mg/dl)	13.30^{a}	9.82^{b}	10.72 ^b	10.38 ^b	11.05	0.32
Total cholesterol (mg/dl)	121.93	135.17	145.42	142.25	136.19	4.40
HDL cholesterol (mg/dl)	59.25	58.50	61.08	60.58	59.85	1.25
LDL cholesterol (mg/dl)	16.83	17.92	18.92	19.50	18.29	0.68
Triglyceride (mg/dl)	27.67	26.25	23.83	23.67	25.35	0.80
Glucose (mg/dl)	86.50	89.75	91.17	91.50	89.73	1.11

^{ab} With each row, means with different superscripts differ significantly (P<0.05).

라. 양질 조사료원 급여 및 가소화총량 및 영양소 조절을 통한 국내단기사육 TMR사료개발

(1)연구목적

한우의 장기사양으로 인한 노동력, 사료비증가, 사료효율감소 등을 절감하기 위해 고품질 고기 능성 한우사양프로그램의 개발이 시급한 실정이다. 따라서 본연구의 목적은 양질 조사료원 급여 및 가소화총량 조절을 통한 국내단기사육 TMR사료개발 을 진행하였다.

(2) 재료 및 방법

농가별 유형분석과 현장적용을 위해 개발된 단기사양관리 프로그램은 개정된 2012년도 한우 사양표준 한우거세우 영양소 요구율을 기준으로 단백질 함량 및 DMI를 약 5% 증진 급여하여 고 성장 단기 사양이 가능토록 디자인 하였다. (Table 1)

(3) 연구 결과

개발된 고성장 고육질 단기사양 프로그램과 농후사료와 볏짚을 급여하는 농가의 경제성 비교 분석에서는 목표일을 59일 단축하여 목표체중에 도달 하였으며, 424,350원의 사료비가 절감 되는 것으로 나타났다. 농협사료의 TMR급여 프로그램과의 비교분석에서는 목표일을 56일 단축하여 목표체중에 도달하였고, 406,445원의 사료비가 절감 되는 것으로 나타났다.

Table 19. Formulae(%, as-fed basis) and chemical composition(%, DM basis) of the experimental diets for the Hanwoo steers in growing period to late fattening period.

	A 단계	 B 단계	C 단계
	(6.5 ~ 12개월령)	(12 ~ 20개월령)	(20 ~ 28개월령)
연맥 건초	31.4	4	_
티모시 건초	12.1	3	_
알팔파 건초	3.6	2.9	3.6
볏짚	_	9.0	14.3
이탈리안 라이그라스	_	7.70	_
밀기울	3.6	_	_
옥수수	12.1	16.3	40.7
옥수수글루텐	3.6	14	14.3
대두박	6.1	_	_
전지면실	_	2.1	_
루핀 F	5	3.5	14.3
맥주박	_	13.1	_
옥수수주정박	_	11.3	11
염분	0.2	0.2	_
석회석	0.4	0.4	0.4
물	18.9		_
당밀	0.6	0.3	_
비타민-미네랄 복합제	0.4	0.4	_
프로바이오틱스	2	1.5	1.4
화학적 성분			
수분(%)	29	33	27
조단백질(% of DM)	13.28	15	16.50
조지방(% of DM)	2.5	2.72	4.0
중성세제 불용성 섬유소(% of	51.72	42.4	33.40
DM)			
조섬유(% of DM)	27.59	15.45	13.70
가소화영양성 총량(% of DM)	67.52	74.40	80
칼슘(Ca)	43g	38g	34g
인(P)	22g	20g	23g
DM : 건물, dry matter			

Table 20. 단기 사양프로그램의 일당증체량, 사료요구율 및 경제성 분석

 명호	목3	<i>도</i> 일	체중	(kg)	일당증체	사료	총사료비
23도	개시	종료	개시	종료	(g)	요구율	(원)
개발된 단기사양 프로그램	2012-04- 29	2014-01- 24	177	750	902	14.358	3,243,9
농후사료 급여농가	2012-04- 29	2014-03- 23	177	750	822	12.432	3,668,2 80
TMR 사료회사 프로그램	2012-04- 29	2014-03-	777	750	833	16.487	3,650,3 75

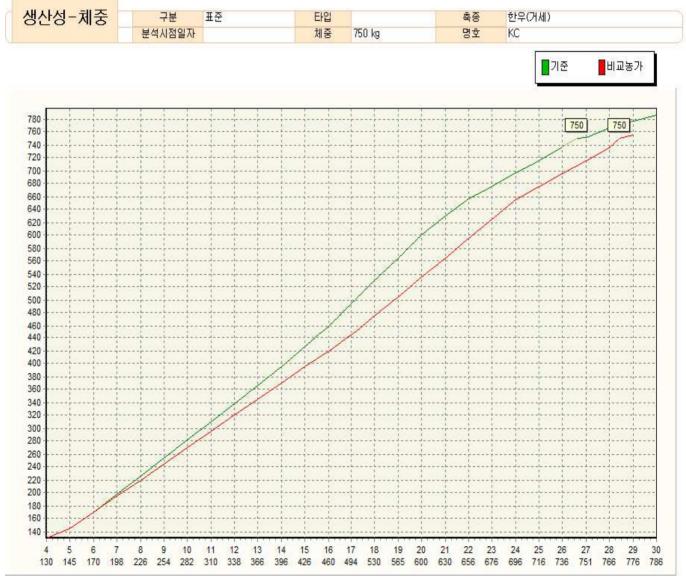


그림1. 단기사양프로그램(기준), 상업용 한우TMR 사양프로그램(비교농가) 과의 체중비교

마. 사료의 TDN 수준 차이가 in vitro 배양에서 반추미생물에 의한 발효 성상에 미치는 효과

(1) 연구목적

본 연구는 한국 한우사양표준 설정을 위해 수행되었는데, 각 사양 단계별 3가지 수준으로 가소화영양소총량 (total digestible nutrients, TDN)을 달리하여 제조된 사료를 이용하여 반추위 미생물에 의한 차이를 in vitro 발효특성 및 유효 분해율을 조사하여 한우사양을 위한 사료배합을 위한 기초자료로 활용코자 시행하였다.

(2) 재료 및 방법

- (가) 배양액의 준비: 반추위액 채취를 위해 반추위 cannula 가 장착된 암소 (600 Kg ± 50) 2두를 이용하였다. 시험 시작 일주인 전부터 농후사료 (건유기 사료, 5.6 kg)및 조사료 (볏짚, 2.4 kg) 7:3 비율로 09:00 와 16:00에 2회에 나누어 급여하였다. 반추위 미생물에 의한 EDDM(effective degradability of dry matter, 유효 건물 분해율) 및 EDCP(effective degradability of crude protein, 유효 조단백질 분해율)를 측정하기 위해 시험시료는 각 TDN 수준별 농후사료와 Tall-fescue를 7:3의 비율로 각각의 농후사료 2.1g, Tall-fescue 0.9g혼합 후 총 3g을 7 × 7 cm nylon bag에 담아 250ml 삼각플라스크에 넣고, 12겹의 거즈로 거른 반추위액과 인공타액 (McDougall's buffer solution)을 1:1비율로 혼합해 배양액 160ml 을 넣어 3-way stopcock를 장착한 고무마개로 삼각플라스크 입구를 밀봉 후 진탕배양기(VS-8480SR)에 135 rpm, 39℃ 조건 하에 총 48시간 까지 배양하였다. 한 처리구당 2 반복씩 3period 배양 하였고, 측정 및 분석항목으로는 pH, gas production, ammonia-N 농도, VFA 농도, EDDM 및 EDCP를 조사하였다.
- (나) 실험에 사용된 사료: 시험의 쓰인 농후사료는 사양단계별 3가지 TDN(total digestible nutrient)가를 가지고 배합되었다. 비육전기 LTL1 (Low TDN Level, 67%), MTL1 (Mid TDN level, 69%) 및 HTL1 (High TDN level, 76%)와 비육중기 LTL2(Low TDN Level, 74%), MTL2 (Mid TDN level, 78%) 및 HTL2 (High TDN level, 81%)를 사용하였다.

Table 21. 비육전기 농후사료의 배합비

	Tre	atments (TDN le	evel)
Ingredients	LTL1	MTL1	HTL1
	(67%)	(69%)	(76%)
Corn, ground	10.37	38.52	67.70
Wheat (soft)	4.44	2.81	1.33
Wheat flour-second clear	5.63	3.26	1.33
Gluten feed	22.22	10.96	2.67
Wheat bran	36.00	21.48	8.44
Soybean meal	2.96	2.22	1.33
Coconut meal	11.85	8.89	1.63
Urea	0.44	1.48	2.67
Rice polishing	1.33	5.63	8.15
Molasses	1.33	1.33	1.33
Limestone	2.52	2.52	2.52
Mineral-salt	0.89	0.89	0.89

Table 22. 비육중기 농후사료의 배합비

	Tre	atments (TDN le	vel)
Ingredients	LTL2	MTL2	HTL2
	(74%)	(78%)	(81%)
Corn, ground	20.77	33.33	47.33
Wheat (soft)	4.00	2.67	1.20
Wheat flour-second clear	11.87	5.33	1.07
Gluten feed	13.33	7.87	0.67
Wheat bran	28.93	12.67	0.67
Soybean meal	4.69	6.67	8.93
Coconut meal	8.53	5.33	0.67
Urea	0.67	0.93	1.20
Rice polishing	0.67	18.67	31.73
Molasses	3.60	3.60	3.60
Limestone	1.87	1.87	1.87
Salt	0.53	0.53	0.53
Minvit2	0.53	0.53	0.53

Table 23. 시험사료의 일반성분

	시험사료		일1	반성분(%, 건물기준)
	기림기료	DM	СР	EE	Ash
	농후사료				
비육전기					
LTL1		S	93.94 15.	.29 6.44	7.85
MTL1		g	94.36 16.	.11 6.99	7.56

HTL1	94.04	16.10	7.20	6.97
비육중기				
LTL2	90.69	17.8	6.93	7.09
MTL2	90.28	17.9	8.23	7.11
HTL2	89.77	17.8	10.49	6.74
조사료				
Tall-fescue	94.23	5 7.65	7.66	5.18

(다) 분석방법: 배양 시작 후 1, 3, 6, 12, 24 및 48 시간에 3-way stopcock에 유리주사기를 연결하여 가스 발생량을 조사 하였고, 고무마개를 제거하여 즉시 pH를 측정하였다. Ammonia-N 농도 조사를 위해 배양액 0.8ml를 채취하여 Fawcett and Scott (1960) 방법으로 Spectrophotometer(DU-650)를 이용, ammonia-N농도를 조사하였다. 마찬가지로, VFA농도 조사를 위해 배양액 0.8ml를 채취하였고, 미생물 활동 정지를 위해 0.2 ml 25% phosphoric acid와 0.2ml 2% pivalic acid를 internal standard로 사용하여 gas chromato graph(GC-HP6890, Hewlett Packard Co.)를 이용하여 조사하였다. 채취된 nylon bag은 세탁 후 dry oven에서 60℃ 48시간 동안 건조 후 개봉하여 EDDM 및 EDCP를 위해 AOAC (1995)방법으로 일반성분 분석을 하였다. 각 배양시간에 분해율은 Ørskov and McDonald (1979)식으로 계산하였다.

$$\rightarrow Y_{(t)} = a + b(1 - e^{-ct})$$

 $Y_{(t)}$ 는 배양시간 t에서 분해된 부분이고, "a"는 물에녹는 부분 혹은 즉시 분해되는 부분, "b"는 잠재적으로 분해되는 부분, "c"는 "b"의 시간당 분해율 이다. 변수 a,b 및 c를 계산하여 아래의 식(Ørskov and McDonald, 1979)에 대입하여 EDDM 및 EDCP를 계산한다.

(2) 연구결과 및 고찰

비육전기 사료의 각 sampling 시간에 배양액 내의 pH는 전체적으로 TDN가가 높은 순서로 낮았으며, 배양 종료된 48h에서의 pH는 LTL1, MTL1, HTL1 순서로 5.67, 5.63, 5.63로 비육증기 사료의 경우 5.64, 5.7, 5.63로 조사 되었다. Total gas생성량은 비육전기 483, 491, 520 ml 비육증기 447, 461, 477 ml로 HTL1, HTL2에서 높은 가스 발생량을 보였다(그림 4, 5). 비육전기의 시간당 gas production은 배양시작 후 6시간까지 HTL1이 높았고 (p<0.05), 배양후기로 갈수록 처리구간 유의적 차이는 보이지 않았다 비육증기의 경우 전체적으로 시간당 gas production은 HTL2가 높았지만, 유의적인 차이는 없었다. 비육전기 ammonia—N 농도는 배양 후 12시간(p<0.05)을 제외한 나머지 시간에서 유의적인 차이는 없었지만, 전체적인 ammonia—N 농도는 LTL1에서 높게 나타났다. 비육증기의비육전기의 전반적인 total VFA 농도에서의 큰 유의적인 차이는 없었지만, 배양 후 6h에서의 total VFA농도는 HTL1에서 다른 처리구에 비해 유의적으로 높았다(p<0.05, Table 4). VFA의 구성에서는 배양 후 1h에서 LTL1의 butyrate농도가 다른 처리구에 비해 높았다(P<0.05,). 비육증기의 경우 배양이 끝나는 48h에서 total VFA농도는 MTL2에서 가장 높았고, butyrate 농도는 유

의적으로 높았다 경우 MTL2에서 다른 철리구에 비해 높은 ammonia-N농도를 보였으나, 유의적이진 않았다.비육전기 LTL1에서 다른 처리구에 비해 EDDM의 "b" 값이 높았고 (p<0.05), 유의적이진 않았지만, HTL1에서 다른처리구에 비해 초기 분해율인 "a" 나 "EDDM" 값이 높게 조사 되었다. EDCP도 마찬가지로, HTL1에서 높게 조사되었다. 비육중기의 경우는 LTL2에서 다른 처리구에 비해 EDDM의 "c" 값이 높았고(p<0.001), 유의적이진 않았지만, LTL2의 EDDM값이 다른 처리구에 비해 높게 조사 되었다. EDCP의 경우 EDDM과 다르게 "b" 값과 "EDCP"의 값이 MTL2와 HTL2에서 LTL2보다 유의 적으로 높게 조사되었다 (p<0.05). 본 실험은 비육 전기 및 비육중기의 거세한우 사양을 위한 사료의적정 TDN함량을 조사하고자 수행하였는 바, 반추위 미생물에 의한 발효 성상 및 in vitro 조사 방법을 이용하여 건물과 조단백질의 예상분해율을 조사하였다. 조사 결과 비육 전기 및 비육후기 모두 사양표준 대비 낮은 TDN 수준 혹은 높은 TDN 함량의 사료보다는 사양표준에서제시하는 수준에서 즉 비육 전기의 경우 69%의 TDN 함량 및 비육 중기의 경우 78%의 TDN 함량에서 대체적으로 반추위 발효성상 즉 반추위내에서의 휘발성 지방산의 총 농도 생성량 및 건물 및 조단백질의 예상분해율의 좋게 평가 됨을 확인 할 수 있었다.

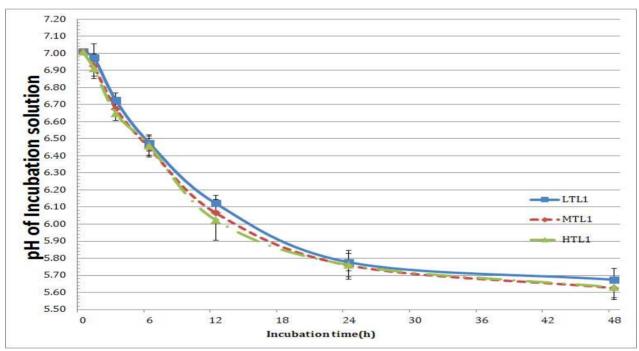


그림 2. 비육전기 사료의 시간별 배양액내 pH 변화

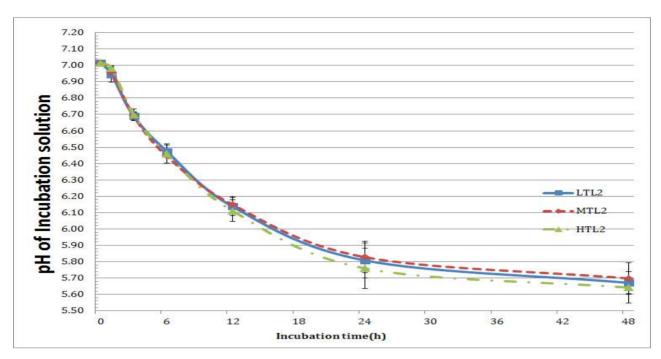


그림 3. 비육중기 사료의 시간별 배양액내 pH 변화

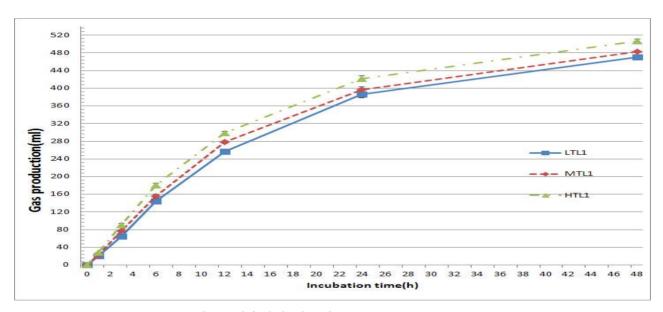


그림 4. 비육전기 사료의 Total gas production.

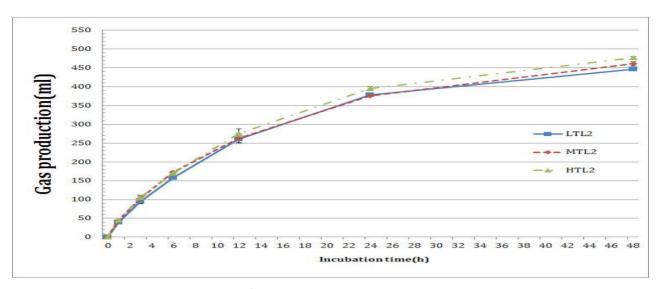


그림 5. 비육전기 사료의 Total gas production.

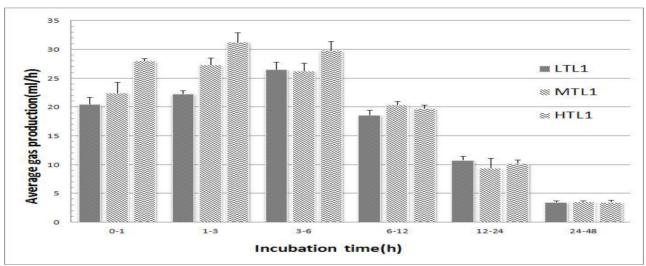


그림 6. 비육전기 사료의 시간당 gas production

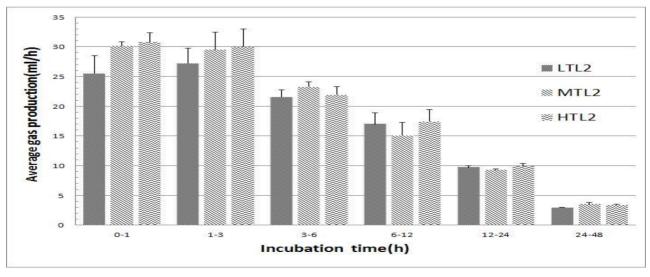


그림 7. 비육중기 사료의 시간당 gas production

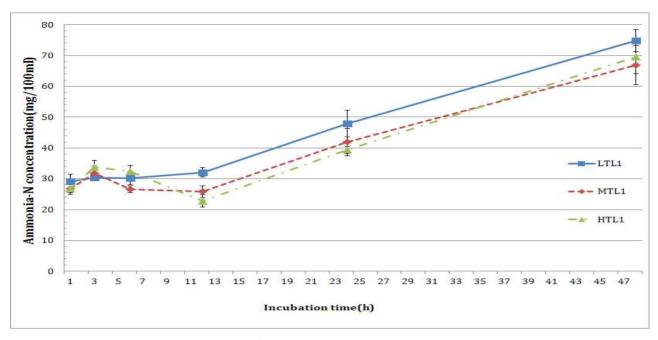


그림 8. 비육전기 배양액내 ammonia-N 농도

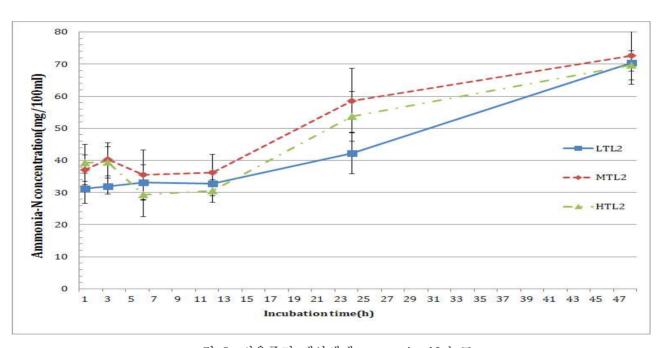


그림 9. 비육중기 배양액내 ammonia-N 농도

Table 24. 비육전기 배양액내 VFA 농도 및 구성

Items				Treatment		— SEM¹	Pr>F ²
Items			LTL1	MTL1	HTL1		1171
					1h		
	Total VFAs		55.41	60.47	56.73	1.986	0.574
Molar	proportion(mmoles	s/100mn		00.11	00.10	1.000	0.011
ivioiai	Acetate (C_2)	o, 10011111	64.06	63.78	64.00	0.178	0.818
	Propionate (C_3)		21.77		22.74	0.174	0.064
	Butyrate (C ₄)		10.44 ^a	$9.92^{\rm b}$	9.70 ^b	0.110	0.012
	C_2/C_3				2.81	0.028	0.182
	02/03						0.102
	Total VFAs		67.83	74.52	76.36	2.635	0.386
Molar	proportion(mmoles	s/100mn					
	$Acetate(C_2)$		63.94 ^b	$63.60^{\rm b}$			0.045
	Propionate (C_3)				23.31	0.311	0.923
	Butyrate (C_4)		9.34		8.94	0.143	0.247
	C_2/C_3		2.72	2.69	2.84	0.048	0.451
					6h		
	Total VFAs		71.87^{b}	89.89 ^b	97.95ª	3.674	0.002
Molar	proportion(mmoles	s/100mn		00.00	000	0.0.1	0.002
	Acetate (C_2)		67.86	65.369	64.17	0.768	0.134
	Propionate (C_3)		23.29	22.780	22.56	0.340	0.688
	Butyrate (C ₄)				10.09	0.544	0.331
	C_2/C_3		2.91		2.84	0.055	0.885
					12h-		
	Total VFAs		112.825	123.2	120.28	3.402	0.457
Molar	proportion(mmoles	./100mn		120.2	120.20	3.402	0.457
Willai	Acetate (C_2)	5/10011111	62.77	63.25	64.19	0.350	0.253
	Propionate (C_3)		22.53	22.58	22.03	0.331	0.233
	Butyrate (C_4)		11.95	11.50	11.38	0.202	0.700
	C_2/C_3		2.78		2.91	0.202	0.599
	C2/ C3		2.10	2.00	24h-	0.000	0.000
	Total VFAs		152.39	156.91	172.85	4.610	0.152
Molar	proportion(mmoles	s/100mn	noles)				
	Acetate (C_2)		62.91	63.18	63.68	0.431	0.780
	Propionate (C_3)		21.31	20.88	20.93	0.304	0.839
	Butyrate (C_4)		12.92	13.17	12.66	0.181	0.534
	C_2/C_3		2.95	3.02	3.04	0.062	0.871
					48h-		
	Total VFAs		197.63	199.02	197.96	3.404	0.988
Molar	proportion(mmoles	s/100mn		100.02	137.30	0.404	0.500
wioiai	Acetate (C_2)	5/ I O O I I I I I	63.88	63.39	63.84	0.503	0.928
			20.20	20.68	19.76	0.303	0.328
	Promonatellal						
	Propionate(C ₃) Butyrate(C ₄)		12.82	13.20	13.40	0.171	0.385

¹SEM = Standard error of means. ²Pr > F = probabiliy level.

Table 25. 비육중기 배양액내 VFA 농도 및 구성

T.	Treatment			OD 11	D > D0
Items	LTL2	MTL2	HTL2	SEM1	Pr>F2
			-1h	_	
		_			
Total VFAs	62.10		65.45	3.703	0.936
Molar proportion (mm					
Acetate(C2)	69.36	69.24			0.862
Propionate (C3)					
•	7.11				
C2/C3	3.37	3.35	3.40 -3h	0.071	0.972
			-3n	_	
Total VFAs			70.20	2.738	0.856
Molar proportion(mm					
Acetate(C2)	69.75	68.28	68.66	0.680	0.700
Propionate (C3)	20.26	20.86	20.42	0.321	0.769
Butyrate(C4)	6.87	7.58	7.83	0.291	0.412
C2/C3	3.45	3.29	3.36		
- , 			3.36 -6h	_	200
		_			
Total VFAs			113.54	3.037	0.334
Molar proportion(mm					
		69.17			0.712
Propionate(C3)					0.455
Butyrate(C4)	8.27	8.46	8.44	0.161	0.895
C2/C3	3.34	3.51	3.35 -12h	0.065	0.555
			-12h	_	
Total VFAs	 123.26		124.54	2.496	0.936
Molar proportion(mm			124.04	2.430	0.550
Acetate (C2)			66.00	0.584	0.994
		66.06			
Propionate (C3)					0.295
Butyrate (C4)				0.273	
C2/C3	3.16		3.00 -24h		0.623
			-2411	_	
Total VFAs	152.85	147.96	172.33	9.873	0.935
Molar proportion(mm					
Acetate(C2)	64.80	61.36	63.30	0.868	0.222
Propionate(C3)	20.54	22.16	22.70	0.530	0.255
Butyrate(C4)	12.01	13.27	11.44	0.389	0.167
C2/C3	3.15	2.79	2.79	0.099	0.215
			-48h		
Total VFAs	198.04	209.870	201.76	8.910	0.884
Molar proportion(mm					
Acetate(C2)	64.59	62.56	62.41	0.487	0.118
Propionate (C3)	19.08	20.57	22.05	0.337	0.072
Butyrate(C4)	12.71b	13.58a	12.24b	0.192	0.002
C2/C3	3.44	3.04	2.83	0.124	0.122

 1 SEM = Standard error of means. 2 Pr > F = probabiliy level.

Table 26. 비육전기 사료의 EDDM 및 EDCP

items -		treatment		SEM	Pr>F
items -	LTL1 MTL1		HTL1	SEM	Pr>r
Parameters ¹ and EDDM					
a	28.73	31.71	33.29	0.822	0.058
b	41.94 ^a	38.40^{ab}	35.89^{b}	0.978	0.025
\mathbf{c}	0.14	0.12	0.14	0.005	0.238
EDDM	59.66	58.9	59.92	0.493	0.710
parameters¹and EDCP					
a	25.08	27.31	26.40	0.458	0.126
b	35.67	31.34	35.15	1.698	0.590
\mathbf{c}	0.049	0.067	0.070	0.909	0.656
EDCP	40.30	44.79	45.91	1.245	0.145

Table 27. 비육중기 사료의 EDDM 및 EDCP

items		treatment	1	SEM	Pr>F
items	LTL2	MTL2	HTL2	SEM	Fr>F
parameters¹and EDDM					
a	27.44	31.56	30.51	2.961	0.115
b	41.57	42.81	41.63	0.586	0.667
\mathbf{c}	O.11 ^a	0.06^{b}	0.07^{b}	0.006	0.0008
EDDM	56.28	56.04	55.73	0.459	0.906
parameters¹and EDCP					
a	19.69	22.72	19.43	0.750	0.128
b	27.31^{b}	30.86^{a}	29.88a	0.660	0.050
\mathbf{c}	0.16	0.13	0.24	0.022	0.079
EDCP	$40.41^{\rm b}$	44.47 ^a	43.93 ^a	0.694	0.004

바. 기능성물질(GABA)을 첨가하여 *in vitro* 반추위 발효 성상 분석 및 육량, 육질 등급에 미치는 영향

(1) 연구목적

본 연구의 목적은 γ -amino butyric acid (GABA)를 생성하는 미생물을(GPB)첨가 하였을 때 반추위 발효특성 및 성장패턴, 육량, 육질등급에 미치는 영향을 조사하기위해 실시 하였다.

(2) 재료 및 방법

In vitro

김치에서 분리한 GABA생성미생물인, Lactobacillus brevis YM 3-30, 균주를 혐기적으로 MRS broth (Oxoid LTD, England)에서 배양하였다. 실험에서 사용된 MRS 배지는 monosodium glutamate (MSG)를 5% 첨가하였으며, pH 5.0, 32° C에서 48시간 배양하였다. 실험에 첨가한 GPB의 흡광도는 600mm에서 1.8 이었으며, 생균수는 10⁷CFU/ml, GABA 농도는 45mg/ml으로 측정되었다.

사용된 기질로는 대두박을 이용하였으며, 처리구는 Control, GPB:2g/L GABA, 5g/L GABA, 멸균된 GPB:2g/L GABA, 5g/L GABA, 시약:2g/L GABA(99.9%; Sigma-Aldrich Korea Ltd.), 5g/L GABA(99.9%; Sigma-Aldrich Korea Ltd.) 로 총 7개의 처리구이며 처리구별로 160ml serum bottle에 첨가하였다. 배양에 사용된 rumen inoculum은 반추위 cannulae가장착된 48개월령 한우 거세우(600±47 kg)로부터 얻어 실험실로 운반하였다. 운반하는 동안은 39로 유지된 보온병에 잘 보관하였고, 운반 후 즉시 반추위 내용물(ruminal content)은 사료입자를 제거하기 위해 4겹 cheesecloth에여과하였다. 여과된 반추위내용물은 CO2로 bubbling한 buffer medium 용액에 (20% vol/vol)로 혼합하여 이를 inoculum으로 사용하였다. Buffer medium 용액은 Russell과 Van Soest (1984).의 방법으로 제조하여 사용하였다.

160ml serum bottle에 혐기적으로 50ml을 분주한 뒤 기질사료인 대두박을(2% DM basis) 첨가하여 대조구로 사용하였다. 각각의 처리구들은 비율에 따라 첨가한 후 39° C에서 100rpm으로 0, 12, 24, 48 시간동안 배양하였다. 처리구들은 3반복으로 실험을 진행하였으며, 분석항목으로는 Total gas(TG), pH, ammonia nitrogen(NH₃-N), biogenic amines(BA), super oxide dismutase(SOD) 와 glutathioneperoxidase(GSH-Px)를 분석하였다.

총 가스 발생량은 압력센서기(Laurel Electronics, Inc., Costa Mesa, CA)로 측정하였으며, pH는 M530p meter (Schott instruments, Mainz, Germany)로 측정하였다. NH₃-N농도는 Chaney 와 Marbach(1962)의 방법으로 분석 하였으며, VFA, BA는 HPLC(Waters Ltd., Massachusetts, USA)로 분석하였다. *Antioxidant enzyme assays*분석은 Marklund and Marklund (1974)방법으로 분석하였다.

In vivo

공시우는 25개월령 한우거세우 24두를 공시하여 실험을 진행 하였다. 공시우 들의 체중은 602.06 ± 10.13 kg 로 선택되었으며, 처리구는 Control(Con), T1, T2로 각각 4마리씩 2반복 배정 하였다. 초기체중은 실험개시일 하루 전에 측정 하였으며, 실험종료 하루 전에 체중측정 및 endotoxin분석을 위해 혈액채취를 실시하였다. 총 실험일자는 129일동안 실시하였다. 각각의 공시우들은 하루 13kg의 상업적으로 판매하는 TMR(concentrated fodder feed,

brewer's grain, mixed grasses, rye grass straw, corn gluten feed, oat grass, crushed corn, lime powder,71.9%DM)의 사료를 아침과 저녁에 각각 6.5kg씩 급여하였다. 급여한 TMR사료의 영양소 함량은 조단백(CP), 11.12; 조지방 (CF), 2.60; 조섬유 (CF), 9.44; 조회분, 8.63; 칼슘, 1.76; 인, 0.39. 으로 측정되었다. 처리구별 GBP첨가량은 3g/L (T1), 5g/L (T2), 0g/L(Con)를 대두박에 섞어서 1일200g을 오전8시에 일정하게 급여하였다. 분석항목은 총증체량, 일당증체량, 사료효율, 육질, 육량등급 및 Plasma endotoxin (Chromo-LAL Limulus Amebocyte Lysate)분석을 진행 하였다.

(3) 연구결과

In vitro

Table 22와같이 pH는 0시간에서 48시간 배양동안 유의적으로 감소하였다. 총 가스 발생량과 NH_3-N 농도는 배양 시간에 따라 동일한 패턴으로 증가하였다(P<0.05). 총 가스 발생량에서 GABA 와 GPB-produced GABA는 대조구와 비교해서 유의적 차이가 나타나지 않았다. 반면 에 NH_3-N 농도는 T7에서 대조구에 비교하여 유의적으로 높았다(P<0.05).

Table 23에서 propionate, butyrate농도와 acetate :propionate (A:P)비율은 유의적 차이가 나타나지 않았지만 총 VFA농도는 T7처리구가 48시간에서 대조구에 비해 유의적으로 높았다 (P<0.05).

TBA농도는 48시간 배양에서 가장 높았으며, 대조구에서 가장 높았다. T2와 T3처리구는 10.62 mM ,11.21 mM로 처리구간 가장 낮았다. 게다가 히스타민 농도역시 T1처리구에서 유의적으로15.99mM로 가장 높았다.

SOD와 GSH-Px는 유의적으로 차이가 나타나지 않았지만 GBP및 GABA를 첨가하지 않은 처리구에서 SOD와 GSH-Px 간 높게 나타났다.

In vivo

Table 25에서 총 증체량은 GBP첨가 처리구가 대조구에 비해 각각 6.50kg, 18.34kg 높게 나타났다. 일당증체량 에서는 T1 (0.76 kg), T2 (0.85 kg)로 대조구(0.71 kg)보다 높았다. 그러나 유의적 차이는 나타나지 않았다. 육질등급에서도 유의적 차이가 나타나지 않았지만 endotoxin 농도에서 T1, T2 농도가 각각 17.23, 16,42 EU/ml로 대조구 29.23EU/ml에 비해 유의적으로 낮았다(P<0.05).

Table 28. pH, total gas and ammonia nitrogen (NH3-N)concentration of in vitro fermentation added with either GPB-produced GABA or GABA using soybean meal as substrate

Time (h)				Treatments					
	T1	Т2	Т3	Т4	Т5	Т6	Т7	Mean	Linear P-
									value
				Į	Н				
0	5.98°	5.97^{c}	$5.99^{ m abc}$	$5.98^{\rm bc}$	5.99^{abc}	6.01^{ab}	6.02^{a}	5.99w	0.0001
12	5.61°	$5.64^{ m abc}$	$5.64^{ m abc}$	5.65^{ab}	5.68 ^a	5.66^{ab}	$5.63^{\rm bc}$	5.64x	
24	5.49	5.45	5.46	5.48	5.50	5.45	5.45	5.46y	
48	5.42	5.41	5.43	5.41	5.42	5.44	5.42	5.48y	
				Total gas pr	oduction (ml)			
12	$74.00^{\rm b}$	$75.00^{\rm b}$	80.33ª	82.67ª	83.00 ^a	$71.00^{\rm b}$	$71.67^{\rm b}$	76.62x	0.0001
24	77.00	81.00	80.33	78.33	79.67	77.00	79.00	79.10x	
48	96.50 ^{ab}	91.00b	$99.67^{\rm ab}$	$99.67^{\rm b}$	102.33^{ab}	98.33^{ab}	108.00 ^a	99.43w	
				NH3-Nconce	ntration(mg/d	11)			
O	34.10	34.63	32.87	33.97	34.33	33.73	32.43	33.68z	0.0001
12	75.55^{c}	79.00b ^c	85.00^{abc}	$90.73^{\rm ab}$	96.47^{a}	74.93^{c}	79.90^{bc}	83.06y	
24	96.10^{d}	104.10 ^c	104.07°	104.33°	103.57^{c}	105.43^{b}	110.13 ^a	103.93x	
48	107.75°	$127.67^{\rm b}$	$130.67^{\rm b}$	128.6.33 ^b	$117.07^{\rm bc}$	118.70^{bc}	158.20 ^a	127.11w	

Means followed by different superscript letter in a row (a,b,c,d)andcolumn(w,x,y,z)aresignificantlydifferentat5%levelbyDMRT. T1: Control, T2: 0.2 g GPB-produced GABA, T3: 0.5 g GPB-produced GABA, T4: 0.2 g autoclaved GPB-produced GABA, T6: 0.2 g

Table 29. VFA production of in vitro fermentation added with either GPB-produced GABA or GABA using soybean meal as substrate (mM)

Time				Treatment	S			3.5	T. D. I
(h)	T1	Т2	Т3	T4	Т5	Т6	Т7	Mean	Linear P-value
					Acetate				
0	36.85^{a}	35.59^{ab}	36.39^{ab}	35.24^{ab}	35.52^{ab}	33.67^{bc}	32.13^{c}	35.06	0.4120
12	44.92	41.43	44.03	42.11	44.23	43.02	42.70	43.21	
24	41.98	45.86	43.56	43.55	44.01	45.75	44.13	44.12	
48	49.30ab	49.15^{ab}	50.67^{ab}	48.61^{ab}	46.66 ^b	51.90^{a}	52.47^{a}	49.82	
		a . aba		a . a ba	Propionate	a a=b	a a a ba		
0	9.88ª	9.13 ^{bc}	8.96°	9.10 ^{bc}	9.00c	9.25 ^b	9.09 ^{bc}	9.20	0.0240
12	16.43^{a}	$14.77^{\rm b}$	15.35 ^{ab}	15.19 ^{ab}	15.98 ^{ab}	15.47^{ab}	15.78 ^{ab}	15.57	
$\overline{24}$	16.81	17.43	17.45	18.96	18.95	17.72	18.28	17.94	
48	22.20	23.98	23.07	26.61	23.85	23.75	24.96	24.06	
0	0.71h	4.00h	4 4 77 8	0. 0.4h	Butyrate 3.73 ^b	0 01h	0 00h	0.00	0.05.00
0	3.71 ^b	4.00 ^b	4.47^{a}	3.94^{b}	3.73°	3.81 ^b	3.89 ^b	3.93	0.0560
12	8.59 ^d	9.67 ^{abcd}	10.83°	10.36 ^{ab}	10.10 ^{abc}	9.46 ^{bcd}	8.91 ^{cd}	9.70	
24 48	$13.48 \ 25.19^{ab}$	12.92	15.41 27.37 ^{ab}	14.18 21.61 ^b	$\frac{16.44}{21.14^{\text{b}}}$	15.08	13.26	14.39	
48	25.19	29.62^{a}	21.31	21.01	AP ratio	$21.40^{\rm b}$	30.88^{a}	25.31	
0	$3.73^{\rm bcd}$	$3.90^{ m abc}$	4.06^{a}	$3.87^{ m abc}$	2 0 5 ap	$3.64^{\rm cd}$	$3.54^{\rm d}$	3.81	0.0001
12	2.73	2.80	2.87	2.77	$3.95^{ab} 2.77$	2.78	2.71	2.78	0.0001
24	2.70^{ab}	2.63ª	2.50^{ab}	2.77 2.30b	2.32^{b}	2.78^{a}	2.41^{ab}	2.46	
48	2.22	2.05	2.20	1.83	1.96	2.19	2.10	2.40	
40	2.22	2.00	2.20	1.00	Total VFA	2.13	2.10	2.00	
0	50.44^{a}	48.71^{ab}	49.82^{a}	48.28 ^{ab}	48.25 ^{ab}	$46.73^{\rm bc}$	$45.10^{\rm b}$	48.19	0.473
12	69.94 ^{cd}	65.87 ^d	70.21 ^a	67.65 ^{cd}	70.31 ^{ab}	67.95 ^{cd}	67.39 ^{bc}	68.47	0.110
24	72.27^{d}	76.21 ^{cd}	76.42^{abcd}	76.68 ^{abc}	79.40^{a}	78.55^{ab}	75.67^{bcd}	76.46	
12 24 48	96.68°	102.75 ^b	101.11 ^b	96.84°	91.65 ^d	97.04c	108.31ª	99.20	

Means followed by different superscript letter in a row (a, b, c, d) and column (w, x, y, z) are significantly different at 5% level by DMRT.

T1: Control, T2: 2 g/L GPB-produced GABA, T3: 5 g/L GPB-produced GABA, T4: 2 g/L autoclaved GPB-produced GABA, T5: 5 g/L GABA chemical, T7: 5 g/L GABA chemical

Table 30. Biogenic amine concentration of in vitro fermentation added with either GPB-produced GABA or GABA using soybean meal as substrate (mM)

Time				Treatments				. M	I : D1
(hr)	T1	T2	Т3	T4	Т5	Т6	Т7	– Mean	Linear <i>P</i> -value
Histan									
0	6.73	5.03	6.44	6.19	5.97 10.55 ^{bc}	6.18	6.14	$6.10^{\rm b}$	0.0001
12 24	14.16^{a}	12.13^{ab}	11.01^{bc}	11.43^{bc}	10.55^{bc}	10.08^{bc}	9.66°	11.29ª	
24	14.72^{a}	9.41^{b}	10.42 ^b	11.19 ^b	10.95 ^b	9.98 ^b	9.36 ^b	10.86ª	
48	15.99^{a}	9.34^{c}	9.96°	11.51^{b}	13.23 ^b	9.58°	9.62^{c}	11.32^{a}	
Methy	lamine								
0	0.24	0.25	0.28	0.24	0.25	0.29	0.27	0.26°	0.0001
12	0.33	0.30	0.32	0.33	0.30	0.29	0.31	$0.31^{\rm b}$	
24	0.33	0.34	0.31	0.33	0.34	0.32	0.30	0.33 ^b 0.36 ^a	
48	0.33	0.34	0.34	0.32	0.34	0.35	0.49	0.36^{a}	
Ethyla	ımine							,	
0	0.31	0.29 0.33 ^b	0.35	0.36	0.26	0.28	0.39	$0.32^{\rm b}$	0.0008
12	0.39^{ab}	$0.33^{\scriptscriptstyle \mathrm{D}}$	0.38^{ab}	0.39^{ab}	0.43^{a}	0.30^{b}	0.31 ^b	0.36^{ab}	
24	0.46	0.36	0.34	0.47	0.41	0.38	0.39	0.40^{a}	
48	0.35°	0.36^{c}	0.35^{c}	0.35^{c}	0.50^{a}	$0.42^{\rm b}$	0.46^{ab}	0.40^{a}	
Tyran									
0	0.40^{a}	0.40^{a}	0.43^{a}	$0.32^{\rm b}$	0.39^{a}	$0.33^{\rm b}$	0.39^{a}	$0.38^{\rm b}_{\rm l}$	0.0001
12 24	0.37	0.33	0.34	0.37	0.38	0.38	0.42	$0.37^{\rm b}\ 0.38^{\rm b}$	
24	0.34	0.35	0.34	0.44	0.39	0.45	0.35	0.38°	
48	0.56	0.57	0.56	0.65	0.60	0.67	0.59	0.60^{a}	
Total	biogenic amir	ie							
0	7.68	5.97	7.50	7.12	6.87	7.08	7.19	7.06°	0.0001
12	15.25^{a}	13.09^{ab}	12.05 ^b	12.51 ^b	11.67 ^b	11.06 ^b	10.71 ^b	12.34^{ab}	
24	15.86^{a}	$10.47^{\rm bc}$	11.41^{bc}	$12.44^{\rm b}$	$12.08^{\rm bc}$	11.13^{bc}	10.41^{c}	$11.97^{\rm b}$	
48	17.22 ^a	10.62°	11.21 ^c	12.83 ^b	14.67 ^b	11.02°	11.17 ^c	12.68ª	1:00

Means followed by different superscript letter in a row (a, b, c, d) and column (w, x, y, z) are significantly different at 5% level by DMRT.

T1: Control, T2: 2 g/L GPB-produced GABA, T3: 5 g/L GPB-produced GABA, T4: 2 g/L autoclaved GPB-produced GABA, T5: 5 g/L GABA chemical, T7: 5 g/L GABA chemical

Table 31. Mean weight gain, ADG, FCR, marbling score and blood endotoxin level of Hanwoo cattle fed with GPB-produced GABA

Parameter	Control	T1	T2	Mean	SEM	P value
Gain in weight (kg)	91.33	97.83	109.67	99.61	7.19	0.2474
ADG (kg)	0.71	0.76	0.85	0.77	0.05	0.2375
FCR (kg feed/kg gain)	13.7	12.47	11.42	12.53	0.94	0.2804
Marbling scores	6.17	7.17	5.50	6.28	0.62	0.1991
Blood endotoxin (U/ml)	29.23 ^a	17.23 ^b	16.42 ^b	20.96	2.66	0.0253

Means followed by different superscript letter in a row are significantly different at 5% level by DMRT.

T1: Control, T2: 3 g/L GPB-produced GABA, T3: 5 g/L GPB-produced GABA

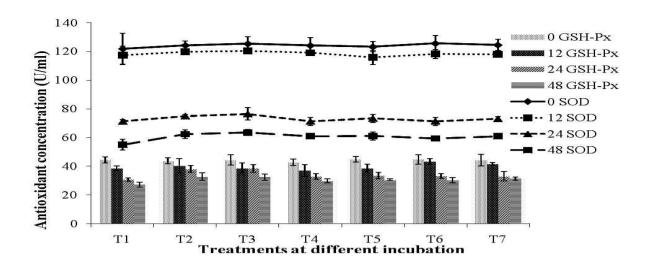


그림 10. Antioxidant concentration of in vitro fermentation added with either GPB-produced GABA or GABA using soybean meal as substrate (U/ml). Values are the means of triplicate analyses and bars indicate the standard error. T1: Control, T2: 2 g/L GPB-produced GABA, T3: 5 g/L GPB-produced GABA, T4: 2 g/L autoclaved GPB-produced GABA, T5: 5 g/L autoclaved GPB-produced GABA, T6: 2 g/L GABA chemical, T7: 5 g/L GABA chemical

(3) 결론

본 실험에서 GPB를 사료에 첨가했을 때 기능성사료로서의 가능성을 결과를 통해 보여주었으며, 결론적으로 2g/L GPB-produced GABA 처리구가 biogenic amines함량을 저감시키고, NH3-N concentration, antioxidant을 증가시켜 in vitro 실험결과에 비추어 가장 적합하다고 사료된다. 게다가 In vivo실험에서 plasma endotoxin역시 감소시키는 결과를 보였다. 그러나 이러한 결과는 아직까지 반추위 발효에 있어서 아직까지 정론화 되지 않았으며, GBP의 반추위 발효에 있어서 발현기전을 연구할 필요가 있을 것으로 사료된다.

사. 한우 생산비 절감 및 고급육 생산을 위한 육종가 및 사양기간이 육량과 육질에 미치는 영향

(1) 연구목적

한우생산비 절감 및 고급육 생산을 위한 단기성장 고품질 고기능성 사양 프로그램을 개발을 위해 육종가에 근거한 유전능력이 다른 한우 거세우집단의 능력평가 및 관찰

(2) 재료 및 방법

한우 단기사양관리프로그램 개발을 위해 대규모 실험집단 내 유전 등급이 높은 순으로 각각 35두씩 A, B, C, D를 공시우로 채택하여 총140두로 분류하여 관찰하였다. 분류된 공시우들은 2개월 주기로 체중측정을 하여 증체량, 일당증체량, 사료효율을 분석하였다.

육종가 = {(부의 육종가 + 모의 육종가) / 2 + 개체의 10개월령 체중}

그림 11. 육종가 분류 관찰

공시우의 사료 급여방법은 일반 농가에서 사양하는 방법과 동일하게 농후사료와 볏짚을 급여하였다. 급여량은 육성기(6.5 \sim 12month of age) 6kg/day, 비육전기(13 \sim 18 month of age) 9kg/day, 비육후기(19 \sim 24 month of age) 9kg/day를 급여하였으며, 볏짚은 자유 채식하도록 하였다.

Table 32. Chemical composition(%, DM basis) of the experimental diets.

		Experimentaldiets				
Items	Early	Late	Dies stray			
	fattening Feed	fattening Feed	Rice straw			
Composition(%, fresh basis)						
Moisture	10.75	13.14	13.24			
CP	12.63	13.99	6.41			
EE	3.11	3.39	1.01			
Ash	6.77	6.21	11.84			

CF	8.84	8.93	32.24
NDF	40.72	39.29	86.5
ADF	18.16	17.04	55.2
TDN	73.4	74.11	49.8

(3) 연구 결과

처리구간 동량의 사료를 급여하여 사료에 의한 차이가 발생되지 않도록 하였다. 전체 실험기간 중 체중은 유전능력이 높은 처리구 에서 유의적으로 높게 나타났다. 이러한 결과는 육성단계에 유전능력이 탁월한 한우거세우를 선발하는 기준이 될 수 있으며, 이에 맞는 사양프로그램으로 고품질 단기사양을 가능케 할 것으로 사료된다. 그러나 유전능력과 육질과의 상관관계 분석에서는 유의적으로 영향을 주지 않으며, 사양기간에 따른 육량에도 역시 상관관계가 없는 것으로 분석되었다. 따라서 사양기간을 늘리는 것은 육질이나 육량을 향상시킬수 없으며 경제성에도 나쁜 결과를 초래 할 것이다.

Table 33. Body weight change of Hanwoo steers by growth stage as influenced by breeding value

D	T 1	T0	Т2	T/4	Ct 1 Days	C+1 D
Parmeters	T1	T2	Т3	Т4	Std Error	Std Dev
	05.00	05.40	04.00	0.4.00	0.501	0.007
First day	25.08	25.40	24.82	24.60	0.561	3.327
weight (kg)						
180day weight(kg)	190.77a	186.51ab	178.25bc	173.51c	3.406	20.151
			_, _, _,	_,,,,,_,	0,100	
480day weight(kg)	452.74a	420.57b	404.65c	384.62d	4.247	25.129
100ddy Weight (Ng)	102.1 14	120.016	101.000	001.024	1.211	20.120
720day weight(kg)	643.97a	617.74b	589.85c	573.25d	5.650	33.428
720day weight (kg)	040.574	017.740	303.000	070.20d	0.000	00.420
Carcass weight(kg)	461.45a	447.82b	425.06c	409.22d	5.274	29.877
Carcass weight (kg)	401.40a	447.020	420.000	40 <i>3.</i> 22u	0.274	23.011
Slaughterage (day)	923.60	921.41	918.72ba	908.45b	2.947	20.894
Slaugiller age (day)	923.00	921.41	910.72Da	900.430	2.947	20.094
Back meat	93.12	90.94	88.96	00 00	1.624	8.766
раск шеат	93.12	90.94	00.90	88.80	1.024	0.700
size(cm2)						
Back fat size(cm2)	12.75	12.14	12.03	11.90	0.761	4.294
Buck fut 512c (cm2)	12.10	12.11	12.00	11.00	0.701	1.201
D. G 1.1.	C 0.4	E 0.4	- <i>-</i> -	5 40	0.055	1 441
Marbling score	6.24	5.94	5.75	5.48	0.255	1.441

Table 34. Correlation analysis of treatment A

paramete rs	first day	180 day	480 day	720 day	Carcass weight	Carcassday	back meet size	Back fat size	Marbling score
first day	1	0.59217ª	-0.23341	0.09566	-0.1035	0.30209	-0.26852	0.4161a	-0.29679
180 day	0.59217ª	1	-0.27242	0.00222	-0.12184	0.3093	-0.2607	0.2242	-0.14382
480 day	-0.2334	-0.27242	1	0.57362ª	0.65495 ^a	-0.18547	0.27926	0.04182	0.26191
720 day	0.09566	0.00222	0.57362ª	1	0.65196ª	-0.34033	0.41018 ^b	0.30764	0.161
Carcass weight	-0.1035	-0.12184	0.65495	0.65196ª	1	0.02572	0.45685ª	0.0948	0.21992
Carcass day	0.30209	0.3093	-0.18547	-0.3403 3	0.02572	1	0.01494	-0.04707	-0.26953ª
Back meat size	-0.2685	-0.2607	0.27926	0.41018 ^b	0.45685ª	0.01494	1	-0.10804	0.47253 ^a
Back fat	0.4161 ^b	0.2242	0.04182	0.30764	0.0948	-0.04707	-0.10804	1	-0.25389
Marbling score	-0.2968	-0.14382	0.26191	0.161	0.21992	-0.26953	0.47253ª	-0.25389	1

Table 35. Correlation analysis of treatment B

parameters	first day	180 day	480 day	720 day	Carcass weight	Carcass day	back meet size	Back fat size	Marbling score
first day	1	0.08977	0.00763	-0.0707 1	-0.29573	-0.12087	0.05457	-0.16743	-0.17764
180 day	0.08977	1	-0.0664 1	-0.2803 5	-0.27322	0.00352	-0.21856	0.09673	-0.00554
480 day	0.00763	-0.06641	1	0.74769ª	0.1756	-0.14529	-0.18985	-0.03045	0.16614
720 day	-0.0707	-0.28035	0.74769ª	1	0.24172	-0.10305	-0.0338	0.11278	0.24549
Carcass weight	-0.2957	-0.27322	0.1756	0.24172	1	0.12004	-0.08655	0.48059ª	0.1042
Carcassday	-0.1209	0.00352	-0.1452 9	-0.1030 5	0.12004	1	-0.45983a	0.06801	-0.23446
Back meat size	0.05457	-0.21856	-0.1898 5	-0.0338	-0.08655	-0.45983ª	1	-0.11928	0.23056
Back fat size	-0.1674	0.09673	-0.0304 5	0.11278	0.48059	0.06801	-0.11928	1	0.2912
Marbling score	-0.1776	-0.00554	0.16614	0.24549	0.1042	-0.23446	0.23056	0.2912	1

Table 36. Correlation analysis of treatment C

parameters	first	180 day	480 day	720 day	Carcass	Carcass day	back meet	Back fat	Marbling
	day				weight		size	size	score
first day	1	0.22915	0.22111	0.09996	-0.06638	0.08312	-0.12047	-0.1014	0.21274
180 day	0.2291 5	1	0.36774 ^b	0.31548	-0.37192 ^b	0.11217	-0.34168	0.06952	0.13518
480 day	0.2211	0.36774 ^b	1	0.65712ª	-0.30706	0.16753	-0.25796	-0.1971	-0.10293
720 day	0.0999 6	0.31548	0.65712ª	1	-0.28732	-0.01178	-0.23571	-0.21028	-0.20863
Carcass weight	-0.06 64	-0.37192 ^b	-0.30706	-0.2873 2	1	-0.03101	0.62262ª	0.38181 ^b	0.38945^{b}
Carcassday	0.0831	0.11217	0.16753	-0.0117 8	-0.03101	1	-0.2461	0.03895	0.11561
Back meat size	-0.12 05	-0.34168	-0.25796	-0.2357 1	0.62262ª	-0.2461	1	0.0053	0.5007 ^a
Back fat size	-0.10 14	0.06952	-0.1971	-0.2102 8	0.38181 ^b	0.03895	0.0053	1	0.02657
Marbling score	0.2127 4	0.13518	-0.10293	-0.2086 3	0.38945 ^b	0.11561	0.5007	0.02657	1

Table 37. Correlation analysis of treatment D

parameters	first day	180 day	480 day	720 day	Carcass	Carcass	back meet size	Back fat size	Marbling
					weight	day			score
first day	1	0.15612	0.23249	0.1864	-0.12592	-0.25213	-0.1103	0.0493	0.41936
180 day	0.15612	1	0.05843	0.05639	-0.14793	-0.00922	-0.19735	0.17473	-0.29336
480 day	0.23249	0.05843	1	0.71304ª	0.17693	0.34817	-0.1089	-0.17466	0.02959
720 day	0.1864	0.05639	0.71304ª	1	0.51506ª	0.24435	0.1157	0.12036	0.10359
Carcassweig ht	-0.1259	-0.1479 3	0.17693	0.51506ª	1	0.24716	0.55961ª	0.32971	0.10496
Carcassday	-0.2521	-0.0092 2	0.34817	0.24435	0.24716	1	0.15568	-0.25798	-0.1778
Back meat size	-0.1103	-0.1973 5	-0.1089	0.1157	0.55961ª	0.15568	1	0.3034	0.26424
Back fat size	0.0493	0.17473	-0.17466	0.12036	0.32971	-0.25798	0.3034	1	0.17531
Marbling score	0.41936b	-0.2933 6	0.02959	0.10359	0.10496	-0.1778	0.26424	0.17531	1

아. AFS(Adjusted auto feeding system)을 이용한 비육전기 고품질단기사양프로그램평가

(1) 연구목적

개발된 고품질 단기사양 프로그램의 검증을 위해 AFS시스템을 활용하여 사료효율, 급여량, 일당증체, 경제성을 분석하여 고품질 단기사양 프로그램을 평가 하는데 목적이 있다.

(2) 재료 및 방법

개시일은 2013년 1월 25일에 실시하였고, 만료일은 7월 25일이다. 공시우로는 6개월령의 거세한우를 유전능력이 높은 High(12두), Low(12두) 로 분류하여 공시우로 채택하였다. 급여된 사료는 고품질 고기능성 단기사육을 위해 개발된 TMR사료를 자유급식토록 하였다. 분석 항목으로는 2개월 주기로 증체량, 사료섭취량, 일당증체량, 사료효율 을 분석하였다.

(3)연구결과

처리구간 같은 사료를 급여하여 사료에 의한 차이가 발생되지 않도록 하였다. 육성기에서 비육전기 구간 사료급여량은 T1:7715kg이었으며, T2:7643kg로 T1처리구가 더 높았다. 25개월령 체중은 T1 660kg, T2 624kg으로 유전능력이 높은 처리구에서 높게 나타났으나 유의적 차이는 없었다. 일당증체량 또한 T1 0.83kg, T2 0.77kg으로 유전능력이 높은 처리구에서 높았다. 총 증체량은 T1 550kg, T2 509kg, T1처리구가 T2처리구보다 높게 나타났다. (Table 38). 이러한 결과는 유전능력이 높은 한우거세우가 보다 경쟁력이 있음을 보여준다. 육질 및 지방산 분석에서는 유의적 차이가 나타나지 않아 육종가 와 육질과의 연관성이 없는 것으로 나타났다.

그림 12. AFS시스템을 이용한 월별 섭취량 측정화면

설정 다운 개체 관리 시스템 Ver 20110516.01-개체 관리 시스템의 선두주자 (CDAWOON 다운 개체 개별 통계 섭취량 / 체중 통계 개체별 입력 자료표 사료 급여 현황 ♦ 개체 개별 통계 ♦ © 섭취량 C 체종 2013-01-01 ▼ ~ 2013-05-07 ▼ 《 이탈 》 《 음해 》 ② 검색 © 모든개체 C 그룹별 □급 ☑ 📇 출력 🗆 막대로 보기 1% 98% 60% 85% 88% 64% 46% 65% 1% 79% 46% 76% 53% 1280/112 2240/1762 2240/1195 1960/1401 1960/1463 2240/1188 0001 0002 0003 0004 0005 0006 21% 55% 49% 62% 66% 46% 256/22 448/352 448/239 392/280 392/293 448/238 2240/1188 2240/1158 1940/1171 1960/1270 2240/1301 2240/1041 2240/1214 1940/1320 1960/1589 0007 0008 0009 0010 0011 0012 0013 0014 0015 448/232 53% 50% 75% | 50% | | 73% | | 71% | | 62% | | 55% | | 72% | | 81% | 82% 388/264 91% 392/318 2240/1657 2240/1549 2240/1253 448/331 448/310 448/251 13620/4487 17020/10214 23080/11812 14060/7118 7000/225 74780/33857 299/135 일별 입장 내역 일별 입장 그래프 번식관리기록부 1,400 1,200 1,000 400 200

림 13. AFS시스템을 이용한 일별 섭취량

Table 38. Body weight change of Hanwoo steers by breeding value.

Chama	T4	Korea breeding value			
Stage	Items -	T1(High)	T2(Low)	SEM	
	Initial B.W., kg	191.63	191.75	10.59	
	Final B.W., kg	660.25	624.88	16.72	
6 ~ 25 month of age	Total intake, kg	7715.58 ^a	$7643.64^{\rm b}$	69.18	
	Daily gain, kg	0.83	0.77	0.12	
	Feed efficency	0.06	0.6	0.03	

Chama	Ī4	Korea breeding value				
Stage	Items	T1 (High)	T2(Low)	SEM		
	Initial B.W., kg	660.25	624.75	16.72		
	Final B.W., kg	741.62 ^a	700.50 ^b	18.56		
25 ~ 28 month of age	Total intake, kg	660.62	663.50	0.13		
	Daily gain, kg	0.89	0.84	0.02		
	Feed efficency	0.081	0.075	0.01		

Carcas	sweight(kg	459.125	426.25	15.74
) Back	meat	94.875	89.25	4.56
size(cm Back	12) fat	13.5	11.5	1.24
size(cm	12)			

Table 39. Chemical composition(%, DM basis) of the meat.

Items	T1	Т2	SEM	p value
Moisture	52.514	53.479	1.920	0.728
СР	16.441	16.648	0.682	0.835
EE	29.935	28.684	2.709	0.749
ASH	0.823	0.784	0.064	0.687
Cholesterol(mg/100g)	494.299	521.856	22.059	0.414
рН	5.600	5.613	0.013	0.514

T1: High Korea breeding value

T2: Low Korea breeding value

Table 40. Soluble amino acids of the meat.

Items	T1	Т2	sem	p value
(mg/100g)				
Ala	25.579	23.660	0.730	0.091
Arg	211.571	204.146	5.952	0.393
Asp	ND	ND	ND	ND
Cys	9.710	9.129	1.349	0.765
Glu	7.450	7.179	0.542	0.729
Gly	7.098	7.044	0.236	0.876
His	25.001	22.810	1.407	0.293
iLe	6.968	6.604	0.205	0.240
Leu	10.784	10.010	0.392	0.190
Lys	10.829	9.944	0.733	0.409
Met	7.010	6.784	0.189	0.422
Phe	8.486	8.033	0.248	0.234
Pro	4.708	4.548	0.110	0.333
Ser	9.179	8.929	0.398	0.676
Thr	47.584	46.684	1.792	0.732
Tyr	10.755	9.988	0.325	0.120
Val	9.196	8.578	0.359	0.253

T1: High Korea breeding value

T2: Low Korea breeding value

Table 41. Fatty acid composition of the meat.

Items	Т1	Т2	sem	p value
(%)				
C10:0	0.046	0.043	0.005	0.647
C12:0	0.084	0.078	0.010	0.662
C14:0	3.468	3.331	0.252	0.713
C14:1	1.169	1.125	0.110	0.784
C15:0	0.208	0.219	0.013	0.539
C16:0	26.286	27.246	0.542	0.244
C16:1	4.844	4.713	0.233	0.700
C17:0	0.468	0.486	0.033	0.704
C17:1	0.583	0.514	0.049	0.364
C18:0	9.564	9.784	0.342	0.663
C18:1	45.743	44.591	0.737	0.289
C18:1, 11t	1.556	1.661	0.177	0.717
C18:2	ND	ND	ND	ND
C20:0	2.020	2.074	0.102	0.715
C18:3	0.098	0.103	0.026	0.876
CLA, 9c11t	0.319	0.291	0.016	0.257
C20:1	ND	ND	ND	ND
CLA 10t12c	ND	ND	ND	ND
C20:2	ND	ND	ND	ND
C20:3	0.156	0.159	0.011	0.880
C20:4	0.296	0.335	0.029	0.363
C24:1	0.070	0.075	0.005	0.536

T1: High Korea breeding value

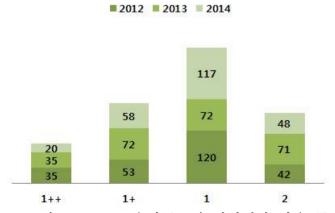
T2: Low Korea breeding value

제 3 절 한우육의 고품질 고기능성 성분 탐색 개발

O 연구 수행 내용은 한우육이 가지고 있는 고품질·고기능성 성분에 대한 특성을 분석하여 한우육의 품질적 가치를 규명하고, 고품질 한우육 생산기술 개발을 위한 한우 유전체 정 보 분석 자료로 제공하는 것임

1. 시험·적용집단 한우육 시료확보, 고품질 형질 자료 수집 및 분석

- 본 연구과제 수행 3차년도(2011~2014)에 걸쳐 743두 한우육의 고품질 특성 분석 및 과능평가를 실시함
 - 농협 축산연구원 도축장(충북 음성)에서 도축된 743두 한우를 ㈜태우그린푸드(서울)에서 1차가공하여 고기시료 확보 및 축산물품질평가원의 도체 관련 육질형질 데이터를 확보
 - 선호부위에 대한 샘플링 어려움을 극복하고 실험비용을 절감하며 조성 및 품질적 특성이 가장 유사한 부위로 알려진 등급평가 절단면을 포함한 채끝(longissimus lumborum) 부분을 진공포장 상태에서 최대의 신선도를 유지하며 안정적인 샘플링 확보함
- O 확보된 한우육 샘플은 냉장조건에서 7일 숙성된 조건으로 표준화 시킨 후 품질, 기능성 특성 분석항목은 아래와 같으며 이를 토대로 분석을 완료함
 - 일반성분(수분함량, 지방함량) 및 pH
 - 객관적 관능 특성: 육색지수, 보수력, 가열감량, 전단력
 - 지방산 조성
 - 주관적 품질 특성: 관능평가(색깔, 연도, 다즙성, 풍미, 기호도)
 - 지방계: 불포화/포화지방산, omega-3/-6 불포화지방산, conjugated linoleic acid(CLA), 콜 레스테롤
 - 단백질계: 유리 아미노산, 디펩타이드(dipeptides)
 - 핵산계: AMP. IMP. inosine. hypoxanthine
- O 품질 특성 데이터를 활용한 중요요소분석(Principal Component Analysis) 기법을 이용하여 품질 특성간의 상관관계 분석 및 대표 성분 결정함
- O 지방산 및 지방계 기능성분은 자체적으로 최적화된 지방성분 추출 전처리 과정을 거쳐 gas chromatography 방법으로 분석되며, 단백질계 풍미 및 고기능성 성분인 glutamate,


taurine, carnosine 등은 Purchas et al. (2004, Meat Sci.)의 방법을 변형하여 냉동·건조시킨 우육시료를 특정 citrate buffer로 용해하여 전처리한 후, HPLC 분석기기를 이용하여 정성되고, 핵산계 풍미성분은 본 연구원이 확보한 분석방법을 활용하여 HPLC 분석기기가 이용됨

항목		품질					고기능성	1	
도체특성	육량등급	육질등급	마블링	링지수					
<mark>일반성</mark> 분	수분			회분		지방	단백질	콜레	스테를
육색, pH	L*	a*	b*	전단력	pН				
수 <mark>분 관</mark> 련	보수력	드립감량	가열감량						
단백질 관련		free	amino a	cids		creatinine	creatine	anserine	carnosine
지방 관련		SFA	oleic acid	UFA		PUFA	n-3 FA		CLA
핵산 관련		AMP	IMP	inosine	hypox	anthine			
관능평가	기호도	색깔	풍미	연도	다즙성				

<그림 3-3-5> 분석대상 한우육의 품질·기능성 물질

2. 육질등급에 따른 한우육의 고품질 고기능성 성분 차이

- O 3차년도에 걸쳐 수집된 한우육 743두의 평균 도체중은 411.3 kg이었으며, 출하월령은 19-44개월 범위이었으나 90% 이상이 26-36개월 사이에 분포됨
- 현행 도체등급제도에 의거하여 수집된 743두의 육량등급은 A등급 124두, B등급 209두, C
 등급 167두로 구성되었으며, 육질등급에 따라 1++등급 90두, 1+등급 183두, 1등급 309두
 및 2등급 161두로 구성됨

<그림 3-3-5> 육질등급별 실험대상 한우 두수

O 육질등급이 높을수록(1++) 배최장근단면적, 등지방두께, 마블링 지수가 증가하나, 육량지수의 유의적 상승은 없었으며, 예상대로 육질등급과 근내지방 함량은 높은 상관관계를 지님

<표 2-1-1>. 육질등급에 따른 한우 시료의 도체특성

	1++	1+	1	2	p-value
도체중	421.33a	420.19a	412.05a	400.79b	0.0051
육량지수	64.70	64.96	64.97	65.10	0.7231
배최장근단면적	96.34a	91.89b	88.72c	86.61c	<.0001
등지방두께	14.59a	13.32b	12.92b	12.73b	0.0016
마블링지수	8.25A	6.27B	4.51C	2.58D	<.0001

- O 현행 도체등급제도가 주로 근내지방도(intramuscular fat)에 따라 결정되는 점을 고려할 때 육질등급별 지방함량에 있어 매우 높은 상관관계를 지님
- O 분석된 등심육의 지방함량은 1++ 등급의 경우 평균 24.26%, 1+ 등급은 17.51%, 1 등급은 14.05%, 2등급은 7.09%의 근내지방 함량 분포를 나타냄 (그림 13)

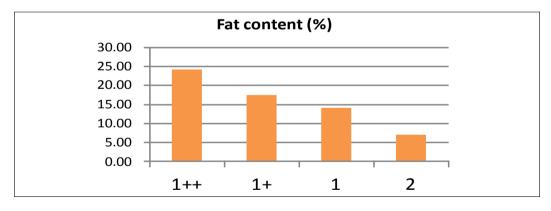


그림 13 육질등급별 한우육의 근내지방 함량

- 육질등급(1++, 1+, 1 및 2등급)에 따른 한우육의 관능특성 평가를 살펴보면, 육질등급과 색깔, 풍미, 연도 및 다급성에 대한 유의적 관능차이를 보였으며, 이를 도태로 전체적인 기호도에 대한 관능점수도 육질등급과 비례하여 높게 나타남
- O 육질등급에 따른 뚜렷한 관능적 차이는 높은 근내지방 함량으로 설정된 육질등급이 관능 평가에 의한 뚜렷한 선호도 차이를 반영하는 것으로, 현 육질등급 체계가 관능요인과 매 우 밀접한 관련이 있다는 것을 보여줌

O 육질등급 간 관능점수 차이를 고려할 때 1++와 1+간의 차이가 상대적으로 다른 구간보다 적은 것으로 나타남

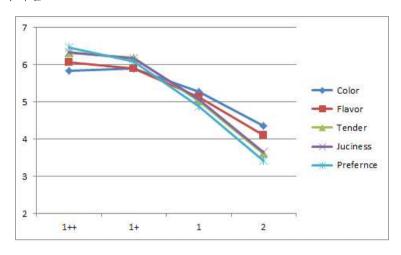


그림 14 육질등급별 한우육의 관능평가

- 육질등급에 따른 일반성분은 수분 및 지방함량에서 유의적인 차이를 보였으며, 지방함량 의 경우 1++등급의 경우 24.37%로 가장 높게 나타났으며 육질등급이 낮아짐에 따라 유의 적인 지방함량의 감소를 보여 2등급에서는 7.09%로 낮아짐
- 수분함량과 지방함량간의 매우 높은 부의 상관관계 (-0.88)가 있으므로 육질등급이 높을 수록 상대적으로 수분함량은 낮아짐
- O 단백질의 경우 1++ 등급이 다른 육질등급보다 낮았으며, 회분 및 콜레스테롤 함량은 육질등급별 유의적 차이가 없음

Table 19. 육질등급에 따른 일반성분 및 콜레스테롤 함량 비교

	1++	1+	1	2	p value
Moisture(%)	55.76D	61.44C	64.19B	70.90A	<.0001
Protein(%)	18.56b	19.68a	20.10a	20.30a	0.0004
Fat(%)	24.37A	17.56B	14.09C	7.09D	<.0001
Ash(%)	0.97b	1.07b	1.16a	1.20a	0.0001
Cholesterol (mg/100g)	61.78a	59.79ab	58.08b	59.80ab	0.0268

- O 육질등급이 높을수록 L*값(명도)과 b*값이 유의적으로 높아지는데, 이는 높은 근내지방에 의해 명도가 증가되는 것임
- O a*값(적색도)의 경우 육질등급별 차이가 없었음

Table 20. 육질등급에 따른 육색도 비교

	1++	1+	1	2	p value
L*	41.73A	39.86B	38.52C	37.50D	<.0001
a*	20.85	20.85	20.78	20.59	0.8565
b*	12.34a	11.87a	11.40b	11.00c	<.0001

- O 고기의 pH는 보수력 및 연도 등의 품질요인과 관계가 있는 것으로 알려져 있으나, 본 연 구의 한우육에서는 평균 5.83으로 육질등급별 유의적 차이가 없었으며 이는 육질등급이 한우육의 근내지방에 의해 주로 결정되기 때문으로 사려됨
- O 육질등급별 보수력, 드립감량은 차이가 없었으나, 가열감량의 경우 육질등급이 높을수록 증가하였는데 이는 가열에 의해 근육조직의 지방이 녹아 전체적인 감량 요인으로 작용된 것으로 근내지방도가 높은 하이 마블링 한우육에서 높은 가열감량을 나타낸 것으로 판단 됨

Table 21. 육질등급에 따른 이화학적 품질특성 비교

	1++	1+	1	2	p value
рН	5.84	5.83	5.82	5.85	0.3396
Water Holding Capicaty (%)	48.24	49.05	48.80	49.73	0.2027
Drip loss (%)	16.36	15.50	15.77	16.12	0.2338
Cooking Loss (%)	20.69A	19.34B	18.02C	17.04D	<.0001
Shear Force (kg)	48.91c	53.93b	56.11ab	58.37a	0.0006

O 전단력(WBSF)의 경우 육질등급이 높을수록 유의적으로 감소하였으며, 이는 관능평가의 관능평가의 연도(tenderness)가 증진된다는 결과과 일치하고 있음. 기기분석에 의한 전단 력과 관능평가에 의한 연도 모두에서 근내지방도가 높은 육질등급이 우수한 시료에서 높 은 관능평가 점수를 나타낸 결과임

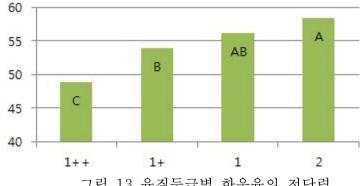


그림 13 육질등급별 한우육의 전단력

- O 핵산물질 중에 AMP, IMP, inosine, 및 hypoxanthine은 고기의 풍미와 관련된 물질로 알려져 있으며, 주요 고기의 풍미물질의 하나인 IMP는 inosine을 거쳐 hypoxanthine으로 전환되면서 숙성 과정 중 양이 줄어듦 (Yano 등, 1995)
- O I++ 및 1+ 등급 한우육의 AMP 및 IMP(감칠맛)의 함량은 1, 2등급 보다 낮았으며, inosine 및 hypoxanthine(쓴맛)의 경우 육질등급에 따른 유의적 차이가 없는 것으로 나타 남
- O 육질등급이 좋을수록 풍미와 관련된 핵산 성분이 우수하다고 볼 수 없으며, 육질등급에 따른 기호도 차이는 근내지방도에 의해 좌우되고 핵산 관련 물질 차이와는 상관관계가 없는 것으로 파단됨

Table 22. 육질등급에 따른 핵산관련 풍미물질 비교

	1++	1+	1	2	p value
AMP	3.89bc	3.81c	4.29a	4.20ab	0.001
IMP	100.22b	110.80b	126.35a	129.83a	<.0001
Inosine	24.46	25.69	24.56	25.58	0.2781
Hypoxanthine	18.46	18.86	19.79	19.17	0.2746

- O 유리아미노산은 숙성에 따른 고기의 풍미와 관련된 것으로 알려져 있으며, 본 연구에서 분석된 anserin, carnosine 등의 dipeptides는 항산화 기능을 지닌 기능성 펩타이드로도 알려져 있고 creatine 및 creainine은 에너지 대사에 관여하는 기능성 물질로 알려짐
- O 유리아미노산 중 glycine(Gly), alanine(Ala), proline(Pro)은 단맛을 지닌 고기에서 바람직한 풍미의 원인물질로 알려져 있으며 (Fukunaga 등, 1989), phenylalanine(Phe), arginine(Arg), histidine(His), leucine(Leu), methionine(Met)은 쓴맛과 관련되며, 일반적으로 glutamic acid(Glu), aspartic acid(Asp)는 고기 특유의 풍미물질로 알려짐
- O 유리 아미노산의 분석결과 2등급의 한우육에서 높은 함량의 Ala, Arg, Pro을 나타냈으며, 이는 2등급의 경우 상대적으로 지방함량이 낮아 절대적인 유리 아미노산의 함량도 높은 것으로 보임 (Table 28)
- O 쓴맛을 나타내는 His의 경우 육질등급이 낮아짐에 따라 그 함량도 유의적으로 증가하였으며, 고기 특유의 풍미물질로 알려진 Glu, Asp는 육질등급에 따라 유의적 차이가 없는 것으로 나타남
- O Dipeptides의 경우 항산화 기능을 지닌 anserine, carnosine의 경우 육질등급이 낮을수록

증가하였으며, creatine, creatinine의 경우에는 2등급 한우육이 1++ 보다 높게 나타남

Table 23. 육질등급에 따른 유리아미노산 및 dipeptides 함량 (unit: mg/ 100g)

	1++	1+	1	2	p value
Ala	36.42c	40.49ab	38.76bc	42.51a	0.0057
Arg	264.76b	281.85b	279.15b	315.79a	<.0001
Asp	2.11	2.27	2.05	2.50	0.4138
Cys	5.23ab	5.62a	4.45b	5.23ab	0.0585
Glu	9.62ab	10.03a	8.40b	10.44a	0.0192
Gly	9.69	9.98	9.04	10.02	0.153
His	62.39c	76.25b	78.35b	85.46a	<.0001
iLe	5.61ab	5.40ab	4.77b	5.71a	0.035
Leu	9.59ab	9.61a	8.45b	9.91a	0.0543
Lys	10.36ab	11.06a	9.95b	10.58ab	0.196
Met	4.52ab	4.47ab	3.78b	4.58a	0.0202
Phe	6.14ab	6.09ab	5.28b	6.34a	0.0214
Pro	3.81b	4.28ab	4.04b	4.63a	0.0034
Ser	10.86ab	11.27a	10.04b	11.84a	0.0263
Thr	40.12b	43.90b	43.75b	49.48a	0.0018
Tyr	7.15ab	7.10ab	6.48b	7.68a	0.0401
Val	7.88ab	7.94a	7.01b	8.22a	0.0562
Anserine	102.68b	116.47ab	116.93ab	132.45a	0.0434
Carnosine	697.19c	778.39ab	762.39b	817.60a	<.0001
Creatine	1444.40c	1564.80b	1633.70a	1663.40a	<.0001
Creatinine	31.45ab	30.88b	32.22ab	33.20a	0.0974

- O 한우육의 품질특성을 좌우하며 지방산의 가장 많은 부분을 차지하는 것으로 알려진 oleic acid (C18:1)의 조성은 육질등급이 좋을수록 증가하는 경향을 보이나 유의적 수준의 차이는 아님 (Table 29)
- O 포화지방산에 대한 단가불포화지방산의 비율은 식육의 맛을 결정짓는 간접적인 지표로 될 수 있다고 보고된 바 있으며 (Lunt and Smith, 1991), Campo 등(2003)은 C18:1은 'oily' C18:2는 'cooking oil' C18:3은 'fishy' 향미가 특색이라고 보고
- O 육질등급이 좋을수록 절대적인 지방함량이 높음에도 불구하고 포화지방산과 불포화지방 산의 비율이 다른 등급과 차이가 없었으며, 이는 지방산의 대부분을 차지하는 oleic acid 의 비율 차이가 많지 않기 때문으로 판단됨
- 근내지방 축적이 발달된 높은 육질등급의 한우고기라고 해서 n-6/n-3계열 불포화지방산 의 유의적 비육 차이를 보이지 않았으며, 국내 출하되는 한우육이 하이 마블링의 높은

등급이라 해서 지방산 조성에서 불리하다고 볼 수 없음

- O 다만, 두 개 이상의 이중결합으로 구성된 다가불포화지방산(PUFA)의 경우 육질등급이 낮을수록 증가하는 경향을 보이고 있는데, eicosatrienoic acid(C20:3)는 혈액 콜레스테롤 중에서도 LDL-콜레스테롤 저하작용이 알려져 있으며(Park and Yoo, 1994), arachidonic acid(C20:4)는 한우육 3등급이 0.79%로 다른 등급보다 유의적으로 높음 (Cho 등, 2005)
- O 기능성 지방산으로 알려진 CLA(conjugated linoleic acid)의 경우 9c,11t 및 10t,12c의 이성 질체가 미량 분석되었으며 육질등급에 따른 유의적 차이는 없음

Table 24. 육질등급에 따른 지방산 조성 비교 (unit : %)

Composition	1++	1+	1	2	p value
C10:0	0.04ab	0.04b	0.04ab	0.05a	0.0575
C12:0	0.09	0.09	0.08	0.09	0.2535
C14:0	3.00	2.95	2.84	2.80	0.1243
C14:1 C15:0	0.98a 0.23c	0.97a 0.24bc	0.93a 0.25ab	0.83b 0.27a	0.0032 0.0011
C15.0 C16:0	24.36	24.66	24.73	24.32	0.3567
		4.22a	3.99ab	3.74b	0.002
C16:1	4.29a		0.56b	0.60a	0.0454
C17:0	0.54b	0.57ab		0.66	0.3237
C17:1	0.64	0.64	0.63		0.0034
C18:0	10.10b	10.14b	10.40b	10.94a	
C18:1	44.31	44.24	43.61	43.43	0.0554
C18:1, <i>11t</i>	1.86	1.90	1.87	1.86	0.9424
C18:2	2.29b	2.36b	2.56b	2.82a	0.0001
C20:0	0.05	0.05	0.05	0.06	0.3014
C18:3	0.10	0.09	0.09	0.09	0.7009
CLA, <i>9c11t</i>	0.31	0.31	0.29	0.29	0.4879
C20:1	0.39a	0.36ab	0.33bc	0.32c	0.0065
CLA, <i>10t12c</i>	0.02	0.03	0.03	0.02	0.415
C20:2	0.08	0.08	0.10	0.10	0.5581
C20:3	0.22c	0.22c	0.27b	0.32a	<.0001
C20:4	0.40c	0.41c	0.56b	0.67a	<.0001
C24:1	0.11c	0.12c	0.14b	0.17a	<.0001
Saturated Fatty Acids	38.41	38.73	38.96	39.14	0.536
Unsaturated Fatty Acids	56.00	55.93	55.37	55.33	0.2391
PUFA	3.41c	3.49c	3.88b	4.32a	<.0001
UFA/SFA	1.48	1.46	1.44	1.43	0.4355
n-6/n-3	8.94	9.18	9.14	8.73	0.3067

3. 출하월령에 따른 한우육의 고품질 고기능성 성분 차이

○ 5구간의 출하월령(19-25개월령 29두, 26-28개월령 66두, 29-31개월령 178두, 32-34개월령 166두, 35-44개월령 61두)에 따라 도체중은 339kg으로부터 442kg 까지 유의적으로 증가하며, 이와 더불어 배최장근단면적, 등지방 두께, 마블링 지수도 출하월령 증가에 따라증가하나 증가하는 구간 폭은 다른 양상을 지님

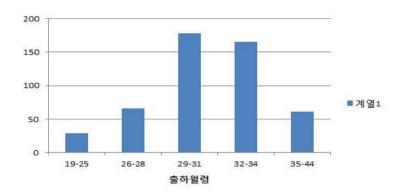


그림 15 도체월령별 실험대상 한우 두수

- O 마블링 지수와 등지방두께의 경우 26개월 이전과 이후로 나누어 크게 증가하는 것으로 나타났으며, 26개월 이후 점진적인 증가를 보임
- O 출하월령 27±1개월령 이후 등지방두께, 마블링지수의 증가폭은 크지 않으며, 육량지수의 변화도 없는 점으로 미루어 육량등급 상승을 고려한 장기 사양은 바람직하지 않은 것으로 판단됨

Table 25. 도체월령에 따른 한우시료의 도체특성 비교

	19-25	26-28	29-31	32-34	35-44	p value
도체중	339.48c	413.36b	417.35b	424.63b	441.87a	<.0001
육량지수	68.31a	64.35b	64.18b	63.77b	63.38b	<.0001
배최장근단면적	84.24c	88.99b	91.04ab	92.35a	92.57a	0.0002
등지방두께	9.44b	13.89a	14.49a	15.12a	15.22a	<.0001
마블링지수	4.44c	5.52b	5.57b	5.90ab	6.25a	<.0001

그림 13 출하월령별 한우육의 마블링지수와 근내지방도 추이

- O 출하월령에 따른 한우육의 관능특성 평가를 살펴보면, 출하월령에 따른 유의적 차이가 없는 것으로 나타남
- 풍미의 경우 출하월령이 가장 낮은 19-25 구간의 한우육이 가장 높은 수치를 보이고 있음

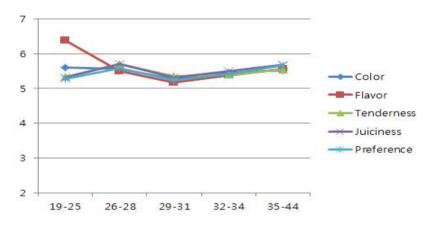


그림 13 출하월령별 한우육의 관능검사 비교 (나쁨 1 - 좋음 9)

- O 19-25개월령 구간의 수분함량은 다른 구간 보다 유의적으로 높았으며, 단백질 함량은 35-44 구간만이 유의적으로 낮으며, 지방 함량의 경우도 26-28개월령 구간 이상에서 모두 19-25 보다 높게 나타남 (Table 24)
- O 근내지방도와 직접적으로 관계된 지방함량을 고려해 보면, 26개월까지 급격히 증가하다 가 이후 서서히 증가되는 경향임

Table 27. 도체월령에 따른 일반성분 및 콜레스테롤 함량 비교

	19-25	26-28	29-31	32-34	35-44	p value
Moisture(%)	66.24a	63.36b	62.04b	61.74b	62.22b	0.0026

Protein(%)	20.30a	19.83a	19.79a	19.46a	18.42b	0.0119
Fat(%)	11.70b	15.28a	16.79a	17.47a	17.67a	<.0001
Ash(%)	1.21a	1.11ab	1.10ab	1.05b	1.02b	0.0477
Cholesterol (mg/100g)	61.81	60.28	59.89	60.08	58.58	0.5441

○ 출하개월령에 따른 육색의 차이는 전반적으로 유의적 차이를 나타나지 않았으나, 35-44 개월령 구간에서 적색도가 낮은 것으로 나타남

Table 28. 도체월령에 따른 육색도 비교

	19-25	26-28	29-31	32-34	35-44	p value
L*	39.91	40.13	39.62	39.27	39.84	0.3437
a*	21.44a	20.67ab	20.86a	20.72a	19.98b	0.0680
b*	12.07	11.91	11.74	11.58	11.53	0.3134

O 고기의 pH, 보수력, 가열감량은 출하월령에 따라 뚜렷한 차이를 보이지 않았으나, 전단력의 경우 출하월령이 가장 낮은 19-25구간이 35-44구간과 비교하여 유의적으로 낮음 Table 29. 도체월령에 따른 이화학적 품질특성 비교

	19-25	26-28	29-31	32-34	35-44	p value
рН	5.82ab	5.81b	5.83ab	5.85a	5.83ab	0.1607
Water Holding Capicaty (%)	49.93	49.00	49.15	48.73	48.60	0.6206
Drip loss (%)	16.70ab	16.04abc	15.42c	15.93bc	16.84a	0.0087
Cooking Loss (%)	18.30	19.29	18.65	19.01	19.56	0.1374
Shear Force (kg)	58.38a	52.56ab	54.49ab	52.75ab	50.97b	0.1029

O 전단력의 경우 출하월령에 따라 뚜렷한 차이를 보이며, 출하월령이 증가하면서 전단력이 낮아지나, 27개월령에서 33개월령 사이에는 유의적 차이가 없음

- 주요 고기의 풍미물질의 하나인 IMP는 19-25구간이 35-44구간과 비교하여 유의적으로 높았으며, 다른 핵산 물질의 경우 구간별 유의적 차이가 없었음
- 출하월령 27±1개월령 이후 IMP 함량 감소 경향을 보임

Shear force (kgf) AB AB AB BB 19-25 26-28 29-31 32-34 35-44 그림 13 출하월령별 한우육의 전단력

Table 30. 도체월령에 따른 핵산관련 풍미물질 비교

	19-25	26-28	29-31	32-34	35-44	p value
AMP	4.27	3.94	3.99	3.99	4.16	0.5283
IMP	129.69a	117.25ab	111.38b	116.22ab	110.30b	0.1505
Inosine	23.05b	24.90ab	26.11a	25.09ab	24.54ab	0.0716
Hypoxanthine	18.18	19.30	19.20	19.09	18.70	0.8033

- O 유리아미노산 및 기능성 dipeptides의 함량은 출하월령별로 유의적 차이를 보이지 않음
- O 27±1개월령 이후 항산화물질로 알려진 carnosine 함량 감소 경향을 보임에 다라 출하월령 증가에 따른 기능성 peptides 성분의 유익한 현상이 없음을 나타냄

Table 31. 도체월령에 따른 유리아미노산 및 dipeptides 함량 (unit: mg/ 100g)

				_	_	
Components	19-25	26-28	29-31	32-34	35-44	p value
Ala	39.37	39.42	40.22	39.33	38.16	0.7945
Arg	306.37a	269.99c	289.84ab	281.64bc	274.04bc	0.0317
Asp	2.10ab	1.87b	2.24ab	2.15ab	2.75a	0.3239
Cys	5.43ab	4.91ab	5.60a	5.04ab	4.37b	0.2372
Glu	9.38	8.98	10.15	9.69	9.25	0.5919
Gly	9.78a	9.57a	10.14a	9.63a	9.05a	0.4372
His	68.77	77.52	72.38	74.70	76.53	0.4876
iLe	5.39	5.15	5.76a	5.28a	5.06a	0.2781
Leu	9.63	9.02	10.04	9.20	8.83	0.2624
Lys	10.60	10.24	11.09	10.33	10.24	0.4455
Met	4.37ab	4.13ab	4.72a	4.23ab	4.01b	0.1444
Phe	5.91	5.73	6.43	5.86	5.63	0.2086
Pro	4.06	4.15	4.26	4.12	4.09	0.8849
Ser	10.95	10.68	11.48	10.77	10.49	0.5372
Thr	43.95	44.45	44.01	44.64	43.79	0.9935
Tyr	7.36ab	6.97ab	7.55a	6.78b	6.79ab	0.2071

Val	7.96	7.47	8.29	7.60	7.19	0.2297
Anserine	119.04a	119.54	113.52	119.31	114.80	0.9002
Carnosine	808.72a	734.86b	768.85ab	752.57ab	761.63ab	0.1751
Creatine	1561.30	1570.60	1579.80	1563.80	1533.90	0.4525
Creatinine	29.75b	31.67ab	33.56a	31.74ab	30.80b	0.0109

- O 한우육의 품질특성을 좌우하며 지방산의 가장 많은 부분을 차지하는 것으로 알려진 oleic acid(C18:1)의 조성은 출하월령이 증가하면서 유의적으로 증가하는 것으로 나타났으며, 특히 35개월령 이후로 유의적 증가를 보임 (Table 29)
- O 기능성 지방산으로 알려진 CLA(conjugated linoleic acid)의 경우 9c,11t 및 10t,12c의 이성 질체가 미량 분석되었으며 출하월령에 따른 유의적 차이는 없음

Table 32. 도체월령에 따른 지방산 조성 비교 (unit : %)

Composition	19-25	26-28	29-31	32-34	35-44	p value
C10:0	0.05a	0.05a	0.04ab	0.04ab	0.04b	0.1033
C12:0	0.10a	0.09b	0.08b	0.09b	0.08b	0.0711
C14:0	3.13a	2.96ab	2.90b	2.84b	2.93ab	0.1276
C14:1	0.91ab	1.00a	0.91b	0.91b	0.97ab	0.1891
C15:0	0.30a	0.27b	0.24c	0.24c	0.22c	<.0001
C16:0	24.67ab	25.04a	24.63ab	24.26b	24.26b	0.0535
C16:1	4.15	4.12	4.17	3.98	4.11	0.5410
C17:0	0.72a	0.59b	0.55c	0.55c	0.54c	<.0001
C17:1	0.82a	0.65b	0.63b	0.63b	0.63b	<.0001
C18:0	10.37	10.25	10.39	10.30	10.07	0.8170
C18:1	42.75b	43.26b	44.11a	44.32a	44.44a	0.0045
C18:1, <i>11t</i>	1.67b	1.87ab	1.86ab	1.94a	1.94a	0.1794
C18:2	2.54	2.28	2.48	2.51	2.50	0.4113
C20:0	0.05	0.05	0.06	0.06	0.05	0.7085
C18:3	0.11	0.09	0.09	0.09	0.09	0.4789
CLA, <i>9c11t</i>	0.27	0.28	0.31	0.31	0.30	0.3067
C20:1	0.35ab	0.31b	0.34b	0.38a	0.39a	0.0002
CLA, <i>10t12c</i>	0.03	0.03	0.03	0.03	0.03	0.8611
C20:2	0.08	0.09	0.08	0.09	0.10	0.9372
C20:3	0.27	0.24	0.26	0.25	0.24	0.5164
C20:4	0.58a	0.46ab	0.52ab	0.47ab	0.45b	0.1021

C24:1	0.16a	0.13bc	0.14ab	0.13bc	0.12c	0.0180
Saturated Fatty Acids	39.40	39.29	38.88	38.36	38.20	0.0779
Unsaturated Fatty Acids	54.67b	54.79b	55.90a	56.02a	56.30a	0.0045
PUFA	3.88	3.46	3.75	3.74	3.71	0.4156
UFA/SFA	1.40b	1.41b	1.46ab	1.48a	1.49a	0.0117
n-6/n-3	8.53	8.63	8.88	9.26	9.12	0.0955

4 수입육과 한우육의 고품질 고기능성 성분 차이

- O 743두의 한우육 분석결과를 램덤 샘플링한 미국산, 호주산 각 25두와 동일 분석조건에서 얻은 고품질 고기능성 성분 함량을 비교하였음
- O 수입육의 경우 상대적으로 낮은 pH, a*값 등 장기 저장에 따른 특징적 지표가 나타났으며, 관능평가에 따른 전체적인 기호도(acceptability)의 경우 수입육은 한우육의 2등급 수준에 머무는 것으로 나타남

	한우육 (n=743)	미국산 (n=25)	호주산 (n=25)	p-value
рН	5.7 ^A	5.3 ^B	5.1 ^B	<.0001
a*	19.6 ^A	15.4 ⁸	13.9 ^B	<.0001
Acceptability (1-9)	5.2 ^A	2.6 ^B	3.1 ^B	<.0001

- O 수입육과 비교하여 한우육은 바람직한 핵산관련 풍미물질을 다량 함유하고 있으며, 일부 기능성 peptides 함량도 높게 나타남
- O 한우육은 상대적으로 포화지방산의 비율이 낮고, 수입육의 경우 일부 다가불포화지방산의 비율이 높았으나 한우육은 oleic acid 함량이 특징적으로 높음

O 분석결과 평가

- 육질등급은 주로 마블링(근내지방도)과 관련되며, 1++ 등급과 1+ 등급 간이 성분 및 관 능차이는 다른 구간에 비해 크지 않은 것으로 분석됨
- 즉 육질등급이 높다고 해서 관능적 우수성은 입증되나 특정 영양 및 기능성 성분에서도우수한 조성을 지닌 것은 아님
- 출하월령에 따른 성분 차이에서 27±1개월령 이후 마블링 증가폭이 상대적으로 크게 감

	한우육 (n=743)	미국산 (n=25)	호주산 (n=25)	p-value
IMP	117.1 ^A	26.0 ^B	21.3 ^B	<.0001
Hypoxanthine	18.9 ^C	29.9 ⁸	51.4 ^A	<.0001
Carnosine	765.1 ^A	436.0 ⁸	385.8 ⁸	<.0001
C16:0	25.29 ^A	23.25 ^B	23.48 ^B	<.0001
C18:0	10.33 ^C	13.48 ^B	16.17 ^A	<.0001
C18:1	44.06 ^A	36.18 ^B	34.67 ^B	<.0001
C18:2	2.31 ^B	6.74 ^A	5.06 ^A	<.0001
C18:3	0.08 ^B	0.27 ^A	0.29 ^A	<.0001
SFA	39.71 ^B	40.86 ^B	44.64 ^A	<.0001
UFA	55.73 ^A	55.05 ^A	51.16 ⁸	<.0001

소하며 육량등급 지수의 변화도 없는 것을 나타남

- 출하월령 증가에 따른 풍미, 기능성 물질의 유의적 증가도 없었으므로 사양비를 고려하여 경제성 분석을 통한 출하월령의 조정(단축)이 필요할 것으로 보이며, 더불어 소비지의 기호와 사회적 의견을 고려한 현행 소도체 등급제의 일부 조정도 가능하리라 판단됨
- O 이상의 결과는 본 과제수행을 통해 분석된 한우육의 고품질 고기능성 특성에 대한 육량 등급, 육질등급 및 도체중에 대한 통계분석 결과를 학술지에 공동으로 게재하였음

Korean J. Food Sci. An.
Vol. 34, No. 3, pp. 287~296(2014)
DOI http://dx.doi.org/10.5851/kosta.2014.34.3.287

ARTICLE

Comparison of Physicochemical and Functional Traits of Hanwoo Steer Beef by the Quality Grade

Dong-Gyun Lim¹, Ju-Su Cha, Cheorun Jo², Kyung Haeng Lee³, Jong-Ju Kim⁴, and Ki-Chang Nam*

Department of Animal Science and Technology, Sunchon National University, Suncheon 540-950, Korea

¹Department of Health Administration and Food Hygiene, Jinju Health College, Jinju 660-757, Korea

²Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute

of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea

³Department of Food and Nutrition, Korea National University of Transportation, Jeungpyeong 368-701, Korea

⁴School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea

Abstract

The physicochemical and functional traits for loin muscles of Hanwoo steers were compared by quality grade (QG). A total of 500 Hanwoo steers were slaughtered, their carcasses were categorized into four groups (QG 1++, 1+, 1, and 2), and the *longissimus dorsi* muscles were analyzed. QG 1++ group had the highest fat and lowest moisture content (p<0.05). QG 1++ showed higher L^* and b^* color values, higher cooking loss, and lower shear force values, compared with the other groups (p<0.05). The flavor, tenderness, juiciness, and preference scores by sensory evaluation were highly ranked for premium QG groups (1++ and 1+). Regarding the micro compounds, QG 1 and QG 2 had greater amounts of inosine monophosphate, and QG 2 had greater amounts of anserine, carnosine, and creatine, than QG 1++ (p<0.05). QG 1++ and 1+ had higher percentages of oleic acid (C18:1) than QG 2 (p<0.05). Within premium QG 1++ and 1+, the results of the nucleotides, free amino acids, dipeptides, and fatty acids did not show any distinctive differences. Hanwoo beef as determined by the current grading system was not significantly different in terms of functional components; the only significant difference was in intramuscular fat content.

Keywords: Hanwoo steers, quality grade, functional components, sensory evaluation

ARTICLE

Comparison of Physicochemical and Functional Traits of Hanwoo Steer Beef by the Quality Grade

Dong-Gyun Lim¹, Ju-Su Cha, Cheorun Jo², Kyung Haeng Lee³, Jong-Ju Kim⁴, and Ki-Chang Nam*

Department of Animal Science and Technology, Sunchon National University, Suncheon 540-950, Korea

¹Department of Health Administration and Food Hygiene, Jinju Health College, Jinju 660-757, Korea

²Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute

of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea

³Department of Food and Nutrition, Korea National University of Transportation, Jeungpyeong 368-701, Korea

⁴School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea

Abstract

The physicochemical and functional traits for loin muscles of Hanwoo steers were compared by quality grade (QG). A total of 500 Hanwoo steers were slaughtered, their carcasses were categorized into four groups (QG 1++, 1+, 1, and 2), and the *longissimus dorsi* muscles were analyzed. QG 1++ group had the highest fat and lowest moisture content (p<0.05). QG 1++ showed higher L^* and b^* color values, higher cooking loss, and lower shear force values, compared with the other groups (p<0.05). The flavor, tenderness, juiciness, and preference scores by sensory evaluation were highly ranked for premium QG groups (1++ and 1+). Regarding the micro compounds, QG 1 and QG 2 had greater amounts of inosine monophosphate, and QG 2 had greater amounts of anserine, carnosine, and creatine, than QG 1++ (p<0.05). QG 1++ and 1+ had higher percentages of oleic acid (C18:1) than QG 2 (p<0.05). Within premium QG 1++ and 1+, the results of the nucleotides, free amino acids, dipeptides, and fatty acids did not show any distinctive differences. Hanwoo beef as determined by the current grading system was not significantly different in terms of functional components; the only significant difference was in intramuscular fat content.

Keywords: Hanwoo steers, quality grade, functional components, sensory evaluation

CSIRO PUBLISHING

Animal Production Science http://dx.doi.org/10.1071/AN13411

Association of carcass weight with quality and functional properties of beef from Hanwoo steers

Dinesh D. Jayasena A.B., Ki Chang Nam C, Jong Ju Kim D, Hyeonju Ahn E and Cheorun Jo E, F

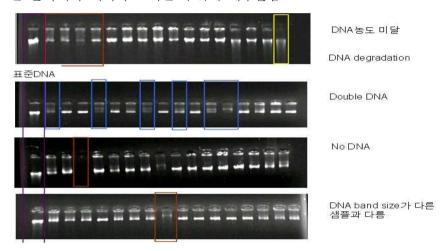
Abstract. The association of carcass weight with quality and functional properties of Hanwoo (Korean native cattle) beef was investigated. The carcasses of 250 Hanwoo steers were categorised into light (<375 kg; n=74), medium (375-425 kg; n=76) and heavy (>425 kg; n=100) groups and were evaluated for back fat thickness, rib eye area, and beef marbling score 24 h postmortem using the Korean carcass grading system. Rib eye area, back fat thickness, and marbling score significantly increased (P<0.05) with increasing carcass weight. However, marbling score and intramuscular fat content showed only a little increase (P<0.05) beyond a limit of 375 kg. Inosine-5'-monophosphate concentration was significantly higher (P<0.05) in medium and heavy carcasses. Camosine concentration was significantly higher in medium carcasses. Total saturated fatty acid content and n-6:n-3 ratio decreased as carcass weight increased (P<0.05). Medium and heavy carcasses had significantly higher (P<0.05) scores for sensory quality parameters. Overall, medium carcasses of Hanwoo displayed optimal sensory and health benefits while minimising the economic disadvantages of growing cattle to heavier weights.

^ADepartment of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea.

^BDepartment of Animal Science, Uva Wellassa University, Badulla 90000, Sri Lanka.

CDepartment of Animal Science and Technology, Suncheon National University, Suncheon, 540-742, Republic of Korea.

^DSchool of Biotechnology, Yeungnam University, Kyungsan, 712-749, Republic of Korea.


EDepartment of Agricultural Biotechnology, Centre for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 151-921, Republic of Korea.

Corresponding author. Email: cheorun@snu.ac.kr

제4절 대용량 SNP chip을 이용한 유전자형분석 및 진단기술개발

1. 고밀도 Affymetrix bovine 640K SNP array를 이용한 분석

- 가. 시험집단 한우육을 대상으로 고밀도 Bovine SNP array 분석
- DNA quality 측정
- 한우육 조직에서 genomic DNA를 추출하여 genomic DNA 10ng X 1μl를 reference DNA 1μl과 함께 1% agarose gel에서 40v로 2시간~2시간30분간 전기영동하여 정량된 DNA의 농도의 재확인 및 double band DNA의 여부, DNA degradation 등을 아 래 그림과 같 확인하여 quality 가 낮은 시료는 분석에서 제외하고 다른 부위에 재추출함.

- 시험집단 743두에 대한 고밀도 Bovine SNP array 분석
- Affymetrix사의 Axiom Bovine array는 Affymetrix Bovine Consortium에서 10개 품종의 genomic coverage를 극대화할 수 있도록 고안됨. 품종에 따라 타사 제품보다 최대 34% 이상의 genome coverage를 나타내며 평균적으로 90% 이상의 genome coverage를 나타냄.
- Bovine SNP array의 마커 구성 및 분석 performance 결과

Type of SNP*	Number of validated SNPs
Exon CDS – non-synonymous	7,504
Exon CDS – synonymous coding	11,543
Exon – UTR	8,014
Exon – other	2,965
Splicing site	51
Intron	184,253
Other	404,024

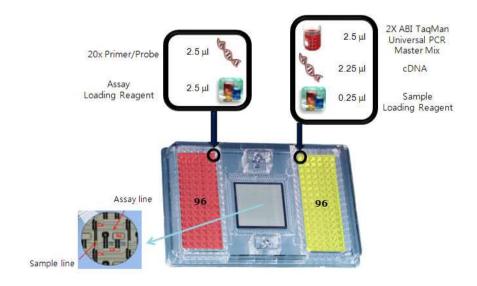
^{*}CDS = coding sequences; UTR = untranslated regions.

ON A SHARE	
Number of SNPs	648,855
Number of validated SNPs ⁺	618,345
Sample pass rate	99.94%
Average sample call rate	99.62%
Reproducibility [‡]	99.94%
Mendelian consistency	99.96%

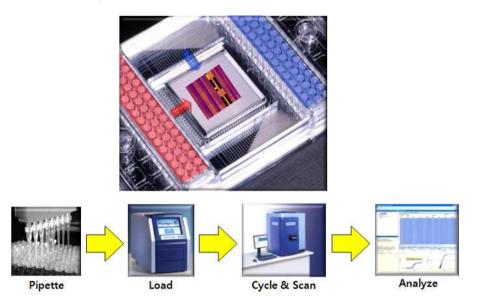
^{*} For blood, semen, ear punch, and hair bulb samples from all 20 breeds shown in Table 1.

[†] These SNPs are polymorphic and pass performance criteria for all the breeds and samples tested. Additional SNPs may be validated on a per-breed basis. These SNPs were used for sample performance and coverage calculations.

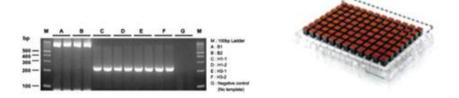
^{*} Reproducibility of SNP calls are for replicates run on different plates.


- Affymetrix사의 Axiom Bovine array 분석을 위한 시스템은 다음과 같음.

Axiom Genotyping Solution



2. 발굴된 SNP 마커의 검증분석 및 조기진단용 kit 개발


- 가. 고기능성, 단기 고성장·고품질 관련 SNP 조기진단용 키트 개발
- 고밀도 Bovine SNP array 분석결과 발굴된 고기능성, 단기 고성장·고품질 관련 SNP 분석
- Fluidigm사의 Biomark system을 이용하여 multiplex genotying 수행
- Fluidigm사의 Biomark system은 genotyping method의 gold standard인 TaqMan assay와 Lab-on-a-chip 기술을 접목한 것임. TaqMan probe을 디자인하여 Lab-on-a-chip에 시료 및 샘플을 loading한 후 자동화 시스템을 통해 4시간만에 결과를 확인할 수 있음.

○ Fluidigm사의 Biomark system의 work flow는 다음과 같음.

○ 고기능성, 단기 고성장·고품질 조기진단용 kit 제작은 최종 선정된 SNP 마커의 개수에 따라 multiplex PCR system과 custom array 제작함.

제5절 생물정보학적 분석을 이용한 한우 SNP 기능분석 및 유전체 정보관리 시스템 구축

○ 목표:

- 생물정보학적 기법을 이용한 한우 특이적인 functional SNP의 데이터 베이스화를 통해 BI 한우 육종 개량의 기초 자료 제공
- 한우 유전체 정보 및 고기능성/단기고성장/고품질 자료 정보관리 시스템을 구축

1. 한우 유전체 정보 데이터베이스 구축

가. 육종을 위한 국내 한우의 2,473,884 SNPs 데이터 베이스

(1) 국내 종우 10개체를 이용한 whole genome sequencing을 통해 NCBI에 등록되어 있는 소의 표준 유전체 서열의 18배에 해당 하는 49 Gb를 해독 하였으며 이를 이용해 2,473,884 SNPs를 발굴, 이를 활용한 육종 연구 개발의 기초 자료로 제공될 한우 유전체 데이터베이스를 구축

그림 3-1. 한우 육종 개량을 위한 한우 유전제 데이터베이스.

● Variation 정보를 바탕으로 QTL, Gene, SNPchip, GenomeBrowser, BLAST, Search category를 일차 카테고리로 분류하여 데이터 베이스화 함 (그림3-2).

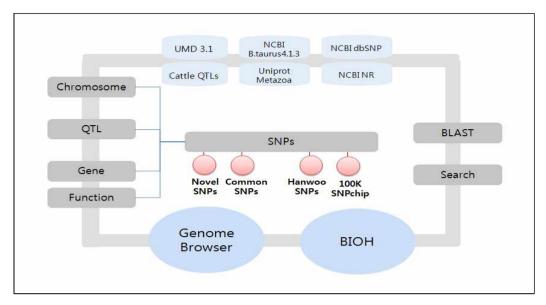


그림 3-152. 한우 유전체 정보 데이터베이스 모식도.

● 한우 유전체 정보 데이터베이스는 육종 연구를 위한 한우 맞춤형 데이터베이스로 QTL, gene, SNPs, dbSNPs와 같은 데이터베이스네 모든 정보는 유기적으로 연결 되어 있으며 하나의 정보는 파생되는 기능 정보로 모두 연결 될 수 있도록 설계됨 (그림 3-2)

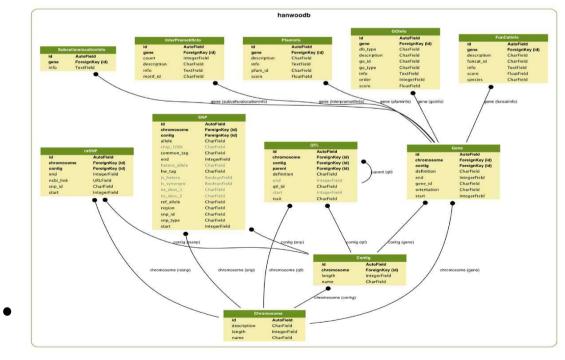


그림 3-153. 한우 유전체 정보 데이터베이스 ERD.

- QTL 육종 관련 주요 6 traits에 연계된 SNPs의 상세 정보를 데이터 베이스화 한 것으로 각 QTL은 계층적 구조로 DAG 구조화된 세부 QTL로 구성 되어 있으며 이들 각각은 SNPs 정보와 함께 유전체내 위치정보, allele 정보, 유전자 정보, 아미노산 변이 정보를 담고 있음
- Variation SNPs의 통계정보와 함께 유전체내 위치정보를 바탕으로 유전자 영역, 단백질 코딩 영역, 유전자 발현 조절 영역 등과 같은 function tag정보를 담고 있는 Function category와 기 구축된 NCBI dbSNP 데이터를 통해 이미 밝혀진 SNPs과의 비교를 통해 새롭게 밣혀진 novel SNP, 기존 데이터와 일치하는 commonSNP, 한우에서만 특이적으로 나타나는 HanwooSNP로 구분되는 Novel category로 세분화 하여 데이터베이스화 함
- Gene 유전자 단위로 UMD3.1 기준의 유전자 기능 정보를 바탕으로 한 27000여개의 유전자 영역내 SNPs정보를 데이터베이스화 하여 유전자내 세부 위치 정보(intron, CDS, UTR, promoter) 및 SNPs의 allele 정보를 지식화 함
- 100K SNPchip 한우의 우수한 유전적 특성 연구를 위해 한우 맞춤형 100K SNPchip 디자인을 수행하였으며, 경제 형질 관련 SNPs 및 Affymetrix chip에 의해 발굴된 육질 관련 100,264 SNPs 목록을 데이터베이스화 함.
- Genome Browser SNPs, gene, 유전자의 기능, 100K SNPchip list, HanwooSNP, QTL 정보를 유전체 브라우저를 통해 한우의 유전적 정보를 한 번에 확인 할수 있도록 함
- BLAST 본 연구를 통해 얻어진 SNP 정보의 활용성을 극대화 하기 위해 연구자들의 개별 데이터와의 비교 분석이 가능하도록 BLAST기능을 탑재. 비교 분석이 가능한 데이터 베이스는 소의 genomic DNA, CDS, protein, Uniprot metazoa, NCBI NR로 구성되어 있음.
- Search 데이터베이스의 효율적인 활용을 위한 검색 조건으로 QTL, 유전자의 기능정보 등을 활용하는 keyword 검색, SNP id를 통한 검색, 유전체내 위치정보를 활용한 검색 및 각 SNP의 tag 정보를 활용한 검색기능 탑재

2. 한우 유전체 및 SNP tagging 브라우저 기능

가. 한우 유전체내 다양한 유전정보를 브라우저를 통해 효율적으로 제공

● 한우 유전체 서열 내 존재하는 모든 변이 정보를 비롯해 육종 연구를 위한 경제 형질 6개 trait 정보, NCBI의 dbSNP의 SNP 정보, 한우 특이적인 SNP인 HanwooSNP를 비롯한 총 11개 track으로 구성된 브라우저를 구축 (그림3-4)

- 브라우져의 zoom-in/zoom-out 기능을 통해 유전체의 nucleotide 서열까지 확인이 가능하며. SNP정보의 경우 allele 정보와 같은 상세정보 연람이 가능
- 유전체 서열을 비롯한 11개 track은 체크 박스를 통해 브라우저상의 표현 유무를 설정할 수 있으며, 각 track의 상세 항목은 표 3-1과 같음.

표 3-1. 한우 유전체 브라우저의 세부 track 항목.

트랙이름	내용
Reference sequence	유전체 서열
Gene	유전자 구조 정보/기능정보
Novel_SNP	dbSNP와의 비교분석을 통한 novel SNP
Common_SNP	dbSNP와의 비교분석을 통한 기존 데이터와 일치하는 SNP
Hanwoo_SNP	한우에서만 공통적으로 나타나는 SNPs
Reproduction_QTL	정자 생산성 및 번식력 관련 경제형질
Meat_QTL	육질 관련 경제형질
Milk_QTL	우유 관련 경제형질
Exterior_QTL	외형 및 색소 관련 경제형질
Health_QTL	면역 관련 경제형질
Production_QTL	성장 및 생산성 관련 경제형질

● 브라우저내 하이라이트 기증을 통해 특정 SNPs 및 유전자를 선택할 경우 유전체내 해당 위치는 노란색으로 라인이 표현되어 인식의 효율성을 높임 (그림 3-4).

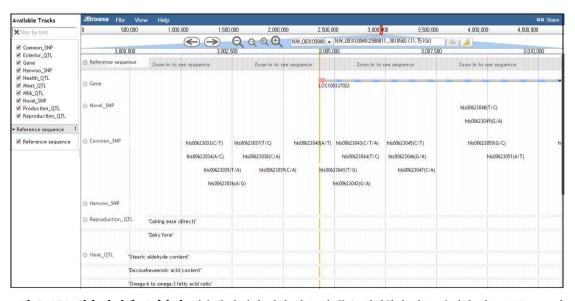


그림 3-154. 한우 유전체 브라우저. 한우내 유전체 변이 정보 및 주요 경제형질 정보, 유전자 정보 SNPchip 정보를 데이터베이스화 하고 이들의 효율적인 연람을 위한 브라우저 구축

● 각 track별 해당 유전 정보는 클릭을 통해 상세정보를 확인 할 수 있으며, 다운로 드 또한 가능함. 클릭을 통한 SNPs의 상세정보는 유전체내 위치정보 및 유전자 구조 정보 SNP type 정보, allele 정보등이며, 유전자의 경우 유전자의 구조 정보, 기능 정보, 서열 정보를 담고 있음. QTL의 경우 해당 trait의 세부 defintion을 비롯한 QTL id, typq, 위치 정보등을 확인 할수 있음 (그림 3-5)

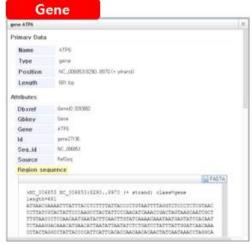


그림 3-5. 상세 기능 정보 브라우저.

3. Functional category 및 pathway에 의한 유전자 및 SNP 분포 조회

- 가. 유전자 영역내 SNPs의 정보 활용을 위한 유전자의 세포내 세부 기능정보 데이터베이스화
 - 전반에 걸친 변이 분석을 통해 UMD 3.1 기준의 2,7000여개의 유전자 영역에 해당하는 SNPs의 상세 정보를 유전자의 세포내 기능정보와 함께 데이터베이스화 하여 유전자의 기

Gene 🖶 Home > Gene Gene ID Definition Contig 20 displayed in total 27144 records. Hanwoo Specific SNP Definition Novel SNP Gene ID Chr. No Contig ID Position Total Common SNP 4584517 -1,4-alpha-glucan-branching 2 615745 NW 003103802 242 113 127 Chr.01 4897533 enzyme [Bos taurus] 1-acyl-sn-glycerol-3-phosphate 598969 -506607 Chr.01 NW 003103826 acyltransferase gamma [Bos 16 10 5 1 taurus 563568 -2-hydroxyacyl-CoA lyase 1 [Bos 512676 Chr.01 NW_003103828 29 21 0 602334 taurus] 20-beta-hydroxysteroid dehydrogenase-like [Bos 4001794 -510180 Chr.01 NW_003103826 5 1 0 4003864 taurus] 26S proteasome non-ATPase 253382 -539784 Chr.01 NW_003103813 regulatory subunit 2 [Bos 0 7 0 262724 taurusl 6525463 -28S ribosomal protein S22, 532044 Chr.01 NW_003103820 0 0 0 0 6538872 mitochondrial [Bos taurus] 596583 -28S ribosomal protein S6,

능 변이를 유발하는 SNPs를 보다 효율적으로 관리 하고자 함 (그림3-6)

그림 3-156. 소의 UMD3.1 기능정보를 바탕으로한 2,7000여개의 유전자내 SNPs 상세 정보 데이터베이스화.

mitochondrial [Bos taurus]

3-hydroxyacyl-CoA dehydratase

2 [Bos taurus]

18

615431

613886

Chr.01

Chr.01

NW_003103793

NW_003103811

660393

3138254 -

● 각 유전자내 SNPs는 NCBI dbSNP와의 비교를 통해 새롭게 밝혀진 novel SNP, 기존의 데이터와 일치하는 common SNP, 한우에서만 공통적으로 나타나는 특이 SNP인 HanwooSNP 정보를 가지고 있으며 이들의 상세 정보는 유전자의 세포내 대표 기능 및 서 열 정보와 함께 데이터베이스화 함.



그림 3-157. 유전자 기능 상세 브라우저. SNP, sequence, Functional category, domain, subcellular localization의 상세 정 보를 포함하고 있다.

- 유전자 상세 기능에서는 유전자내 모든 SNPs 정보와 상세 기능정보, 서열정보를 확인 할수 있으며, 이들 정보는 앞서 소개된 genome browser와의 연동을 통해 해당 contig서열의 클릭을 통해 브라우저로 이동됨 (그림 3-7)
- 상세 SNPs 정보는 개별 SNPs 정보와 연동되어 자세한 allele 정보, 위치 정보등과 함께 정보화 하였음('4. 다양한 QTL 및 SNP 통계정보 조회'참고)
- 나. Non-synonymous SNP(nsSNP)를 포함 하고 있는 유전자들의 대표 기능 분석
- 한우 10개체로부터 분석된 SNPs는 개체간의 변이 및 품종 변이를 다양하게 가지고 있으므로 이를 이용해 개체간의 변이가 다양화 되어 있는 유전자를 확인 할 수 있음
- 단백질의 변이를 보이는 nsSNP를 하나 이상 포함하고 있는 2,329 유전자를 대상으로 ontology 분석을 수행하였으며 그 결과 nsSNPs는 'olfactory receptor (MF)', 'zinc ion binding (MF)', 'GPCR, rhodopsin-like superfamily (Interpro motifs)' category에 enrichment 되어 있으며 이들 대부분은 외부의 신호를 세포내로 전 달하는 기능을 수행하는 neurotransmitter나 hormon과 같은 특징을 갖고 있음을 확인 (그림3-8)

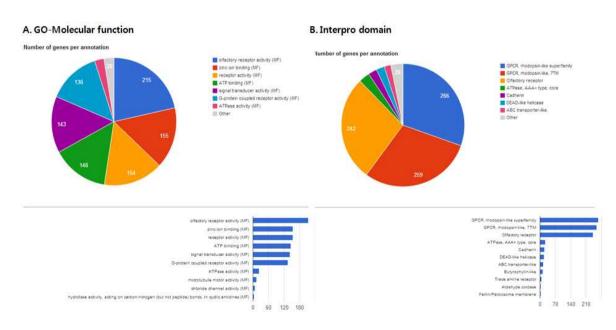


그림 3-8. 개체별 다양성을 유도 하는 유전자 category로 nsSNP를 하나 이상 포함하고 있는 유전자들의 주요 functional category.

- 다. 육종 연구를 위한 SNPs의 활용성 확대를 위한 BLAST 기능
- 생물학자들의 효율적인 연구결과 활용을 위해 본 연구를 통해 구축된 SNPs 정보를 데이터 베이스화 하여 이를 서로 비교 분석 할수 있도록 서열간 비교 분석 기능을 강화하였음.
- 자신의 데이터와 공유하거나 실험적으로 검증된 SNPs의 동일성 여부 판단을 위해 BLAST를 통한 서열 검색을 수행하고 유사 서열이 검색 되었을 경우 해당 위치의 SNPs 정보를 연람하고 상세 정보를 확인 할 수 있도록 함 (그림 3-9)

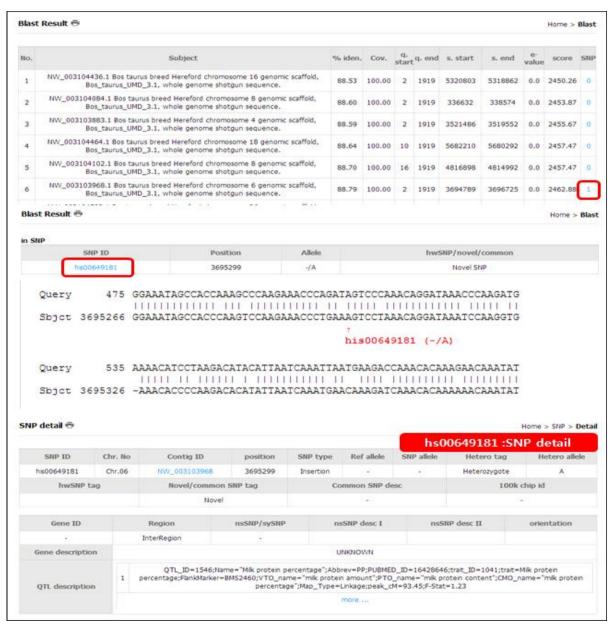


그림 3-159. BLAST를 통한 자신의 실험 데이터와의 비교 분석.

● SNP 정보이외에 유사 연구자들의 데이터 활용성 확대를 위해 소의 유전체 서열. 단백질

서열, 유전자 서열, uniprot metazoa, NCBI NR 데이터베이스를 활용할수 있도록 하였으며 분석시 데이터베이스를 자유롭게 선택하수 있게 함(그림 3-10)

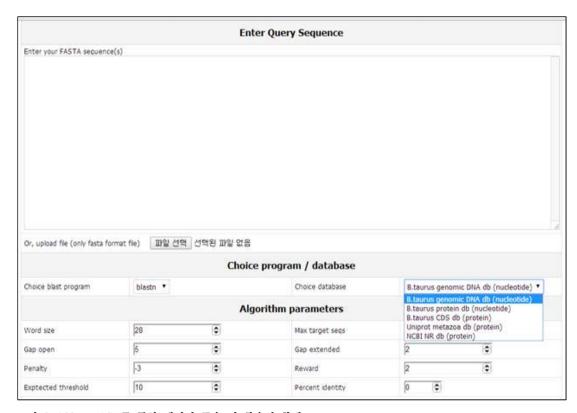


그림 3-160. BLAST를 통한 데이터 공유 및 활용성 확대

4. 다양한 QTL 및 SNP 통계정보 조회

가. QTL

- 한우의 육종 개량을 위해 본 연구를 통해 밝혀진 단일염기 변이(SNPs)와 AminalQTL database의 cattle QTL의 6개 trait 정보의 연계 정보를 데이터베이스화(그림 3-9)
- 육종과 관련된 6개 주요 traint은 Reproduction, Meat, Milk, Exterior, Health, Production 으로 구성 되어있으며 각 traits에 해당하는 SNPs는 한우 특이적인 SNPs, 및 novel SNPs 그리고 기 구축된 NCBI의 dbSNP 데이터베이스를 통해 이미 밝혀진 commonSNP 으로 구분되어 데이터베이스화 함.
- 각 SNPs의 세부 정보는 유전체내 유전자의 위치 정보를 바탕으로 CDS 영역의 cSNP, 단백질 의 아미노산 서열 변이를 유발하는 non-synonymous SNPs, 유전자의 발현을 조절하는 promoter 영역의 rSNP, 그 외 유전자와 유전자 사이의 inter-region에 존재하는

SNPs등 세부 정보를 데이터베이스화 함.

				CD	S					
Traits	Category	Total	nsSNP (aaChSNP) sySNP total			intron	Promoter	InterRegion	Etc	
	Novel SNP	856,415	631	434	4,598	5,229	270,622	10,384	564,848	5,332
Reproduction	Common SNP	1,180,602	2,005	1,519	5,206	7,211	400,833	13,336	751,291	7,931
	Hanwoo Specific SNP	37,659	107	72	79	186	11,444	487	25,337	205
	Novel SNP	930,925	663	454	4,841	5,504	292,801	11,084	615,774	5,762
Meat	Common SNP	1,283,955	2,181	1,651	5,541	7,722	435,269	14,271	818,093	8,600
	Hanwoo Specific SNP	40,770	116	78	83	199	12,408	523	27,410	230
Milk	Novel SNP	764,042	560	387	4,207	4,767	236,433	9,792	508,186	4,864
	Common SNP	1,055,326	1,884	1,419	4,782	6,666	355,171	12,471	673,739	7,279
	Hanwoo Specific SNP	33,324	100	71	62	162	9,988	452	22,526	196
	Novel SNP	205,806	132	86	1,074	1,206	66,831	2,585	133,926	1,258
Exterior	Common SNP	288,771	482	358	1,275	1,757	101,225	3,454	180,412	1,923
	Hanwoo Specific SNP	9,270	22	13	17	39	2,878	139	6,170	44
	Novel SNP	695,408	514	353	3,669	4,183	222,808	8,291	455,814	4,312
Health	Common SNP	962,853	1,636	1,238	4,163	5,799	330,345	10,605	609,783	6,321
	Hanwoo Specific SNP	30,038	93	63	60	153	9,268	380	20,061	176
	Novel SNP	886,139	652	444	4,691	5,343	278,704	10,737	585,877	5,478
Production	Common SNP	1,221,572	2,099	1,599	5,395	7,494	413,756	13,812	778,280	8,230
	Hanwoo Specific SNP	38,684	107	70	78	185	11,742	496	26,044	217

그림 3-11. QTL 카테고리를 기반으로 육종 관련 6개 주요 traits으로 구분된 SNPs

• 각 traits의 세부 형질 정보는 표 3-2과 같으며 이들의 세부 카테고리 및 SNPs의 세부 정보는 유전체내 위치 정보, 해당 유전자의 위치 정보, 기능정보, QTL id, 및 한우 특이 SNPs등과 같은 세부 정보를 유전자 단위까지 검색이 가능 하도록 함(그림 3-12)

표 3-2. 각 QTL내 관련 유전자의 기능 정보

형질명	관련 형질
Reproduction	종우의 특성상 정자의 생산성 및 활동성에 관련된 번식력
Meat	육질 관련 형질로 향미, 식감, 아미노산 함량, 지방 함량, 육즙에 관련된 정보
Milk	우유의 생산성 및 우유내 영양성분 함량관련 정보
Exterior	모근색(황색)을 비롯한 뿔색, 피부색 관련 pigmentation
Health	면역 관련 유전자들이 다수 포함 되어 있는 것으로 질병 감수성, 기생충 저항성 및 감염력에 관련한 정보
Production	growth와 관련하여 46개의 세부 traits으로 일반적인 체형, weight, depth, high 및 도축되는 나이 정보

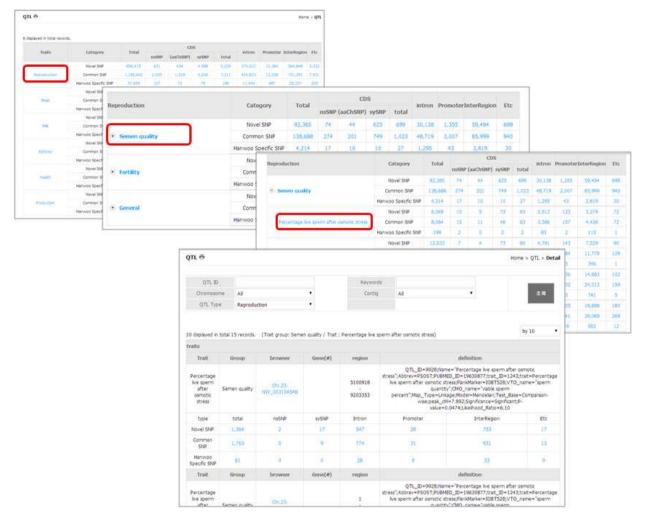


그림 3-12. QTL과 SNPs의 연계 정보. 해당 형질에 관련된 SNPs 정보를 서열 단위까지 확인 할수 있으며 유전자내 위치 정보, 기능정보, 단백질의 아미노산 변이 정보, 한우 특이 SNPs와 같은 SNPs의 세부 정보를 확인 할수 있다.

나. SNPs

● 한우의 개체 간 변이 정보로 2,473,884 SNPs 정보를 유전체내 위치정보를 바탕으로 유전 자 영역, 유전자 발현조절 영역, 단백질의 아미노산 변이 여부 등으로 세분화 한 Function 분류 데이터 베이스와 기 구축된 NCBI dbSNP를 통해 이미 알려진 SNPs 과의 비교 분석을 통해 새롭게 밝혀진 novelSNP, 기존 SNP와 일치하는 common SNP, 한우에서만 나타 나는 HW Specific SNP로 분류된 Novel 데이터베이스 구축(그림 3−11).

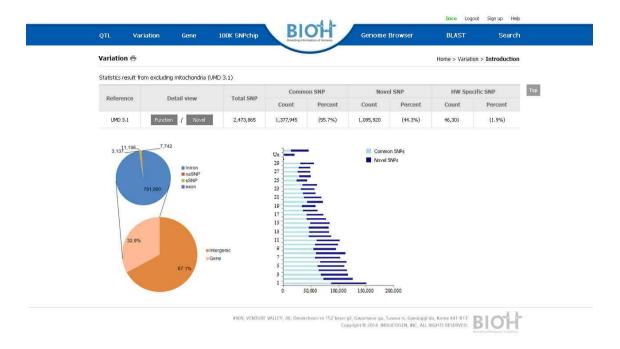


그림 3-13. 한우 SNPs의 유전체내 위치정보를 갖고 있는 function database, novel과 common, 한우 특이적인 HW Specific SNP로 구성되어 있는 novel database.

● 본 연구를 통해 얻어진 SNPs는 한우에서 새롭게 밝혀진 SNPs 와 기능상 정보를 세분화하기 위해 표 3-3에서와 같은 index tag정보를 활용.

표 3-3. SNPchip 개발을 위한 SNPs category 분류체계

	genotype	category	Index Tag	
Novel	Heterozygote	novel SNP	Novel SNP	
	Homozygote	hanwoo specific SNP	Hanwoo SNP	
commonSNP (known)	Heterozygote	dbSNP	Common SNP	
	Homozygote			

Variation	0.										Home > Va	oution » But	iroductio
	Total SIIP	CIPS Synonymous Non-dynonymous				Sett.		Prom	ustae	Intern	ngiam	11	
Chr. No.	tional sills	*	,	-	~		-				4		**
Ohr.01	150.0EZ	432	0.29	128	0.09	46,961	31.31	1,162	0.77	115,333	06.05	1.042	0.69
Oy.02	125,174	343	0.43	134	0.11	43,360	34.4	1,000	0.87	86,044	63.64	669	0.55
Ch1,03	116,579	621	0.53	178	8.15	49.175	34.6	1,243	1.5	72,680	62:35	1.119	0.87
Chr.d4	115,130	429	0.37	115	0.1	45,248	39.3	985	0.86	67,544	58.67	2029	0,7
Dir.05	116,718	679	0.61	INT	0.10	30,938	33.36	1,546	1.4	71,429	63.62	941	0.85
Dtr.06	112,800	22.7	5.29	83	0.07	34,366	30.21	701	5.67	27,715	68.25	577	0.51
Do.67	102,775	100	6.67	179	0.17	26,513	27.74	1,684	1.64	71,096	69.18	810	0.59
-Dv:06	111.021	706	9,36	99	11.09	30,906	27.72	945	0.84	79,000	70.55	450	0.45
011.09	10,393	269	0.28	810	8.09	14,821	26.1	682	0.72	88,800	72.35	437	0.46
CW.10	WIL:153	370	0.50	183	0.18	94,942	35.17	1,237	1.35	61,000	62.06	- 652	0.66
Dv.11	202,018	928	0.41	110	0.11	10.001	33.19	1,098	1.07	65,991	64.69	323	0.52
Dv-12	87,064	244	0.29	811	11:09	22,262	25.59	434	0.49	83,716	73.19	313	8.36
(2tr.13)	83,111	340	0.41	701	0.1	30,368	36.82	1,034	1.27	36,377	60.09	390	0.71

Variation 😁						Home > Varation	- Introduct
Chr. No.	7/2/25/25/27	tom	on SNP	Brye	CSNIP	Harren	e SMP
Cirr. Stu.	Total Shir		16		16		16
Ov.61	150,082	86,210	57.51	40,659	40.55	2,813	1.94
Chr.02	125,771	22,416	57.56	31,214	40.72	2,144	1.7
Or-03	110,570	67,664	38.04	46,900	45.27	1,962	1.68
Ovr.04	119,133	64,129	35.7	41(919	42.49	3,082	1.81
Chr.05	110,710	61,622	55.66	47,110	42.56	1,972	1.78
Ctr.06	117.880	66,638	38.53	44,919	39.43	2,923	2.02
Ov.87	102,275	56,812	55.38	43,900	42.72	1,050	1.91
Chr.00	111.021	50,012	52.78	51,439	45,29	2,143	1.94
Ov.09	91,041	34,475	57.28	36,912	40,92	1,712	1.8

그림 3-14. Variation category의 세부 2차 category. Function/Novel tab을 통해 각 chromosome내 SNPs의 분포 및 세부 카테고리별 분포 및 통계정보를 확인할 수 있다.

- Variation의 2차 세부 카테고리 중 function category는 유전체내의 genotype 변화로 표현형이 바뀌는 가장 직접적인 원인이 되는 CDS 영역내의 SNPs들 가운데 단백질 변이를 유발하는 nonsynoymous SNPs(nsSNPs)와 단백질 서열상의 변이는 없으나 세포내에서의 구조 변이를 유발 할 수 있는 synonymous SNPs(sySNPs) 그리고 유전자내 intron영역, 유전자 발현을 조절하는 promoter 영역, 그리고 그 외 유전자와 유전자 사이의 영역인 inter-region으로 세분화 하여 variation 데이터의 활용성을 극대화함 (그림 3−14).
- Variation의 세부 정보는 SNPs 개별적으로 검색이 가능하며 그 상세 정보는 SNPs 위치 정보, 기능 정보, 해당 QTL정보, allele 정보, 유전자 정보로 구성 되어 있으며, keyword 검색을 통해 모든 정보를 검색 연람할 수 있음(그림 3-15)

그림 3-165. Variation의 세부 정보. SNP의 세부정보로 유전체내 위치정보, 기능 정보, allele 정보, QTL 정보 등을 데이터베이스화 하였다.

5. SNP chip 실험 정보 연계 조회

가. 100K SNPchip

● 우수한 한우의 유전적 특성 연구를 위해 한우에 최적화된 SNP chip 개발용 100,284 SNPs 가 선발 되었으며, 이들의 경제 형질 정보를 바탕으로 그 정보가 데이터베이스화됨 (그림3-16).

Traits	Category		CDS			intron	Promoter	Inter	Etc	Tota
Irdits	Category	nsSNP	(aaChSNP)	sySNP	total	micron	Promoter	-Region	Ett	(#)
	Novel SNP	333	228	2,338	2,671	30,010	5,342	5,948	0	43,97
Health	Common SNP	1,042	774	2,665	3,707	16,485	6,824	0	0	27,01
Health	Hanwoo Specific SNP	62	43	47	109	5,981	256	6,154	33	12,53
	Total	1,437	1,045	4,723	6,487	52,476	12,422	12,102	33	12,53
	Novel SNP	388	263	2,698	3,086	32,108	6,168	6,000	0	47,36
Meat	Common SNP	1,224	900	3,090	4,314	16,518	8,028	0	0	28,96
Meat	Hanwoo Specific SNP	71	49	54	125	6,782	308	8,362	47	15,62
	Total	1,683	1,212	5,450	7,525	55,508	14,504	14,362	47	15,62
	Novel SNP	382	258	2,668	3,050	31,136	6,094	5,843	0	46,12
Production	Common SNP	1,195	884	3,057	4,252	15,877	7,885	0	0	28,0
Production	Hanwoo Specific SNP	70	48	54	124	6,506	299	7,610	43	14,58
	Total	1,647	1,190	5,390	7,426	53,519	14,278	13,453	43	14,58
	Novel SNP	371	251	2,596	2,967	30,336	5,946	6,000	33 33 0 0 47 47 0 0	45,24
Daniel akan	Common SNP	1,135	838	2,966	4,101	16,482	7,735	0	0	28,3
Reproduction	Hanwoo Specific SNP	69	48	52	121	6,406	294	7,701	45	14,56
	Total	1,575	1,137	5,244	7,189	53,224	13,975	13,701	45	14,56
	Novel SNP	76	49	680	756	7,196	1,688	6,000	0	15,64
Exterior	Common SNP	308	222	844	1,152	8,927	2,426	0	0	12,50
EXTENSE	Hanwoo Specific SNP	16	12	12	28	1,789	92	2,301	14	4,22
	Total	400	283	1,372	1,936	17,912	4,206	8,301	14	4,22
Meat 2		(From	Affymetrix Test)	: 관능형질	5개 /지방신	· 형질 27개				7,26

그림 3-166. 한우의 육종 연구를 위해 디자인된 한우 100K SNPchip의 경제형질 관련 정보.

- 100K SNPchip내 각 경제형질별 SNPs의 분포와 이들의 상세 리스트는 SNP 개별 상세 정보와 연동되어 allele 정보, 위치정보, 각 SNP type 정보를 자세히 확인 할수 있으며, contig ID를 클릭하게 되면 Genome Browser와 연동되어 유전체 브라우저상에서 해당 SNPs 위치로 이동, 하일라이트화 하여 효율적인 데이터 활용을 도모함 (그림3−17).
- 각 SNPs는 해당 유전자 및 QTL 정보와도 연계되어 있으며, 대용량의 유전 정보를 효율적으로 활용하기 위해, 100K SNPchip list와 HanwooSNP의 경우 따로 목록화 하여 데이터 베이스 사용자의 접근성을 강화하였음 (그림3-17).

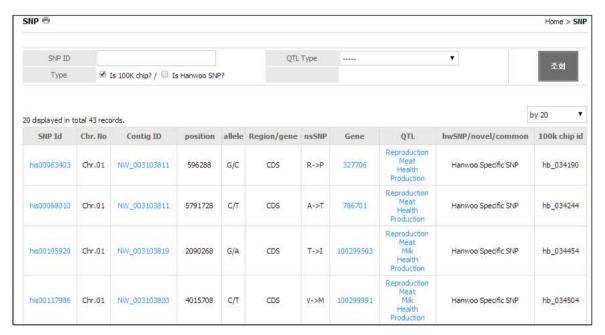


그림 3-167. 한우 맞춤형 100K SNPchip의 상세 SNP 정보.

- 나. 실험 정보 및 데이터베이스의 효율적인 활용을 위한 Search기능
- 한우의 육종 개량을 위한 유전자적 정보를 효율적으로 제공하고자 데이터베이스의 모든 keyword 검색이 가능 하도록 설계함.
- QTL의 경제형질 관련 Keyword, QTL id, SNP id, contig id, gene id, 유전체내 위치정보, chromosome 정보를 카테고리화 하여 검색의 효율성을 높였으며, 생물학자들을 위한세포내 기능 중심의 검색이 가능하도록 데이터베이스화함 (그림 3-18).

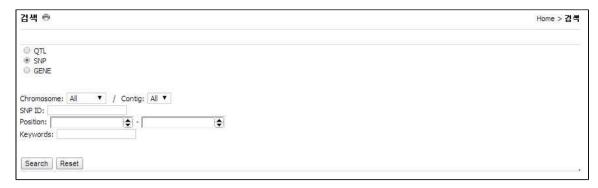


그림 3-168. 데이터베이스네 모든 keyword 및 id 정보를 활용한 search 기능 강화

제 4 장 목표달성도 및 관련분야에의 기여도

구분 (연도)	세부과제명	세부연구목표	달성도 (%)	연구개발 수행내용
	제1세부: 통계유전 학적기법을 적용한 한우 고기능성·고 품질 유전체 정보 발굴	통계유전학을 이용한 고기능 성·고품질 SNP 대량발굴	100	○ 대용량 chip에 있는 SNP들 중에서 연관불균형 정보를 이용한 한우에 유용한 SNP 탐색 ○ 시험집단에서 성장·기능성·품질 SNP를 대량 발굴
	2 6	단기사양프로그램 개발을 위한 표준집단 기초자료수집, 생산 성 진단 및 예측		 ○ 육량등급·육질등급간 선형회귀 분석을 통한 상호 관계 조사 ○ 사료효율, 증체량, 경제성 분석을 통한 단기적 사양관리 방법 및 기초자료도출 ○ 사료회사 한우표준 생산정보 및 실제 사육 개체의 비교를 통한 문제점 도출
	제 1 협동:유전등급 맞춤형 단기성장,고	육량육질 DNA 마커 및 육종 가활용 육성기 단계 단기사양 관리프로그램 개발	100	○육량육질 DNA 마커와 육종가를 근거로 고육질, 저육질, 처리구, 일반구 선발 ○ AFS을 이용한 육성기단계 사료효율, 급여량, 일당증체, 경제성 분석 ○ 선발단계 반추위 발효성상 비교분석
1차 년도 (2011)	품질, 고기능성 사양 프로그램 및 한우육 의 고품질고기능성 성분 탐색 개발	조·농 비율 및 성장단계별 배합비 조정을 통한 비육기 건강 영양성 기초평가		○ 양질 조사료 급여비율/종류에 따른 단기 사양 및 건강영양성 사료 배합비 작성 ○ TDN 함량 및 DMI 증진으로 육성기 단계 고 성장 단기 사양관리 분석 ○양질조사료급여비율 및 조사료 종류에 따른 반추위 발효성상 비교 ○ 표준사료정보, 일령별 체중 생산정보 및 개체비교를 통한 진단분석
		한우육의 고품질·고기능성 성 분 탐색	100	○ 한우 250두 등심육에 대한 고품질·고기능성 성분분석 및 지표간 상관분석
	_	시험집단 대상으로 고밀도 Bovine SNP chip 분석	100	○ 시험집단 250두를 대상으로 Affymetrix사의 Bovine SNP array(648k) 분석
	제3협동: 생물정보 학적 기법을 이용한 한우 SNP 기능분석 및 유전체 정보관리 시스템 구축	생물정보학적 분석을 이용한 한우 유전체 SNP 기능분석	100	 ○ 유전체 구조상의 functional SNP 분류 ○ Bovine SNP chip을 이용한 한우유용 SNP 선별 ○ Functional category 및 pathway를 이용한 SNP 분류 및 phenotype annotation-고기능성형질 유전자 발굴 ○ 서열 데이터 마이닝을 통한 한우 특이적인 SNP 선별

구분	세부과제명	세부연구목표	달성도	연구개발 수행내용
(연도)		, , _ , ,	(%)	○ 시험집단 거세우 500두자료 수집:
	제1세부: 통계유전 학적기법을 적용한 한우 고기능성·고	시험집단에서 고급육 및 고 기능성과 관련된 SNP를 대량 발굴	100	고급육/고기능성 75개 표현형 형질 및 Affy 640K SNP자료를 이용하여 전장연관분석을 통하여 유의적인 SNP를 대량 발굴
	품질 유전체 정보 발굴	시험집단에서 형질과 관련된 SNP 마커를 활용하여 분자 육종가 추정 및 정확도 평가	100	○ 발굴된 고기능성·고품질 형질별 SNP효과를 조합한 분자육종가를 추정하고 마커도움선발에 적용하기 위한 분자육종가의 정확도를 평가
		육량육질 DNA 마커 및 육종 가 활용 비육전기단계 단기사 양관리프로그램 개발	100	○육량육질 육종가를 근거로 고육질, 저육질, 처리구, 일반구 선별 ○ AFS을 이용한 육성기단계 사료효율, 급여량, 일당증체, 경제성 등 분석 ○ 반추위 발효성상 비교분석
2차 년도 (2012~ 2013)	제 1 협동: 유전 등급 맞춤형 단기성장, 고 품질, 고기능성 사양 프로그램 및 한우육 의 고품질고기능성 성분 탐색 개발	비육기 단기사육 프로그램 개 발	100	○ 양질 조사료원 급여 및 가소화총량 및 영양소 조절을 통한 국내단기사육 비육단계(전기) 프로그램 개발 ○ TDN 및 DMI 함량 증진으로 비육전기 단계 고 성장 단기 사양관리 분석 ○ 기능성물질(probiotics, 보호지방산 등)을 통한 비유기 생산성개선방안구축 및 반추위발효성상분석 ○ 비육기 반추위내 사료 이용능 및 발효성상 분석 ○ 비육기의 사료효율, 증체율, 경제성 분석을 통한 비육기간 조절방안 마련
		한우 생산비 절감 및 고급육 생산을 위한 육종가 및 사양기 간이 육량과 육질에 미치는 영 향 분석	100	 ○ 유전 등급이 높은 순으로 A(35두), B(35두), C(35두), D(35두)를 공시우로 채택하여 총140두로 분류 ○ 사양기간, 육종가에 따른 도체 후 성적과 상관관계 비교분석
		한우육의 고품질·고기능성 성 분 탐색	100	○ 한우 250두 등심육에 대한 고품질·고기능성 성분분석 및 지표간 상관분석
	_	시험집단 대상으로 고밀도 Bovine SNP chip 분석	100	○ 시험집단 250두를 대상으로 Affymetrix사의 Bovine SNP array(648k) 분석
	제3협동: 생물정보 학적 분석을 이용한 한우 SNP 기능분석 및 유전체 정보관리 시스템 구축	생물정보학적 분석을 이용한 고기능성 형질 유전자 contents 발굴	100	○ Bovine QTL DB 와 한우 특이적인 후보 SNP를 이용한 고기능성 형질과 연관된 후보 SNP들을 선별 ○ 비교유전체분석을 통한 미기능 SNP에 대한 기능 분석

구분 (연도)	세부과제 명	세부연구목표	달성도 (%)	연구개발 수행내용
		통계유전학을 이용한 고 기능성·고품질 SNP 대 량발굴	100	 ○ 적용집단에서 성장·기능성·품질 SNP 효과 검증 ○ 시험/적용집단 자료를 조합한 연관분석 ○ 적용집단에서 형질관련 SNP를 보정한 선발지수설정 및 마커도움선발 반응 평가
	제1협동	유전적 마커를 활용한 그 룹별 구분에 따른 건강기 능성 쇠고기 생산	100	○ 고기능성육, 저기능성,, 일반그룹별 선별 및 육질, 육량변화분석 및 비교○ 시험집단 출하월령별 경제성 분석○ 배합사료 급이량에 따른 사료효율분석/적용기술 개발
		비육후기(마무리사료) 단 기사육프로그램 개발	100	 ○ 양질 조사료원 급여/가소화총량/영양소 조절을 통한 국내단기사육 비육후기 프로그램 개발 ○ 마무리단계 생산성개선 및 반추위 발효성상 분석 ○ 비육후기 반추위 사료이용 이용율 분석 ○ 비육후기의 사료효율, 증체율, 경제성분석을 통한 육성기간 조절방안 마련
3 차 년		사료회사 연계 농가별 유 형분석/사료회사 현장 적 응 시험	100	○ 사료회사연계시스템을 통한 사료급여현장 적응 시험 ○ 농가별 현장적용 시험 데이타 확보 및 검증
(2013)		한우육의 고품질·고기능 성 성분 탐색	100	○ 한우 243두, 수입육 50두 등심육에 대한 고품질·고기능성 성분분석 및 지표간 상관분석
	제2협동	적용집단 대상으로 발굴 된 고기능성, 단기 고성 장·고품질 관련 SNP 분 석	100	○ 적용집단 대상으로 발굴된 고기능성, 단기 고성장·고품 질 관련 SNP 분석 ○ Fluidigm사의 Biomark system을 이용하여 분석
		고기능성, 단기 고성장· 고품질 조기진단용 kit 제 작	100	 ○ 검증분석을 통해 발굴된 SNP 마커를 활용할 수 있는 kit 제작 ○ SNP 마커의 개수에 따라 multiplex PCR system 또는 custom array 제작
	제3협동	한우 유전체정보 지식관리 시스템 구축	100	 ○ 한우 및 외국소 유전체 정보 데이터베이스 구축 ○ 한우 유전체 및 SNP tagging 브라우저 기능 ○ Functional category 및 pathway에 의한 유전자 및 SNP 분포 조회 ○ 다양한 QTL 및 SNP 통계 정보 조회 ○ SNP Chip 실험 정보 연계 조회

※관련분야의 기여도

연 구 내 용	관련분야의 기여도
한우 단기성장,고기능성,고품질 조기진단 및 칡소/흑우/수입육판별 SNP 대량 발굴	-한우의 주요 경제형질인 성장, 고급육 및 고기능성 성분을 조기에 예측하고 한우와 수입육 및 재래소인 흑우/칡소를 판별하는 SNP 정보를 대량발굴하여 한우 다목적용 SNP chip contents를 확보함
고기능성, 단기 고성장·고품질 조기진단 용 kit 제작	-한우의 주요 경제형질인 성장, 고급육 및 고기능성 성분을 조기에 예측할 수 있도록 현장 활용 간편 진단 SNP kit를 제작하였음
한우 유전체정보 관리 데이터베이스구축	그동안 발굴되어진 대량의 한우 유전체 정보를 user friendly하도록 제작되어 사용자들이 한우에 관한 제반 유전체 정보를 쉽게 활용 할 수 있도록 제작하였음
육성기, 비육기 단기사양을 위한 한우 단 계별 영양소 함량설정 및 맞츰형 사료개 발	-개발된 고성장 고육질 단기사양 프로그램과 농후사료와 볏짚을 급여하는 농가의 경제성 비 교 분석에서는 목표일을 59일 단축하여 목표체중에 도달 하였으며, 224,350원의 사료비가 절감 되는 것으로 나타났다. 농협사료의 TMR급여 프로그램과의 비교분석에서는 목표일을 56일 단축하여 목표체중에 도달하였고, 206,445원의 사료비가 절감 되는 것으로 나타남
육성단계부터 비육전기단계에 맞는 단기 사양 관리프로그램 개발 기능성물질인 (GABA)을 한우사료내 첨 가하시 in vitro 반추위 발효 특성 확인 및 고급육 생산, Endotoxcin저감능 확인	-GPB를 사료에 첨가했을 때 기능성사료로서의 가능성을 결과를 통해 보여주었으며, 결론적으로 2g/L GPB-produced GABA 처리구가 biogenic amines함량을 저감시키고, NH3-N production, antioxidant을 증가시켜 In vitro 실험결과에 비추어 가장 적합하다고 사료된다. 게다가 In vivo실험에서 plasma endotoxin 역시감소시키는 결과를 보여 기능성 사료첨가제료서 가능성을 확인
육량육질 DNA 마커 및 육종가 활용 육성 기비육기 단기사양관리프로그램 개발	- 육종가가 낮은 송아지의 경우 단기사양 프로그램을 사용하여 29~30개월 사양이 가능하여, 육종가를통한 송아지의 선별 및 단기사양 프로그램의 보급은 전국 암소 개량을 촉진할 것으로 기대
한우육의 고품질·고기능성 성분 탐색	- 한우육의 품질적 가치를 규명하고, 고품질 고기능성 한우육 생산 기술 개발을 위한 한우 유전체 정보 분석자료로 제공

제 5 장 연구개발 성과 및 성과활용 계획

제1절 연구개발 성과

1. 연구성과 목표

(단위 : 건수)

		Ē	투허		신품종	2			논	문	
구분		출원	등록	품종 명칭등록	품종생산 수입판매 신고	품종보호		유전자원 등록	SCI	нJSCI	기타
		골 전	89	명칭등록	신고	출원	등록	등독	301	4/3C1	
1차 년도	목표								4	3	
(2011~12)	달성								3	2	
2차 년도	목표	1	1						4	3	
(2012~13)	달성	1	0						5	2	
3차년도	목표	1	1						5	5	
(2013~14)	달성	2	0						6	0	
계	목표	2	2						13	11	
71	달성	3	0						14	4	

구분		기술실시(이전)	상품화	정책자료	교육지도	논문게재	언론홍보	학회발표	기타
활용건수	목표	2	2	1	0	24	5	3	
결중신구	달성	2	3	0	1	18	10	15	

2. 논문게재 성과

* 학술발표

발표연도	논문명	발표자	학회명	국내외	발표형태
2012	GABA 생성균의 특성 및 반추위 발효에 미치는 영향	구범승	AAAP	국외(태 국)	포스터
2012	Quality evaluation of iralian ryegrass and whole crop bar;ey with homofermentative and heterofermentative lactic acid bacteria	이호일	AAAP	국외(태 국)	포스터
2012	한우거우세 육종가 뷴류에 따른 성장변화 패턴분석	정창대	캐나다 축산학회	국외(캐 나다)	포스터
2012	건조방법에 따른 우육포의 유리아미노산 및 dipeptided 함량, 조직감 침 관능적특성 차이	남기창, 조철훈, 이경행	한국영양과학회	국내	포스터
2012	A whole genome association study to detect additive and dominant SNPs for growth and carcass traits	리이, 이윤미, 김관석, 박병래, 김종주	세계 식물동물유전체학 회	국외	포스터
2012	한우에서 대용량 SNP chip을 이용하여 전장연관분석을 통한 고급육 및 건강기능성분과 연관된 SNP 대량발굴	형기은, 리이, 이윤미, 남기창, 조철훈, 이경행, 조만욱, 남궁현, 박준형, 김종주	한국동물자원과학 회	국내	포스터
2013	Effect of marbling on the physicochemical and functional traits of Hanwoo beef	차주수, 임동균, 조철훈, 이경행, 김종주, 남기창	한국축산식품학회	국내	포스터 (우수포스 터상)
2013	Comparison of quality and functional traits of Hanwoo steer beef by the quality grade	임동균, 조철훈, 이경행, 남기창	세계식육학회	국외(터 키)	포스터
2013	Differentiation of meat quality traits of longissumus dorsi muscle from hanwoo steers among different yield grades	정사무엘, 남기창, 이경행, 김종주, 김선효, 조철훈	한국축산식품학회	국내	포스터
2014	Genomic analysis of meat quality in Hanwoo	김종주, 남기창, 조철훈, 이경행, 박준형, 김관석	아시아 식물동물유전체학 회	국외	구두
2014	Association of a bovine chromosome 19 region with the variation of oleic acid in Hanwoo	형기은, 강전모, 김유삼, 남기창, 이경행, 조철훈, 김종주	WCGALP	국외	포스터
2014	The Quality Characteristics and Antioxidant Properties of Sun-Dried Venison Jerky in Comparison to Beef Jerky during Storage	김현철, 차주수, 임동균, 남기창	한국축산식품학회	국내	포스터
2014	Studies of various TMRs on the characteristics of ruminal fermentation and degradability by rumen microbes	이성욱,이경근,김현주, 최성호,송만강	AAAP	국외	포스터
2014	Lactobacillus brevis YM 3-30, a γ-aminobutyric acid producing bacteria, decreases blood endotoxin level of Hanwoo Cattle	구범승,로벨리아,김선호 정창대, 최연재, 알빈소리아노, 박근규, 이상석	미국축산학회	국외	포스터
2014	Growth pattern of Hanwoo steers classified according to their breeding	정창대, 로벨리아,김선호 최연재, 알빈소리아노, 남기창, 김종주, 이상석	AAAP	국외	구두

* 논문게재

-1) -1) 스러			저자					
게재연 도	논문명	주저자	교신저 자	공동저자	학술지명	Vol.(No.)	구분	SCI구분
2012	Effect of Total Mixed Ration with Fermented Feed on Ruminal <i>In vitro</i> Fermentation, Growth Performance and Blood Characteristics of Hanwoo Steers	김선호	이상석	전체옥 하종규	Asian-Aust. J. Anim. Sci.	Vol.25, No.2:213-223	국외	SCI
2012	Detection of QTL for carcass quality on chromosome 6 by exploiting linkage and linkage disequilibrium in Hanwoo	이지홍	김종주	리이	Asian-Aust. J. Anim. Sci.	Vol.25, No.1:17-21	국외	SCI
2012	Evaluation of SNPs genotyped by the Illumina bovine SNP50K in cattle focusing on Hanwoo breed	Hailu Dadi	김관석	김종주 윤두학	Asian-Aust. J. Anim. Sci.	Vol.25, No.1:28-32	국외	SCI
2012	Effect of population reduction on mtDNA diversity and demographic history of Korean cattle populations	Hailu Dadi	김관석	김종주 이승환 정경섭 최재원 고문석 한영준	Asian-Aust. J. Anim. Sci.	Vol.25, No.9:1223-12 28	국외	SCI
2012	Effect of dietary supplementation of quercetin on antioxidant activity and meat quality of beef cattle	강민구	조철훈	김현주 장애라 감동근 윤관식	CNU Journal of Agricultural Science	Vol.39, No.1:61-68	국내	н]SCI
2012	Effect of natural antioxidant extracted from Citrus junos seib or Prunus mume on the quality traits of sun-dried Hanwoo beef jerky	임동균	남기창	김종주 서강석	CNU Journal of Agricultural Science	Vol.39, No.2:1-11	국내	н]SCI
2012	Effect of different drying methods on quality traits of Hanwoo beef jerky from low-valued cuts during storage	임동균	남기창	이상석 서강석	Korean J. Food Sci. An.	9	국내	SCI
2013	Effect of Salicornia herbacea powder on quality traits of sun-dried Hanwoo beef jerky during storage	임동균	남기창	최갑성 김종주	Korean J. Food Sci. An.	33(2):205-21	국내	SCI
2013	Effect of intramuscular fat content on the meat quality and antioxidative dipeptides of Hanwoo beef	조철훈	남기창	D.D. Jayasena 임동균 이경행 김종주 차주수	Korean J. Food Nutri.	26(1):117-12 4	국내	нÌSCI
2013	Meat quality traits of Longissimus dorsi muscle from carcass of Hanwoo steers at different yield grade	정사무 엘	조철훈	남기창 이경행 김종주	Korean J. Food Sci. An.	33(3):305-31 6	국내	SCI
2013	Examination of Availability of whole crop silige TMR for late Fattening Hanwoo steers in the cattle	Shinek huu Jugder	송만강	이상석	한국초지조사료 학회	논문번호 : 논문5128	국내	ыSCI
2013	Effect of GABA producing bacteria on rumen fermentation	구범승	이상석	남기창	Asian-Aust. J. Anim. Sci.	Vol.26, No.6:804-811	국외	SCI
2014	A genome wide association study on age at first calving using high density single nucleotide polymorphism chips in Hanwoo (Bos taurus coreanae)	형기은	김종주	아시프 이크발	Asian-Aust. J. Anim. Sci.	Vol. 27 No.10: 1406-1410	국외	SCI
2014	Comparison of physicochemical and function traits of Hanwoo steer beef by the quality grade	임동균	남기창	차주수 조철훈 이경행 김종주	Korean J. Food Sci. An.	34(3):287-29 6	국내	SCI
2014	Study on growth curve of Longissimus dorsi muscle area, backfat thickness and body conformation for Hanwoo cows	이지홍	김종주	오상현 이윤미 김유삼 손효진	Asian-Aust. J. Anim. Sci.	Vol. 27 No.9: 1250-1253	국외	SCI

2014	Estimation of genetic parameters for real-time ultrasound measurements for Hanwoo cows at different ages and pregnancy status	이지홍	김종주	이윤미 오상현 손효진 정대진 N. Whitley	Asian-Aust. J. Anim. Sci.	Vol. 27 No.2: 155-160	국외	SCI
2014	Association of carcass weight with quality and functional properties of beef from Hanwoo steers	D. D. Jayase na	조철훈	남기창 김종주 안현주	Anim. Prod. Sci.	Online May 8th, 2014	국외	SCI
2014	A whole genome association study on meat palatability in Hanwoo	형기은	김종주	이윤미 김유삼 남기창 조철훈 이경행 이종은	Asian-Aust. J. Anim. Sci.	Vol. 27 No.9: 1219-1227	국외	SCI

3. 특허 성과

출원된 특허의 경우				등록된 특허의 경우					
출원연도	특허명	출원인	출원국	출원번호	등록연도	특허명	등록인	등록국	등록번호
2012	한우육의 고품질 또는 고기 능성 성분 함량 판별용 단 일염기다형성 마커조성물	김종주, 남기창, 이종은	한국	10-2012-0118102					
2014	한우육 풍미관련 단일염기 다형성마커조성물 및 이를 이용한 한우육 풍미진단방 법	김종주 남기창 조철훈 이윤미 형기은 이종은	한국	10-2014-0050974					
2014	사육기간의 단축을 위한 완 전배합사료 및 이의 금여 에 의한 한우의 사육방법	이상석 정창대	한국	10-2014-0054839					

4. 상품화

- 가. 상표권 출원
- (1) Multiplex PCR system
- (가) HanwooWellbeingLink: 한우육 고기능성 키트 (출원번호: 40-2014-0057090, 40-2014-0057091, 출원일자 2014. 8. 26)
- (나) HanwooFlavorLink: 한우육 풍미 키트 (출원번호: 40-2014-0057092, 40-2014-0057093, 출원일자 2014. 8. 26)

(2) Custom array

(가) HanwooChip: 한우육 다목적용도용 키트 (출원번호: 40-2014-0057094, 40-2014-0057095, 출원일자 2014. 8. 26)

5. 기술이전

가, 영남대 산학협력단에서 경북 봉화 축협에 기술이전 및 기술이전료 2백만원

특허기술 라이센스(통상실시) 계약서

특허기술 보유자인 영남대학교 산학협력단(이하 "갑"이라 한다)과 실시권자 안동봉화축산업협 동조합(이하 "을"이라 한다)은 "갑"이 보유하고 있는 특허기술의 동상 실시와 관련하여 다음과 같이 기술이전 계약을 체결한다.

> - EF 음 -

제1조(계약의 목적)

본 계약은 제2조에 기재된 "캅"이 보유하고 있는 특허기술(이하 "본 건 특허"라 한다)에 관 하여 "음"에게 통상 실시권을 부여하고, "음"이 그에 대한 실시료를 지급함에 있어 당사자 간의 권리와 의무를 규정하는 것을 그 목적으로 한다.

제2조(특허권의 표시)

계약의 목적이 되는 본 건 특허의 내용은 다음과 같다. 특허번호 : 10-2012-0118102

발명의 명정 : 한우육의 고품질 또는 고기능성 성분 함량 판별용 단일염기다형성 마커 조성물

제8조(실시료)

1항: "을"은 본 계약에 따른 전용 실시권에 대한 대가로 "갑"에게 다음과 같은 실시료를 지 급하여야 한다.

1. 정액기술료 : 금 이백만원(₩2,000,000, 부가세포함)을 본 계약 체결 후 3개월 이내 현 금으로 지급한다

1911년 2014년 3월 19 일

" " 1

속 : 영남대학교 산학협력단

4 소 : 경북 경산시 대학로 280(대동)

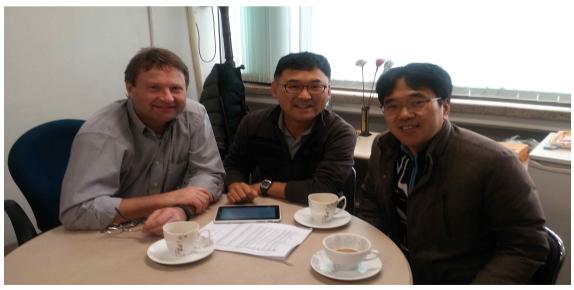
대 표 자 : 박 진 호 The (2D)

...

속 : 안동봉화축산업형동조한 1

7 소 : 경상북도 안동시 제비원로 152 대 표 자 : 조합장 권 기 수

"병" 기술이전 책임교수 : 영남대학교 생명공학과 교수 김종주 (원)


나. 순천대 산학협력단에서 강진군 한우영농조합법인 및 강진군 농업기술센터에 사육기간단 축 배합사료 급여방법에 관한 특허를 무상기술이전. 2014년 6월 13일

6. 교육

- 가. 2014년 2월 11일~12일 동물유전체선발 워크샵 개최
- 강사: Dorian Garriack 교수 (미국 아이오와주립대 축산학과 교수)
- 강의 대상자: 유전체선발에 관여하는 국내 대학원생, 박사, 연구원 30명
- 강의 내용: 최신 동물분자 육종 기법인 유전체 선발 이론 및 프로그램 사용
- 연구 자문: 본과제의 국제공동연구원으로서 한우육 건강기능성성분과 관련된 SNP를 대량 발굴하고자 Garrick교수에게 분석에 관하여 자문을 받음

7. 홍보

가. 본 연구사업 발표. 2014년 7월 22일 화 대전 리베라호텔

INVITATION

농림축산식품부 · 농림수산식품기술기획평가원 기획과제 최종연구결과 발표회

고기능성·고품질 한우육 생산기술 개발 참여기관: 영남대학교, 순천대학교, 한국교통대학교, 서울대학교 참여기업: (주)디엔에이링크, 인실리코젠(주), 농협축산연구원

고효율 종돈 계통조성 및 생산량 확대기술 개발 참여기관 : 충북대학교, 전북대학교 참여기업 : 정P&C 연구소

농림축산식품부 · 농림수산식품기술기획평가원 기획과제 최종연구결과 발표회 고기능성 · 고품질 한우육 생산기술 개발 / 고효율 중돈 계통조성 및 생산량 확대기술 개발

·일시 _ 7월 22일(화요일) 오후 2시~6시

·장소 _ 대전 리베라호텔 오키드홀

일 정

1.	한우과제 발표 "고기능성ㆍ고품질 한우육 신	맹산기술 개발"			
14:00~14:20	유전체정보를 활용한 한우육 맛·고기능성 진단 SNP kit개발	영남대 김종주 교수			
14:20~14:40	맛·고기능성 성분을 바탕으로 한우육의 재평가	순천대 남기창 교수			
14:40~15:00	한우의 육종가를 이용한 거세비육우 맞춤형 단기사양 시스템 개발	순천대 이상석 교수, 정창대연구원			
15:00~15:30	유전체 정보를 이용한 미국 앵거스종의 건강·기능성육 개발 및 가치 기반 앵거스육 마케팅 전략.	아이오와주립대 James Reecy 교수			
15:30~16:00	휴식				
2. 돼지	이과제 발표 "고효 율 종돈 계통조성 및 생산 ⁶	냥 확대기술 개발"			
16:00~16:20	돼지유전체 경제형질 마커의 산업화방안	충북대 김관석 교수			
16:20~16:40	PRRS 저항성 유전자 발굴 및 적용방안	전북대 김원일 교수			
16:40~17:00	고능력 종돈 생산량 확대를 위한 생식보조기술	충북대 현상환 교수			
17:00~17:20	한국형 고효율 종돈계통 조성 방안	정 P&C 연구소 정영철 소장			
17:20~18:00	종합 토론				
18:00~	간진회				

나. 언론 홍보

한국농어민신문

40900 1:997

中央を行ったと連びと連集会長

"한우 맛·기능성 성분 관여 DNA 발굴 ... 개량에 활용"

Tribute Chrone dry rog (a)

THE STUBBURG SPECIME

A MERCHANT OF BUT CORN CARD ASSESSMENT BUT BUT CONTROL OF THE BUT ASSESSMENT ASSESSMENT

기능성 성분 등 경험하는 3000개 DNA전보 방향 고등장 원주 생산…수일산 대중 경쟁을 늦이도록 양문분야도 생산성 항상 집병 먹제 종문개량 기대

한부의 맛과 가능성 성분 등을 감정하는 DNA 마귀가 방굴돼 고용장 한부 생산에 활동될 정말이다. 양은 영어에서도 생산성 항상 및 집중 역회에 영향을 미치는 DNA 마귀 말으로, 요즘 개당 등에 건 도움이 될 것으로 보인다

2014년 8월 5일 화유일(음력 7월 10일) 제 2824 호

육종가 따라 선별 사육시 경제효과 매우 커

27개월까지 총하시기 단축…투당 52만원 생산비 절감

순천대 이상식 교수팀 연구결과 별표

图 中国的第三世纪日本 기시되어 가능하다는 연구함의 29 LARSEL (1)接 基例 平设 (20) 된 27일이 되면이를 합리할 수

NUMBER OF STREET 시용기술기회장기회장기회장 기난당 TAP OR STREET, SET TAX 700日 - 温度证 香草井 自立71 숙 개념 가려 가는 성무리가 있 三部計 つまにも

会世界のBN 20個長7時中 이 다른기를 이용성 가석이라구 SUMMER CONTROL SECURIOR SHAPE

기비를 통해 이 같이 있었다. 이 모수팀은 '경우 거리우는 27-341004 800 39 3 ENDS AND AND END AT BURNETS SERIOR UP. THEO FILLS MALE SECTION

英语为词 斯西 杏叶对黄 計號 一样杂音 江 克 劳机 用 苔 封理 NUTE (15日) 151日 151 THEF'S VICES

(E1007) N-6774 (HZ) ((0) 지는 선명에 사하히 경우 가는데 THE STATE AND ADDRESS ASS. 明確 化黑矾 斯拉爾 新發 公司司 **サミカー かいまま ままり 日本 日本 中**

新新港內外外的各种科区() 2000/00/10/2006 00:00 49 JULY 2018 W CO-RASE BOW 中型企用平位30~30万倍可量 한테 철강이 가능하다고 밝혔다.

新·斯根 会区区版 社間 W 4275以 S) NOT THE SHAW WHO DE M.

TO COME OF CHAIN WHICH OUR BIN SHARE PERING DO 408th BYTE WITH, FOR WHO THE ADDRESS ON SAVIN

THE COLUMN DEC 20). TO - TEPTRON ASSESS WHENCH सम्बद्ध बस्ता (क्सब बत 河原 图为点图词 改訂 - 对抽册 유개방 및 기시 기반 됐지스의 while that topic services

SERVICE STATE OF STREET **非热度 建物物缸 印州河 经贷款** 방안 (송병대 리위인 교수). 원범인(대학에 강원인 교수) THE STATE OF SEE ASSESS. OF BUILDING (SMILE) 君 三个)、 世帝世 三五世 各世 海易、五份银仓"(BPACE平本 \$100 M - 0.19003 WHERE'S

전원 이번에 발표함 연구조제 SOMETHING BY AND SELECT 우 및 마음이의 개명의 강하는 NOT THE WILLIAM DISTRICT 均衡基础 医假中胚层的食用 회원가원에서 의원해 연구를 수 \$1500 E213. Olation

농축유행신문

62M0 0097

합류) (뉴스) 예산) 한국 남동 (예산박스

한우 풍미·마블링 부족으로 출하 지연 도움 안 돼

경제성 문석으로 출하시기 조정과 소비자 기호 고려

2014년 07월 25일 (2) 09 38 51

\$719 719 Steet/Sighamative.

한국의 뭐할과 기능성 성분은 27개활성 내외에서 결정의 전체적인 생산성과 변화하는 소비자의 기 호도를 고려한 출하시기 조정이 받았하다.

순천대학교 남기창 교수는 7월 22일 대전 리배라호텔에서 농합축산석품부-논립수산석분기술기회명 가원의 기획교제 '맛, 기능성 성분을 바탕으로 한우유의 재평가' 최종연구결과 방표를 통해 중이나 마블링이 무족하다는 이유로 출하시기를 늦추는 이유로 출하시기를 늦추는 것을 단기사양으로 변경 할 필요성이 있다고 밝혔다.

"맛과 건강까지 생각한 한우, 경쟁력 높아" #제일스 리시 아이오아주립대 교수

"건강 지랑적인 지방선을 다랑 포함하는 쇠고기 생산은 흥미로운 연구 주체입니

이번 발표회에 참석한 제일스 리시(James Reecy) 교수는 "최근 최고기에 다양 항유돼 있는 단일불포화지방산이 심장질환을 예방하는 효과가 있다고 보고됐다. 며 이 같이 말했다. 리시 교수는 미국에서 챙겨스(미국의 대표적 육우 善惠) 불高 의 유전적 영양성분이 관심을 갖고 연구에 불두해 왔다.

Million by possible

PRINCIPLE PRINCIPLE D

JEOUA BRIVE

제2절 연구성과 실용화 · 산업화 계획

1. 한우 다목적용도 SNP 대량 발굴 및 현장 적용 전략

가. 한우 다목적용 SNP contents 확보 및 고기능성, 풍미, 단기성장 SNP kit 제작

○ 본 과제 수행을 통하여 다음과 같은 한우의 다 목적 용도용 SNP contents를 다수 확보

한우 다용	용도용 chip 제작을 위한 SNP contents		
번호	목적별 SNP contents	개수	상용 대용량 SNP chip
1	육량·육질	(200)	Illumina 54K SNPs
2	맛·고기능성	3,000	Affymetrix 640K SNPs
3	개체동일성 및 친자감별	555	Affymetrix 640K SNPs
4	한우·수입육, 한우·흑우·칡소 판별	789	Affymetrix 640K SNPs
5	Illumian 54K chip에서 한우 유용 SNPs	38,000	Illumina 54K SNPs
6	한우 유전체 서열분석 결과 추가적 SNPs	57,656	유전체 서열분석
	합계	100,000	

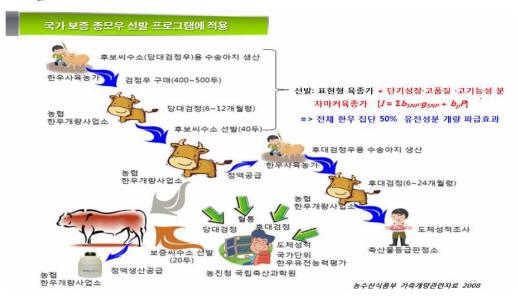
- 위의 모든 SNP를 확보하여 한우 다목적용 SNP array를 제작하여 현장에 적용함음
- 한우육 맛·고품질·고기능성 성분 조기진단 SNP kit 제작
 - 만약 다목적용도의 SNP array 가격이 높은 경우 각 용도별로 관련된 SNP만을 선별하 여 목적 특이 SNP kit를 제작하여 현장에 적용 가능함

고밀도 Bovine SNP array

48 SNPs, 48 samples

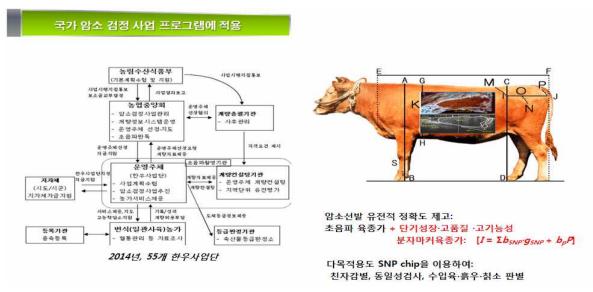
96 SNPs, 96 samples

24 SNPs, 192 samples


○ 현재 농림부 고시로 마커 응용사례를 생산이력 및 친자 감별 사업만이 진행 되고 있음. 만약 본 과제에서 발굴되어진 단기성장·고품질·고기능성 마커들을 조합한 SNP kit를 활용할 경우 경비 또는 생산의 효율성이 높아질 것으로 기대 됨.

나. 국가 보증 종모우 선발 프로그램에 적용

- 현재 농협 한우개량사업소에서 수행하고 있는 국가 보증종모우 선발 프로그램에 적용
- 현행 프로그램은 당대검정에 근거한 성장관련 육종가와 후대검정을 통한 고급육 형질의 육종가에 근거하여 보증종모우를 선발하고 있는데, 만약 단기성잘 관련 마커와 고품질 고기능성 마커를 마커도움선발 프로그램을 적용한다면 육종가의 정확도와 고급육성분을 고려한 선발로 선발의 효율성을 기대할 수 있음
- 이 선발 프로그램을 적용할 경우 해당 수행 기관, 축산과학원 개량평가과, 농림수산식품 부와 긴밀한 협조하에 적합한 조합 프로그램을 설정하고 마커도움선발의 적정 적용시기


를 잘 결정해야 할 필요성

- 하지만 잘 적용할 경우 한우 전체 집단 유전자들의 개량에 50%를 기여하고 있는 종모우 집단이므로 한우 성장, 고급육, 건강 및 고기능성육 생산에 큰 파급효과를 미칠 것으로 보임

다. 국가 암소 검정사업 프로그램에 적용

- 국가에서는 55개 한우사업단을 지정하여 암소 개량 프로그램을 적용하고 있음
- 암소의 경우 고급육을 개량하고자 혈통에 의한 또는 혈통과 초음파 측정을 통한 고급육 형질 육종가를 추정하고 있는데 두 방법 모두 정확한 육종가를 추정하는데 한계가 있음
- 만약 본 과제에서 발굴되어진 단기성장·고품질·고기능성 마커들의 분자육종가를 조합 하여 평가할 경우 보다 높은 정확도의 육종가를 바탕으로 암소를 선발 또는 도태하는데 기준을 제시하여 줄 것임

라. 수익 기대 효과

- 본 과제에서 발굴되어진 단기성장·고품질·고기능성 마커들을 산업현장에 적용시 수익 효과는 최대 상상할 수 없을 정도로 클 것으로 보임
- 한 예로, 단기성장에서 발굴되어진 하나의 SNP 사례의 경우 200억 이상의 수익효과가 창출될 수 있음

한 SNP 이름	seq-BTB-01280026
위치	BTA14번 25Mb
SNP type	с/т
minor allele 및 빈도	C, 0.12
유전자형 빈도(%)	CC:CT:TT = 2 : 21 : 77
관여형질	도체증
대립인자대체(T=>C) 측정값	18.3kg(<u>서산종모우집단</u>) 및 12.4kg(상용집단)
효과크기	도체증표현형분산의 5.3%(서산집단) 및 1.2%(상용집단)

- 한 <u>거세우(</u>수송아지)의 유전자형이 대체 될 경우 (TT=>CT, CT=>CC), <u>도체중</u> 증가로(12.4kg) 얻는 부대수익은: 12.4kg x 15,000 (1등급 기준) = 186,000원 부대 수입
- 매년 약 100만두의 한우 암소 또는 거세우가 출하되므로 이중에서
 10% (20%)인 10 (20)만두가 TT에서 CT로 대체될 경우 186억 (372억)의 수익효과가 창출됨
- 일본 화우에서처럼 고급육의 등급을 산정시에 마블링뿐만 아니라 지방산 성분의 제일 중요성분이 올레인산을 고려하여 한우의 프레미움을 결정할 경우, 건강을 지향하는 소비자들의 한우육에 대한 가치는 급등할 것으로 보임. 예로 횡성한우육에 올레인산 함량을 명시하여 건강육이라 홍보할 경우 기존의 횡성한우 브랜드육의 가치는 더 높아 질 것임


2. 한우 유전체 데이터베이스를 활용한 분자 유전학적 육종 시스템 개발

- 개체별, 지역별, 시기별 집단 샘플의 유전체적 연구가 활발한 가운데, 전통적으로 이어져 오고 유지되고 있는 한우의 유전체적 우수성을 실험 정보와 유전체 정보의 통합적 시각 을 통한 지식화는 현 시점에서 매우 필수적으로 이행되었음.
- 전세계 다양한 소 품종 가운데, 육우로서의 한우의 우수성을 분자 유전학적으로 증명하고 이들 데이터베이스화 하여 보다 과학적이고 효율적인 방법으로 육종 시스템을 구축하고자함. 본 연구는 이러한 시스템 개발의 초석으로 국내 뿐 아니라 해외의 여러 초기 육종 연구의 기초자료로 활용 될 수 있도록 데이터 공유와 통합이 용이하도록 전세계 공용데이터 포맷을 취하고 있음.
- O 생물학자 및 육종 연구자들을 위한 데이터베이스 운영 및 확장을 위해 데이터의 생물학적 의미와 실험정보와의 연계성에 중점을 두고 설계된 만큼 앞으로 창출될 많은 유전체적 정보와 전세계 연구자들의 실험정보의 통합으로 확장 운영할 계획임.
- O 본 과제에서 구축한 한우 유전체 정보 DB는 누구나 활용할 수 있도록 website를 구축

할 계획이며, 향후 차세대 바이오그린 또는 다른 연구사업을 통하여 보완해 나갈 계획임

3. 한우육의 고품질 고기능성 성분 탐색

- 현행 한우육의 등급평가 체계에서 소비자와 직접적으로 관련되는 육질등급은 주로 마블 링지수(근내지방도)와 상관되며, 프리미엄급으로 인식되는 1++, 1+ 등급간의 고품질 고기능성 성분 차이와 관능차이도 다른 구간에 비해 크지 않는 점으로 미루어 소도체 등 급제도 수정을 위한 등급 간격 조정에 대한 기초자료로 활용 기대
- 높은 육질등급을 받기 위해 현행 농가에서는 비육을 목적으로 30개월령 이상의 장기사육이 일반화되어 가능 추세이며 이로 인해 생산성에 많은 악영향을 미치고 있는 실정이나, 출하월령에 따른 성분 차이에서도 27개월령을 기준으로 이후 마블링의 증가폭이 크게 감소하며 육량지수의 미치는 영향도 미비한 것으로 나타남.
- O 더욱이 출하월령 증가에 따른 한우육의 장점으로 여겨지던 풍미 성분이나 특정 기능성 성분의 유의적 증가가 있는 것도 아니므로, 사양비를 고려한 경제성 분석을 통해 출하월 령의 합리적 조정(단축)이 필요한 것으로 판단됨
- 건강지향, 고령화 추세에 따라 맛을 기본으로 하는 한우육에 대한 소비자의 기호도도 달라질 수 있는 것이므로, 본 과제의 연구개발 자료를 바탕으로 소비자 기호조사가 추가로수행되어 합리적인 한우육 고품질 고기능성 특성을 확립할 필요가 있다고 봄

<그림 5-2-1> 한우육 품질에 영향하는 요인

4. 유전등급 맞춤형 단기성장, 고품질, 고기능성 사양프로그램

O 본 연구사업에서 개발된 고기능성 사양프로그램은 체중에 관한 육종가를 단순계산하여

일반 한우농가에서 송아지 선발에 용이 할수 있도록 제시 하였으며, 송아지 선발 후 개발된 단기 사양프로그램을 활용하여 28개월령에 평균 720kg을 달성 가능케 함.

O 점차적으로 단기사양을 진행하여 2018년까지 20만두에 도입하면 연간 1200억의 사료 비절감 및 순환율 10%상승효과가 예상됨

단기 사양프로그램 운영에 따른 경제적 파급 효과

- ♥ 사료비 절감 효과 (비육후기 총 3개월 단축시 42천원절감-140천원/1달)
- 평균 연간한우 도축 추정 두수 65만두 (2009년도 전체 소도축 두수 81만3천두)
- 🙂 한우 거세 245천두, 암소 299천두, 수소 10만두 거세하며 단기적으로 증가시 사료비절감 효과측면으로 생산성 효과 기대

제 6 장 연구개발과정에서 수집한 해외과학기술정보

제1절 유전체 선발에 대한 연구 현황

유전체 선발에 관련되어 선형과 비선형 방법으로 나뉘어 많은 발전을 이루었으며, 전통적인 육종 방법보다 더욱 높은 정확도로 육종가를 추정할 수 있다는 가능성을 최근 외국의 연구 동향을 통하여 알 수 있다. 아래의 〈표 2-1-1〉에서는 실제 표현형 자료를 가지고, 다양한 축종과 참조 집단(reference population)의 크기와 분석 방법 별로 여러 형질들에 대하여 추정된 유전체 육종가 정확도를 나타내었다.

Table 1. Ranges of accuracies (reliabilities) for GEBV across traits for various sizes of the reference population

Author Breed		Size Reference Population	Method	Range of Accuracy (Reliability)
Harris et. al. (2008)	Holstein	4,500	GBLUP Bayes A,B	50%~67%
Hayes et. al. (2009a)	Holstein	332~637	GBLUP Bayes A	14%~55%
De Roos (2009)	Netherland dairy cattle	1,583	Gibbs Sampling	52%~82%
Hayes et. al. (2009b)	Holstein Jersey	781 287	GBLUP Bayes A Bayes SSVS	42%~82%
VanRaden et. al. (2009)	Holstein	5,335	GBLUP Non-linearA,B	44%~79%
Verbyla et. al. (2009)	Australian Holstein – Friesian	1,098	BayesBLUP Bayes A Bayes SSVS	54%~74%
Rolf et. al. (2010)	Angus	2,405	GBLUP (using GRM)	23%~44%
Forni et. al. (2011)	Porcine	1,989	GBLUP (using GRM)	28%~66%

O Harris 등(2008)은 IlluminaSNP50 bovine chip을 이용하여(44,146 SNP 마커) 총 4,500두의 후대 검정한 수소의 집단에 대하여 유전체 육종가를 추정하고 유전체 육종가

- 의 신뢰도를 혼합 정규 방정식의 역행렬을 이용하여 추정하였다. 표현형 자료가 없는 후보 종모우의 산유량에 대한 유전체 육종가의 신뢰도는 50~67%정도로 추정하였으며, 수대율과 체세포수와 장수성 등에 대한 신뢰도는 전통적인 BLUP을 이용하여 추정된 것보다 평균 34%정도 상승된 것으로 보고하였다.
- O Hayes 등(2009a)이 IlluminaSNP50 bovine chip을 이용하여 1998년부터 2003년 사이에 태어난 Holstein 수소 798두와 그의 자손들에 대한 유전체 분석 결과를 가지고 선형과 비선형 방법을 모두 이용하여 유전체 육종가를 추정하고 기존의 전통 BLUP 방법으로 추정된 육종가와 비교 분석 하였다. 1998년부터 2002년 사이에 태어난 개체들을 참조 집단(Reference Population)으로 설정하고 마지막 2003년에 태어난 개체들을 검정 집단(Validation Population)으로 설정하여 유전체 육종가 및 신뢰도를 추정하였다. 신뢰도는 참 육종가(TBV, True Breeding Value)를 알지 못하는 관계로 기존의 전통 BLUP 방법을 이용하여 추정한 육종가(EBV)와 유전체 정보를 이용하여 추정된 유전체육종가(GEBV)간의 상관계수를 기존의 육종가 정확도로 나누어서 추정하는 방법을 이용하였다. 우선 선형 방법을 이용하여 추정된 유전체육종가는 측정된 모든 형질(호주 선발 지수, 순위, 유단백량, 단백질 함량(%) 및 수태율)에 대하여 전통적인 방법으로 추정된 육종가의 신뢰도보다 2~17% 정도 상승된 것으로 보고하였으며, 비선형 방법(Bayes A)으로 추정된 유전체육종가의 신뢰도보다 선형 방법을 이용하여 추정된 유전체육종가의 신뢰도보다 수태율의 경우를 제외하고 나머지 형질들에 대하여 2~13% 정도 상승된 결과를 나타낸다고 보고하였다.
- O Hayes 등(2009a)의 리뷰 논문에서 네덜란드의 유전체 선발에 대한 연구를 수행하는 CRV 기관의 De Roos(2009)가 보고한 결과를 살펴보면, 자체 제작된 60K SNP Beadchip을 이용하여 참조 집단으로 총 1,583두에 대한 유전체 분석 결과를 가지고 집스 샘플링 방법을 이용하여 SNP 마커의 효과를 추정하였다. 정확도를 추정을 위하여 1999년부터 2003년 사이에 태어난 429두 중에서 5%를 임의로 참조 집단에서 추출하여 검정 집단으로 설정하여 정확도를 추정하였다. 비선형 방법을 이용하여 추정된 유전체 육종가 정확도가 부모의 평균을 통하여 추정된 육종가 정확도보다 유지율, 유단백량, 지제, 유방 깊이와 체세포 점수 그리고 수태율의 형질에서 각각 33%, 19%, 15%, 13% 그리고 9% 높은 것으로 보고하였다.
- O Hayes 등(2009b)은 Holstein과 Jersey 두 집단에 대하여 각각 참조 집단을 781두와

287두로 설정하고 검정 집단을 400두와 77두로 설정하여 IlluminaSNP50 bovine chip을 이용하여 설정된 집단 내의 개체들에 대한 유전체 분석 결과를 가지고 선형과 비선형 방법을 모두 이용하여 유전체 육종가를 추정하였다. 유전체 혈연 행렬을 이용하여 혼합 모형방정식으로부터 추정된 유전체 육종가의 경우는 예측오차분산(PEV)을 이용한 역행 렬로 정확도를 추정하는 방법(expected accuracy)을 이용하였다. Hayes 등(2009a)에서 이용된 정확도 추정 방법(realized accuracy)과 비교할 경우 Holstein과 Jersey 두종에 대하여 각각 측정된 모든 형질(유단백량, 유지방량, 유단백 함량(%), 유지방 함량(%) 그리고 유량)에 대하여 평균적으로 8%와 1%의 상승을 나타내었다. 또한 비선형 방법(Bayes A, Bayes_SSVS)과 선형 방법 간에 추정된 유전체 육종가 정확도를 비교하였을 때 Holstein의 경우는 지방 함량에 대한 형질만이 비선형 방법으로 추정된 유전체 육종가 정확도가 높았으며 다른 형질은 비슷한 수준을 나타내었다. Jersey의 경우는 측정된 모든 형질에 대하여 평균 7% 정도 선형 방법으로 추정된 유전체 육종가 정확도가 높은 것으로 보고하였다.

- O VanRaden 등(2009)은 IlluminaSNP50 bovine chip을 이용하여 참조 집단으로 1952 년부터 1998년 사이에 태어난 Holestein 수소 3,576두를 검정 집단으로는 1999년부터 2002년 사이에 태어난 홀스타인 수소 1,759두를 이용하여 총 5,335두에 대한 유전체 분석 결과 가지고 유전체 혈연 행렬을 이용한 선형 방법과 비선형 방법을 이용하여 추정 된 육종가를 비교하였다. 모든 27개의 형질에 대하여 기존의 전통적인 BLUP에 의한 육종가의 신뢰도는 27% 수준으로 추정되었으며, 선형과 비선형 방법으로 추정된 유전체육종가의 신뢰도는 각각 49%와 50%로 추정되어 26~27% 정도의 신뢰도 차이를 나타 낸다고 보고하였다.
- O Verbyla 등(2009)은 IlluminaSNP50 bovine chip을 이용하여 참조 집단으로 1,940년부터 2,000년 사이에 태어난 Australian Holstein-Friesian 수소 1,098두 검정 집단으로는 2005년부터 2007년 사이에 태어난 수소 400두를 이용하였다. 비선형 방법 (Bayes_SSVS)으로 추정된 유전체 육종가 정확도가 선형 방법으로 추정된 유전체 육종가 정확도보다 유단백량은 1.9% 낮았으며, 유단백 함량(%), 유지방 함량(%) 그리고 수 대율의 경우는 각각 1.3%, 9.4%와 0.2% 높게 추정하였으며, 이러한 결과와 마찬가지로 전체 분산에서 큰 비중을 차지하는 양적형질좌위가 존재하지 않을 경우에는 선형 예측방법이 비선형 예측 방법과 비슷하거나 약간 높게 추정된다고 보고하였다.

- O Rolf 등(2010)은 Angus 수소 2,405두로부터 평균 하루 사료 섭취량(Average daily feed intake)과 사료 섭취 후 잔량(Residual feed intake)에 대한 자료를 측정하여 표현형 자료로 이용하였으며, 유전체 혈연 행렬을 추정하여 유전체 육종가를 추정하는 방법을 이용하여 기존의 가계 기반의 혈연 행렬(NRM)을 이용하여 추정된 육종가간의 정확도를 비교하였다. 사료 섭취 후 잔량에 대하여 추정된 유전체 육종가의 정확도 평균이 기존의 전통 BLUP 방법을 이용하여 추정된 육종가 정확도 평균에 비하여 아비 집단에서는 1%, 아비의 자식들의 집단에서는 3%정도 하락한다고 보고하였으며, 평균 하루 사료 섭취량에 대해서는 아비와 자식들의 집단에서 모두 추정된 육종가 정확도 평균이 3% 정도 상승한다고 보고하였다.
- O Forni 등(2011)은 Illumina PorcineSNP50 BaedChip을 이용하여 돼지 1,989두의 유전체 혈연 행렬을 추정하였으며, 복당 산자 수 형질에 대한 유전체 육종가를 추정하였다. 전통 BLUP 방법을 이용하여 추정된 육종가 정확도와 비교하여 암컷 1,919두의 경우는 유전체 육종가 정확도가 6%~27% 정도 상승 되었으며, 수컷 70두의 경우는 1%~4% 정도 상승 되었다고 보고하였다.

제2절 분자유전정보를 활용한 연구 현황

- O 한우의 표지 유전자 발굴을 위한 연구가 단편적으로 추진되어 오다가 바이오그린21 사업을 통해 본격적인 경제형질 관련 마커의 개발이 5년 전부터 시작되었으나 경험 부족과 연구비 부족 및 bovine genome project가 최근에 마무리됨에 따른 제한된 연구 환경 여건 등으로 경제형질 관련 DNA마커들은 극히 일부만 보고되는 등 산업적 활용을 위한 마커 개발이 미비한 실정임.
- O 한우가 가진 양적 경제 형질들에 대한 분자유전학적 연구를 위해서는 표현현의 수집과 혈통관계가 명확한 집단이 조성되어야 하는데, 지금까지 농림기술개발과제와 바이오그린 21 사업들은 1) 정확한 혈통정보의 부재, 2) 선행 연구결과의 제약성, 즉 1차적으로 탐색된 QTL 정보 부재, 3)사업비 제한으로 인한 정밀지도 작성 미비 및 대량 후보유전자 정보 부족으로 산업적으로 활용하는 육량 육질 관련 DNA마커 발굴은 미비한 실정임.
- O International Bovine HapMap Project: 농업선진국(미국, 영국, 호주 등)들의 주도아 래 경제형질관련 대량 DNA 마커 발굴을 위한 선행조건으로 정밀지도작성을 위한 1) 대량의 SNP 마커 발굴. 2) 주요 품종별 유용한 SNP 발굴 (품종당 최소 2만개 이상). 3)

common haplotype 특성 구명, 4) 마커간의 연관불균형(LD) 측정에 관한 연구를 2004년부터 시행하고 있음. 특히 본 과제와 연구 진행이 유사하게 되고 있는 미국 미조리 대학 Jerry Taylor 교수팀의 주요 과제인 'Characterization of 50,000 SNPs and development of high-throughut assays for linkage and linkage disequilibrium mapping in cattle'에서 육우품종에 유용한 대량의 SNP마커 발굴되었음.

- O 미국 미조리 대학 Jerry Taylor 교수팀에서 대규모 상용축군 앵거스 집단 (N>3,500)을 이용하여 염색체별로 마블링을 포함한 도체 형질관련 원인유전자 양적형질 염기치환 (quantitative trait nucleotide: QTN) 구명을 위한 연구를 수행하였음.
- O 미국 네브라스카주 소재 USDA MARC(육우연구센터), NCBA (미국육우생산자협회) 및 주요 7개 주립대가 공동으로 수행하고 있는 DNA 마커발굴위한 도체형질과제를 1998년 부터 수행하여 주요 14개 육우 품종에 대하여 도체형질관련 마커발굴 및 MAS 프로그램 개발에 관한 과제를 수행하고 있음.
- O 호주에서는 CSIRO, UNE 및 NSW 농업 및 Queensland DPI 공동으로 육우산업을 위한 연구협력센터(CRC)를 구성하여 1999년부터 7년간 육질을 증진시키기 위한 양적 및 분자유전학적 기술을 개발하여 다양한 목적에 부합한 축군을 조성하여 형질관련 대량의 SNP 발굴 및 산업화를 위한 연구를 수행하고 있음.
- O 육우산업에서 현재 상업적으로 이용하는 DNA마커로서 GeneSTAR marbling (Genetic Solutions/Bovigen회사)과 연관된 thyroglobulin 유전자 마커, IgenityTM-L (Merial/Quantum Genetics회사)의 마블링 및 식욕증진과 관련된 leptin 유전자 마커, TenderGENETM (Frontier Beef Systems/GeneSeek회사) 또는 GeneSTAR Tenderness (Genetic Solutions/Bovigen회사) 등의 쇠고기 연도와 관련성이 입증된 calpain과 calpastatin 유전자 마커 등이 상업적으로 활용하고 있음. 또한 GeneSTAR 브랜드에서는 사료효율에 관한 유전자 마커를 활용하는 등 지속적으로 유전마커들이 발굴되어 상품화되고 특허등록으로 인한 산업재산권을 확보해가는 추세임.

제3절. 미국 앵거스육 고급육 향상

O 우육의 품질적 가치는 소비자의 기호에 따라 결정되는 요인이 큰 것이므로, 식육품질에 대한 소비 자의 대표성이 부여되고 일관된 품질요인에 대한 끊임없는 분석조사가 필요하며, 미국, 호주 등 축산 선진국에서는 소비자에게 정확한 정보와 소비자 기호 및 의견을 고려한 육류등급평가 조정에 반영하고 있음

- O 예로 미국의 대표적 고급육 품종인 앵거스종은 지방 함량이 높은 육을 지향하고 건강을 우선시하는 육류소비자들을 대상으로 '건강육'(healty meat)의 브랜드를 명시하고 있는데
- O 이러한 인증은 미국육류협회가 아닌 미국심장협회에서 인증을 해 주고 있음. 미국육류협회에서는 기 설정한 육류등급은 여러 이해 단체들이 얽혀있어서 등급제도를 바꾸기가 어렵기 때문임

O 또한 앵거스육의 건강성분을 고려한 개량프로그램을 설정하고자 아래와 같은 프로그램을 제시하였음 즉 기존의 앵거스 종모우 선발 프로그램에서 주요 대상형질들인 초음파성적, 도체성적, 연도/ 맛 형질에 건강성분 자료를 추가하여 유전평가 프로그램을 개발하여 육종가(EPD)를 추정하는 방법을 시도하고 있음

제 7 장 연구시설·장비 현황

연구기자재 및 연구시설	규 격	수 량	활용용도	보유기관	확보방안	비고
Anaerobic chamber	3m2	1	혐기미생물시험	순천대	확보	
Liquid fermenter	300L/hr	1	미생물대량배양	"	"	
Spectrophotometer	Beckman	1	유전자 정량 분석	"	"	
Sonicator		1	미생물 파쇄 및 분산	"	II	
형광현미경	Carl Zeiss	1	미생물 관찰	"	"	
Gas chromatography	HP	1	미생물 성분분석	11	11	
HPLC	Shimazu	1	미생물 성분분석	11	11	
Clean bench		2	균주 작업 및 PCR	11	"	
DGGE	BioRad	1	미생물 분포 분석	11	"	
Gene pulser	BioRad	1	미생물 형질전환	"	=	
Real Time PCR machine	BioRad	1	미생물 및 유전자 정량	"	"	
Deep freezer	한일과학	1	미생물 및 유전자 장기 보존	"	"	
Shaking incubator	국산	3	미생물배양	"	"	
Hybridization chamber	국산	1	DNA, RNA Hybridization	"	"	
Incubator	국산	4	미생물배양	"	"	
PCR machine	Bio-Rad	3	DNA 증폭	"	"	
대용량 centrifuge		1	미생물 균체회수용	"	"	
형광현미경	Carl Zeiss	1	미생물 관찰	"	"	
Speed Vac	한일과학	1	농축	"	"	
Ultracentrifuge	Beckman	1	DNA의 분획	"	"	
Homogenizer		1	미생물 현탁	"	"	

제 8 장 참고문헌

Arihara K. 2006. Strategies for designing novel functional meat products. Meat Sci. 74:219-229.

Biesalski, H. K. 2005. Meat as a component of a healthy diet - are there any risks or benefits if meat is avoided in the diet? Meat Sci. 70:509-524.

Dannenberger, D., Nurnberg, G., Scollan, N., Schabbel, W., Steinhart, H., Ender, K. 2004. Effect of diet on the deposition of n-3 fatty acids, conjugated linoleic and C18:1 trans fatty acid isomers in muscle lipids of German Holstein bulls. Journal of Agricultural and Food Chemistry, 52:6607-6615.

Hipkiss, A.R. 2009. Carnosine and its possible roles in nutrition and health. Advances in Food and Nutrition Research. 57:87-154.

Jo, C., Cho, S. H., Chang, J., Nam KC. 2012. Keys to production and processing of Hanwoo beef: a perspective of tradition and science. Animal Frontiers. 2:32-38.

Mou, S., Ding, X., and Liu, Y. 2002. Separation methods for taurine analysis in biological samples, Journal of Chromatography B. 781:251-267.

Scollan, N., Hocquette, J. F., Nuernberg, K., Dannenberger, D., Richardson, I., and Moloney, A. 2006. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 74:17-33.

Williams, C. M., and Burdge, G. 2006. Long-chain n 3 PUFA: plant vs. marine sources. Proceedings of the Nutrition Society. 65:42-50.

주 의

- 1. 이 보고서는 농림축산식품부에서 시행한 고기능성·고품질 한우육 생산기술 개발사업의 연구보고서입니다.
- 2. 이 보고서 내용을 발표할 때에는 반드시 농림축산식품부에서 시행한 고기 능성·고품질 한우육 생산기술 개발사업의 연구결과임을 밝혀야 합니다.
- 3. 국가과학기술 기밀유지에 필요한 내용은 대외적으로 발표 또는 공개하여서는 아니 됩니다.

[부<u>표</u>]