318013-2

삼 안 정 안 전 생 丑 준 화 기 정

농 림 농 식 림 품 축 기 산 술 식 기 품 획 부 평 가

원

고

보안과제(), 일반과제($\sqrt{\ }$) / 공개($\sqrt{\ }$), 비공개()발간등록번호()

발간번호

11-1543000-003164-01

흑삼 안정.안전생산 표준화 기준 설정 연구

최종보고서

2020. 2. 14.

주관연구기관 / (재)진안홍삼연구소 협동연구기관 / 국립원예특작과학원

> 농림축산식품부 농림식품기술기획평가원

<제출문>

제 출 문

농림축산식품부 장관 귀하

본 보고서를 "흑삼 안정.안전생산 표준화 기준 설정 연구"(개발기간: 2018. 04. 26. ~ 2019. 12. 31.)과제의 최종보고서로 제출합니다.

2020. 02. 14.

주관연구기관명 : (재)진안홍삼연구소

협동연구기관명: 국립원예특작과학원

주관연구책임자 : 박충범 협동연구책임자 : 이대영

국가연구개발사업의 관리 등에 관한 규정 제18조에 따라 보고서 열람에 동의합니다.

<보고서 요약서>

보고서 요약서

과제고유번호	318013-2	해 당 단 계 연 구 기 간	2018.04.26.~2 019.12.31	단계구분	(총 단 계)			
ed 7 1) ed ed	단위사업	농식품기술개발사업						
연 구 사 업 명	사 업 명		농생명산업기술개발사업					
A 7 7 7 7 11 14	대과제명	ğ	흑삼 안정.안전생산표준화 기준 설정연구					
연 구 과 제 명	세부 과제명							
연 구 책 임 자	મારમા	해당단계 참여연구원 수	총: 14명 내부: 7명 외부: 7명	해당단계 연구개발비	정부: 245,000천원 계: 245,000천원			
한 1 쪽 급 / 1	박충범	총 연구기간 참여연구원 수	총: 19명 내부: 11명 외부: 8명	총 연구개발비	정부: 245,000천원 계: 245,000천 원			
연구기관명 및 소속부서명	(재)진안홍삼약 국립원예특작			참여기업명				

[※] 국내외의 기술개발 현황은 연구개발계획서에 기재한 내용으로 갈음

연구개발성과의		
보안등급 및		
사유		
요약(연구개발성과를	를 중심으로 개조식으로 작성하되, 500자 이내로 작성합니다)	보고서 면수
1. 흑삼의 정의 및	역사적 고찰	p.6
- 고문헌, 학술논	-문 등 역사적·학술적 고찰을 통해 홍삼, 백삼, 태극삼 등과	
구별되고 흑삼	만의 특성을 잘 반영	
- 인삼 관련 협	회, 단체 등의 의견 수렴하여 일반인들도 쉽게 이해할 수	
있도록 흑삼을	정의함	

2. 흑삼의 품질기준 마련	p.10
- 흑삼의 품질 등급을 분류할 수 있는 외관품질에 대한 기준 설정 3. 제조방법 및 공정의 표준화	p.10
- 흑삼의 원료부터 최종 제품까지의 전 공정을 표준화하고 매뉴얼화	
 4. 이화학적 유효 성분 지표 표준화 및 기준 설정 - 흑삼에 함유되어 있는 진세노사이드 등 화학적 성분들을 조사하고 흑삼에 함유된 특이 성분의 기준 및 이를 분석할 수 있는 분석법을 설정함 - 흑삼에 함유된 기능성 물질인 사포닌 및 비사포닌을 탐색하고 지표성분 가능성을 탐색하여 지표성분을 선발하고 함량 기준을 설정하고 이에 대한 과학적 근거를 제시함 	p.25
5. 안전성 관련 지표 표준화 및 기준 설정- 농약, 벤조피렌 등 원료부터 제조까지 전과정에서 유입이나 발생될 수 있는 위해요인의 함량 기준(최고치)을 설정하고 이에 대한 과학적 근거 제시	p.42
6. 홍삼 및 흑삼의 대사체 프로파일링을 통한 판별연구- 제조공정 확립된 홍삼 및 흑삼의 최종 제품에 대한 판별법 연구	p.71
7. 공론화 과정을 거쳐 표준화(안) 마련 - 연구 결과들을 토대로 공론화 과정을 거쳐 표준화(안) 최종 마련	p.75

<요약문>

				7		
인삼산업 육성 및 소비자 보호를 위한 흑삼의 제조공정, 품질기준, 위해성분 등 기준 마련						
고문헌, 학 구별되고인삼 관련	술논문 등 역사? 흑삼만의 특성을 협회, 단체 등	잘 반영				
	, – , –	수 있는 외관품	질에 대한 기준	설정		
		까지의 전 공정을	을 표준화하고 매	뉴얼화		
4. 이화학적 유효 성분 지표 표준화 및 기준 설정 - 흑삼에 함유되어 있는 진세노사이드 등 화학적 성분들을 조사하고 함유된 특이 성분의 기준 및 이를 분석할 수 있는 분석법을 설정함 - 흑삼에 함유된 기능성 물질인 사포닌 및 비사포닌을 탐색하고 지가능성을 탐색하여 지표성분을 선발하고 함량 기준을 설정하고 이에 과하저 그거를 제시하						
5. 안전성 관련 지표 표준화 및 기준 설정 - 농약, 벤조피렌 등 원료부터 제조까지 전과정에서 유입이나 발생될 위해요인의 함량 기준(최고치)을 설정하고 이에 대한 과학적 근거 제						
		, –	,	연구		
7. 공론화 과정을 거쳐 표준화(안) 마련 - 연구 결과들을 토대로 공론화 과정을 거쳐 표준화(안) 최종 마련						
1. 흑삼의 제조	기준 및 지표성분	- 규격(안) 마련				
2. 흑삼의 유해물질 안전관리 규격(안) 마련						
3. 흑삼의 새로운 기준에 대한 정책 제안						
흑삼	품질기준	지표성분	벤조피렌	인삼사포닌		
Black ginseng	Quality control	quality index component	benzopyrene	ginsenoside		
	. 흑삼의 정의 - 고문헌, 학 구별되 관련 있도 흑 삼의 품질 - 인상 폭 플질 - 이화상에 적 하는 이화상에 된 이후 삼의 전상, 인의 - 흑삼의 및 정 장의 - 위해요인의 흑삼 - 위해요인의 흑삼 - 유산의 사로 화결과 조 - 후삼의 사로 후삼의 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수	 . 흑삼의 정의 및 역사적 고찰 - 고문헌, 학술논문 등 역사건 구별되고 흑삼만의 특성을 - 인삼 관련 협회, 단체 등 있도록 흑삼을 정의함 2. 흑삼의 품질기준 마련 - 흑삼의 품질 등급을 분류할 3. 제조방법 및 공정의 표준화 - 흑삼의 원료부터 최종 제품 4. 이화학적 유효 성분 지표 표를 - 흑삼에 함유되어 있는 진사 함유된 특이 성분의 기준 등 - 흑삼에 함유된 기능성 물가능성을 탐색하여 지표성를 과학적 근거를 제시함 5. 안전성 관련 지표 표준화 및 - 농약, 벤조피렌 등 원료부터 위해요인의 함량 기준(최고차 5. 홍삼 및 흑삼의 대사체 프로족 의상 및 흑삼의 대사체 프로족 의사를 보다로 공론 - 연구 결과들을 토대로 공론 1. 흑삼의 제조기준 및 지표성분 2. 흑삼의 유해물질 안전관리 규 3. 흑삼의 새로운 기준에 대한 최 흑삼의 새로운 기준에 대한 최 흑삼의 새로운 기준에 대한 최 	 휴상의 정의 및 역사적 고찰 고문헌, 학술논문 등 역사적・학술적 고찰숙구별되고 흑삼만의 특성을 잘 반영 인삼 관련 협회, 단체 등의 의견 수렴하 있도록 흑삼을 정의함 휴상의 품질기준 마련 후삼의 품질 등급을 분류할 수 있는 외관품 제조방법 및 공정의 표준화 후삼의 원료부터 최종 제품까지의 전 공정을 이화학적 유효 성분 지표 표준화 및 기준 설계 함유된 의상 기준 및 이를 분석할 수 확유된 특이 성분의 기준 및 이를 보석할 수 확위해요인의 함라된 기능성 물질인 사포닌 및 가능성을 탐색하여 지표성분을 선발하고 현과학적 근거를 제시함 안전성 관련 지표 표준화 및 기준 설정 농약, 벤조피렌 등 원료부터 제조까지 전과위해요인의 함량 기준(최고치)을 설정하고 여의 위해요인의 함량 기준(최고치)을 설정하고 여의 유조공정 확립된 홍삼 및 흑삼의 최종 제품 공론화 과정을 거쳐 표준화(안) 마련 연구 결과들을 토대로 공론화 과정을 거쳐 흑삼의 제조기준 및 지표성분 규격(안) 마련 흑삼의 유해물질 안전관리 규격(안) 마련 흑삼의 사로운 기준에 대한 정책 제안 흑삼의 새로운 기준에 대한 정책 제안 	1. 흑삼의 정의 및 역사적 고찰 - 고문헌, 학술논문 등 역사적·학술적 고찰을 통해 홍삼, 백 구별되고 흑삼만의 특성을 잘 반영 - 인삼 관련 협회, 단체 등의 의견 수렴하여 일반인들도 있도록 흑삼을 정의함 2. 흑삼의 품질기준 마련 - 흑삼의 품질 등급을 분류할 수 있는 외관품질에 대한 기준 3. 제조방법 및 공정의 표준화 - 흑삼의 원료부터 최종 제품까지의 전 공정을 표준화하고 매 4. 이화학적 유효 성분 지표 표준화 및 기준 설정 - 흑삼에 함유되어 있는 진세노사이드 등 화학적 성분들을 함유된 특이 성분의 기준 및 이를 분석할 수 있는 분석법을 - 흑삼에 함유된 기능성 물질인 사포닌 및 비사포닌을 탐가능성을 탐색하여 지표성분을 선발하고 함량 기준을 설정과학적 근거를 제시함 5. 안전성 관련 지표 표준화 및 기준 설정 - 농약, 벤조피렌 등 원료부터 제조까지 전과정에서 유입이나위해요인의 함량 기준(최고치)을 설정하고 이에 대한 과학적 등 환약, 벤조피렌 등 원료부터 제조까지 전과정에서 유입이나위해요인의 함량 기준(최고치)을 설정하고 이에 대한 과학적 등 환약 및 흑삼의 대사체 프로파일링을 통한 판별연구 - 제조공정 확립된 홍삼 및 흑삼의 최종 제품에 대한 판별법 기공론화과정을 거쳐 표준화(안) 마련 - 연구 결과들을 토대로 공론화과정을 거쳐 표준화(안) 최종 1. 흑삼의 제조기준 및 지표성분 규격(안) 마련 2. 흑삼의 유해물질 안전관리 규격(안) 마련 3. 흑삼의 새로운 기준에 대한 정책 제안 확삼 품질기준 지표성분 벤조피렌 Black ginseng Quality control quality index benzonyrene		

〈 목 차 〉

1. 연구개발과제의 개요	1
1-1 연구개발의 목표 및 내용	1
1-2 연구개발의 필요성	3
1-3 연구개발 범위	
2. 연구수행 내용 및 결과	5
2.1 흑삼의 정의 역사적 고찰	5
2.1.1 인삼의 역사적 및 학술적 문헌고찰	5
2.1.2 인삼 관련 용어 정의	5
2.1.3 흑삼의 새로운 용어의 정의(안)	
2.2 제조방법, 공정의 표준화 연구	
2.2.1 원료삼 구입	9
2.2.2 흑삼 제조 연구 (pilot scale) ······	9
2.2.3 제조시료 절단면 관찰	15
2.2.4 제조시료 색차 관찰	
2.2.5 흑삼 제조 연구 (industrial scale)	23
2.2.6 흑삼의 진세노사이드 분석방법(안) 설정	
2.2.7 지표성분 후보인 진세노사이드 Rg1, Rb1, Rg3, Rk1 및 Rg5	
동시분석법 밸리데이션	
2.2.8 각 배치별 진세노사이드분석결과(주관)	
2.2.9 각 배치별 진세노사이드분석결과(협동)	
2.2.10 흑삼 유통 제품 조사	
2.2.11 유통 제품 진세노사이드 분석	39
2.2.12 유통 제품 벤조피렌 분석	40
3.1 인삼류의 검사기준(안) 연구	41
3.1.1 수분	········ 41 ····· 41
3.1.1 수분 ···································	41 41 43
3.1.1 수분 3.1.2 이물 3.1.3 인삼성분함량	41 41 43
3.1.1 수분 3.1.2 이물 3.1.3 인삼성분함량 3.1.4 벤조피렌	41 41 43 44
3.1.1 수분 3.1.2 이물 3.1.3 인삼성분함량 3.1.4 벤조피렌 3.1.5 중금속	41 43 44 46
3.1.1 수분 3.1.2 이물 3.1.3 인삼성분함량 3.1.4 벤조피렌 3.1.5 중금속 3.1.6 보존료	
3.1.1 수분 3.1.2 이물 3.1.3 인삼성분함량 3.1.4 벤조피렌 3.1.5 중금속 3.1.6 보존료 3.1.7 타르색소	
3.1.1 수분 3.1.2 이물 3.1.3 인삼성분함량 3.1.4 벤조피렌 3.1.5 중금속 3.1.6 보존료	

3.1.10 외부공인검사기관 의뢰 검사결과66
4.1 홍삼 및 흑삼의 이차대사체 프로파일링을 통한 지표성분 제안
및 판별 연구71
5.1 흑삼의 제조기준 및 지표성분 규격(안) 설정72
6.1 흑삼의 유해물질 안전관리 규격(안) 설정74
7.1 흑삼의 제조기준 및 지표성분 기준, 유해물질 안전관리 규격의 법안
제시를 위한 공청회 개최75
8.1 정책제안
3. 목표 달성도 및 관련 분야 기여도80
3-1 목표달성도
3-2 관련분야 기여도
4. 연구결과의 활용 계획 등82
붙임. 참고 문헌82

<별첨> 주관연구기관의 자체평가의견서

1장. 연구개발과제의 개요

1절. 연구개발의 목표 및 내용

- 가. 최종목표
- 흑삼의 특성과 품질기준, 제조공정, 안정성 등의 기준·규격(안) 마련

나. 세부목표

- 흑삼의 정의 및 역사적 고찰
 - 흑삼관련 보고서
 - 흑삼의 시장현황 등에 대한 고찰
- 흑삼의 이화학적 유효 성분 지표 표준화 및 기준 설정
 - 유효 지표성분 설정 및 지표성분 함량 기준 설정
- 흑삼의 안전성 및 안전생산 표준화 기준 설정 연구
 - 흑삼의 유해성 벤조피렌의 분석법 정립
 - 시중 유통 흑삼제품 벤조피렌 분석
 - 흑삼의 유해성 벤조피렌의 안전 기준 설정
- 흑삼의 품질기준 설정
 - 시중 유통 흑삼제품 품질 분석
 - 가공된 흑삼의 외형적(모양, 색택, 내공, 내백 등) 품질 기준 설정
 - 유효성 진세노사이드 함량에 근거한 기준 설정
- 흑삼 제조방법, 공정의 표준화 및 매뉴얼화
 - 흑삼은 제조방법에 대한 표준안 정립
 - 증숙온도 및 시간, 건조온도 및 시간 등에 대한 공정 표준화 정립
 - 제조 공정의 효율성을 감안한 표준화된 제조방법의 개발

다. 연차별 개발목표 및 내용

구분	연도	연구개발의 목표	연구개발의 내용
1차년도		(주관 : 진안홍삼연구소) ○제조방법, 공정의 표준화 ○안전성 관련 지표 표준화 및 기준 설정 (협동 : 국립원예원) ○흑삼의 정의 및 문헌적고찰 ○흑삼의 지표성분 시험법 마련	 ○ 제조방법, 공정의 표준화 시중 유통 흑삼제품 분석(10건 이상) (재)진안홍삼연구소에 구축된 증삼 건조 시설을 활용하여 흑삼 가공 조건 실험 진행 흑삼 직접 가공을 통한 제조방법 및 공정에 대한 다양한 실험 진행 증숙온도 및 시간, 건조온도 및 시간 등에 대한 공정표준화 정립 ○ 안전성 관련 지표 표준화 및 기준 설정 유통 흑삼 및 연구소 가공 흑삼에 대한 벤조피렌 함량 분석 흑삼의 유해성 벤조피렌 분석법 정립 흑삼의 유해성 벤조피렌의 안전 기준 설정 ○ 고문헌 및 학술논문인용 인삼관련 용어의 정립 인삼의 역사적 및 학술적 문헌고찰 인삼 관련 용어 정의 및 흑삼의 새로운 용어 추가 정의 ○ 흑삼의 이화학적 유효성분 표준화 및 기준설정 연구
2차년도	2019	(주관 : 진안홍삼연구소) ○ 제조방법, 공정 기준설정 ○ 흑삼의 품질기준 마련 (협동 : 국립원예원) ○흑삼의 안전성 관련 지표 기준 설정 ○홍삼 및 흑삼 판별연구	 흑삼은 제조방법 및 공정에 대한 표준안 정립 ○ 흑삼의 품질기준 마련 가공된 흑삼의 외형적(모양, 색택, 내공, 내백, 균열) 품질 기준 설정 유효성 지표성분(진세노사이드 등) 함량에 기준한 기준 설정 ○ 흑삼의 유해물질 안전관리 규격(안) 설정 제조공정 확립된 흑삼의「식품위생법」,「약사법」및「농수산물 품질관리법」에 따른 벤조피렌의 기준설정 ○ 홍삼 및 흑삼의 대사체 프로파일링을 통한 판별연구 제조공정 확립된 홍삼 및 흑삼의 최종상품에 대한 판
			별법 연구 ○ 공청회를 통한 흑삼과 이익관계가 형성되지 않은 업계 및 학계의 흑삼에 대한 의견을 수렴

2절. 연구개발의 필요성

- '인삼산업법'에는 인삼류는 인삼, 수삼, 홍삼, 태극삼, 백삼, 그리고 그 밖의 인삼으로 분류되고 있으며, 백삼은 수삼을 햇볕 또는 열풍으로 건조시킨 것 이고, 태극삼은 수삼을 뜨거운 물에 일정시간 넣어 익혀 말린 것이며, 홍삼은 수삼을 수증기 또는 기타 방법으로 쪄서 익혀 건조한 것을 말함.
- '그 밖의 인삼'이란 수삼을 원료로 하여 제조한 것(홍삼, 태극삼, 백삼과 다른)을 말하는데 수삼을 증기나 그 밖의 방법으로 쪄서 익혀 말린 것으로서 담흑갈색 또는 흑다 갈색을 띠는 것을 "흑삼"이라 지정하고 있음.
- 특히, 홍삼은 증숙 과정을 거치는 동안 열처리가 가해짐으로 조직 중의 전분 입자가 호화되어 백삼보다 소화율이 높으며, **각종 효소들이 불활성화** 되어 백삼보다 **저장성이 양호함**. 또한, 제조과정 중 일부 성분의 화학적 변환이 일어나 수삼이나 백삼에 존재하지 않는 새로운 생리활성 성분의 생성과 함량 증가가 일어남.
- 최근에는 홍삼 중 미량으로 존재하는 생리활성 성분의 함량 을 더욱 증가시키고자하는 가공법 개발의 일환으로 **흑삼**이라는 가공인삼이 개발되고 있다. 흑삼은 일반적으로 한약의 전통적 가공법의 하나인 **구중구포(九蒸九曝)**의 방법을 이용하여 수삼을 9번 찌고 말리는 과정을 반복하여 제조된 것으로 주로 유통되고 있는데 색깔은 검은색을 띠고 있어서 흑삼 (black ginseng)이라고 부르고 있음.
- 건강기능식품공전에는 원물(原物) 자체가 아닌 기능성 원료로서의 '인삼', '홍삼'이 정의되어 있고 각 제조기준에 맞게 제조된 원료만이 건강기능식품에 사용될 수 있는 기능성 원료로 인정하고 있음.
- 주요 성분이자 기능성 성분인 진세노사이드를 분석하는 방법이 건강기능식품공전 내 시 험법에 고시되어 있음.
 - 건강기능식품공전에서는 기능성 원료를 만들기 위한 제조기준, 기능성 원료의 규격, 최 종 제품의 요건, 시험법등에 대해서 고시하고 있음.
- 건조인삼의 기능성분(또는 지표성분)의 함량은 **진세노사이드 Rg1과 Rb1**을 **합**하여 **0.8~34mg/g** 함유하고 있어야 한다고 고시하고 있음.
- 건조인삼으로 제조한 최종제품은 **면역력 중진 및 피로개선**에 도움을 줄 수 있다고 고시 되어 있는데 일일섭취량이 진세노사이드 **Rgl과 Rbl의 합계로서 3~80mg** 으로 정의하고 있음.
- 홍삼의 기능성분(또는 지표성분)의 함량은 **진세노사이드 Rg1, Rb1 및 Rg3**를 **합**하여 2.5 ~ 34mg/g 함유하고 있어야 한다고 고시하고 있음.
- 건조홍삼(본삼)으로 제조한 최종제품은 면역력 증진, 피로개선, 혈소판 응집억제를 통한 혈액호름, 기억력 개선, 항산화에 도움을 줄 수 있다고 고시되어 있는데 일일섭취량이 면역력 증진, 피로개선에 도움을 줄 수 있음에는 진세노사이드 Rg1, Rb1 및 Rg3의 합 계로서 3 ~ 80mg으로 지정되어있으며, 혈소판 응집억제를 통한 혈액흐름, 기억력 개선 및 항산화에 도움을 줄 수 있음에는 진세노사이드 Rg1, Rb1 및 Rg3의 합계로서 2.4 ~ 80mg 으로 고시되어 있음.

- 따라서, 불확실한 제조공정으로 제조 및 유통되고 있는 흑삼의 경우도, 기능성분(또는 지표성분)의 종류와 함량 설정이 필요함.
- 건강기능식품공전에 수록된 '진세노사이드' 시험법은 옥타데실실릴화한한 컬럼(컬럼 의 안지름 4.6 mm, 길이 250 mm, 충진재 octadecyl silica) 또는 이와 동등한 것으로 정의되어 분석법이 설정되어 있음. 정의된 지표성분은 진세노사이드 Rb1(ginsenoside Rb1), 진세노사이드 Rg1(ginsenoside Rg1) 및 진세노사이드 Rg3(S)(ginsenoside Rg3(S))임.
- 홍삼의 경우, 진세노사이드 Rg3를 추가하였는데 이는 인삼을 가공할 시에 발생하는 성분 변화를 고려한 것으로 인삼(백삼)과 **차별화**를 두었음.
- 흑삼의 경우에도 제조시에 발생하는 그 **성분변화를 고려**하여 기준·규격의 설정이 필요 하며 인삼, 홍삼, 흑삼을 구분하여 분석할 수 있는 **빠르고 효율적인 분석법**의 설정이 필요함.

3절. 연구개발 범위

- 흑삼의 정의 및 역사적 고찰
 - 고문헌, 학술논문 등 역사적·학술적 고찰을 통해 홍삼, 백삼, 태극삼 등과 구별되고 흑삼만의 특성을 잘 반영
 - 인삼 관련 협회, 단체 등의 의견 수렴하여 일반인들도 쉽게 이해할 수 있도록 흑삼을 정의함
- 이화학적 유효 성분 지표 표준화 및 기준 설정
 - 흑삼에 함유되어 있는 진세노사이드 등 화학적 성분들을 조사하고 흑삼에 함유된 특이 성분의 기준 및 이를 분석할 수 있는 분석법을 설정함
 - 흑삼에 함유된 기능성 물질인 사포닌 및 비사포닌을 탐색하고 지표성분 가능성을 탐색하여 지표성분을 선발하고 함량 기준을 설정하고 이에 대한 과학적 근거를 제시함
- 안전성 관련 지표 표준화 및 기준 설정
 - 농약, 벤조피렌 등 원료부터 제조까지 전과정에서 유입이나 발생될 수 있는 위해요인들에 대해 함량 기준(최고치)을 설정하고 이에 대한 과학적 근거 제시
- 흑삼의 품질기준 마련
 - 흑삼의 품질 등급을 분류할 수 있는 외관품질(1등급, 2등급 등/본삼, 미삼 등)에 대한 기준 설정
- 제조방법 및 공정의 표준화
 - 흑삼의 원료부터 최종 제품까지의 전 공정을 반복 테스트하여 표준화하고 손쉽게 적용할 수 있도록 매뉴얼 화
- 공론화 과정을 거쳐 표준화(안) 마련
 - 상기 연구 결과들을 토대로 산업체, 관련기관을 대상으로 공론화 과정을 거쳐 표준화(안) 최종 마련

2장. 연구수행 내용 및 결과

1절, 흑삼의 정의 및 역사적 고찰 (협동: 국립원예특작과학원)

○ 인삼의 역사적 및 학술적 문헌고찰

- 삼(蔘)의 명칭이 문헌에 처음 등장하는 것은 전한 말(기원전 48-33) 사유(史遊)가 저술한 '급취장(급취장)'으로 확인됨

*급취장 : 만물의 이름을 열거하고 해석한 책이며, 약명 중에 '삼蔘'이란 글자가 확인 됨

- 중국 후한(後漢)시기(196-220), 중국의 의서인 장중경의 〈상한론〉에는 모두 113개의 처방이 기재되어 있으며, 이중 인삼 배합 처방이 21개가 확인됨
- 중국의 후한(後漢)말기(490), 중국의 의학서인 〈신농본초경〉에서 '인삼은 오장을 보호하고, 정신을 안정시키며, 눈을 밝게 하고, 오래 복용하면 몸이 가벼워지고 오래 살수 있다'는 7가지 효능이 기록됨
- 기원전 629, 중국의 <양서>에는 고구려 및 백제에서 인삼을 조공하였다고 기록됨
- 1145년 〈삼국사기〉국내 최초로 인삼을 기록 및 1236년 〈향약구급방〉에서 인삼이 기록 됨
- 1596년 중국 본초강목에 인삼 재배기술 기록됨
- 1610년 동의보감에는 인삼의 효능 및 처방법이 기록됨

그림.1 인삼이 언급되어 있는 고서 목록

○ 인삼 관련 용어 정의(인삼산업법)

- '인삼산업법'에 따라 인삼류는 인삼, 수삼, 홍삼, 태극삼, 백삼, 그리고 그 밖의 인삼으로 분류된다. 각각의 정의는 아래와 같으며 그 성상은 농림축산식품부령에 의거한다.
- '인삼'이란 오갈피나무과 인삼속 식물을 말한다.
- '수삼'이란 말리지 아니한 인삼을 말한다.
- '홍삼'이란 수삼을 증기나 그 밖의 방법으로 익혀서 말린 것을 말한다.
- '태극삼'이란 수삼을 물로 익히거나 그 밖의 방법으로 익혀서 말린 것을 말한다.
- '백삼'이란 수삼을 햇볕·열풍 또는 그 밖의 방법으로 익히지 아니하고 말린 것을 말한

다.

- '그 밖의 인삼'이란 수삼을 원료로 하여 제조한 것(홍삼, 태극삼, 백삼과 다른)을 말한다. 수삼을 증기나 그 밖의 방법으로 쪄서 익혀 말린 것으로서 담흑갈색 또는 흑 다갈색을 띠는 것(이하 '흑삼'이라 함)
- 인삼류를 제조하는 것은 수삼을 원료로 하여 홍삼, 태극삼, 백삼 또는 그 밖의 인삼을 제조하는 것을 말하며 인삼제품류는 '식품공전' 또는 '건강기능식품공전'에 수록된 식품 중 인삼류를 원료로 하여 제조·가공된 식품을 말한다.
- 따라서, 인삼산업법에 정의되어 있는 '그 밖의 인삼'에 정의되어 있는 '흑삼'을 **홍삼, 태극삼, 백삼과 다른 제조방법 및 지표성분의 설정으로 개별로** 정의할 필요가 있음

○ 흑삼의 새로운 용어의 정의(안)

- '흑삼'이란 수삼을 증기나 그 밖의 방법으로 3회 이상 쪄서 익혀 말린 것으로서 담흑갈색 또는 흑다갈색을 띠는 것을 말한다
- '흑삼'이란 수삼을 증기나 그 밖의 방법으로 쪄서 익혀 말린 것으로서 담흑갈색 또는 흑다갈색을 띠는 것으로 Rgl, Rbl 확인이 가능하며 Rg3, Rg5, Rkl의 합이 00mg/g 이상인 것을 말한다.
- '흑삼'이란 수삼을 증기나 그 밖의 방법으로 쪄서 익혀 말린 것으로서 담흑갈색 또는 흑다갈색을 띠는 것으로 Rg3, Rg5, Rk1의 합이 00mg/g 이상인 것을 말한다.
- '흑삼'이란 수삼을 증기나 그 밖의 방법으로 3회 이상 쪄서 익혀 말린 것으로서 담흑갈색 또는 흑다갈색을 띠는 것으로 Rg3, Rg5, Rk1의 합이 00mg/g 이상인 것을 말한다.
 - * 현재, 인삼시장에서 사용되는 인삼의 용어로 수삼, 백삼, 태극삼, 홍삼, 흑삼의 용어가 통용되는 용어임, 따라서 인삼산업법에 정의되어 있는 '그 밖의 인삼'에 '흑삼'만 따로 빼서 정의를 한다면 '그 밖의 인삼'의 정의에 대해 검토할 필요가 있음.

- 흑삼 제조공정 관련 논문 및 특허 조사

구분	특허명 (등록번호)	제조공정 내용	등록일
1	진세노사이드 R h 2 성분의 함량이 증가된 흑삼 제조방법 및 그 제조방법에 의해 제 조된 흑삼제품 (1013258320000)	Rh2 함량 증가	2013.10. 30
2	유효 진세노사이드의 손실이 없는 흑삼 제 조방법 및 상기 방법으로 제조된 흑삼 (1018426100000)	Rb1, Rg1, Rg3, Rg5 균일 구성	2018.03. 21
3	흑삼의 표준화 소재 제조 방법 및 상기 방법으로 제조된 표준화 소재 (1017113830000)	금산 흑삼 표준화 소재 제 공	2017.02. 23

변 후상 조성물의 제조방법 및 상기 방법 후상 조성물 제공 2017.02. 23 2017.02. 으로 제조된 흑의 제조보험법 및 상기 방법 후상 조성물 제공 2017.02. 23 2017.02. 23 2017.02. 25 제조된 흑의 제조보험법 및 상기 방법으로 제조된 발효후상 (1016708100000) 교학량의 전세노사이드를 함유하는 후상 제조방법 (1015076520000) 25 25 기사보인 합량의 전세노사이드를 함유하는 후상 제조방법 (1015076520000) 기사보인 합량의 증진된 후상의 제조방법 및 상기 방법으로 제조된 흑상 (10154900000) 전세노사이드 알지스리 한량의 증대되고 반조되면이 저간된 후상의 제조방법 및 그산물(10158305000000) 26 27 2015.08. 27	ſ			
한당을 중진시킨 발효혹삼의 제조방법 및 상기 방법으로 제조된 발효후삼 (1016708100000)	4	된 흑삼 조성물의 제조방법 및 상기 방법 으로 제조된 흑삼 조성물 (1017113860000)	흑삼 조성물 제공	
6 제조방법 (1015076520000) 가 25 7 사포닌 합량이 중진된 흑삼의 제조방법 및 상기 방법으로 제조된 흑삼의 제조된 흑삼의 제조방법 및 그산문(1015494090000) 사포닌 합량 증가 2015.08. 27 8 벤조피렌이 저감된 흑삼의 제조방법 및 그산문(1015830500000) Rg3 및 벤조피렌 검사 수출수율, 조사포닌, 폴리페 뉴 수분합량, 벤조피렌 검사 수출수율, 조사포닌, 폴리페 뉴 수분합량, 벤조피렌 검사 사자로 학생 (1014410020000) 2015.12. 30 10 인삼열매발효추출물을 활용한 발효 연질 흑삼 제조 방법 (1014543150000) 인삼열매 발효 추출물 제조, 후삼 제조 사포닌의 손실을 막 을 수 있음 17 2005.06. 17 11 흑삼과 흑미삼의 제조방법 (1005294750000) 사포닌의 한량 2005.06. 17 2005.06. 17 12 흑미삼 제조방법 및 그를 이용하여 제조된후미삼 (1004964180000) 사포닌의 한량 2009.07. 28 2009.07. 28 14 엔에스엠을 이용한 흥삼 또는 흑삼의 제조 방법 (1009659070000) Ginsenoside Rg3 2010.06. Rg3의 함량 16 15 코팅 단계를 포함하는 흑삼 제조방법 조사포닌, 진세노사이드의후암 (101647190000) 조사포닌, 진세노사이드의후암 (101.08. 함량 2011.09. 2011.08. 함량 2011.09. 2012.09. 42 2011.08. 2012.09. 2	5	함량을 증진시킨 발효흑삼의 제조방법 및 상기 방법으로 제조된 발효흑삼 (1016708100000)		
7 상기 방법으로 제조된 혹삼 (1015494090000) 제조년 (1015494090000) 20세노사이드 알지쓰리 합량이 증대되고 벤조피렌이 저감된 혹삼의 제조방법 및 그 산물(1015830500000) Rg3 및 벤조피렌 검사 2015.12. 30 9 효율적 증숙과 건조를 통한 편리한 혹삼의 제조방법 (1014410020000) 추출수율, 조사포닌, 폴리페 늘, 수분함량, 벤조피렌 검사 사 전원열매발효추출물을 활용한 발효 연절 작사 제조 방법 (1014543150000) 인산열매 발효 추출물 제조, 2014.10. 약상 제조 17 11 혹삼과 혹미삼의 제조방법 (1005294750000) 사포닌의 손실을 막 을 수 2005.11. 11 2005.06. 17 12 혹미삼 제조방법 및 그를 이용하여 제조된 후미삼 (1004964180000) 사포닌의 함량 2009.07. 28 14 액에스엠을 이용한 홍삼 또는 흑삼의 제조 방법 (1009659070000) 중대용미상 제조방법 (1010647190000) 조사포닌과 진세노사이드 함 2011.09. 16 15 고향 단계를 포함하는 흑삼 제조방법 (1010647190000) 조사포닌, 진세노사이드 함 2011.09. 16 2011.08. 함량 16 혹삼 제조방법 (1011815150000) 조사포닌, 진세노사이드 Rg3 2012.09. (Ginsenoside Rg3) 11 18 혹삼 제조방법 (1011815150000) 조사포닌, 진세노사이드 Rg3 2012.09. (Ginsenoside Rg3) 11 19 자외선 조사 단계를 포함하는 흑삼 제조방 법(1011528270000) 조사포닌, 진세노사이드의 2012.09. 함흥증가 2012.09. 함흥증가 20 학유하는 학유한 후삼 추출물을 유효성분 의용한 후삼 추출물 2018.09. 성분 기반 화장품 조성물 성분 기반 화장품 조성물 2018.09. 2018.09. 2018.09. 2018.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019.09. 2019. 2019. 2019. 2019. 2019. 20	6	제조방법 (1015076520000)		
변조피렌이 저감된 흑삼의 제조방법 및 그 산물(1015830500000)	7	상기 방법으로 제조된 흑삼	사포닌 함량 증가	
9요울적 중국과 건소들 동안 번리안 확감의 제조방법 (1014410020000)놀, 수분함량, 벤조피렌 검 사2014.09.0510인삼열매발효추출물을 활용한 발효 연질 후삼 제조 방법 (1014543150000)인삼열매 발효 추출물 제조, 후삼 제조2014.10. 1711흑삼과 흑미삼의 제조방법 (1005294750000)사포닌의 손실을 막 을 수 있음2005.01. 1112흑미삼 (1004964180000)사포닌의 함량2005.06. 1713발효흑삼 및 그 제조방법 (1009105850000)Ginsenoside Rg32009.07. 2814엠에스엠을 이용한 홍삼 또는 흑삼의 제조 	8	벤조피렌이 저감된 흑삼의 제조방법 및 그	Rg3 및 벤조피렌 검사	
10 혹삼 제조 방법 (1014543150000) 혹삼 제조 17 11 2005.11. 11 11 11 11 11 11 11	9		놀, 수분함량, 벤조피렌 검	
11 목삼과 목비삼의 제조방법 및 그를 이용하여 제조된 후미삼 (1004964180000) 있음 11 2005.06. 17 2009.07. 28 2009.07. 28 2009.07. 28 2010.06. 17 2009.07. 28 2010.06. 2010.09. 2	10		흑삼 제조	
12 흑미삼 제조방법 및 그를 이용하여 제조된 후미삼 (1004964180000) 17 2005.06. 17 13 발효흑삼 및 그 제조방법 (1009105850000) Ginsenoside Rg3 2009.07. 28 14 엔에스엠을 이용한 홍삼 또는 흑삼의 제조 장사포닌과 전세노사이드 2010.06. Rg3의 함량 16 2010.06. Rg3의 함량 16 2010.06. Rg3의 함량 16 2011.09. 여6	11	흑삼과 흑미삼의 제조방법 (1005294750000)		
13 발효옥삼 및 그 세조망법 (1009105850000) Ginsenoside Rg3 28 14 엠에스엠을 이용한 홍삼 또는 흑삼의 제조 조사포닌과 진세노사이드 2010.06. Rg3의 함량 16 15 코팅 단계를 포함하는 흑삼 제조방법 조사포닌, 진세노사이드 함 (1010647190000) 량 06 16 흑삼 제조방법 (1010588750000) 로사포닌, 진세노사이드의 함량 17 17 흑삼의 제조방법 및 이를 이용하여 제조된 조사포닌, 진세노사이드 Rg3 2012.09. 역삼 (1011835410000) (Ginsenoside Rg3) 11 18 흑삼 제조방법 (1011815150000) 조사포닌, 진세노사이드의 2012.09. 함량증가 24 전세노사이드의 함량증가 24 전세노사이드의 함량증가 2012.05. 함량증가 29 19 자외선 조사 단계를 포함하는 흑삼 제조방 조사포닌, 진세노사이드의 2012.05. 함량증가 29 10 학구균을 이용한 발효 흑삼 추출물을 유효성분 으로 함유하는 항노화 화장품 조성물 성분 기반 화장품 조성물 2018.09. 21 20 활성탄 처리에 의한 흑삼 농축액의 유해성분 활성탄 처리에 의한 흑삼 농축 2018.02.	12			17
14엠에스엠을 이용한 홍삼 또는 흑삼의 제조 방법 (1009659070000)조사포닌과 Rg3의 함량진세노사이드 2011.09. 1615코팅 단계를 포함하는 흑삼 제조방법 (1010647190000)조사포닌, 진세노사이드 함 양2011.09. 0616흑삼 제조방법 (1010588750000)조사포닌, 진세노사이드의 함량2011.08. 1717흑삼의 제조방법 및 이를 이용하여 제조된 흑삼 (1011835410000)조사포닌, 진세노사이드 Rg3 (Ginsenoside Rg3)2012.09. 0418흑삼 제조방법 (1011815150000)조사포닌, 진세노사이드의 함량증가2012.09. 0419자외선 조사 단계를 포함하는 흑삼 제조방 법(1011528270000)조사포닌, 진세노사이드의 함량증가2012.05. 2920학유하는 (이로 함유하는 (1019037100000)학상 후삼 추출물 청분 기반 화장품 조성물 성분 기반 화장품 조성물2018.09. 2121활성탄 처리에 의한 흑삼 농축액의 유해성분활성탄 처리에 의한 흑삼 농축 2018.02.	13	발효흑삼 및 그 제조방법 (1009105850000)	Ginsenoside Rg3	
15(1010647190000)량0616흑삼 제조방법 (1010588750000)조사포닌, 진세노사이드의 함량2011.08. 1717흑삼의 제조방법 및 이를 이용하여 제조된 흑삼 (1011835410000)조사포닌, 진세노사이드 Rg3 (Ginsenoside Rg3)1118흑삼 제조방법 (1011815150000)조사포닌, 진세노사이드의 함량증가 0419자외선 조사 단계를 포함하는 흑삼 제조방 법(1011528270000)조사포닌, 진세노사이드의 함량증가 2920백국균을 이용한 발효 흑삼 추출물을 유효성분 으로 함유하는 항노화 화장품 조성물 (1019037100000)백국균을 이용한 흑삼 추출물 2018.09. 2121활성탄 처리에 의한 흑삼 농축액의 유해성분 활성탄 처리에 의한 흑삼 농축 2018.02.	14			2010.06.
16 육삼 제조방법 (1010588/50000) 함량 17 17 흑삼의 제조방법 및 이를 이용하여 제조된 조사포닌, 진세노사이드 Rg3 2012.09. (Ginsenoside Rg3) 11 18 흑삼 제조방법 (1011815150000) 조사포닌, 진세노사이드의 2012.09. 이성 함량증가 04 19 자외선 조사 단계를 포함하는 흑삼 제조방 참당증가 2012.05. 법(1011528270000) 함량증가 29 20 □로 함유하는 항노화 화장품 조성물 (1019037100000) 의한 흑삼 농축액의 유해성분 활성탄 처리에 의한 흑삼 농축 2018.02.	15		,	
17흑삼의 제조방법 및 이를 이용하여 제조된 흑삼 (1011835410000)조사포닌, 진세노사이드 Rg3 (Ginsenoside Rg3)2012.09. 1118흑삼 제조방법 (1011815150000)조사포닌, 진세노사이드의 함량증가2012.09. 0419자외선 조사 단계를 포함하는 흑삼 제조방 법(1011528270000)조사포닌, 진세노사이드의 환량증가2012.05. 2920백국균을 이용한 발효 흑삼 추출물을 유효성분 으로 함유하는 항노화 화장품 조성물 (1019037100000)백국균을 이용한 흑삼 추출물 성분 기반 화장품 조성물2018.09. 2121활성탄 처리에 의한 흑삼 농축액의 유해성분활성탄 처리에 의한 흑삼 농축 2018.02.	16	흑삼 제조방법 (1010588750000)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
18흑삼 제조방법 (1011815150000)조사포닌, 전세노사이드의 함량증가2012.09. 0419자외선 조사 단계를 포함하는 흑삼 제조방 법(1011528270000)조사포닌, 진세노사이드의 2012.05. 2920백국균을 이용한 발효 흑삼 추출물을 유효성분으로 함유하는 항노화 화장품 조성물 (1019037100000)백국균을 이용한 흑삼 추출물 2018.09. 2121활성탄 처리에 의한 흑삼 농축액의 유해성분 활성탄 처리에 의한 흑삼 농축 2018.02.	17		조사포닌, 진세노사이드 Rg3	
19자외선 조사 단계를 포함하는 흑삼 제조방 법(1011528270000)조사포닌, 진세노사이드의 환량증가2012.05. 2920백국균을 이용한 발효 흑삼 추출물을 유효성분 으로 함유하는 항노화 화장품 조성물 (1019037100000)백국균을 이용한 흑삼 추출물 성분 기반 화장품 조성물2018.09. 2121활성탄 처리에 의한 흑삼 농축액의 유해성분활성탄 처리에 의한 흑삼 농축 2018.02.	18	흑삼 제조방법 (1011815150000)	, , , , , , , , , , , , , , , , , , , ,	
20 으로 함유하는 항노화 화장품 조성물 백국균을 이용한 옥삼 주술물 2018.09. 성분 기반 화장품 조성물 21 활성탄 처리에 의한 흑삼 농축액의 유해성분 활성탄 처리에 의한 흑삼 농축 2018.02.	19	법(1011528270000)	조사포닌, 진세노사이드의	2012.05.
9	20	으로 함유하는 항노화 화장품 조성물		
	21	활성탄 처리에 의한 흑삼 농축액의 유해성분		

- 흑삼의 제조공정, 성분, 함량, 가공공정 관련 논문 조사

구 논문명	내용	저널명
-------	----	-----

	홍삼 및 흑삼의 제조 시 증숙 및 건 조온도가 Benzo(a)pyrene 생성에 미 치는 영향	홍상/흑삼의 제조 조건에 따른 Benzo(a)pyrene 생성 변화	Korean Soc. Food Sci. Nutr
	증숙 횟수에 따른 고려인삼의 이화학 적 특성 변화	증숙별 이화학적 변화	Ginseng Research
제 조	새로운 자동 구증구포방법에 의한 인 삼사포닌의 변환 및 이화학적 특성	흑삼 제조 과정에 의한 ginsenoside 및 벤조피렌 함량 분석	Plant Research
공 정	흑삼 제조과정 중 증포 횟수에 따른 에탄올 추출물의 항산화 활성	증포별 Rg1, Rb1 및 페놀, 벤조피렌 함량 비교	Korean Soc Food Sci Nutr
	수삼의 증숙 횟수에 따른 페놀산 함 량 변화와 라디칼 소거활성	수삼의 증숙 횟수에 따른 페놀 함량 비교	Ginseng Research
	흑삼 제조과정 중 증포 횟수에 따른 색상 및 진세노사이드 함량 변화	흑삼 제조 과정에 따른 ginsenoside 함량 및 벤조 피렌 함량 조사	Medicinal Crop Sci
성 분 분	Repetitious steaming-induced chemical transformations and global quality of black ginseng derived from panax ginseng by HPLC ESI-quality of black ginseng derived from panax ginseng by HPLC ESI-MS/MSn based chemical profiling approach	흑삼의 화학성분 프로파일 링	Biotechnology a n d Bioprocess Engineering
석	흑삼(구증구포인삼)이 혈당 강하에 미치는 영향 및 증포별 ginsenoside 조성 변화	흑삼의 증포별 ginsenoside 조성 변화 분석	FOOD SCI
	흑삼의 화학성분 및 생리활성에 대 한 최근 연구	흑삼의 가공방법과 이화학 적특성, 화학성분, 흑삼의 기능성	Pharmacogn
	Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC - ELSD	홍삼, 흑삼 진세노사이드 함량 비교 (HPLC)	Pharmaceutica 1 and Biomedical Analysis
함 량 평 가	Integrated evaluation of malonyl ginsenosides, amino acids and polysaccharides in fresh and processed ginseng	수삼, 가공삼의 malonyl ginsenosides, amino acids andpolysaccharides 함량 비교	Pharmaceutica l and Biomedical Analysis
	Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC - ELSD	ginsenoside LC 밸리데이 션 및 정량	Pharmaceutica l and Biomedical Analysis
가고	Ginsenoside Rg3의 함량증가를 위한 변환 기술	Ginsenoside Rg3의 함량 증가를 위한 변환 기술	Medicinal Crop Sci
공 장	Purification, compositional analysis and antioxidant properties of polysaccharides from black ginseng	흑삼으로부터 다당체 분리 및 정제	Journal of Pharmaceutica l Research

- 흑삼(홍삼)에 함유된 진세노사이드를 분석하는 논문을 전부 검색하여 확인한 결과, 함량의 편차는 상당히 높았음
- 흑삼(홍삼)에 함유된 진세노사이드의 편차가 큰 이유는 ① 특허 및 논문에서 제조방법이 고정이 안 되었다는 점(직접제조샘플, 구입한샘플). ② 사용된 인삼의 샘플이 동일하지 않은 조건에서 분석되었다는 점(상용된 인삼의 년근, 인삼 부위의 세분화(세근을포함의 유무) 정도가 다름). ③ 추출방법이 각 분석마다 다르다는 점(열수추출, 알코올추출은 진세노사이드의 추출강도가 차이가남)이 확인되었음
- 하지만 문헌상 공통적으로 ginsenoside Rg5, Rk1, Rg3의 함량은 공통적으로 증가함을 확인함(증가의 편차는 매우 큼)
- 분석한 결과로 보았을 때, 흑삼과 홍삼에서는 Rkl, Rg5가 크게 차이나고, Rg3도 어느 정도 차이를 나타내는 것을 확인함. 따라서 이를 토대로 지표성분 설정이 가능함.
- 1세부에서 확립된 제조공정 확립방법의 결과에서, 증포의 횟수를 증가시키거나, 급격한 온도의 상승, 빠른 건조를 위한 건조온도 상승 등의 요인을 분석한 결과로 보았을 때, 인삼(백삼)의 지표성분인 Rgl 및 Rbl의 함량의 거의 0에 가까움
- 따라서, 고가의 흑삼의 유통질서를 확립하고 및 무분별한 흑삼제조를 확인할 수 있는 마케로는 Rg1 및 Rb1도 포함시키고, 표준화 제조된 흑삼과 홍삼에서 차이가나는 Rk1, Rg5, Rg3의 포함하는 분석법이 필요할 것으로 판단됨.

2절. 제조방법, 공정의 표준화 연구

○ 원료삼 구입

- 원료삼 구입: 전북지역(진안, 고창)에서 재배된 4,5,6년근 인삼(Panax ginseng C.A. Meyer)을 9~11월에 농가에서 채굴시 직접 구입함.
- 동일 삼포에서 개체당 약 70g(중편), 50g(소편)인 인삼 두종류를 구입하여 실험함.

○ 흑삼 제조 연구 (pilot scale)

- 원통형 세척기를 이용하여 인삼이 최대한 상처가 생기지 않도록 하여 흙, 비닐 등 이 물질을 깨끗이 제거하여 흑삼 제조에 이용함
- 진안홍삼연구소에 구축된 산업용 Pilot 증삼기와 건조시설을 이용하여 흑삼을 제조함
- 증삼 조건: 95℃ 3시간, 6시간, 9시간 단위로 반복 증삼을 실시함
- 건조 조건: 50℃에서 건조시설을 이용하여 건조함

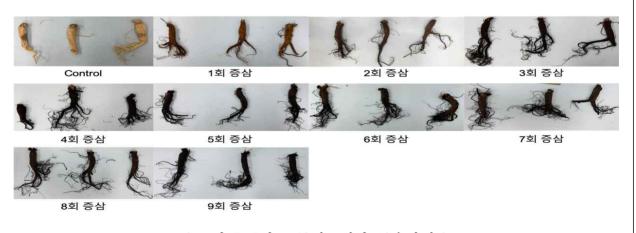
4, 5 or 6	-	T95	-	6h	-	1	B or S
년근		온도		증삼 시간		증삼 횟수	B 중편, S 소난

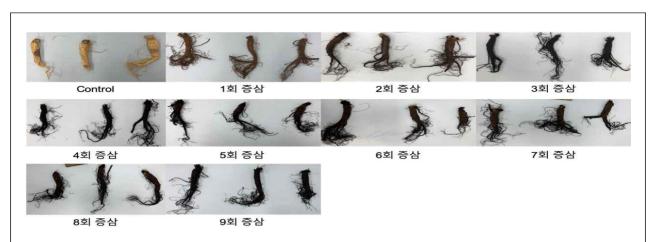
〈표 1. 시료의 명칭 〉

공정	온도	시간	열원	상세설명
예열	실온-95℃	50분	습열+건열	- 증기와 건열로 챔버 예열
중숙	95℃	3, 6, 9 시간	습열+건열	- 95℃로 3, 6, 9시간 증숙 - 증숙 후 냉각수를 이용하여 온 도 하강
건조	50℃	2시간	열풍 건조기	- 챔버 설정 온도 50℃로 2시간 건조 후 다음 증삼을 위해 24시 간 실온 건조

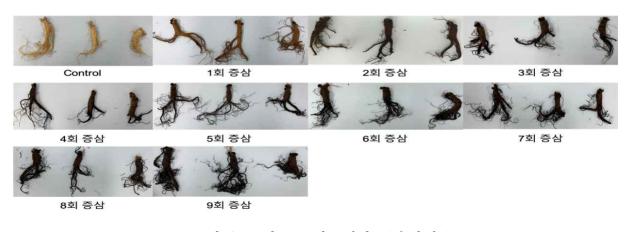
〈 표 2. 증숙 공정과정 〉

〈 그림 3. 4년근 중편 3시간 증숙과정 〉

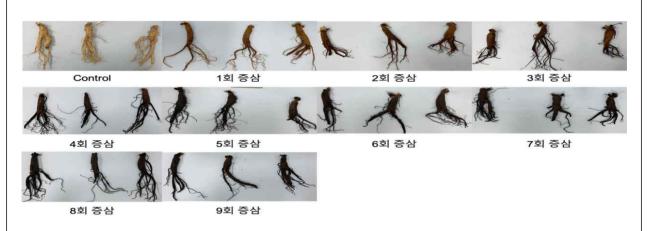

〈 그림 4. 4년근 중편 6시간 증숙과정 〉


〈 그림 5. 4년근 중편 9시간 증숙과정 〉

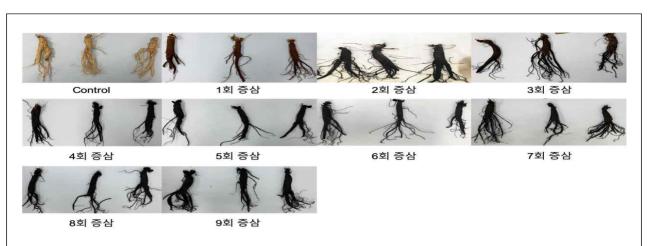
〈 그림 6. 5년근 중편 3시간 증숙과정 〉

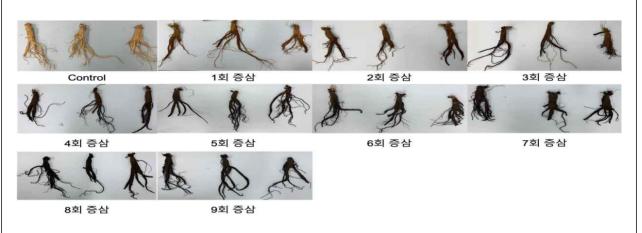

〈 그림 7. 5년근 중편 6시간 증숙과정 〉

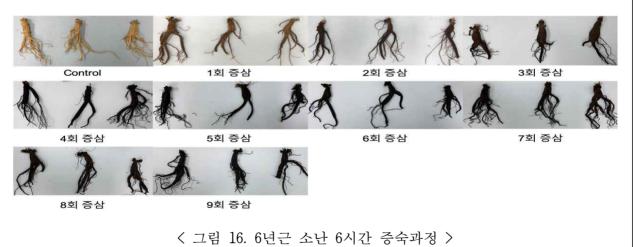

〈 그림 8. 5년근 중편 9시간 증숙과정 〉

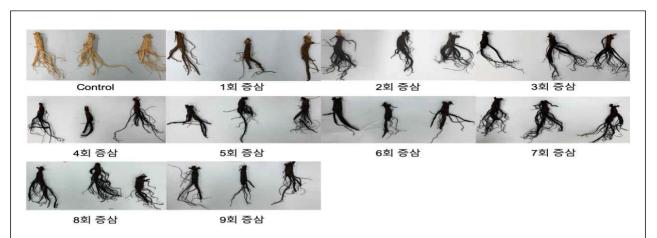

〈 그림 9. 5년근 소난 3시간 증숙과정 〉

〈 그림 10. 5년근 소난 6시간 증숙과정 〉


〈 그림 11. 5년근 소난 9시간 증숙과정 〉


〈 그림 12. 6년근 중편 3시간 증숙과정 〉


- 13 -

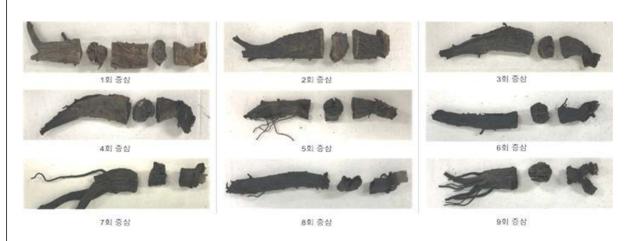

〈 그림 14. 6년근 중편 9시간 증숙과정 〉

〈 그림 15. 6년근 소난 3시간 증숙과정 〉

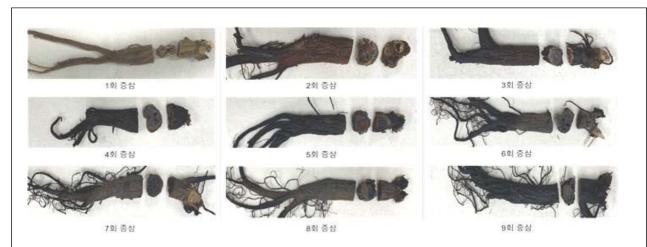
(- 1 10, 0 - 1 - 0 - 1 - 0 - 1 - 0 - 7

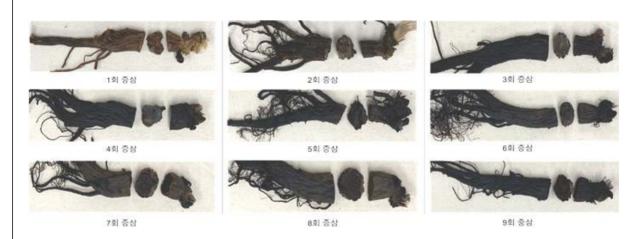
〈 그림 17. 6년근 소난 9시간 증숙과정 〉

○ 제조시료 절단면 관찰 (주관: (재)진안홍삼연구소)


- 증숙 공정이 진행되는 동안 수삼의 동체의 내공 및 균열이 발생하게 되면 균열을 통해 생리활성 물질들이 수삼 외부로 유출된다. 내공이나 내백 등 내부결함이 발생되는 근본 적인 원인은 증숙온도, 시간의 영향이 있으며, 또한 재배과정에서 토양의 비옥도나 기후, 영양부족 등 여러 가지 요인이 있다. 따라서 연근별 형태(중편, 소난)에 대한 증숙시간 차이에 대한 균열, 내공, 내백의 발생을 관찰하였다.
- 연근별로 절단면을 관찰하였을 때 3시간 증숙 과정에서는 1회 증숙부터 9회 증숙까지 균열, 내공, 내백이 발생되지 않았다. 6시간 및 9시간 과정에서는 1회부터 균열 및 내공이 관찰되었으며, 내백은 관찰되지 않았다. 이상의 결과로부터 3시간 증숙 과정이 내공및 균열 발생을 줄일 수 있는 공정으로 판단된다.

〈 그림 18. 4년근 3시간 증숙 횟수별 단면 〉


〈 그림 19. 4년근 6시간 증숙 횟수별 단면 〉


〈 그림 20. 4년근 9시간 증숙 횟수별 단면 〉

〈 그림 21. 5년근 3시간 중편시료 증숙 횟수별 단면 〉

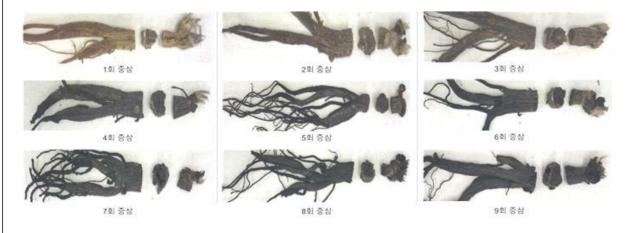
〈 그림 22. 5년근 6시간 중편시료 증숙 횟수별 단면 〉

〈 그림 23. 5년근 9시간 중편시료 증숙 횟수별 단면 〉

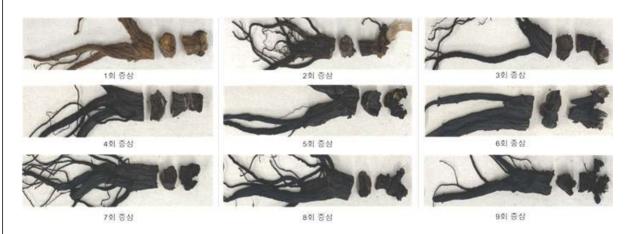
〈 그림 24. 5년근 3시간 소난시료 증숙 횟수별 단면 〉

〈 그림 25. 5년근 6시간 소난시료 증숙 횟수별 단면 〉

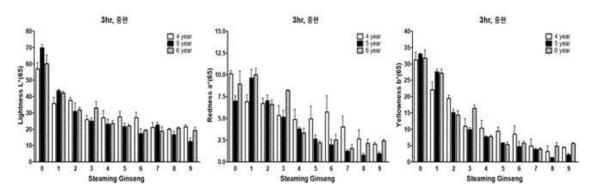
〈 그림 26. 5년근 9시간 소난시료 증숙 횟수별 단면 〉

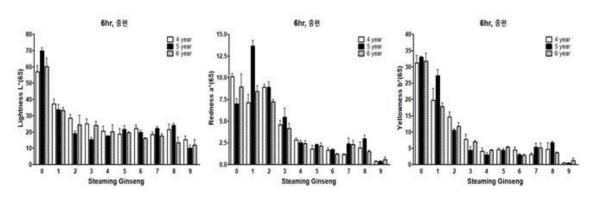

〈 그림 27. 6년근 3시간 중편시료 증숙 횟수별 단면 〉

〈 그림 28. 6년근 6시간 중편시료 증숙 횟수별 단면 〉

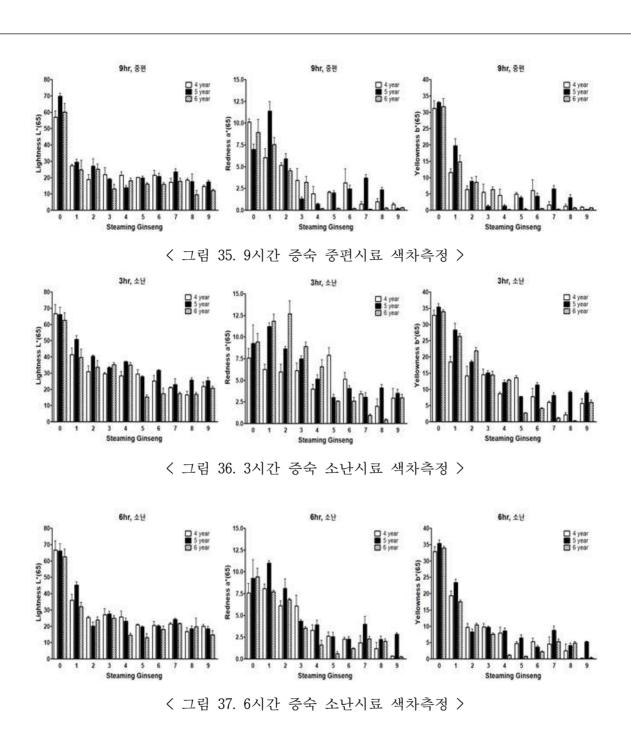

〈 그림 29. 6년근 9시간 중편시료 증숙 횟수별 단면 〉

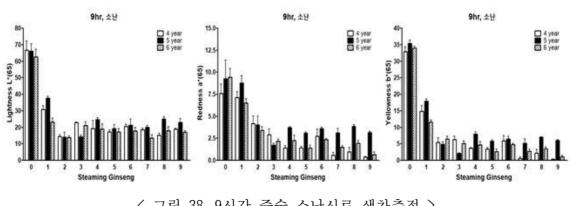
〈 그림 30. 6년근 3시간 소난시료 증숙 횟수별 단면 〉


〈 그림 31. 6년근 6시간 소난시료 증숙 횟수별 단면 〉


〈 그림 32. 6년근 9시간 소난시료 증숙 횟수별 단면 〉

○ 제조 시료 색차 관찰 (주관: (재)진안홍삼연구소)


- 각 배치별 시료에 대해 L값, a값, b값을 색차계로 측정하여 색도의 변화를 관찰하였음.
- 4, 5, 6년근 중편 시료의 색도의 변화를 살펴보면 L값의 경우 3회까지 급격히 감소하며 이후 비슷한 수준의 값으로 측정되었음. 5, 6년근의 a값의 경우 1회 증삼 시 홍삼의 고유의 색인 붉은색이 크게 증가하였으며, 그 이후 흑삼으로 제조됨에 따라 증삼을 거듭할수록 값은 감소하였다. b값의 경우 증삼과정을 거듭할수록 계속 감소하는 추세를 보였다.
- 4, 5, 6년근 소난 시료의 색도의 변화를 살펴보면 중편 시료와 마찬가지로 L값의 경우 3회까지 급격히 감소하며 이후 비슷한 수준의 값으로 측정되었음. 5, 6년근의 a값의 경우 3시간 과정에서 1회 증삼 시 홍삼의 고유의 색인 붉은색이 크게 증가하였으며, 그 이후 흑삼으로 제조됨에 따라 증삼을 거듭할수록 값은 감소하였다. b값의 경우 증삼 과정을 거듭할수록 계속 감소하는 추세를 보였다.



〈 그림 33. 3시간 증숙 중편시료 색차측정 〉

〈 그림 34. 6시간 증숙 중편시료 색차측정 〉

〈 그림 38. 9시간 증숙 소난시료 색차측정 〉

○ 흑삼 제조 연구 (Industrial scale) (협동: 국립원예특작과학원)

- 홍삼 증삼기와 건조시설 구비한 위탁 업체를 이용하여 흑삼을 제조함 (300 kg)

공정	온도	시간	열원	상세설명
예열	실온 → 90℃	40분	습열+건열	-증기와 건열로 챔버 예열
중숙	90°C → 95°C → 90°C	5시간	습열〈건열	가열단계 - 건열은상시 On, 습열은 분사를 제어 (40초 간격 1초 증기 분 사) 하며 증숙 - 설정 피크 점 95℃까지 20분에 도달 증숙단계 - 95℃로(±2℃), 5시간 증숙 후숙단계 - 열원 OFF, 40분 후숙 (90℃로 온도 하강)
건조	55℃	6시간	제습 건조기	- 챔버 설정 온도 55℃로 6시간 가온 후 15시간 냉

〈 표3. 흑삼 제조공정 〉

○ 흑삼 증포 횟수에 따른 외형

6년근 중편

5년근 중편

〈 그림 39. 5,6년근 중편 5시간 증숙 제조시료 〉

〈 그림 40. 5,6년근 소난 5시간 증숙 제조시료 〉

○ 흑삼의 진세노사이드 분석방법(안) 설정 (주관: (재)진안홍삼연구소)

- 홍삼과는 달리 Rgl 및 Rbl도 포함시키고, 표준화 제조된 흑삼과 홍삼에서 차이가나는 Rkl, Rg5, Rg3의 포함하는 분석법

1. 시험방법의 요약

본 시험법은 증류수 및 유기용매를 이용하여 시료로부터 충분히 진세노사이드 성분을 추출하여 액체크로마토그래프(HPLC) 및 자외선흡광광도검출기(UV)를 이용하여 분석하는 방법으로 최대 흡수파장인 203 nm에서 정량분석을 한다.

2. 장비 및 재료

- 2.1 실험실 장비 및 소모품
 - 2.1.1 환류용 플라스크
 - 2.1.2 수욕조
 - 2.1.3 환저플라스크
 - 2.1.4 감압농축기
 - 2.1.5 부피플라스크(10 mL 및 50 mL)

- 2.1.6 용매용 일회용 실린지
- 2.1.7 여과용 멤브레인 필터
- 2.1.8 액체크로마토그래프용 유리병
- 2.2 분석장비
- 2.2.1 고속액체크로마토그래프(HPLC)
- 2.2.2 자외부흡광광도검출기(UV)
- 2.2.3 온도 설정이 가능한 컬럼오븐
- 2.2.4 옥타데실실릴화한한 컬럼(안지름 4.6 mm, 길이 250 mm, 충진재 3-5um octadecyl silica) 또는 이와 동등한 것을 권장함
- 2.3 분석장비의 준비
- 이동상은 아세토니트릴과 증류수를 이용하여 용매를 분당 1.0 mL를 충분한 시간동안 흘려 안정화 시킨다.
- 3. 표준물질 및 일반시약
- 3.1 표준물질
 - 3.1.1 전세노사이드 Rb1(ginsenoside Rb1), 전세노사이드 Rg1(ginsenoside Rg1), 진세노사이드 Rg3(ginsenoside Rg3), 진세노사이드 Rg5(ginsenoside Rg5), 진세노사이드 Rk1(ginsenoside Rk1)
- 3.2 일반시약
- 3.2.1 메탄올(Methanol)
- 4. 시험과정
- 4.1 표준용액의 조제
 - 4.1.1 진세노사이드 Rg1, Rb1, Rg3, Rk1 및 Rg5를 각각 10 mg씩 10 mL 부피플라스크에 넣는다.
 - 4.1.2 메탄올을 이용하여 완전히 녹인 다음 메탄올을 표선까지 채운다(1 mg/mL).
 - 4.1.3 적당히 희석하여 표준용액으로 만든다.
- 4.2 시험용액의 조제
- 4.2.1 흑삼분말시료
- 4.2.1.1 시료 약 1 g을 정밀히 달아 250 mL 환류용 플라스크에 취한다.
- 4.2.1.2 70% 메탄올 용액 50 mL를 가하여 70~80℃ 수욕에서 1시간 화류 냉각한다.
- 4.2.1.3 식히고, 원심분리한 다음 상징액을 환저플라스크에 취한다.
- 4.2.1.4 잔류물에 대해서 1회 더 반복한다.
- 4.2.1.5 환저플라스크에 옮긴 상징액을 수욕 중에서 60℃이하에서 감압농축한다.

4.2.1.6 농축물을 증류수 2 mL에 용해한다.

4.2.1.7 멤브레인 필터 $(0.45~\mu\mathrm{m})$ 로 여과하여 시험용액으로 한다.

5. 분석조건

5.1 기기분석

표 4. 고속액체크로마토그래프(HPLC) 조건(예)

항목	조건
주입량	10 uL
검출기 파장	203 nm
컬럼온도	30℃
이동상 종류	A(증류수), B(아세토니트릴)
이동상의 유속	1.0 mL/분

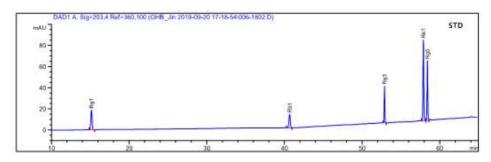
표 5. 이동상 기울기 조건

	İ	
시간(분)	A(증류수)	B(아세토니트릴)
Int	82	18
10	80	20
30	73	27
40	70	30
55	49	51
56	30	70
71	5	95
76	5	95
77	82	18
85	82	18

6. 계산

6.1 진세노사이드 Rg1, Rb1, Rg3, Rk1, Rg5 함량(mg/g) = C × (a×b)/S × 1/1,000

C : 시험용액 중 개별 진세노사이드 농도(μg/mL)


a : 시험용액의 전량(mL)

S : 시료 채취량(g)

b : 희석배수 1/1,000 : 단위 환산 계수

○ 지표성분 후보인 진세노사이드 Rg1, Rb1, Rg3, Rk1 및 Rg5의 동시분석법 밸리데이션

- 흑삼의 지표물질 진세노사이드 Rg1, Rb1, Rg3, Rk1, Rg5에 대한 정량분석 및 밸리데이 션을 진행하였다. 진세노사이드 Rg1, Rb1, Rg3, Rk1, Rg5 표준품과 추출물을 각각 100% MeOH, 70% MeOH에 녹여 HPLC (Agilent 1200 series, DAD detector)를 이용하여 분석하였고, Eclips Plus C18 (4.6 X 150 mm, 3.5 μm) 컬럼을 이용하여 203nm에서 측정하였다.
- 특이성 : 불순물, 분해물, 배합성분등의 혼재 상태에서 분석대상 물질을 선택적으로 정확하게 측정할 수 있는 능력으로 표준물질 0.1 mg/ml과 추출물 0.1 mg/ml을 HPLC를 이용하여 분석하였을 때, 첨가제 및 주변 화합물들이 지표물질의 retention time에 영향을 주지 않았으며, 높은 분리도를 보였다.

〈 그림 41. 특이성(specificity) 크로마토그램 〉

- 정확성 : 측정값이 이미 알고 있는 참값이나 표준값에 근접한 정도를 말하며, 근접정도 90.86 ~ 108.05%를 나타내어 규격범위인 80~120%내에 있어 적합한 것으로 나타났다.

	22 2 2	Intra-day (n=5)		I	nter-day (n=3)		
Analyte	Nominal concentration (mg/ml)	Observed concentration (n=5) Mean ± SD	Accuracy (%)	Precision (%)	Observed concentration (n=5) Mean ± SD	Accuracy (%)	Precision (%
	0.01852	0.0178±0.0006	96.17	3.18	0.019±0.0009	102.78	4.7
Ginsenoside Rg1	0.0885	0.0851±0.0004	96.20	0.43	0.0891±0.0009	100.64	1.0
	0.463	0.4431±0.005	95.70	1.10	0.4599±0.0038	99.33	0.8
	0.01844	0.0174±0.0003	94.59	1.46	0.0185±0.0003	100.53	1.8
Ginsenoside Rb1	0.0922	0.0904±0.0009	98.05	0.94	0.0938 ± 0.001	101.76	1.10
	0.461	0.4661±0.0044	101.10	0.96	0.4847±0.0041	105.15	0.8
	0.0177	0.0185±0.001	104,45	5.45	0.0194±0.0002	106.07	1.2
Ginsenoside Rg3(s)	0.0885	0.0928±0.0006	104.86	0.70	0.0987±0.0012	107.69	1.1
	0.4425	0.4781±0.0041	108.05	0.87	0.5089±0.0043	111.05	0.8
	0.0196	0.0195±0.0002	99.45	1.12	0.0188±0.0002	99.76	1.2
Ginsenoside Rk1	0.098	0.0988±0.0009	100.85	0.87	0.0945±0.0011	100.61	1.1
	0.49	0.5104±0.005	104.17	0.95	0.4894±0.0041	104.21	0.8
	0.017	0.0155±0.0002	91.07	1.26	0.0156±0.0001	91.99	0.9
Ginsenoside Rg5	0.085	0.0772±0.0006	90.86	0.81	0.079±0.0009	92.93	1.2
	0.425	0.3961±0.003	93.19	0.86	0.4103±0.0034	96.56	0.8

〈 표 6. 일간분석 및 일내분석 결과〉

- 정량한계와 검출한계: 정확성, 정밀성이 확보된 기기분석방법을 통하여 정량값으로 표현할 수 있는 시료 중 분석대상물질의 최소량인지 확인. 검량선은 검출한계에 근접한 분석 대상물질을 함율하는 검체를 가지고 작성되어야 한다. 회귀직선에서 잔차의 표준편차 또는 회귀직선에서 V절편의 표준편차를 이용할 수 있다.

Analyte	Regression equation (Y=aX+b)	R^2	Linear range (µg/mL)	LOD ^a (µg/mL)	LOQ ^b (µg/mL)
Ginsenoside Rg1	Y=2.1157X + 2.2034	0.9996		1.69	5,64
Ginsenoside Rb1	Y=6.0235X + 1.8653	11.		2.73	9.1
Ginsenoside Rg3(s)	Y=1.837X + 1.201	0.9996	2.5 μg - 200 μg	2.68	8,94
Ginsenoside Rk1	Y=3.9127X + 0.6506	0.9998		2.33	7.76
Ginsenoside Rg5	Y=4.303X + 2.0648	0.9998		2.6	8.66

*LOD refer to the limits of detection, S/N=3.3. bLOQ refer to the limits of quantiry, S/N=10.

〈 표 7. 정량한계 및 검출한계〉

- 직선성 : 실험방법이 일정 범위에 있는 검체 중 분석 대상 물질의 양(또는 농도)에 대하여 직선적인 측정값을 얻어낼 수 있는 능력을 말하며, 표준품을 7개 농도별로 희석하여 검량선을 확인하였을때, 0.0025mg/ml ~ 0.5mg/ml 내에서 유효한 직선성이 나타났다.

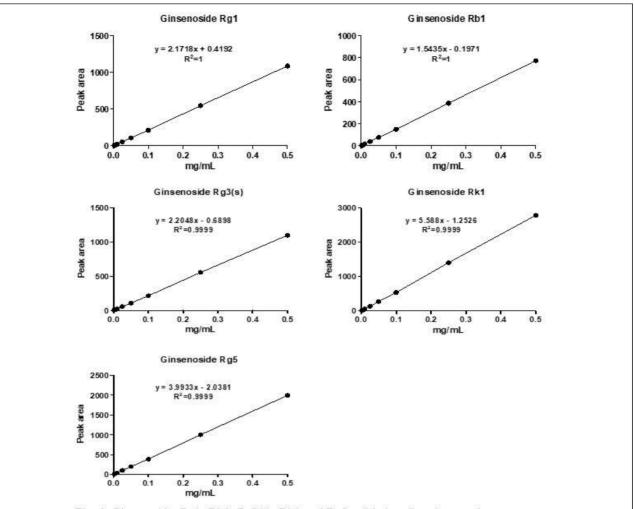


Fig. 1. Ginsenoside Rg1, Rb1, Rg3(s), Rk1 and Rg5 validation linearity graph.

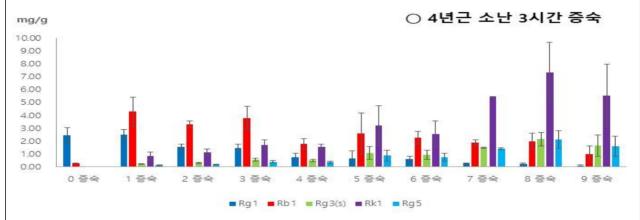
〈그림 42. Ginsenoside 검량선 그래프〉

- 정밀성 : 균일한 검체로부터 여러 번 채취하여 얻은 시료를 정해진 조건에 따라 측정하였을 때 각각의 측정값들 사이의 근접성(분산정도)을 나타내는 것으로, 흑삼의 진세노사이드 함량이 아래와 같이 나타나, 측정값들 사이의 높은 근접성을 보였다.

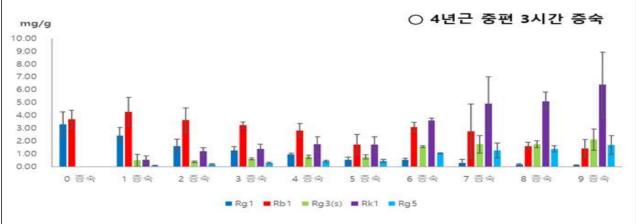
Analyte	Con. (g/12.5 ml)	Retention	Area (UV sec)	Height (UV)	Con (g/12.5 ml)	Retention	Area (UV sec)	Height (UV)	Con. (g/12.5 ml)	Retention	Area (UV sec)	Height (UV)
	0.2548	15.185	75.54031	6.49254	0.5086	15,242	149.10706	13.01849	0.7518	15.159	218.32188	18.6001
	0.2571	15.19	76.13428	6.50006	0.5026	15.239	146.74223	12.6896	0.7725	15.409	225.16187	19.232
Ginsenoside Rgl	0.2557	15.114	74.49746	6.38702	0.5212	15.236	150.29106	12.94691	0.7801	15,401	221.16385	18.8086
	0.2507	15.214	75.47066	6.53285	0.5003	15.268	147,05898	12.69438	0.7756	15,377	224.01031	19.825
	0.27	15.213	80.1329	6.83366	0.5122	15.289	150.17889	12.74756	0,7565	15.387	222,43578	19,1998
Amlyte	Con. (g/12.5 ml)	Retention time	Area (UV sec)	Height (UV)	Con (g/12.5 ml)	Retention time	Area (UV sec)	Height (UV)	(g/12.5 ml)	Retention	Area (UV sec)	Heigh (UV)
	0.2548	40.766	145.62802	11.92883	0.5086	40.795	298.13422	24.50673	0.7518	40.938	428.73019	32,4809
	0.2571	40.474	148.61659	11.95861	0.5026	40.85	293,43024	23.18324	0.7725	40.952	442.94788	34.1531
Ginsenoside Rbl	0.2557	40.707	155,68275	12.3262	0.5212	40.857	303,98779	25,20779	0,7801	40.913	432.9823	32,6188
	0.2507	40.722	145.41579	11.53315	0.5003	40.871	291,19131	22.9079	0,7756	40.93	441,12491	33.0243
	0.27	40.79	158,54993	12.59007	0.5122	40.84	293,72073	22.87925	0.7565	40.93	445.22543	36,0873
Amilyte	Con. (g/12.5 ml)	Retention	Area (UV sec)	Height (UV)	Con (g/12.5 ml)	Retention time	Aren (UV sec)	Height (UV)	Con. (g/12.5 ml)	Retention	Area (UV sec)	Heigh (UV)
	0.2548	52.936	24.82246	3.79985	0.5086	52.943	53.775	8.08718	0.7518	52.979	76.63692	11.5451
	0.2571	52.812	25.8269	3.93443	0.5026	52.923	51.06036	7,70146	0.7725	52,968	77.53343	11,7848
Ginsenoside Rg3(s)	0.2557	52.916	26.09196	4.10422	0.5212	52.928	51.69163	7.86289	0.7801	52,977	73.41586	11.0916
	0.2507	52.923	24.39005	3.82218	0.5003	52.965	50.25421	7.61951	0.7756	52,984	75.62687	11,2777
	0.27	52.941	28.26354	4.25007	0.5122	52.946	51.76749	7.80856	0.7565	52,981	76.03512	11.2808
Amlyte	Con. (g/12.5 ml)	Retention time	Area (UV sec)	Height (UV)	Con (g/12.5 ml)	Retention time	Area (UV sec)	Height (UV)	Con. (g/12.5 ml)	Retention time	Area (UV sec)	Heigh (UV)
	0.2548	57.927	50.00196	5.81587	0.5086	57,922	98.8483	11.64585	0.7518	57,957	153,86801	16.9113
	0.2571	57.785	59.25757	6.26061	0.5026	57.893	96.29906	11.49271	0.7725	57.947	158.5715	17.5060
Ginsenoside Rk1	0.2557	57,892	51.39489	6.053	0.5212	57,909	99.01479	11.74381	0.7801	57.956	144,50723	16.3418
	0.2507	57,891	50.72054	5.99468	0.5003	57,919	95.86832	11.23758	0.7756	57.932	150.61047	16.9130
	0.27	57.912	53.64739	6.33481	0.5122	57.92	113.5586	12.33059	0.7565	57.943	156.60709	17,2578
Analyte	Con. (g/12.5 ml)	Retention time	Area (UV sec)	Height (UV)	Con (g/12.5 ml)	Retention time	Area (UV sec)	Height (UV)	Con. (g/12.5 ml)	Retention time	Area (UV sec)	Heigh (UV)
	0.2548	58.469	50.91105	7.16509	0,5086	58.456	102.59056	14.60651	0.7518	58.497	151,13478	20.8956
	0.2571	58.323	55.74092	7.39057	0.5026	58.427	99.85924	13.95858	0.7725	58.483	156.18057	21.839
Ginsenoside Rg5	0.2557	58.439	54.33653	7.49856	0.5212	58.443	102.67715	14.50993	0.7801	58.486	142.59117	20.110
	0.2507	58.43	50.97828	7.09661	0.5003	58.463	100.05827	13,85023	0.7756	58.471	147.55783	20.2682
	0.27	58.448	55,92098	7.8529	0.5122	58.462	105.41242	14.63164	0.7565	58.488	151.69986	20.834

〈 표 8. 반복성측정 결과 〉

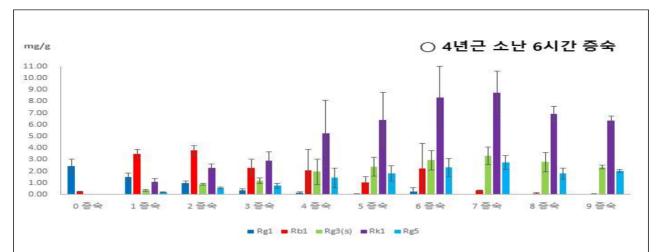
- 회수율: 세 가지 다른 농도의 진세노사이드 표준품을 흑삼분말에 spiking하여 3.2 추출 물 제조와 동일하게 추출한 후 진세노사이드 Rg1, Rb1, Rg3, Rk1, Rg5의 회수율을 구하 였다. 회수율은 0.1~0.25 mg/mL의 농도범위에서 80~120% 이내로 모두 적합하였다.

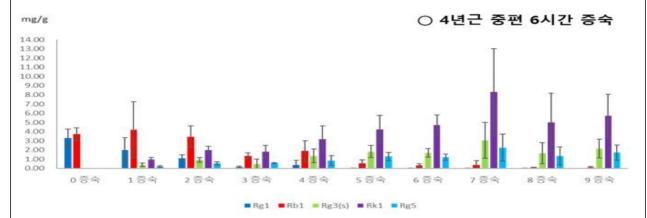

Analyte	Original (mg)	Spiked (mg)	Observed (mg)	Recorvery (%)	Mean (%)	RSD (%)
(-	0.2431	0.0902	0.3214	102.55		
Ginsenoside Rg1	0.2260	0.1266	0.3578	100.46	104.94	5.76
	0.2586	0.2258	0.4571	111.82		
	0.8372	0.0955	0.9216	100.57		
Ginsenoside Rb1	0.8392	0.1392	0.9653	101.59	102.00	1.64
	0.8579	0.2411	1.0672	103.84		
	0.2161	0.0789	0.3066	92.77		
Ginsenoside Rg3(s)	0.2133	0.1200	0.3477	91.08	92.47	1.38
	0.2435	0.2380	0.4657	93.57		
	0.2346	0.0978	0.3392	103.84		
Ginsenoside Rk1	0.2272	0.1368	0.3782	99.88	103.81	3.78
	0.2457	0.2479	0.4894	107.72		
	0.4870	0.0915	0.5656	102.48		
Ginsenoside Rg5	0.4814	0.1230	0.5972	101.26	104.54	4.46
	0.5196	0.2355	0.7097	109.88		

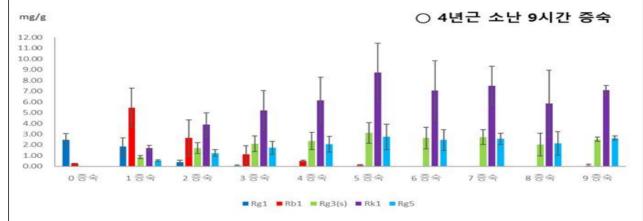
Recovery (%) = (observed amount - original amount)/spiked amount × 100%; RSD (%) = (S.D/mean) × 100%

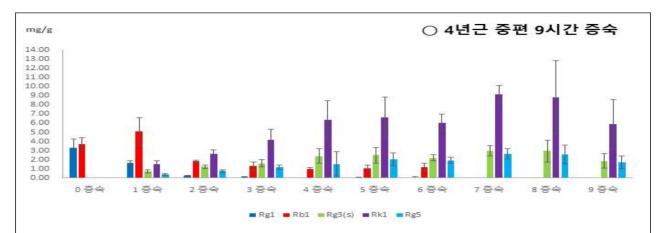

〈 표 9. Ginsenoside 회수율 측정 결과 〉

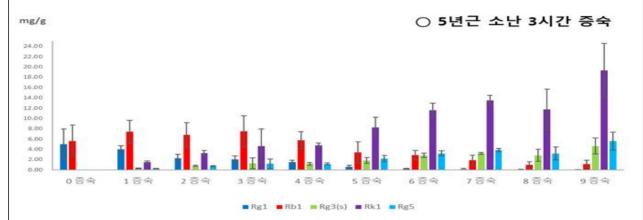
○ 각 배치별 진세노사이드 분석 (진안홍삼연구소 제조)

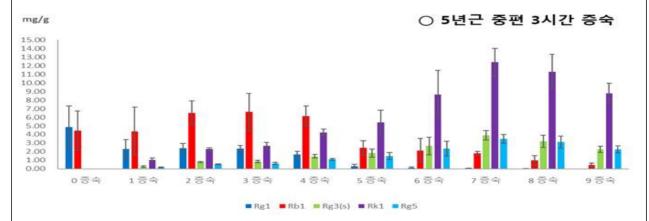

- 95℃ 3시간 증숙 과정에서 진세노사이드 Rg1은 3시간 증숙과정에서 1회 증숙과정부터 감소하여 8회 증숙과정 이후에는 거의 존재하지 않는 수준이었다. 진세노사이드 Rb1의 경우 1회 증숙과정에서 증가 후 점차 증숙과정을 거치면서 감소하였는데 9회 증숙까지 검출되었다. 진세노사이드 Rg3(s), Rk1, Rg5의 경우 9회 증숙까지 점차 증가하는 경향성을 보였다.
- 95℃ 6시간 증숙 과정에서 진세노사이드 Rgl은 1회 증숙과정부터 감소하여 5회 증숙과 정 이후에는 검출되지 않았다. 진세노사이드 Rgl은 7시간 이후 거의 존재하지 않았다. 진세노사이드 Rg3(s), Rk1, Rg5의 경우 5회 증숙까지 점차 증가하는 경향성을 보였으며 그 이후에는 비슷한 수준이었다. 업체 위탁가공시료도 비슷한 경향을 나타내었다.
- 95℃ 9시간 증숙 과정에서 진세노사이드 Rgl은 1회증숙과정부터 감소하여 3회 증숙과정 이후 검출되지 않았다. 진세노사이드 Rbl은 7회 증숙이후 검출되지 않았다. 진세노사이드 Rg3(s), Rk1, Rg5의 경우 4회 증숙까지 증가하다가 그 이후에는 비슷한 수준이었다.

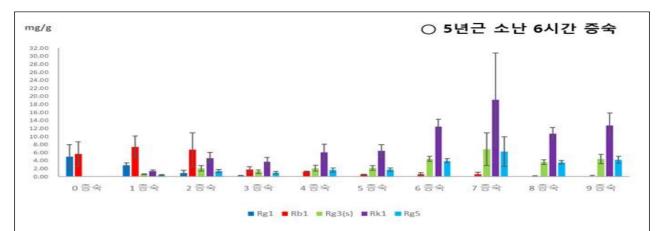

< 그림 43. 4년근 소난 3시간 증숙 횟수별 진세노사이드 함량변화 >

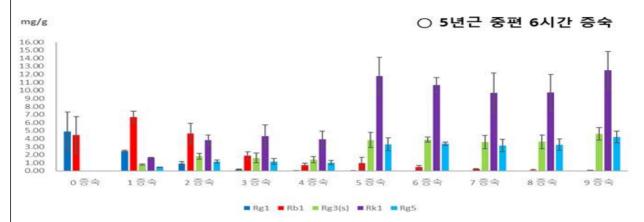

〈 그림 44. 4년근 중편 3시간 증숙 횟수별 진세노사이드 함량변화 〉

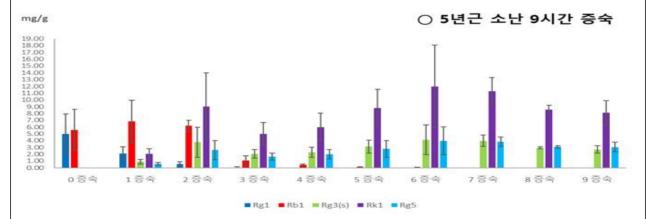

〈 그림 45. 4년근 소난 6시간 증숙 횟수별 진세노사이드 함량변화 〉

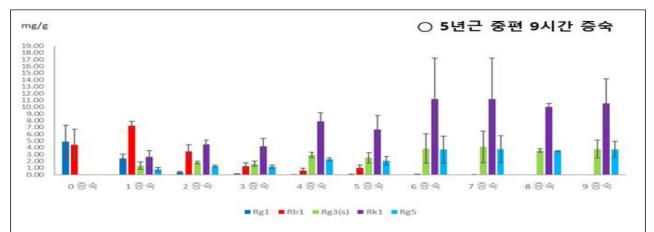

〈 그림 46. 4년근 중편 6시간 증숙 횟수별 진세노사이드 함량변화 〉

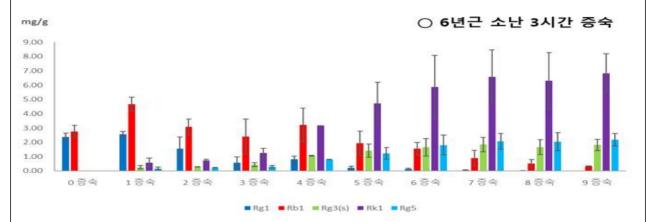

< 그림 47. 4년근 소난 9시간 증숙 횟수별 진세노사이드 함량변화 >

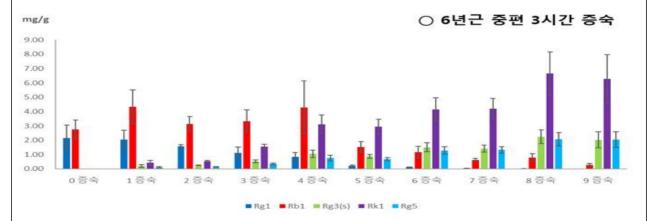

〈 그림 48. 4년근 중편 3시간 증숙 횟수별 진세노사이드 함량변화 〉

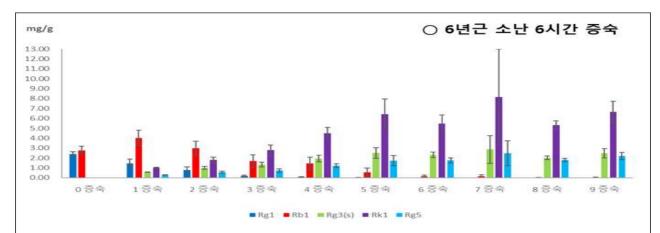

〈 그림 49. 5년근 소난 3시간 증숙 횟수별 진세노사이드 함량변화 〉


〈 그림 50. 5년근 중편 3시간 증숙 횟수별 진세노사이드 함량변화 〉

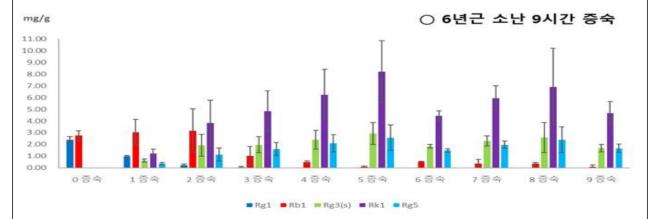

〈 그림 51. 5년근 소난 6시간 증숙 횟수별 진세노사이드 함량변화 〉

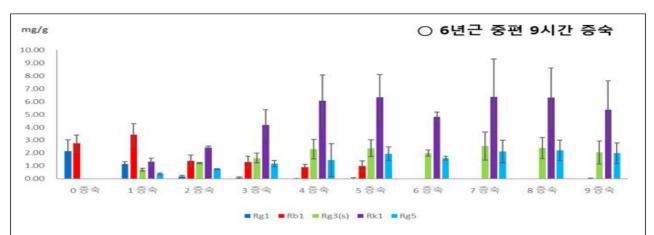

〈 그림 52. 5년근 중편 6시간 증숙 횟수별 진세노사이드 함량변화 〉


〈 그림 53. 5년근 소난 9시간 증숙 횟수별 진세노사이드 함량변화 〉

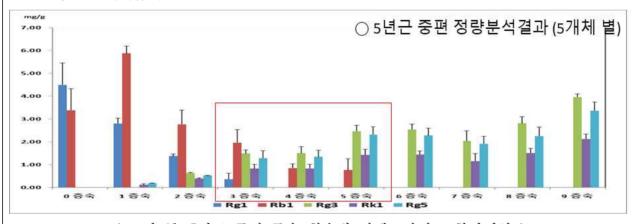

〈 그림 54. 5년근 중편 9시간 증숙 횟수별 진세노사이드 함량변화 〉

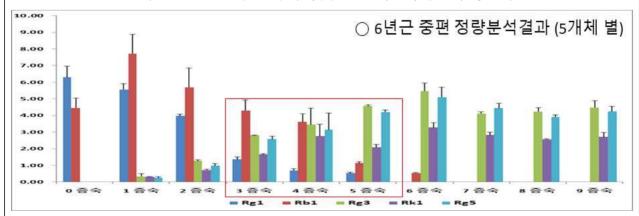

〈 그림 55. 6년근 소난 3시간 증숙 횟수별 진세노사이드 함량변화 〉


〈 그림 56. 6년근 중편 3시간 증숙 횟수별 진세노사이드 함량변화 〉

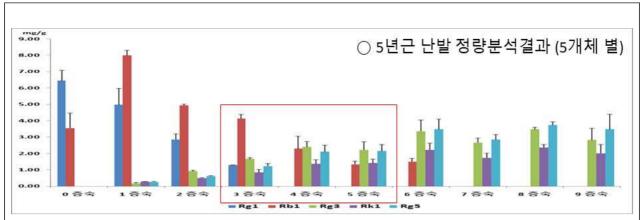

〈 그림 57 6년근 소난 6시간 증숙 횟수별 진세노사이드 함량변화 〉

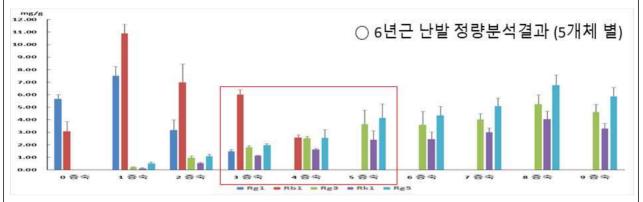
〈 그림 58. 6년근 중편 6시간 증숙 횟수별 진세노사이드 함량변화 〉


〈 그림 59. 6년근 소난 9시간 증숙 횟수별 진세노사이드 함량변화 〉


〈 그림 60. 6년근 중편 9시간 증숙 횟수별 진세노사이드 함량변화 〉

○ 각 배치별 진세노사이드 분석결과 (위탁제조-Industrial scale) (협동: 국립원예특작과학원)


- 5년 및 6년근의 중편삼, 및 난발삼 전체적으로 95℃에서 5시간 증숙 과정에서 진세노사이드 Rg1은 1회 증숙과정부터 감소하여 3회 증숙과정 이후에는 거의 존재하지 않는 수준이었다. 진세노사이드 Rb1의 경우 1회 증숙과정에서 증가 후 5-6회 정도에서는 검출되었다. 진세노사이드 Rg3(s), Rk1, Rg5의 경우는 5회 이상부터는 크게 차이가 나지 않는 경향을 나타냈다.

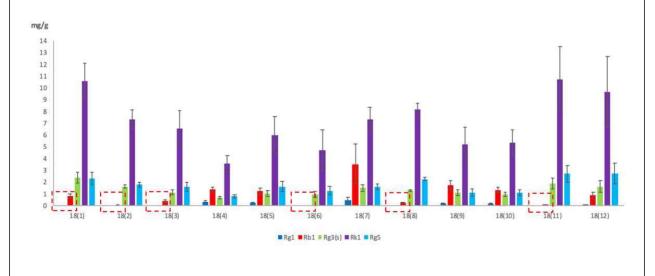

〈 그림 61. 5년근 중편 증숙 횟수별 진세노사이드 함량변화 〉

〈 그림 62. 6년근 중편 증숙 횟수별 진세노사이드 함량변화 〉

〈 그림 63. 5년근 난발 증숙 횟수별 진세노사이드 함량변화 〉

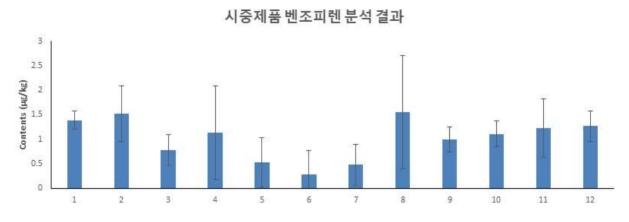
〈 그림 64. 6년근 난발 증숙 횟수별 진세노사이드 함량변화 〉

○ 흑삼 유통 제품 조사


- 시중에서 유통되는 흑삼(본삼)을 확보함
- 유통되는 흑삼은 충청도, 경기도, 전라도 등 전국적으로 다양하게 확보함
- 유통되는 흑삼(본삼의 경우)의 가격은 300 g당 최저에서 최고 가격으로 판매를 하고 있음

〈 그림 65. 시중유통제품 〉

○ 유통 제품 진세노사이드 분석


- 유통되는 12종의 흑삼제품에 대해 진세노사이드 분석을 실시하였다. 인삼의 지표성분으로 알려져 있는 Rgl, Rbl 성분이 모두 들어있지 않은 제품도 있었고, 절반이상에서 Rgl이 전혀 들어 있지 않은 결과를 확인하였다. 이는 흑삼을 7증이상 증숙하는 과정에서 분해된 것으로 판단된다.

〈 그림 66. 유통 제품 진세노사이드 함량 현황 〉

○ 유통 제품 벤조피렌 분석

- 현재 인삼산업법에서 정하고 있는 벤조피렌 규격은 2.0 μg/kg 이하 임.
- 시중 제품 중 일부 제품에서 벤조피렌이 초과검출 되었음.
- 제조한 시료 결과 9시간 증숙과정에서 벤조피렌 함량이 초과하는 현상이 발생하였고 그 에 대한 표준편차는 컸음.

〈 그림 67. 유통 제품 벤조피렌 함량 현황 〉

○ 인삼류의 검사기준(안) 연구

- 인삼산업법 시행규칙 일반검사에 대한 기준(별표 3의2)
- 제조 흑삼의 일반검사에 대한 기준 및 안전성평가에 대한 검사결과를 토대로 관리 규격 설 정

가. 수분

- 인삼산업법 내 수분함량의 기준규격은 15%이내이다. 장기저장시 수분함량은 홍삼 및 흑삼의 저장성을 결정하는데 있어 매우 중요한 요소이다. 수분함량이 높으면 미생물, 특히 곰팡이 번식이 우려된다. 각 배치별 제조시료에 대한 수분함량측정은 다음과 같이 수행하였다.
- 모든 과정에서 기준치인 15% 이하로 적합하였으며, 장기보관 시 외형적인 품질변화는 없었다.
- 시험방법근거: 식품공전 제 8.일반시험법 2.식품성분시험법 2.1 일반성분시험법 2.1.1 수 분 2.1.1.1 건조감량법)
- 1. 장비와 재료
- 1.1 실험실 장비 및 소모품
- 1.1.1 칭량접시
- 1.1.2 건조기
- 2. 시료 전처리 및 시액 조제
- 2.1 건조감량법
- 가. 상압가열건조법
- 1) 시험법 적용범위
 - 이 시험법은 식품의 종류, 성질에 따라서 가열온도를 ⑦98~110°C ⓒ100~103°C ⓒ 105°C 전후(100~110°C) 愈110°C이상으로 한다. 즉 ⑦는 동물성 식품과 단백질 함량이 많은 식품 ⑪는 자당과 당분을 많이 함유한 식품 ⑪는 식물성 식품 ⑪는 곡류 등의 신속법으로 쓰인다.
- 2) 분석원리

검체를 물의 끓는점보다 약간 높은 온도 105 ° C에서 상압건조시켜 그 감소되는 양을 수분량으로 하는 방법으로서 사열에 불안정한 성분과 휘발성분을 많이 함유한 식품에 있어서는 정확도가 낮은 결점이 있으나 측정원리가 간단하여 여러 가지 식품에 있어서 많이 이용된다.

3) 시험방법

미리 가열하여 항량으로 한 칭량접시에 검체 2 g을 정밀히 달아 (건조가 어려운 검체인 경우에는 20메쉬(mesh) 정제해사 20 g과 유리봉을 넣어 항량이 되게 하고 이에 검체를 넣어 잘 섞은 후 유리봉은 그대로 넣어둔다). 뚜껑을 약간 열어 넣고 각 식품마다 규정된 온도의 건조기에 넣어 4시간 건조한 후 데시케이터 중에서 약 30분간 식히고 질량

을 측정한다. 다시 칭량접시를 $1 \sim 2$ 시간 건조하여 항량이 될 때까지 같은 조작을 반복한다.

3. 결과값 계산

〈 그림 68. 각 배치별 수분 측정 〉

Contr	ol	5-T95-3H	-18	5-T95-31	H-2S	5-T95-31	H-3S	5-T95-3	H-4S	5-T95-3	H-5S	5-T95-3	H-6S	5-T95-3	H-7S	5-T95-3	H-8S	5-T95-3	H-9S
Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		2.50 ± 2.09	83.46	4.80 ± 3.17	66.10	1.63 ± 0.49	29.97	2.02 ± 0.69	34.14	1.10 ± 1.44	130.05	3.77 ± 1.47	38.97	3.22 ± 2.93	90.90	3.36 ± 0.71	21.13	3.93 ± 1.04	26.44
		5-T95-6H	-18	5-T95-61	H-2S	5-T95-6	H-3S	5-T95-6	H-4S	5-T95-6	H-5S	5-T95-6	H-6S	5-T95-6	H-7S	5-T95-6	H-8S	5-T95-6	H-9S
		Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
5.50 ± 5.84	89.87	2.12 ± 1.97	93.00	6.61 ± 3.17	47.94	1.89 ± 0.60	31.92	4.29 ± 2.58	60.19	5.37 ± 3.59	66.82	2.86 ± 2.39	83.43	6.76 ± 2.79	41.35	0.94 ± 1.03	109.64	8.98 ± 5.18	57.68
		5- T 95-9 H	-1S	5-T95-91	H-2S	5-T95-91	H-3S	5-T95-9	H-4S	5-T95-9	H-5S	5-T95-9	H-6S	5- T 95-9	H-7S	5- T 95-9	H-8S	5-T95-9	H-9S
		Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		7.62 ± 0.87	11.48	7.20 ± 0.55	7.60	10.98 ± 1.79	16.31	9.85 ± 0.32	3.25	7.13 ± 1.78	24.92	7.50 ± 0.86	11.43	5.76 ± 0.41	7.19	7.64 ± 1.55	20.32	8.85 ± 1.75	19.74

〈 표10. 5년근 소난 수분 측정 결과 〉

Contr	rol	5-T95-3H	-1B	5-T95-31	H-2B	5-T95-31	H-3B	5-T95-3	H-4B	5-T95-3	H-5B	5-T95-31	H-6B	5-T95-31	H-7B	5-T95-3	H-8B	5-T95-31	H-9B
Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		2.33 ± 2.41	103.39	3.05 ± 2.06	67.75	5.39 ± 0.96	17.78	5.71 ± 0.27	4.72	6.63 ± 0.96	14.51	1.31 ± 0.92	70.20	3.45 ± 4.70	136.07	3.48 ± 2.20	63.31	3.20 ± 1.26	39.31
	-	5-Т95-6Н	-1B	5-T95-61	H-2B	5-T95-6	н-3В	5-T95-6	H-4B	5-T95-6	H-5B	5-T95-61	H-6B	5-T95-6	Н-7В	5-T95-6	H-8B	5-T95-6	H-9В
	5	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
5.85 ± 5.21	76.06	12.09 ± 1.69	14.01	8.91 ± 4.17	4681.00	1.10 ± 0.78	71.11	2.42 ± 2.38	98.26	2.48 ± 0.61	24.72	7.51 ± 23.07	131.76	5.19 ± 0.38	7.32	6.16 ± 1.31	21.27	5.02 ± 0.39	7.85
		5- T 95-9H	-1B	5- T 95-91	H-2B	5-T95-91	H-3B	5-T95-9	H-4B	5-T95-9	H-5B	5-T95-91	H-6B	5- T 95-91	H-7B	5-T95-9	H-SB	5-T95-91	H-9B
	2	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		8.21 ± 0.54	6.61	10.18 ± 0.93	9.17	9.29 ± 0.75	8.11	9.84 ± 0.47	4.75	10.91 ± 2.97	27.22	8.11 ± 0.71	8.69	6.88 ± 0.27	3.91	7.20 ± 0.44	6.13	6.09 ± 0.88	14.44

〈 표11. 5년근 중편 수분 측정 결과 〉

Contr	rol	6-T95-3H	-1S	6-T95-3	H-2S	6-T95-3	H-3S	6-T95-3	H-4S	6-T95-3	H-5S	6-T95-3	H-6S	6-T95-3	H-7S	6-T95-3	H-8S	6-T95-3	H-9S
Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		$11.26 \pm 3.02^*$	26.87	$8.57 \pm 0.84^*$	9.79	5.09 ± 0.67	13.12	4.74 ± 0.77	16.26	4.45 ± 2.56	57.52	$9.94 \pm 2.30^*$	23.14	3.87 ± 0.77	19.94	3.51 ± 1.08	30.61	8.24 ± 0.60*	7.28
		6-Т95-6Н	-1s	6-T95-6	H-2S	6-T95-6	H-3S	6-T95-6	H-4S	6-T95-6	H-5S	6-T95-6	H-6S	6-T95-6	H-7S	6-T95-6	H-8S	6-T95-6	H-9S
	5	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
4.97 ± 1.75	35.28	5.10 ± 0.30	5.88.1	1.57 ± 2.02*	17.49	2.66 ± 0.59	22.10	2.33 ± 2.07	88.69	3.73 ± 0.45	12.00	$9.07 \pm 0.15^*$	1.64	9.76 ± 0.77*	7.90	9.27 ± 1.89*	20.43	8.43 ± 0.79*	9.32
		6-Т95-9Н	-1S	6-T95-9	H-2S	6-T95-9	H-3S	6- T 95-9	H-4S	6-T95-9	H-5S	6-T95-9	H-6S	6-T95-9	H-7S	6- T 95-9	H-8S	6-T95-9	H-9S
	2	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		5.68 ± 0.92	16.13	4.96 ± 0.34	6.79	$1.06 \pm 0.12^*$	1.09	3.11 ± 2.69*	20.55	7.03 ± 2.68	38.08	7.86 ± 3.23	41.15	5.04 ± 0.78	15.40	5.07 ± 0.35	6.90	5.65 ± 0.12	2.19

〈 표12. 6년근 소난 수분 측정 결과 〉 6-T95-3H-1B 6-T95-3H-3B 6-T95-3H-4B 6-T95-3H-2B 6-T95-3H-5B 6-T95-3H-6B 6-T95-3H-8B Control Contents RSD(%) Contents RSD(%) Contents RSD(%) Contents RSD(%) Contents RSD(%) RSD(%) (%) (%) (%) (%) (%) (%) $21.68 \ 2.09 \pm 1.18^{\circ}$ $56.65 \ 5.56 \pm 0.48$ $8.64 \ 4.78 \pm 1.14$ $23.92 \ 6.05 \pm 1.19$ $19.71 \ 4.28 \pm 3.89$ $90.78 \ 9.29 \pm 1.15$ 6.15 ± 1.33 6-T95-6H-1B 6-T95-6H-4B 6-T95-6H-5B 6-T95-6H-6B 6-T95-6H-7B 6-T95-6H-2B 6-T95-6H-3B 6-T95-6H-8B Contents (%) Contents (%) Contents RSD(%) Contents (%) RSD(%) Contents Contents RSD(%) RSD(%) RSD(%) RSD(%) RSD(%) (%) (%) (%) 10.19 ± 7.96 78.10 11.48 7.20 ± 0.55 7.60 4.31 ± 0.27 6.37 4.22 ± 0.95 22.49 3.94 ± 0.09 2.27 7.50 ± 0.68 11.43 5.76 ± 0.41 7.19 6.16 ± 0.73 11.78 5.76 ± 0.15 7.62 ± 0.87 6.T95.9H.1R 6.T95.9H.2R 6-T95-9H-3R 6-T95-9H-4R 6-T95-9H-5R 6-T95-9H-6R 6-T95-9H-7R 6.T95.9H.SR Contents RSD(%) RSD(%) RSD(%) RSD(%) RSD(%) RSD(%) (%) (%) (%) (%) (%) (%) $18.67_{-1.98 \pm 1.91}^*$ $15.98_{-9.69 \pm 1.34}$ $13.81_{-7.27 \pm 2.19}$ $30.11_{-4.51 \pm 0.62}$ $13.78_{-3.38 \pm 0.65}$ 10.92 6.18 ± 0.68 13.88 4.29 ± 2.67*

〈 표13. 6년근 중편 수분 측정 결과 〉

나. 이물

- 인삼산업법 내에 이물의 기준규격은 불검출이다. 인삼세척 후 잔여할 수 있는 비닐, 금속가루 등 이물이 제조흑삼을 분말화하였을 때 존재하는지 확인하였다. 제조시료에 대해 다음과 같은 실험방법으로 이물을 검사하였다.
- 이물은 수분함량 측정 전 육안으로 확인하였으며, 체분별 후 금속이물을 확인하기 위해 자석으로 확인하였다. 모든 시료에서 이물은 확인되지 않았으며, 수삼단계부터 세척이 잘 되었음을 확인하였다.
- 시험방법 근거: 식품공전 제 8. 일반시험법 1.2 이물 1.2.1 일반이물
- 1. 장비와 재료
- 1.1 실험실 장비 및 소모품
- 1.1.1 체
- 2. 시료 전처리
- 2.1 체분별법
 - 2.1.1 시험법 적용범위

검체가 미세한 분말일 때 적용한다.

2.1.2 분석원리

분말을 체로 쳐서 큰 이물을 체위에 모아 육안으로 확인하고, 필요시 현미경 등으로 확대하여 관찰하다.

3. 시험조작

검체가 미세한 분말일 때 비교적 큰 이물을 체로 포집하여 육안으로 검사한다. 필요에 따라 이물의 종류를 확인하고자 할 때는 현미경으로 약 40배 정도의 저배율로 본다. 이하 이물시험에 있어서는 모두 이와 같다.

< 그림 69. 이물 관찰 >

다. 인삼성분함량

- 인삼산업법내에 인삼성분함량 기준은 묽은에탄올추출물함량으로서 18% 이상이어야 한다.
- 제조된 흑삼(본삼)을 대한민국약전외한약규격집의 생약시험법으로 측정하였다.
- 모든 증숙 시료에서 인삼성분함량은 18% 이상이었으며, 증숙과정을 거치면서 다소 감소 하는 경향성을 보였다.
- 시험방법근거: 대한민국약전외한약규격집 23. 생약시험법
- 1. 장비와 재료
- 1.1 실험실 장비 및 소모품
- 1.1.1 에틸알코올
- 1.1.2 비커
- 1.1.3 여과지
- 1.1.4 플라스크
- 1.1.5 항온수조
- 1.1.6 데시케이터
- 1.1.7 칭량병
- 2. 시료 전처리 및 시액 조제
- 2.1 묽은에탄올엑스정량법

따로 규정이 없는 한 분석용 검체 약 2.3 g을 정밀하게 달아 적당한 플라스크에 넣고 묽은에탄올(30% Ethanol) 70 mL를 넣어 한 시간 초음파 추출한다. 다시 16 ~ 20 시간 방치한 다음 여과한다. 플라스크 및 잔류물은 여액이 100 mL로 될 때까지 묽은에탄올로 씻는다. 여액 50 mL를 덜어 수욕에서 증발건고하고 105 ° C에서 4 시간 건조하여 데시케이터 (실리카겔)에서 식힌 다음 그 질량을 정밀하게 달고 2를 곱하여 묽은에탄올엑스의양으로 한다. 건조감량에서 얻은 값에서 건조물로 환산한 검체량에 대한 엑스함량 (%)을산출한다.

2.2 건조감량시험법

검체를 의약품각조에서 규정하는 조건으로 건조하여 그 감량을 측정하는 방법이다. 이방법은 건조하였을 때 소실되는 검체 중의 수분, 결정수의 전부 또는 일부 및 휘발성물질 등의 양을 측정하기 위하여 쓴다. 의약품각조에, 예를 들면 1.0 % 이하 (1 g, 105 ° C, 4시간)라고 규정하는 것은 이 약 1 g을 정밀하게 달아 105 ° C에서 4 시간 건조할 때 그 감량이 이 약 1 g에 대하여 10 mg 이하임을 나타내며 또 0.5 % 이하 (1 g, 감압, 산화인(V), 4 시간)라고 규정하는 것은 이 약 약 1 g을 정밀하게 달아 산화인(V)을 건조제로 한데시케이터 속에서 4시간 감압건조할 때 감량이 이 약 1g에 대하여 5 mg 이하임을 나타

낸 것이다.

2.3 조작법

청량병을 미리 의약품각조에서 규정하는 방법에 따라 30 분간 건조하여 질량을 정밀하게 단다. 검체는 의약품각조에서 규정하는 양의 ± 10 % 범위 내에서 달아 청량병에 넣고 따로 규정이 없는 한 그 층의 높이가 5 mm 이하가 되도록 편 다음 그 질량을 정밀하게 단다. 이것을 건조기에 넣고 의약품각조에서 규정하는 조건으로 건조한다. 검체가 큰 덩어리일 때에는 재빨리 갈아 지름 2 mm 이하로 하여 쓴다. 건조한 다음 건조기에서 청량병을 꺼내어 그 질량을 정밀하게 단다. 가열하여 건조할 경우에는 의약품각조에서 규정하는 온도의 ± 2 ° C에서 가열하여 건조하고 건조한 다음에는 데시케이터(실리카겔) 속에서 방치하여 식힌다. 의약품각조에서 규정하는 건조온도보다 낮은 온도에서 융해하는 검체는 융해온도보다 5 ~ 10 ° C 낮은 온도에서 1~2 시간 건조한 다음 의약품각조에서 규정하는 조건으로 건조한다.

3. 결과값 계산

인삼성분(%) =
$$\frac{$$
건조후 잔량무게 $X2}{$ 검체량 $(g)X(1-$ 건조감량(%) $X0.01)$ $X100$

Contr	rol	5-T95-31	H-18	5-T95-31	H-28	5-T95-31	H-38	5-T95-31	H-48	5-T95-3	H-58	5-T95-3	H-68	5-T95-3	H-7S	5-T95-3	H-8S	5-T95-3	H-98
Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		57.1 ± 1.84	3.23	59.27 ± 2.31	3.90	43.80 ± 6.88	15.71	63.76 ± 4.59*	7.21	59.16 ± 2.96	5.01	54.66 ± 1.98	3.62	56.26 ± 12.26	21.78	54.40 ± 9.57	17.59	46.34 ± 6.87	14.81
		5-T95-61	H-1S	5-T95-61	H-28	5-T95-6	H-3S	5-T95-6	H-48	5-T95-6	H-58	5-T95-6	H-68	5-T95-6	H-7S	5-T95-6	H-8S	5-T95-6	H-98
		Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
52.86 ± 9.05	17.12	63.04 ± 2.95*	4.68	61.88 ± 1.48*	2.40	54.91 ± 6.46	11.77	52.72 ± 3.06	5.81	54.23 ± 2.96	5.46	65.21 ± 3.85*	5.90	59.07 ± 5.32	9.01	46.73 ± 0.25	0.54	55.81 ± 8.56	15.34
		5-T95-91	H-18	5-T95-91	H-28	5-T95-9	H-38	5-T95-9	H-4S	5-T95-9	H-58	5-T95-9	H-68	5-T95-9	H-7S	5-T95-9	H-8S	5-T95-9	H-98
		Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		75.63 ± 5.60°	7.41	70.70 ± 3.68*	5.20	56.10 ± 0.62	1.11	50.49 ± 7.70	15.24	54.78 ± 4.40	7.37	54.55 ± 6.72	12.32	51.40 ± 5.56	10.81	45.03 ± 5.79	12.85	42.19 ± 5.01	11.88

〈 표 14. 5년근 소난 인삼성분 함량 결과 〉

Contr	rol	5-T95-31	H-1B	5-T95-31	H-2B	5-T95-31	H-3B	5-T95-3	H-4B	5-T95-3	H-5B	5-T95-31	H-6B	5-T95-31	H-7B	5-T95-3	H-8B	5-T95-31	H-9B
Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		52.82 ± 0.81	1.52	59.23 ± 2.92	4.93	57.68 ± 2.47	4.28	62.59 ± 2.69°	4.30	47.77 ± 5.55	11.60	70.86 ± 9.03°	12.70	57.98 ± 2.99	5.15	54.77 ± 0.44	0.80	51.22 ± 2.25	4.39
	5	5-T95-61	H-1B	5- T 95-61	H-2B	5-T95-61	н-3В	5-T95-6	H-4B	5-T95-6	H-5B	5-T95-6	H-6B	5-T95-61	н-7В	5-T95-6	H-8B	5-T95-6	H-9B
	1	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
50.66 ± 4.88	9.63	49.14 ± 2.38	4.84	57.65 ± 2.99	5.18	59.39 ± 3.93	6.62	53.13 ± 6.74	12.70	57.43 ± 4.99	8.68	45.77 ± 13.9	30.30	48.35 ± 5.22	10.80	44.28 ± 0.3	0.67	45.95 ± 4.51	9.82
		5-T95-91	H-1B	5-T95-91	H-2B	5-T95-91	н-3В	5-T95-9	H-4B	5-T95-9	H-5B	5-T95-91	H-6B	5-T95-91	н-7В	5- T 95-9	H-8B	5-T95-9	H-9B
		Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		24.92 ± 6.34*	25.40	35.20 ± 16.8	47.80	54.81 ± 5.4	9.86	52.04 ± 2.27	4.36	50.94 ± 1.98	3.88	36.42 ± 1.69	4.65	33.78 ± 4.19	12.40	60.42 ± 5.97	9.89	54.49 ± 10.9	20.00

〈 표 15. 5년근 중편 인삼성분 함량 결과 〉

Contr	ol	6-T95-31	H-18	6-T95-3	H-28	6-T95-3	H-3S	6-T95-3	H-48	6-T95-3	H-58	6-T95-3	H-68	6-T95-3	H-78	6-T95-3	H-8S	6-T95-31	H-98
Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		46.50 ± 12.01	25.83	40.24 ± 9.15	22.74	46.92 ± 4.11	8.76	56.14 ± 1.92	3.41	54.55 ± 2.85	5.22	35.75 ± 7.47	20.88	33.22 ± 6.01°	18.10	42.59 ± 4.68	10.99	43.55 ± 4.55	10.44
		6-T95-6	H-18	6-T95-6	H-28	6-T95-6	H-38	6-T95-6	H-4S	6-T95-6	H-58	6-T95-6	H-68	6-T95-6	H-78	6-T95-6	H-8S	6-T95-6	H-98
		Contents (%)	RSD(%)																
53.44 ± 13.03	24.38	50.30 ± 3.91	7.78	55.81 ± 9.04	16.19	50.79 ± 3.57	7.03	56.40 ± 4.45	7.89	52.48 ± 1.57	3.00	51.81 ± 8.19	15.81	48.75 ± 10.72	22.00	53.07 ± 8.71	16.40	43.62 ± 6.63	15.19
		6-T95-91	H-1S	6-T95-9	H-28	6-T95-9	H-3S	6-T95-9	H-4S	6-T95-9	H-58	6-T95-9	H-68	6-T95-9	H-7S	6-T95-9	H-8S	6-T95-91	H-98
		Contents (%)	RSD(%)																
		63.43 ± 3.17	4.99	61.60 ± 1.33	2.16	50.25 ± 1.23	2.44	48.86 ± 1.93	3.96	55.58 ± 14.49	26.06	52.17 ± 3.19	6.11	45.82 ± 0.80	1.74	46.51 ± 4.62	9.93	40.18 ± 2.50	6.23

					〈 丑	£ 16.	6년	근 소	난	인삼성	성분	함량	결고	} >					
Contr	ol	6-T95-31	H-1B	6-T95-31	H-2B	6-T95-3	н-3В	6-T95-3	H-4B	6-T95-3	H-5B	6-T95-31	H-6B	6-T95-3	Н-7В	6-T95-3	H-8B	6-T95-3	H-9B
Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		52.42 ± 17.13	32.68	56.98 ± 8.16	14.32 4	8.73 ± 5.77*	11.85 4	7.37 ± 6.28*	13.25	44.86 ± 4.49*	10.02	59.89 ± 7.82	13.06	61.89 ± 1.54	2.48	53.90 ± 6.00	11.13	72.97 ± 4.11	5.64
		6-T95-61	H-1B	6-T95-6	H-2B	6-T95-6	Н-3В	6-T95-6	H-4B	6-T95-6	H-5B	6-T95-6	H-6B	6-T95-6	Н-7В	6-T95-6	H-8B	6-T95-6	H-9B
		Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
10.19 ± 7.96	78.10	50.66 ± 2.60*	5.14	52.35 ± 2.02*	3.85 5	1.95 ± 2.52*	4.85 5	1.38 ± 0.50*	0.98	53.42 ± 4.44*	8.32	42.64 ± 3.38*	7.92	48.66 ± 1.42*	2.91	43.01 ± 4.27*	9.93	36.22 ± 0.08*	0.21
		6-T95-91	H-1B	6-T95-91	H-2B	6-T95-9	H-3B	6-T95-9	H-4B	6-T95-9	H-5B	6-T95-9	H-6B	6-T95-9	Н-7В	6-T95-91	H-8B	6-T95-9	H-9B
		Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)	Contents (%)	RSD(%)
		60.66 ± 3.44	5.67	50.77 ± 8.38*	16.50 5	5.80 ± 5.92*	10.60 5	0.56 ± 2.55	5.04	59.07 ± 5.68	9.61	42.23 ± 3.83*	9.07	42.89 ± 6.58*	15.33	44.21 ± 6.00*	13.56	38.25 ± 0.80*	2.09

〈 표 17. 6년근 중편 인삼성분 함량 결과 〉

라. 벤조피렌

- 벤조피렌은 폐암, 간암을 일으키는 강력한 발암물질로 보고되어 있다. 인삼산업법에서 흑삼은 벤조피렌 함량이 2.0 μg/kg이하로 규정하고 있다. 모든 시료에 대한 벤조피렌 분석은 다음과 같이 실시하였다.
- 시험방법 근거: 식품공전 제 8 일반시험법 9.식품중 유해물질 시험법 9.5 벤조피렌
- 1. 장비와 재료
- 1.1 실험실 장비 및 소모품
 - 1.1.1 부피플라스크(100 mL)
 - 1.1.2 HPLC용 유리병
 - 1.1.3 용매용 일회용 실린지
 - 1.1.4 여과용 멤브레인필터(PTFE, 0.45 μm)
 - 1.1.5 초음파진탕기
 - 1.1.6 Column: Eclips Plus C18 (4.6 X 150 mm, 3.5 μm)

1.2 분석장비

- 1.2.1 고속액체크로마토그래프
- 1.2.2 형광검출기(FLD)
- 2. 시료의 전처리 및 시액 조제
 - 2-1 검체를 분쇄하거나 잘게 잘라 균질하게 혼합하여 약 1.0 g을 정밀하게 달아 물 100 mL를 넣어 90 분간 초음파 추출한다.
 - 2-2 여기에 헥산 약 100 mL 및 내부표준액 1 mL을 넣어 호모게나이저로 5 분간 균질하게 섞은 다음 30 분간 초음파 추출한다.
 - 2-3 헥산층을 분액깔대기에 옮기고 다시 물층에 헥산 약 50 mL씩을 넣고 2회 반복하여 진탕 추출한 후 헥산층을 취하여 분액깔대기에 합한다.
 - 2-4 합한 헥산층에 물 약 50 mL를 넣어 세척하고, 이 헥산층을 무수황산나트륨을 넣은

여과지를 사용하여 탈수 여과한 다음 45 ℃의 수욕상에서 감압 (약 700 mbar)하여 헥산 약 2 mL가 될 때까지 농축한다.

2-5 플로리실카트리지는 미리 디클로로메탄 10 mL 및 헥산 20 mL를 순서대로 초당 2~3 방울의 속도로 유출시켜 활성화시킨 후 사용한다.

2-6 활성화된 카트리지에 위의 추출용액을 넣어 헥산·디클로로메탄혼합액(3 : 1) 20 mL 를 초당 2 ~ 3방울의 속도로 용출시킨다.

2-7 이 용출된 액을 35 $^{\circ}$ C이하의 수욕상에서 질소가스 하에 날려 보낸 후 잔류물을 아세토니트릴 $^{\circ}$ mL에 녹인 다음 공경 $^{\circ}$ 0.45 $^{\circ}$ $^{\circ}$ m이하의 멤브레인필터로 여과하여 검액으로 한다.

3. 표준용액 조제 및 HPLC 분석

3-1 따로 벤조피렌표준품 및 3-메틸콜란트렌표준품 적당량을 정밀하게 달아 각각 아세 토니트릴에 녹여 mL당 1 μ g을 함유하는 표준원액 및 내부표준원액을 만든다. 이 표준 원액 및 내부표준원액은 5 ~ 15 $^{\circ}$ C에서 저장하며 30일 이내에 쓴다.

3-2 이 표준원액과 내부표준원액 적당량을 정확하게 취하여 아세토니트릴로 mL 당 3, 5, 10, 20 및 40 ng의 벤조피렌과 각각 50 ng의 내부표준물질이 함유되도록 희석하여 표준액으로 한다. 이때 검액의 검출농도가 검량선의 범위를 벗어나면 표준액의 농도가 검량선의 범위에 들어오도록 농도를 조정한다.

3-3 검액 및 표준액 $10~\mu$ L씩을 가지고 다음 조건으로 액체크로마토그래프법에 따라 시험하다.

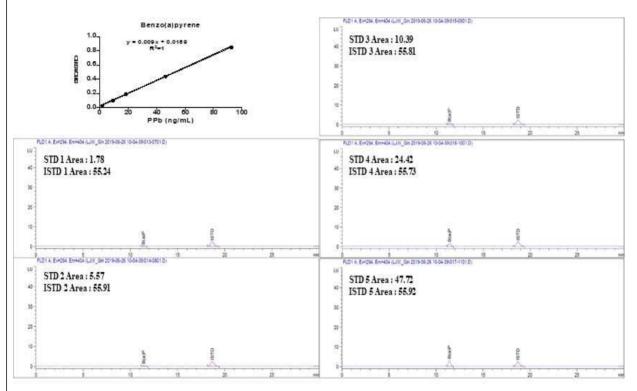
항목		조건	
컬럼	Eclipse Plus C18 ((4.6 x 150 nm, 3.5	5 μm)
검출기(측정파	형광검출기, 여기피	l과 294 nm 형과	파자 404 nm
장)	00/11 = /1, 1/10	1 0 274 IIII, 0 0	
컬럼온도	30℃		
주입량	10 μL		
	물(Water) : 아세토	니트릴(ACN)	
	시간(min)	물(Water)	아세토니트릴(AC
	/ / (IIIII)	≥ (vvater)	N)
ara	0	30	70
이동상	30	30	70
(gradient)	31	5	95
	36	5	95
	37	30	70
	45	30	70
유형	1.2 mL/min		

〈 표 18. 벤조피렌 HPLC 분석 조건 〉

4. 결과값 계산

4.1 각 표준액에서 얻은 내부표준물질 피크면적에 대한 벤조피렌의 피크면적비[As/Als]를 Y축으로 하고 벤조피렌의 농도를 X축으로 하여 만든 검량곡선을 작성하고, 검액의 내부표준물질 피크면적에 대한 벤조피렌의 피크면적비[/]를 Y축에 대입하여 벤조피렌의 농도를 구한다.

- 계산식


벤조피렌 $(\mu g/kg) = \frac{ 면적비 - 절편}{ 기울기<math>X$ 시료무게

As: 검량곡선 표준용액의 표준물질 피크면적

A_{IS} : 검량곡선 표준용액의 내부표준물질 피크면적

Asam : 시험용액의 벤조피렌 피크면적

A_{SAMIS}: 시험용액의 내부표준물질 피크면적

〈 그림 70. 벤조피렌 표준물질 크로마토그램 〉

5. 시험결과

- 벤조피렌의 측정결과 4년근은 모든 증숙과정에서 벤조피렌이 검출되지 않았음.
- 5년근의 경우 증숙 시간이 길어질수록 벤조피렌 함량이 증가하였으며 9시간 공정에서는 기준치보다 초과 검출되었음.
- 6년근의 경우 5년근과 동일하게 증숙시간이 길어질수록 벤조피렌 함량이 증가하였으며 9 시간 공정에서 기준치보다 초과 검출되었음.
- 4,5,6년근 중편인삼을 5시간 9회까지 중숙하여 본삼 및 미삼을 구분하여 분석하였을 때본삼에서는 $0.13\sim0.76~\mu \, g/kg$ 이하였으나, 미삼은 $0.44~1.69~\mu \, g/kg$ 으로 다소 높았음.
- 흑삼 제조 시 본삼과 미삼을 구분하여 제조할 필요성이 있음.

T95-3H	-18	T95-3H	-2S	T95-3H	I-3S	T95-3H	-4S	T95-3H	-5S	T95-3H	I-6S	T95-3H	I-7S	T95-3H	I-8S	T95-3H	I-9S
Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
T95-6H	-18	T95-6H	-2S	T95-6H	I-3S	T95-6H	-4S	Т95-6Н	-5S	T95-6H	I-6S	T95-6H	I-7S	Т95-6Н	I-8S	T95-6H	I-9S
Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)										
N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
Т95-9Н	-1S	T95-9H	-2S	T95-9H	I-3S	T95-9H	-4S	T95-9H	I-5S	T95-9H	I-6S	T95-9H	I-7S	Т95-9Н	I-8S	Т95-9Н	I-9S
Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)								
N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D

〈 표 19. 4년근 소난 증숙횟수별 벤조피렌 분석 결과 〉

T95-3H	-1B	T95-3H	-2B	T95-3H	-3B	T95-3H	-4B	T95-3H	-5B	T95-3H	I-6B	T95-3H	-7 B	T95-3H	-8B	T95-3H	I-9B
Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
Т95-6Н	-1B	Т95-6Н	-2B	T95-6H	-3B	Т95-6Н	I-4B	T95-6H	-5B	Т95-6Н	I-6B	T95-6H	-7B	T95-6H	-8B	Т95-6Н	I-9B
Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
T95-9H	-1B	T95-9H	-2B	Т95-9Н	-3B	Т95-9Н	I-4B	T95-9H	-5B	Т95-9Н	I-6B	T95-9H	-7B	T95-9H	-8B	Т95-9Н	I-9B
Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D

〈 표 20. 4년근 중편 증숙횟수별 벤조피렌 분석 결과 〉

5-T95-31	H-18	5-T95-31	H-2S	5-T95-31	H-3S	5-T95-31	H-4S	5-T95-31	H-58	5-T95-31	H-68	5-T95-31	H-7S	5-T95-31	H-8S	5-T95-31	H-98
Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
N.D	N.D	ND	N.D	N.D	N.D												
5- T 95-61	H-18	5-T95-6	H-28	5-T95-61	H-3S	5-T95-61	H-4S	5-T95-6I	H-5S	5-T95-6	H-6S	5-T95-6	H-7S	5-T95-61	H-8S	5-T95-6	H-98
Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
N.D	N.D	N.D	N.D	$0.69 \pm 0.44^*$	64.01	0.25 ± 0.43	173.21	0.20 ± 0.34	173.21	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
5-T95-91	H-1S	5- T 95-91	H-2S	5-T95-91	H-3S	5-T95-91	H-4S	5-T95-91	H-5S	5-T95-91	H-6S	5-T95-91	H-7S	5-T95-91	H-8S	5-T95-91	H-9S
Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
N.D	N.D	N.D	N.D	1.54 ± 0.23	14.92	2.41 ± 0.49*	20.30	3.26 ± 2.59*	79.22	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D

〈 표 21. 5년근 소난 증숙횟수별 벤조피렌 분석 결과 〉

5-T95-3I	I-1B	5-T95-3I	I-2B	5-T95-31	H-3B	5-T95-3I	I-4B	5-T95-3I	I-5B	5-T95-31	H-6B	5-T95-31	I-7B	5-T95-3I	I-8B	5-T95-3I	H-9B
Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
N.D	N.D	N.D	N.D	0.29 ± 0.51	173.21	0.40 ± 0.35	87.50	N.D	N.D								
5-T95-6I	I-1B	5-T95-6I	I-2B	5- T 95-61	н-зв	5-T95-6I	I-4B	5-T95-6I	H-5B	5-T95-61	H-6B	5-T95-6]	I-7B	5-T95-6I	H-8B	5-T95-6I	H-9B
Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
N.D	N.D	N.D	N.D	1.11 ± 1.01*	90.86	$1.36 \pm 0.45^{*}$	33.24	0.34 ± 0.59	173.21	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
5-T95-9I	H-1B	5-T95-9I	H-2B	5-T95-91	H-3B	5-T95-9I	I-4B	5-T95-9I	H-5B	5-T95-91	H-6B	5-T95-91	H-7B	5-T95-91	H-SB	5-T95-9I	H-9B
Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)														
N.D	N.D	N.D	N.D	3.84 ± 2.67	69.53	4.64 ± 6.15	132.48	2.50 ± 0.93	37.41	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D

〈 표 22. 5년근 중편 증숙횟수별 벤조피렌 분석 결과 〉

6-T95-31	H-1S	6-T95-31	H-2S	6-T95-3	H-3S	6-T95-31	H-4S	6-T95-3	H-58	6-T95-3	H-68	6-T95-31	H-7S	6-T95-31	H-8S	6-T95-3	H-98
Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%
N.D	N.D	0.37 ± 0.64	173.21	0.53 ± 0.91	173.21	0.48 ± 0.84	173.21	0.49 ± 0.49	100.49	0.50 ± 0.44	87.56	N.D	N.D	0.21 ± 0.36	173.21	N.D	N.D
6- T 95-6]	H-1S	6-T95-6	H-28	6-T95-6	H-3S	6-T95-6	H-4S	6-T95-6	H-58	6-T95-6	H-6S	6-T95-6	H-7S	6-T95-6	H-8S	6-T95-6	H-98
Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
0.80 ± 1.39	173.21	N.D	N.D	N.D	N.D	N.D	N.D	0.25 ± 0.44	173.21	0.36 ± 0.62	173.21	0.56 ± 0.93	173.21	N.D	N.D	N.D	N.D
6-T95-91	H-1S	6- T 95-91	H-28	6-T95-9	H-3S	6-T95-91	H-4S	6-T95-9	H-58	6-T95-9	H-6S	6-T95-91	H-7S	6-T95-9	H-8S	6-T95-9	H-9S
Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
N.D	N.D	0.43 ± 0.74	173.21	N.D	N.D	N.D	N.D	3.50 ± 2.48*	70.89	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D

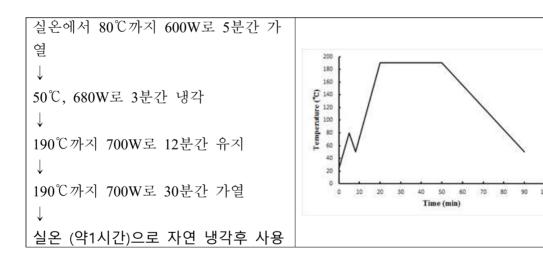
〈 표 23. 6년근 소난 증숙횟수별 벤조피렌 분석 결과 〉

6-T95-3I	H-1B	6-T95-3I	I-2B	6-T95-31	H-3B	6-T95-31	H-4B	6-T95-3I	I-5B	6-T95-31	H-6B	6-T95-31	H-7B	6-T95-31	H-8B	6-T95-31	H-9B
Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
N.D	N.D	N.D	N.D	0.24 ± 0.42	173.21	0.57 ± 0.58	102.43	0.54 ± 0.50	93.21	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
6-T95-6I	H-1B	6-T95-6I	I-2B	6-T95-61	н-зв	6-T95-61	H-4B	6-T95-6I	H-5B	6-T95-61	H-6B	6-T95-61	н-7В	6-T95-61	H-8B	6-T95-61	H-9B
Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)										
N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
6-T95-9I	H-1B	6-T95-9I	H-2B	6-T95-91	H-3B	6-T95-91	H-4B	6-T95-9I	H-5B	6-T95-91	H-6B	6- T 95-91	н-7В	6-T95-91	H-8B	6-T95-91	H-9B
Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)
N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	0.24 ± 0.42	173.21	N.D	N.D	N.D	N.D

〈 표 24. 6년근 중편 증숙횟수별 벤조피렌 분석 결과 〉

4-T95-5I	I-1B	4-T95-51	H-2B	4-T95-51	I-3B	4-T95-5I	I-4B	4-T95-51	H-5B	4-T95-5	H-6B	4-T95-51	I-7B	4-T95-5I	I-8B	4-T95-5	H-9B
Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)
0.19 ± 0.06	33.22	0.26 ± 0.04	15.74	0.13 ± 0.03	20.27	0.19 ± 0.04	22.50	0.24 ± 0.04	17.52	0.25 ± 0.02	9.44	0.51 ± 0.07	13.20	0.75 ± 0.15	19.41	0.75 ± 0.20	27.26
5-T95-5I	I-1B	5- T 95-51	H-2B	5-T95-51	H-3B	5-T95-5I	I-4B	5-T95-51	H-5B	5-T95-5	H-6B	5-T95-51	I-7B	5-T95-5I	I-8B	5-T95-5	H-9B
Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)
0.18 ± 0.25	142.08	0.23 ± 0.02	10.47	0.10 ± 0.02	23.80	0.39 ± 0.15	39.16	0.76 ± 0.22	28.55	0.19 ± 0.03	13.39	0.38 ± 0.38	98.09	0.21 ± 0.13	58.51	0.32 ± 0.04	12.90
6-T95-5I	I-1B	6-T95-51	H-2B	6-T95-51	H-3B	6-T95-5I	I-4B	6-T95-51	H-5B	6-T95-5	H-6B	6-T95-51	I-7B	6-T95-51	H-8B	6-T95-5	Н-9В
Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)
0.50 ± 0.83	165.14	0.17 ± 0.03	15.34	0.14 ± 0.06	44.76	0.22 ± 0.04	16.44	0.31 ± 0.12	39.38	0.35 ± 0.07	18.82	0.39 ± 0.04	10.88	0.36 ± 0.03	8.71	0.43 ± 0.07	15.46

〈 표 25. 4,5,6년근 중편 본삼 증숙횟수별 벤조피렌 분석 결과 〉


4-T95-5I	I-IR	4-T95-5I	H-2R	4-T95-51	H-3R	4-T95-51	H-4R	4-T95-5	H-5R	4-T95-5	H-6R	4-T95-51	H-7R	4-T95-51	H-8R	4-T95-5	H-9R
Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)
0.44 ± 0.03	7.12	0.75 ± 0.08	10.99	0.69 ± 0.06	8.74	0.82 ± 0.09	11.37	0.81 ± 0.02	2.13	0.85 ± 0.03	3.62	1.31 ± 0.21	15.83	1.47 ± 0.15	9.84	1.35 ± 0.14	10.01
5-T95-5I	I-IR	5-T95-51	H-2R	5-T95-51	H-3R	5-T95-51	H-4R	5-T95-5	H-5R	5-T95-5	H-6R	5-T95-51	H-7R	5-T95-51	H-8R	5-T95-5	H-9R
Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)												
0.73 ± 0.06	7.99	1.17 ± 0.43	36.47	0.80 ± 0.19	23.89	1.21 ± 0.63	52.51	1.44 ± 0.39	27.19	1.03 ± 0.18	17.61	1.18 ± 0.12	10.38	1.15 ± 0.26	22.28	1.49 ± 0.35	23.73
6-T95-5I	I-IR	6-T95-51	H-2R	6-T95-51	H-3R	6-T95-51	H-4R	6-T95-5	H-5R	6-T95-5	H-6R	6-T95-51	H-7R	6-T95-51	H-8R	6-T95-5	H-9R
Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (µg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)	Contents (μg/kg)	RSD(%)
0.64 ± 0.06	9.27	0.77 ± 0.00	0.46	0.62 ± 0.02	2.44	0.89 ± 0.04	4.43	1.02 ± 0.03	3.38	0.96 ± 0.05	4.72	1.42 ± 0.06	4.10	1.69 ± 0.27	16.13	1.64 ± 0.13	7.84

〈 표 26. 4,5,6년근 중편 미삼 증숙횟수별 벤조피렌 분석 결과 〉

마. 중금속

- 인삼산업법 내에 중금속의 기준은 약사법의 경우 납 5 ppm 이하, 비소 3 ppm 이하, 수 은 0.2 ppm 이하, 카드뮴 0.3 ppm 이하이다. 식품위생법의 식품공전의 경우 납 2 ppm 이

- 하, 카드뮴 0.2 ppm이하 이다. 중금속은 다음과 같은 실험방법으로 측정하였다.
- 시험방법 근거: 식품공전 제 8 일반시험법 9.식품중 유해물질 시험법 9.1 중금속
- 1. 장비와 재료
- 1.1 실험실 장비 및 소모품
- 1.1.1 메스플라스크
- 1.1.2 아르곤가스(Ar)
- 1.2 분석장비
- 1.2.1 마이크로웨이브 (Start D, MILESTONE Co., Ltd, Italy)
- 1.2.2 유도결합플라즈마 (ICP-OES :Optima 7300DV, Perkin Elmer Inc. USA)
- 2. 시료 전처리 및 시액 조제
- 2.1 균질화 된 시료 약 0.5g을 마이크로웨이브용 베셀에 정밀히 취한후 질산8MI을 넣고 마이크로웨이브에서 190℃에서 50분간 전처리 한다. 이때 반응 공시료도 마이크로웨이브용 베셀로 시료와 같은 방식으로 같이 전처리 한다.
- 2.2 마이크로웨이브 분해 조건

- 2.2 20mL 부피플라스크에 3차 증류수로 희석한 것을 시험 용액으로 한다.
- 2.3 20mL 부피플라스크에 희석을 한다.
- 3. 표준용액조제 및 기기분석
- 3.1 표준원액 10 ppm (Muti-Element Calibration Standard 3, PerkinElmer Inc, USA)을 3% 질산으로 50 mL 부피플라크에 계열 희석하여 0.01, 0.05, 0.1, 0.5 mg/kg으로 하여 표준 용액으로 한다.
- 3.2 전처리를 마친 시험용액과 표준용액 및 공시험 용액을 ICP를 사용하여 측정한다.
- 3.3 표 27. ICP 기기조건

RF Power	1,500 Watts
Gas Flow	Plasma(10L/min)

		Auxiliary(0.2L/min), Nebulizer (0.45L/min)
Sample	Flw	1 F M /:-
Rate		1.5 Ml/min
측정파장		납-220.353 nm, 카드뮴 228.802 nm, 비소 118.979 nm

4. 결과값 계산

4.1 표준용액과 시험용액 및 공시험용액을 ICP에 주입하여 시험용액의 농도를 구한다.

5. 분석결과

- 모든 시료에서 중금속의 기준치를 초과하지 않았음.
- 중금속의 함량은 모든 증숙과정을 거치면서 함량이 줄거나 감소하는 경향은 없었음.

	Contro	ı	5-T95-31	H-1S	5-T95-3	H-28	5-T95-3	H-3S	5-T95-31	H-4S	5-T95-3	H-58	5-T95-3	H-68	5-T95-31	I-7S	5-T95-31	H-8S	5-T95-3	H-98
Analyte	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)
Pb	0.48 ± 0.07	13.21	0.64 ± 0.13	18.94	0.85 ± 0.24	25.19	0.71 ± 0.34	43.55	0.50 ± 0.13	21.95	0.54 ± 0.07	9.85	0.98 ± 0.68	60.06	0.30 ± 0.03	10.03	0.14 ± 0.16	109.89	0.41 ± 0.07	15.47
Cd	0.09 ± 0.04	35.32	0.05 ± 0.01	19.44	0.06 ± 0.02	28.13	0.08 ± 0.03	28.59	0.07± 0.01	8.87	0.08 ± 0.02	26.56	0.05 ± 0.01	9.27	0.02 ± 0.01*	40.60	0.00 ± 0.01°	173.21	0.02 ± 0.01°	64.48
As	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	0.16 ± 0.08	56.02	0.12 ± 0.15	115.83	0.08 ± 0.16	173.21
reconstructors.	Contro		5-T95-61	H-1S	5-T95-6	H-2S	5-T95-6	H-3S	5-T95-61	H-4S	5-T95-6	H-58	5-T95-6	H-68	5-T95-6I	I-7S	5-T95-61	H-8S	5-T95-6	H-98
Analyte	Contents (mg/g) R	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)														
Pb	0.48 ± 0.07	13.21	0.59 ± 0.08	13.39	0.57 ± 0.07	10.97	0.04 ± 0.03*	86.72	0.61 ± 0.04	6.47	0.58 ± 0.19	28.72	0.52 ± 0.08	14.02	0.84 ± 0.1	88.13	$1.02 \pm 0.12^{\circ}$	10.30	0.86 ± 0.06°	10.89
Cd	0.09 ± 0.04	35.32	0.07 ± 0.02	24.78	0.06 ± 0.01	14.39	N.D	N.D	0.03 ± 0.05	157.99	0.14 ± 0.05	55.23	0.08 ± 0.01	12.72	0.14 ± 0.01	88.13	0.16 ± 0.06	16.15	0.14 ± 0.01	1.86
As	N.D	N.D	N.D	N.D	N.D	N.D	0.03 ± 0.07	173.21	N.D	N.D	0.04 ± 0.08	173.21	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
	Contro	ı	5-T95-91	H-18	5-T95-9	H-2S	5-T95-9	H-38	5-T95-91	H-4S	5-T95-9	H-58	5-T95-9	H-68	5-T95-9I	I-7S	5-T95-91	H-8S	5-T95-9	H-98
Analyte	Contents (mg/g)	tSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)												
Pb	0.48 ± 0.07	13.21	0.47 ± 0.40	46.01	0.56 ± 0.13	26.46	0.70 ± 0.19	24.28	0.57 ± 0.08	38.39	0.57 ± 0.16	23.21	0.60 ± 0.14	20.38	0.60 ± 0.14	20.38	0.58 ± 0.14	42.27	0.42 ± 0.1	27.11
Cd	0.09 ± 0.04	35.32	0.05 ± 0.01	46.12	0.05 ± 0.03	51.08	0.08 ± 0.03	32.49	0.06 ± 0.02	23.23	0.07 ± 0.01	13.51	0.04 ± 0.01	17.19	0.05 ± 0.04	61.23	0.08 ± 0.06	63.41	0.05 ± 0.02	38.02
As	N.D	N.D	N.D	N.D	0.12 ± 0.03	24.01	N.D	N.D	N.D	N.D	N.D	N.D	0.16 ± 0.07*	60.14	0.06 ± 0.09	173.21	0.04 ± 0.09	173.21	0.05 ± 0.09	173.21

〈 표 28. 5년근 소난 증숙횟수별 중금속 분석 결과 〉

	Contro	1	5-T95-31	H-1B	5-T95-3I	H-2B	5-T95-3	H-3B	5-T95-3I	I-4B	5-T95-3	H-5B	5-T95-3	H-6B	5-T95-3I	I-7B	5-T95-31	H-8B	5-T95-31	H-9B
Analyte	Contents (mg/g)	tSD(%)	Contents (mg/g)	RSD(%)																
Pb	0.36 ± 0.13	55.19	0.19 ± 0.06	27.52	0.33 ± 0.20	55.82	0.20 ± 0.41	173.21	0.63 ± 0.07	10.84	0.63 ± 0.08	1.38	0.53 ± 0.14	39.65	0.31 ± 0.02	6.39	0.37 ± 0.08	18.98	0.27 ± 0.09	37.77
Cd	0.06 ± 0.04	62.76	0.03 ± 0.01	37.87	0.04 ± 0.03	82.68	0.00 ± 0.01*	173.21	0.01 ± 0.01*	173.21	0.01 ± 0.01°	173.21	0.04 ± 0.03	57.36	0.02 ± 0.01	46.96	0.03 ± 0.01	40.56	0.02 ± 0.01	39.46
As	N.D	N.D	0.05 ± 0.00	2.96	003 ± 0.06	173.21	0.35 ± 0.42*	111.68	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	0.04 ± 0.07	173.21	ND	ND
respondentes.	Contro	l	5-T95-61	H-1B	5-T95-6I	H-2B	5-T95-6	H-3B	5-T95-61	I-4B	5-T95-6	H-5B	5-T95-0	H-6B	5-T95-6F	I-7B	5-T95-61	H-SB	5-T95-61	H-9B
Analyte	Contents (mg/g)	RSD(%)																		
Pb	0.36 ± 0.13	55.19	0.70 ± 0.22	27.49	0.56 ± 0.13	26.46	0.33 ± 0.15	41.01	045 ± 0.26	38.84	0.60 ± 0.11	17.22	0.53 ± 0.51	39.65	0.41 ± 0.18	41.55	0.31 ± 0.10	30.00	0.59 ± 0.27	44.48
Cd	0.06 ± 0.04	62.76	0.05 ± 0.01	49.30	0.06 ± 0.03	51.08	0.02 ± 0.01	41.63	0.03 ± 0.01	45.35	0.03 ± 0.01	44.52	0.04 ± 0.03	57.36	0.01 ± 0.01	72.93	0.01 ± 0.01	63.81	0.05 ± 0.04	67.15
As	N.D	N.D	N.D	N.D	0.12 ± 0.03	24.01	N.D	N.D	0.00 ± 0.01	173.21										
	Contro	ı	5-T95-91	Н-1В	5-T95-9I	H-2B	5-T95-9	н-зв	5-T95-91	I-4B	5-T95-9	Н-5В	5-T95-9	H-6B	5-T95-9F	I-7B	5-T95-91	H-8B	5-T95-91	H-9B
Analyte	Contents (mg/g)	SD(%)	Contents (mg/g)	RSD(%)																
Pb	0.36 ± 0.13	55.19	0.41 ± 0.08	17.89	0.46 ± 0.14	27.05	0.47 ± 0.09	26.33	0.54 ± 0.24	173.21	0.51 ± 0.06	11.48	0.61 ± 0.16	22.84	0.53 ± 0.10	15.97	0.58 ± 0.39	59.26	0.39 ± 0.18	37.55
Cd	0.06 ± 0.04	62.76	0.02 ± 0.01	56.21	0.04 ± 0.03	46.37	0.02 ± 0.01	30.05	0.03 ± 0.01	60.05	0.02 ± 0.02	58.78	0.07 ± 0.02	22.25	0.06 ± 0.01	7.52	0.05 ± 0.04	97.65	0.03 ± 0.02	71.70
As	N.D	N.D	0.02± 0.03	173.21	N.D	N.D	0.07 ± 0.13	173.21	N.D	N.D										

〈 표 29. 5년근 중편 증숙횟수별 중금속 분석 결과 〉

	Contro	1	6-T95-31	H-18	6-T95-3	H-2S	6-T95-3	H-38	6-T95-31	H-4S	6-T95-3	H-58	6-T95-3	3H-6S	6-T95-31	I-7S	6-T95-3	H-8S	6-T95-3	H-98
Analyte	Contents (mg/g)	SD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)
Pb	0.42 ± 0.09	19.80	0.57 ± 0.02	2.57	0.55 ± 0.1	0.80	0.58 ± 0.12	18.99	0.50 ± 0.07	11.58	0.45 ± 0.05	9.88	0.60 ± 0.17	29.05	$0.16\pm0.03^{\bullet}$	17.03	$0.17 \pm 0.16^{\circ}$	60.90	0.32 ± 0.06	17.00
Cd	0.06 ± 0.00	6.86	0.06 ± 0.01	21.03	0.05 ± 0.01	0.57	0.03 ± 0.01	31.13	0.07 ± 0.02	27.86	0.05 ± 0.05	63.29	0.06 ± 0.01	19.99	0.00 ± 0.01	87.67	0.05 ± 0.09	156.20	0.04 ± 0	6.13
As	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	0.03 ± 0.05	135.04	0.05 ± 0.09	173.21	N.D	N.D	0.01 ± 0.01	173.21	0.03 ± 0.06	173.21	0.01 ± 0.02	173.21
recorded and for	Contro	ı	6-T95-61	H-18	6-T95-6	H-2S	6-T95-6	H-38	6-T95-61	H-48	6-T95-6	H-58	6-T95-0	5H-6S	6-T95-61	I-78	6-T95-6	H-8S	6-T95-6	H-98
Analyte	Contents (mg/g)	SD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)
Pb	0.42 ± 0.09	19.80	$0.84 \pm 0.08^{\circ}$	9.77	0.64 ± 0.29*	21.23	0.32 ± 0.07	17.21	0.33 ± 0.08	22.91	0.58 ± 0.12*	28.72	0.60 ± 0.13*	18.69	$0.55 \pm 0.14^{\circ}$	22.62	0.42 ± 0.31	64.04	0.17 ± 0.03	15.23
Cd	0.06 ± 0.00	6.86	0.13 ± 0.06	40.02	0.11 ± 0.06	45.74	0.03 ± 0.01	34.64	0.02 ± 0.01	30.41	0.14 ± 0.09	55.23	0.09 ± 0.02	19.96	0.05 ± 0.01	15.44	0.02 ± 0.03	158.52	N.D	N.D
As	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	0.00 ± 0.01	173.21	0.04 ± 0.08	173.21	N.D	N.D	N.D	N.D	N.D	N.D	0.12 ± 0.15	109.23
	Contro	ı	6-T95-91	H-18	6-T95-91	H-2S	6-T95-9	H-38	6-T95-91	H-4S	6-T95-9	H-58	6-T95-9	PH-68	6-T95-91	I-7S	6-T95-9	H-8S	6-T95-9	H-98
Analyte	Contents (mg/g)	SD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)
Pb	0.42 ± 0.09	19.80	0.89 ± 0.45	51.20	1.47 ± 0.09*	32.47	0.46 ± 0.13	28.57	0.38 ± 0.12	38.22	0.37 ± 0.24	57.78	1.40 ± 0.13*	7.84	$1.45 \pm 0.12^*$	7.10	1.56 ± 0.07*	3.91	0.84 ± 0.07	76.89
Cd	0.06 ± 0.00	6.86	0.04 ± 0.03	48.34	0.13 ± 0.01*	57.84	0.02 ± 0.02	45.45	0.02 ± 0.01	34.51	0.01 ± 0.01	53.29	0.12 ± 0.02*	17.17	0.12 ± 0.01*	9.27	0.13 ± 0.01*	9.26	0.07 ± 0.05	69.39
As	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	0.02 ± 0.04	129.49	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D

〈 표 30. 6년근 소난 증숙횟수별 중금속 분석 결과 〉

Department of the Control of the Con	Contro	l	6-T95-3I	H-1B	6-T95-31	I-2B	6-T95-3	H-3B	6-T95-3I	I-4B	6-T95-3	H-5B	6-T95-3	H-6B	6-T95-3H	I-7B	6-T95-31	I-8B	6-T95-31	H-9B
Analyte	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)
Pb	0.62 ± 0.05	6.82	0.50 ± 0.65	25.75	0.44 ± 0.08	16.84	0.40 ± 0.12*	26.23	0.48 ± 0.04	6.57	$0.42 \pm 0.09^{*}$	19.13	0.48 ± 0.05	8.93	$0.41 \pm 0.09^{*}$	19.23	0.32 ± 0.08°	22.14	0.34 ± 0.06°	16.11
Cd	0.10 ± 0.05	44.57	$0.02\pm0.01^{\bullet}$	36.83	0.07 ± 0.03	34.65	$0.04 \pm 0.01^{*}$	16.11	$0.03 \pm 0.01^{*}$	34.35	0.02 ± 0.01°	43.30	0.06 ± 0.03	52.96	0.05 ± 0.02	30.04	$0.04 \pm 0.01^{\circ}$	17.47	0.05 ± 0.03	51.32
As	N.D	N.D	N.D	N.D	0.03 ± 0.05	134.42	N.D	N.D	N.D	N.D	N.D	N.D	0.06 ± 0.12	173.21	0.04 ± 0.07	129.19	0.02 ± 0.05	173.21	0.04 ± 0.08	173.21
transdamen.	Contro	l	6-T95-6I	H-1B	6-T95-61	H-2B	6-T95-6	H-3B	6-T95-6I	H-4B	6-T95-6	H-5B	6-T95-0	H-6B	6-T95-6H	I-7B	6-T95-6I	H-8B	6-T95-6	H-9B
Analyte	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)
Pb	0.62 ± 0.05	6.82	0.43 ± 0.12	23.78	0.69 ± 0.17	21.94	0.52 ± 0.16	7.17	0.47 ± 0.05	10.38	0.54 ± 0.05	8.40	0.58 ± 0.05	7.51	0.89 ± 0.08	7.84	0.73 ± 0.22	28.99	0.84 ± 0.70	76.89
Cd	0.10 ± 0.05	44.57	$0.05 \pm 0.01^*$	21.20	0.08 ± 0.03	30.20	0.02 ± 0.01	14.74	0.02 ± 0.01	33.05	0.04 ± 0.01	33.97	0.07 ± 0.01	9.25	0.14 ± 0.05	31.77	0.13 ± 0.08°	56.88	0.07 ± 0.06	69.39
As	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
	Contro	ı	6-T95-9I	H-1B	6-T95-91	H-2B	6-T95-9	н-3В	6-T95-9I	H-4B	6-T95-9	н-5В	6-T95-9	H-6B	6-T95-9I	I-7B	6-T95-91	H-8B	6-T95-91	H-9B
Analyte	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)	Contents (mg/g)	RSD(%)
Pb	0.62 ± 0.05	6.82	0.41 ± 0.08	17.89	0.71 ± 0.16	19.27	0.44 ± 0.20	39.52	0.35 ± 0.09	23.41	0.55 ± 0.07	11.41	0.55 ± 0.07	114.41	0.59 ± 0.12	0.11	0.61 ± 0.12	16.86	0.60 ± 0.13	30.17
Cd	0.10 ± 0.05	44.57	0.02 ± 0.01	56.21	0.04 ± 0.01	15.91	0.08 ± 0.11	132.87	0.01 ± 0	19.52	0.04 ± 0	2.66	0.04 ± 0	2.66	0.05 ± 0.01	0.01	0.05 ± 0.03	57.27	0.08 ± 0.05	53.22
As	N.D	N.D	0.02 ± 0.03	173.21	N.D	N.D	N.D	N.D	N.D	N.D	0.09 ± 0.09	88.04	0.09 ± 0.07	88.04	0.17 ± 0.11*	0.09	0.05 ± 0.09	173.21	0.04 ± 0.08	173.21

〈 표 31. 6년근 중편 증숙횟수별 중금속 분석 결과 〉

바. 보존료

- 인삼산업법 내에 보존료의 기준은 불검출이다. 모든 시료에 대해 다음과 같은 실험방법 으로 측정하였다.
- 시험방법 근거: 식품공전 제 8. 일반시험법 3.1 보존료
- 1. 장비와 재료
- 1.1 실험실 장비 및 소모품
- 1.1.1 수증기 자동증류기
- 1.1.2 수증기 자동증류기 플라스크
- 1.1.3 부피플라스크 500mL
- 1.1.4 삼각플라스크
- 1.1.5 분획깔때기
- 1.1.6 둥근바닥플라스크

- 1.1.7 깔때기
- 1.1.8 스포이드
- 1.1.9 HPLC용 유리병
- 1.1.10 일회용 실린지
- 1.1.11 여과용 멤브레인필터
- 1.1.12 Column : Capcell pak MF-C8 (4.5 $\mu m,~4.6$ * 150 mm) / HP-FFAP (30m * 0.25 mm * 0.25 $\mu m)$

2. 시료 전처리 및 시액 조제

- 2-1 검체를 취하여 10% 수산화나트륨 용액으로 중화하고 수증기 자동증류기의 플라스크에 옮기고, NaCl 80g, 15% 주석산용액 10 mL 및 실리콘수지 한 방울을 가한 후 물 50mL을 추가하여 수증기 자동증류기에 연결하고, 증류액을 받는 수기끝을 1% 수산화나트 륨용액 20mL에 잠기도록 하여 증류하고 유액은 약 450mL를 받은 후 증류수로 500mL 까지 채운다.
- 2-2 유액 중 일부를 취해 0.45μm 멤브레인 필터로 여과 후 HPLC-DAD법의 시험용액으로 사용하다.
- 2-3 유액 100 mL를 정확히 취해 분액깔때기에 넣고 NaCl 10g, 인산 1 mL 및 내부표준용 액 1 mL를 가해 Ether 층을 모은다.
- 2-4 무수황산나트륨으로 수분제거/농축후 아세톤을 가하여 최종부피가 10 mL가 되도록 하여 여과 후 GC-FID법의 시험용액으로 한다.

3. 표준용액조제 및 기기분석

3-1 HPLC-DAD법 보존료 표준용액 제조

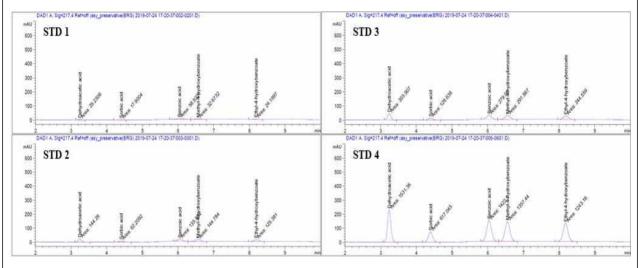
데히드로초산, 소브산, 안식향산, 파라옥시안식향산메틸, 파라옥시안식향산에틸을 0.100g씩 정밀히 달아 메탄올에 녹여 100 mL로 한 것을 표준원액으로 사용한다.

3-2 표 32. HPLC-DAD법 기기분석조건

항목	조건		
컬럼	Capcell pak MF-C8	3 (4.5 μm, 4.6* 150	mm)
컬럼온도	30℃		
주입량	10 μL		
	0.1% TBA-OH용액(0.1% 인산포함) : 이	-세토니트릴 (ACN)
		0.1% TBA-OH용	아세토니트릴
	시간(min)	액(0.1% 인산포 함)	(ACN)
이동상	0.0	75	25
(gradient)	2.5	75	25
(8)	7.0	65	35
	12.0	60	40
	15.0	70	30
	18.0	70	30
	20.0	75	25

유량	1.0 mL/min

4. 결과값 계산


4-1 보존료 계산법

시험용액 및 표준용액을 앞의 조건에 따라 액체크로마토그래프에 주입하고 얻어진 피크의 높이 또는 면적면적부터 다음식에 따라 검체중의 각 보존료의 함량을 산출한다.

PS :표준용액의 높이 또는 면적

PA :시험용액의 높이 또는 면적

SA :검체의 채취량(g)

〈 그림 71. 보존료 표준물질 농도별 크로마토그램 〉

4. 분석결과

- 모든 시료에서 보존료는 검출되지 않았음.

	Cont	rol	(2) 5-T95-	3H-1S	(2) 5-T95-	3H-2S	(2) 5-T95-	3H-3S	(2) 5-T95-	3H-4S	(2) 5-T95-	3H-5S	(2) 5-T95-	3H-6S	(2) 5-T95	-3H-7S	(2) 5-T95-	3H-SS	(2) 5-T95	-3H-9S
Analyte —	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	동도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농토	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)
Dehydroacetic acid	N.D	N.D	N.D	ND	ND	ND	N.D	N.D	N.D	ND	N.D	ND	N.D	ND	ND	N.D	ND	N.D	N.D	N.D
Sorbic acid	N.D	ND	N.D	ND	N.D	N.D	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	N.D	ND	N.D	N.D	N.D
Benzoic acid	N.D	ND	N.D	ND	ND	N.D	N.D	N.D	N.D	ND	N.D	ND	N.D	ND	ND	N.D	N.D	N.D	N.D	N.D
Methyl 4-hydrobenzoate	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	N.D	N.D	N.D	N.D	N.D
Ethyl 4-hydrobenzoate	N.D	ND	ND	ND	ND	N.D	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	ND	ND	N.D	N.D	N.D
	Cont	rol	(2) 5-T95-	6H-1S	(2) 5-T95-	6H-2S	(2) 5-T95-	6H-3S	(2) 5-T95-	6H-4S	(2) 5-T95-	6H-5S	(2) 5-T95-	6H-6S	(2) 5-T95	-6H-7S	(2) 5-T95-	6H-SS	(2) 5-T95	-6H-9S
Analyte —	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)
Dehydroacetic acid	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	N.D	ND	N.D	N.D	N.D
Sorbic acid	N.D	ND	N.D	ND	ND	N.D	N.D	ND	N.D	ND	N.D	ND	N.D	ND	ND	N.D	N.D	N.D	N.D	N.D
Benzoic acid	N.D	N.D	ND	N.D	ND	N.D	N.D	ND	N.D	N.D	N.D	N.D	N.D	ND	ND	ND	ND	N.D	N.D	N.D
Methyl 4-hydrobenzoate	N.D	ND	N.D	N.D	N.D	N.D	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	ND	ND	N.D	N.D	N.D
Ethyl 4-hydrobenzoate	N.D	ND	ND	N.D	ND	N.D	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	ND	ND	N.D	N.D	ND
	Cont	rol	(2) 5-T95-	9H-1S	(2) 5-T95-	9H-2S	(2) 5-T95-	9H-3S	(2) 5- T 95-	9H-4S	(2) 5-T95-	9H-5S	(2) 5-T95-	9H-6S	(2) 5-T95	-9H-7S	(2) 5-T95	9H-SS	(2) 5-T95	-9H-9S
Analyte —	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)
Dehydroacetic acid	N.D	N.D	ND	N.D	ND	N.D	N.D	ND	ND	ND	N.D	ND	N.D	ND	ND	N.D	ND	N.D	ND	N.D
Sorbic acid	N.D	N.D	ND	N.D	ND	N.D	N.D	ND	N.D	N.D	N.D	ND	N.D	ND	ND	ND	ND	ND	ND	N.D
Benzoic acid	N.D	ND	N.D	N.D	ND	N.D	N.D	N.D	ND	N.D	N.D	ND	N.D	ND	ND	ND	ND	N.D	N.D	N.D
Methyl 4-hydrobenzoate	N.D	ND	ND	N.D	ND	N.D	N.D	ND	ND	ND	N.D	ND	N.D	ND	ND	ND	ND	N.D	N.D	N.D
Ethyl 4-hydrobenzoate	N.D	N.D	N.D	N.D	ND	N.D	N.D	N.D	N.D	N.D	N.D	ND	N.D	ND	ND	ND	ND	N.D	ND	N.D

〈 표 33. 5년근 소난 보존료 분석결과 〉

	Contr	rol	(2) 5-T95-	3H-1B	(2) 5-T95-	3H-2B	(2) 5-T95-	3H-3B	(2) 5-T95-	3H-4B	(2) 5-T95-	3H-5B	(2) 5-T95-	3H-6B	(2) 5-T95	-3H-7B	(2) 5-T95-	3H-SB	(2) 5-T95	-3H-9B
Analyte —	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농토	Contents (mg/kg)	농도	Contents (mg/kg)	농토	Contents (mg/kg)
Dehydroacetic acid	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	N.D	N.D	ND	ND	N.D	N.D	N.D	N.D	N.D
Sorbic acid	N.D	ND	N.D	ND	ND	ND	N.D	ND	ND	ND	N.D	ND	N.D	ND	ND	N.D	ND	N.D	N.D	N.D
Benzoic acid	N.D	ND	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	ND	N.D	ND	ND	ND	N.D	N.D	N.D	N.D
Methyl 4-hydrobenzoate	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	N.D	N.D	N.D	N.D	N.D
Ethyl 4-hydrobenzoate	N.D	ND	ND	ND	ND	ND	N.D	ND	ND	N.D	N.D	N.D	N.D	ND	ND	ND	N.D	N.D	N.D	N.D
150041004	Contr	rol	(2) 5-T95-	6H-1B	(2) 5-T95-	6H-2B	(2) 5-T95-	6H-3B	(2) 5-T95-	6H-4B	(2) 5-T95-	6H-5B	(2) 5- T 95-	6H-6B	(2) 5-T95	-6H-7B	(2) 5-T95-	6H-SB	(2) 5-T95	-6H-9B
Analyte —	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)
Dehydroacetic acid	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	N.D	N.D	ND	N.D	ND	N.D	N.D	ND	N.D	N.D	N.D
Sorbic acid	N.D	ND	N.D	N.D	ND	N.D	N.D	ND	N.D	ND	ND	ND	N.D	ND	ND	ND	N.D	N.D	N.D	N.D
Benzoic acid	N.D	ND	ND	N.D	ND	N.D	N.D	ND	N.D	N.D	ND	N.D	N.D	ND	ND	ND	N.D	N.D	ND	ND
Methyl 4-hydrobenzoate	N.D	ND	N.D	N.D	ND	N.D	N.D	ND	N.D	ND	ND	ND	N.D	ND	ND	ND	N.D	N.D	ND	ND
Ethyl 4-hydrobenzoate	N.D	ND	ND	N.D	ND	N.D	N.D	ND	ND	ND	N.D	N.D	N.D	ND	ND	ND	ND	N.D	ND	ND
	Contr	rol	(2) 5-T95-	9H-1B	(2) 5-T95-	9H-2B	(2) 5-T95-	9H-3B	(2) 5-T95-	9H-4B	(2) 5-T95-	9H-5B	(2) 5-T95-	9H-6B	(2) 5-T95	-9H-7B	(2) 5-T95-	9H-8B	(2) 5-T95	-9H-9B
Analyte —	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)
Dehydroacetic acid	N.D	ND	ND	N.D	ND	N.D	N.D	N.D	ND	ND	N.D	ND	N.D	ND	ND	ND	N.D	ND	ND	ND
Sorbic acid	N.D	ND	N.D	N.D	N.D	N.D	N.D	ND	ND	N.D	N.D	N.D	N.D	ND	ND	ND	N.D	N.D	ND	ND
Benzoic acid	N.D	ND	N.D	N.D	ND	N.D	N.D	ND	N.D	ND	ND	ND	N.D	ND	ND	ND	N.D	N.D	ND	ND
Methyl 4-hydrobenzoate	N.D	ND	ND	ND	ND	ND	N.D	ND	ND	ND	N.D	N.D	N.D	ND	ND	ND	ND	N.D	ND	ND
Ethyl 4-hydrobenzoate	N.D	N.D	N.D	N.D	N.D	N.D	N.D	ND	ND	N.D	ND	N.D	N.D	ND	ND	N.D	N.D	N.D	ND	ND

〈 표 34. 5년근 중편 보존료 분석결과 〉

	Contr	ol	(2) 6-T95-	3H-1S	(2) 6-T95-	3H-2S	(2) 6-T95-	3H-3S	(2) 6-T95-	3H-4S	(2) 6-T95-	3H-5S	(2) 6-T95-	3H-6S	(2) 6-T95	3H-7S	(2) 6-T95-	3H-8S	(2) 6-T95	-3H-9S
Analyte —	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농토	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Content (mg/kg
Dehydroacetic acid	N.D	N.D	ND	ND	ND	ND	N.D	N.D	N.D	N.D	N.D	ND	N.D	ND	ND	N.D	N.D	N.D	N.D	NJ
Sorbic acid	N.D	ND	ND	ND	N.D	N.D	N.D	ND	ND	N.D	ND	ND	N.D	N.D	ND	ND	ND	N.D	N.D	NJ
Benzoic acid	N.D	ND	ND	ND	ND	ND	N.D	ND	N.D	N.D	N.D	ND	N.D	N.D	ND	ND	ND	N.D	N.D	N.I
Methyl 4-hydrobenzoate	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	N.D	N.D	ND	N.D	N.D	N.D	ND	N.D	N.D	N.D	N.I
Ethyl 4-hydrobenzoate	N.D	ND	ND	ND	ND	N.D	N.D	ND	ND	N.D	ND	ND	N.D	N.D	ND	ND	ND	N.D	N.D	NJ
MARKAGY POLICE	Contr	ol	(2) 6-T95-	6H-1S	(2) 6-T95-	6H-2S	(2) 6-T95-	6H-3S	(2) 6-T95-	6H-4S	(2) 6-T95-	6H-5S	(2) 6-T95-	6H-6S	(2) 6-T95	-6H-7S	(2) 6-T95-	6H-SS	(2) 6-T95	-6H-9S
Analyte —	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Content (mg/kg
Dehydroacetic acid	N.D	ND	ND	ND	N.D	ND	N.D	ND	N.D	N.D	N.D	ND	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.I
Sorbic acid	N.D	ND	ND	ND	ND	N.D	N.D	ND	ND	N.D	ND	ND	N.D	N.D	ND	ND	ND	N.D	N.D	N.I
Benzoic acid	N.D	ND	ND	N.D	ND	N.D	ND	ND	ND	N.D	N.D	ND	N.D	ND	ND	ND	N.D	ND	ND	NI
Methyl 4-hydrobenzoate	N.D	ND	ND	N.D	ND	N.D	N.D	ND	N.D	N.D	N.D	ND	N.D	ND	ND	ND	N.D	ND	ND	NI
Ethyl 4-hydrobenzoate	N.D	ND	ND	N.D	ND	N.D	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	ND	ND	N.D	ND	NJ
	Contr	ol	(2) 6-T95-	9H-1S	(2) 6-T95-	9H-2S	(2) 6-T95-	9H-3S	(2) 6-T95-	9H-4S	(2) 6-T95-	9H-5S	(2) 6-T95-	9H-6S	(2) 6-T95	9H-7S	(2) 6-T95-	9H-8S	(2) 6-T95	-9H-9S
Analyte —	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Content (mg/kg
Dehydroacetic acid	N.D	N.D	ND	N.D	ND	N.D	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	N.D	N.D	ND	ND	NJ
Sorbic acid	N.D	N.D	ND	N.D	ND	N.D	N.D	N.D	ND	N.D	N.D	N.D	N.D	ND	ND	ND	ND	N.D	ND	NI
Benzoic acid	N.D	N.D	ND	N.D	N.D	N.D	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	ND	ND	N.D	N.D	N.I
Methyl 4-hydrobenzoate	N.D	ND	ND	ND	N.D	ND	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	ND	ND	N.D	ND	NJ
Ethyl 4-hydrobenzoate	N.D	N.D	ND	N.D	ND	N.D	N.D	N.D	ND	N.D	ND	N.D	N.D	N.D	ND	ND	ND	N.D	ND	NI

〈 표 35. 6년근 소난 보존료 분석결과 〉

YGG-GENA	Contr	rol	(2) 6-T95-	3H-1B	(2) 6-T95-	3H-2B	(2) 6-T95-	3H-3B	(2) 6-T95-	3H-4B	(2) 6-T95-	3H-5B	(2) 6-T95-	3H-6B	(2) 6-T95	-3H-7B	(2) 6-T95-	3H-8B	(2) 6-T95-	3H-9B
Analyte —	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농토	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)
Dehydroacetic acid	N.D	ND	N.D	ND	N.D	ND	N.D	N.D	N.D	ND	N.D	ND	N.D	N.D	ND	N.D	N.D	N.D	N.D	N.D
Sorbic acid	N.D	ND	N.D	ND	N.D	N.D	N.D	ND	N.D	N.D	N.D	ND	N.D	N.D	N.D	ND	N.D	N.D	N.D	N.D
Benzoic acid	N.D	ND	ND	ND	ND	N.D	N.D	N.D	ND	N.D	N.D	ND	N.D	N.D	ND	ND	N.D	N.D	N.D	N.D
Methyl 4-hydrobenzoate	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	N.D	N.D	ND	N.D	N.D	N.D	N.D
Ethyl 4-hydrobenzoate	N.D	ND	ND	ND	ND	ND	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	N.D	ND	N.D	N.D	N.D
warmayeans	Contr	rol	(2) 6-T95-	6H-1B	(2) 6-T95-	6H-2B	(2) 6-T95-	6H-3B	(2) 6-T95-	6H-4B	(2) 6-T95-	6H-5B	(2) 6-T95-	6H-6B	(2) 6-T95	-6H-7B	(2) 6-T95-	6H-SB	(2) 6-T95-	6H-9B
Analyte	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)
Dehydroacetic acid	N.D	ND	N.D	ND	N.D	ND	N.D	ND	N.D	N.D	N.D	ND	N.D	N.D	ND	N.D	N.D	N.D	N.D	N.D
Sorbic acid	N.D	ND	N.D	ND	ND	N.D	N.D	N.D	N.D	N.D	N.D	ND	N.D	N.D	ND	ND	N.D	N.D	N.D	N.D
Benzoic acid	N.D	ND	ND	N.D	ND	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	ND	ND	N.D	N.D	N.D	N.D
Methyl 4-hydrobenzoate	N.D	ND	N.D	N.D	ND	N.D	N.D	ND	N.D	ND	N.D	ND	N.D	ND	ND	ND	N.D	N.D	ND	ND
Ethyl 4-hydrobenzoate	N.D	ND	ND	N.D	ND	N.D	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	ND	N.D	N.D	ND	N.D
	Contr	rol	(2) 6-T95-	9H-1B	(2) 6-T95-	9H-2B	(2) 6-T95-	9H-3B	(2) 6-T95-	9H-4B	(2) 6-T95-	9H-5B	(2) 6-T95-	9H-6B	(2) 6-T95	9H-7B	(2) 6-T95-	9H-8B	(2) 6-T95-	9H-9B
Analyte —	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)	농도	Contents (mg/kg)
Dehydroacetic acid	N.D	ND	N.D	N.D	ND	N.D	N.D	ND	N.D	N.D	N.D	ND	N.D	N.D	ND	ND	ND	N.D	N.D	N.D
Sorbic acid	N.D	ND	ND	N.D	ND	N.D	N.D	ND	ND	N.D	N.D	N.D	N.D	ND	ND	ND	N.D	N.D	ND	N.D
Benzoic acid	N.D	ND	ND	N.D	ND	N.D	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	ND	N.D	N.D	ND	N.D
Methyl 4-hydrobenzoate	N.D	ND	ND	ND	N.D	N.D	N.D	ND	ND	N.D	N.D	ND	N.D	ND	ND	ND	ND	N.D	ND	N.D
Ethyl 4-hydrobenzoate	N.D	N.D	ND	N.D	N.D	ND	ND	ND	ND	ND	ND	ND								

〈 표 36. 6년근 중편 보존료 분석결과 〉

사. 타르색소

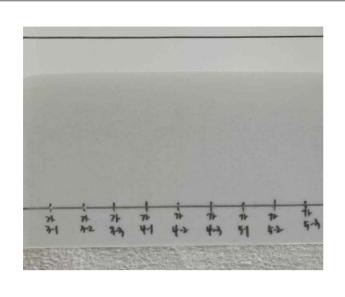
- 인삼산업법 내 타르색소의 기준은 불검출이다. 모든 시료에 대하여 다음과 같은 실험방 법으로 측정하였다.
- 시험방법 근거: 제 8. 일반시험법 3. 식품 중 식품첨가물시험법 3.4 착색료 3.4.1 타르색 소(산성색소)

1. 장비와 재료

- 1.1 실험실 장비 및 소모품
 - 1.1.1 초산
 - 1.1.2 양모
 - 1.1.3 색소
 - 1.1.4 25% 암모니아수
 - 1.1.5 TLC판
 - 1.1.6 에틸알코올
 - 1.1.7 아밀알콜(1-Pentanol)
 - 1.1.8 항온수조
- 1.1.9 둥근플라스크
- 1.2.1 삼각플라스크
- 2. 시료 전처리 및 시액 조제
- 2.1 추출
- 2.1.1 액상검체

착색의 정도에 따라 20~200 mL를 취해 물을 가한다. 알코올 함유한 것은 중화한 다음 수 욕상에서 알코올을 증발시키고 물을 보충하여 색소 추출액으로 한다.

2.1.2 고상검체


검체 5 g에 80% 에탄올을 4 ~ 5배 넣고 흔들어 2 ~ 3시간 방치한다. 원심분리하여 상층액을 취해 1 % 암모니아수를 함유한 70 % 에탄올로 다시 추출한다. 원심분리하여 앞의 상층액과 합쳐 6 % 초산 (acetic acid)으로 중화한다. 끓여서 에탄올을 증발시키고 물을 가하여 색소 추출액으로 한다.

2.2 정제

삼각플라스크에 색소추출액 5 Ml + 1 % 초산 1 mL을 넣고 탈지양모 0.1 g (20 cm)을 넣고 잘 흔든다. 항온수조 $70 ^{\circ}$ C로 30분간 가온하여 양모를 건져낸다. 100 mL 둥근플라스크에 염색된 양모를 넣고 1 % 암모니아 5 mL를 넣는다. 호일로 덮어 30분간 가온한 다음 농축해서 1 %의 농도 (약 1 mL)로 조제한다.

2.3 TLC

TLC를 자르고 에탄올:아밀알콜:25 % 암모니아수 = 10:4:1 비율로 섞은 전개용매를 전개조에 채우고 벽면을 적셔주어 포화상태로 만든다. 원을 찍을 때 최대한 작게 찍고 충분히 말려 넣는다.

〈 그림 72. 타르색소 TLC 분석과정 〉

3. 시험결과

- 모든 제조 흑삼시료에서 타르색소는 불검출이었음.

타르색소	Control	II. 5-T95- 3H-1S	II. 5-T95- 3H-2S	II. 5-T95- 3H-3S	II. 5-T95- 3H-4S	II. 5-T95- 3H-5S	II. 5-T95- 3H-6S	II. 5-T95- 3H-7S	II. 5-T95- 3H-8S	II. 5-T95- 3H-9S
1st	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출
2nd	불검출	출검출	불검출	출검출	불검출	출검출	출검출	불검출	불검출	불검출
3rd	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출
타르색소	Control	II, 5-T95- 6H-1S	II. 5-T95- 6H-2S	II. 5-T95- 6H-3S	II. 5-T95- 6H-4S	II. 5-T95- 6H-5S	IL 5-T95- 6H-6S	II. 5-T95- 6H-7S	II. 5-T95- 6H-8S	II. 5-T95- 6H-9S
1st	불검출	불검출	불검출	불검출	출검출	불검출	불검출	불검출	불검출	불검출
2nd	물검출	불검출	불검출	불검출	불검출	불검출	물건줄	물검출	불검출	불검출
3rd	불검출	불검출	불검출	불검출	불검출	불검출	물검출	불검출	불검출	불검출
타르색소	Control	II. 5-T95- 9H-1S	II. 5-T95- 9H-2S	II. 5-T95- 9H-3S	II. 5-T95- 9H-4S	II. 5-T95- 9H-5S	II. 5-T95- 9H-6S	II. 5-T95- 9H-7S	II. 5-T95- 9H-8S	II. 5-T95- 9H-9S
1st	불검출	불검출	불검출	불검출	물검출	불검출	불검출	불검출	불검출	불검출
2nd	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출
3rd	불검출	불검출	눌검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출
		•	〈 표 37.	5년근	소난 타.	르색소 -	분석 결화	斗 〉		
			II. 5-T95-	II. 5-T95-	II. 5-T95-	II. 5-T95-	II. 5-T95-	II. 5-T95-	II. 5-T95-	II. 5-T95-
타르색소	Control	II. 5-T95-	The second secon	100 miles 100 miles 100 miles 100 miles		211 50	211 CD	211 70	A COLUMN TO THE PARTY OF THE PA	110
타르색소 1st	Control	II, 5-195- 3H-1B 물건줄	3H-2B 불검출	3H-3B 물건줄	3H-48 물검출	3H-5B 불검출	3H-6B 불검출	3H-7B 물건출	3H-8B 물건출	3H-9B 불검출

타르색소	Control	II. 5-T95- 3H-1B	II. 5-T95- 3H-2B	II. 5-T95- 3H-3B	II. 5-T95- 3H-48	II. 5-T95- 3H-5B	II. 5-T95- 3H-6B	II. 5-T95- 3H-7B	II. 5-T95- 3H-8B	II. 5-T95 3H-98
1st	불검출	물검출	불검출	물검출	물검출	눌검출	불검출	물검출	불검출	불검출
2nd	물검출	물검출	불검출	물검출	물검출	물검출	물검출	물검출	불검출	불검출
3rd	불검출	물검출	눌검출	불검출	눌검출	눌검출	눌검 <mark>출</mark>	눌검출	불검출	불검출
타르색소	Control	II. 5-T95- 6H-1B	II. 5-T95- 6H-2B	II. 5-T95- 6H-3B	II. 5-T95- 6H-4B	II. 5-T95- 6H-5B	II. 5-T95- 6H-68	II. 5-T95- 6H-78	II. 5-T95- 6H-88	II. 5-T95- 6H-98
1st	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출
2nd	불검출	물검출	불검출	불검출	불검출	물검출	물검출	불검출	불검출	불검출
3rd	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출
타르색소	Control	II. 5-T95- 9H-18	II. 5-T95- 9H-2B	II. 5-T95- 9H-3B	II. 5-T95- 9H-4B	II. 5-T95- 9H-5B	II. 5-T95- 9H-6B	II. 5-T95- 9H-7B	II. 5-T95- 9H-88	II. 5-T95 9H-9B
1st	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출
2nd	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출
3rd	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출

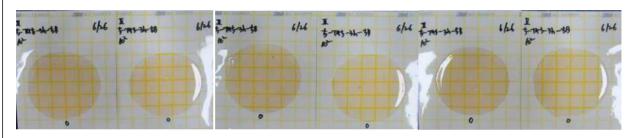
- 59 -

1st 2nd 3rd 타르색소 1st 2nd	물검출 물검출 Control 물검출 물검출	물건줄 물건줄 II. 6-T95- 9H-18 물건줄 물건줄	보검출 II. 6-T95- 9H-2B 물검출 물검출 물검출	발검출 II. 6-T95- 9H-38 물검출 물검출	불검출 II. 6-T95- 9H-48 불검출 불검출	불검출 II. 6-T95- 9H-5B 불검출 물검출	불검출 II. 6-T95- 9H-68 물검출 물검출 물검출	발검출 II. 6-T95- 9H-7B 물검출 물검출	발검출 II. 6-T95- 9H-88 물건줄 물건줄	발검출 II. 6-T9 9H-9i 물검출 물검출
2nd 3rd 타르색소	물검출 Control	물검출 II. 6-T95- 9H-18	물검출 II. 6-T95- 9H-2B	불검출 II. 6-T95- 9H-38	II. 6-T95- 9H-4B	II. 6-T95- 9H-5B	불검출 II. 6-T95- 9H-6B	발검출 II. 6-T95- 9H-7B	물검출 II. 6-T95- 9H-88	발검율 II. 6-T9 9H-9i
2nd 3rd	불검출	불검출 II. 6-T95-	물검출 II. 6-T95-	불검출 II. 6-T95-	II. 6-T95-	II. 6-T95-	물검출 II. 6-T95-	물건출 II. 6-T95-	물검출 II. 6-T95-	발검출 II. 6-T9
2nd	100	- 15 TO TO	100000000000000000000000000000000000000	1000000	불검출	불검출	CONTRACT.	War and the second	東京教育の表現である。	
2nd	100	- 15 TO TO	100000000000000000000000000000000000000	1000000	MEZIGE SE		CONTRACT.	War and the second	東京教育の表現である。	
			불검출	물검품	물검출	물검출	물검출	물검출	물검출	불검출
0.00	불검출	불검출	불검출	불검출	불검출	불검출	불검출	물검출	물검출	불검절
라르색소	Control	II. 6-T95- 6H-18	II. 6-T95- 6H-28	II. 6-T95- 6H-3B	II. 6-T95- 6H-4B	II, 6-T95- 6H-58	II. 6-T95- 6H-6B	II. 6-T95- 6H-7B	II. 6-T95- 6H-8B	II. 6-T9 6H-98
3rd	불검출	불검출	불검출	불검출	불검출	불검출	물검출	불검출	불검출	불검출
2nd	물검줄	불검출	불검출	출검출	물검물	물검줄	물검줄	불검출	불검출	불검절
1st	불검출	불검출	물건줄	물검출	물검줄	물검줄	물검줄	물검출	물검줄	물검증
	(8/30)00000	3H-1B	3H-2B	3H-3B	3H-4B	3H-5B	3H-6B	3H-7B	3H-8B	3H-9
타르색소	Control	II. 6-T95-	II. 6-T95-	II. 6-T95-	II. 6-T95-	II. 6-T95-	II. 6- T 95-	II. 6-T95-	II. 6-T95-	II. 6-T9
310	202		く 표 39.	100000000	소난 타.		<u></u> 분석 결과		808	808
3rd	물건줄 물건줄	물건출 물건출	글 건호 물건줄	a ca 불건출	물건출	물건출	물건출	물건줄 물건줄	물건줄 물건줄	출 건 호 발 건 출
2nd	물건줄	물건출	물건물	물건출 물건출	물건줄	물건출	물건줄	물건출	물건줄	물건물
타르색소 1st	Control 물건줄	II. 6-T95- 9H-1S 불검출	II. 6-T95- 9H-2S 불검출	II. 6-T95- 9H-3S 불검출	II. 6-T95- 9H-4S 불검출	II. 6-T95- 9H-5S 불검출	II. 6-T95- 9H-6S 불검출	II. 6-T95- 9H-7S 물검출	II. 6-T95- 9H-8S 불검출	II. 6-T9 9H-95 물검출
0.577F)										
3rd	불검출	불검출	불검출	물건줄	불검출	불검출	불검출	불검출	불검출	불검절
2nd	불검출	물건출 물건출	물건출	물건줄	물건출	물건줄	물건줄	물건출	출검출	물건물
타르색소 1st	Control 불검출	6H-1S 불검출	6H-2S 물검출	6H-3S 불검출	6H-4S 물건출	6H-5S 불검출	6H-6S 물검출	6H-7S 불검출	6H-8S 물건출	6H-99 불검출
	25-5-52 00-01	II. 6-T95-	II. 6-T95-	II. 6-T95-	II. 6-T95-	II. 6-T95-	II. 6-T95-	II. 6-T95-	II. 6-T95-	II. 6-T9
3rd	불검출	출검출	불검출	불검출	불검출	물검출	불검출	불검출	불검출	불검출
2nd	불검출	불검출	물검출	불검출	불검출	물검출	불검출	불검출	물검출	불검출
	불검출	불검출	출검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출
1st	Control	II. 6-T95- 3H-1S	II. 6-T95- 3H-2S	II. 6-T95- 3H-3S	II. 6-T95- 3H-4S	II. 6-T95- 3H-5S	II. 6-T95- 3H-6S	II. 6-T95- 3H-7S	II. 6-T95- 3H-8S	II. 6-T9 3H-99

〈 표 40. 6년근 중편 타르색소 분석 결과 〉

- 아. 세균수 인삼산업법 내 일반세균수의 기준은 50,000 CFU/g 이하이다. 세균수는 다음과 같이 측정 하였다.
- 시험방법 근거: 식품공전 제 8 일반시험법, 8.4 미생물시험법
- 1. 장비와 재료
- 1.1 실험실 장비 및 소모품
- 1.1.1 일반세균수 필름(3M AC film)
- 1.1.2멸균필터백
- 1.1.3 배양기
- 1.1.4 균질기
- 1.1.5 실험실 미생물검사용 후드
- 2. 시료 전처리 및 시액 조제
- 2.1 시료 전처리

2.1.1 분말시료 10 g에 멸균생리식염수 90 mL을 가하여 균질화한다.


2.2 시액 조제

2.2.1 시험용액 1 mL와 멸균생리식염수 9 mL을 가하여 희석한 후 추가로 10배 단계로 희석하다.

3. 시험과정 및 세균수 계산

3.1 시험용액 1 mL와 각 10배 단계 희석액 1 mL를 세균수 건조필름배지(세균수 건조필름 배지 I 또는 세균수 건조필름배지 II)에 각 2매 이상씩 접종한 후 잘 흡수시키고 35± 1℃에서 48±2시간 배양한 후 생성된 붉은 집락수를 계산하고 그 평균집락수에 희석배수를 곱하여 일반세균수로 한다.

3.2 표준평판법에 있어서 검체 1 mL 중의 세균수를 기재 또는 보고할 경우에 그것이 어떤 제한된 것에서 발육한 집락을 측정한 수치인 것을 명확히 하기 위하여 1평판에 있어서의 집락수는 상당 희석배수로 곱하고 그 수치가 표준평판법에 있어서 1 mL 중(1 g 중)의 세균수 몇 개라고 기재보고하며 동시에 배양온도를 기록한다. 숫자는 높은 단위로부터 3단계에서 반올림하여 유효숫자를 2단계로 끊어 이하를 0으로 한다.

〈 그림 73. 세균수 정량시험 〉

4. 실험결과

- 모든 시료에서 세균수는 50.000 CFU/g 이내 적합하였다.
- 일부시료에서 세균수가 검출되었는데 시료를 분쇄하는 과정에서 유입된 것으로 판단된다.

세균수	II.5-T95-3H-	II.5-T95-3H-	II.5-T95-3H-	II.5-T95-3H-	II.5-T95-3H-	II.5-T95-3H-	II.5-T95-3H-	II.5-T95-3H-	II.5-T95-3H
(CFU/g)	15	25	35	4\$	55	65	75	88	95
1"	0	0	0	0	0	0	0	5200	3400
2 nd	0	0	0	0	0	0	0	4400	3600
3 rd	0	0	0	0	0	0	0	3500	4700
세균수 (CFU/g)	II.5-T95-6H	П.5-Т95-6H- 2S	II.5-T95-6H 3S	П.5-Т95-6H- 4S	П.5-Т95-6H- 5S	II.5-195-6H- 6S	II.5-T95-GH- 75	II.5-T95-6H- 85	П.5-Т95-6H- 9S
1*	0	0	0	0	0	0	0	0	0
2 rd	0	0	0	0	0	0	0	0	0
3 rd	0	0	0	0	0	0	0	0	0
세균수 (CFU/g)	II.5-T95-9H 1S	- II.5-Т95-9Н- 2S	II.5-T95-9H 3S	П.5-Т95-9H- 4S	П.5-Т95-9H- 5S	II.5-195-9H- 6S	II.5-T95-9H- 7S	II.5-T95-9H- 8S	II.5-T95-9H- 9S
1 st	0	0	0	0	0	0	0	0	0
2 rd	50	0	0	0	0	0	0	0	0
3 rd	50	0	0	0	0	0	0	0	0

세균수 (CFU/g)	II.5-795-3H 1B	- II.5-T95-3H 2B	- II.5-T95-3H 3B	- П.5-Т95-ЗН- 4В	П.5-Т95-ЗН- 5В	II.5-195-3H- 68	II.5-T95-3H- 7B	II.5-T95-3H- 8B	II.5-T95-3 9B
1 st	0	0	50	0	0	50	0	0	0
2 ^{ret}	0	0	0	0	0	0	0	0	0
3 rd	0	0	50	0	0	50	0	0	0
세균수				- II.5-Т95-6H-			THE PERSON NAMED IN COLUMN		
(CFU/g)	18	28	38	48	SB	68	78	8B	98
1"	0	0	0	0	0	0	0	0	0
2 ^{rel}	0	0	0	0	0	0	0	0	0
3 rd	0	50	0	0	0	0	0	0	0
색균수	IL5-795-9H	II.5-T95-9H	- II.5-T95-9H	- II.5-T95-9H-	II.5-T95-9H-	IL5-195-9H-	II.5-T95-9H-	II.5-T95-9H-	II.5-T95-9
(CFU/q)	1B	28	38	48	58	68	78	88	98
1 st	50	0	200	0	150	50	50	0	0
2 nd	0	0	50	50	0	0	100	0	50
314	0	:0	100	0	50	50	0	0	50
		<.	표 42. 5년	년근 중편	세균수	분석 결	과 >		
세균수				- П.6-Т95-ЗН-					
(CFU/g)	15	25	35	45	55	68	75	85	95
1"	200	800	50	0	100	50	200	0	0
2 nd	50	80	0	0	0	0	100	0	0
3 rd	500	80	0	50	0	200	0	0	0
섀균수	П.6-Т95-6Н	П.6-Т95-6Н	- II.6-T95-6H	- П.6-Т95-6H-	II.6-T95-6H-	IL6-T95-6H-	П.6-Т95-6Н-	II.6-T95-6H-	П.6-Т95-6
(CFU/q)	15	25	35	45	55	6S	75	85	95
1"	300	0	0	100	0	0	0	0	0
2 rd	100	0	0	100	0	0	0	0	0
3 rd	0	0	0	0	0	0	0	50	50
세균수	II.6-T95-9H-	II.6-T95-9H-	II.6-T95-9H-	II.6-T95-9H-	II.6-T95-9H-	II.6-T95-9H-	II.6-T95-9H-	II.6-T95-9H-	II.6-T95-9
(CFU/g)	15	25	35	45	5S	65	75	85	95
1"	0	50	0	0	450	0	750	50	0
2 nd	0	0	0	0	1100	0	800	0	0
3 rd	0	0	0	0	600	0	550	0	50
		< .	표 43. 6년	션근 소난	· 세균수	분석 결	과 >		
세균수				II.6-T95-3H-					
(CFU/g)	18	28	38	48	58	6B	78	88	98
1 st	0	0	0	100	0	0	150	200	100
							50	50	0
2 nd	0	50	0	0	0	0		1700.00	100
	0	50 0	0	0	0	0	50	50	50
2 nd 3 rd 세균수	0 П.6-Т95-6Н-	0 II.6-T95-6H-	0 II.6-T95-6H-	0 П.6-Т95-6Н-	0 П.6-Т95-6Н-	0 П.6-Т95-6Н-	50 II.6-T95-6H-	II.6-T95-6H-	П.6-Т95-6
2 nd 3 rd 세균수 (CFU/g)	0 П.6-Т95-6Н- 1В	0 II.6-T95-6H- 2B	0 II.6-T95-6H- 3B	0 П.6-Т95-6Н- 4В	0 II.6-T95-6H- 58	0 II.6-T95-6H- 6B	50 II.6-T95-6H- 78	П.6-Т95-6H- 8В	П.6-Т95-6 98
2 nd 3 rd 세균수 (CFU/g) 1 ^{tt}	0 II.6-T95-6H- 1B 0	0 II.6-T95-6H- 2B 0	0 II.6-T95-6H- 3B 50	0 II.6-T95-6H- 4B 0	0 II.6-T95-6H- 5B 150	0 II.6-T95-6H- 6B 0	50 II.6-T95-6H- 7B 0	П.6-Т95-6Н- 8В 0	П.6-Т95-6 9В 0
2 nd 3 rd 세균수 (CFU/g) 1 st 2 nd	0 II.6-T95-6H- 1B 0 0	0 II.6-T95-6H- 2B 0 50	0 II.6-T95-6H- 3B 50 0	0 II.6-T95-6H- 4B 0 0	0 II.6-T95-6H- 58 150 0	0 II.6-T95-6H- 6B 0 100	50 II.6-T95-6H- 78 0 0	П.6-Т95-6H- 8В 0 0	П.6-Т95-6 98 0 0
2 nd 3 rd 세균수 (CFU/g) 1 ^{tt}	0 II.6-T95-6H- 1B 0	0 II.6-T95-6H- 2B 0	0 II.6-T95-6H- 3B 50	0 II.6-T95-6H- 4B 0	0 II.6-T95-6H- 5B 150	0 II.6-T95-6H- 6B 0	50 II.6-T95-6H- 7B 0	П.6-Т95-6Н- 8В 0	П.6-Т95-6 9В 0
2 nd 3 rd 세균수 (CFU/g) 1 st 2 nd	0 II.6-T95-6H- 1B 0 0 50	0 II.6-T95-6H- 2B 0 50	0 II.6-T95-6H- 3B 50 0	0 II.6-T95-6H- 4B 0 0	0 II.6-T95-6H- 5B 150 0 0	0 II.6-T95-6H- 6B 0 100 0	50 II.6-T95-6H- 7B 0 0	II.6-T95-6H- 8B 0 0 0	П.6-Т95-6 98 0 0
2 nd 3 rd 相元令 (CFU/g) 1 st 2 nd 3 rd	0 II.6-T95-6H- 1B 0 0 50	0 II.6-T95-6H- 2B 0 50	0 II.6-T95-6H- 3B 50 0	0 II.6-T95-6H- 4B 0 0 0 50	0 II.6-T95-6H- 5B 150 0 0	0 II.6-T95-6H- 6B 0 100 0	50 II.6-T95-6H- 7B 0 0	II.6-T95-6H- 8B 0 0 0	П.6-Т95-6 98 0 0
2 nd 3 rd 세균수 (CFU/g) 1 st 2 nd 3 rd	0 II.6-T95-6H- 1B 0 0 50 II.6-T95-9H-	0 II.6-T95-6H- 2B 0 50 0	0 II.6-T95-6H- 3B 50 0 0	0 II.6-T95-6H- 4B 0 0 50 II.6-T95-9H-	0 II.6-T95-6H- 5B 150 0 0	0 II.6-T95-6H- 6B 0 100 0	50 II.6-T95-6H- 7B 0 0 0	П.6-Т95-6H- 8В 0 0 0 0	П.6-Т95-6 98 0 0 0
2 nd 3 nd 세균수 (CFU/g) 1 st 2 nd 3 ^{nt} 세균수 (CFU/g)	0 II.6-T95-6H- 1B 0 0 50 II.6-T95-9H- 1B	0 II.6-T95-6H- 2B 0 50 0 II.6-T95-9H- 2B	0 II.6-T95-6H- 3B 50 0 0 II.6-T95-9H- 3B	0 II.6-T95-6H- 4B 0 0 50 50 II.6-T95-9H- 4B	0 II.6-T95-6H- 5B 150 0 0 II.6-T95-9H- 5B	0 II.6-T95-6H- 6B 0 100 0 II.6-T95-9H- 6B	50 II.6-T95-6H- 78 0 0 0 0 II.6-T95-9H- 78	II.6-T95-6H- 8B 0 0 0 0	П.6-Т95-6 98 0 0 0 0

〈 표 44. 6년근 중편 세균수 분석 결과 〉

자. 대장균군

- 인삼산업법 내 대장균군의 기준규격은 음성이다. 대장균군 실험은 다음과 같이 실시하였다.

- 시험방법근거: 식품공전 제 8 일반시험법, 8.4 미생물시험법
- 1. 장비와 재료
- 1.1 실험실 장비 및 소모품
 - 1.1.1 BGLB Broth
 - 1.1.2멸균필터백
 - 1.1.3 시험관 및 발효관
 - 1.1.4 배양기
 - 1.1.5 균질기
- 1.1.6 실험실 미생물검사용 후드
- 1.1.7 Autoclave
- 2. 시료 전처리 및 시액 조제
- 2.1 시료 전처리
 - 2.1.1 분말시료 10 g에 멸균생리식염수 90 mL을 가하여 균질화한다.
- 3. 시료접종 및 배양
- 3.1 BGLB 배지법
 - 3.1.1 2.1.1 에 따른 시험용액 0.2 mL을 3개씩 BGLB 배지에 가한다. 대량의 시험용액을 가할 필요가 있을 때에는 대량의 배지를 넣은 발효관을 사용한다.
 - 3.1.2 시험용액을 넣은 BGLB 배지를 35~37℃에서 48±3시간 배양한 후 가스 발생을 인정하였을 때에는(배지를 흔들 때 거품 모양의 가스의 존재를 인정하였을 때에도) Endo 한천배지 (배지 5) 또는 EMB 한천배지(배지 6)에 분리 배양한다. 이하의 조작은 유당배지법의 확정시험 또는 완전시험 때와 같이 행하여 대장균군의 유무를 확인한다.

〈 그림 74. 대장균군 정성시험 〉

- 4. 실험결과
- 모든 시료에서 대장균군 불검출이었음.
- 대장균군은

대장균군	II.5-T95-9H- 1S	II.5-T95-9H- 2S	II.5-T95-9H- 3S	II.5-T95-9H- 4S	П.5-Т95-9H- 5S	II.5-T95-9H- 6S	II.5-T95-9H- 7S	II.5-T95-9H- 8S	II.5-T95-9H- 9S
1'"	음성								
2 rd	음성	율성							
3 rd	윤성	음성	율성						
대장균군	II.5-795-6H-	II.5-T95-6H- 2S	II.5-T95-6H-	II.5-195-6H- 4S	II.5-T95-6H- 5S	II.5-195-6H- 6S	II.5-T95-6H- 7S	II.5-T95-6H- 8S	II.5-T95-6H- 9S
1 st	음성	읇성	음성	음성	음성	음성	율성	율성	음성
2 ^{ret}	음성	옵성	음성	음성	음성	음성	음성	음성	율성
3 rd	음성	음성	욻성	음성	음성	음성	옵성	율성	음성
대장군군	II.5-T95-9H-	II.5-T95-9H- 2S	II.5-T95-9H-	II.5-T95-9H-	II.5-T95-9H-	II.5-T95-9H- 6S	П.5-Т95-9H- 7S	П.5-Т95-9H- 8S	П.5-Т95-9H- 9S
1"	윤성	율성	율성	음성	음성	음성	음성	음성	음성
2 rd	윤성	을성	음성	율성	음성	음성	음성	음성	음성
3 rd	음성	옵성	음성	음성	음성	옵성	율성	음성	음성

〈 표 45. 5년근 소난 증숙횟수별 대장균군 분석 결과 〉

대장군군	II.5-T95-3H-	II.5-T95-3H							
	18	28	38	48	58	6B	78	88	98
1 st	음성								
2 nd	음성								
3 rd	음성								
대장군군	II.5-T95-6H-	II.5-T95-6H-	Ⅲ.5-T95-6H-	Ⅱ.5-T95-6H-	II.5-T95-6H-	II.5-T95-6H-	II.5-T95-6H-	II.5-T95-6H-	II.5-T95-6H
	18	28	3B	48	58	68	78	88	98
1 st	음성								
2 nd	음성								
3 rd	음성								
대장군군	II.5-T95-9H-	II.5-T95-9H-	II.5-T95-9H-	II.5-T95-9H-	II.5-T95-9H-	П.5-Т95-9H-	II.5-T95-9H-	II.5-T95-9H-	II.5-T95-9H
	18	28	3B	48	58	6B	78	88	98
1 st	음성								
2 nd	음성	음성	음성	음생	음성	음성	음성	음성	음성
3 rd	음성								

〈 표 46. 5년근 소난 증숙횟수별 대장균군 분석 결과 〉

대장균군	II.6-795-3H- 15	II.6-T95-3H- 2S	II.6-T95-3H- 3S	II.6-195-3H- 4S	II.6-T95-3H- 5S	II.6-T95-3H- 6S	II.6-T95-3H- 7S	II.6-T95-3H- 8S	II.6-T95-3H 95
1 st	음성								
2 rd	음성	욻성	음성	음성	육성	율성	음성	음성	율성
3 rd	용성	음성	용성	음성	율성	용성	율성	용성	용성
대장군군	II.6-T95-6H- 1S	II.6-T95-6H- 2S	II.6-T95-6H- 3S	II.6-T95-6H- 45	II.6-T95-6H- 55	II.6-T95-6H- 65	II.6-T95-6H- 7S	II.6-T95-6H- 8S	II.6-T95-6H 95
1"	율성	옮성	율성	옯성	욟성	음성	옯성	율성	음성
2 nd	음성	음성	옱성	욞성	음성	음성	음성	음성	음성
3 rd	음성	옮성							
대장군군	II.6-T95-9H-	II.6-T95-9H- 2S	II.6-795-9H-	II.6-T95-9H-	II.6-T95-9H- 5S	П.6-Т95-9H- 6S	II.6-T95-9H- 7S	II.6-T95-9H-	II.6-T95-9H
1"	율성	음성	음성	율성	율성	음성	읍성	음성	율성
2 ^{red}	윤성	음성	음성	윤성	음성	음성	음성	율성	음성
3 rd	옵성	용성	음성	음성	옵성	음성	음성	읇성	음성

〈 표 47. 6년근 소난 증숙횟수별 대장균군 분석 결과 〉

대장군군	II.6-T95-3H-	II.6-T95-3H							
	18	28	38	48	5B	6B	78	8B	98
111	음성								
2 nd	음성	윤성	음성						
3 rd	음성								
대장균군	II.6-T95-6H-	II.6-T95-6H							
	18	28	38	48	58	6B	78	88	98
1 st	음성								
2 nd	음성								
3 rd	음성								
대장균군	II.6-T95-9H-	II.6-T95-9H							
	18	28	38	4B	5B	68	78	88	98
1 st	음성								
2 nd	음성								
3 rd	음성								

〈 표 48. 6년근 중편 증숙횟수별 대장균군 분석 결과 〉

○ 외부 공인검사기관 의뢰 검사결과

- 일부 중요 배치시료를 외부공인검사기관((주)동명생명과학원)에 의뢰하여 본 연구소와 cross 체크하였음.

Part of

〈 그림 75. 일반검사 성적서〉

2.6.5	(4)56	自身の一点では発音							
(Applicant)	20 8 25	西米 四分別 百分番 集制を設定 41							
10.00	GP19-0	11522	8+ 97	2019-07-09					
表对 無税 thianse of Products	115-19	5-3h-35							
AR S+安 常計 (Quantity of Samples)									
EN STR (Analytical Hermi)	2885	P#2X325@#							
Brill RR (Arwydow Purpose)	928								
25 At 22 28 (Analytical Peouts)	0100 20	●新州県 (JOX) 佐州田 ((it & (it & 510)	i					
	食田	2004	0.46	各种和推升音	祖 章 祖 2				
	1.0	Openeryin	1994	-	0.001				
	2	Pyracissroom	maka	_	0.584				
	3	Tebyconarow	mp/kg	-	0.121				
	4	Trifulance	mgrag		0.064				
	3	fascular-methyl	make	-	0.004				

〈 그림 76. 잔류농약검사 성적서〉

가. 일반검사 외부공인검사기관 의뢰 결과

- 외부공인검사기관 검사결과 모든 시료에서 인삼산업법 기준치 이내 적합하였음.
- 5년근 중편 95℃, 3시간 증삼시료

Analyte	5-T95-3H-1B	5-T95-3H-28	5-T95-3H-3B	5-795-3H-48	5-T95-3H-58	5-T95-3H-68	5-T95-3H-7B	5-T95-3H-88	5-T95-3H-98
일반 세균(CFU/g)	0	0	0	0	0	0	0	0	0
대장군군	음성	음성	음성	윤성	음성	음성	윤성	윤성	음성
타르색소	불결출	불검출	불경출	불검출	불검출	불건출	불점출	불검출	불점출
비소(mg/kg)	0.02	0.04	0.01	0.01	0.02	0.01	0.01	0.03	0.03
↑2 (mg/kg)	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
보존로(mg/kg)	불점출	불검출	불점출	불점출	불점출	불점출	불건출	量母產	불권출
카드뮴(mg/kg)	0.36	0.49	0.23	0.21	0.34	0.28	0.26	0.36	0.45
밥(mg/kg)	0.05	0.05	0.03	0.04	0.07	0.04	0.04	0.05	0.06

〈 표 49. 5년근 중편 3시간 증삼시료 외부공인검사기관 일반검사 결과 〉

- 5년근 중편 95℃, 6시간 증삼시료

Analyte	5-T95-6H-1B	5-T95-6H-28	5-T95-6H-3B	5-195-6H-48	5-T95-6H-58	5-T95-6H-68	5-T95-6H-7B	5-T95-6H-88	5-T95-6H-98
일반 세균(CFU/g)	0	0	0	0	0	0	0	0	0
대장군군	용성	음성	음성	윤성	음성	음성	음성	음성	음성
타르색소	불결출	불점출							
비소(mg/kg)	0.03	0.03	불검출	0.01	0.02	0.03	0.05	0.02	0.03
↑2 (mg/kg)	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
보존로(mg/kg)	#日本	불검출	불경출	불경출	불검출	불점출	불점출	불건출	불검출
카드몸 (mg/kg)	0.38	0.39	0,07	0.26	0.29	0.34	0.56	0.35	0.42
밥(mg/kg)	0.05	0.06	0.00	0.04	0.05	0.03	0.08	0.06	0.03

〈 표 50. 5년근 중편 6시간 증삼시료 외부공인검사기관 일반검사 결과 〉

- 5년근 소난 95℃, 3시간 3~5회 증삼 시료 및 6시간 3~5회 증삼 시료

Analyte	5-T95-3H-3S	5-T95-3H-4S	5-T95-3H-55	5-T95-6H-3S	5-T95-6H-4S	5-T95-6H-55
일반세균(CPU/g)	0	0	0	0	0	0
대장군군	음성	음성	음성	음성	음성	음성
타르색소	불검출	불검출	불검출	불검출	불검출	불검출
비소(mg/kg)	0.04	0.04	0.03	0.04	0.02	0.06
수운(mg/kg)	0.00	0.00	0.00	0.00	0.00	0.01
보존료(mg/kg)	불검출	불검출	불검출	불검출	불검출	불검출
카드믐(mg/kg)	0.32	0.29	0.33	0.36	0.59	0.45
납(mg/kg)	0.06	0.05	0.05	0.05	0.05	0.06

〈 표 51. 5년근 소난 3시간 증삼시료 외부공인검사기관 일반검사 결과 〉

- 6년근 소난 95℃, 3시간 3~5회 증삼 시료 및 6시간 3~5회 증삼 시료

Analyte	6-T95-3H-3S	6-T95-3H-45	6-T95-3H-55	6-T95-6H-35	6-T95-6H-4S	6-T95-6H-55
일반세균(CPU/g)	0	0	0	0	0	0
대장균군	음성	음성	음성	음성	음성	음성
타르색소	불검출	불검출	불검출	불검출	불검출	불검출
비소(mg/kg)	0.01	0.01	0.01	불검출	0.01	0.00
÷≗(mg/kg)	0.01	0.01	0.00	0.00	0.00	0.00
보존료(mg/kg)	불검출	불검출	불검출	불검출	불검출	불검출
카드뮴(mg/kg)	0.45	0.32	0.33	0.40	0.29	0.31
남(mg/kg)	0.01	0.01	0.01	0.01	0.01	0.02

〈 표 52. 5년근 소난 3시간 증삼시료 외부공인검사기관 일반검사 결과 〉

- 6년근 중편 95℃, 3시간 3~5회 증삼 시료 및 6시간 3~5회 증삼 시료

Analyte	6-T95-3H-3B	6-T95-3H-4B	6-T95-3H-5B	6-T95-6H-3B	6-T95-6H-4B	6-T95-6H-5B
일반세균(CFU/g)	0	0	0	0	0	0
대장균군	음성	음성	음성	음성	음성	음성
타르색소	불검출	불검출	불검출	불검출	불검출	불검출
비소(mg/kg)	0.01	0.01	0.03	0.00	0.00	불검출
수운(mg/kg)	0.01	0.00	0.01	0.00	0.00	0.00
보존료(mg/kg)	불검출	불검출	불검출	불검출	불검출	불검출
카드믐(mg/kg)	0.40	1.54	0.48	0.34	0.20	0.34
남(mg/kg)	0.02	0.05	0.02	0.02	0.01	0.01

〈 표 53. 6년근 중편 3시간 증삼시료 외부공인검사기관 일반검사 결과 〉

- 5년근 소난 95℃, 6시간 3~5회 증삼 시료 및 중편 6시간 3~5회 증삼 시료 (업체가공)

Analyte	5-T95-6H-3S	5-T95-6H-4S	5-T95-6H-5S	5-T95-6H-3B	5-T95-6H-4B	5-T95-6H-5B
일반세균(CFU/g)	0	0	0	0	0	0
대장균군	음성	음성	음성	음성	음성	음성
타르색소	불검출	불검출	불검출	불검출	불검출	불검출
비소(mg/kg)	불검출	불검출	0.01	0.00	0.07	0.02
수운(mg/kg)	0.01	0.00	0.01	0.01	0.01	0.00
보존료(mg/kg)	불검출	불검출	불검출	불검출	불검출	불검출
카드믐(mg/kg)	0.31	0.21	0.49	0.48	0.70	0.74
남(mg/kg)	0.01	0.01	0.01	0.02	0.02	0.03

〈 표 54. 5년근 소난 6시간 증삼시료 외부공인검사기관 일반검사 결과 〉

- 6년근 소난 95℃, 6시간 3~5회 증삼 시료 및 중편 6시간 3~5회 증삼 시료 (업체가공)

Analyte	6-T95-6H-3S	6-T95-6H-4S	6-T95-6H-55	6-T95-6H-3B	6-T95-6H-4B	6-T95-6H-5B
일반세균(CPU/g)	0	0	0	0	0	0
대장균군	음성	음성	음성	음성	음성	음성
타르색소	불검출	불검출	불검출	불검출	불검출	불검출
비소(mg/kg)	0.02	0.05	0.06	0.15	0.06	0.04
÷≗(mg/kg)	0.00	0.00	0.00	0.00	0.00	0.00
보존료(mg/kg)	불검출	불검출	불검출	불검출	불검출	불검출
카드뮴(mg/kg)	0.35	0.57	0.56	1.32	0.60	0.54
납(mg/kg)	0.05	0.07	0.08	0.08	0.06	0.07

〈 표 55. 6년근 소난 6시간 증삼시료 외부공인검사기관 일반검사 결과 〉

나. 잔류농약 외부공인검사기관 의뢰 결과

- 잔류농약 320종에 대하여 주요 중요배치 시료들에 대해 잔류농약검사를 실시하였음.
- 인삼의 잔류농약 성분에 대하여 모든 배치에서 적합하였음.
- 5년근 중편 95℃, 6시간 증삼 시료

판류농약	5-T95-6H-1B	5-795-6H-28	5-T95-6H-3B	5-T95-6H-48	5-195-6H-58	5-T95-6H-68	5-195-64-78	5-T95-6H-88	5-T95-6H-98
	Cyptie methr in 0.123 mg/kg	Cyptermethrin ILUS4 mg/kg	Cyptemethin 0079 mg/kg	Cyptermethrer 0.057 mg/kg	Cyptermethrin 0.041 mg/kg	Cyptie methrin 0.037 mg/kg	Cyptermethin ILUS4 mg/kg	Tebuconatole 0014 mg/kg	Cyptermethon 0.057 mg/kg
	Pyredoxtrober 0.116 mg/kg	Pyraciostrobin 0.029 mg/kg	Pyladostrobin 0032 mg/kg	Pyraclostrober 0.013 mg/kg	Pyradoxtrober 0.015 mg/kg	Tebuconarole 0.091 mg/kg	Pyracloserobin 0.026 mg/kg		Pyraclostrober 00.012 mg/kg
경출전부능약	Tebucomazole 0.023 mg/kg	Telauconazole IL012 reg/kg	Tebuconwole 0011 mg/kg	Thilusamide 0.02 mg/kg	Tebuconamile 0.01 mg/kg		Tebuconazole ILOS reg/kg		Telbucomerol 0.085 mg/kg
	Thifturanida 0.053 mg/kg	Thillusamide 0.025 mg/kg	Thiftips made: 0.031 mg/kg.		Thiflusiemede 0.02 mg/kg		Thillusemide 0.015 mg/kg		
	Talcholas methyl 0.017 maylog								

〈 표 56. 5년근 중편 6시간 증삼시료 외부공인검사기관 잔류농약검사 결과 〉

5년근 중편 95℃, 3시간 증삼 시료

잔류농약	5 T95 3H 1B	5-T95-3H-28	5-T95-3H-3B	5 T95 3H 4B	5 T95 3H 5B	5 T95 3H 6B	5-T95-3H-7B	5 T95 3H 8B	5 T95 3H 9B
	Cyptermethrin	Cypterme	Cyptemethin	Cyptermethrin	Cyptermethrin	Cyptermethrin	Cyptermethrin	Cyptermethrin	Cyptermethro
	0108 mg/kg	0.048 mg/kg	0033 mg/kg	0.052 mg/kg	0157 mg/kg	0066 mg/kg	0.09 mg/kg	0.124 mg/kg	01⊕ mg/kg
	Pyradostrobin	Pyraciostrobin	Pyraclestrobin	Pyraciostrobin	Pyraciostrobin	Pyradostrobn	Pyradostrobin	Pyraciostrobin	Pyraclostrobin
	0126 mg/kg	0.045 mg/kg	0028 mg/kg	0.046 mg/kg	0099 mg/kg	0.021 mg/kg	0038 mg/kg	0.084 mg/kg	00% mg/kg
검출잔류농약	Tebuconazole	Tebusprazole	Tebuconazole	Tebuconazole	Tebuconazole	Thirluzamide	Tebuconazole	Tebusprazole	Tebuconazok
Barnes	0025 mg/kg	0.014 mg/kg	001 mg/kg	0.014 mg/kg	0019 mg/kg	0.083 mg/kg	0012 mg/kg	aaz mg/kg	0018 mg/kg
	Thifluzamide	Thifuzanide	Thiffusamide	Thifluzamide	Thiftizamde		Thifluramde	Thriuzamde	Thifupamde
	0037 mg/kg	0.017 mg/kg	0035 mg/kg	0.087 mg/kg	0074 mg/kg		0049 mg/kg	0.084 mg/kg	0048 mg/kg
	Tolclofos metryl	Tolclobs mathyl	Toiclatas methyl						
	00.38 mg/kg	0.012 mg/kg	0013 mg/kg						

〈 표 57. 5년근 중편 3시간 증삼시료 외부공인검사기관 잔류농약검사 결과 〉

- 5년근 소난 95℃, 3시간 3~5회 증삼 시료 및 6시간 3~5회 증삼 시료

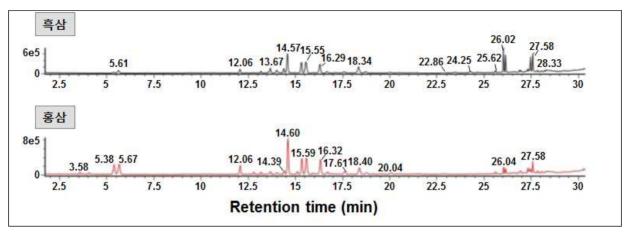
잔류농약	5-T95-3H-3S	5-T95-3H-4S	5-T95-3H-5S	5-T95-6H-3S	5-T95-6H-4S	5-T95-6H-55
	Cyptermethrin	Cyptermethrin	Cyptermethrin	Cyptermethrin	Cyptermethrin	Cyptermethrin
	0.091 mg/kg	0.095 mg/kg	0.084 mg/kg	0.106 mg/kg	0.134 mg/kg	0.118 mg/kg
	Pyr acl ostrob in	Pyraclostro bin	Pyraclo strob in	Pyrac lostro bin	Pyraclostro bin	Pyraclostrobin
	0.084 mg/kg	0.098 mg/kg	0.065 mg/kg	0.086 mg/kg	0.055 mg/kg	0.023 mg/kg
71 + 71 = 1 01	Tebuconazole	Tebu con azo le	Teb uco nazole	Tebu conazo le	Tebu con az ole	Thifluzamide
검출잔류농약	0.025 mg/kg	0.018 mg/kg	0.016 mg/kg	0.016 mg/kg	0.016 mg/kg	0.065 mg/kg
	Thifluzamid e	Thifluzamide	Thifluzamide	Thifluzamide	Thifluzamide	
	0.064 mg/kg	0.143 mg/kg	0.074 mg/kg	0.061 mg/kg	0.061 mg/kg	
	To klofos-methyl	Tolclofos-methyl	Tolclo fos-methyl			
	0.024 mg/kg	0.02 mg/kg	0.011 mg/kg			

〈 표 58. 5년근 소난 3시간, 6시간 증삼시료 외부공인검사기관 잔류농약검사 결과 〉

- 6년근 소난 95℃, 3시간 3~5회 증삼 시료 및 6시간 3~5회 증삼 시료

잔류농약	6-T95-3H-3S	6-T95-3H-45	6-T95-3H-5S	6-T95-6H-3S	6-T95-6H-4S	6-T95-6H-55
	Cyptermethrin 0.021 mg/kg	Tebuconazole 0.1 mg/kg	Cyptermethrin 0.046 mg /kg	Tebu conazo le 0.053 mg/kg	Cypter meth rin 0.022 mg/kg	Cyptermethrin 0.013 mg/kg
	Tebuconazole 0.097 mg/kg		Tebuco nazole 0.224 mg /kg		Tebu con az ole 0.172 mg/kg	Tebuco nazole 0.114 mg /kg
검출잔류농약	Tolclofos-methyl 0.025 mg/kg		Talclo fos-methyl 0.054 mg /kg		Bu profezin 0.01 mg/kg	Bu profez in 0.014 mg/kg
			Buprofezin 0.012 mg/kg			

〈 표 59. 6년근 소난 3시간, 6시간 증삼시료 외부공인검사기관 잔류농약검사 결과 〉


- 6년근 중편 95℃, 3시간 3~5회 증삼 시료 및 6시간 3~5회 증삼 시료

Cyptermethrin Tebuconazole Cyptermethrin Bu pro fezin Cyptermethrin Cyptermeth
Bu pro fezin 0.013 mg /kg

〈 표 60. 6년근 중편 3시간, 6시간 증삼시료 외부공인검사기관 잔류농약검사 결과 〉

○ 홍삼 및 흑삼의 이차대사체 프로파일링을 통한 지표성분 제안 및 판별연구

- 이차대사체 프로파일링을 위해 ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UPLC-QTOF/ MS)를 이용하여 분석하였다.

< 그림 77. 흑삼 및 홍삼의 대표 UPLC-QTOF/MS 크로마토그램 >

- UPLC-QTOF/MS 데이터로부터 홍삼과 흑삼의 이차대사체 프로파일의 차이를 확연히 나타내기 위하여 heatmap 분석을 하였으며, 흑삼과 홍삼이 각각 클러스터를 이루는 것을 확인할 수 있었다.

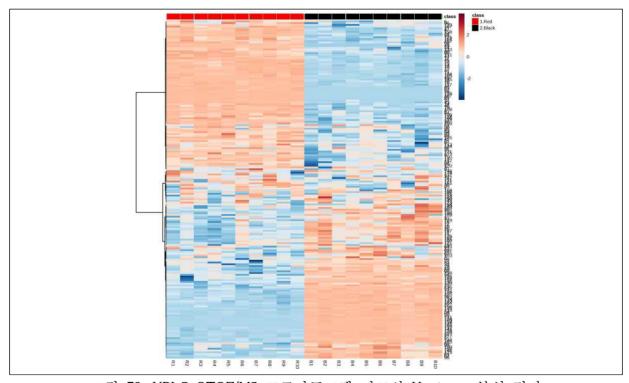
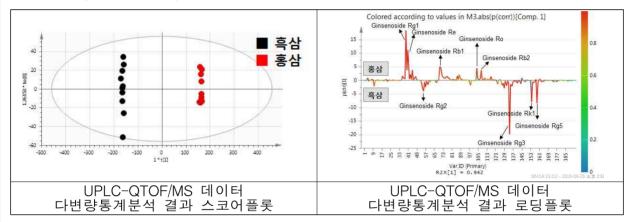
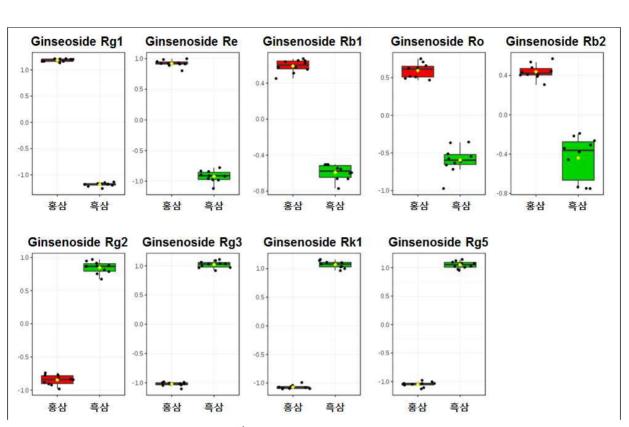



그림 78. UPLC-QTOF/MS 크로마토그램 피크의 Heatmap 분석 결과

- UPLC-QTOF/MS 크로마토그램으로부터 얻은 192개의 피크에 대하여 다변량통계분석을 수행하였으며, 스코어플롯을 통해 흑삼과 홍삼이 확연히 구별됨을 확인할 수 있었고, 로딩플롯을 통해 흑삼과 홍삼의 차이에 기여한 대사체를 확인하였으며, 이들을 보유하 고 있는 ginsenoside 라이브러리로 매칭시킨 결과, 홍삼에서는 ginsenoside Rgl (5.37 800.4906n), ginsenoside Re (5.64 946.5490n), ginsenoside Rb1 (15.59 955.4896m/z), (14.59 1153.6005m/z), ginsenoside Ro ginsenoside Rb2 (16.31_1078.5911n)의 비율이 높았으며, **흑삼에서는 ginsenoside Rg2 (13.68_784.4956n)**, ginsenoside Rg3 (26.03_784.4957n), ginsenoside Rk1 (27.46_766.4858n), ginsenoside Rg5 (27.57_766.4854n)의 비율이 높게 나타남을 확인하였다.
- 선행연구와 마찬가지로 최신 학문인 대사체분석에서도 ginsenoside Rg3, ginsenoside Rk1 ginsenoside Rg5 가 지표성분으로 적합하다는 결과를 도출하였음


< 그림 79. UPLC-QTOF/MS 분석 결과 >

- UPLC-QTOF/MS 피크 데이터의 다변량통계분석 모델을 validation하였으며, training set의 RMSEE 값은 0.009, test set의 RMSEP 값은 0.014로 굉장히 낮은 에러값을 나타내었으며, permutation 결과 R2의 Y 절편값은 0.4에 근사한 0.408, Q2의 Y 절편값은 0.05 미만인 - 0.234로 이 분석 모델은 validation 되었다고 할 수 있다.

< 그림 80. UPLC-QTOF/MS 분석 결과 >

- 로딩플롯에서 홍삼과 흑삼의 확연한 구별에 기여한 ginsenoside들의 상대적인 함량을 비교하기 위해 boxplot을 나타내었으며, 이들 모두 p-value가 0.05 이하로 나타나 유의 성 또한 확보 할 수 있었다.

< 그림 81. Ginsenoside Boxplot >

○ 흑삼의 제조기준 및 지표성분 규격(안) 설정

- * 흑삼의 제조기준 규격(안) 제출(예)
- 2. 제조방법
- 가. 상기 1의 원재료를 분말화하여 제조하여야 함
- 나. 상기 1의 원재료를 물이나 주정(물·주정 혼합물 포함)으로 추출하여 여과하 거 나, 여과한 후 농축 또는 식용미생물로 발효하여 제조하여야 함
- 3. 기능성분(또는 지표성분)의 함량 : 진세노사이드 Rg1, Rb1, Rg3, Rk1, Rg5를 함 하여 co~co mg/g 함유하고 있어야 함
- 4. 제조 시 유의사항 : 원재료인 인삼근은 「인삼산업법」에 적합하여야 하며 4년 근 이상의 것으로 춘미삼, 묘삼, 삼피, 인삼박은 사용할 수 없으며 병삼인 경우에는 병든 부분을 제거하고 사용할 수 있음
- **1(안)** : 기능성분(또는 지표성분)의 함량 : 진세노사이드 Rb1, Rg3, Rk1, Rg5를 합하여 일정량 함유하여야 함

- 2(안) : 기능성분(또는 지표성분)의 함량 : 진세노사이드 Rg1, Rb1, Rg3, Rk1, Rg5를 합하여 일정량 함유하고 있어야 함
- 3(안) : 기능성분(또는 지표성분)의 함량 : 진세노사이드 Rg3, Rk1, Rg5를 합하여 일정 량 함유하고 있어야 함
- 4(안) : 기능성분(또는 지표성분)의 함량 : 진세노사이드 Rg1, Rb1, Rg3를 합하여 일정 량 함유하고 있어야 하며, Rk1, Rg5를 일정량 함유하여야 함

○ 흑삼의 유해물질 안전관리 규격(안) 설정

- 인삼산업법 [시행 2017. 7. 12] 제2조(정의)에서 사용되는 용여를 정의를 하였으며, 현재 인삼산업법 총칙의 정의에는 흑삼에 대한 정의가 개정되지 않고 6항에 그밖에 인삼으로 정의되고 있다. 인삼제품류의 안전성과 관련된 법은 식품위생법의 식품등의 공전을 따르도록 되어있음
- 따라서, 제조공정 확립된 흑삼의 「식품위생법」,「약사법」및「농수산물 품질관리법」에 따른 대장균, 중금속 및 벤조피렌의 기준적합의 유무를 확인 할 필요가 있음
- 인삼류의 검사의 기준 · 방법에 관한 법률은 아래와 같음

*검사의 기준 · 방법(제18조의3 관련)

1. 용어의 정의

인삼류의 검사기준에서 사용되는 용어의 정의는 별표 2 제1호(용어의 정의)에 따른다.

2. 인삼류의 검사기준

가. 일반검사기준

1) 수분 : 15.0% 이하일 것

- 2) 벤조피렌(흑삼에만 해당한다): 「식품위생법」에 따른 흑삼의 벤조피렌 기준에 의할 것
- 3) 중금속: 「식품위생법」과 「약사법」에 따른 인삼의 중금속 기준 중 중한 기준에 의할 것
- 4) 회분 : 5% 이하(미삼류의 경우에는 6.0% 이하)일 것
- 5) 농약잔류허용기준 : 「농수산물 품질관리법」 및 「식품위생법」에 따른 인삼의 농약 잔류허용 기준에 의할 것
- 6) 이물 : 인삼류는 원료의 처리과정에서 세척 등으로 제거가 가능한 이물과 제조과정에 서 오염된 비위생적인 이물을 함유하지 아니할 것
- 7) 보존료, 인공색소 및 표백제가 검출되지 아니할 것
- 8) 세균수: 50,000/g 이하이어야 하며, 진공 포장한 제품은 3,000/g 이하일 것
- 9) 대장균군이 음성일 것
- 10) 내용량이 표시량 이상일 것
- 11) 인삼성분

- 가) n-부탄올추출물(조사포닌)의 함량(%)
- 본삼류: 2.0 이상, 대미·중미류 3.0 이상, 및 분쇄인삼 세미류 5.0 이상
- 나) 묽은 에탄올추출물의 함량 : 18.0% 이상

12) 진세노사이드 함량(흑삼을 제외한다): Rg1 0.10% 이상, Rb1 0.20% 이상일 것

- 「식품위생법」제5장(식품등의 공전) 제14조(식품등의 공전)에서 안전성 등의 규제에 관하여 각 식품별로 식품공전에 고시하도록 하였음
- 현재 식품일반의 기준 및 규격의 벤조피렌 기준 및 규격은 식품공전에 명시되어 있음

유형	기 준	
① 식용유지(식물성유지류, 어유, 기타동물성유지, 혼합식용유,	2.0 µg/kg 이하	
향미유, 가공유지, 쇼트닝, 마가린)		
② 숙지황 및 건지황	5.0 μg/kg 이하	
③ 훈제어육	5.0 μg/kg 이하(다만, 건조제품은 제외)	
④ 훈제건조어육	10.0 µg/kg 이하[생물로 기준 적용하며, 물로 추출한 추출물에 서는 벤조피렌이 검출되어서는 아니 된다.]	
⑤ 어류	2.0 µg/kg 이하	
⑥ 패류	10.0 µg/kg 이하	
⑦ 연체류(패류는 제외) 및 갑각류	5.0 µg/kg 이하	
⑧ 특수용도식품(영아용 조제유, 성장기용 조제유, 영아용 조제식, 성장기용 조제식, 영·유아용 곡류조제식, 기타 영·유아식, 영·유아용 특수조제식품)	1.0 µg/kg 이하	
⑨ 훈제식육제품 및 그 가공품	5.0 µg/kg 이하	
⑩ 흑삼(분말 포함)	2.0 μg/kg 이하	
⑪ 흑삼농축액	4.0 μg/kg 이하	

〈 표 61. 식품공전 벤조피렌 함량 기준 〉

* 공론화에 제안될 주요 안건(예)

- 1. 흑삼의 지표성분은 어떠한 근거에서 설정을 할 것인가?
- 2. 흑삼의 증숙과정은 몇 번으로 할 것인가? 그이유를 뒷받침할 근거는 무엇인가?
- 3. 흑삼만의 고유의 지표성분 설정이 가능할 것인가? 타당성은 무엇인가?
- 4. 기존 인삼, 홍삼에 포함되어 있는 지표성분을 배제할 것인가?
- 5. 지표성분은 개별적으로 계산 할 것인가? 또는 합으로 설정할 것인가?
- 6. 지표성분의 개별 또는 합의 함량은 어떻게 설정할 것인가? 적절한 것인가?
- 7. 기타 등등

○ 흑삼의 제조기준 및 지표성분 기준, 유해물질 안전관리 규격의 법안 제시를 위한 공청회 개최

1) 공청회 토론 및 안건

- 흑삼의 지표성분은 어떠한 근거에서 설정을 할 것인가?
- 흑삼의 중숙과정은 몇 번으로 할 것인가? 그 이유를 뒷받침할 근거는 무엇인가?
- 흑삼만의 고유의 지표성분 설정이 가능할 것인가? 타당성은 무엇인가?

- 기존 인삼, 홍삼에 포함되어 있는 지표성분을 배제할 것인가?
- 지표성분은 개별적으로 계산 할 것인가? 또는 합으로 설정할 것인가?
- 지표성분의 개별 또는 합의 함량은 어떻게 설정할 것인가? 적절한 것인가?
- 기타 사항

2) 토론 내용

- 1. **박종대(학계전문가)**: 흑삼 관련된 제품들이 시중에 유통되고 있으나 표준화된 기준이 없음. 식품부나 식약처에서 홍삼 외로 들어가 있을 뿐임.
- 2. 박종대(학계전문가): 결과가 다이올 위주인데 트라이올은 배제할 것인가?
 - 답변(이대영 협동과제책임자): 사포닌계와 비사포닌계를 생각하였으나, 연구기간이 짧은 관계로 일정상 어려움이 있음. 또한 트라이올 포함 시 흑삼 공정이 매우 복잡해지므로 트라이올은 배제함.
- 3. 박종대(학계전문가): 지표뿐 아니라 기능성도 매우 중요하기 때문에 홍삼과는 다른 흑삼만의 성분과 기능성(ex. 간기능, 당뇨, 비만 등)을 가지고 차별화를 두고 홍삼의 경우 기준을 Rgl, Rbl, Rg3를 합하여 2.5~34 mg/g 함유하는 것으로 기준을 설정하고 있으므로 흑삼 또한 지표 성분이라 할 수 있는 Rkl, Rg5를 추가하여 기존의 홍삼의 지표성분과 흑삼의 새로운 지표 성분의 합으로서 넓게 함량을 설정하는 것이 옳다고 생각됨.
- 4. 이성우(학계전문가): 흑삼/홍삼의 기능성을 명확히 규명하는 게 오래 걸릴 것 같고, 규제를 하는 것 보단 안전성 위주로 진행하는 게 어떤지?
 - 답변(이대영 협동과제책임자): 홍삼 제조 시 3증 3포 이상이 제일 적합함. 6증 6포 이상부터는 업체 선택이며 벤조피렌 함량도 증가하기 때문에 함량에 대해서는 계속 모니터링 중이다. 이 법안 마련을 통한 흑삼을 찌고 말리는 횟수의 제한은 규제를 위한 것이 아니라 활성화를 위함임. 우리 연구의 데이터를 보면 기준치보다 훨씬 낮은 벤조피렌 함량을 보이고 있어 함량에 대한 기준을 강화한다면 무분별만 흑삼제조를 방지할 수 있지만, 업체들의 혼란이 올 수 있기 때문에 신중히 검토하여야 함.
- 5. **박종한(제조업체종사자)**: 정관장에서 가공품 제조 시 사용한 인삼은 6년근 인삼을 주장하는데 이에 대한 대응이 필요할 것으로 생각 됨. 정관장같은 대규모 업체와의 관계가 없이 연구수행이 되었으면 좋겠음. 이러한 부분은 국가의 제제가 필요할 것으로보임.
 - 답변(이대영 협동과제책임자): 농촌진흥청과 정관장과의 관계는 전혀 없으며 농민을 위한 국가 기관임. 농진청에서 진행되는 연구는 주로 4, 5년근 인삼으로 사용하기 때문에 비용적으로 이득을 볼 수 있음.
- 6. **송순영(농업 및 제조업체종사자)**: 흑삼과 홍삼과의 명확한 차이점을 무엇으로 나누면 되는가?
 - 답변(이대영 이대영 협동과제책임자): 기본적으로 향, 외관으로 차이가 많이 나며, 제품으로 생산 시 성상이 홍삼과 다름.
- 7. **주명순(농업 종사자)** 실제로 흑삼을 제조해서 판매중인데 고객들의 반응을 보면 숙취해소, 뼈건강, 정력증진에 효과가 있다는 반응이 다수였음. 아직 검증되지 않았지만

- 이런 기능성에 대해 연구를 해야 할 필요가 있음.
- 답변(이대영 협동과제책임자): 다른 과제로 흑삼에 대한 기능성에 대한 기능성 연구 가 진행중인데 실제로 말씀하신 일부 기능성의 효과가 있음.

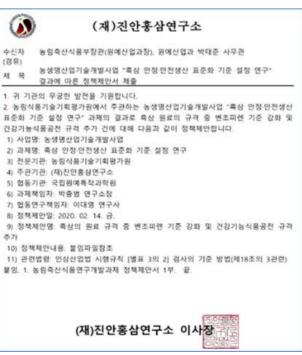
□ 관련 사진

단체사진

단체사진

3) 공청회 결과

1. 기준규격의 지표물질의 설정


- 9증 9포의 불필요성과 지표물질의 설정에 대해서는 대체적으로 공통의견이었음.
- 지표물질의 함량에 대해서는 연구결과와 상반된 의견을 보였으며 업계의견에서는 객관적으로 흑삼에서만 나타나는 성분만을 지표물질로 설정함으로써 흑삼과 홍삼의 차별화하는 것이 바람직하는 의견이 대부분이었음.
 - 지표성분 기준(안)
 - 1안) 기능성분(또는 지표성분)의 함량 : 진세노사이드Rb1, Rg3, Rk1, Rg5를 합하여 일정 량 함유하여야 할 경우
- ① 지표성분의 종류가 너무 광범위 함.
- ② Rbl 및 Rg3가 증가되면 인삼, 홍삼의 경우도 흑삼의 범주에 들어올 수 있음.
- ③ 만약 총함량의 범위가 낮을 경우, Rkl, Rg5 가 없더라도 흑삼 인정받을 수 있음.
- ④ 카라멜색소등을 첨가할 수 있다면 인삼, 홍삼 등을 원료로 사용하여서도 흑삼 제품으로 둔갑할 수 있는 문제가 생길 수 있음.
 - 2안) 기능성분(또는 지표성분)의 함량 : 진세노사이드Rg1, Rb1, Rg3, Rk1, Rg5를 합하여 일정량 함유하고 있어야 할 경우
- ① 지표성분의 종류가 너무 다양함.
- ② 지표성분의 구매비용 증가 및광범위한 규격으로써 현실적으로 산업계의 적용에도 어려움.
 - 3안) 기능성분(또는 지표성분)의 함량 : 진세노사이드Rg3, Rk1, Rg5를 합하여 일정량 함 유하고 있어야 할 경우
- ① 인삼, 홍삼의 기능지표성분 Rgl, Rbl이 부재로 인삼, 홍삼의 효능이 확인될지 의문.
- ② Rg3, Rk1, Rg5 의 경우 추출물로 얼마든지 증가를 시킬 수 있음.
- ③ 열을 가하게 될 경우 지표성분(Rkl, Rg5)의 함량이 증가함.
- ④ 함량범위가 적을 경우, Rg3만을 함유한 홍삼의 경우도 흑삼의 범주에 들어갈 수 있어 색소 첨가 등을 통한 홍삼이 흑삼으로 둔갑.
 - 4안) 기능성분(또는 지표성분)의 함량 : 진세노사이드Rg1, Rb1, Rg3를 합하여 일정량 함유하고 있어야 하며, Rk1, Rg5를 일정량 함유하여야 할 경우
- ① 업계에서 분석의뢰시 비용증가
- ② Rgl, Rbl의 경우 흑삼을 대표할수있는 성분이 아님.
- ③ Rg3 가 Rg1+Rb1+Rg3합을 조절 가능함.
 - -> 다양한 실증연구를 통한 진세노사이드Rg3, Rk1, Rg5를 흑삼의 지표성분의 함량 또는 범위를 설정 해야함.

2. 기준규격의 안전성 규격(벤조피렌)

- 자체 검토결과 일반검사 기준 항목별 허용기준 범위 내에 있어 추가 규격 설정은 불필 요하다는 의견이었음.
- 안전성과 관련하여 생산업체에서는 **엄격한 벤조피렌기준설정**이 필요하다는 의견이 지배적이었음.
- 본 연구 결과 **9시간 중숙과정**및 **7중숙이상**에서 **벤조피렌함량**이 기준치보다 **초과**되었음
- 흑삼은 인삼류중 유일하게 벤조피렌의규격이 설정되어 있는데 허용기준치를 강화할 필 요가 있다고 판단됨.

○ 정책제안

- 1) 건의명: 흑삼의 원료의 규격 중 벤조피렌 기준 강화 및 건강기능식품공전 규격 추가
- 인삼산업법 검사의 기준 및 방법 (제18조의3 관련) 에 따르면 [2. 인삼류의 검사기준] 중 [가. 일반검사기준]에서 벤조피렌의검사는 흑삼에만 해당된다고 고시되어 있음
- 현재, 식품공전에서는 **흑삼(분말 포함)** : 2.0 µg/kg 이하 및 흑삼농축액 : 4.0 µg/kg 이하 로 고시되어 있음v흑삼의 발암물질의 검출 가능한 농도와 향후, 흑삼의 다량소비 및 경제적인 면을 고려하여 노출을 최대한 낮은 수준으로 관리할 필요가 있음
- 흑삼의 유통제품 중 일부 제품에서 벤조피렌이초과검출되었지만, 9증9포로 제조한 흑삼이며 흑삼(현행법 홍삼기준)의 기능성 성분은 미달로 확인되어 있음. 본연구에서도 9시간 증숙과정및 7증숙이상에서 벤조피렌함량이 초과하였음.
- 흑삼을 안정하게 생산을 한다면, 현행 기준치보다 월등히 적은 함량(평균 $0.29\sim0.40~\mu$ g/kg)이 생성됨
- 따라서, 흑삼의 벤조피렌함량의 기준을 **흑삼(분말 포함)** : 1.5 μg/kg 이하 및 **흑삼농축액** : 3.0 μg/kg 이하로 강화할 필요성이 있음.

〈 그림 82. 정책제안 공문 〉

3장. 목표 달성도 및 관련 분야 기여도

1절. 목표달성도

- 가. 최종성과목표 및 평가방법
- 흑삼의 특성과 품질기준, 제조공정, 안정성 등의 기준·규격(안) 마련 나. 세부목표
- 흑삼의 정의 및 역사적 고찰
 - 흑삼관련 보고서
 - 흑삼의 시장현황 등에 대한 고찰
- 흑삼의 이화학적 유효 성분 지표 표준화 및 기준 설정
 - 유효 지표성분 설정 및 지표성분 함량 기준 설정
- 흑삼의 안전성 및 안전생산 표준화 기준 설정 연구
 - 흑삼의 유해성 벤조피렌의 분석법 정립
 - 시중 유통 흑삼제품 벤조피렌 분석
 - 흑삼의 유해성 벤조피렌의 안전 기준 설정
- 흑삼의 품질기준 설정
 - 시중 유통 흑삼제품 품질 분석
 - 가공된 흑삼의 외형적(모양, 색택, 내공, 내백 등) 품질 기준 설정
 - 유효성 진세노사이드 함량에 근거한 기준 설정
- 흑삼 제조방법, 공정의 표준화 및 매뉴얼화
 - 흑삼은 제조방법에 대한 표준안 정립
 - 증숙온도 및 시간, 건조온도 및 시간 등에 대한 공정 표준화 정립
 - 제조 공정의 효율성을 감안한 표준화된 제조방법의 개발

다. 연차별 성과목표

구분	Ē	연도	연구개발의 목표	달성도(%)	연구개발의 내용
1차년	<u></u>	2018	(주관 : 진안홍삼연구소) ○제조방법, 공정의 표준 화 ○안전성 관련 지표 표준 화 및 기준 설정	100	 ○ 제조방법, 공정의 표준화 - 시중 유통 흑삼제품 분석(10건 이상) - (재)진안홍삼연구소에 구축된 증삼 건조 시설을 활용하여 흑삼 가공 조건 실험 진행 - 흑삼 직접 가공을 통한 제조방법 및 공정에 대한 다양한 실험 진행 - 증숙온도 및 시간, 건조온도 및 시간 등에 대한 공정 표준화 정립 ○ 안전성 관련 지표 표준화 및 기준 설정 - 유통 흑삼 및 연구소 가공 흑삼에 대한 벤조피렌 합량 분석

		(협동 : 국립원예원) ○흑삼의 정의 및 문헌적 고찰 ○흑삼의 지표성분 시험 법 마련	100	- 흑삼의 유해성 벤조피렌 분석법 정립 - 흑삼의 유해성 벤조피렌의 안전 기준 설정 ○ 고문헌 및 학술논문인용 인삼관련 용어의 정립 - 인삼의 역사적 및 학술적 문헌고찰 - 인삼 관련 용어 정의 및 흑삼의 새로운 용어추가 정의 ○ 흑삼의 이화학적 유효성분 표준화 및 기준설정 연구 - 흑삼 특이지표성분 선정 및 분석조건 확립 - 흑삼의 주요 비사포닌 탐색 및 동정
		(주관 : 진안홍삼연구소) ○ 제조방법, 공정 기준 설정 ○ 흑삼의 품질기준 마련	100	- 흑삼의 주요 사포닌 프로파일링 ○ 제조방법, 공정 기준 설정 - 제조 공정의 효율성을 감안한 표준화된 제조 방법의 개발 - 흑삼은 제조방법 및 공정에 대한 표준안 정립 ○ 흑삼의 품질기준 마련 - 가공된 흑삼의 외형적(모양, 색택, 내공, 내백, 균열) 품질 기준 설정 - 유효성 지표성분(진세노사이드 등) 함량에 기준한 기준 설정
2차년도	2019	(협동 : 국립원예원) ○흑삼의 안전성 관련 지 표 기준 설정 ○홍삼 및 흑삼 판별연구	100	 ○ 흑삼의 유해물질 안전관리 규격(안) 설정 - 제조공정 확립된 흑삼의「식품위생법」,「약사법」및「농수산물 품질관리법」에 따른 벤조피렌의 기준설정 ○ 홍삼 및 흑삼의 대사체 프로파일링을 통한판별연구 - 제조공정 확립된 홍삼 및 흑삼의 최종상품에 대한 판별법 연구
		(주관 및 협동) ○흑삼의 기준·규격(안) 설정에 대한 학계 및 업계 의견 수렴	100	○ 공청회를 통한 흑삼과 이익관계가 형성되지 않은 업계 및 학계의 흑삼에 대한 의견을 수 럼
		(주관 및 협동) ○정책제안	50	○ 흑삼의 제조기준 및 지표성분 규격(안) ○ 흑삼의 유해물질 안전관리 규격(안) ○ 농림부 원예산업과 정책제안

2절. 관련분야 기여도

- 제조공정 표준화된 흑삼의 임상적 기능성 평가 및 활성성분의 지표물질로 사용한 전임 상적 효과를 입증하여 기존 홍삼 제품과 차별화된 고부가가치 산업을 창출할수 있음.
- 흑삼에 대한 전반적인 제조방법 등이 제도권 내에서 해결되고, 성분과 효능·효과 측면 에서 많은 연구가 이루어져서 소비자가 흑삼을 구매할 수 있는 원동력이 될 수 있음.
- 인삼의 새로운 가공 표준화법 적용을 통한 최적 고부가가치 국가 신수요 소득 작물로 개발 가능함.
- 흑삼의 안전관리법안 마련으로 국민건강 확보 및 산업 활성화
- 시장개방에 따른 대만, 중국, 일본, 베트남 등 동남아 시장 등에 대한 경쟁력 우위를 확보할 수 있음.

4장. 연구결과의 활용 계획

- 홍삼과 차별화되는 흑삼만의 지표성분을 설정하여 흑삼의 특수성 제고 및 부정유통을 방지할 수 있는 법안마련
- 흑삼의 안전성관련 규격 설정을 통하여 중금속 및 가공 제품에 함유될 수 있는 벤조피 렌의 안전성 제고를 통한 흑삼의 신뢰확보
- 흑삼 기준규격 설정의 결과를 바탕으로 신 건강기능식품 기능성 원료 등록추진 및 흑삼 이용 건강기능식품 생산 유도
- 흑삼의 고시형 소재 개발로 한정된 인삼 산업의 신규 산업분야 창출
 - 농민의 소득 증대 및 인삼산업 및 수출 활성화 기여

붙임. 참고문헌(해당없음)

주 의

- 1. 이 보고서는 농림축산식품부에서 시행한 농생명산업기술개발사업의 연구보고서입니다.
- 2. 이 보고서 내용을 발표하는 때에는 반드시 농림축산식품부에서 시행한 농생명산업 기술개발사업의 연구결과임을 밝혀야 합니다.
- 3. 국가과학기술 기밀 유지에 필요한 내용은 대외적으로 발표 또는 공개하여서는 안 됩니다.