버섯유래 표면단백질을 이용한 기능성 소재개발

Development of Functional Materials from Surface Protein of Mushroom Resources

> 연 구 기 관 경 북 대 학 교

농 림 부

편집순서 2

제 출 문

농림부 장관 귀하

본 보고서를 "버섯유래 표면단백질을 이용한 기능성 소재개발" 과제의 최종 보고서로 제출합니다.

2006년 7월 14일

주관(연구기	관명 :	경북대학교
총괄(연구책	임자 :	김종국
세부:	과제책	임자 :	김영호
연	구	원 :	이상한
혀도(-1	
HO	신구기	쏸벙:	경북과학대학
협동여	신구기	관명 :	경북과학대학
	연구책	임자 :	이진만
합동	친구기	반명 :	경북과학대학
협동	연구책	임자 :	이진만
연	구	원 :	김성호
합동·	연구기	관명 :	경묵과학대학
협동·	연구책	임자 :	이진만
연	구	원 :	김성호
연	구	원 :	강복희

편집순서 3

요 약 문

I.제 목

버섯유래 표면단백질을 이용한 기능성 소재개발

제 1 세 부 과 제 : 버섯자원을 이용한 기능성소재 개발

제 2 세 부 과 제 : 버섯자원을 이용한 신기능 소재의 생리활성효능과 기전 규명

제 3 세 부 과 제 : 기능성 식품의 제조공정 확립 및 개발

Ⅱ. 연구개발의 목적 및 필요성

현대인의 생활환경을 구성하는 의식주 생활에는 온갖 종류의 여러 가지 인 공화합물이 범람하고 있다. 그러므로 자연스럽게 천연물을 이용하고자하는 분 위기가 조성되었으며, 한때에는 웰빙이라는 단어가 우리생활의 모든 면에서 지향하는 목표가 되었다. 그러므로 본 연구에서는 천연물 중에서도 버섯의 표 면을 구성하고 있는 단백질로서 특이한 구성을 하고 있는 하이드로포빈이라는 단백질에 대해서 초점을 맟추어 연구를 수행하였다.

Fungal hydrophobin은 분비단백질로서 진균류의 cell wall과 공기 혹은 진 균류의 cell wall과 고체표면 사이의 계면에서 작용하는 단백질이다. 이것은 많은 진균류의 형태형성과정에 있어서 중요한 것으로 보고되어 있는데 예를 들면, 포자형성, 자실체발달, 감염구조 형성등의 경우에 기능을 발휘하는 단백 질이다. Hydrophobin 은 환경에 대응하여 분비된 단백질 monomer 가 self assembly 함으로서 소수성의 표층을 형성하며, 이러한 과정을 통하여, 진균류 의 기균사의 표면에 있는 얽힌 상태의 조그마한 막대모양의 단백질들의 amphipathic polymer와 균사의 응집이 일어난다. hydrophobin 자가회합은 균 사가 소수성의 표면에 부착할 때에도 작용하며, 어떤 발달과정에 있어서는 고 차구조의 형성을 위한 신호로서 작용할 가능성도 제시되어 있다.

Hydrophobin은 특징적인 Cys 잔기를 가진 중정도의 소수성인 작은 단백질 로서 이것의 유전자들은 Schizophyllum commune에서 기균사의 형성 초기동

- 1 -

안에 활성화되는 유전자로서 최초로 분리되었다. 계속하여서 hydrophobin은 많은 fungi로부터 분리되었으며, 그들의 발현은 발달단계에 따라 다르게 조절 된다는 것이 발견되었다. 이들 유전자에는 S. commune에서 Sc1, Sc2, Sc3(Marcel L. de Vochtnet al., 1998: Marie-Anne van Wetter et al., 2000) 등, Coprinus cinereus에서 CoH1, CoH2, Agaricus bisporus(Piet W. J. Groot et al., 1999) 에서 ABH1, ABH2, ABH3, Pleurotus osteatus에서 Fbh1(Maria M. Penas et al., 1998)이 발견되었으며, Lentinula edodes 로부터는 Hydrophobin을 코드하는 2개의 유전자 (Le.hyd1 및 Le.hyd2) 의 primodial cDNA library의 random clone이 코드할 것으로 추정된 아미노산 배열은 특징 적인 Cys잔기들을 가진 여러 가지의 fungal hydrophobin 과 유사한 구조를 가지고 있었다(W. L. Ng et al., 2000). 이들 hydrophobin 유전자들은 그들의 보존지역과 소수성 패턴으로 미루어볼 때 class I hydrophobin유전자 이었으 며 Le. hyd1의 전사수준은 primodium 시기에 높았으며, Le.hyd2의 전사수준 은 2핵균사조직에서 높았다. monokaryotic parent에서 이들 유전자의 발현이 매우낮은 것은 이들 두유전자가 mating type regulation을 받고 있기 때문이 다. 그러므로 자실체의 발달동안에 이들 두 hydrophobin유전자의 분화에 따른 발현은 이 버섯에서 자실체형성시에 중요한 역할을 수행할 것으로 생각되어지 고 있다.

Hydrophobin의 여러 가지의 기능중에서 진균류의 숙주침입과 관련된 역할 을 고찰해보면, 이미 많은 경우에 그 예들이 제시되어 있다. 화란의 느릅나무 병균인 *Ceratocystis ulmin*에 대한 연구를 수행했을 때 최초에는 이 균주가 생산하는 cerato-ulmin 이 병원성을 지닌다고 생각했으나(Okamoto et al., 1986), cereto-ulmin 유전자에 변이가 도입된 균주에서도 병원성이 발현됨을 알았는데(Bowden *et al.*, 1996), 이 연구의 수행시에 cerato-ulmin의 변이주 는 기균사의 형성과 표면 소수성이 감소함을 발견하였으며, cerato-ulmin은 *O. ulmi*(Takai and Hiratsuka, 1980, 1984)의 세포벽 구성성분으로서 표면 활성 단백질(Russo et al., 1982; Stickler and Bolyard 1994)이다. 그런데 최근에 이 물질이 포자가 bark beetle에 부착할 때 작용함이 밝혀졌으며(Temple *et al.*, 1997), 특히 병원성을 발휘할 때 이것의 발현량이 증가됨을 알았다.

cerato-ulmin과 비슷한 또다른 단백질이 horse chestnut blight fungus인

- 2 -

Cryphonectria parasitica에서 발견된 cryparin(Carpenter *et al.*, 1992)으로서 숙주에 침입시에 대량으로 발현됨이 발견되었는데(Zhang *et al.*, 1994; Kazmierczak et al., 1996) 이것은 cerato-ulmin과 마찬가지로 기질부착 혹은 기중균사의 형성시에 역할을 수행하는 것으로 추정이 되었다.

진균침입시 hydrophobin의 역할을 명확하게 밝혀준 예는 rice blast fungus *Magnaporthe grisea*가 벼의 조직에 감염될 때 발현되는 유전자 *MPGI*이 발 견되었는데 이 유전자의 발현은 병원성 발현의 두단계 즉, 흡기(appresorium) 형성시와 병증세가 발달하는 동안에 매우 높게 나타났다(Talbot *et al.*, 1993). *MPGI*은 전형적인 class I hydrophobin으로 이것은 소수성의 표면에 반응하 여 자기회합(self assemble)되는 것 같다(Talbot *et al.*, 1996). 그러므로 *MPGI*산물은 흡기발달의 개시기에 유도적으로 표면의 인식시 기능을 발휘하 는 것 같다(Talbot 1995, Beckerman and Ebbole, 1996; Talbot *et al.*, 1996). 이것은 *MPGI*산물이 소수성의 표면에서 자기회합되는 결과인 것 같으며 (Talbot *et al.*, 1996), 흡기가 발달하는 동안 *MPGI*의 기능을 고려할 때, hydrophobin은 진균류가 그들의 먹이가 되는 기질과 결합될 때 기능을 발휘함 을 알 수 있다(Woesten *et al.*, 1995; Beckerman and Ebbole, 1996; Talbot *et al.*, 1996)

cerato-ulmin과 *MPGI*의 발견이후 토마토 병원균인 *Cladosporium fulvum* 의 hydrophobin이 발견되었는데 이경우에도 병원성과 hydrophobin생산과의 상관관계가 존재하였다(Spanu 1997). 또 다른 예는 보리 맥각병의 원인인 *Claviceps purpurea*가 생산하는 hydrophobin으로서, 이균이 alkaloid를 생산할 때 발현되는 유전자로서 스크린닝되었다(Arntz and Tuzynski, 1997).

또한 *Pisolithus*의 hydrophobin이 식물뿌리의 부착에 관련되어 있다는 사 실이 알려져 있다(Tagu Denis and Francis Martin 1996; Peter A. Vesk *et al.*, 2000).

이와 같은 상황에서 국내에서 식품으로서 대단히 인기를 모으고 있는 송이 버섯(*Tricholoma matsutake*)으로부터 hydrophobin을 정제하고, 유전자를 분석 하고, 유전자 발현 패턴을 분석<mark>함과 동시에 소재개발로 연결코자</mark> 하였으며, 또한 2세부에서는 표면단백질의 세포활성에 미치는 영향을 분석하였으며, 협 동과제에서는 hydrophobin 이 함유된 시제품의 개발을 수행하였다.

- 3 -

Ⅲ. 연구개발 내용 및 범위

제1세부과제

- hydrophobin의 정제
- 정제된 hydrophobin의 특성규명
- hydrophobin유전자의 특성 규명
- 분자량이 상이한 복수의 hydrophobin 유전자
- 자실체형성시의 발현기작
- hydrophobin유전자 분석을 위한 송이 자실체유래 cDNA의 클론닝 및 분석
- 송이 hydrophobin genomic DNA 의 클론닝
- 효모등에서 재조합 hydrophobin 의 생산
- hydrophobin분석을 위한 부위특이적으로 발현하는 송이 cDNA의 클론닝
 및 분석
- hydrophobin의 응용성 검토

제2세부과제

- 항암과 면역조절관련 유효성분의 검색
- 활성 분획 및 정제 물질의 항암 및 면역조절기전 규명
- 신기능 생리활성 물질의 분리 정제
- in vitro/ in vivo 실험을 통한 효능 검정
- 버섯유래의 항암·면역 활성물질의 분리정제법확립
- 생리활성물질의 in vitro 및 in vivo 실험계를 통한 효능 및 안정성 검정

제3세부과제

- 송이/표고버섯의 추출조건 최적화 및 대량화 공정확립
- 드링크 제품의 공정확립 및 시작품 제조
- 농축, 건조, 추출물의 제품별 제조공정
- 송이/표고를 이용한 다양한 기능성식품의 개발
- 시제품의 품질 보증 및 공정체계 확립

- 4 -

Ⅳ. 연구개발 결과 및 활용에 대한 건의

제1세부 과제(송이 및 표고의 다양한 기능성 소재 hydrophobin의 정제)에 서 수행된 연구로는, hydrophobin은 균류에서 다양한 생리기능을 수행하는 단 백질로서, 이 연구에서 hydrophobin 단백질이 정제되어 물리적인 성질이 규명 되어, 25kDa, 24kDa, 11kDa의 단백질이 확인되었다. hydrophobin유전자는 유 전자의 아미노산 배열 상동성이 매우 낮은 단백질이기 때문에 유전자 클론닝 을 위해서 cDNA library로부터 무작위적인 염기배열을 수행함으로서, 118개 의 아미노산으로 구성된 Tmhyd1유전자와, 115개의 아미노산으로 구성된 Tmhyd2 유전자가 클론닝 되었다. 그리고 hydrophobin유전자의 발현을 균사 와 원기를 사용하여 연구했을 때, 원기형성시에 발현이 대단히 증가하였으므 로, 자실체의 형성에 적극적으로 관여하는 유전자임을 알 수 있었다. 그리고 유전자의 구조로부터 유도된 단백질의 성질을 규명하였으며, 재조합 단백질의 제작이 대장균과 효모 *Pichia pastoris*에서 시도되었다.

제2세부과제 (송이 및 표고버섯의 조추출물 로부터 신기능 관련 유효성분의 검색)에서는 다음과 같은 내용의 연구가 수행되었다.

1. 표고 유래의 신기능 물질의 분리: 표고버섯의 암 독성 물질을 탐색하기 위 하여 표고버섯을 methanol층, methylene chloride층, ethyl acetate층, n-butanol층과 수층으로 5단계별로 분획하여 human leukemia T세포 유래인 Jurkat E6.1 세포주를 대상으로 세포독성을 측정하였다. 그 결과, 가장 높은 처리 농도인 150 μg/ml로 처리시 methylene chloride 분획층에서 14.3%, ethyl acetate 분획층에서 21.7%, n-butanol 분획층에서 33.8%의 세포독성이 확인되 었다.

2. Methylene chloride, ethyl acetate, n-butanol 분획들의 항암활성에 대한 유 효성분을 찾아내기 위해서 GC-MS로 각각의 분획에 포함된 성분들을 조사한 결과, methylene chloride 분획층의 주요 성분인 Linoleic acid (30.6%), ergosterol (27.6%) 이 ethyl acetate 분획층에서도 가장 높은 비율 (Linoleic

- 5 -

acid 18.4%, ergosterol 32.2%) 로 검출되어 항암 활성을 나타내는 주요성분이 Linoleic acid와 ergosterol로 추정된다.

3. 표고버섯의 methylene chloride 추출물의 세포 독성 기전을 Jurkat 세포주 를 이용하여 조사한 결과, Jurkat T 세포의 세포자살유도 기전은 ER stress에 의해 매개되는 caspase-12 및 caspase-8의 활성화가 초기에 유도되었으며, 활 성화된 caspase-8에 뒤이은 mitochondria cytochrome c-비의존적인 caspase cascade의 활성화, PARP 분해와 apoptotic DNA fragmentaiton으로 확인되었 다.

4. 암세포의 세포형태 및 intracellular cytoskeletal filaments에 미치는 표고버 섯의 methylene chloride, ethyl acetate, n-butanol 분획들의 영향을 조사하기 위하여 부착세포주인 293T, HCT 116 p53(+/+), HCT 116 p53(-/-), HeLa, U87 cells을 대상으로 세포독성을 조사한 결과, 293T cells은 methylene chloride, ethyl acetate 분획에서 57.5%, 66.6%의 세포생존율을 보였고, HeLa cells은 같은 분획에서 66.9%, 66.3%의 세포생존율을 보였다. U87 cells은 가장 높은 처리 농도인 150 µg/nl에서 세포생존율이 methylene chloride 분획층에서 48.8%, ethyl acetate 분획에서 41.2%, n-butanol 분획에서 64%로 가장 강한 독성의 영향을 받았다. HCT 116 p53(+/+) cells과 HCT 116 p53(-/-) cells에 서는 HCT 116 p53(+/+) cells은 150 µg/nl에서 세 분획 모두 세포생존율이 95% 가까이 되는 반면, HCT 116 p53(-/-) cells은 82.8%, 72%, 86.5%로 조금 낮았다. 이것으로 보아 p53의 과발현은 표고버섯의 methylene chloride, ethyl acetate, n-butanol 분획들에 의한 HCT 116의 apoptosis를 어느 정도 억제하 는 것으로 생각된다.

5. 송이버섯의 hydrophobin 단백질을 발현시키기 위하여 대장균-발현계를 이 용하여 pET-3d 과발현 벡터(Novagen)의 *Nco I/ Bam HI* site에 송이버섯의 두 가지 hydrophobin 유전자 *Tm 1, Tm 2*를 삽입하여 재조합 DNA를 만들고, 대장균 BL21에 형질전환하여 IPTG로 단백질 발현을 유도하였으나 SDS-PAGE gel상으로 확인되지 않았다.

6. 식용버섯인 Paecilomyces japonica로 신규 항암 물질을 탐색하고자 동충하 초를 ethyl acetate로 추출하여 human T 임파구 암세포주인 Jurkat T cell E6.1에 4 ~6 μg/ml농도로 40시간 처리하여 세포주기에 대한 영향을 조사한 결 과 특정 세포 주기에 대한 arrest 없이 세포자살를 유도시킴을 확인하였다.

- 6 -

7. Paecilomyces japonica의 ethyl acetate 추출물에 의한 세포 자살은 mitochondria-dependent apoptosis에 있어 anti-apoptotic 인자로 알려진 Bcl-2 유전자를 (JT/Bcl-2) 과발현 시킨 Jurkat T 세포에 있어서는 세포 자살 유도 가 억제됨을 알았다.

8. Paecilomyces의 ethyl acetate 추출물 처리에 따른 세포 주기 관련 유전자 의 변화를 western analysis로 조사한 결과 세포주기 G1/S 전이와 S 기에 관 여하는 cdk4, cyclin E, cyclin A는 감소하는 반면 G₁-cdk저해제인 *f*27 ^{Kin}은 upregulation됨을 알았다.

9. Ethyl-acetate 추출물의 성분을 GC-MS 분석법을 통해 확인한 결과 diacetoxyscripenol 21.9%, phthalic acid 26.7%, stearic acid 6.9%, di-(2-ethylhexyl)phthalate 7.3%, cholesterol 13.0%, 그리고 ergosterol 17.2% 였다.

10. 인간 혈액암 세포주인 Jurkat T 세포에서 세포 독성을 나타내는 동충하초 의 ethyl acetate 추출물중 세포 독성을 가질 것으로 예상되는 diacetoxyscirpenol (DAS)의 세포자살 유도 기전을 규명한 결과, DAS 0.01~ 0.15 μM 농도에서 Fas 또는 FasL의 발현 수준의 변화 없이 caspase-8의 활 성화, Bid의 분해, mitochondrial cytochrome c의 방출, caspase-9와 caspase-3의 활성화와 PARP의 분해를 통한 apoptotic DNA fragmentation이 일어남을 확인하였다.

11. DAS에 의한 세포자살현상은 Bcl-xL의 과발현에 의해서 저해될 수 있더 라도, cdk4와 cyclin B1 단백질의 감소로 세포분열을 할 수 없다. DAS에 의 한 세포자살과 caspase-8, caspase-9, caspase-3의 활성화 그리고 Bid의 분해 는 pan-caspase inhibitor (z-VAD-fmk) 또는 caspase-8 inhibitor (z-IETD-fmk)에 의해서 억제되었다.

12. DAS에 의한 세포자살과 caspase-9과 caspase-3의 활성화가 마이토콘드리 아 막투과를 저해하는 cyclosporin A에 의해 조금 저해되지만, Bid의 분해에 의한 caspase-8의 활성화에는 영향을 미치지 않아 T 세포에 대한 DAS의 독 성이 caspase-8의 활성화에 의한 세포자살과 cdk4와 cyclin B1의 감소에 의해 서 세포주기의 정지에 기인한다는 것을 규명하였다.

- 7 -

제3세부과제에서는 버섯자원의 hydrophobin이 함유된 여러 가지 시작품제 작에 필요한 조건을 검토하고, 이를 활용하여, 드링크, 캅셀제품, 타블렛 제품, 과립, 세립차등 을 제작하였다. hydrophobin 은 균류에 존재하는 소수성 단백 질로서 그 종류가 매우 다양할 것이 기대되며, 송이의 hydrophobin 은 식품 및 화장품 산업과 의료분야에서 미래의 수요가 있을 것이 기대되므로, 이 연 구에서 얻은 결과를 활용하면, 아직 연구가 그다지 많이 수행되지 않은 hydrophobin분야의 연구가 촉진될 것으로 생각된다.

SUMMARY (영문요약문)

Numerous kinds of artificial compounds have been used for cloths, foods and housing in modern life. So the environment for desiring natural materials was made gradually, and the word "well-being" have become the goal in every realm of human life. Therefore we focused on the hydrophobin which is a major component of surface protein in fungi involving edible mushrooms.

Fungal hydrophobins are small secreated protein and they functions on the interfaces of cell wall of fungi and solid surfaces. Hydrophobins are reported to play an important roles in morphogenesis of many fungal strains, for example, in the process of sporulation, development of fruit body and formation of infection structure. Hydrophobins are self-assembled to form hydrophobic surface with hydrophobin monomers, through this process aggutination between amphipathic polymers composed of little rodlet proteins and mycelia occur. It was suggested that hydrophobins are self-assembled when the mycelium is attached to a hydrophobic surface and act as possible signal for the formation of high-demension structure.

Hydrophobins are inetrmediately hydrophobic small proteins containing characteristic Cys residues, and their genes were isolated first as genes activated during during the beginning of aerial mycelium formation in Schizophyllum commune. Thereafter hydrophobins were isolated from many fungi, and it was found that theis expression was controlled according to the developmental stages. Hydrophobin genes Sc1, Sc2 and Sc3 were isolated from S. commune(Marcel L. de Vochtnet al., 1998: Marie-Anne van Wetter et al., 2000), CoH1 and CoH2 were isolated from *Coprinus cinereus*, ABH1, ABH2 and ABH3 were isolated from *Agaricus*

- 9 -

bisporus(Piet W. J. Groot et al., 1999), Fbh1 was isolated from *Pleurotus osteatus*(Maria M. Penas et al., 1998), *Le.hyd1* and *Le.hyd2* were isolated from the primodial cDNA library of *Lentinula edodes*.(W. L. Ng *et al.*, 2000). Those hydrophobins were class I hydrophobin from the view point of conserved regions and hydrophobisity pattern.

Of the many roles involved in invading host by fungal strains, a lot of examples were presented. *Ceratocystis ulmin*, a pathogen of Deutch elm tree was thought as disease causing agent by cerato-ulmin that was produced by this strian(Okamoto et al. 1986).

Under like this circumstances, hydrophobin proteins were purified to 25kDa, 24kDa and 11kDa by our team. The homology of amino acid sequences between hydrophobin was so low that we could'nt use the similarity data. So we constructed cDNA library and two cDNAs were screened, the one was Tmhyd1 gene codes for 118 amono acids, anr the other was Tmhyd2 codes for 115 amino acids, respectively. And those two genes were expressed in primodim, but not in the mycelium on Potato Dextrose Agar(PDA) medium. So it was shown that hydrophobins took an important roles in fruit body formation. And recombinant hydrophobin genes were constructed and and their expression were studied in *E. coli* and *Pichia pastoris*.

on the 2nd Project:

1. Screening of novel functional compounds from *Lentinus edodes*: In order to isolate antitumor compon ents from *Lentinus edodes*, the lyophilized mushroom of *Lentinus edodes* was extracted with methanol. The methanol extract was evaporated, dissolved in water, and then the aqueous solution was sequentially extracted with hexane, methylene chloride, ethyl acetate, and n-butanol. The antitumor activity of individual fractions was tested against human acute leukemia Jurakt T cells. The methylene chloride possessing the most potent cytotoxicity exhibited 14.3% of the cell viability following treatment with 150 μ g/ml of the methylene chloride extract for 48 hr, whereas the ethyl acetate extract and n-butanol extract showed 21.7% and 33.8% of the cell viability, respectively.

- 10 -

2. In order to identify the antitumor ingredients in the *Lentinus edodes*, the methylene extract, ethyl acetate extract, and n-butanol extract were ananlyzed by the GC-MS. Both linoleic acid and ergosterol appeared to be commonly the most abundant ingredients in the methylene chloride extract or ethyl acetate extract, suggesting that linoleic acid and ergosterol might be the major antitumor ingredients in the *Lentinus edodes*.

3. The molecular mechanism underlying the antitumor effect of the methylene chloride extract on Jurkat T cells was investigated. After treatment of Jurkat T cells with the methylene chloride extract at the concentrations ranging from 75 to 150 μ g/ml, ER-stress-mediated activation of caspase-12 and caspase-8 and subsequent mitochondria-independent activation of caspase cascade and PARP degradation, leading to apoptotic DNA fragmentation, were induced in a dose-dependent manner. These results suggest that the antitumor cytotoxic activity of the methylene chloride extract is due to its apoptogenic effect.

4. The antitumor effect of the methylene chloride extract, ethyl acetate extract, and n-butanol extract was examined using various anchorage-dependent tumor cell lines, such as 293T, HCT 116 p53 (+/+), HCT 116 p53 (-/-), HeLa, and U87 cells. When these tumor cells were treated with 150 µg/ml for 48 hr, 293T and U87 appeared to be significantly sensitive to the cytotoxicity of the solvent extracts. However, HCT 116 p53 (+/+) cells was refractory to the cytotoxic effect of the solvent extracts and showed $\sim 95\%$ of the cell viability, whereas HCT 116 p53 (-/-) cells showed 72~86.5% of the cell viability, indicating that the presence of anti-tumor protein p53 might suppress the cytotoxic effect of Lentinus edodes.

5. In order to produce recombinant hydrophobin in *Escherichia coli* expression system, the hydrophobin gene of *Tricholama matsutake* was cloned into an expression vector plasmid pET-3d and was transfromed in to *E. coli*. When the transformant of *E. coli* was cultured in the presence of IPTG, the expression of *Tricholama matsutake* hydrophobin in the *E. coli* was not observed.

- 11 -

6. When Jurkat T cells transfected with vector (JT/Neo) or Bcl-2 gene (JT/Bcl-2) were treated with the ethyl acetate extract (4 - .6 μ g/ml) of *P. japonica* for 40 h, JT/Neo cells underwent apoptosis with no detectable G₁ -arrest, whereas JT/Bcl-2 cells that failed to induce apoptosis accumulated at the G₁ along with reduction of hyperphosphorylated Rb.

7. When Jurkat T cells were treated with the ethyl acetate extract $(4 \sim 6 \ \mu \text{g/ml})$ of *P. japonica* for 40 h, the cdk4, cyclin E and A, required for the G₁-cdks that phosphorylate Rb, were markedly downregulated in JT/Bcl-2 cells, and the G1-cdk inhibitor p27 $_{KPA}$ was significantly upregulated.

8. Chemical components of the ethyl acetate extract from the *P. japonica* which appeared to possess the cell cytotoxicity activity, were analyzed by GC-MS. The compositions and quantities of main constituents were diacetoxyscripenol 21.9%, phthalic acid 26.7%, stearic acid 6.9%, di-(2-ethylhexyl)phthalate 7.3%, cholesterol 13.0%, and ergosterol 17.2%.

9. To understand the cytotoxicity of diacetoxyscirpenol (DAS), the human Jurkat T cells were treated with DAS at concentration of $0.01 \sim 0.15 \mu$ M. DAS caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without alteration in Fas or FasL levels.

10. Although these DAS-induced apoptotic events in Jurkat cells were prevented by ectopic overexpression of Bcl-xL, the cells failed to divide due to down-regulation of cdk4 and cyclin B1.

11. DAS-mediated apoptosis, activation of caspase-8, caspase-9, and caspase-3, and Bid cleavage were abrogated by the pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), caspase-8 activation with Bid cleavage was not affected. These results demonstrate that T cell toxicity of DAS is attributable to apoptosis

- 12 -

provoked by caspase-8 activation and cell cycle arrest caused by down-regulation of both cdk4 and cyclin B1.

on the 3rd Project:

Extraction conditions for mushroom raw materials were studied and test products for drink, capsule, tablet, granule and powder were prepared.

CONTENTS (영 문 목 차)

Chapter I. Introduction24	
Chapter II. Current status of technology development in Domestic and	f
Overseas	
Chapter III. Contents and Result of Research	
Section 1. What is hydrophobin?	
1. Introduction	
2. Properties of hydrophobin	
3. Usage of hydrophobin	
4. Production of recombinant foreign protein	
Section 2. Purification of hydrophobin 40	
1. Materials and Methods40	
가. Purification of hydrophobin	
나. Analysis of protein by SDS-PAGE ······ 40	
2. Contents and Result of Research 40	
7]. Purification of hydrophobin from T. matsutake and L. edodes	
Section 3. Cloning of the hydrophobin gene from <i>Tricholoma matsutake</i>	
1. Materials and methods42	
가. Purification of total RNA	
나. Preparaton of cDNA library	
다. Sequencing of cDNA clones	
라. Data analysis	
2. Contents and results of research	
7. Cloning of genes coding for hydrophobin surface protein of T	
matsutake	
Section 4. Expression mechanism of hydrophobin48	
1. Materials and methods	
2. Contents and results of research. 48	
7. Multiple hydrophobin genes different in molecular weight	
Section 5. Expression mechanosm during fruit body formation	
1. Materials and methods	
가. Northern blot hybridization	
2. Contents and results of research	
Section 6. Production of recombinant hydrophobin in yeast	
1. Materials and methods	
7. Transformation of yeast for the production of recombinant hydrophobin \cdot 58	
1) Subcloning of hydrophobin gene into Pichia pastoria expression vector 58	
2) Transformation into GS115 ······59	

3) Colony PCR ·····	··· 61
4) Expression of hydrophobin in Pichia pastoria	··· <i>61</i>
2. Contents and results of research	··· 62
Section 7. Analysis of cDNA derived from Fruit body of T. matsutake for	or the
cloning of hydrophobin genes	··· 65
7. Sequencing of cDNAs and Data analysis	··· 65
2. Contents and results of research	65
section 8: Screening of novel bioactive substances from mushroom	
1. Material and methods	
7. Fractionation of bioactive components from L. edodes	
나. Analysis of bioactive substances.	
다. Purification of bioactive substances from Paecilomyces	
Japonica	
2. Results	··· 67
7. Screening of antitumor substances from L. edodes.	··· 67
나. Analysis of antitumor substances from methylene chloride,	ethyl
acetate, and n-butanol extract of L. edodes by GC-MS	68
다. Analysis of components from ethyl acetate of P. japonica	··· 71
section 9: Mechanism and tumor toxicity mediated with novel bioactive	2
substances from mushroom.	··· 73
1. Material and methods	··· 73
가. Cell lines and cell culture.	··· 73
나. Investigation of cell viability by MTT assay	··· 73
다. Apoptotic DNA fragmentation analysis.	··· 73
라. Flowcytometry analysis	··· 74
마. Preparation of cell lysates.	··· 74
바. Western blot analysis.	··· 74
2. Results ·····	··· 75
7}. Mechanism of antitumor substances from L. edodes.	··· 75
나. Effects of methylene chloride, ethyl acetate, and n-butanol	
extract from L. edodes on cell morphology and intracellular	
cytoskeletal filaments.	81
section 10: Characterizatin and determination of stability by in vivo	and
in vitro assay.	
1. Material and methods	
7. Reagents, antibodies, and medium.	

	나. Investigation of cell viability by MTT assay
	다. Apoptotic DNA fragmentation analysis
	라. Flow cytometry analysis
	마. Preparation of cell lysates
	바. Western blot analysis
	사. DAPI staining
	े. Mitochondrial cytochrom c release assay
2.	Results87
	7). Screening of apoptogenic antitumor substances from P. japonica.
88	
	나. Effect of the ethyl acetate extract of <i>P. japonica</i> on the retinoblastoma
	다. Effects of the ethyl acetate extract of <i>P. japonica</i> on the cdks
	\vec{r} p27 \vec{r} upregulation of the othyl agetate systematic of P imposing
96	9. p21 Ma upregulation of the entry acetate explicit of <i>F. Juponica</i> .
50	If Cytotoxicity of diacetoxyscirpenal (DAS) on Jurkat T calls 07
	The Cytowhrome C-mediateded mitochondria-dependent pathway in
	DAS-induced apoptosis
	Al Effect of DAS on coll-cycle related proteins
	a) Effect of Bel-yL to DAS-induced approtosis in Jurket T cells 103
	7] Effects of the pap-caspase inhibitor z-VAD-fmk caspase-8
	inhibitor z-IETD-fmk or CoA on the DAS-induced apoptosis
108	minibitor z in the milk, of CSA on the DAS induced apoptosis.
secti	on 11: Functional studies of <i>Tricholama matsutake</i> hydrophobin
Secti	protein
1	Material and methods
1.	7 PCR
	나 Transformation
	The Induction of protein expression
	 ¬1. Induction of protein expression. ¬1. SDS-PACE ¬1. 112
9	9. ODS TAGE 113 Results 114
ے۔ Soot:	on 12 Establishment of mass extract and manufacturing process
for h	everage
1. M	aterials and methods
가.	Materials

- 16 -

나. Analysis of proximate compositions	120
다. Analysis of minerals	120
라. Optimization of extraction condition	121
마. Analysis of effective components	123
바. Establishment of mass extract method in pine/oak mushroom	124
사. Stability test for extracts ······	125
٥٠). Making sample product of pine/oak mushroom	125
자. Establishment of formulation for beverage containing extracts	125
차. Sterilization and storage test for beverage and extracts	126
카. Establishment of manufacturing process for beverage and extract	126
2. Contents and results of research	126
7. Extract and manufacturing process	126
1) Establishment of extract method of natural substance containing	
pine/oak mushroom component and optimization of extraction	100
condition	126
2) Stability test of extract	142
3) Establishment of manufacturing process for beverage	143
4) Making of sample product for drink(beverage and concentrated	146
5) Estimation of distribution period and quality control for beverage	140
5) Estimation of distribution period and quality control for beverage	150
Section 13 Concentration drying manufacturing process and formulati	100
on	153
1. Materials and methods	153
가. Establishment of drying condition for pine/oak mushroom crude	
extracts	153
1) Materials	153
2) Preparation of pine/oak mushroom crude extracts	153
나. Establishment of manufacturing process powder for pine/oak	
mushroom crude extracts	153
1) Measurement of brown color	153
2) Measurement of soluble solid ······	153
3) Storage of pine/oak mushroom drying powder and measurement	
of water absorption	154
다. Establishment of manufacturing process for pine/oak mushroom	1 = 4
capsule and making sample product	154
1) Establishment of manufacturing condition for capsule	154
2) Making sample product	154
4. Establishment of manufacturing process for pine/oak mushroom	154
1) Establishment of manufacturing process of tablet	154 154
2) Making sample product	15/
P. Estimation of distribution period and quality control for products	154
The sumation of distribution period and quality control for products	104

1) Materials
2) Experiment plans ······155
3) Physicochemical properties test
가) Measurement of pH and acidity
나) Measurement of color values
다) Moisture and water activity
라) Microorganism examination
마) Disintegration test
2. Contents and results of research
7. Establishment of drying condition for pine/oak mushroom crude
extracts156
나. Establishment of making powder for pine/oak mushroom crude
extracts 160
다. Establishment of manufacturing process of pine/oak mushroom
capsule 163
다. Establishment of manufacturing process of pine/oak mushroom
tablet
Pr. Manufacturing capsule of pine/oak musifioon extracts
A: Estimation of distribution period and quality control for products 166
Section 14 Manufacturing of granule and small granule teal establish ment
of quality control method and quality evaluation in sample product
1. Materials and methods
7). Materials
나. Establishment of granulation condition of pine/oak mushroom 181
다. Sensory evaluation
라. Production of pine/oak mushroom granule
Production of pine/oak mushroom small granule
바. Estimation of distribution period and quality control for granules 181
2. Contents and results of research
7. Establishment of manufacturing condition of pine/oak mushroom
granule182
나. Production of pine/oak mushroom granule
다. Establishment of making small granule product for pine/oak
mushroom ······187
라. Estimation of distribution period and quality control for granules
189
Chapter IV: Achivements to the project targets and contributions to the
related fields196
Chapter V: Applications and utilizations of researched results
Chapter VI: Scientific and technological information from abroad
Chapter VII: References 205

	•
-	
7	F
~	

- 19 -

2. 연구수행 내용 및 결과	62
제7절 Hydrophobin 유전자의 클론닝을 위한 송이 자실체 유래	
cDNA 의 분석	65
1. 연구수행 방법	65
가. cDNA 염기서열의 결정 및 데이터 분석	65
2. 연구수행 내용 및 결과	65
제8절 버섯의 조추출물로부터 신기능 관련 유효성분의 검색	66
1. 연구수행 방법	66
가. 표고 버섯 유래 생리활성 물질의 계통분획	66
나. 활성성분의 분석	66
다. <i>P. japonica</i> 유래 생리활성 물질의 추출	66
2. 분석 결과	67
가. 표고 버섯으로부터 세포독성 분획의 탐색	67
나. 표고 버섯의 methylene chloride, ethyl acetate, n-butanol 분획의	
GC-MS를 통한 항암 활성 성분 분석	68
다. 동충하초의 Ethyl acetate extract의 성분 분석 ······	71
제9절 버섯의 조추출물로부터 신기능 관련 유효성분의 작용기전 및	
암세포 녹성	73
1. 연구수행 방법	73
가. 실험에 이용한 세포수 및 세포배양	73
나. MTT assay를 통한 viability 조사 ·······	73
다. 세포자살에 의한 DNA fragmentation 주술 ···································	73
라. Flow cytometry 분석 ·······	74
마. Cell lysate 소제 ···································	74
바. Western blot analysis ·······	74
2. 연구수행 내용 및 결과	75
가. 표고버섯의 암세포 독성물질의 작용기전	75
다. 암세포의 세포영태 및 intracellular cytoskeletal filaments에 미지는	
표고버섯의 metnylene chloride, etnyl acetate, n-butanol 눈획들의 여창	01
영양 티 포그바서코 소아비서이 hudmonhohim 초초만이 재포도서 고기	01
니. 표고미섯과 중이미섯의 NyCrophobin 구물물의 세포즉성 조사	04 06
제10월 III VIUO 옷 III VIVO 실험될 중인 요ㅎ 김정 옷 한경정 도가 1 여구스채 바버	86
1. 긴 1 8 8 년 가 시야 하게 면 배지	86
기· 기ㅋ, 경제 첫 베시 나 MTT accav르 토하 viability 조사	86
다. 세포자산에 이하 DNA fragmentation 추추	86
다. 제도자들에 다한 DNA fragmentation 다들 라. Flow extemetry 부서	86
다. Flow Cytoliteuy 한국 마. Cell lysate 조제	86
B Western blot analysis	87
사 DAPI 역생 방법	87
아 마이토코드리아 cvtochrome c의 세포직로의 바춘 조사	87
2 여구수행 내용 및 격과 ······	87
가 <i>P ignonica</i> 로부터 항암확성 물직의 탄색 ······	88
I. I. Japonica - I - I O LE O E E - I L I	00

나. Ethyl acetate 추출물 처리에 따른 retinoblastoma의 변화 양/	상 조사
다. Cdks와 cyclins의 단백질 발현수준에 대한 ethyl acetate추출	55 물의
영양 라. Ethyl acetate 추출물에 의한 p27 ^{kip1} 의 upregulation 마. Jurkat T 세포에 대한 DAS의 세포독성	94 96 97
 바. DAS로 유도괸 Jurkat T세포의 세포자살에 있어서 마이 cytochrome c 매개적 caspase cascade활성의 관여성 조사 … 사. Jurkat T 세포에 있어서, DAS에 의해 유도되는 세포주기조절 	토본드리아 100 별
단백질 수준의 변화 아. Jurkat T 세포에서의 DAS 유도 세포자살에 있어서의 Bcl-xL의 역할	······ 100 의 보호적 ······ 103
자. Pan-caspase inhibitor z-VAD-fmk, caspase-8 inhibitor z-IF 혹은 Jurkat T cell에서의 DAS 유도성 자살신호에서의 CsA 제11전 속이버서 유래의 hydrophobins의 시기는 새리화서 규명	ETD-fmk, 효과 ·· 108 113
제11일, 중 아이웃 바이크 Hydrophobilis의 전기 중 26여일 중 배종 1. 여그스채바버	
1. モート 8 0 円 フト DCP	
기, I ON 11 혀지저히	
기· 장근신천 다 다배지 바쳐 우드 즈거	
다. 친구결 Ə연 ㅠ도 도신 과 SDS-DACE	
다. SDS-FAGE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2. 연구대용 옷 결과 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	114
세 12실, 대당구굴 및 드닝크세조공장 확립	120
1. 연구구행방법 ····································	120
가. 새됴 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	120
나. 일반성문문석 ······	
다. 무기성문문석	
라. 주줄조건의 죄적화	
마. 유효성분 함량분석	
바. 송이, 표고버섯의 대량주줄방법 확립	
사. 추출물의 안정성 검토	······ 125
아. 송이, 표고버섯의 시제품 제조	······ 125
자. 추출물 함유 음료 제품의 formulation 확립	
차. 음료 및 엑스의 살균 및 저장 실험	······ 126
카. 음료/엑스 제조공정의 확립	······ 126
2. 연구내용 및 결과	······ 126
가. 추출 및 제조공정	
1) 송이/표고 성분함유 천연물의 추출방법 확립 및 추출조건 최적	화 … 126
2) 추출물의 안정성 검토	
3) 드릿크 제품의 제조공정확립	
4) 드리ㅋ(으로 및 농춘다류)의 시자푸 제조	
기 - 0 - (미파 ㅈ 0 - 1 = 1 = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
U ㅁ프ㅋ ㅠゔ기신 긴 것 Ă 관련도 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	150
세1.5건 구굴굴러 중국, 신소, 제품별 세소중상 못 세영와 소간왁님.	123
1. 연구구행방법	

- 21 -

가. 송이/표고버섯 조추출물의 건조조건 확립	··· 153
1) 재료	··· 153
2) 송이, 표고버섯 조추출물 제조	··· 153
나. 송이/표고버섯 조추출불의 분말화 공정확립	··· 153
1) 갈색도 측정	··· 153
2) 고형분 함량 측정	··· 153
3) 송이, 표고버섯 건조분말의 저장 및 수분흡수지수 측정	··· 154
다. 송이, 표고버섯 캅셀의 제조조건 확립 및 시작품 제조	··· 154
1) 캅셀 제조조건 확립	··· 154
2) 시작품 제조	··· 154
라. 송이, 표고버섯 타블렛의 제조조건 확립 및 시작품 제조	··· 154
1) 타블렛 제조조건 확립	··· 154
2) 시작품 제조	··· 154
마. 제품의 유통기간 산정 및 품질보증	··· 154
1) 재료	··· 154
2) 실험 계획	··· 155
3) 이화학적 특성시험	··· 155
가) pH 및 산도 측정	··· 155
나) 색도 측정	··· 155
다) 수분 및 수분활성도	··· 155
라) 미생물검사	··· 155
마) 붕해도 시험	··· 156
2. 연구내용 및 결과	156
가. 송이/표고버섯의 조추출물의 건조조건 확립	156
나. 송이/표고버섯의 조추출물 분말화 공정확립	160
다. 송이/표고버섯의 캅셀의 제조조건 확립	··· 163
라. 송이/표고버섯의 타블렛의 제조조건 확립	··· 164
마. 송이/표고버섯의 추출물 캅셀의 제조(시작품 제작)	165
바. 타브렛의 제품화(시작품 제작)	166
사. 제품의 유통기간 산정 및 품질보증	166
제14절 과립 및 세립차의 제조, 시작품의 quality control 방법 확립과	
시작품의 품질평가	181
1. 연구수행방법	··· 181
가. 재료	181
나. 송이/표고버섯의 과립화 및 세립화 조건 확립	··· 181
다. 관능검사 실시	181
라. 송이/표고버섯의 과립화 제품화	181
마. 송이/표고버섯의 세립차 제품화	181
바. 과립류의 유통기간 산정 및 품질보증 공정확립	181
1) pH 및 산도 ······	··· 182
2) 수분 및 수분활성도	··· 182
3) 색도 측정	··· 182
2. 연구내용 및 결과	··· 182

가. 송이/표고버섯의 과립화 조건 확립	32
나. 송이/표고버섯의 과립차 제품화(시작품 제작)	34
다. 송이/표고버섯의 세립화 조건 확립	57
라. 과립류의 유통기간 산정 및 품질보증 공정확립	9
1) 저장 중 과립의 pH 및 산도	9
2) 저장 중 과립의 수분 및 수분활성도	9
3) 저장 중 과립의 색도1. 연구수행방법	0
제 4 장 목표달성도 및 관련분야에의 기여도	6
제 5 장 연구개발결과의 활용계획	2
제 6 장 연구개발과정에서 수집한 해외과학기술정보)4
제 7 장 참고문헌	5
부록	4

제 1 장 연구개발과제의 개요

제1절 연구개발의 목적

Fungal hydrophobin은 분비단백질로서 진균류의 cell wall과 공기 혹은 진 균류의 cell wall과 고체표면 사이의 계면에서 작용하는 단백질이다. 이것은 많은 진균류의 형태형성과정에 있어서 중요한 것으로 보고되어 있는데 예를 들면, 포자형성, 자실체발달, 감염구조 형성등의 경우에 기능을 발휘하는 단백 질이다. Hydrophobin 은 환경에 대응하여 분비된 단백질 monomer 가 self assembly 함으로서 소수성의 표층을 형성하며, 이러한 과정을 통하여, 진균류 의 기균사의 표면에 있는 얽힌 상태의 조그마한 막대모양의 단백질들의 amphipathic polymer와 균사의 응집이 일어난다. hydrophobin 자가회합은 균 사가 소수성의 표면에 부착할 때에도 작용하며, 어떤 발달과정에 있어서는 고 차구조의 형성을 위한 신호로서 작용할 가능성도 제시되어 있다.

hydrophobin은 특징적인 Cys 잔기를 가진 중정도의 소수성인 작은 단백 질로서 이것의 유전자들은 Schizophyllum commune에서 기균사의 형성 초기 동안에 활성화되는 유전자로서 최초로 분리되었다. 계속하여서 hydrophobin은 많은 fungi로부터 분리되었으며, 그들의 발현은 발달단계에 따라 다르게 조절 된다는 것이 발견되었다. 이들 유전자에는 S. commune에서 Sc1, Sc2, Sc3(Marcel L. de Vochtnet al., 1998: Marie-Anne van Wetter et al., 2000) 등, Coprinus cinereus에서 CoH1, CoH2, Agaricus bisporus(Piet W. J. Groot et al., 1999) 에서 ABH1, ABH2, ABH3, Pleurotus osteatus에서 Fbh1(Maria M. Penas et al., 1998)이 발견되었으며, Lentinula edodes 로부터는 Hydrophobin을 코드하는 2개의 유전자 (Le.hyd1 및 Le.hyd2) 의 primodial cDNA library의 random clone이 코드할 것으로 추정된 아미노산 배열은 특징 적인 Cys잔기들을 가진 여러 가지의 fungal hydrophobin 과 유사한 구조를 가지고 있었다(W. L. Ng et al., 2000). 이들 hydrophobin 유전자들은 그들의 보존지역과 소수성 패턴으로 미루어볼 때 class I hydrophobin유전자 이었으 며 Le. hyd1의 전사수준은 primodium 시기에 높았으며, Le.hyd2의 전사수준 은 2핵균사조직에서 높았다. monokaryotic parent에서 이들 유전자의 발현이

- 24 -

매우낮은 것은 이들 두유전자가 mating type regulation을 받고 있기 때문이 다. 그러므로 자실체의 발달동안에 이들 두 hydrophobin유전자의 분화에 따른 발현은 이 버섯에서 자실체형성시에 중요한 역할을 수행할 것으로 생각되어지 고 있다.

hydrophobin의 여러 가지의 기능중에서 진균류의 숙주침입과 관련된 역할 을 고찰해보면, 이미 많은 경우에 그 예들이 제시되어 있다. 화란의 느릅나무 병균인 *Ceratocystis ulmin*에 대한 연구를 수행했을 때 최초에는 이 균주가 생산하는 cerato-ulmin 이 병원성을 지닌다고 생각했으나(Okamoto et al., 1986), cereto-ulmin 유전자에 변이가 도입된 균주에서도 병원성이 발현됨을 알았는데(Bowden *et al.*, 1996), 이 연구의 수행시에 cerato-ulmin의 변이주 는 기균사의 형성과 표면 소수성이 감소함을 발견하였으며, cerato-ulmin은 *O. ulmi*(Takai and Hiratsuka, 1980, 1984)의 세포벽 구성성분으로서 표면 활성 단백질(Russo et al., 1982; Stickler and Bolyard 1994)이다. 그런데 최근에 이 물질이 포자가 bark beetle에 부착할 때 작용함이 밝혀졌으며(Temple *et al.*, 1997), 특히 병원성을 발휘할 때 이것의 발현량이 증가됨을 알았다.

cerato-ulmin과 비슷한 또다른 단백질이 horse chestnut blight fungus인 *Cryphonectria parasitica*에서 발견된 cryparin(Carpenter *et al.*, 1992)으로서 숙주에 침입시에 대량으로 발현됨이 발견되었는데(Zhang *et al.*, 1994; Kazmierczak et al., 1996) 이것은 cerato-ulmin과 마찬가지로 기질부착 혹은 기중균사의 형성시에 역할을 수행하는 것으로 추정이 되었다.

진균침입시 hydrophobin의 역할을 명확하게 밝혀준 예는 rice blast fungus *Magnaporthe grisea*가 벼의 조직에 감염될 때 발현되는 유전자 *MPG1*이 발 견되었는데 이 유전자의 발현은 병원성 발현의 두단계 즉, 흡기(appresorium) 형성시와 병증세가 발달하는 동안에 매우 높게 나타났다(Talbot *et al.*, 1993). *MPG1*은 전형적인 class I hydrophobin으로 이것은 소수성의 표면에 반응하 여 자기회합(self assemble)되는 것 같다(Talbot *et al.*, 1996). 그러므로 *MPG1*산물은 흡기발달의 개시기에 유도적으로 표면의 인식시 기능을 발휘하 는 것 같다(Talbot 1995, Beckerman and Ebbole, 1996; Talbot *et al.*, 1996). 이것은 *MPG1*산물이 소수성의 표면에서 자기회합되는 결과인 것 같으며 (Talbot *et al.*, 1996), 흡기가 발달하는 동안 *MPG1*의 기능을 고려할 때,

- 25 -

hydrophobin은 진균류가 그들의 먹이가 되는 기질과 결합될 때 기능을 발휘함 을 알 수 있다(Woesten *et al.*, 1995; Beckerman and Ebbole, 1996; Talbot *et al.*, 1996)

cerato-ulmin과 MPG1의 발견 이후 토마토 병원균인 Cladosporium fulvum의 hydrophobin이 발견되었는데 이경우에도 병원성과 hydrophobin생산 과의 상관관계가 존재하였다(Spanu 1997). 또 다른 예는 보리 맥각병의 원 인인 Claviceps purpurea가 생산하는 hydrophobin으로서, 이균이 alkaloid를 생산할 때 발현되는 유전자로서 스크린닝되었다(Arntz and Tuzynski, 1997).

마지막으로 *Pisolithus*의 hydrophobin이 식물뿌리의 부착에 관련되어 있다 는 사실이 알려져 있다(Tagu Denis and Francis Martin 1996; Peter A. Vesk *et al.*, 2000).

이와 같은 상황에서 국내에서 식품으로서 대단히 인기를 모으고 있는 송이 버섯(*Tricholoma matsutake*)으로부터 hydrophobin을 정제하고, 유전자를 분석 하고, 유전자 발현 패턴을 분석하였으며, 또한 2세부에서는 표면단백질의 세 포활성에 미치는 영향을 분석하였으며, 협동과제에서는 hydrophobin 이 함유 된 시제품의 개발을 수행하였다.

본 연구개발의 목적은 버섯자원에서 대표적인 표면단백질인 hydrophobin 에 대해서 연구를 집중함으로서, 이 단백질의 이용성을 개발하여, 식품소재로 적용될 가능성을 모색하였으며, 또한 새로운 세포활성을 검토하고, 동시에 이 성분이 함유된 기호품을 개발하고자 하였다.

제 2 장 국내외 기술개발 현황

2003년도 연구개시 이후의 관련분야의 연구진행과정을 살펴보면, dimorphic fungus Paracoccidioides brasiliensis의 균사체상태와 효모형상태에서 hydrophobin 의 발현을 조사하였을 때, 균사상태에서 효모상태로 전환시 최초 24시간 동안에 두종류의 hydrophobin cDNA (Pbhyd1과 Pbhyd2)가 고발현됨 이 발표되었으며(브라질의 Albuquerque P. 연구그룹 2004. 5), Schizophyllum commune hydrophobin의 일종인 SC3는 완충용액에서 dimer 상태가 주된 구 조체 이었으며, 소량의 monomer, tetramer와 큰 덩어리로 존재함이 밝혀졌으 나, dimeric SC3 가 assembly 의 기본 단위가 됨이 발표되었으며(네델란드의 Wang X. 연구그룹 2004. 4), hydrophobin 의 결정화의 연구로는 Terichoderma reesei의 HFBⅡ가 Mn 의 존재하에서 결정화가 진행됨을 밝 혔으며, 또한 Tricholoma reesei 의 HFBⅡ를 구조결정 했을 때, 1개소의 □ -helix와 4개소의 1-strand 가 포함되어 있으며, 이 단백질의 표면은 친수성 이었으며, 2개의 ♬-hairpin loop은 소수성임이 밝혀졌으며(핀란드의 Hakanpaa J. 연구그룹 2004. 1), 도열병균인 Magnaporthe grisea가 감염된 벼에서는 도 열병균의 hydrophobin 이 가장 활발하게 전사됨이 밝혀졌으며(일본의 Matsumura 그룹, 2003. 12), Poliota nameko 의 균사배양시 인산결핍배지에 서 배양했을 때, 31개의 cDNA가 분리되었는데, 이중에서 3개가 hydrophobin 과 상동성이 높았음이 확인되었으며(일본의 Tasaki Y. 그룹 2004. 2), 병원균 Ophiostoma ulmi의 cerato-ulmin(CU) gene이 분석되었을 때, 균사형은 효모 형보다 20-60% 더 많은 CU mRNA를 생성함이 확인되었다(캐나다의 Tadesse Y. 그룹 2003. 9). 그리고 Cladosporium fulvum의 hvdrophobin gene hcf-1의 promoter와 signal peptide를 이용하여 Aspergillus nidulasns 의 catalase를 발현시켰을 때, 생산량이 60배로 증가하였으며, N 원을 제거했을 때, 생산량이 더욱 증대됨이 발표되는등(영국의 John) 표면단백질 관련 연구 가 많이 진행되고 있음을 알수 있다. 이와 같이 국외에서는 진균류의 표면단 백질에 대한 연구가 진행되고 있으나, 국내에서는 본 연구과제이외에는 hydrophobin 연구례는 거의 없는 실정이다.

- 27 -

최근 1년 동안의 hydrophobin 연구동향을 보면, Schizophyllum commune 으로부터 분리된 Sc3 hydrophobin을 spin coating and adsorption 법으로 polymer 의 표면에서 조제하여, lateral force 현미경과 nanoindentation 법으 로 측정했을 때, Sc3처리로 인하여, nanoscale의 상대표면마찰이 polymer의 표면에서 감소되었으며, 친수성이 증가되었다(Mirsa et al., 2006). 또한 Schizophyllum commune의 Sc3 와 Trichoderma reesei의 HFB I 과 HFB II 에 관한 비교연구를 수행하였는데, Sc3와는 달리 HFB I 과 HFBⅡ 는 수층-공기 경계면에서 2차구조의 변화가 일어나지 않았을 뿐만 아니라, 미세구조의 변화도 발생하지 않았다. 더욱이 표면장력 최대저하는 HFBI과 HFBII의 경 우에는 수분내에 발생하였으나, Sc3 의 경우에는 수시간이 소요되었다. 또한 HFB I 과 Sc3를 사용하여 조제한 oil emulsion 은 HFBⅡ를 사용하여 조제한 경우보다 더욱 안정하였으며, HFB I 과 Sc3는 소수성 Teflon표면에 더욱 강 력하게 부착하여 보다 용이하게 수분이 흡수되게 하였다. 그러나 HFB I 으로 코팅했을 때, 뜨거운 세제에 매우 민감하였으나, Sc3의 경우에는 그렇지 않고 매우 저항적이었다(Askolin et al., 2006). 소수성표면 결합 단백질(HsbA)이 Aspergillus RIB40균주를 이용하여 oryzae polybutylene succinate-co-adipate (PBSA)를 유일 탄소원으로 사용한 배지에서 생산되었 는데, 이것은 hydrophobin 은 아니지만, 이것은 소수성 표면에 결합해서 CutL1 polyestearse와 결합하여 PBSA를 분해함이 밝혀졌다. Asp. oryzae hydrophobin RolA도 PBSA표면에 결합하여 CutL1을 특이적으로 가담시켜서 분해시켰다(Ohtaki, S., et al. 2006). Trichoderma reesei의 hydrophobin HFB Ⅱ의 미세구조결정(Hakanpaa J., et al. 2006)이 수행되었으며, class I hydrophobin 의 단량체 형태의 3차원 구조가 연구되었다(Kwan AH et al. 2006). 또한 입고병균 Verticillium dahliae Kleb는 microsclerotia 로 알려진 휴면 구조체를 형성할 때, class Ⅱ hydrophobin 유전자(VDH1)이 발현됨을 확인하였으며, 이 유전자는 토마토에서 질병의 진전과 관련이 있음을 알았다 (Klimes A. et al. 2006). Eurotium rubrum에서 putative hydrophobin 의 발 현은 0.98 aw 에서는 0.86 aw 에서보다 더 높은 발현량을 나타내었으며 (Cooley, C., et al. 2005), Flammulina velutipes에서 원기형성시에 발현되는 유자전자를 스크리닝했을때, hydrophobin유전자가 포함되어 있었다. 그러므로

- 28 -

hydrophobin 은 자실체의 형성에 관련이 있음을 알 수 있었다(Yamada, M. et al. 2006). Trichoderma viride을 고체배양 했을때, conidial hydrophobin의 발현은 400, 323, 272bp 의 3종의 mRNA로 전사됨이 밝혀졌다. 그리고 암조 건에서 보다 짧은 전사물로 변형됨을 알 수 있었다. 이들 전사물의 차이는 intron이 없는 것에서부터 1개 있는 것과 두개 있는 것의 차이였으므로, conidia형성시 빛에 의해서 유전자 발현이 조절됨을 알 수 있었다(Vargovic P. et al. 2006). Trichoderma reesei에서 hydrophobin유전자 HFB I 은 균사발 달 동안에, 그리고 HFBII는 포자형성기에 발현됨이 확인되었다(Askolin S. et al. 2005). 125종의 원핵세포의 유전체배열로부터 600이상의 Ser/Thr kinase domain 이 발견되었으며, 동시에 hydrophobin 과 같은 domain 이 Mycobacteria STYK에서 발견되었다(Krupa A. et al. 2005). 도열병균 Magnaporthe grisea 로부터 hydrophobin cDNA MHP를 클론닝하였는데, 이 것으로부터 만들어지는 hydrophobin 은 102아미노산으로 구성되어 있으며, classII에 속함이 밝혀졌으며, 이것은 식물에 침투하여 자리를 잡을때와 conidia를 형성할 때 유도됨이 밝혀졌다(Kim S. et al. 2005).

이상과 같이 진균류의 표면단백질 hydrophobin을 연구재료로 사용한 연구 가 활발하게 진행되고 있는 상황에서, 균근균인 *Tricholoma matsutake*를 이 용하여 hydrophobin 을 정제하고, 관련 유전자를 분리하고, 원기형성시의 발 현현상 등을 연구하고, 또한 이를 함유한 제품을 개발한 연구는 본 연구그룹 뿐이므로 대단히 독창성이 있는 연구로 간주된다. 그러나 hydrophobin 은 이 단백질 고유의 강한 소수성 때문에 효묘 및 대장균에서의 발현에 어려움이 있었으므로, 의료용기기, 식품산업 및 화장품 산업등에 적용될 소재로서 개발 됨 점에 의의가 있다고 생각된다.

제 3 장 연구개발수행 내용 및 결과

제1절 hydrophobin 이란?

1. 서론

hydrophobin은 자낭균 및 담자균과 같은 선형균류에 의해 생산이 되며, 접 합균에 의해서도 생산될 것으로 예상되는 저분자량의 분비성단백질이며(de Vries et al. 1993, Wessels 1997), 진균류의 성장과 발달단계에서 다양한 기능 을 수행하고 있다). 예를 들면, 이것은 소수성을 띠는 aerial structure들 즉, 기중균사 및 자실체의 형성에 관련되기도 하며(Wessels 1996, 1997; Woesten and Wessels 1997; Woesten *et al.* 1997), 균사가 소수성의 표면에 부착되는 성질을 부여(Woesten *et al.* 1994b)하기도 하며, 형태형성의 signal로서도 작용 한다(Talbot *et al.* 1996).

Fig 3.1.1. Schematic representation of the hydrophobin self assembly process. Hydrophobin monomers are shown with four external loops represented as the arms of a cross. The proteins fold such that one side is predominantly hydrophobic (shaded) and the other hydrophilic (white). The amphipathic hydrophobin monomers are secreted when the fungus is submerged (A) but self assemble when the fungus reaches air-water

- 30 -

interfaces (B) or hydrophobic surfaces (C). This model is adopted from a model originally formulated by Woesten et al. and reproduced from Talbot (1997)

이러한 기능을 발휘할 수 있는 mechanism(Fig 3.1.1)은 hydrophobin이 친 수성-소수성의 계면에서 스스로 회합되어, amphiphatic film을 형성하는 성질 에 기인한다(Wessels 1996, 1997). 액체 배양된 균사에 의해서 분비된 hydrophobin은 액상 중에서 확산되며, 배지와 공기의 경계면에서 스스로 회합 된다. 이것은 물의 표면 장력속에서 커다란 물방울을 형성함으로서, 균사가 계 면을 뚫고, 공기중으로 자랄 수 있는 원동력이 된다(Woesten *et al.* 1999). 다 른 한편으로는, 소수성 환경에 부착된 균사에 의해 분비된 hydrophobin은 균 사의 표면에서 자기회합 된다. amphiphatic film의 친수성측은 세포막의 친수 성 다당류와 결합하는 반면에, 소수성측은 소수성환경에 노출될 것이다. 그러 므로 기중균사와 포자는 소수성이 되지만, 소수성기질에서 성장하는 균사는 그것에 단단히 결합한다. hydrophobin은 진균류의 환경에서 활성을 나타내는 데, 특히 균사의 표면에서 작용한다. 또한 이들은 세포막의 matrix에서도 작용 을 하여, 세포막의 구성에도 영향을 미친다(van Wetter et al. 2000b). 이러한 경우에는 스스로 회합된 hydrophobin 보다는, 단량체의 형태가 관련된 것 같 다.

2. 하이드로포빈의 성질

① Class I 및 class Ⅱ hydrophobin은 분자량이 작으며(±100 아미노산), 다 소 소수성을 띠는데, 이것은 8개의 보존적인 cys 잔기에 의해서도 이러한 성 질이 부여되며(Fig 3.2.1). 전형적인 친/소수성 패턴(Wessels 1994, 1997)에 의 해서도 부여된 성질이다. 이들의 아미노산 배열은 다양하며(Wessels 1997), 첫 번째 Cys 앞에 위치한 N-말단 배열의 길이는 가변적이다(26-158 아미노 산)(Woesten 2001). 비록 hydrophobin이 번역 에 수식될 수 있다하더라도, 그 들의 일반적인 성질은, 전적으로 그들의 아미노산 배열의 성질에 의존적이다 (Woesten and de Vocht 2000). Class I 및 class Ⅱ hydrophobin은 친수성-소수성의 계면에 스스로 회합하여, amphiphatic film을 형성한다. (Wessels 1996, 1997). ② Class I hydrophobin에 의해서 형성된 membrane은 대단히 불용성이며, formic acid와 trifluoroacetic acid에 의해서만 해리될 수 있다.(Wessels *et al.* 1991; de Vries *et al.* 1993).

이와는 대조적으로 class Ⅱ hydrophobin 에 의 해서 형성된 화합물은 덜 안정적이다.

Fig 3.2.1. Schematic representation of putative hydrophobin structures based on intramolecular disulfide linkages determined for cerato-ulmin (Yaguchi et al., 1993). In this model the eight cystein residues from four intramolecular disulfide bridges resulting in two-domain proteins containing four "loops." Loops 2 and 4 are predominantly hydrophobic. The class I hydrophobins shown in (a) and (b) vary in the length of loops 1,2, and 4, with loop 3 being invariant. The greatest divergence is the length of the loop 2, which varies from 22-to 39 amino acids. The distance between each domain also varies considerably. The examples shown are (a) MPG1 from *Magnaporthe grisea* and (b) Sc3 from *Schizophyllum commune*.

- 32 -
The class II hydrophobins show more conservation in spacing of cysteine residue leading to a broadly symmetrical structure with four loops of similar size, separated by an invariant number of amino acids. The examples shown are (c) cerato-ulmin from *Ophiostoma ulm*i and (d) cryparin from *Cryphonectria parasitica*. Note the long N-terminal glycine-rich tract in cryparin which is also found in the predicted product of *cpa3* from *Claviceps purpurea* (Arntz and Tudzynsky, 1997). Cysteine resodues, bulky hydrophobic residues (M,, F, I, L, V), positively charged residues (K, R), and negatively charged residues (E, D) are shown. the representations are adopted from models originally constructed by Joseph and Wessels.

CU와 CRP는 60% ethanol과 2%의 SDS에서 해리될 수 있으며(Russo et al. 1982, Carpenter et al. 1992, Woesten and de Vocht 2001), 회합된 CU 또 한 압력을 가하거나, 냉각시킴으로서, 해리될 수 있다(Russo et al. 1982). 가장 잘 연구된 class I hydrophobin은 Schizophyllum commune 의 SC3이지만, 이 class의 여타의 구성원들도 비슷한 성질을 가지고 있다.

친수성-소수성 계면에 접촉시켰을 때, SC3 monomer는 스스로 회합되어 10nm 두께의 amphiphatic film을 형성한다.(Woesten et al.1993, 1994a, 1995). SC3 membrane의 친수적및 소수적인 면은 수면접촉각도가 36도와 110도가 되 어 이들의 양면은 탇수화물에 비교할 만큼 약간 친수적이 되며, Teflon과 비 교될 만큼 대단한 소수성이 된다 (Woesten et al. 1993, 1994a). SC3가 계면에 서 스스로 회합될 때에는 몇가지의 conformational change가 수반된다(de Vocht et al. 1998; Woestrn and de Vocht 2000). I-sheet rich monomer들은 처음에는 증가된 u-helix 구조를 가지는 conformation을 취한다. SC3는 water-Teflon 계면에서 이러한 중간체상태로 고정되지만, water-air계면에서 는 이 단백질은 I-sheet I state), 수시간 후에는 10nm 넓이의 막대기에 다발 이 모자이크를 형성한 것이 관찰된다(I-sheet II state). 이러한 ultrastructural state 의 변화시에는 2차 구조상의 변화는 관찰되지 않는다(Woesten and de Vocht 2000).

□-helix에서 □-sheet로의 변화는 water-solid 계면에서 일어날 수 있지만,
 온도를 증가시켜주든지, 계면활성제를 첨가함으로서, 유도시킬 수 있다
 (Woesten and de Vocht 2000). 스스로 회합될 때, SC3의 성질은 변화한다. □
 -sheet상태의 SC3는 고도의 표면활성을 갖지만, 반면에 단량체들에서는 표면
 활성이 관찰되지 않는다(van der Vegt et al. 1996; Woesten et al. 1999). 더
 욱이, lectin 활성이 증가된다(van Wetter et al. 200a). 이외에도 □-helix form

- 33 -

은 ₱-sheet보다도 덜 안정한 것 같다. 비록 양자모두가 소수성의 표면에 강하 게 부착한다 하더라도, α-helix 형태는 냉각된 묽은 계면활성제에 의해서 해리 되어 monomeric conformation으로 전환되어 질수 있다. 이와는 대조적으로 ₱-sheet 형태의 conformation과 소수성 고체와의 상호작용은 이러한 처리에 의해서 영향을 받지 않는다(Woesten and de Vocht 2000).

비록 class I hydrophobin의 전반적인 성질이 유사하다 하더라도 그들의 미세한 성질은 상이할 것이다(Table 3.2.1).

Table 3	3.2.1.	The	fungal	Hydrop	hobins

	Hvdrop	Taxono		Mutant	5	
Name	hobin	mic	Organism	phenotype	Biological function	Reference
	class	class		determined	-	
SC1	Ι	Basidio mycetes	Schizophyllum commune	2	Unknown. Expressed in dikaryotic phase.	Schuren and Wessels (1990); Wessels <i>et al.</i> (1991)
SC3	Ι			1	Involved in aerial hyphae formation and ability to attach to hydrophobic sur-faces.	Wo [°] sten <i>et al.</i> (1994) Van Wetter <i>et al.</i> (1996)
SC4	Ι			2	Unknown. Expressed in dikaryotic phase. Known to line gas channels in basid-iome.	Schuren and Wessels (1990); Wessels <i>et al.</i> (1991)
SC6	Ι			2	Unknown. Expressed in dikaryotic phase.	Wessels (1997)
CoH1	Ι		Coprinus cinereus	2	Unknown.	Asgeirsdottir <i>et al.</i> (1997)
HydPt-1	Ι		Pisolithus tinctorius	2	Unknown. Expressed in mycorrhiza.	Tagu et al. (1996)
HydPt-2	Ι			2	Unknown. Expressed in mycorrhiza.	Tagu et al. (1996)
ABH-1	Ι		Agaricus bisporus	2	Unknown. Expressed in dikaryotic phase. Known to line gas channels in basid-iome.	Lugones <i>et al.</i> (1996); de Groot <i>et al.</i> (1996)
ABH-2	Ι			2	Unknown. Expressed in dikaryotic phase.	Lugones <i>et al.</i> (1996); de Groot <i>et al.</i> (1996)
SSGA	Ι	Ascomy cetes	Metarhizium anisopliae	2	Unknown. Expressed during appresso-rium development.	St. Leger et al. (1992)
MPG1	Ι		Magnaporthe grisea	1	Conidial spore wall protein. Involved in conidium and appressorium formation. Required for full pathogenicity.	Talbot <i>et al.</i> (1993) Talbot <i>et al.</i> (1996)
RodA	Ι		Aspergillus nidulans	1	Conidial spore wall protein.	Stringer et al. (1991)
DewA	Ι		Aspergillus nidulans	1	Conidial spore wall protein.	Stringer and Timberlake (1995)
HYP1	Ι		Aspergillus fumigatus	1	Conidial spore wall protein.	Parta et al. (1994) Thau et al. (1994)
Eas	Ι		Neurospora crassa	1	Conidial spore wall protein.	Bell-Pederson <i>et</i> <i>al.</i> (1992)Lauter <i>et al.</i> (1992)
CU	II		Ophiostoma ulmi	1	Aerial hyphae formation and hydropho-bicity. Abundant expression in host plant.	Bowden et al. (1996)
CRYP	Π		Cryphonectria parasitica	1	Unknown. Abundant expression in host plant. A cell wall protein.	Zhang et al. (1994)
QID3	II		Trichoderma harzianum	2	Unknown. Highly expressed in chitin-containing medium.	Lora et al. (1995)
HFB1	II		Trichoderma		Unknown. Highly expressed in	Nakari-Seta"la" et al.

		reesei	2	glucose-containing medium.	(1996)
HFB2	Π	Trichoderma reesei	2	Unknown.	Nakari-Seta¨la¨ and Pentilla
cpa3	Π	Claviceps purpurea	2	Unknown. Unusual "tri-hydrophobin" structure. Expressed in alkaloid-pro-ducing cultures.	Arntz and Tudzynski (1997)

회합체의 소수성측의 수분흡수능력은 비교적 균일하지만(수분접촉각도 약 110°), 친수성측은 다양하다(22-63°Table 3.2.1). 이외에도 class I hydrophobin 막대기의 직경은 5-12nm 사이이다(Stringer et al. 1991; Bell-pwderson et al.1992; Woewten et al. 1993, 1994a; Talbot et al. 1996; Woesten and Wessels 1997; Kershaw et al. 1998; Logunes et al. 1996,1998, 1999). hydrophobin 단량체들은 유기용매 수용액에서는 상이한 용해성을 나타내며 (Schotmeijer 2000). 결합하는 당류가 서로 다른 것 같다 (Table 3.2.1; van Wetter et al. 2000a).

class Ⅱ hydrophobin의 self-assembly시 수반되는 구조적인 변화에 대해 서는 거의 알려져 있지 않다. class Ⅱ hydrophobin은, class Ⅰ hydrophobin 과 같이, 표면활성이 높으며, 회합체의 친수성측에, 습윤성의 차이가 있으며, lectin과 같은 활성을 가지고 있다(Carpenter et al. 1992; Table 3.2.1). 그러 나 class Ⅰ hydrophobin과는 대조적으로, class Ⅱ hydrophobin은 회합시 막 대형을 형성하지는 않는다(Woesten and de Vocht 2000).

위에서 말한 바와 같이, hydrophobin의 아미노산 배열은 매우 다양하다. 8개 의 cys 잔기를 제외하면, 단지 수개의 아미노산만이 보존적이다(Wessels 1994; Woesten 2001)(Table 3.2.2).

Name of hydrophobin	Cysteine spacing ^a	Diameter of rodlets ^b
Consensus (Class I)	C-X5 - 7C-C-X19 - 39-C-X8 - 23-C-X5-C-C-X6 - 18-C-X2 - 13	
MPG1	C-X7C-C-X22-C-X19-C-X5-C-C-X11-C-X5	5 - 7 nm
rodA	C-X7C-C-X39-C-X18-C-X5-C-C-X17-C-X7	10 - 12 nm
dewA	C-X ₆ C-C-X ₃₀ -C-X ₂₃ -C-X ₅ -C-C-X ₆ -C-X ₁₃	?
Sc3	C-X ₆ C-C-X ₃₃ -C-X ₁₂ -C-X ₅ -C-C-X ₁₂ -C-X ₆	10 - 13 nm
ssgA	C-X5C-C-X19-C-X15-C-X5-C-C-X12-C-X5	?
Sc1	C-X ₆ C-C-X ₃₃ -C-X ₁₂ -C-X ₅ -C-C-X ₁₂ -C-X ₇	?
Sc4	C-X ₆ C-C-X ₃₃ -C-X ₁₂ -C-X ₅ -C-C-X ₁₂ -C-X ₅	?
Eas	C-X ₈ C-C-X ₂₅ -C-X ₈ -C-X ₅ -C-C-X ₁₈ -C-X ₂	10 nm
HydPt-1	C-X ₆ C-C-X ₃₂ -C-X ₁₃ -C-X ₅ -C-C-X ₁₂ -C-X ₇	?
HydPt-2	C-X ₆ C-C-X ₃₂ -C-X ₁₃ -C-X ₅ -C-C-X ₁₂ -C-X ₇	?
Consensus (Class II)	$C - X_9 - 10C - C - X_{11} - C - X_{16} - C - X_8 - 9 - C - C - X_{10} - C - X_6 - 7$	
Cerato-ulmin	C-X ₉ C-C-X ₁₁ -C-X ₁₆ -C-X ₉ -C-C-X ₁₀ -C-X ₆	?
Cryparin	C-X9C-C-X11-C-X16-C-X8-C-C-X10-C-X6	?
QID3	C-X ₉ C-C-X ₁₁ -C-X ₁₆ -C-X ₉ -C-C-X ₁₀ -C-K7 ^c	?
HFB1	C-X9C-C-X11-C-X16-C-X8-C-C-X10-C-X6	?
cpa3	$C-X_{9-10}C-C-X_{11}-C-X_{16}-C-X_{8}-C-C-X_{10}-C^{d}$?

Table 3.2.2. Cysteine Spacing within the Fungal Hydrophobins

a (C, cysteine, X, any amino acid). The number of amino acid residues preceding the first cysteine cannot be accurately determined because signal peptide cleavage sites have not been determined in all cases. ^b Where determined by ultrastructural analysis.

^c The published QID3 sequence suggests that the second cysteine residue may be

serine(Lora *et al.*, 1995). ^d Spacing based on incomplete sequence data from multiple hydrophobin domains of cpa3 (Arntz and Tudzynski, 1997)

최근에 이 8 cys 잔기가 그렇게 고도로 보존된 이유가 연구되었다. 환원제로 SC3의 S-S 결합을 개환했을 때 및 iodoacetamide로 SH기를 block 시켰을 때, hydrophobin은 수중에서 자연적으로 회합되었다.(즉 소수성-친수성의 계면의 부재하에서)(de Vocht et al 2000). 분명히, S-S 결합은 hydrophobin을 수용성 단량체로 유지시켜주며, 이 분자가 친수성-소수성의 계면에 존재할 때만, self-assembly 되게 해준다.

3. Hydrophobin 의 용도

hydrophobin이 소수성-친수성의 경계면에 접촉했을 때, 양친매성의 membrane을 형성하는 특징적인 성질을 가지고 있기 때문에, hydrophobin들이 표면의 성질을 바꾸게 해준다.(Fig. 3.1.1). 액체(예 oil 방울)혹은 고체(예

- 36 -

Teflon)의 소수성의 표면은, 이들을 hydrophobin용액에 담그거나 부유시킴으 로서, 친수성으로 만들 수가 있다(Woesten et al. 1994a, 1995; Lugones et al. 1996). 반대로, 그러한 용액을 유리나 filter paper 위에서 증발시킴으로서, 이 러한 물질들이 친수성이 되게 한다(Woesten et al. 1993; Lugones et al. 1996, 1998). 중요하게도, 회합된 class I hydrophobin은 그들의 지지체에 강하게 결 합한다(Woesten et al 1993. 1994a, b, c, 1995; Lugones et al. 1996, 1998). 종 이나 Teflon위에 형성된 hydrophobin층은 물로 씻거나 100℃에서 계면활성제 로 추출하여도 저항적이다. 이와 대조적으로, BSA는 이러한 처리로 제거되었 다.

위에서 언급한 성질 및 hydrophobin은 독성이 없거나(버섯과 진균류 발효 식품의 소비시 인간이 흡수) 세포독성도 없으며, hydrophobin은 여러 가지의 의료용 및 공업적인 용도로 사용될 수 있다(Table 3.2.2; Wessels 1997). hydrophobin은 화학적으로 혹은 유전적으로 수식되거나 않건 간에, 표면의 생 물물리학적 성질을 변경시키기 위해서 사용될 수 있다. 이러한 방식으로, 분자 혹은 세포의 표면부착이 제어될 수 있다.

예를 들면, 인간의 fibroblast가 implant 의 표면에 결합이 이루어지는 동 안, 병원성 세균의 catheter 표면 부착이 감소될 수 있다. 생물물리학적 성질의 변화와는 별도로, hydrophobin은 정상적으로는 높은 친화성이 없는 표면에 분 자를 부착시키는데 이용될 수 있다. hydrophobin이 표면에 회합된 후에 화학 적인 cross-linking에 의해서 부착될 수가 있다.

예를 들면, 단백질은 회합된 SC3의 친수성 측면에서, Schiff-bass반응을 경 유하여 mannose잔기에 부착될 수 있다(Wesels 1997). 한편으로, 단백질 또는 peptide 의 경우에, 융합단백질이 만들어져서 관심있는 물질의 표면에서 회합 될 수 있다.

소수성의 표면은, 표면의 반응성 그룹과 무관하게, hydrophobin으로 균일하 게 코팅될 수 있다. 뿐만 아니라, BSA와는 대조적으로, 예를 들면, hydrophobin은 표면에 강하게 (혈액 단백질에 의해서 치환되지 않고), 그리고 바람직한 방향으로 강하게 결합하는데, 유전적으로 조작된 hydrophobin을 사 용하면, 부가적인 cross-linking 단계가 필요 없다. 회합에 의해서 획득된 양 친매성을 가지는 hydrophobin은 현재까지 확인 된 것 중에서 가장 표면활성이

- 37 -

우수한 분자에 속한다(Woesten and de Vocht 2000).

이들의 표면활성은 산업상(emousion and dispersion) 광범위하게 적용되 고 있는 glycolipid, lipopeptide/lipoprotein, 인지질, 치환된 지방산, 및 lipopolysaccharide등에 이르는 전통적인 biosurfactant의 활성과 적어도 비슷 하다(Desai and Banat 1997). 이들 surfactant와는 대조적으로 hydrophobin의 표면활성은 지방분자에 의존하는 것이 아니라, 유일하게 아미노산 배열에 의 해서만 기인하는 것이다. hydrophobin의 유전정보 는 약 400bp라는 작은 유전 자내에 들어 있는데 비하여, 기타 biosurfactant의 유전정보는 거대한 유전자 또는 복잡한 유전자 cluster내에 들어 있다(Desai and Banat 1997). 그러므로, 어떠한 목적에 부합시키기 위해서 hydrophobin을 수식하는 일은 대단히 간단 할 것으로 추정된다..

위에서 언급한 응용은 um 내지 mm단위이다.

스스로 회합된 hydrophobin 막은 두께가 약 10nm이며, 단량체들은 3nm 두께 이므로(구상 단백인 것 같다), 이들 단백질들은 Thomas(1995)가 정의한 nanotechnoloty에서 용도를 가지는 흥미로운 후보물질이다. 예를 들면, hydrophobin은 표면에서 nm의 정확성을 가진 pattern molecule로 사용될 수 있을 것이다. hydrophobin이 서로 회합할 수 있는지를 연구하는 것은 흥미 있 는 일일 것이다.

4. 재조합 이종 하이드로포빈의 생산

S. commune에서 hydrophobin의 생산량을 증가시킬려는 시도가 좌절되었 으며, E. coli 및 Hansenula polymorpha에서 hydrophobin을 생산할려는 시도 는 성공적이지 못하였다. SC3 유전자를 H. polymorpha에서 methanol oxidase promoter를 사용하여 발현시키는데 실패하였다. Trichoderma reesei 와 Aspergillus niger의 균주에서 hydrophobin을 발현시켰다(Scholtmeijer 2000). 처음에, A. niger 는 hydrophobin을 배지중으로 분비하지 않기 때문에, (O.M.H. de Fries, 미발표 data)선택되었으며, 이 균주에서는 이종 hydrophobin 의 정제가 간편할 것으로 추정되었으며, SC3는 A. niger에서 Aspergillus nidulans의 gpd promoter 하류에서 발현되었다. 이 경우 mRNA

- 38 -

는 비교적 높은 수준으로 축적되었지만(*S. commune*에서 관찰된 것의 20-49%), 배양액에서의 SC3수준은 *S. commune*에서 발견되는 것의 1% 미만 이었다. *T. reesei* 는 많은 량의 class II hydrophobin(HFBI 과 HFBII)을 배양 액 중에 분비할것으로 (Nakari- Setaelae et al. 1996, 1997) 판단되어 연구를 수행중인 그룹이 있다.

본 연구에서는 *Tricholoma matsutake* 의 hydrophobin 유전자를 클론닝하 여 유전자의 구조를 밝히고, 균체내에서의 발현패턴을 연구하였으며, 이를 활 용한 시제품의 개발을 수행하였으며, 여기서 연구가 수행된 송이의 hydrophobin 은 다양한 방면에서 적용될 수 있는 소재적인 측면에서 많은 잠 재적인 가치를 가지고 있다고 볼 수 있다.

제2절 hydrophobin 의 정제

1. 연구수행 방법

가. hydrophobin의 정제

송이 및 표고버섯을 동결건조한 후 액체질소를 이용하여 막자사발에서 분 쇄한 후 다양한 농도의 유기용매와 계면활성제를 이용하여 추출한 후 10,000g 에서 원심분리 하였다. 원심분리 후 침전을 버리고 상등액을 4℃의 물에서 투 석한 후 원심분리하여 상등액을 동결건조 하였다. 이렇게 건조된 것을 1M NaCl을 함유한 0.05M Na/phosphate buffer에서 5분간 혼합한 후 실온에서 10,000g에서 1시간 원심분리하여 pellet 에 3ml 의 1M NaCl buffer로 한번 씻 은 후 2ml의 60% ethanol로 2회, chroloform/methanol(2:1)로 두 번 씻은 후 건조하였다.

나. SDS-PAGE를 이용한 단백질 분석

12.5% polyacrylamide gel에서 SDS-PAGE 전기영동을 통하여 단백 질을 분석하였다. 송이 및 표고의 자실체로부터 60% ethanol을 이용 하여 추출한 후 동결 건조된 추출물 20 mg dry weight/ml을 SDS-sample buffer (2% SDS, 0.05 M Tris/Hcl, pH 6.8, 10% (v/v) glycerol, 5% (v/v) 2-mercaptoethanol)에 가하여 100℃, 10′처리 후 전기영동하고 Coomassie Brilliant Blue를 이용하여 단백질을 염색하였 다.

2. 연구수행 내용 및 결과

가. 송이 및 표고의 다양한 기능성소재 hydrophobin 의 정제

1) 송이에서 hydrophobin 의 정제

송이(*T. matsutake*)에서 ethanol 을 이용하여 추출 정제한 hydrophobin 을 전기영동한 패턴은 Fig 2.2.1 과 같이 25kDa 의 분자량을 가진 단백질임이 확 인되었다.

2) 표고버섯에서 hydrophobin 의 정제

표고버섯(*Lentinula edodes*)에서 ethanol 을 이용하여 추출 정제한 hydrophobin 을 전기영동한 패턴은 Fig 2.2.2 와 같이 24kDa 의 분자량을 가

- 40 -

진 단백질임이 확인되었다.

Fig 2.2.1. 60% EtOH을 이용하여 송이버섯으로부터 정제된 hydrophobin

Fig 2.2.2. 60% EtOH을 이용하여 표고버섯으로부터 정제된 hydrophobin

제3절 송이버섯 hydrophobin 유전자의 클론닝

1. 연구수행 방법

가. Total RNA의 정제

대구인근 가창지역에서 채취한 균사체, 윈기, 미분화 자실체 및 성숙자실체로 부터 total RNA를 분리하였다. 자실체 및 균사체의 total RNA는 QIAGEN 키트 (RNeasy Maxi 키트: cat#75162)를 사용하여 분리하였다. 자실체 및 균사체의 조직 약 1g을 취하여 액체질소와 막자사발을 이용하여 마쇄하였다. 베타 머캅토에탄올을 첨가 한 15ml의 키트내의 RLT 완충액에 용해시키고, 호모지나이저로 분쇄하였다. 시료 용 액을 3,000g에서 10분 동안 원심분리하여 상층액을 분리하고, 여기에 15ml의 70% EtOH을 첨가하여 잘 섞은 후, 3,000g에서 5분간 원심분리하여 total RNA를 막에 부착 시켰다. 두 차례의 세척 과정을 수행 후, 1.2ml의 RNase가 제거된 물을 첨가하여 total RNA를 용출, 분리하였다.

나. cDNA library 의 제작

Total RNA 각 100µg을 BAP 효소 반응액 (100 Mm Tris-Hcl (pH 7.0), 2 mM DTT, 80U Rnasin (promega))에서 3U의 BAP (Bacterial alkaline Phosphatase, TakaRa) 효소로 처리하고, 이어 TAP (Waco) 효소 반응액 (50mM sodium acetate (pH 5.5), 1 mM EDTA, 2 mM DTT, 80 U Rnasin (promega))에서 100 U의 TAP (Tabbaco acid pyrophosphatase)효소를 반응시킨 후, 50 mM Tris-HCl (pH 7.5), 5 mM MgCl₂, 2 mM DTT, 0.5 mM ATP, 26% PEG, 100 U Rnasin, 올리고리보뉴클레 오티드 40 pmole, 250 U RNA ligase (TakaRa)의 반응을 수행하여 합성한 올리고머를 인산기를 가지는 미분해 mRNA에만 첨가되도록 반응시켰다.

이상의 반응을 처리한 total RNA로 부터 올리고텍스(oligotex) mRNA 정제키트 (QIAGEN)를 사용하여 mRNA를 분리하고, dT17을 함유한 올리고머를 프라이머로 사 용하여 1st cDNA를 합성하였다. 합성된 cDNA는 XL PCR 키트 (PerkinElmer)를 사용 하여 합성된 DNA 삽입체의 5'-말단과 3'-말단의 올리고머를 함유한 PCR 반응을 수행 하여 소량 증폭시켰다. PCR 산물을 SfiI의 효소로 처리한 후 아가로스 젤 전기영동을 하여 1.3 kb 이상의 cDNA 단편을 분리한 후 TaKaRa 연결 키트를 이용하여 DraIII

- 42 -

효소로 처리한 pCNS-D2 벡터에 연결시킨 후, 전기침공법(electroporation)에 의해 대 장균 Top10F' (Invitrogen) 균주에 형질전환시켜, cDNA 라이브러리를 제조하였다.

다. cDNA 클론들의 염기배열 결정

제작한 cDNA 라이브러리를 앰피실린 (100ug/ml)이 함유된 LB 한천배지에 도말하 여 다수의 cDNA 클론을 배양하고 얻어진 클론들의 염기서열을 분석하기 위하여 MWG 96well plasmid prep system으로 플라스미드 DNA를 분리하고, 자동화염기서열 결정기인 ABI 3700으로 염기서열분석을 수행하였다.

라. 데이터 분석

결정된 DNA 데이터의 유사성 검색은 NCBI의 BLAST N과 BLAST T를 사용하여 수행하였다.

2. 연구수행 내용 및 결과

가. 송이버섯의 표면단백질을 코딩하는 hydrophobin 유전자의 클론닝

송이버섯의 RNA로부터 제작된 cDNA library로부터 2가지의 hydrophobin 유전자를 클론닝하여 염기배열을 결정하였다.

>TMhyd1

1 TGGCCTACTGGAGTGAAACACAGCCCAATTTAACCACAACCCACCGACATCTAACAATGT 60

61 TCCCTCGATTGTCATCTTTTTGCTTGCTCGCCGTCGGTGTCCTACCCGTTCTTGCAGCCG 120

121 CCAGTGCAGTTCCGCGCACTGACTCTCCCGTCAACCAATGCAACACTGGTCCTATCCAAT 180

181 GCTGCAACTCTGTTCAGGACCCAAAGAACCCAGTGCTCAACCCTCTTCTCGGCTTGTTGG 240 241 GCATCGTGGTTGGACCCATCACTGGCCTCGTTGGGTTGAATTGCGCTCCTATCAGCGTCA 300

301 TCGGCACCGGAGACACCTCTTGCACCTCGCATACAGTCTGTTGCAGCAATAATCAATAAT 360

361 ATGGCTTGATCAACTTTGGTTGCTCGCCCACGACAATCAAGCTT**TGA**AAGACGATACCAT 420

421 CGGCGAGAGGTGGTCCAGTTTTGGCTTTATATCGGACATGGTTTTATTGAAGTCGACCTT 480

481 TTTCATCAGTGGGAGGGGGGGAAT 504

>Tmhyd1

1 MFPRLSSFCLLAVGVLPVLAAASAVPRTDSPVNQCNTGPIQCCNSVQDPKNPVLNPLLG 60 61 LLGIVVGPITGLVGLNCAPISVIGTGDTSCTSHTVCCSNNQYNGLINFGCSPTTIKL 118

Fig 3.2.1. 송이버섯 자실체 cDNA library로부터 cloning 된 hydrophobin 유전자 Tmhyd1의 cDNA sequence 및 deduced amino acid sequence

>TMhyd2

1	TGGCCTACTGGATCCTCATTACAACCTCCCAAAGCTTCAATACCCTCCAAAGCTTGATCA	60
61	$\texttt{ACCAACATGCTCATTCGTGCATTACTTCTTGCACTTGCCTCAGCGCTCGCCATTCCC \textbf{ATG}$	120
121	${\tt CTGGCAGTCGCCAGCCCTGCTCCAGCGGCGCTCACATTTCCACCCGCATGCAACACTGGT}$	180
181	${\tt A}{\tt C}{\tt A}{\tt C}{\tt C}{\tt A}{\tt C}{\tt C}{\tt C}{\tt G}{\tt G}{\tt G}{\tt G}{\tt G}{\tt G}{\tt G}{\tt G$	240
241	${\tt CCTCAGCTTGTGGCCGCCCTCACTTCTGTCAAAGTTCCCGTCGGGGTGAACTGCTCCCCA}$	300
301	${\tt ATCAGCGTTCTTGGAGGAGGCAACCATTGCACCCAACAAACGGTTTGCTGCACTGACAAC}$	360
361	$\texttt{CACTTCAACGGCCTGATTGCTATTGGCTGCACACCTATTGCCCTTGGTTTG{\textbf{TAA}} \texttt{AAGGCC}$	420
421	GGTGGAGGGCAGGATAATCTAGCTCCTTGATCTGAAAAAAATTTGTTCTTTTCTATAAT	479

Fig 3.2.2. 클론닝 된 hydrophobin cDNA의 nucleotide sequence

>Tmhyd2

1 MLIRALLLALASALAIPMLAVASPAPAALTFPPACNTGTTQCCESVHKPGDTYLQSLSPQ 60 61 LVAALTSVKVPVGVNCSPISVLGGGNHCTQQTVCCTDNHFNGLIAIGCTPIALGL 115

Fig 3.2.3. 클론닝 된 hydrophobin 유전자의 deduced amino acid sequence

Fig 3.2.4. 4개의 disulfide bridges로 형성된 4개의 loops 구조를 가지는 *Tmhyd1* 과 *Tmhyd2*의 Primary structure .Loops의 크기에 의해 이들은 class I hydrophobin에 속함을 알수 있다.

- 44 -

Fig 3.2.5. 여러 가지의 담자균류의 hydrophobins과 *Tricholoma matsutake* 에서 분리된 hydrophobin *Tmhyd1* and *Tmhyd2*의 amino acid sequence의 phylogenetic relationship 분석

Fig 3.2.6. Kyte and Doolittle algorithm에 의한 *SC3*, *ABH3*, *Tmhyd1* and *Tmhyd2*의 Hydropathy plots의 비교분석

Pdi251 CHTG-S1QCDSLQSANSA-SLAGLIGLLGVV--VGT1T9QV9VTCSP1T9N9VS-GTSCSEQPVCCT9NAPNG-VIAL9CSP1N19L Pdi263 ONTG-SIQCCSSVQSSSSS-IVAILLGLLGWA--AGGLT9QVGVTCSPITVIGVS-GTSCSEQPVCCTGKTENG-VIATGCTPVNVSL pdi315 CHTG-SLQCCHSTGSATDP-ALAKLEALLGIN--VEDVTALVGVTCSPITVWGAS-GSSCSEQPVOCTNDSENG-IVALGCAPINLML CNTG-PIOCINSWOSATSS-AAAGPLAALGVLSGIASLLGEWOLDCSPLOVIGVG-ANSCSBOAACCTONTPNG-AVVLGCSPIKLL-POH1 Vmh2-1 CSTG-SLQCCSSVQKATDP-LASLLIGLLGIV--LGPLDLLVGVTCSPITVIGVG-GTSCTQQTVOCTGSSENG-LIAIGCSPINISL Vmb2-2 CSTG-SLOCCSSVQKASDE-LWGI IVALLGIV--LGPLDLBVGLTCSPITV1GVG-GTSCTQQTVOCTGRNENG-LIVAGCSPINIGL Poh3 CTTG-SLOCINSVQAASSP-VVCELAGILGTV--LGPITQVCETCSPITVIGVC-GTSCSAQTVCCNONSFNG-LIVVCCSPVNISL sci CNSG-FVQCCNTLVDTKDEHQTWIVGALLGLD--LGSLTGLAGV9CSFVSVIGVG-GNSCSTQTVCCEGTQFNG-LV9VGCTPINVGL Se4 CNSG-PVQCINETTIVAXAQEQGLLGGLLGVV--VQPITQLVGLXCSPISVQVLTQNSCTAQTVCCDHVTQNG-LVNVQCTPISL-Theyel CHTG-PLOCKSVQDFKSPVLKPLLG-LLGIV--VGPITGLVGLKCAPLSVTGTG-DTSCTSHTVCCSNHQNG-LLNKGCSPTTIKL Lallyd2 CSTG-DLQCCHTVEPASSP-SASTILGLLGIV--IQGVDVLVGLTCSPITVIGLE-SGGCSAQAVOCTINSSRGG-LISIGCLPVTL-Labyel CSTG-DORCODSVORSEAA-GVSSLLGLLGIV--LSGTDVVVGLTCLPI--VG-----GAC0SQAVOCTINSYGN-LISLGCSPLQLfvh1 CHVS-RQQCCNSVQQASSG-PAALILGLLGVV--LQDVNVLVGLDCSPITVIGGG-NGGCNASPVCCENNSFGS-LISIGCVPISI-Theyd2 CRTG-TTQCCESWIKPROTYLQELSPQLWAAL---TSVKVPWWRCSP1SVLG8G--NHCTQQTVCCTDNHPNG-LIAIGCTPIALGL P0052 CRTG-PVQCCRSVQSSKSP-AASLLIGLIGIV--LQGVW/PVGLTCRPITVIGVG-GRSCSAQTVOCENDNPSG-LIAIGCTPINLSL 503 CTTO-SLECCEQVQSASSS-FVTALLGLLGIV--LSDLWVLVGLECSPLTVIGVG-GSOCSAQTVOCENTQFNG-LINIGCTPINIL-COFI CHTG-PIQCCHTVTgASHE-WAGLLIGLGIV--LQDLNVLWGLTCSPISIIGLP-GNSCNAQPVCCQNNNPNG-LIAIGCTPININL) BydPt-1 CNTG-PIQCENTVATSSS2SSVDELLTLLGLS--VP-VOTQVGASCSPISAVOTGSGAQCSSQTVCCEQNEVNG-LVNIGCMPINLNA TUD/d-1 CNTG-SIGCOODYSSTS-SEASLIASIVGLD--LSGVTGSIGSOCSPISAIGLGSGSSCTQGPVOCSNENYQG-LIVVGCSPINLhydrt-3 CNTG-TIQCCQQVQQASYYQSAFQEIGLGELL--AG-VTGQIGTQCSFISVWCASNGAQCNAQTVOCTSTQENG-LINIGCMFINVSA hyade-2 CNTG-TPQCCQQVQQTSDLQQF98SFGLVDAL--AG-ASALWGA9GHVSVLGTGNGAQCHTQPVCCTSNQALG-AV980GA9LHV9A . **. and an an an arrest to a service a .

Fig 3.2.7. 담자균류의 class I hydrophobins을 *Tmhyd1* 과 *Tmhyd2* 의 deduced amino acid sequence와 비교 분석

제4절 hydrophobin 유전자의 특성규명

1. 연구수행 방법

2. 연구수행 내용 및 결과 가. 분자량이 상이한 복수의 hydrophobin 유전자

>TMhyd1

1	${\tt TGGCCTACTGGAGTGAAACACAGCCCAATTTAACCACAACCCACCGACATCTAACA {\tt ATG} {\tt T}$	60
61	${\tt TCCCTCGATTGTCATCTTTTGCTTGCTCGCCGTCGGTGTCCTACCCGTTCTTGCAGCCG}$	120
121	${\tt CCAGTGCAGTTCCGCGCACTGACTCTCCCGTCAACCAATGCAACACTGGTCCTATCCAAT}$	180
181	GCTGCAACTCTGTTCAGGACCCAAAGAACCCAGTGCTCAACCCTCTTCTCGGCTTGTTGG	240
241	GCATCGTGGTTGGACCCATCACTGGCCTCGTTGGGTTGAATTGCGCTCCTATCAGCGTCA	300
301	TCGGCACCGGAGACACCTCTTGCACCTCGCATACAGTCTGTTGCAGCAATAATCAATATA	360
361	ATGGCTTGATCAACTTTGGTTGCTCGCCCACGACAATCAAGCTT TGA AAGACGATACCAT	420
421	${\tt CGGCGAGAGGTGGTCCAGTTTTGGCTTTATATCGGACATGGTTTTATTGAAGTCGACCTT}$	480
481	TTTCATCAGTGGGAGGGGGGGGGGAAT 504	

>Tmhyd1

1	$1 \ {\tt MFPRLSSFCLLAVGVLPVLAAASAVPRTDSPVNQCNTGPIQCCNSVQDPKNPVLNPLLG}$										
61	LLGIVVGPITGLVGLNCAPISVIGTGDTSCTSHTVCCSNNQYNGLINFGCSPTTIKL	118									

Fig 4.2.1. 송이버섯 자실체 cDNA library로부터 cloning 된 hydrophobin 유전자 Tmhyd1의 cDNA sequence 및 deduced amino acid sequence

>TMhyd2

1	TGGCCTACTGGATCCTCATTACAACCTCCCAAAGCTTCAATACCCTCCAAAGCTTGATCA	60
61	ACCAACATGCTCATTCGTGCATTACTTCTTGCACTTGCCTCAGCGCTCGCCATTCCC ATG	120
121	${\tt CTGGCAGTCGCCAGCCCTGCTCCAGCGGCGCTCACATTTCCACCCGCATGCAACACTGGT}$	180
181	${\tt A} {\tt C} {\tt A} {\tt A} {\tt C} {\tt A} {\tt A$	240
241	${\tt CCTCAGCTTGTGGCCGCCCTCACTTCTGTCAAAGTTCCCGTCGGGGTGAACTGCTCCCCA}$	300
301	${\tt ATCAGCGTTCTTGGAGGAGGCAACCATTGCACCCAACAAACGGTTTGCTGCACTGACAAC}$	360
361	$\texttt{CACTTCAACGGCCTGATTGCTATTGGCTGCACACCTATTGCCCTTGGTTTG\textbf{TAA}\texttt{AAGGCC}$	420
421	GGTGGAGGGCAGGATAATCTAGCTCCTTGATCTGAAAAAAATTTGTTCTTTTCTATAAT	479

>Tmhyd2

MLIRALLLALASALAIPMLAVASPAPAALTFPPACNTGTTQCCESVHKPGDTYLQSLSPQ 60
 LVAALTSVKVPVGVNCSPISVLGGGNHCTQQTVCCTDNHFNGLIAIGCTPIALGL 115

Fig 4.2.2. 송이버섯 자실체 cDNA library로부터 cloning 된 hydrophobin 유전자 Tmhyd2의 cDNA sequence 및 deduced amino acid sequence

- 48 -

YES

D 1-24 0.762 0.43 YES # Most likely cleavage site between pos. 24 and 25: ASA-VP

0.48

0.922

1-24

mean S

Prediction: Signal peptide Signal peptide probability: 0.999 Signal anchor probability: 0.001 Max cleavage site probability: 0.661 between pos. 24 and 25

- 49 -

Fig 4.2.3. SignalP 3.0을 이용한 amino acid sequence를 분석한 결과 Tmhydl 유전자의 1-24번 amino acid codon이 signal peptide로 이루어져있음을 확인 할 수 있었다

SignalP-NN result:

SignalP-HMM result:

- 50 -

>Sequence Prediction: Signal peptide Signal peptide probability: 1.000 Signal anchor probability: 0.000 Max cleavage site probability: 0.545 between pos. 22 and 23

Fig 4.2.4. Signal P 3.0을 이용하여 amino acid sequence를 분석한 결과 Tmhyd2 유전자의 1-22번 amino acid codon이 signal peptide로 이루어져있음 을 확인할 수 있었다

Tahyd1	ARGTECCUTOSATEGECATOTETTECTTGCTCGCCCGCCGTCGTCCLACCCGTTCTTGCAGCCGCCAGTGCAGTTCCGC
Tahyd2	ARGTECATEGETGCATEA-CTTCTTGCATTGCCTCAGCGCTCGCCATTCCCATGCTGGCAGTCGCCAGCCCGCCC
Tahyd1	GCACTEGACTCTCCOOSTCAACCAATEGNACACTEGTOCT ATCCAATEGTEGNACTCTESTTCASEA-DOCAAAGAACOC
Tahyd2	C9509CTCCACATTTOCACCCSCATEGNACACTEGTEACA ACTCAATEGTEGNETAGEAETOSETACACAAAGACTEGENACACC
Tahydl	ARTROTCHARCOTTC TTOTOGGOTTERTERSGUATORTRESHCCUATULATEGOCOTORTRESHTEGAATTGOGOTO
Tahyd2	TATCTOLARTCTCARSTCTCARGOTTERT-RECOGCOCCTUACTTCTNTCAARTTCOCGTORRESHGAACTGCTCCC
Tmhydl	CTATCAGOSTCATCOGOACOOGAGACACCTCTTGCACCTOSCATACAGTCTGTTGCAGCAGAATAATCAATAEAATGGCTTG
Tmhyd2	CAATCAGOSTTCTTGGAGBAGSCAACCATTGCACCCAACAAACGSTTTGCTGCATGAAAACAACCAGTTCAACGGCTTG
Tmhydl	ATCANCTITIGETTSCTCBCCCACGACAATCAAGCTTTGAAAGACGATACCATCGGCGAGAGGTGGTCCAGETTITGGCTTT
Tmhyd2	ATT9CTACTGGCGCCACCTATT9CCCTTGGTTTGGAAAGGCCGGTGGAGGGCAGGACAGGA
Tmhyd1	ATATOBERCARGETTTENTEGARGTOERCOTTTECATCAGTGGERGGGGGGGAAT
Tmhyd2	TEATOTERAAAAAATTTECTTTECTATAAT

Fig 4.2.5. Tmhydl 유전자와 Tmhyd2 유전자의 nucleotide sequence를 비교분석결과

Tmhyd1	${\tt MFPRLSSFCLLAVGVLPVLAAASAVPRTDSPVNQCNTGPIQCCNSVQDPKNPVLNPLLGL}$
Tmhyd2	MLIRALLLALASALAIPMLAVASPAPAALTFPPACNTGTTQCCESVHKPGDTYLQSLSPQ
	*: * :.* ::*:**.*** : : ****. ***:**:.* :. *:.*
Tmhyd1	LGIVVGPITGLVGLNCAPISVIGTGDTSCTSHTVCCSNNQYNGLINFGCSPTTIKL
Tmhyd2	LVAALTSVKVPVGVNCSPISVLGGGN-HCTQQTVCCTDNHFNGLIAIGCTPIALGL
	* .: .:. **:**:************************

Fig 4.2.6. Tmhyd1 유전자와 Tmhyd2 유전자의 amino acid sequence를 비교분석결과

Fig 4.2.7. Tmhydl 유전자의 상류영역을 cloning하기위해 4개의 genomicDNA library를 제작하고 1차 PCR 한 결과(A)와 2차 PCR 결과(B)

Fig 4.2.8. Tmhyd2 유전자의 상류영역을 cloning하기위해 4개의 genomic DNA library를 제작하고 1차 PCR 한 결과(A)와 2차 PCR 결과(B)

>Tmhyd1

Fig 4.2.9. Cloning한 약 540bp크기의 Tmhydl 유전자의 상류영역의 염기배열을 결정하고 분석프로그램을 이용하여 추정되는 promoter 부위와(grey box) transcription start point(red)를 확인하였다.

>Tmhyd2

5 ' -ggagtttcccatatggtcgacctgcaggcggcggcggaattcactagtgattactataggg cacgcgtggtcgacggcccgggctggtcttaaggtttgcggcggaatacgtaaataggtt aaatttttctgggtgacggatattttcaccactttcttccgtaacattcgcgatgtttc Ccctcgtgcgtattcaattggtggagctgtggagccaacgcgacctctatgtgatggacc gctgacttgtctccggaactcacctcataccaaggcaaggaacacctcgatttccacctc cgattccataatgctcgtatccgtgccagaagcaacattcgccagaagttatttcttt gacgggaacatctaaccccgtaacggctcatcgaagaatggtatacctgtcaaataat ttcagttgattcttcgtatattaaattcccggcggccaggcataaaagaccaccagat atccagcagcaaccaacatcctcattacaacctccaaagcttcaatacctccaaagct tgatcaaccaacATGCTCATTCGTGCATTACTTCTTGCACTTGCCTCAGCGCTCGCCATT M L I R A L L L A L A S A L A I CCCATGCTGGCAGTCGCCAGCCCTGCTCCA -3 ' P M L A V A S P A P

Fig 4.2.10. Cloning한 약 550bp크기의 Tmhydl 유전자의 상류영역의 염기배열을 결정하고 분석프로그램을 이용하여 추정되는 promoter부위 와(grey box) transcription start point(red)를 확인하였다.

>Tmhyd1

-537	aga	atto	cta	tact	tgto	cgt	cct	ggt	cta	ccg	aaa.	tgga	aaaa	agat	aaa	laga	igac	gaa	agg	cat	-478
-477	gaa	acad	ctta	acag	gega	agt	cac	cac	ttt	tcc	aat	act	gata	acca	gtg	cac	tta	acc	tgc	aag	-418
-417	ata	acgo	ccg	caga	aggg	ggc	agc	gtt	acg	ttt	gcg	agci	cct	tct	cgg	ato	gcca	lagg	gtca	atc	-358
-357	ago	geeg	gct	caag	gtto	cag	tat	gag	aag	tta	cgg	tgat	gca	agco	gctg	ıtta	ıggt	aca	acg	cgg	-298
-297	ago	gtaa	aat	ttat	tago	cct	cgg	tac	cat	cat	ttt	gaga	aagt	gct	tag	gta	gtt	tgo	tct	cct	-238
-237	gt	gat	ggga	aagg	gaag	gtc	cga	tag	gtg	tgc	aga	ata	gta	att	gat	tga	icag	ntto	atg	ggc	-178
-177	tac	ccgt	zgga	agag	gtci	tcc	ttc	gag	gag	aaa	att	tgc	ctag	gata	aaa	laat	ggc	tcg	gatt	ttt	-118
-117	tco	ctt	gtg	ccat	ttc	gga	gtc	caa	aca	cta	acc	tgc	gaca	atat	aaa	ıggt	gcg	ICCS	itac	aga	-58
-57	caa	igta	gto	ccto	cagt	gaa	aac	aca	gcco	caat	ttt	caco	caca	acc	cac	cga	cat	cta	aca	ATG	3
																				М	
4	TTC	ССТ	CGA	TTG	TCG	TCI	TTT	TGC	TTC	GCTC	CGCC	GTC	GGT	GTC	CTA	CCC	GTT	CTT	GCA	GCC	63
	F	Ρ	R	L	S	S	F	С	L	L	Α	V	G	V	L	Ρ	V	L	Α	A	
64	GCC	AGT	GCA	GTT	CCG	CGC	CAC	ГGA	CTC	rcco	CGTC	CAAC	CAA	TGC	AAC	ACT	GGT	ССТ	ATC	CAA	123
	А	S	А	V	Ρ	R	Т	D	S	Ρ	V	Ν	Q	С	Ν	Т	G	Ρ	I	Q	
124	CGC	TGC	CAAC	CTCI	GTI	CAG	GGA	Cgt	gag	gtto	caca	acta	acac	acc	tct	aca	aag	cgc	tga	ctt	183
	С	С	Ν	S	V	Q	D														
184	tac	rtco	atto	ctto	ctad	caq	CCA	AAG	AAC	CCA	GTG	CTCA	ACC	CTC	TTC	TCG	GCT	TGT	TGG	GCA	243
						5	Ρ	К	Ν	Ρ	V	L	Ν	Ρ	L	L	G	L	L	G	
244	TCG	TGG	TTG	GAC	CCZ	ATC	ACT	GGC	CTC	GTT	GGG	rat.a	aaa	gad	aαa	acc	ttc	aaa	t.ca	aca	303
	т	v	v	G	P	т	т	G	T.	v	G							555			
302	at	aaa	t az	atot	- ctt		taa	tati	trad	ч ТGi		rgaa	CTC	יריים	тса	GCG	TCA	тCG	GCA	CCG	363
502	gue	gue	lege				egu	cuc	ccu	T.	N	ی ص	Δ	D	T	220.	V	т	ריסטי בי	т	505
261	CAC	17.07		השטח			~t ~	++		لل م+د~	11			+ 20	+ +	aat	v	+ 2+0		+ 2 9	122
304	C GAG		ч.С.С. гт	c c		aay	yıa	lla	aaly	yary	ycai	Jaal		lau	aal	ycu	.yaa	ary	aly	Lac	423
404	G .		T	С л п			ama	TIMO	a 7 a	~~~		na 1		1~						~ + +	102
424	agu	ACC	200	JCAI	TACF	4G1 (I I G	CAG	CAA.	IAA.	I CAF	41A1	gıa	agu	ggu	.agg	aga	gat	all	483
	_	T.	S	н	T	V	C	C	S	Ν	Ν	Q	Y							_ ~ ~	
484	aaa	icat	gag	ggag	gtac	etca	aca	cgc.	tgaa	acg	gaag	JAA 1	'GGC	TTG-	ATC	AAC	TTT-	GGT	"TGC	TCG	543
												Ν	G	L	I	Ν	F	G	С	S	

 $544\ \texttt{CCCACGACAATCAAGCTTTGAaagacgataccatcggcgagaggtggtccagttttggct}\ 603$

Fig 4.2.11. Tmhydl 유전자의 intron을 검색하고 전체 염기배열을 결정하였다. Intron 염기배열은 grey box로 표시하였다.

>Tmhyd2

-552	gg	agt	ttc	сса	tat	ggt	cga	lcct	gca	ıggc	ggc	cgc	gaa	ttc	acta	agtg	att	act	atag	ada	-493
-492	ca	cgc	gtg	gtc	gac	ggc	ccg	laac	tgg	ftct	taa	ggt	ttg	cgg	cgga	aata	lcgt	aaa	tage	gtt	-433
-432	aa	att	ttt	tct	aaa	tga	cgg	ata	ttt	tca	cca	ctt	tct	tcc	gtaa	acat	tcg	cga	tgtt	tc	-373
-372	CC	ctc	gtg	cgt	att	caa	ttg	igtg	gag	gctg	tgg	agc	caa	cgc	gaco	ctct	atg	tga	tgga	acc	-313
-312	gc	tga	ctt	gtc	tcc	gga	act	cac	ctc	ata	cca	agg	caa	gga	acad	cctc	gat	ttc	caco	ctc	-253
-252	cg	att	сса	taa	tgc	tct	gta	tcc	gtg	Icca	gaa	gca	aca	ttc	gcca	agaa	igtt	tat	ttct	tt	-193
-192	ga	cgg	gaa	cat	cta	acc	ccc	gta	acg	gct	cat	cga	aga	atg	tgta	atac	ctg	tca	aata	aat	-133
-132	tt	cag	ttg	att	tct	tcg	tat	att	aaa	ittc	ccg	cgc	ggc	cag	gcat	taaa	laga	cca	ccag	gat	-73
-72	ato	cca	gca	gca	acc	aac	atc	ctc	att	aca	acc	tcc	caa	agci	tca	aata	ccc	tcc	aaag	gct	-13
-12	tga	atc	aac	caa	CAT	GCT	CAT	TCG	TGC	ATT.	ACT	TCT	TGC.	ACT	rgco	CTCA	.GCG	CTC	GCCA	ΔTT	48
					М	L	I	R	. A	L	L	L	A	L	A	S	A	L	А	I	
49	CCC	CAT	GCT	GGC.	AGT	CGC	CAG	CCC'	TGC	TCC	AGC	Ggta	aggi	ttct	cgg	Itat	cac	ctt	cttg	ICG	108
	Ρ	М	L	A	V	A	S	Ρ	A	P	A										
109	tq	cca	tct	cac	cac	aqt	ttt	tqc	aqG	CGC	TCA	CAT	TTC	CAG	CCGC	CATG	CAA	CAC	rggī	AC	168
	-							-	-	А	L	т	F	Ρ	Р	A	C I	N T	ГG	1 T	
169	AA	CTC	AAT	GCT	GTG.	AGT	CGG	TAC	ACA	AGa	tca	qqa	cac	taci	tata	aca	tct	aca	taca	iqa	228
	т	т	0	C	C	E	S	v	н	ĸ		55-		5				5-5		5	
229	-	- nta:	×	cac	cua	taa	tta	aca	- <u></u>	 TCC		TAC	CTT A	т¢т	ימסר	2 T T	ימידמ	аст	<u>יריר</u> ר	nac	288
227	uuv	scu	ucg	cgc	cgu	cgu	ccg	aca	gcc ת	-100. C	הטה ח	TAC	v	т		d G	т	c c	D	_A0	200
200	Am	n a m	aaa	aaa	aam	a 7 a	ጣጣረ	mam	е С Л Л	J CIT	ע דים מ		1		ע זאאר	G DDTTT	ш таа	007.	r NTT C 7	Q	210
209	СI. т	1.010	لىقى	LGC 7				TGI		AGI		1190	DDJ D	71 DE	JAAC	- IGC		CCA.	HICF T	IGC G	540
2.4.0	L	V	A	A	ᆈ	1	5	V 	A Ala	V	P	V	G	V	IN	C	5	Р - 20	1 ~ . ~ ~	5	400
349	GI".		TGG.	AGG	AGG	CAA	CCA	'I''I'G	CAC	CCA.	ACA.	AAC(GG.I.	11.G(LACI	GAC	AAC	CACI	"TC	408
	V	L	G	G	G	Ν	H	C	Т	Q	Q	Т	V	C	С	Т	D	Ν	Η	F	
409	gta	atg	tca	cgt	ctt	ttg	tta	tcg	ttg	acc	gct	ctg	gtg	ttga	atgo	gcag	cgt	agA	ACGO	SCC	468
																		1	1 G	ŗ	
469	TG	ATT(GCT.	ATT	GGC	TGC	ACA	CCT	ATT	GCC	CTT	GGT'	TTG	TAAa	aago	gaag	gtg	gag	ggca	ıgg	528
	L	I	А	Ι	G	С	Т	Ρ	Ι	А	L	G	L								
529	ata	aat	cta	gct	cct	tga	tct	gaa	aaa	aat	ttg	ttc	ttt	tcta	ataa	at 5	74				

Fig 4.2.12. Tmhyd2 유전자의 intron을 검색하고 전체 염기배열을 결정하였다. Intron 염기배열은 grey box로 표시하였다.

제5절. 자실체 형성시의 발현기작

1. 연구수행 방법

가. Northern Blot hybridization.

송이의 균사체, 원기, 성숙자실체로부터 total RNA를 분리한 후 동일량의 RNA(20ug)를 formaldehyde denaturing agarose gel에서 전개한 후 Hybond-N membrane으로 blotting 시킨 후, blotting된 filter를 변성된 probe 와 5xSSPE, 5xDenhardt solution, 0.5% SDS, 50% formamide, 20 ug의 salmon sperm DNA를 넣고 42℃에서 hybridization 시킨 후 signal을 autoradiography로 확인하였다.

2. 연구수행 내용 및 결과

송이버섯 자실체로부터 분리된 균사를 PDB와 PDA에 배양하고 배양된 균사로부터 RNA를 추출하였다. 또한 송이버섯 자실체의 각 부위별(stipe, cap, gill)로부터 RNA를 추출하고 Tmhyd1 cDNA와 Tmhyd2 cDNA로부터 probe를 합성하여 northern hybridization을 수행하였다.

Tmhydl은 균사체에서는 발현되지 않았고 자실체 특이적으로 발현하였다. 자실체의 각 부위에서는 고르게 발현하였으나 갓 조직에서 특히 많은 발현 양상을 보였다. Tmhyd2는 송이버섯의 대와 주름조직에서 약간의 발현을 보였으나 원기에서 특이적으로 많은 발현량을 보였다. 이는 Tmhyd2 유전자가 송이버섯의 원기의 형성에 중요한 역할을 할 것으로 보여진다. 또한 특이적으로 갓에서는 전혀 발현을 보이지 않았다.

Fig 5.2.1. Northern blotting analysis of two hydrophobin transcripts at different developmental stages of *Tricholoma matsutake*. Equal amounts of total RNAs extracted from mycelium cultured in PDB and PDA, primordium, cap, stripe, and gill were hybridized with ³²P-labeled cDNA of *T. matsutake* Tmhyd1 (A) and Tmhyd2 (B). (C) Equal amounts of total RNA samples were visualized.

제6절 효모 등에서 재조합 hydrophobin의 생산

1. 연구수행 방법

가. 재조합 hydrophobin 생산을 위한 효모의 형질전환

 Hydrophobin 유전자를 Pichia pastoris expression vector 로의 클로닝 Yeast system에서 Hydrophobin 단백질을 생산하기위해 Pichia pastoris expression system을 사용하였다. Pichia pastoris expression vector인 pHIL S1과 pPIC9 (Invitrogen Co.) 로 Hydrophobin 유전자를 클로닝 하였다. pHIL S1은 Pichia pastoris 유래의 PHO1 signal sequence를 가지고 있으며, pPIC9 은 Saccharomyces cerevisiae 유래의 a signal sequence를 가지으로서 Pichia pastoris에서 외래 단백질을 배양액상으로 분비를 유도시키는 expression vector이다. 본 실험에서는 본래의 Hydrophobin유전자의 signal sequence를 제거한 후, pHIL S1 유래의 PHO1 signal sequence와 pPIC9 유래의 a signal sequence를 이용해서 Pichia pastoris 에서 Hydrophobin 단백질 발현을 검토 하였다. 또한 signal sequence를 포함한 송이버섯의 hydrophobin 전체 cDNA 를 pHIL S1 과 pPIC9 expression vector에 도입하여 Pichia pastoris 에서 Hydrophobin 단백질 발현을 검토하였다.

클론닝된 송이버섯의 hydrophobin cDNA, Tmhyd1과 Tmhyd2를 pHIL S1 과 pPIC9 expression vector에 도입하기위해 송이버섯 자실체로부터 분리한 RNA로부터 얻은 cDNA를 Template로 하고 표6.1.1에서 나타난 primer를 이 용해 PCR을 수행 하였다. PCR반응은 annealing 온도를 55℃로 하고 polymerization은 72℃에서 30초 동안, 42 cycle 을 수행하였다. Tmhyd1, Tmhyd2 의 PCR product는 Gel Extraction Kit-spin (Nucleogen Co.)으로 정 제 후 Perpect-T cloning kit (TaKaRa Co.)을 이용하여 cloning 후 E. coli DH5a로 transformation시켰다. Tmhyd1, Tmhyd2 유전자를 가진 transformant 는 Plasmid miniprep kit-spin (Nucleogen Co.) 을 이용하여 Plasmid를 분리 후 pHIL S1 expression vector의 multicloning site로 cloning 하기 위해 제한 효소 EcoR1 과 BamH1으로 절단하고 pPIC9 expression vector의 multi cloning site로 cloning 하기 위해 EcoRI과 NotI으로 절단하였다. 양 말단에 EcoR1, BamH1 site 그리고 EcoRI, Not I site를 가지는 Tmhyd1, Tmhyd2 유전자를 T4 DNA ligase (Promega Co.)를 이용하여 pHIL S1 과 pPIC9 expression vector로 각각 ligation 시켜 E. coli DH5a로 transformation시켰다. Tmhyd1, Tmhyd2 유전자를 가진 recombinant plasmid는 Plasmid miniprep kit-spin (Nucleogen Co.) 을 이용하여 분리하였고 Pichia pastoris GS115 균

- 58 -

주로 transformation 시키기 위해 Stu I 으로 linearization 시켰다.

Primer	Sequence $(5' \rightarrow 3')$
Tmhyd1pHILS1EcoR1upall	CGAGAATTCATGTTCCCTCGATTGTCGTCTTTTTGC
Tmhyd1pHILS1EcoR1upnosig	CGAGAATTCGTTCCGCGCACTGACTCTCCCGTC
Tmhyd1pHILS1BamH1dn	AAGGATCCCTCAAAGCTTGATTGTCGTGGGCGA
Tmhyd1pPIC9not1dn	ATTCGCGGCCGCTCAAAGCTTGATTGTCGTGGGCGA
Tmhyd2pHILS1EcoR1upall	CGAGAATTCATGCTCATTCGTGCATTACTTCTTGCA
Tmhyd2pHILS1EcoR1upnosig	CGAGAATTCAGCCCTGCTCCAGCGGCGCTCACATTT
Tmhyd2pHILS1BamH1dn	AAGGATCCCTTACAAACCAAGGGCAATAGGTGT
Tmhyd2pPIC9not1dn	ATTCGCGGCCGCTTACAAACCAAGGGCAATAGGTGT

Table 6.1.1. PCR에 사용된 primer

2) Pichia pastoris GS115 로의 transformation

송이버섯의 hydrophobin 유전자를 *Pichia pastoris* 로의 transformation을 위해 Spheroplast법을 이용하였다. Single colony로 분리된 *Pichia pastoris* GS115 균주는 10 ml의 YPD((Yeast Extract Peptone Dextrose Medium; 1% yeast extract, 2% peptone, 2% dextrose) 배지에 접종 후 30℃, 250 rpm에서 16시간 전배양 시켰다. 전배양액의 20 ul를 200 ml의 YPD 배지에 접종 후 3 0℃, 250 rpm에서 OD₆₀₀ = 2.5까지 배양시켰다. 원심분리를 통하여 cell을 모은 후 20ml의 SED (1 M sorbitol, 25 mM EDTA, pH 8.0, 1 M DTT)와 1 M sorbitol buffer를 이용해 각각 washing 하였다. washing 된 cell은 20 ml의 SCE(1 M sorbitol, 1 mM EDTA and 10 mM sodium citrate buffer, pH 5.8) buffer에 현탁시킨 후 10 ml씩 conical tube에 옮겨 담고 zymolase (3 mg/ ml, Invitrogen Co.) 7.5 ul를 처리하여 30℃에서 15분 동안 배양시켜 spheroplast를 만들었다. Spheroplast는 10 ml의 1M sorbitol buffer와 CaS (1 M sorbitol, 10 mM Tris-HCl, pH 7.5, 10mM CaCl₂)로 한번씩 washing 한 후 600 ul 의 CaS에 현탁 시켰다.

Pichia pastoris GS115로 transformation을 위해, 앞서 제작된 linearized DNA의 10 ug을 100 ul의 spheroplast 현탁액에 첨가하였다. DNA와 spheroplast 혼합액은 상온에서 10분간 방치 후 1 ml 의 PEG/CaT (40% PEG 와 CaT (20mM Tris, pH 7.5, 20 mM CaCl₂)의 1:1 혼합액) solution을 처리하

- 59 -

Fig 6.1.1. *Pichia pastoris*에서 *Tmhyd1, Tmhyd2* 유전자발현을 위한 vector. 각각 양 말단이 *Eco*R I /*Bam*H I (pHIL S1), *Eco*R I /*Not* I (pPIC9)으로 절단 된 *Tmhyd1, Tmhyd2* 유전자는 *Pichia pastoris* expression vector인 pHIL S1, pPIC9의 multi cloning site로 cloning 되었다. *Tmhyd1* 유전자는 351 bp, *Tmhyd2* 유전자는 348 bp 크기로 각각 72 bp (*Tmhyd1*), 66bp (*Tmhyd2*)부 분에서 signal sequence 절단부위를 가진다. grey box는 각 유전자의 signal sequence 부분을 나타낸다.

고 상온에서 10분간 배양시켰다. 원심분리 후 PEG/CaT solution을 제거하고 150 ul의 SOS (1 M sorbitol, 0.3 X YPD, 10 mM CaCl₂)배지에 현탁 시키고 상온에서 10분간 방치 후 850 ul의 1M sorbitol을 첨가하였다.

제작된 spheroplast 용액 1 ml 중 100 ul를 molten RD agarose(Regeneration Dextrose Agarose Medium ; 1M sorbitol, 2% dextrose, 1.34% YNB, 4 × 10^{-5} % biotin, 0.005% amino acid, 1% agarose)와 섞어 RDB plate(RD, 2% agar)에 도말하고 30℃에서 5일 동안 배양 시켰다. Top agarose 속에서 자란 콜로니들은 멸균된 증류수 20 ml에 긁어 넣은 후 거즈(cheese cloth)를 이용하여 여과하고, 여과된 cell 현탁액은 원심분리를 통 하여 cell 분리 후, 5 ml의 멸균된 증류수를 넣고 cell의 완전한 현탁을 위해 20%의 강도로 10초간 sonication을 시행하였다. 완전 현탁된 cell 현탁액은 10⁴ 배로 희석시킨 후 MD고체배지(Minimal Dextrose Agar Medium ; 1.34%

- 60 -

YNB, 4 × 10⁻⁵% biotin, 2% dextrose, 2% agar)와 MM고체배지(Minimal Methanol Agar medium ; 1.34% YNB, 4 × 10⁻⁵% biotin, 0.5% methanol, 2% agar)에 도말하고 30℃에서 2일간 배양시켰다.

3) Colony PCR

Pichia pastoris로의 transformation시 linearize된 DNA는 Pichia 염색체상 의 His4 유전자부위로 recombination이 일어난다. 염색체상으로 hydrophobin 유전자의 integration 확인은 colony PCR을 수행함으로써 확인할 수 있다. 각 각의 transformant는 50 ul의 zymolase buffer (10 mM Tris-HCl, pH 8.0)에 현탁시키고 zymolase (Invitrogen Co.) 1 ug을 30℃에서 60분간 처리해주었다. PCR은 앞서 만들어진 solution을 주형으로 하고 3'AOX1, 5'AOX1 primer를 이용하여 initial denaturation (94℃에서 4분)과, amplification protocol (94℃에 서 30초, 55℃에서 30초, 72℃에서 1분)에 따라 42 cycle의 과정으로 수행하 였다.

4) Pichia pastoris에서 hydrophobin 단백질의 발현

Pichia pastoris 염색체상으로 삽입된 *Tmhyd1, Tmhyd2* 유전자는 메탄올 에 의해 유도 발현되어 배양액상으로 분비된다. 선별된 transformant는 YPD 고체배지에서 single colony를 분리한 후 BMGY (Buffered Glycerol complex medium ; 1% yeast extract, 2% peptone 100 mM potassium phosphate, pH 6.0, 1.34% YNB, 4 x 10⁻⁵% biotin, 1% glycerol)배지 25 ml에 접종하여 30℃, 250rpm에서 OD₆₀₀ = 2.5 가 될 때까지 배양시켰다. 원심분리를 통해 분리된 cell은 메탄올 유도를 위해, BMMY (Buffered complex Methanol medium ; 1% yeast extract, 2% peptone 100 mM potassium phosphate, pH 6.0, 1.34% YNB, 4 x 10⁻⁵% biotin, 0.5% methanol)배지에 OD₆₀₀ = 1의 농도로 희 석시킨 후 30℃, 250 rpm에서 2일간 유도시켰으며, 매 24시간마다 0.5% 의 메 탄올을 첨가하였다.

메탄올에 의해 유도된 transformant는 수거하여 원심분리를 통해 배양액과 cell로 분리 시켰다. 배양액상으로 분비된 단백질농축을 위해 배양액 1 ml에 100% TCA (Trichloroscetic acid) 100ul를 첨가하고 얼음에서 30분동안 침전 시켰다. 침전된 단백질은 100% 에탄올로 2회 washing후 20ul의 protease inhibitor가 첨가된 buffer에 녹였다. 침전된 배양액상의 단백질은 12.5% SDS-PAGE 겔에서 전기영동 후 silver stain으로 확인하였다.

Cell 내부로 분비된 단백질의 확인을 위해 glass bead lysis 법으로 cell을 파쇄하고 단백질을 분리 하였다. 1 ml의 배양액과 함께 분리된 cell에 100 ul

- 61 -

의 breaking buffer (50 mM sodium phosphate, pH 7.4, 1 mM EDTA, 5% glycerol, protease inhibitor)에 현탁시킨 후 acid wash된 glass bead를 동량 넣고 vortex 30초, 얼음에서 30초를 5회 반복하였다. 12000 rpm에서 10분간 원심분리 후 상등액을 취해 12.5% SDS-PAGE 젤에서 전기영동 후 coomassie Blue로 staining하였다.

2. 연구수행 내용 및 결과

*Pichia pastoris*에서 송이버섯의 hydrophobin유전자 *Tmhyd1*과 *Tmhyd2* 의 발현

Tmhyd1 과 Tmhyd2 유전자는 각각 signal sequence를 가지고 있지만 발현의 높이기 위해 각각의 signal sequence를 포함한 recombinant 효율을 expression vector를 제작과 동시에 Tmhyd1, Tmhyd2의 signal sequence 부위 를 제외하고 recombinant expression vector를 제작하였다. 제작된 recombinant expression vector는 Stu I 으로 linearization 후 Pichia pastoris 내 염색체 상의 His4 유전자 부위에서 integration이 일어나며, 메탄올의 첨가 에 의해 Tmhyd1 과 Tmhyd2 유전자를 가지는 transformant는 hydrophobin 단백질을 발현하게 되는데 이때 각 expression vector의 signal sequence(PHO1, ∎ factor)가 배양액상으로 hydrophobin단백질의 분비를 도와 준다.

30℃에서 48시간 동안 MeOH로 유도시킨 후 1 ml의 배양액과 cell내의 단 백질을 SDS-PAGE 로 확인을 시도하였다(Fig 6.2.1, 6.2.2)

Fig 6.2.1. *Pichia pastoris*배양액에서 *Tmhyd1, Tmhyd2* 유전자의 발현. *Tmhyd1, Tmhyd2* 유전자가 도입된 *Pichia pastoris* 배양액을 50배 농 축하여 12.5% SDS-PAGE gel의 각 lane 당 3 ug의 단백질을 loading 한 후 전기영동하여 silver staining 하였다.

M : Molecular size marker, GS115 : control, pPIC9 : no insert vector 의 transformant, 3 - 10 lane : 각각 pPIC9와 pHILS1으로 cloning된 transformant, F : signal sequence를 포함한 *Tmhyd1, Tmhyd2* 유전자, NS : signal sequence를 가지지 않는 *Tmhyd1, Tmhyd2* 유전자.

Fig 6.2.2. *Pichia pastoris* cel내에서 *Tmhyd1, Tmhyd2* 유전자의 발현. *Tmhyd1, Tmhyd2* 유전자가 도입된 *Pichia pastoris* 를 배양한 후 세포 파쇄액을 12.5% SDS-PAGE gel의 각 lane 당 30 ug의 단백질을 loading 한 후 전기영동하여 coomassie blue staining 하였다.

M : Molecular size marker, GS115 : control, pPIC9 : no insert vector의 transformant, 3 - 10 lane : 각각 pPIC9와 pHILS1으로 cloning된 transformant, F : signal sequence를 포함한 *Tmhyd1, Tmhyd2* 유전자, NS : signal sequence를 가지지 않는 *Tmhyd1, Tmhyd2* 유전자.

제7절. hydrophobin 유전자의 클론닝을 위한 송이 자실체 유래 cDNA의 분석

1. 연구수행 방법

가. cDNA 염기서열의 결정 및 데이터 분석

제작한 cDNA 라이브러리를 앰피실린 (100ug/ml)이 함유된 LB 한천배지에 도말하여 다수의 cDNA 클론을 배양하고 얻어진 클론들의 염기서열을 분석하 기 위하여 MWG 96well plasmid prep system으로 플라스미드 DNA를 분리 하고, 자동화염기서열 결정기인 ABI 3700으로 염기서열분석을 수행하였다. 결 정된 DNA 데이터의 유사성 검색은 NCBI의 BLASTN과 BLASTX를 사용하 여 수행하였다.

2. 연구수행 내용 및 결과

송이의 hydrophobin 유전자의 클론닝을 위해서, hydrophobin의 아미노산배 열상의 특징을 이용하여 primer를 합성하여 PCR에 의한 클론닝을 시도하였으 나, 성공적이지 못하였다. 그리하여 송이의 cDNA library를 작성하여, cDNA 2,000개의 염기배열결정을 수행한 결과 2개의 hydrophobin 유전자의 cDNA를 확인할 수 있었다. 이때 결정된 cDNA의 염기배열들을 blast X 로 검색한 결 과를 부록의 표로 정리하였다.

제8절 버섯의 조추출물로부터 신기능 관련 유효성분 의 검색

1. 연구수행 방법

가. 표고 버섯 유래 생리활성 물질의 계통분획

표고버섯의 계통분획과정은 Fig 8.2.1에 나타낸 바와 같이 표고버섯 315 g 을 80 ℃에서 100% methanol (2 L × 3회, 1회 10시간씩 추출)로 추출하여 그 추출액을 Rotary Vacuum Evaporator로 농축하여 Methanol 농축액 60 g을 얻었다. 활성측정용으로 methanol 농축액 10.8 g을 남기고 나머지 40 g을 물 500 mL에 녹여서 (녹지 않는 부분을 10% methanol 용액 10 mL에 녹여 수층 에 넣고 분획하였다), methylene chloride (500 mL × 3회)로 추출한 후 methylene chloride 층을 농축하여 methylene chloride 분획 4.5 g을 얻었다. 이어서 수층을 ethyl acetate (600 mL × 3회)로 추출하고 추출액을 농축하여 ethyl acetate분획 0.9 g을 얻었다. 수층은 다시 n-butanol (600 mL × 8회)로 추출하여 n-butanol 층을 농축하여 n-butanol 분획 4.2 g을 얻었으며, 수층은 농축하여 수층분획 23.2 g을 얻었다.

나. 활성 성분의 분석

활성성분의 Gas chromatography-mass spectrometry (GC-MS) 분석은 Hewlett-Packard (HP) 6890 gas chromatography와 HP 5903N mass spectrometer 분석기기를 사용하였다. Column은 5% Phenyl Methyl Siloxane 을 충진한 capillary column HP-5MS이었고, helium carrier gas flow rate는 0.7 ml/min으로 60℃에서 15 분간 holding 한 후 detector의 온도를 28℃로 하 였으며, split ratio은 30:1로 하였다. MS 부분은 electron impact (IM) mode로 50-800 mass 단위로 하였다. 시료의 각 성분은 실험에서 얻은 mass spectrum과 library search로 찾아낸 mass spectrum을 비교하여 확인하였으 며, 사용한 program은 NIST/EPA/MSDC이었다.

다. P. japonica 유래 생리활성 물질의 추출

P. japonica 30 g을 세절하고 300 ml 증류수에 담궈서 3 시간 동안 끓인
후 12000 rpm에서 원심 분리하여 상등액을 ethyl acetate로 추출하였다. 수용
액 200 ml에서 약 16.2 mg의 ethyl acetate 분획을 회수하였다.

2. 연구내용 및 결과

가. 표고버섯으로 부터 세포독성 분획의 탐색

표고버섯의 암 독성 물질을 탐색하기 위하여 먼저 표고버섯의 유기용매별 분획 추출물을 human leukemia T세포 유래인 Jurkat E6.1 세포주를 대상으로 세포독성을 측정하였다. 표고버섯을 methanol, methylene chloride, ethyl acetate, n-butanol, 수층으로 각각 분획한 추출물로 0, 25, 50, 100 µg/ml농도 로 처리하여 각각의 추출물의 세포독성을 비교하였을 때, 분획들 중에서 표고 버섯의 methylene chloride 분획층이 가장 강한 세포독성을 나타내었고, 이어 서 ethyl acetate, n-butanol 분획층 순으로 세포독성이 확인되었다 (Fig 8. 2. 2).

- 67 -

Fig 8.2.2. Cytotoxic effect of extracts from *Lentinus edodes* on human acute leukemia Jurkat T cells.

나. 표고버섯의 methylene chloride, ethyl acetate, n-butanol 분획의 GC-MS를 통한 항암 활성 성분 분석

암세포에 대한 세포독성을 나타낸 methylene chloride, ethyl acetate, n-butanol 분획들의 유효성분을 찾아내기 위해서 GC-MS를 사용하여 각각의 분획에 포함된 성분들을 조사하였다. methylene chloride 분획에 대한 GC-MS 분석결과, hexadecanoic acid (5.2%), methyl octadeca-9,12-dienoate (13.2%), linoleic acid (30.6%), dodec-5-yne (4.9%), ergosterol (27.6%), 5-cholesten-3 ■-ol-7-one (4.0%) 등이 확인되었으며 (Table 8.2.1), ethyl acetate 분획에 대 한 GC-MS 분석결과, pyrrolidin-2-one (9.1%), hexadecanoic acid (4.9%), methyl octadeca-9,12-dienoate (11.8%), linoleic acid (18.4%), ergosterol (32.2%), ergost-5-en-3-ol, (3beta)- (12.3%) 등이 확인되었다 (Table 8. 2. 2). 또한 n-butanol 분획에서는 1,2,3-propanetriol (31.2%),2,2-diethoxyethanol (17.6%),1,3-diazabicyclo[3.1.0]hexane (36.3%), xylitol(14.8%) 등이 확인되었다 (Table 8.2.3). 1,3-diazabicyclo[3.1.0] hexane은 연구 myeloma 관해 보고가 있는 tumor에 imexon (4-imino-1,3-diazabicyclo-[3.1.0] hexan-one)의 중간체로 n-butanol 분획의 항암활성을 나타내는 것으로 보인다[3]. 암세포들에 대해 독성이 높게 나타나 는 methylene chloride extract와 ethyl acetate extract의 주요성분들을 비교 분석 결과, 이미 항암 활성과 동맥경화, 고혈압 등 심혈관 질환 예방에 대한

- 68 -
연구보고[4-10]가 되어 있는 linoleic acid (Fig. 8.2.3)과 항진균제의 원료로 사용되며 유사체인 ergosterol peroxide에 대한 항암효과 보고[11-14]가 있으며 연구가 활발히 진행되고 있는 ergosterol (Fig. 8.2.4)가 높은 비율로 공통적으 로 함유되어 있음을 확인할 수 있었으며, 이 두 성분이 암세포에 대한 독성을 가지는 주요 성분들로 생각된다.

Table 8.2.1. Volatile compounds identified from the methylene chloride extracts of *Lentinus edodes*.

No.	Compounds	$+R (min)^a$	composition $(\%)^b$
1	2-butylaminoacetonitrile	6.21	2.6
2	2,4-dimethylpyridine	9.21	1.1
3	methyl 5-oxopyrrolidine-2-carboxylate	12.36	1.1
4	methyl hexadecanoate	22.55	2.4
5	hexadecanoic acid	23.09	5.2
6	methyl octadeca-9,12-dienoate	25.23	13.2
7	octadeca-9,12-dienoic acid (linoleic acid)	25.80	30.6
8	3-propylpenta-1,4-diene	25.95	0.6
9	dodec-5-yne	30.52	4.9
10	12H-quinoxalino[2, 3-B][1,4]benzimid	36.57	2.4
11	gibb-3-ene-1	36.90	1.0
12	3-hydroxylongifolol	37.09	1.3
13	hexamethylcyclotrisiloxane	38.75	0.9
14	ergosterol	39.18	27.6
15	gibberellin A3	39.37	1.1
16	5-cholesten-3 ^p -ol-7-one	40.11	4.0

^a Retention time (in minutes)

^b Relative amount (%)

No.	Compounds	$+R (min)^a$	composition $(\%)^b$
1	pyrrolidin-2-one	6.376	9.1
3	methyl hexadecanoate	22.553	2.9
4	hexadecanoic acid	23.084	4.9
5	methyl octadeca-9,12-dienoate	25.229	11.8
6	octadeca-9,12-dienoic acid (linoleic acid)	25.775	18.4
7	2-(2', 4'-dimethoxyphenyl)-tetramethylguanidine	36.570	2.8
8	ergosta-5,7,22-trien-3-ol, (3β,22E)- (ergosterol)	39.184	32.2
9	ergost-5-en-3-ol, (3β)-	40.099	12.3

Table 8.2.2. Volatile compounds identified from the ethyl acetate extracts of Lentinus edodes.

^a Retention time (in minutes) ^b Relative amount (%)

Table 8.2.3. Volatile compounds identified from the n-butanol extracts of Lentinus edodes.

No.	Compounds	+R (min) ^a	composition $(\%)^{b}$
1	1,2,3-propanetriol	4.654	31.2
2	2,2-diethoxyethanol	4.838	17.6
3	1,3-diazabicyclo[3.1.0]hexane	6.168	36.3
4	xylitol	16.787	14.8

^a Retention time (in minutes) ^b Relative amount (%)

Fig. 8.2.3. The structure of linoleic acid

Fig. 8.2.4. The structure of ergosterol

다. 동충하초의 Ethyl acetate extract의 성분분석

Bcl-2를 과다발현한 Jurkat T 세포에 G_1 -arrest를 유도하는 ethyl acetate 추출물에서의 활성 성분을 확인하기 위해, DMSO에 용해시킨 ethyl acetate 추출물을 GC-MS로 분석하였다. Table 8.2.4에서와 같이, ethyl acetate 추출은 nucleosides, glycosides, polysaccharides, amino acids와 peptides를 포함하지 않은데 반해 phathalic acid (26.7%),stearic acid (6.9%),di(2-ethylhexyl)phthalate (7.3%), cholesterol (13.0%) 그리고 ergosterol (17.2%)을 주요 성분으로 포함하고 있다. Phathalic acid, stearic acid, di(2-ethylhexyl)phthalate, cholesterol 그리고 ergosterol은 Sigma-Aldirich사 로부터 구입할 수 있으므로 이들 각각의 성분들이 JT/Bcl-2 세포의 성장 정 지를 유도할 수 있는지를 실험하였다. JT/Neo와 JT/Bcl-2 세포에 대한 acid, di(2-ethylhexyl)phthalate, cholesterol과 phathalic acid, stearic ergosterol의 세포 독성에 대한 연구를 0~10 µg/ml 범위의 농도로 처리하여 MTT assav로 분석한 결과, 세포독성 및 성장 지연 능력이 관찰되어 지지 않 았다. 이러한 결과는 ethyl acetate extract에 의해 매개된 JT/Bcl-2 세포의 성 장 정지에서 이들 중 어떠한 것도 관여하지 않음을 의미한다. 주목할 만한 것 은 ethyl acetate 추출물의 또 다른 주요 구성 성분 (relative contents, 21.9%; retention time, 27.6 min)이 불완전균류의 다양한 종에 의해서 생산되는 trichothecenes 군에 속하는 유독한 대사산물 diacetoxyscirpenol (anguidine)과 46%의 상동성을 보여 동충하초 ethyl acetate 추출물의 세포 독성이 이 물질 에 의한다는 것을 시사하는 바이다[35].

Compound	RI^a	Homology $\langle\%\rangle^b$	RC (%)°
Diacetoxyscripenol	27.6	46	21.9
Phthalic acid	28.5	95	26.7
Stearic acid	32.7	94	6.9
Di-(2-ethylhexyl)phthalate	38.2	91	7.3
Cholesterol	46.7	99	13.0
Ergosterol	47.6	99	17.2

Table 8.2.4. Volatile Compounds identified by GC-MS analysis in the ethyl acetate extract of *P. japonica*.

"Retention time; min.

"Homology of the peak to authentic compound in the data base; tentatively identified only by the mass spectrum

"Relative contents; percentage of total

Fig. 8.2.5. The structure of Diacetoxyscripenol

제9절 버섯의 조추출물로부터 신기능 관련 유효성분 의 작용기전 및 암세포 독성

1. 연구수행 방법

가. 실험에 이용한 세포주 및 세포배양

본 연구에 사용한 암세포주는 human embryo kidney 293T cells, malignant Human Glioma Cells U87, and human cervical uteri tumor cells HeLa, human colon carcinoma cell line HCT 116 p53 (+/+) and HCT 116 p53 (-/-) 그리고 인간 혈액암 세포주인 Jurkat T cell 유래의 Jurkat T cell clone E6.1이었다. 모든 세포는 37℃, 5% CO₂ incubator에서 배양하였다. Jurkat T 세포는 RPMI 1640 배지에 10% FBS (Fetal Bovine Serum), 20 mM Hepes, 100 µg/ml gentamycin, 500 µM 2-mercaptoethanol을 첨가하여 배양하였고, 그 외 암세포주는 DMEM 배지에 10% FBS, 20 mM Hepes, 1 mM sodium pyruvate, 100 µg/ml gentamicin, 500 µM 2-mercaptoethanol을 첨가하여 배양하였다.

나. MTT assay를 통한 viability 조사

MTT를 반응시켜 540 mm에서 대조군의 흡광도 값이 0.6에서 0.8 수준이 되도록 일정한 수의 세포를 96 well plate에서 일정 시간 37℃, CO₂ incubator 에서 배양한 후 1.1 mg/ml 농도로 PBS에 녹인 MTT (3-[4,5-Di methyl thi azol-2-yl]-2,5-diphenyltetrazolium bromide) 보존용액을 모든 well에 50 µl/well씩 가해주고 다시 4 시간 더 배양하였다. 이어서 배양을 종료하고 plate를 2300 rpm에서 10분 간 원심 분리하여 생성된 formazan 결정을 가라 앉힌 후 상등액 200 µl를 제거하고 150 µl의 DMSO에 결정을 용해시켜 micro plate reader로 540 mm에서의 흡광도를 측정하였다. 이때 결과분석은 실험군의 평균 OD값을 구하여 대조군의 평균 OD값에 대한 백분율 값을 산 출하였다.[1]

다. 세포자살에 의한 DNA fragmentation 추출

세포자살에 의해 세포 내에 생성되는 apoptotic DNA를 분리하기 위해, 먼 저 세포를 PBS용액으로 세척한 후 원심분리하여 pellet으로 얻은 다음 lysis buffer (0.5% Triton X-100, 5 mM EDTA, 10 mM Tris-HCl, pH 7.4)에 현탁 하여 4℃서 20분 동안 incubation하였다. 이 cell lysate를 14,000 rpm에서 원

- 73 -

심분리하여 상등액을 확보하고 50℃에서 2 시간 동안 proteinase K로 처리한 다음, 이어서 37℃에서 4 시간의 RNase처리로써 RNA를 제거하였다. 단백질 을 제거시키기 위해 동일 volume의 buffer-saturated phenol 용액으로 1회 추 출을 시도한 다음, 0.5 M의 NaCl과 2.5 volume의 cold ethanol을 첨가하여 -20℃에서 하룻밤동안 apoptotic DNA를 침전시켰다. 침전된 DNA를 원심분리 하여 회수하고 이를 70% cold ethanol로 세척한 다음, 적당량의 TE buffer에 녹여 1.2% agarose gel에서 전기영동하고 ethidium bromide로 염색한 후 apoptotic fragmentation을 UV illuminator에서 조사하였다.

라. Flow cytometry 분석

약 $1 \times 10_6$ 세포를 2%의 FBS와 0.02% sodium azide를 함유한 PBS용액 4 ml로 세척한 후 70% ethanol에 현탁하여 4℃에서 1 시간동안 고정하였다. 고 정된 세포를 다시 2 ml의 같은 용액으로 2회 세척한 후 50 $\mu g/ml$ 농도의 RNase A 용액 250 μl 에 현탁하여 37℃에서 30 분 동안 처리하여 세포내 RNA를 제거하고 1.12% sodium citrate buffer (pH 8.45) 용액에 propidium iodide를 50 $\mu g/ml$ 으로 녹인 보존용액 250 μl 를 가해 37℃에서 20 min 동안 세포내 DNA를 염색하였다. 이를 FACSCalibur로 분석하여 각 세포내 염색된 DNA의 함량을 기준으로 세포주기 분포를 조사하였다.[2]

마. Cell lysate 조제

세포의 total cell lysate는 다음과 같은 방법으로 조제하였다. 먼저 세포를 cold PBS로 4℃에서 3회 세척한 후 20 mM Tris, 137 mM NaCl, 1 mM Na₃ VO₄ 1 mM phenymethylsulfonyl (PMSF), 10 µg/ml aprotinin, 2.5 µg/ml E-64, 1% NP-40, pH 8.0의 lysis buffer 용액에 현탁한 다음 sonication하고 ice 상에서 30 min 동안 lysis를 유도시킨 다음 14,000 rpm에서 20 min 동안 원심분리하여 상등액을 total cell lysate로서 얻었다. 얻어진 cell lysate의 단 백질 농도는 PIERCE사 (Rockford, IL, USA)의 Micro BCA Protein Assay Reagent Kit으로 정량하였다.

바. Western blot analysis

Cell lysate (20~30 μg)를 Novex NuPAGE Gel Electrophoresis System에 서 전기영동한 후 Immobilon-P Nylon membrane에 electrotransfer 하였다. 이어서 Nylon membrane blot을 blocking solution (3% skim milk)으로 4 시 간 처리하고, 0.5~1 $\mu g/ml$ 농도의 primary antibody로 하룻밤 동안 반응시켰 다. Secondary antibody로서 horse radish peroxidase conjugated anti-rabbit, anti-mouse 혹은 anti-rat IgG를 90 분 동안 처리하고 wash한 다음, Amersham사의 ECL plus detection 방법으로 확인하였다.

2. 연구내용 및 결과

가. 표고버섯의 암세포 독성물질의 작용 기전

표고버섯의 유기용매 추출 분획들의 암세포 독성 작용기전을 밝히기 위하 여 인간 혈액암 세포주인 Jurkat T cell 유래의 Jurkat T cell clone E6.1와 Jurkat E6.1세포에 anti-apoptotic factor인 Bcl-xL과 control vector를 transfection시켜 확보한 stable cell line인 Jurkat T cell clone J/Bcl-xL와 Jurkat T cell clone J/Neo를 사용하였다. 먼저 표고버섯 분획물의 세포 독성 유도 최소 농도를 조사하기 위하여 시료를 10 mg/ml의 농도로 DMSO에 녹 여 보존용액을 준비하고 0 µg/mb ²⁵ µg/mb ⁵⁰ µg/mb ¹⁰⁰ µg/ml^{의 4} 가지 농도로 J/Neo, J/Bcl-xL, JT/Neo, JT/Bcl-2에 처리하고 72 시간 동안 배양한 후 MTT assay 방법으로 세포의 viability를 측정하였다. Fig 9.2.1에서 보는 바와 같이 methylene chloride 분획은 가장 높은 처리 농도인 100 ug/ml에서 J/Neo에 47.3%, JT/Neo에 51.9% 세포생존율을 보였으며, J/Bcl-xL와 JT/Bcl-2는 100 µg/ml에서 약 10%의 세포자살 억제효과를 보였다. ethyl acetate 분획은 J/Neo에 72.8%, JT/Neo에 62.8% 세포 생존율을 보였으며 (Fig 9.2.2), n-butanol 분획은 J/Neo에 68.7%, JT/Neo에 70.7% 세포생존율을 보였다 (Fig 9.2.3). 세 가지 분획 중에 인간 혈액암 세포주인 Jurkat T cell에 가장 높은 세포 독성을 보이는 methylene chloride 분획을 이용하여 표고버섯 유래의 암세포 독성물질의 작용기전에 대해 탐색하고자 하였으며, 세포 독성 효과의 차이를 좀 더 크게 두어 기작의 탐색을 용이하게 하고자 methylene chloride 분획의 처리 농도를 0, 75, 100, 150 $\mu g/ml$ 로 높였으며, 처리시간을 46 시간으로 하여 MTT assay 방법으로 세포생존율을 보았다 (Fig 9.2.4). 세 포주기에 대한 영향은 Becton Dickinson사의 FACSCalibur를 가지고 flow cytometry 방법으로 조사해 본 바 Fig 9.2.6 에서 보는 바와 같이 Jurkat J/Neo에서는 150 µg/ml 농도에서 많은 세포가 세포자살에 의해 사멸하여 subG1 세포가 많이 생성되는데 반해, anti-apoptotic factor로 알려진 Bcl-xL overexpressing시킨 Jurkat J/Bcl-xL 세포에서는 100 µg/ml 농도까지는 Bcl-xL에 의해 apoptosis가 억제됨을 알았다.

표고버섯의 methylene chloride 추출물 처리에 따른 *subG*₁ 세포 생성에 관 한 기전을 확인하기 위하여 종양에 대한 항암물질의 세포자살 유도기전과 관

- 75 -

련하여 현재까지 제시되고 있는 세 가지의 서로 다른 세포자살 유도 경로에 대하여 탐색해 보았다. 그 중 첫째는 세포외재성 사망수용체 의존적 경로이며, 둘째는 세포내재성 마이토콘드리아 의존적 경로이고 [15], 셋째는 세포내재성 endoplasmic reticulum (ER) stress-매개성 경로이다 [16]. 종양에 있어서 항 암 화학요법제 처리에 의한 사망수용체 의존적 세포자살 신호는 upregulation of FasL 및 Fas 의 발현의 upregulation 및 이에 따른 Fas signaling [17-20] 유도에 의해 개시되며, 이에 반해 마이토콘드리아 의존적 사망신호는 마이토 콘드리아로부터 세포질로의 cytochrome c의 방출에 의해 개시되며 뒤이어서 caspase-9의 활성화 및 caspase-3 활성화가 일어나서 세포사멸에 이른다 [21, 22]. 그리고 ER stress-매개성 세포자살 경로는 caspase-12의 활성화에 의해 개시되며, 이때 활성화된 caspase-12는 직접 pro-caspase-9를 마이토콘드리아 cytochrome c 와 무관하게 활성화할 수 있는 것으로 알려졌다 [23, 24]. 또한 caspase-12의 활성화와 함께, ER stress는 caspase-8의 활성화 및 INK의 활 성화를 유도하며, 이들은 이어서 마이토콘드리아 cyrochrome c 방출을 초래하 게 된다 [25, 26], 그러나, 항암 화학요법제의 세포자살 유도기전에 대한 연구 는 여전히 매우 부족한 상태에 있으며, 특히 항암제의 세포자살 유도 활성 표 적이 정상세포를 제외하고 종양세포에만 국한되는 선택적인 것인지를 규명하 기 위해서 더 많은 연구의 수행이 필요한 시점에 있다. 마이토콘드리아 의존 적 경로에 의한 세포자살에 관여하는 단백질로 알려진 caspase-3, caspase-9 와 PARP의 분해를 Western analysis로 조사해 본 결과 Fig 9.2.7에서 보는 바와 같이 caspase-3 과 -9 의 활성화에 따른 PARP의 분해를 확인할 수 있 었으나, cytochrome c 방출을 조사한 결과 (data were not showed.) band가 확인되지 않아 표고버섯 유래의 암세포 독성 물질은 마이토콘드리아 의존적 cytochrome c 방출과는 무관하게 세포자살을 유도하는 것을 알 수 있었다. 이 에 따라 caspase-9의 활성화를 유도하지만 마이토콘드리아 의존적 cvtochrome c 방출과는 별개의 경로를 따르는 ER stress-매개성 세포자살 경 로를 예상하고 caspase-12의 활성화를 western으로 조사한 결과, 표고버섯의 methylene chloride 분획물 처리에 의해 활성화가 유도되어 처리농도가 높을 수록 caspase-12의 proform이 점점 줄어드는 것을 확인할 수 있었다. 그리고 apoptosis 특유의 현상인 DNA fragmentation에 대한 표고버섯의 methylene chloride 분획물의 영향에 있어서도 조사한 결과 (Fig 9.2.5)와 같이 anti-apoptotic 유전자 Bcl-xL이 과다발현 되는 Jurkat J/Bcl-xL 세포주에서 DNA fragmentation이 억제되는 결과와도 일치함을 알 수 있었다.

Fig 9.2.1. Effect of the methylene chloride extract on cell viability of Jurkat T cells transfected with vector (J/Neo) or Bcl-xL gene (J/Bcl-xL) and transfected with vector (JT/Neo) or Bcl-2 gene (JT/Bcl-2). MTT assay after treatment with the methylene chloride extract of *Lentinus edodes* for 72 hr.

Fig 9.2.2. Effect of the ethyl acetate extract on cell viability of Jurkat T cells transfected with vector (J/Neo) or Bcl-xL gene (J/Bcl-xL) and transfected with vector (JT/Neo) or Bcl-2 gene (JT/Bcl-2). MTT assay after treatment with the ethyl acetate extract of *Lentinus edodes* for 72 hr.

Fig 9.2.3. Effect of the n-butanol extract on cell viability of Jurkat T cells transfected with vector (J/Neo) or Bcl-xL gene (J/Bcl-xL) and transfected with vector (JT/Neo) or Bcl-2 gene (JT/Bcl-2). MTT assay after treatment with the n-butanol extract of *Lentinus edodes* for 72 hr.

Fig 9.2.4. Effect of the methylene chloride extract on cell viability of Jurkat T cells transfected with vector (J/Neo) or Bcl-xL gene (J/Bcl-xL). MTT assay after treatment with the methylene chloride extract of *Lentinus edodes* for 46 hr.

Fig 9.2.5. Effect of the methylene chloride extract on cell viavility of Jurkat T cells transfected with vector (J/Neo) or Bcl-xL gene (J/Bcl-xL). Apoptotic DNA fragmentation analysis after treatment with the methylene chloride extract of *Lentinus edodes* for 46 hr.

Fig 9.2.6. Flow cytometric analysis of the cell cycle distribution in Jurkat T cells transfected with vector (J/Neo) and Jurkat T cells transfected with Bcl-xL gene (J/Bcl-xL) after treatment with the methylene chloride extract of *Lentinus edodes* for 46 hr.

Fig 9.2.7. Western blot analysis of the protein levels in Jurkat T cells transfected with vector (J/Neo) and Jurkat T cells transfected with Bcl-xL gene (J/Bcl-xL) after treatment with the methylene chloride extracts of *Lentinus edodes* for 46 hr.

나. 암세포의 세포형태 및 intracellular cytoskeletal filaments에 미치는 표고버섯의 methylene chloride, ethyl acetate, n-butanol 분획들의 영향 암세포의 세포형태 및 intracellular cytoskeletal filaments에 미치는 표고버 섯의 methylene chloride, ethyl acetate, n-butanol 분획들의 영향을 조사하기 위하여 부착세포주인 human embryo kidney 293T cells, malignant Human Glioma Cells U87, and human cervical uteri tumor cells HeLa, human colon carcinoma cell line HCT 116 p53 (+/+) and HCT 116 p53 (-/-)을 대상으로 각각의 분획들을 0, 75, 100, 150 µg/ml로 48 시간 동안 처리하여 세포독성에 관하여 조사한 결과, methylene chloride 분획층에 대해서 가장 높은 처리 동 도인 150 µg/ml에서 293T cells은 57.5%, HeLa cells은 66.3%, U87 cells은 48.8%의 세포생존율로 가장 강한 독성의 영향을 받았다 (Fig 9.2.8). ethyl acetate 분획은 150 µg/ml에서 293T cells에 대해 66.6%, HeLa cells은 66.9%
의 세포생존율을 보였고 U87 cells은 41.2%의 세포생존율을 보였으며

- 81 -

methylene chloride 분획층과 마찬가지로 가장 강한 독성의 영향을 받았다 (Fig 9.2.9). n-butanol 분획에서 293T cells과 HeLa cells에는 그다지 강한 독 성을 나타내지 않았으며, U87 cells은 세포 생존율이 64%로 세포들 중에는 표 고버섯에서 추출된 n-butanol 분획에 의한 독성의 영향을 가장 많이 받는 것 으로 확인되었다 (Fig 9.2.10). HCT 116 p53 (+/+) cells과 HCT 116 p53 (-/-) cells에서는 HCT 116 p53 (+/+) cells은 150 µg/ml에서 세 분획 모두 세 포생존율이 95% 가까이 되는 반면, HCT 116 p53 (-/-) cells은 methylene chloride 분획층에 대해서 82.8%, ethyl acetate 분획에 대해서 72%, n-butanol 분획에서 86.5%로 조금 낮았다. 이것으로 보아 p53의 과발현은 표고버섯의 methylene chloride, ethyl acetate, n-butanol 분획들에 의한 HCT 116의 세포 자살을 어느 정도 억제하는 것으로 생각된다.

Fig 9.2.8. Cytotoxic effect of the methylene chlorode extracts of *Lentinus edodes* on 293T cells, HCT 116 p53 (+/+) and HCT 116 p53 (-/-), HeLa cells, U87 cells.

Fig 9.2.9. Cytotoxic effect of the ethyl acetate extracts of *Lentinus edodes* on 293T cells, HCT 116 p53 (+/+) and HCT 116 p53 (-/-), HeLa cells, U87 cells.

Fig 9.2.10. Cytotoxic effect of the n-butanol extracts of *Lentinus edodes* on 293T cells, HCT 116 p53 (+/+) and HCT 116 p53 (-/-), HeLa cells, U87 cells.

다. 표고버섯과 송이버섯의 hydrophobin 추출물의 세포독성 조사

표고버섯과 송이버섯의 hydrophobin의 생리활성 효능을 검정하기 위하여 human Jurkat T 세포에 대한 추출물의 세포독성을 조사하였다. 표고버섯과 송이버섯의 hydrophobin 추출물을 0, 50, 100, 150, 200 µg/ml로 Jurkat E6.1 cells에 처리하고 Flow cytometry로 분석한 결과, 두 추출물 모두 세포 독성 을 전혀 나타내지 않았으며 세포주기의 저지도 전혀 일어나지 않았다.

9.2.11. Effect of hydrophobin extracts from *L. edodes* and *T. matsutake* on cell cycle distribution in Jurkat T cell clone E6.1.

- 84 -

9.2.12. Effect of hydrophobin extracts from L edodes and T. matsutake on cell viavility of Jurkat T cells

제10절 In vitro 및 in vivo 실험을 통한 효능 검정 및 안정성 조사

1. 연구수행 방법

가. 시약, 항체 및 배지

ECL Western blotting kit 은 Amersham (Arlington Heights, IL, USA)에 서, 그리고 Immobilon-P membrane은 Millipore Corporation (Bedford, MA, USA)에서 구입하였다. Anti-cytochrome c 는 Pharmingen (San Diego, CA, USA)에서, anti-Fas 및 anti-FasL 는 Transduction Laboratories (Lexington, KY, USA)에서, anti-caspase-3, anti-caspase-8, anti-caspase-9, anti-PARP, anti-Bcl-xL와 anti-p-actin는 Santa Cruz Biotechnology (Santa Cruz, CA, USA)로부터 구입하여 사용하였다. A broad-range caspase inhibitor z-VAD-fmk, caspase-8 inhibitor z-IETD-fmk, calpain inhibitor E64d, 그리 고 JNK inhibitor SP600125 등은 Calbiochem (San Diego, CA, USA)로부터 구입하였다. Human acute leukemia Jurkat T cell line E6.1, clone J/Neo infected with vector, 그리고 J/Bcl-xL gene을 stable transfection 시킨 J/Bcl-xL clone 및 empty vector를 stable transfection 시킨 J/Neo clone은 미 국 NIH, NIA, Gerontology Resrach Center의 Dr. Dennis Taub로부터 제공받 았다. Jurkat T cells는 10% FBS, 20 mM HEPES (pH 7.0), 500 mM 🖡 -mercaptoethanol, 100 µg/ml gentamycin을 함유한 RPMI 1640 (Hyclone, Gaithersburg, MD, USA) 완전배지를 이용하여 배양하였다. 한편 J/Neo 및 J/Bcl-xL 세포주는 400 µg/ml의 G418을 첨가한 RPMI1640 완전배지를 이용하 여 배양하였다.

나. MTT assay를 통한 viability 조사

9절 연구수행방법 나항과 동일하게 행하였음

다. Apoptosis 에 의한 DNA fragmentation 추출

9절 연구수행방법 다항과 동일하게 행하였음

라. Flow cytometry 분석

9절 연구수행방법 라항과 동일하게 행하였음

마. Cell lysate 조제

9절 연구수행방법 마항과 동일하게 행하였음

바. Western blot analysis

9절 연구수행방법 바항과 동일하게 행하였음

사. DAPI 염색 방법

약제 처리로 유도되는 세포자살을 확인하기 위하여 세포자살 결과 생기는 nuclear fragmentation을 DAPI 염색법으로 조사하였다. 세포 (5 × 10⁶)을 1,000 rpm에서 5 분간 원심 분리하여 모은 다음 4℃ PBS로 두 번 수세 한 후 2%의 FBS를 함유하는 PBS로 1회 세척하고 70% ethanol로 1 시간 동안 고정 하였다. 고정된 세포는 다시 같은 용액의 buffer로 2회 세척하고 50 µg/ml 농 도로 RNAse처리하여 RNA를 제거한 후, PBS로 3회 수세하여 DAPI dye/PBS로 10 분간 염색하였다. 이를 형광 현미경 (Microphot-FX, Nikon, Tokyo, Japan)으로 관찰하였다.

아. 마이토콘드리아 cytochrome c의 세포질로의 방출 조사

약제처리에 따른 Jurkat T cells에서의 마이토콘드리아 cytochrome c 방출 의 조사하기 위해 먼저 세포질 단백질 추출물을 확보하였다. 간략히 서술하면, 약제 처리된 5 × 10⁶ 정도의 세포들을 PBS로 3회 세척하고 200 µl의 lysis buffer (250 mM sucrose, 10 mM KCl, 1.5 mM MgCl₂, 1 mM DTT, 1 mM PMSF, 2.5 µg/ml E-64, 20 mM HEPES, and pH 7.2)에 현탁하였다. 이어서 세포들을 4 mg에서 30 분 동안 평윤시킨 다음, Dounce homogenizer를 이용하 여 20 strokes로 세포를 파쇄하였다. 세포 파쇄액을 3,500 rpm으로 10 분간 원 심분리하여 상등액을 취하고 이 상등액을 13,700 rpm으로 15 분간 다시 원심 분리하여 확보되는 상등액을 마이토콘드리아가 제거된 세포질 추출물로 간주 하였다. 이를 Western blot analysis로 분석하여 cytochrome c 방출을 조사하 였다[27].

2. 연구내용 및 결과

송이, 표고로부터 신기능 물질을 분리하고자 조정제물을 제조하여 항암 및 면역 관련 활성 물질을 탐색하였으나 GC-MS 분석으로도 신규 물질을 확보할 수 없었다. 따라서 버섯유래 신기능성 물질 탐색 영역을 항암 및 면역계에 효 과가 알려진 동충하초를 대상으로 확대하였다.

가. P. japonica 로부터 항암활성 물질의 탐색

P. japonica를 세절하고 극성이 낮은 용매로부터 극성이 높은 methanol, ethyl acetate, hexane으로 추출한 후 세포 독성을 조사하였다. 그 중 ethyl acetate 추출물에서 세포독성이 확인되었다. 이의 세포 독성 작용 기전을 조사 하기 위하여 Bcl-2 유전자를 transfection한 Jurkat T 세포 (JT/Bcl-2)와 control vector를 transfection 시킨 Jurkat T 세포 (JT/Neo)에 ethyl acetate 추출물을 2~6 μg/ml 농도로 40 시간 처리하고 세포의 생존력을 MTT assay 로 분석하였다. Fig 10.2.1는 Bcl-2 유전자의 과다발현을 확인하는 결과이며, MTT assay에 의해 측정된 Jurkat T 세포에서의 ethyl acetate 추출물의 세포 독성 효과가 Bcl-2의 과다발현에 의해 감소되었으며 (Fig 10.2.2) ethyl acetate에 의해 유도된 세포자살적 DNA 단편화도 Bcl-2의 과다발현에 의해 완전하게 저해됨을 알았다(Fig 10.2.3). 이때 세포 주기에 대한 영향을 flow cytometry로 분석한 결과, JT/Neo세포에서 세포자살 과정의 세포를 나타내는 subG 1 peak는 쉽게 발견되고, 농도 의존적으로 subG 1 세포수가 증가했다 (Fig 10.2.4(a)). 그러나 JT/Bcl-2 세포는 subG 1 가 나타나지 않아 ethyl acetate 추출물 유도성 세포자살성의 세포사에 있어서 Bcl-2가 동충하초 유래 의 세포 자살 유도를 방해하는 것으로 확인하었다.(Fig 6.2.4(b)). 게다가, 계속 적으로 성장하는 JT/Bcl-2 세포와 비교하여, ethyl acetate 추출물을 2-6 μg/ mℓ 처리한 세포의 경우, S와 G ,/M 세포 양쪽의 감소에 비례하여 G , 세포의 수준에서 농도 의존적으로 증가함을 보여준다. 뒤이어 4 μg/ml 의 ethyl acetate 추출물 처리한 JT/Bcl-2 세포의 세포주기 진행의 kinetic analysis는 G 기에서의 축적이 15 시간 후 발견되기 시작하고 S기와 G /M기에서의 세포 의 감소에 따라 40 시간 후에는 증가되어짐을 보여준다 (Fig 6.2.5(a)). JT/Neo에 대한 세포자살성 세포의 상당한 수준이 15 시간 후에 발견되고 시 간에 따른 증가를 보여주고 있지만 G 기의 arrest는 확인되지 않았다(Fig 6.2.5(b)).

Fig 10.2.1. Jurkat T cells transfected with vector (JT/Neo) or Bcl-2 gene (JT/Bcl-2). Ectopic overexpression of Bcl-2 protein in Jurkat T cells transfected with Bcl-2 gene construct was confirmed by Western analysis.

Fig 10.2.2. Effect of the ethyl acetate extract on cell viability of Jurkat T cells transfected with vector (JT/Neo) or Bcl-2 gene (JT/Bcl-2). Jurkat T cells overexpressing Bcl-2 (JT/Bcl-2) or control cells (JT/Neo) were incubated at a density of 4 x 10⁴/well with various concentrations of the ethyl acetate extract in 96-well plates for 40 h and the final 4 h were incubated with MTT to assess the colored formazan crystals produced from MTT as an index of cell viability. *P < 0.005 was obtained when the control and the ethyl acetate extract-treated group of JT/Neo were compared. **P < 0.0005 was obtained when the control and the ethyl acetate extract treated group of JT/Bcl-2 were compared.

Fig 10.2.3. Effect of the ethyl acetate extract on DNA fragmentation of Jurkat T cells transfected with vector (JT/Neo) or Bcl-2 gene (JT/Bcl-2). Jurkat T cells overexpressing Bcl-2 (JT/Bcl-2) or control cells (JT/Neo) were incubated with various concentrations of the ethyl acetate extract in 96-well plates for 44 h to analyze apoptotic DNA fragmentation.

Fig 10.2.4. Apoptotic change in the cell cycle distribution of Jurkat T cells transfected with vector (JT/Neo) (A) or Bcl-2 gene (JT/Bcl-2) (B) after treatment with various concentrations of the ethyl acetate extract for 40 h. After JT/Neo and JT/Bcl-2 were incubated in the presence of ethyl acetate extract under individual conditions, the cells were harvested. The analysis of cell cycle distribution was performed on an equal number of cells (5 \times 10 \wp Flow cytometry after staining of DNA by propidium iodide.

Fig 10.2.5. Apoptotic change in the cell cycle distribution of Jurkat T cells transfected with vector (JT/Neo) (A) or Bcl-2 gene (JT/Bcl-2) (B) after treatment with 4 $\mu g/ml$ of the ethyl acetate extract for various time periods. JT/Neo and JT/Bcl-2 were incubated at a density of 3 x 10 $_{5}/ml$ in the presence of ethyl acetate extract under individual conditions, the cells were harvested. The analysis of cell cycle distribution was performed on an equal number of cells (5 x 10 $_{5}$) by Flow cytometry after staining of DNA by propidium iodide.

나. Ethyl acetate 추출물 처리에 따른 retinoblastoma의 변화 양상 조사

G1기에서의 Rb 단백질의 hyperphosphorylation은 Rb로부터 E2F family가 유리되도록 하기 때문에 S기로의 진입에 필수적이다[28, 29, 30]. 세포주기 동 안 Rb phosphorylation이 실패되면 G_1 기에서 세포주기 억제를 초래한다. 세 포주기 진행의 기초적인 P. japonica 매개 G_1 -arrest의 작용기작을 밝히기 위 해서 본 연구진은 Rb의 phosphorvlation 수준에서의 ethyl acetate 추출물의 영향을 조사하였다. 단일클론항체인 anti-Rb를 이용하여 Western blot 분석법 을 수행할 때, Rb의 hyperphosphorylated form은 지속적으로 자라는 JT/Neo 와 JT/Bcl-2 세포에서 쉽게 검출되었다 (Fig 10.2.6). 이때 ethyl acetate 추출 물을 처리한 JT/Neo 세포에서는 hyperphosphorylated Rb의 수준이 두드러지 게 떨어지진 않았지만, JT/Bcl-2 세포에서는 시간에 비례하여 상당히 감소하 였다. 이들 결과는 Bcl-2가 과다 발현된 Jurkat T 세포에서의 세포주기 진행 이 *P. japonica* 매개 G_1 -arrest가 $G_1 \rightarrow S$ 전이를 위해 필요한 Rb phosphorylation의 실패와 연관이 있다는 것을 나타내며, ethyl acetate 추출물 과 함께 처리된 JT/Neo 세포의 대부분이 G1기에서 정지되며, Rb의 underphosphorylation에 의해 신속히 세포자살이 유도되는 것이다.

Fig 10.2.6. Western blot analysis of the protein levels of Rb in Jurkat T cells overexpressing JT/Bcl-2 gene (JT/Bcl-2) or control cells (JT/Neo) after treatment with the ethyl acetate extract for various time periods. Both Jurkat T cells overexpressing Bcl-2 (JT/Bcl-2) and control cells (JT/Neo) were incubated at a density of 3 x 10 s/ml with 4 $\mu g/ml$ of the ethyl acetate extract and prepared for the cell lysates. Equivalent amounts of cell lysates were electrophoresed on 6% SDS gradient polyacrylamide gels and electrotransferred to Immobilon-P membrane. The membrane was

probed with anti-Rb and then with a horse-radish peroxidase conjugated mouse monoclonal antibody. Detection of protein was performed using the ECL plus Western blotting detection system.

다. Cdks와 cyclins의 단백질 발현수준에 대한 ethyl acetate 추출물의 영향

G1기에서 Rb의 인산화는 G1-cdks에 의해 매개되어지기 때문에 그것은 Jurkat T 세포에서 ethyl acetate 추출물의 처리에 따른 G_1 -cdks의 kinase 활성화의 동요로 보여질 수 있다. 이를 확인하기 위하여 cdks와 cyclins의 단 백질 발현 수준의 변화를 4 µg/ml의 ethyl acetate 추출물을 처리한 JT/Neo와 JT/Bcl-2 세포에서 조사하였다. Fig 10.2.7에서 보듯, ethyl acetate 추출물의 처리에 영향을 받지 않은 JT/Neo와 JT/Bcl-2 세포에서의 Bcl-2의 발현 수준 은 Western blot analysis에 의해 확인되어 졌다. 같은 조건에서 cdk4, cdk6, cdk2, cdk7 그리고 cdc2는 계속해서 성장하는 JT/Neo와 JT/Bcl-2 세포에서 쉽게 관찰되었고, 이러한 단백질 발현 수준은 ethyl acetate 추출물의 존재하 에서 발현 수준이 감소하는 cdk4와 cdc2를 제외하고는 비교적 일정하게 유지 되었다. ethyl acetate 추출물을 15 시간 처리하였을 때, 비록 2개의 cdk4 bands의 단백질 발현 수준의 두드러진 감소가 JT/Neo와 JT/Bcl-2 세포 둘 다에서 관찰되지만, cdk4의 활성 인산화 형태로 알려진[31] cdk4의 빠른 감소 는 JT/Neo 세포에서 더 명백하다. cdc2 단백질 발현 수준은 처리후 시간 의 존적 양상으로 현저히 감소한다. 그러나 JT/Neo 세포에 있어서 cvclins 발현 수준의 감소는 발현할 수 없거나 그다지 중요하지 않다 (Fig 10.2.8). cdk4/D-type cyclins, cdk2/cyclin A 그리고 cdk2/cyclin E는 모두 G1에서 S 기로 진행을 유도하는 Rb의 인산화를 촉진하는 중요한 G₁-cdks이다[27]. 이 러한 결과는 ethyl acetate 추출물로 매개되는 JT/Bcl-2의 G1의 정지를 가져 오는 cdk4, cyclin A와 E의 감소와 연관되어 있으며, 이러한 cdk4, cyclin A와 E의 감소는 cdk4/D-type cyclins, cdk2/cyclin A 그리고 cdk2/cyclin E와 같은 G_1 -cdks의 감소를 초래한다.

Fig 10.2.7. Western blot analysis of the protein levels of Bcl-2 (A), cdk4 (B),

cdk6 (C), cdk2 (D), cdk7 (E), cdc2 (F), and β -actin (G) in Jurkat T cells overexpressing JT/Bcl-2 gene (JT/Bcl-2) or control cells (JT/Neo) after treatment with the ethyl acetate extract for various time periods. Both Jurkat T cells overexpressing Bcl-2 (JT/Bcl-2) and control cells (JT/Neo) were incubated at a density of 3 x 10 s/ml with 4 $\mu g/ml$ of the ethyl acetate extract and prepared for the cell lysates. Equivalent amounts of cell lysates were electrophoresed on 4~12% SDS gradient polyacrylamide gels and electrotransferred to Immobilon-P membrane. Western blot analysis was performed as described in Materials and Methods.

Fig 10.2.8. Western blot analysis of the protein levels of cyclin A (A), cyclin B1 (B), cyclin E (C), and β -actin (D) in Jurkat T cells overexpressing JT/Bcl-2 gene (JT/Bcl-2) or control cells (JT/Neo) after treatment with the ethyl acetate extract for various time periods. Both Jurkat T cells overexpressing Bcl-2 (JT/Bcl-2) and control cells (JT/Neo) were incubated at a density of 3 x 10 g/ml with 4 $\mu g/ml$ concentration of the ethyl acetate extract and prepared for the cell lysates. Equivalent amounts of cell lysates were electrophoresed on 4~12% SDS gradient polyacrylamide gels and electrotransferred to Immobilon-P membrane. Western blot analysis was performed as described in materials and methods.

라. Ethyl acetate 추출물에 의한 p27 🕅 의 upregulation.

p27 Ka 는 cdk2를 포함하고 있는 G₁-cdks의 활성을 낮게 조절한다. 그리 고 p27 Ka는 T cell에서 중요한 억제자로 여겨진다[32, 33, 34]. Ethyl acetate 추출물의 처리에 의한 p27 Ka의 단백질 수준에서의 변화는 Bcl-2가 과발현되 는 Jurkat T cell의 CKIs의 upregulation과의 관련성을 이해하기 위해 분석되 어진다. Fig 10.2.9에서 보여지는 것처럼 p27 Ka의 단백질 수준은 시간이 지남 에 따라 상당히 강해진다. 반면에 p-actin은 ethylacetate extract의 존재에 상 관없이 바뀌지 않는다. p27 Ka의 증가는 cyclinA와 cyclinE의 단백질 수준에 서 두드러진 감소와 일치하는 결과이다.

Fig 10.2.9. Western blot analysis of the protein levels of p27 $_{KA}$ (A) and μ -actin (B) in Jurkat T cells overexpressing J/Bcl-2 gene (JT/Bcl-2) or control cells (JT/Neo) after treatment with the ethyl acetate extract for various time periods. Both Jurkat T cells overexpressing Bcl-2 (JT/Bcl-2) and control cells (JT/Neo) were incubated at a density of 3 x 10 $_{5}$ /ml with 4 μ g/ml of the ethyl acetate extract and prepared for the cell lysates. Equivalent amounts of cell lysates were electrophoresed on 4~12% SDS gradient polyacrylamide gels and electrotransferred to Immobilon-P membrane. Western blot analysis was performed as described in Materials and methods.

마. Jurkat T 세포에 대한 DAS의 세포독성

human Jurkat T 세포의 성장에 대한 미량의 DAS가 가지는 세포톡성을 조사하기 위해서 0.01~0.15 µM의 DAS를 처리한 후, MTT assay를 통해 Jurkat T 세포의 생존율을 조사하였다. 14시간 동안 DAS를 처리한 Jurkat T 세포의 생존율은 농도 의존적으로 감소하였다 (Fig 10.2.10). 비록 DAS가 0.01 μM 존재할 때, 세포 생존율은 64%로 유지되었으나, 0.15 μM에서는 생존율이 37.6%에 불과하였다. DAS의 세포독성의 근원적인 기작을 이해하기 위해, 본 연구진은 DAS가 Jurkat T세포의 세포자살을 유도하는지를 조사하였다. DAS 를 농도에 따라 (0.01~0.15 μM) 가하고 14시간 처리한 후, apoptotic DNA fragmentation을 조사한 결과 농도 의존적으로 apoptotic DNA fragmentation 이 일어남을 확인하였고 이와 일치하게 세포 생존율은 감소하였다 (Fig 10.2.11). DAS 처리에 따른 Jurkat T 세포의 세포주기분포에 있어서 세포자살 적 변화가 있는지 조사하기 위하여 flow cytometry로 분석하였다. Jurkat 세 포를 각각 0.01 μM, 0.04 μM, 0.08 μM, 0.1 μM, 0.15 μM의 DAS로 14시간 처리하였을 때 세포자살 과정의 세포를 나타내는 subG1이 각각 10.4%, 19.5%, 32.1%, 38.4%, 49.4%로 관찰되었다 (Fig 10.2.12). 0.01 μM DAS가 있 을 때, S키와 G2/M기의 세포 비율은 subG1의 세포의 증가와 비례하여 감소

한다. 반면 G₁기의 세포는 DAS를 처리하지 않은 control 세포와 비교하여 조 금 증가한다. 0.04~0.15 μM 농도의 DAS 처리시 G₁기, S⁷], 그리고 G₂/M⁷] 에 있는 세포들은 세포주기 분포에 관계없이 subG₁ peak의 증가와 일치하여 감소하였다. 이러한 결과는 낮은 농도인 0.01~0.15 μM⁹ DAS 처리는 농도 의존적 양상으로 Jurkat T 세포의 세포자살기전을 유도함을 의미하는 것이다.

Fig. 10. 2. 10. Effect of DAS on cell viability in Jurkat T cell clone E6.1. Continuously growing Jurkat T cells (5 x) were incubated with indicated concentrations of DAS in a 96-well plate for 14 h and the final 4 h were incubated with MTT to assess cell viability.

- 98 -

Fig 10.2.11. Effect of DAS on apoptotic DNA fragmentation in Jurkat T cell clone E6.1. Jurkat T cells were incubated with indicated concentrations of DAS for 14 h and the cells were collected to analyze apoptotic DNA fragmentation by Triton X-100 lysis method using 1.2% agarose gel electrophoresis.

Fig 10.2.12. Effect of DAS on cell cycle distribution in Jurkat T cell clone E6.1. Jurkat T cells were incubated with indicated concentrations of DAS for 14 h and the analysis of cell cycle distribution was performed on an equal number of cells (2 x) by flow cytometry after staining of DNA by propidium iodide.

바. DAS로 유도된 Jurkat T 세포의 세포자살에 있어서 마이토콘드리아 cytochrome c 매개적 caspase cascade 활성의 관여성 조사

DAS로 유도된 세포자살 신호경로에 있어 마이토콘드리아 cytochrome c 방출의 관여를 실험하기 위해 본 연구진은 DAS 유도 세포자살이 마이토콘드 리아 cytochrome c 방출과 동반하여 일어나는지와 그 결과 발생하는 caspase-9, -3을 포함하는 caspase cascade의 활성화가 유도되는지를 조사하 였다. 마이토콘드리아 cytochrome c 방출의 수준은 0.01~0.15 μ M의 DAS 처 리에서 농도 의존적으로 증가하였고 (Fig 10.2.13), 마이토콘드리아 cytochrome c 방출에 따라 활성형의 caspase-9 (35/37 kDa)이 관찰되었다. 이 때 caspase-3 역시 DAS농도에 따라 활성화됨을 관찰하였다. 세포자살이 유도 되어지는 동안 활성형의 caspase-3의 하류 표적으로서, PARP는 2개의 단편으

- 99 -

로 잘려진다고 보고되어져 있다 [36]. 0.01~0.15 μM의 DAS로 처리한 Jurkat T 세포에서, PARP 분해는 caspase-3의 활성화와 함께 관찰되어졌다. FLICE inhibitory protein (FLIP), caspase-8 활성화, 그리고 caspase-8 활성화에 의 한 Bid의 truncated Bid로의 분해는 Fas나 약제 유도 세포자살에서 마이토콘 드리아 cytochrome c 방출을 촉발하는 상류의 현상들이기 때문에 [37-38], 본 연구진은 DAS 처리 후 FLIP, caspase-8 활성화, Bid의 분해 수준의 변화도 조사하였다. 0.01~0.15 μM의 DAS 존재 시, 55 kDa의 효소전구체를 단백질 가수분해를 통해 활성형인 41/43 kDa의 caspase-8로 활성화하는데 농도 의존 적인 양상을 보였다. 반면 Bid와 FLIP의 수준은 DAS에 의해 유도되어진 caspase-8의 활성화에 따라 감소되었다. 하지만 DAS 처리 후 Fas나 Fas L의 수준에는 차이가 없었다. 이와 같은 결과는 DAS에 의해 유도되어진 세포사멸 이 caspase-8에 의한 Bid 분해로부터 생성되는 tBid에 의해 유도되어지는 마 이토콘드리아 cytochrome c의 방출과 caspase-9과 caspase-3을 포함하는 일 련의 cytochrome c 의존적 caspase cascade의 활성에 관련되어짐을 제안한다 (Fig 10.2.14).

사. Jurkat T 세포에 있어서, DAS에 의해 유도되는 세포주기조절 단백질 수준의 변화

여러 연구들은 화학물질 처리에 의한 세포주기 진행 과정 중에 특정 단계 에서 세포주기정지가 세포자살을 유도한다고 지적하고 있다 [39, 40]. 본 연구 진의 연구 결과 $0.04 \sim 0.15 \ \mu M$ 의 DAS에 의해 유도된 세포자살은 S^{71} 세포보 다 G_1 기와 G_2/M^{71} 세포를 더 빠르게 감소시키기 때문에 cdk와 cyclin 발현 수준에 있어서 DAS의 영향은 세포 주기 진행의 조절실패가 Jurkat T 세포에 있어서 DAS 유도 세포사멸에 연관되어 있는지를 Western blot 분석을 통해 조사하였다. Fig 10.2.15에서 보는 바와 같이 cdk4, cdk6, cdk2, cdc2, p_{27} KPA, cyclin A, cyclin B1 그리고 cyclin E는 Jurkat T 세포에서 쉽게 관찰된다. cdk6, cdk2, cdc2, cyclin A 그리고 cyclin E의 단백질 수준은 비교적 일정하 지만, cdk4와 cyclin B1은 DAS에서 14시간 처리 후 겨우 알아볼 정도로 감소 하였다. p_{27} KPA 수준 또한 감소하였다. cdk4의 역할이 G_1 기의 완성에 한정 되어 있고 cyclin B1이 G_2/M 기의 전환에 기여하며, M기로의 통과에 역할을 하는 것으로 알려져 있다. 이것은 DAS 매개에 의한 cdk4와 cyclin B1 단백질 의 down regulation의 결과 G_1 기와 G_2/M^{71} 에서의 세포주기 진행의 방해는 S^{71} 세포보다 $G_1, G_2/M$ 세포의 세포자살이 더 빠르다는 것을 의미한다.

Fig 10.2.13. Western blot analysis of mitochondrial cytochrome c release and β -actin in Jurkat T cells after treatment with various concentrations of DAS. The cells (5 x 10 ϑ) were incubated at a density of 5 x 10 \sharp /ml with indicated concentrations of DAS for 14 h and prepared for cell lysates. Western analysis was performed as described in Materials and methods using ECL Western blotting detection system.

Fig 10.2.14. Western blot analysis of caspase-8 activation, caspase-9

- 101 -

activation, caspase-3 activation, cleavage of PARP, and Fas and FasL levels, and β -actin in Jurkat T cells after treatment with various concentrations of DAS. The cells (5 x 10 θ) were incubated at a density of 5 x 10 β /ml with indicated concentrations of DAS for 14 h and prepared for cell lysates. Western analysis was performed as described in Materials and Methods using ECL Western blotting detection system.

Fig 10.2.15. Western blot analysis of the protein levels of cyclin E, cyclin A, cyclin B1, cdk4, cdk6, cdk2, cdc2, p27 , and beta-actin in Jurkat T cells after treatment with various concentrations of DAS. The cells (5 x) were incubated at a density of 5 x /ml with indicated concentrations of DAS for 14 h and prepared for cell lysates. Western analysis was performed as described in Materials and Methods.

아. Jurkat T 세포에서의 DAS 유도 세포자살에 있어서의 Bcl-xL의 보호적 역할

이러한 DAS 매개적 세포자살의 생화학적 사건들이 세포자살에 우선적으 로 필요한지 알기 위해 본 연구진은 anti-apoptotic 단백질인 Bcl-xL을 과발현 시킨 Jurkat T 세포주를 이용하여 조사하였다. Bcl-xL은 caspase-8 활성화와 마이토콘드리아로부터 cytochrome c의 방출을 막아 마이토콘드리아 의존적 세포사멸을 방지한다 [41, 42, 43]. 이러한 점에 있어서, 본 연구진은 Bcl-xL 유전자가 transfect된 Jurkat cell (J/Bcl-xL)과 vector가 transfect된 J/Neo을 이용하여 DAS로 유도된 세포자살에 있어서의, Bcl-xL의 전위적인 과다발현 의 효과를 조사하였다. MTT assay에 의해 측정된 것처럼, DAS를 0.01 μM , 0.05 µM, 0.1 µM 농도로 처리한 J/Bcl-xL의 경우 각각 85.8%, 80.3%, 78.7% 인 반면에 J/Neo cell의 생존율은 각각 69.8%, 50.8%, 43.9%였다. 이 사실은 DAS의 세포독성에서 Bcl-xL의 억제적인 효과를 설명한다 (Fig 10.2.16). 이러 한 조건 하에서, 0.01 $_{\mu M}$ 에서 0.1 $_{\mu M}$ 의 DAS 농도는 J/Neo cell에서 농도 의 존적으로 apoptotic DNA 단편화를 유도할 수 있다. 그러나 J/Bcl-xL cell에서 는 DNA 단편화 유도에 실패하였다 (Fig 10.2.17). 이와 유사하게 flow cytometry 분석에서 J/Neo cell에서의 apoptotic subG 1 peak는 처리한 DAS 의 양에 비례하여 증가된다. 이와 대조적으로, subG 1 peak는 J/Bcl-xL cell에 서는 감지되지 않았다. 동시에, J/Bcl-xL cell의 G₁기의 수준이 DAS가 0.01 uM 존재하는 상태에서 증가함을 나타내더라도, J/Bcl-xL cell의 세포주기분포 는 0.05 uM 혹은 0.1 uM의 DAS 존재하에서 눈에 띄게 변화하지는 않았다. DAS를 처리하지 않은 control cell과 비교하였을 경우 (Fig 10.2.18), 이러한 결과는 비록 DAS에 연관된 apoptotic DNA 단편화가 외재적인 Bcl-xL의 과 다발현에 의해서, 완벽하게 차단이 되더라도, MTT assay에 의해 측정된 DAS의 세포독성은 과다발현 된 Bcl-xL 에 의해 완전하게 저해되지는 않는 다. 이것은 DAS에 연관된 세포주기 진행의 중단이 역시, DAS의 세포독성효 과에 기여할 수 있다는 것을 제안한다. 그 결과로서, DAS 유도성 apoptotic DNA 단편화에 의해 동반되는 세포생화학적인 기작은 J/Neo와 J/Bcl-xL사이 에서 Western blot 분석에 의해 비교되었다. Western blot 분석은 Bcl-xL의 과다발현에 의해 이 기작이 억제되어질 수 있는지 아닌지 검증하기 위한 것이 다. Fig 10.2.19에서 볼 수 있듯이, J/Bcl-xL cell은 J/Neo cell에 비해, 주목할 만큼, 높아진 Bcl-xL protein 의 level이 발현될 수 있었다. 계속적으로 성장하 는 J/Neo cell에서는 감지되지 않는 세포질성 cytochrome c의 수준이 0.01 ₩에서 0.1 ₩M 범위의 DAS 존재하에서는 농도 의존적으로 증가될지라도, 이것은 완벽하게 Bcl-xL의 전위적인 과다발현에 의해 방해받는다. 이것은 세

- 103 -

포자살 기작을 유도한다. 이러한 세포자살기작은 FLIP의 하향조절, caspase-8 활성화, Bid절단, caspase-9, -3의 활성화, J/Bcl-xL cell에서 역시 완벽하게 저해되는 PARP 분해를 포함하는데, 이 기작은 J/Bcl-xL cell 에서 역시 완전하게 저해되어진다. 이것은 Bcl-xL 연관된 caspase-8 활성화와 마이 토콘드리아 cytochrome c 방출의 저해는 DAS로 유도된 세포자살 기작을 방 해하는데 충분함을 나타낸다. 그러나, DAS 연관된 cdk4와 cyclin B1의 하향조 절은 과발현된 Bcl-xL이 존재하는 상태에도 불구하고 일어난다 (Fig 10.2.20).

이것은 cdk4와 cyclinB1의 하향조절이 Bcl-xL의 과발현에 의해 방해받지 않음을 나타낸다. Bcl-xL의 전위적 과발현에 의해 방해받는, DAS 유도성 세 포자살의 조건하에서 일어나는 세포주기 진행에의 DAS의 더 나아간 효과를 알아보기 위해서, J/Bcl-xL cell은 0.05 $_{\mu M}$ 의 DAS를 48 시간 처리하고, trypan blue 염색 후, 생존한 세포의 수를 측정한다. J/Bcl-xL cell의 초기 세 포수 (0.3 ×10 ⁶/ml)는 DAS 없이 48 시간 처리 후, 1.25 ×10 ⁶/ml로 증가하였 다. 이것은 세포가 세포 주기를 2주기 끝낼 수 있음을 알려준다. (Supplementary material 1) 그러나 0.05 @에 DAS가 존재할 때, J/Bcl-xL cell의 초기 세포수는 DAS 노출 후 12 시간에 1.2배까지 증가되었다. 그 후, 세포수는 48 시간까지 유지된다. Flow cytometric analysis 는 세포주기분포에 서 두드러진 변화도, apoptotic sub-G1 peak도 감지되지 않음을 보여준다. 이 것은 세포 주기의 G /S 와G /M transition모두, 0.05 μ M DAS의 존재하에서 동시에 저해될 것임을 알려준다. 결과적으로, 현재의 결과, DAS 유도적인 caspase 활성화와 마이토콘드리아 cytochrome c 방출이 Bcl-xL에 의해 음성 적으로 조절되고, apoptosis 유도에 결정적이라는 것을 설명한다. 이 결과는 역시 DAS 연관된 cdk4와 cyclinB1의 감소, J/Bcl-xL cell의 G1/S와 G2/M transition 에서의 세포 주기 진행의 억제를 유발하고, 그래서 J/Bcl-xL cell의 세포주기분포가 0.05 uM DAS처리 후, 48 시간 동안 세포 주기의 특정 단계 에서 축적됨이 없이, 일정하게 유지된다는 것을 나타낸다.

Fig 10.2.16. Effect of DAS on cell viability in Jurkat T cells transfected with Bcl-xL gene (J/Bcl-xL) or vector (J/Neo). J/Bcl-xL cells or control (J/Neo) cells were incubated at a density of 5 x 10 $_4$ /well with various concentrations of DAS in 96-well plates for 14 h and the final 4 h were incubated with MTT to assess cell viability.

Fig 10.2.17. Effect of DAS on apoptotic fragmentation in Jurkat T cells transfected with Bcl-xL gene (J/Bcl-xL) or vector (J/Neo). J/Bcl-xL cells or control (J/Neo) cells were incubated with various concentrations of DAS for 14 h and processed to analyze apoptotic DNA fragmentation.

Fig 10.2.18. Effect of DAS on cell cycle distribution in Jurkat T cells transfected with Bcl-xL gene (J/Bcl-xL) or vector (J/Neo). J/Bcl-xL cells or control (J/Neo) cells were incubated with various concentrations of DAS for 14 h. To investigate apoptotic change in cell cycle distribution, the cells were fixed with cold ethanol, stained with propidium iodide, and an equal number of cells ($2 \times 10 4$) were analyzed by flow cytometry.

Fig 10.2.19. Western blot analysis of Bcl-xL, FLIP, caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, caspase-9 activation, caspase-3 activation, PARP cleavage, and β -actin in J/Neo or J/Bcl-xL cells after treatment with various concentrations of DAS. The cells (5 x 10⁶) were incubated at a density of 5 x 10 s/ml with indicated concentrations of DAS for 14 h and prepared for cell lysates. Western analysis was performed as described in Materials and Methods.

Fig 10.2.20. Western blot analysis of the expression levels of cdk4 and cyclin B1, and β -actin (B) in J/Neo or J/Bcl-xL cells after treatment with various concentrations of DAS. The cells (5 x 10⁶) were incubated at a density of 5 x 10 s/ml with indicated concentrations of DAS for 14 h and prepared for cell lysates. Western analysis was performed as described in Materials and methods.

자. Pan-caspase inhibitor z-VAD-fmk, caspase-8 inhibitor z-IETD-fmk, 혹은 Jurkat T cell에서의 DAS 유도성 자살신호에서의 CsA의 효과.

더 나아가 DAS유도성 세포자살 기전에 대한 death signaling pathway를 명확히 하기 위해서, 본 연구진은 pan-caspase inhibitor (z-VAD-fmk)의 효 과를 실험했다. Pan-caspase inibitor는 넓은 범위의 caspase[44], caspase-8 inhibitor (z-IETD-fmk)[45], Jurkat T cell에서 DAS 유도성 세포자살 기작에 서의 마이토콘드리아 투과성 저해제 (CsA)[46]를 저해하는 것으로 알려져 있 다. Jurkat T cell에 individual caspase inhibitor를 50 µM 농도로 혹은, 2.5 µ M농도 CsA를 2시간 전처리한 후, 세포를 0.15 M DAS에 16시간 노출시켰다. Flow cytometric analysis에 의해 관찰된 것처럼, DAS에 의해 유도된 sub-G, peak는 z-VAD-fmk 혹은 z-IETD-fmk에 의해 완전히 사라진다. Sub-G, peak가 CsA 에 의해 부분적으로 감소되는 것과는 달리 (Fig 10.2.21), 이러한 조건 아래에서, Western blot 분석은 caspase-8, -9, -3의 활성화, Bid의 절 단, PARP 분해만이 부분적으로 감소되었다 (Fig 10.2.22). 이 결과는 DAS 유 도성 caspase-8 활성화와 Bid 절단이 마이토콘드리아 cytochrome c 방출의 상위기작이고, 차례로 caspase-9과 3를 활성화시키고 PARP 분해를 일으킨다. 그리고 마이토콘드리아 ctochrome c 방출과 독립적으로 caspase-8 활성화의 하위 기작으로 caspase-9 과 3 역시 활성화됨을 설명한다.

결론적으로 Jurkat T cell 에서는 apoptotic DNA 단편화를 일으키는 DAS 유도성 세포자살신호경로가 caspase-8 활성화에 의해 유도되어지고,

- 108 -

caspase-9과 3 의 마이토콘드리아 cytochrome c 의존적 혹은 독립적인 활성 화에 의해 완성됨을 나타낸다.

Fig 10.2.21. Apoptotic change in the cell cycle distribution. Jurkat T cells (E6.1) were preincubated at a density of 5 x 10 $_{5}$ /ml in the presence of VAD, IETD, or CsA for 2 h and then treated with 0.15 μ M DAS for 16 h. After the cells were harvested, the analysis of cell cycle distribution was performed on an equal number of cells (2 x 10 $_{4}$) by flow cytometry after staining of DNA by propidium iodide.

Fig 10.2.22. Western blot analysis of capase-8 activation, caspase-9 activation, caspase-3 activation, cleavage Bid and PARP, and β -actin in Jurkat T cells after treatment with DAS in the presence of VAD, IETD, or CsA (B). Jurkat T cells (E6.1) were preincubated at a density of 5 x 10 s /ml in the presence of VAD, IETD, or CsA for 2 h and then treated with 0.15 μ M DAS for 16 h. Western analysis was performed as described in Materials and Methods.

이상의 결과를 요약하면 다음과 같다. Type A trichothecene mycotoxin에 속하는 diacetoxyscirpenol (DAS)의 세포독성이 0.01~0.15 μM의 낮은 농도에 서, human Jurkat T 세포에 대해 세포자살 뿐만 아니라 세포주기의 정지를 일으킴을 증명하였다. 비록 0.01 μM의 DAS는 Jurkat T 세포에서 JNK/p38 kinase와 caspase-3의 활성화 경로를 통한 세포자살을 유발한다고 알려진 10 μM의 DAS와 달리 세포괴사를 유도한다는 보고가 이미 있었지만 [47, 48], 본 연구진의 이번 연구에서 세포자살의 특징인 apoptotic DNA fragmentation 뿐 아니라 유세포분석기를 통하여 세포자살 중인 세포에 나타나는 subG1 피크를 0.01 µM의 DAS를 처리한 Jurkat T 세포에서 관찰할 수 있었다. 이 두가지의 세포자살의 현상은 DAS를 0.01에서 0.15 μM 의 농도범위로 처리하였을 때, 농 도 의존적으로 증가되었다. 같은 조건에서의 Western blot 분석은 낮은 농도 에서도 유도되는 DAS에 의한 세포자살에서 마이토콘드리아 cvtochrome c 방 출과 이어지는 caspase-9와 caspase-3의 활성화, 그리고 PARP의 분해가 DAS에 농도의존적으로 증가되고 활성형의 caspase-8의 증가와 Bid의 감소와 도 일치함을 보여주었다. Bid의 감소는 활성형의 caspase-8에 의한 Bid의 분 해의 결과 DAS에 매개된 마이토콘드리아 cytochrome c가 세포질로 방출되는 데 중대한 역할을 하는 truncated Bid (tBid)로의 변환으로 추측할 수 있다. 동시에 caspase-8의 활성화를 저해하고 [49] caspase-8에 연관하여 분해되어 감소되는 것으로 [50] 알려진 FLIP의 수준은 활성형의 caspase-8의 수준이 증 가함에 반비례하여 감소하는 것으로 나타났다. 그러나 Jurkat T 세포에 DAS 를 처리하여 Fas와 FasL의 수준은 증가하지 않았다. 이것은 DAS에 의해 유 도된 세포자살과정은 Fas/FasL system을 배제함을 나타낸다. 비록 Jurkat T 세포에 대한 10 μM 의 높은 농도의 DAS 처리가 JNK/p38의 활성화와 번역의 저해를 통해 세포자살을 유도한다고 이미 보고되었지만 , 0.01 uM에서 0.15 μM의 낮은 농도 DAS 처리시 JNK와 p38의 인산화 변화가 없다는 사실은 주 목할 만한 것이다 (data not shown). 이상의 결과들은 FLIP의 감소와, caspase-8의 활성화, 그리고 이어지는 Bid의 tBid로의 분해가 DAS로 유도되 는 마이토콘드리아 cytochrome c 방출의 상류에 있음을 제시한다. 반면에 G_1 과 G₂/M의 세포는 DAS를 처리한 후 S기의 세포보다 더 빨리 세포자살을 거치는 것으로 나타났다. DAS로 유도된 마이토콘드리아 cytochrome c의 방 출과 caspase의 활성화와 같은 생화학적 현상과 세포주기상의 변화가 DAS에 의해 유도된 세포자살에 필요함을 anti-apoptotic 단백질인 Bcl-xL을 과별현한 Jurkat T cell clone (J/Bcl-xL)을 사용하여 재확인한 결과 Bcl-xL의 과발현은 FLIP의 감소와 caspase-8의 활성화, Bid의 분해, 마이토콘드리아 cytochrome c의 방출, caspase-9, -3의 활성화, 그리고 PARP의 분해와 같은 세포자살현상 을 완벽하게 차단했다. Bcl-xL 단백질이 마이토콘드리아 cytochrome c 방출 뿐만 아니라 caspase-8의 활성화를 저해하는 것으로 알려졌기 때문에 [51, 52, 53], 이들 결과들로 DAS 매개 세포자살의 생화학적 현상들이 caspase-8의 활 성화와 cytochrome c의 방출 같은 두 주요 사건을 통해서 개시되는 것과 Bcl-xL의 과발현에 의해서 완화되어지는 것을 보여주었다. DAS에 의한 cdk4 와 cyclin B1의 감소가 Bcl-xL의 과발현으로 회복되지 못하였음에도 MTT

- 111 -

assay를 통한 DAS의 세포독성은 Bcl-xL의 과발현으로 완전히 차단되지 않은 결과는 매우 주목할 만하다. J/Bcl-xL cells은 20 시간 만에 세포주기를 한번 순환하기 때문에, J/Bcl-xL cells의 세포주기에 미치는 DAS의 효과를 조사하 기 위해 0.05 µM의 DAS를 처리한 세포를 48 시간 동안 배양하여 실험하였 다. 비록 J/Bcl-xL의 세포수가 DAS 부재시 개시점의 약 2.5배 증가하였지만, 0.05 µM DAS를 처리한 세포수는 사멸하는 subG₁ 세포나 세포주기상의 변 화 없이 거의 일정하게 유지되었다. 이 결과는 DAS (0.05 µM)가 cdk4와 cyclin B1 단백질의 감소를 통해서 J/Bcl-xL의 세포주기를 완전히 정지시켰음 을 확인해준다.

Caspase cascade를 위한 마이토콘드리아 cytochrome c의 방출에 필요할 뿐 아니라 DAS에 의해 촉발되는 세포자살 신호의 전달에 있어 caspases의 계층적 활성화를 결정하기 위해서 본 연구진은 pan-caspase 저해제인 (z-VAD-fmk), caspase-8 저해재인 (z-IETD-fmk), 그리고 마이토콘드리아의 막투과 저해제 (CsA)를 이용하였다. DAS로 유도된 caspase-8, -9, -3의 활성 화는 z-VAD-fmk 또는 z-IETD-fmk 존재시 완전히 억제되었다. 게다가, DAS로 유도된 caspase-8의 활성화는 CsA 유무에 영향을 받지 않은 반면에 마이토콘드리아 cytochrome c의 방출현상 하류에 있다고 알려진 caspase-9과 -3의 활성화는[54] 부분적으로 억제가 되었다. 이러한 결과들은 DAS로 유도 된 caspase-8의 활성화가 caspase-9, -3의 활성화에 필요한 마이토콘드리아 cytochrome c의 방출에 상위 신호임을 시사한다. 또한 DAS로 유도된 caspase-9, -3의 활성화가 caspase-8의 활성화를 통해서 직접 작용하여 마이 토콘드리아 cytochrome c의 방출에 독립적으로 유도될 수 있음을 시사하였다 [55].

결론적으로, 이상의 결과는 DAS의 T 세포 독성을 세포수준의 기전에 대 한 이해를 제공하고 in vivo에서 trichothecene 중독증에 대해 알려진 전형적 인 증상인 trichothecene 매개 면역 억제에 대한 통찰을 제공한다.

제11절 송이버섯 유래의 hydrophobins의 신기능 생리활성 규명

1. 연구수행 방법

가. PCR

tm1을 pET-3d vector에 cloning하여 단백질 발현을 유도하기 위하여 insert를 위한 PCR을 하기 위해 primers를 제작하였으며 그 서열은 forward primer (5'-TACCATGGTCCCTCGATTGTCATCT-3'), reverse primer (5'-AGGGATCCTCAAAGCTTGATTGTC-3')이다. tm2에 대해서는 forward primer (5'-GCCATGGTCATTCGTGCATTACTTC-3'), reverse primer (5'-GCGGATCCTTACAAACCAAGGGCA-3')이며, 10x buffer, dNTP mixture, polymerase는 INTRON 제품을 사용하였고, 반응은 94°C, 1 분 \rightarrow 5 5°C, 1 분 \rightarrow 72°C, 2 분 (30 cycles)로 하였다.

나. 형질전환

pET-3d vector에 *tm1*, *tm2*를 16℃에서 16시간 동안 ligation 시킨 후, CaCl₂ 를 이용하여 만든 BL21 competent cells과 함께 넣고 42℃에서 45 초 동안 heat shock을 준 다음 37℃에서 1 시간 동안 배양하여 Amp, chloramphenicol 내성을 가진 형질전환체를 선별하였다.

다. 단백질 발현 유도 조건

pET-3d/Tm 1, 2 재조합 DNA를 대장균 BL21에 형질전환하여 전날 colony를 접종한 것을 다음 날, 10 ml LB 배지에 100 ul를 접종하고 OD 0.4-0.6에 이르기까지 키운 후, IPTG를 0.3 mM로 첨가하여 37 ℃에서 3 시간 동안 단백질 발현을 유도하였다. 또한 IPTG 농도에 따른 단백질 발현을 유도 하기 위하여 OD 0.4-0.6에 이르기까지 키운 후, IPTG를 0.1, 0.4, 0.5 mM로 첨가하여 마찬가지로 37 ℃에서 3 시간 동안 단백질 발현을 유도하였다.

라. SDS-PAGE

단백질 발현을 유도한 배양액을 원심분리하여 세포를 회수하고 PBS로 2회 wash한 다음, total 샘플을 미리 덜어두고, 세포를 파쇄하여 상등액과 pellet를 분리하였다. 이렇게 준비된 total, 상등액, pellet samples을 13% SDS-polyacrylamide gel에 전기영동한 후 Coomassie blue 염색으로 단백질

- 113 -

발현 유무를 확인하였다.

2. 연구내용 및 결과

대장균에서 송이버섯의 hydrophobin 유전자를 과발현시키기 위하여 pET-3d 과발현 벡터(Fig 11.1.1. Novagen)의 Nco I/ Bam HI site에 hydrophobin 유전자 tm 1 (363 bp), tm 2 (359 bp)를 삽입하여 재조합 DNA 를 만들고, 이 plasmid를 대장균에 형질전환 하였다 (Fig. 11.2.2, Fig. 11.2.3). insert가 삽입된 것을 Nco I/ Bam HI 효소 처리로 확인하였으며 (Fig. 11. 2. 4, Fig. 11. 2. 5), ORF의 맞게 정확한 위치에 삽입되었는지 확인을 위해 염기 서열을 분석하였으며, 재조합 DNA가 제대로 만들어진 것을 확인하였다 (Fig. 11. 2. 6, Fig. 11. 2. 7). 확인된 clone을 host cells인 대장균 BL21에 넣고 0.3 mM IPTG 첨가로 hydrophobin 단백질 Tm 1, Tm 2의 발현을 유도한 후, 세 포를 파쇄하여 분리한 상등액과 pellet을 Total samples과 함께 13% SDS-PAGE gel에 전기영동하고 단백질의 발현 유무를 관찰하였다 (Fig. 11. 2.8, Fig. 11.2.9). IPTG 농도별에 따른 단백질의 발현 유무 또한 살펴보고자 IPTG농도를 0.1, 0.4, 0.5 mM로 변화를 주어 단백질 발현을 유도하였으나 전 혀 나타나지 않았다(Fig 11.2.10). nucleotide 수에 의해 추정되는 단백질의 size는 약 11 kDa이며, hydrophobin gene tm 1과, tm 2 의 cloning은 sequencing 의뢰를 통하여 제대로 insert가 삽입된 것을 확인하였으나 대장균 BL21에서 IPTG에 의해 유도되는 hydrophobin 단백질의 발현은 확인할 수 없 었다.

- 114 -

Fig 11.2.1. The map of pET-3d vector

TM 1 cDNA sequence: 363 bp

ATGTTCCC TCGATTGTCA TCTTTTTGCTT GCTCGCCGTCG GTGTCCTACCC GTTCTTGC AGCCGCCA GTGCAGTTCC GCGCACTGACT CTCCCGTCAAC CAATGCAACAC TGGTCCTA TCCAATGC TGCAACTCTG TTCAGGACCCCA AAGAACCCAGT GCTCAACCCTC TTCTCGGC TTGTTGGG CATCGTGGTT GGACCCCATCAC TGGCCTCGTTG GGTTGAATTGC GCTCCTAT CAGCGTCA TCGGCACCGG AGACACCTCTT GCACCTCGCAT ACAGTCTGTTG CAGCAATA ATCAATATAATGG CTTGATCAACTTTGGTTGC TCGCCCCACGACAATCAAGC TTTGA

Tm 2 cDNA sequence: 359 bp

ATGCTCAT TCGTGCATTACTTCTTGCACT TGCCTCAGCGC TCGCCATTCCC ATGCTGGC AGTCGCCAGCCCTGCTCC AGCGGCGCCCCACATTTCCACCCGCATGCAACAC TGGTACAA CTCAATGC TGTGAGTCGG TACACAAGCCT GGAGATACCTATCTCCAGTCTC TCAGTCCT CAGCTTGT GGCCGCCCTC ACTTCTGTCAA AGTTCCCGTCG GGGTGAACTGC TCCCCAAT CAGCGTTC TTGGAGGAGG CAACCATTGCACCCAACAAACG GTTTGCTGCAC TGACAACC ACTTCAACGGCCT GATTGCTATTGGCTGCACACCTATTGCCCTTGGTTTGT AA

Fig. 11.2.2. The nucleotide sequence of hydrophobin genes *tm1*, *tm2* of *Tricholoma matsutake*

Fig. 11.2.3. Polymerase chain reaction (PCR)-based amplification of the tm

- 115 -

1 and tm 2 genes with cDNA of Tricholoma matsutake.

Fig. 11.2.4. Recombinant plasmid was purified from *E. coli* transformants harboring tm 1/pET-3d and confirmation of their insertion into pET-3d plasmid by restriction enzyme *NcoI* and *BamHI*.

Fig. 11.2.5. Recombinant plasmid was purified from *E. coli* transformants harboring *tm* 2/pET-3d and confirmation of their insertion into pET-3d plasmid by restriction enzyme *NcoI* and *BamHI*.

Fig. 11.2.6. The analysis of nucleotide sequence of tm hyd 1-2/pET-3d/DH5a clone

Fig. 11.2.7. The analysis of nucleotide sequence of *tm hyd* 2-1/pET-3d/DH5a clone

* T: Total cell lysate, S: Supernatant, P: Pellet

Fig. 11.2.8. Electrophoresis of total cell lysate, supernatants, pellet isolated from the *E. coli* transformant harboring tm 1/pET-3d on 13% SDS-PAGE gel.

* T: Total cell lysate, S: Supernatant, P: Pellet

Fig. 11.2.9. Electrophoresis of total cell lysate, supernatants, pellet isolated from the *E. coli* transformant harboring tm 2/pET-3d on 13% SDS-PAGE gel.

* S: Supernatant, P: Pellet

Fig 11.2.10. Effect of IPTG concentration on the production of TM1 protein.

제12절 대량추출 및 드링크제조공정 확립

1. 연구수행방법

가. 재료

본 연구에 사용한 버섯 중 송이버섯은 경북 봉화에서 구입하였고, 표고버섯 은 경북 왜관에서 구입한 것을 재료로 하여 일부는 -70℃ deep freezer(Sanyo, Japan, HDF-382)에서 냉동보관하고, 나머지는 50℃ dry oven(Han Baek, Korea, HB-502M)에서 열풍건조 후 포장하여 저장하면서 사 용하였다.

나. 일반성분 분석

수분과 회분 함량은 AOAC법에 준하여 105℃ 상압건조법과 직접회화법을 각각 사용하여 측정하였다. 조단백질은 자동질소분해증류장치(Kjedahl automatic distillation unit, J. P. Selecta. s. a. Co., Spain)에 의해, 조지방은 용매자동회수지방추출장치(Del-gras, J.P. Selecta. s. a. Co., Spain)를 사용하 여 측정하였다.

다. 무기성분분석

무기성분은 시료를 건식분해한 후 일정량을 취하여 0.45 µm membrane filter 로 여과 후 원자흡광분광기(Analyst 100/300 Atomic absorption spectrometer, Perkin-Elmer Co., USA)를 이용하여 Table 12.1.1과 같이 목적하는 무기성분 의 분석조건에 따라 검량선을 작성하고 이를 토대로 시험용액을 분석하였다.

Condition	Ca	Fe	Κ	Mg	Mn	Na	Zn
Wave length (nm)	422.7	248.3	766.5	285.2	279.5	589.0	213.9
Acetylene flow rate (l/min)	3	3	3	3	3	3	3
Air flow rate (l/min)	10	10	10	10	10	10	10
Slit width	0.7	0.2	0.7	0.7	0.2	0.2	0.7

Table 12.1.1. The conditions of atom absorption spectrophotometer for determination of inorganic components in *Tricholoma matsutake* and *Lentinus edodes*

라. 추출조건의 최적화

1) 표면단백질 추출조건 최적화

송이버섯과 표고버섯에 함유된 표면단백질의 추출조건 최적화를 위하여 에 탄올의 농도를 0, 20, 40, 60, 80, 100%로 달리하여 추출한 후 SDS-PAGE를 실시하였다. 표면단백질의 추출은 건조된 송이버섯과 표고버섯을 분쇄한 뒤 에탄올 용매를 가하여 교반하고, 원심분리한 후 상등액을 4℃의 물에서 투석 하고, 원심분리하여 상등액을 동결건조 하고, 동결건조물에 1 M NaCl을 함유 한 0.05 M Na/phosphate buffer에서 5분간 혼합한 후 실온에서 10,000 g에서 1시간 원심분리하여 pellet 에3 ml 의 1 M NaCl buffer로 한번 씻은후 2 ml의 80% ethanol로 2회, chroloform/methanol(2:1)로 두 번 씻은 후 건조하였다. 이 를 전기영동하여 각각의 표면단백질을 확인하였다.

2) 효능 성분 추출조건 최적화

버섯의 주효능 성분이라고 할 수 있는 다당체의 한 종류인 β-glucan 성분의 추출조건 확립을 통하여 버섯에서 최대한의 유용성분을 효율적으로 얻을 수 있도록 하였다. 추출조건의 최적화를 위하여 반응표면분석법(response surface methodology, RSM)을 이용하였고, 추출조건에 대한 실험계획은 중심합성계획 을 실시하여 추출공정에서 중요한 독립변수(X_i)로서 침전시 ethanol 농도(X₁), 추출시간(X₂), 추출온도(X₃)에 대한 실험범위를 설정하여 각각을 5단계로 부호

- 121 -

화하였으며(Table12.1.2), 중심합성계획에 따라 16구로 설정하여 추출실험을 하 였다. 또한 이들 독립변수에 영향을 받은 종속변수(Yn)로 ⊮-glucan함량(Y₁), Total polysaccharide weight(Y₂) 등을 측정하여 그 값을 회귀분석에 사용하였 다. 또한 추출조건이 송이버섯과 표고버섯의 효능성분 함량에 미치는 영향을 예측된 모델식을 바탕으로 Mathematica program을 이용하여 4차원 반응표면 분석으로 해석하였다.

Table 12.1.2. Experimental design of *p*-glucan conditions for *Tricholoma matsutake* and *Lentinus edodes*

Extraction conditions	-2	-1	0	1	2
X1 Ethanol concentration(%)	50	60	70	80	90
X2 Extraction time(hr)	1	2	3	4	5
X3 Extraction	60	70	20	00	100
temperature(°C)	60	70	80	90	100

Fyperiment	E	xtraction conditions	
numbor ¹⁾	Ethanol ²⁾	Extraction time(hr)	Extraction
	concentration(%)		temperature($^{\circ}C$)
1	1(80)	1(4)	1(90)
2	1(80)	1(4)	-1(70)
3	1(80)	-1(2)	1(90)
4	1(80)	-1(2)	-1(70)
5	-1(60)	1(4)	1(90)
6	-1(60)	1(4)	-1(70)
7	-1(60)	-1(2)	-1(70)
8	-1(60)	-1(2)	-1(70)
9	0(70)	0(3)	0(80)
10	0(70)	0(3)	0(80)
11	2(90)	0(3)	0(80)
12	-2(50)	0(3)	0(80)
13	0(70)	2(5)	0(80)
14	0(70)	-2(1)	0(80)
15	0(70)	0(3)	2(100)
16	0(70)	0(3)	-2(60)

Table 12.1.3. Central composite design for the optimization of extraction condition for *Tricholoma matsutake* and *Lentinus edodes*

¹⁾The number of experimental condition by central composite design.

²⁾ The final concentration of ethanol for β -glucan precipitation

마. 유효성분 함량분석

▶-glucan 함량의 분석은 변형된 ICC Standard method(No.168)을 사용하였으며, 위의 중심합성계획법의 조건에 따라 추출한 버섯추출액에 ethanol 농도 가 50~90%가 되도록 95% ethanol을 가한 후 다당류 침전을 위해 4℃, 12시 간 저장 후 7,000 rpm, 5분간 원심분리하여 다당류 동결건조를 실시하였다. 분석시 사용한 효소로는 Lichenase(Sigma, USA.)와 ▶-glucosidase(Sigma, USA.)이었으며, 아래와 같은 식을 이용하여 ▶-glucan의 함량을 분석하였다.

$$\beta$$
-glucan, (%, w/w) = \Delta \mathbf{E} \times \mathbf{F} \times 94(\text{or } 64) \times \frac{1}{1000} \times \frac{100}{w} \times \frac{162}{180}
$$= \Delta \mathbf{E} \times \frac{F}{W} \times 8.46(\text{or } 5.76)$$

· 业 = β-glucosidase 처리구 흡광도 - blank 흡광도

 \cdot F = 100(µg of glucose) / GOPOD absorbance for 100 µg of glucose

 \cdot 94 = volume correction factor(0.1 ml out of 9.4 ml was analysed for cereal samples).

 \cdot 64 = volume correction factor(0.1 ml out 6.4 ml was analysed for cooked, toasted and extruded cereal products)

 \cdot W = weight sample analysed

 $\cdot\,162/180$ = a factor to convert from free glucose, as determined, to anhydro glucose, as occurs in $\beta\text{-glucan}$

바. 송이, 표고버섯의 대량추출방법 확립

음료 및 농축 다류, 엑스제품의 생산 효율성을 극대화시키기 위하여 버섯의 손질 및 건조, 건조수율, 추출공정의 최적화를 꾀하였다. 버섯의 폐기율은 버 섯의 전체무게에 대한 손질 후 무게의 백분율(%)로 나타내었고, 이는 제품 제 조시 원료량 산출에 있어 중요한 요소가 된다. 건조 후 얻을 수 있는 송이버 섯과 표고버섯의 함량은 전체 무게에 대한 건조 후의 무게 비율로 계산하여 % 로 수율을 나타내었다. 송이와 표고버섯의 추출용매는 식품제조시 가장 많 이 사용되는 일반적 용매인 물을 사용하였고, 추출온도 및 시간은 p-glucan 효능성분의 추출최적화에 따른 조건에 따라 실험을 행하였다.

1) 송이/표고버섯 원료의 폐기율

원료의 폐기율(%) = <u>폐기부분의무게</u> 전체원료무게 × 100

2) 송이/표고버섯의 건조수율

송이버섯과 표고버섯의 건조수율은 생송이와 생표고버섯을 손질한 후 50℃

- 124 -

dry oven(Han Baek, HB-502M)에서 건조하여 원래의 무게에 대한 건조 후의 무게 비율의 백분율을 건조수율(%)로 하였다.

3) 송이/표고버섯의 대량추출

송이와 표고버섯의 추출용매는 식품제조시 가장 많이 사용되는 일반적 용매 인 물을 사용하였고, 추출온도 및 시간은 ௺-glucan 효능성분의 추출최적화에 따른 조건을 제조공정의 현실에 맞게 적용하였다.

사. 추출물의 안정성 검토

추출조건에 따라 각각 추출한 송이버섯과 표고버섯 추출액을 4℃, 10℃, 2 0℃에서 2개월간 저장하면서 ▶-glucan 함량 정도를 조사하여 저장기간에 따 른 효능성분의 안정성을 검토하였다.

아. 송이, 표고버섯의 시제품 제조

생리활성물질의 기능성에 맞는 용도를 개발하여 기능성 식품을 제품화 할 수 있는 가공기술을 개발 및 모색하고 다양한 소비자 요구를 충족시킬 수 있 는 여러 형태의 제품을 개발하여 시제품을 생산하고자 하였다. 시제품 내용으 로는 버섯원료, 버섯 추출물 등을 원료로 송이와 표고버섯 드링크, 농축다류, 엑스제품을 개발하고자 하였다.

자. 추출물 함유 음료 제품의 formulation 확립

본 실험에서는 송이버섯과 표고버섯의 효능성분을 함유한 엑스, 농축다류, 음료를 제조하기 위하여 각 버섯의 추출물의 첨가량과 기타 부재료의 선정 및 최적 배합비를 결정하였다.

- 125 -

차. 음료 및 엑스의 살균 및 저장 실험

음료 및 엑스의 살균은 가열살균법으로 하여 일정한 온도(90℃)의 열중탕에 서 15, 20, 25, 30 및 35분간 실시하였고 살균된 음료를 각각 병과 파우치에 담아 밀봉하여 냉각 후 제품으로 하였다. 살균된 음료와 엑스의 저장성 실험 은 37℃ 항온기에 보관하면서 저장기간 7, 14, 21 및 28일 동안의 총균수를 측 정하여 실시하였다. 또한 총균수는 음료 1ml를 채취하여 0.85% 멸균식염수에 단계적으로 희석한 후 1 ml씩 pouring culture method로 plate count agar 배 지에 접종한 후 30℃에서 48-72시간 평판 배양한 후 균수를 측정하였다.

카. 음료/엑스 제조공정의 확립

송이/표고버섯의 음료 및 엑스 제조를 위하여 필요한 공정인 초기 손질 및 세척(이물제거), 추출, 농축, 건조 저장, 살균, 냉각 등 제조시 요구되는 각 과 정을 선택하고 효율적인 버섯 음료를 위한 제조공정을 각 단계별로 선정하여 배열하고 도식화 하였다.

2. 연구내용 및 결과

가. 추출 및 제조공정

송이/표고 성분함유 천연물의 추출방법 확립 및 추출조건 최적화
송이/표고의 일반성분

생송이 버섯을 -70℃에서 급속동결하여 보관하던 것을 해동 후 표면물기를 제거한 것과 50℃ dry oven에서 건조한 송이버섯과 표고버섯의 일반성분을 각각 조사하였다. 그 결과(Table 12.2.1), 냉동 송이 버섯의 경우 수분 함량이 90.05%, 단백질 1.80%, 지방 0.22%, 회분 0.72%, 탄수화물 7.21%로 나타났다. 건조된 송이버섯의 갓, 대부분과 건조표고버섯의 전체부분의 일반성분은 수분 함량 8.24~10.97%, 단백질 16.30~18.84%, 지방 1.83~2.52%, 회분 6.08~ 7.19%, 탄수화물 56.8~67.09%로 나타났으며 수분을 제외한 일반성분의 함량 은 탄수화물, 단백질, 회분, 지방 순으로 함량이 높았다. 정 등이 보고한 dry basis로 단백질은 18.83%, 회분함량 8.4%, 지방 2.8%와 비슷한 결과를 나타내 었다.

					(unit: %)
	Cabohydrate (%)	Moisture (%)	Crude Protein (%)	Crude fat (%)	Ash (%)
Pine-mushroom pileus ¹⁾	60.48	10.97	18.84	2.52	7.19
Pine-mushroom stipe ¹⁾	67.09	8.24	16.30	2.16	6.21
Frozen pine-mushroom(total)	7.21	90.05	1.80	0.22	0.72
Oak mushroom(total) ¹⁾	56.8	9.85	17.29	1.83	6.08

Table 12.2.1. Proximate composition of *Tricholoma matsutake* and *Lentinus* edodes

¹⁾ dry basis

나) 송이/표고의 무기성분

송이버섯과 표고버섯의 미량금속원소 7종을 실험분석하여 Table 12.2.2와 같 은 결과를 얻었다. 송이버섯의 무기질 함량은 부위별로 약간의 차이가 있으나 거의 비슷한 함량이 포함되어 있었고 송이버섯과 표고버섯의 무기질함량은 건 조된 버섯을 기준으로 kg당 Ca은 48.9~70.5 mg, Fe은 19.7~41 mg, K은 1350~1740 mg 함유되어 있었고, 또한 Mg은 50.4~143.1 mg, Mn 1.04~1.70 mg, Na의 경우 76.3~107 mg이었으며, Zn은 kg당 0.47~0.99 mg 함유되어 있는 것으로 나타났다. 분석한 무기성분 중 송이버섯과 표고버섯은 K의 함유 량이 가장 높았으며 Zn의 함량이 가장 낮게 나타났다. 송이버섯과 표고버섯에 함유된 무기성분의 함량 순서는 다음과 같다. 각 버섯에 함유된 무기성분의 함량은 송이 갓 부분의 경우 K, Mg, Na, Ca, Fe, Mn, Zn, 송이 대는 K, Na, Ca, Mg, Fe, Mn, Zn, 송이버섯 전체는 K, Na, Mg, Ca, Fe, Mn, Zn, 표고버섯

	Pine-	Pine-	Pine-	Oak mushroom
	mushroom	mushroom	mushroom	(total)
	pileus	stipe	(total)	(total)
Ca	48.9	54.7	50.91	70.5
Fe	41	34.2	37.9	19.7
Κ	1740	1670	1720	1350
Mg	93.4	50.4	80.23	143.1
Mn	1.19	1.04	1.15	1.70
Na	76.3	107	86.57	105
Zn	0.99	0.47	0.83	0.6

Table 12.2.2. Mineral composition of *Tricholoma matsutake* and *Lentinus* edodes

(dry basis, mg/kg)

다) 표면단백질 추출 최적화

(1) 송이, 표고버섯의 표면단백질 확인

송이버섯과 표고버섯에 존재하는 표면단백질의 확인을 위하여 표면단백질을 추출하여 동결건조한 분말 100 mg을 SDS-PAGE를 실시한 결과는 아래 Fig 12.2.1 및 Fig 12.2.2와 같이 나타났다. 약 24 kDa 범위의 송이 표면단백질이 Fig 12.2.1와 같이 확인되었으며, 희석비율이 높아짐에 따라 표면단백질이 점 차 옅어지는 양상이 관찰되었다. 표고버섯의 경우 표면단백질의 분자량이 약 40 kDa으로 표고버섯 동결건조분말 100 mg으로 SDS-PAGE를 실시한 결과 표면단백질이 선명하게 확인이 되었으며, 희석배수를 높일수록 점차 희미해지 다가 2.657 ug/ul의 농도에서는 육안적으로 확인이 되지 않는 것으로 나타났 다.

1 : 20 kDa Marker, 2 : 송이 표면단백질의 희석 원액 25 ul (80 ug/ul)

3 : 송이 표면단백질의 1/2배 회석 25 ul (40 ug/ul), 4 : 송이 표면단백질의 1/4배 회석 25 ul (20 ug/ul)

5 : 송이 표면단백질의 1/8배 회석 25 ul (10 ug/ul), 6 : 송이 표면단백질의 1/16배 회석 25 ul (5 ug/ul)

7 : 송이 표면단백질의 1/32배 회석 25 ul (2.5 ug/ul), 8 : 송이 표면단백질의 1/64배 회석 25 ul (1.25 ug/ul)

Fig 12.2.2. 표고의 표면단백질(약 40 kDa) 농도 (원액 : 동결건조한 표고 100

mg+0.05 M Phosphate Buffer 100 ul)

1 : 20 kDa Marker, 2 : 표고 표면단백질의 희석 원액 25 ul (85 ug/ul)

3 : 표고 표면단백질의 1/2배 회석액 25 ul(42.5 ug/ul), 4 : 표고 표면단백질의 1/4배 회석액 25 ul (21.25 ug/ul) 5 : 표고 표면단백질의 1/8배 회석액 25 ul (10.625 ug/ul), 6 : 표고 표면단백질의 1/16배 회석액 25 ul (5.313 ug/ul)

7 : 표고 표면단백질의 1/32배 희석액 25 ul (2.657 ug/ul)8 : 표고 표면단백질의 1/64배 희석액 25 ul (1.329 ug/ul)

- 129 -

(2) 표면단백질 추출조건 최적화

용매별 농도에 따른 표면단백질의 추출 특성을 살펴보기 위하여 에탄올 농 도를 0, 20, 40, 60, 80, 100%로 다르게 하여 각각 표면단백질을 추출한 후 전 기영동을 실시하여 각각의 패턴을 살펴본 결과는 아래 Fig 12.2.3 및 Fig 12.2.4와 같다. 송이버섯을 에탄올 농도별로 추출한 결과 에탄올 농도가 0%에 서 점차 높아질수록 송이의 표면단백질인 약 24 kDa 부근의 단백질의 함량도 높아지다가 에탄올 80% 이상이 되면 다시 옅어지는 양상으로 나타나 에탄올 농도 60%에서 표면단백질의 추출효율이 가장 높은 것으로 나타났다. 표고버 섯의 표면단백질을 에탄올 농도별로 추출한 결과는 아래 Fig 12.2.4와 같다. 약 40 kDa인 표고버섯의 표면단백질이 SDS-PAGE를 한 결과 확인이 되었으 며 송이버섯에서의 경우과 같이 에탄올 농도가 높아질수록 검출되는 양이 점 차 증가하여 60%일 때 표면단백질의 양이 최대가 되었다가 80% 이후부터는 다시 감소하여 에탄올 농도 100%에서는 확인이 되지 않는 것으로 나타났다.

Fig 12.2.3. 에탄올 농도를 달리하여 추출한 송이의 표면단백질(약 24 kDa)

1 : 20 kDa Marker, 2 : 용매 0% EtOH 25 ul, 3 : 용매 20% EtOH 25 ul

4 : 용매 40% EtOH 25 ul, 5 : 용매 60% EtOH 25 ul, 6 : 용매 80% EtOH 25 ul, 7 : 용매 100% EtOH 25 ul

Fig 12.2.4. 에탄올 농도를 달리하여 추출한 표고의 표면단백질(약 40 kDa) 1 : 20 kDa Marker 25 ul, 2 : 용패 0% EtOH 25 ul

3 : 용매 20% EtOH 25 ul, 4 : 용매 40% EtOH 25 ul

5 : 용매 60% EtOH 25 ul, 6 : 용매 80% EtOH 25 ul

7 : 용매 100% EtOH 25 ul

라) 효능성분 추출특성의 모니터링

송이와 표고버섯으로부터 항암활성을 가지는 생리활성물질의 분리를 위하여 침전시 ethanol 농도, 추출시간 및 추출온도를 독립변수로 하여 중심합성계 획에 의해 설계된 16구간의 추출조건에서 얻어진 추출물의 p-glucan 함량%, 조다당체 함량%의 결과는 Table 12.2.3 및 12.2.4과 같다. 버섯에서 항암활성 다당류를 얻는 방법에는 고체배양에 의해 생산된 버섯 자실체로부터 유기용 매를 이용하여 추출하여 얻는 방법과 액체배양에 의해 배양된 균사체나 배 양여액으로부터 유용물질을 추출, 분리하여 얻는 방법 두 가지가 알려져 있 으며, 액체배양에 의한 경우는 항상 일정한 조건하에서 배양이 가능하여 균 일한 균사체 및 배양액을 얻을 수 있으며 원하는 유용물질의 획득이 매우 간단하다는 장점이 있으며, 분리 및 정제에 실험적으로 이용될 수 있는 공정 은 용매추출, 여과법, 원심분리법, 투석법, 침전법, 동결건조, 이온 크로마토 그래피법, 젤 크로마토그래피법 등이 있다. 각각의 결과를 이용하여 반응표 면 회귀분석을 실시하고 각 종속변수 즉, 조다당체 함량, p-glucan 함량에 대한 회귀식을 얻었다. 또한 변수별 최적 추출조건과 추출물의 특성값을 예 측하여 Table 12.2.5과 12.2.8에 나타내었으며, 이들의 4차원 반응표면 ethanol 농도, 추출시간, 추출온도를 독립변수로 하여 Fig 12.2.5~12.2.8에 나타내었다.

Table 12.2.3. Experimental data on crude polysaccharides and β -glucan content of *Lentinus edodes* under different conditions based on central composite design by response surface analysis

	Extra	ction condi	tions		
Experiment number ¹⁾	Ethanol concentration ²⁾ (%)	Extraction time (hr)	Extraction temperature (°C)	Crude polysaccharides content (%)	β−glucan content (%)
1	1(80)	1(4)	1(90)	1.88	1.76
2	1(80)	1(4)	-1(70)	1.66	1.49
3	1(80)	-1(2)	1(90)	1.87	1.71
4	1(80)	-1(2)	-1(70)	1.81	1.68
5	-1(60)	1(4)	1(90)	1.30	1.26
6	-1(60)	1(4)	-1(70)	1.02	1.01
7	-1(60)	-1(2)	-1(70)	0.48	0.43
8	-1(60)	-1(2)	-1(70)	0.38	0.32
9	0(70)	0(3)	0(80)	1.53	1.51
10	0(70)	0(3)	0(80)	1.42	1.35
11	2(90)	0(3)	0(80)	1.87	1.84
12	-2(50)	0(3)	0(80)	0.62	0.60
13	0(70)	2(5)	0(80)	1.74	1.59
14	0(70)	-2(1)	0(80)	1.41	1.03
15	0(70)	0(3)	2(100)	1.62	1.41
16	0(70)	0(3)	-2(60)	1.52	1.49

¹⁾The number of experimental condition by central composite design.

 $^{2)}$ The final concentration of ethanol for $\beta\text{-glucan}$ precipitation.

	Extra	ction condit	ions		
Experiment number ¹⁾	Ethanol concentration ²⁾ (%)	Extraction time (hr)	Extraction temperatur e (°C)	Crude polysaccharides content(%)	β−glucan content (%)
1	1(80)	1(4)	1(90)	1.13	1.10
2	1(80)	1(4)	-1(70)	1.07	1.02
3	1(80)	-1(2)	1(90)	1.40	1.25
4	1(80)	-1(2)	-1(70)	1.25	1.13
5	-1(60)	1(4)	1(90)	0.41	0.39
6	-1(60)	1(4)	-1(70)	1.40	0.93
7	-1(60)	-1(2)	-1(70)	0.20	0.20
8	-1(60)	-1(2)	-1(70)	0.15	0.15
9	0(70)	0(3)	0(80)	1.21	1.18
10	0(70)	0(3)	0(80)	1.45	1.27
11	2(90)	0(3)	0(80)	0.41	0.36
12	-2(50)	0(3)	0(80)	0.11	0.11
13	0(70)	2(5)	0(80)	1.25	1.21
14	0(70)	-2(1)	0(80)	1.07	1.02
15	0(70)	0(3)	2(100)	1.46	1.43
16	0(70)	0(3)	-2(60)	1.20	1.16

Table 12.2.4. Experimental data on crude polysaccharides and β -glucan content of *Tricholoma matsutake* under different conditions based on central composite design by response surface analysis

¹⁾The number of experimental condition by central composite design.

 $^{2)}$ The final concentration of ethanol for $\beta\text{-glucan}$ precipitation.

(1) 표고버섯의 조다당류 함량

중심합성계획에 의한 추출조건별 표고버섯의 조다당류 함량은 Table 12.2.3 에서와 같이 나타내었고, 그 결과에 대한 반응표면 회귀식은 아래와 같다.

$$\begin{split} Y_{cp} &= -12.197083 + 0.233524X_1 + 1.241266X_2 + 0.043269X_3 - 0.00057X_1{}^2 - 0.0146515X_1X_2 + 0.025000X_2{}^2 - 0.000886X_1X_3 - 0.003359X_2X_3 + 0.000237X_3{}^2 \end{split}$$

Table 12.2.5에서와 같이 표고버섯의 조다당류 함량에 대한 회귀식의 R²는 0.9419이고, 1%이내의 유의수준에서 유의성이 인정되었다. 예측된 정상점은 안장점을 나타내었고, 침전시의 ethanol 최종농도 87.25%, 추출시간 2hr 및 추 출온도 78.20℃에서 최대값 2.09%를 나타내었다. 표고버섯의 추출조건에 대한 조다당류의 함량을 4차원 반응표면분석으로 능선분석한 결과 Fig 12.2.5에서와 같이 ethanol 농도 78%~80%일 때, 추출시간 2~4일 때 가장 높은 것으로 나타났으며, 조다당류 함량에 대한 추출조건의 영향은 Table 12.2.6에서와 같이 침전시 ethanol 최종 농도에 큰 영향을 받고 있는 것으로 나타났으며, 추출시 간과 온도에 대한 영향은 다소 낮은 것으로 나타났다.

이와 같은 결과는 표고버섯의 조다당류의 추출을 위해서는 침전시의 ethanol 농도가 크게 영향을 미친다고 볼 수 있다.

Fig 12.2.5. Response surface for crude polysaccharide at constant values(crude polysaccharide, CP : 0.5, 1.0, 1.5) as a function of ethanol concentration, extraction time and extraction temperature of *Lentinus edodes*

(2) 표고버섯의 β-glucan 함량

중심합성계획에 의한 추출조건별 표고버섯의 ₿-glucan 함량은 Table 12.2.3 에서와 같이 나타내었고, 그 결과에 대한 반응표면 회귀식은 아래와 같다.

Table 12.2.5에서와 같이 표고버섯의 β-glucan 함량에 대한 회귀식의 R²는 0.9384이고, 1%이내의 유의수준에서 유의성이 인정되었다. 예측된 정상점은 안장점을 나타내었고, 침전시의 ethanol 최종농도 88.22%, 추출시간 2.21 hr 및 추출온도 77.6℃에서 최대값 2.01%를 나타내었다. β-glucan 추출조건에 따른 총 β-glucan 함량에 대한 4차원 반응표면을 분석하여 본 결과 Fig 12.2.6에서 와 같이 ethanol 농도가 증가할수록 β-glucan의 함량이 증가하는 경향을 확인 할 수 있었다. β-glucan 함량에 대한 추출조건의 영향은 Table 12.2.6에서와 같이 침전시 ethanol 최종 농도에 큰 영향을 받고 있는 것으로 나타났으며, 추

- 135 -

Fig 12.2.6. Response surface for p-glucan at constant values(p-glucan, BG : 1.5, 2.5, 3.5) as a function of ethanol concentration, extraction time and extraction temperature of *Lentinus edodes*

Table 12.2.5. Predicted levels of extraction condition of *Lentinus edodes* for the maximum responses of variables by the ridge analysis

Responses	R^2	Pro>F	${X_{1}}^{1)}$	${X_2}^{2)}$	$X_{3}^{(3)}$	Maximum	Morphology
Crude polysaccharides content(%)	0.941 9	0.0045	87.25	2.00	78.20	2.09	Saddle
β−glucan content(%)	0.938 4	0.0053	88.22	2.21	77.6	2.01	Saddle

¹⁾ The final concentration of ethanol for p-glucan precipitation(%)

²⁾ Extraction time(hr)

³⁾ Extraction tempereature($^{\circ}$ C)

polysaccharides	and	β −glucan	content	in	extraction	condition	for	Lentinus
edodes								

Table 12.2.6. Regression analysis for regression model of the crude

	F-rat	10
- Extraction condition	Crude	B -glucan
	polysaccharides	P grucuit
	content	content
Ethanol	17 86***	17 11***
concentration(%)	17.00	17.11
Extraction time(hr)	2.26	3.74^{*}
Extraction temperature (\mathbb{C})	1.09	0.37
T		

*Significant at 10% level; **Significant at 5% level; ***Significant at 1% level

(3) 송이버섯의 조다당류 함량

중심합성계획에 의한 추출조건별 송이버섯의 조다당류 함량은 Table 12.2.4 에서와 같이 나타내었고, 그 결과에 대한 반응표면 회귀식은 아래와 같다.

$$\begin{split} Y_{cp} &= -\ 20.045000\ +\ 0.402740X_1\ +\ 3.454327X_2\ +\ 0.030192X_3\ -\ 0.002675{X_1}^2\ - \\ 0.018923X_1X_2\ -\ 0.042500{X_2}^2\ +\ 0.000583X_1X_3\ -\ 0.022673X_2X_3 \end{split}$$

Table 12.2.8에서와 같이 표고버섯의 조다당류 함량에 대한 회귀식의 R²는 0.9419이고, 10%이내의 유의수준에서 유의성이 인정되었다. 예측된 정상점은 안장점을 나타내었고, 침전시의 ethanol 최종농도 76.42%, 추출시간 1.78 hr 및 추출온도 94.52℃에서 최대값 1.80%를 나타내었다. 조다당류 추출조건에 따른 총 조다당류 추출의 최적조건은 Fig 12.2.7에서와 같이 ethanol 농도 74~76%, 추출시간 3.4~4 hr 및 추출온도 80~85℃에서 가장 높게 나타났으며 ethanol 농도, 추출시간, 추출온도에 모두 영향을 받고 있는 것으로 나타났으며 조다당

류 함량에 대한 추출조건의 영향은 Table 12.2.8에서와 같이 침전시 ethanol 최종 농도에 보다 많은 영향을 받고 있는 것으로 나타났으며, 다음으로 추출 시간과 추출온도에 영향을 받고 있는 것으로 나타났다.

Fig 12.2.8. Response surface for crude polysaccharide at constant values(crude polysaccharide, CP : 0.5, 1.0, 1.5,) as a function of ethanol concentration, extraction time and extraction temperature of *Tricholoma matsutake*

(4) 송이버섯의 ♬-glucan 함량

중심합성계획에 의한 추출조건별 버섯의 β-glucan 함량은 Table 12.2.4에서 와 같이 나타내었고, 그 결과에 대한 반응표면 회귀식은 아래와 같다.

Table 12.2.8에서와 같이 표고버섯의 β-glucan 함량에 대한 회귀식의 R²는 0.8542이고, 예측된 정상점은 안장점을 나타내었다. 침전시의 ethanol 최종농도 73.66%, 추출시간 1.87 hr 및 추출온도 96.11℃에서 최대값 1.62%를 나타내었다. β-glucan 추출조건에 따른 총 β-glucan 함량을 위한 추출의 최적조건은 Fig 12.2.8 에서와 같이 ethanol 농도 72~73%, 추출시간 1.5~3 hr 및 추출온 도 88~92℃에서 가장 높게 나타났다. β-glucan 함량에 대한 추출조건의 영향 은 Table 12.2.8에서와 같이 침전시 ethanol 최종 농도에 큰 영향을 받고 있는

- 138 -

것으로 나타났으며, 추출시간과 온도에 대한 영향은 다소 낮은 것으로 나타났다.

Fig 12.2.8. Response surface for β -glucan at constant values(β -glucan, BG : 0.5, 1.0, 1.5,) as a function of ethanol concentration, extraction time and extraction temperature of *Tricholoma matsutake*

Table 12.2.7. Predicted levels of extraction condition of *Tricholoma matsutake* for the maximum responses of variables by the ridge analysis

Rosponsos	\mathbf{P}^2	DrosF	V . ¹⁾	$\mathbf{V}_{2}^{(2)}$	$\mathbf{v}_{a^{3)}}$	Maximu	Morpholog
Responses	π	F10/F	Λ_1	$\mathbf{\Lambda}_2$	Λ_3	m	У
Crude							
polysaccharide	0.800	0.0543	76.42	1.78	94.52	1.79	Saddle
s content(%)	6						
β−glucan	0.854	0.0557	72 66	1 97	06 11	1.69	Saddla
content(%)	2	0.0007	75.00	1.07	90.11	1.02	Saudie

 $^{1)}$ The final concentration of ethanol for β -glucan precipitation(%)

²⁾ Extraction time(hr)

³⁾ Extraction tempereature($^{\circ}C$)

	F-rat	io
Extraction condition	Crude polysaccharides content	β-glucan content
Ethanol concentration(%)	4.87 **	4.94**
Extraction time(hr)	2.63	1.39
Extraction temperature(\mathbb{C})	1.11	0.82

Table 12.2.8. Regression analysis for regression model of the crude polysaccharides and β -glucan content in extraction condition for *Tricholoma matsutake*

*Significant at 10% level; **Significant at 5% level; ***Significant at 1% level

마) 송이, 표고버섯의 대량추출방법 확립

(1) 송이/표고버섯 원료의 폐기율

구입한 생송이버섯과 생표고버섯 원료를 뿌리와 이물질을 따로 제거한 후 전 체의 원 무게에 대해 가식부의 함량 비율을 구하였다. 그 결과 Table 12.2.9 와 같이 송이 버섯의 폐기율은 전체 원료 39.35 kg에 대하여 전처리 과정에서 뿌리 등을 제거한 가식부의 함량무게는 37.35 kg으로 약 2 kg의 손실이 있었 으며, 폐기율은 약 5.08%정도 인 것으로 나타났다. 또한 표고버섯의 폐기율은 전체 원료 11.5 kg에 대해 전처리 후의 가식부 함량무게는 10.8 kg으로 폐기 율은 약 6.09%인 것으로 나타났다. 이는 시료에 따라서 약간의 가감이 발생할 것으로 예상되며, 대량추출 및 제조시 원가계산 및 예산수립의 근거로 사용할 수 있을 것으로 사료된다.
,,,	Initial weight	Edible portion	Disuse ratio
	(kg)	(kg)	(%)
Pine mushroom	39.35	37.35	5.08
Oak mushroom	11.5	10.8	6.09

Table 12.2.9. Disuse ratio of Tricholoma matsutake and Lentinus edodes

(2) 송이/표고버섯의 건조수율

송이버섯과 표고버섯의 건조수율은 아래 Table 12.2.10 과 같이 나타났다. 생송이와 생표고버섯을 손질하여 50℃ 열풍건조한 송이버섯의 건조수율은 갓 이 19.36%, 대는 5.41%, 뿌리 10.0%으로 나타났으며 송이버섯 전체의 건조수 율은 10.4%로 나타났다. 또한 표고버섯은 전체부분의 건조수율이 11.3%로 나 타났다.

Table	12.2.10.	Dry	yield	of	Tricholoma	matsutake	and	Lentinus	edodes
-------	----------	-----	-------	----	------------	-----------	-----	----------	--------

		Initial weight(kg)	Weight after drvness(kg)	Dryness vield (%)
	pileus	12.4	2.4	19.36
Pine-	stipe	24.95	1.35	5.41
musmoom	root	2.0	0.2	10.0
	total	39.35	3.95	10.4
Oak mushroom	: n(total)	11.5	1.29	11.3

(3) 송이/표고버섯의 대량추출

표고버섯의 경우 위의 실험결과에서 효능성분 최적추출조건 범위는 추출시 간 2~2.21 hr, 추출온도 77.6~78.20℃이었고, 송이버섯의 경우 추출시간 1.78

- 141 -

hr~2.3 hr, 추출온도는 94.52~96.11℃으로 나타났다. 따라서 이를 바탕으로 시제품 제조를 위한 송이/표고버섯의 대량추출조건은 표고버섯의 경우 아래 Table 12.2.11와 같이 2 hr, 추출온도 78℃, 송이버섯의 경우 추출시간 2 hr, 추출온도는 95℃로 조건을 설정하였다.

Table 11.2.11. Extraction condition of *Tricholoma matsutake* and *Lentinus edodes* for drink production

	Extraction time (hr)	Extraction tempereture (°C)
Pine mushroom	2	78
Oak mushroom	2	95

2) 추출물의 안정성 검토

저장기간에 따른 표고버섯과 송이버섯 물추출물에 대한 효능성분의 안정성 은 아래 Table 12.2.12와 같다. 송이버섯의 경우 ⊮-glucan의 함량이 4℃에 저 장시 초기 1.23% 에서 28일째 1.22%, 56일째 1.22%로 나타났다. 표고버섯의 경우 초기 1.54%에서 56일째 ⊮-glucan의 함량이 1.53%로 저장기간에 대한 효 능성분의 급격한 변화나 감소는 일어나지 않는 것으로 나타났으며, 온도에 따 른 효능성분의 변화도 거의 없는 것으로 나타났다. 그러나 최종 제품에 대한 안정성 및 이화학적 조건에 따른 변화 등은 추후 더 오랜 기간 동안의 검토가 필요할 것으로 예상된다.

Te ano di ce		Pine	mush	room			Oak	mush	room		
t	temeratur		Storage time(day)								
	e (°C)	0	14	28	42	56	0	14	28	42	56
	4	1.24	1.23	1.23	1.23	1.22	1.54	1.54	1.53	1.53	1.53
β-glucan	10	1.23	1.23	1.22	1.22	1.22	1.54	1.53	1.54	1.53	1.53
(/0)	20	1.25	1.24	1.24	1.24	1.24	1.53	1.53	1.53	1.52	1.53

Table 12.2.12. Stability of *β*-glucan for storage time

3) 드링크 제품의 제조공정확립

버섯 음료 제조시 각 부재료의 혼합비율에 따른 관능적 특성은 Table 12.2.13~12.2.15에 나타내었다. 액상과당의 함유비율을 4~12%로 달리하여 관 능검사를 실시한 결과 액상과당을 8% 첨가하였을 때 전반적인 기호도가 3.83 으로 가장 높게 나타났다. 버섯 추출 농축액을 음료 전체량에 대하여 3~11% 로 달리하여 첨가하여 관능검사를 실시한 결과 색의 경우 3% 첨가하였을 때 관능평가 점수가 3.93으로 가장 높게 나타나 음료의 색이 보다 밝고 연한 것 을 선호하는 것으로 나탔으며 향과 맛에 있어서도 버섯 특유의 향이 진하지 않은 것을 선호하는 것으로 나타났다. 전반적인 기호도 점수에서 농축액 3% 와 5%를 첨가하였을 때 3.50으로 같게 나타나 최종 음료 배합비에서의 농축 액 함량은 5%로 선정하였다. 구연산의 함량을 0.05~0.3%로 달리 하여 제조한 버섯 음료의 관능평가 결과 구연산을 0.075% 첨가하였을 때가 3.47로 가장 높 은 점수를 나타내었다. 이는 음료에 사과식초를 이미 첨가하였으므로 구연산 함량을 0.1% 이상으로 높인 경우 산미가 강하여서 기호도 점수가 급격하게 감소하여 구연산 0.3%를 첨가한 경우는 3.00이하로 나타나 상큼한 신맛보다는 시큼한 맛이 나게 되어 선호도가 떨어지는 것으로 생각된다.

Table 12.2.13. Organoleptic properties of mushroom beverage with the content of liquid fructose

Proportios			Liquid fructose content(%)					
F10]	perties	4	6	8	10	12		
	Color	3.93	4.07	3.93	4.07	3.64		
Organolepti	Aroma	3.64	3.71	4.00	3.71	3.64		
с	Taste	3.21	3.43	3.71	3.64	3.64		
properties	Overall	3 54	3 59	3 83	354	3 53		
	palatability	0.04	0.00	0.00	0.04	0.00		

Table 12.2.14. Organoleptic properties of mushroom beverage with the content of mushroom extract concentration

Properties		Mus	Mushroom extract concentration(%)					
	berues	3	5	7	9	11		
	Color	3.93	3.57	2.86	3.00	3.29		
Organolepti	Aroma	3.57	3.79	3.07	3.21	3.50		
с	Taste	3.50	3.71	3.14	3.14	3.36		
properties	Overall	3 50	3 50	3.06	3.07	2 21		
	palatability	5.00	0.00	5.00	5.07	0.01		

Table 12.2.15. Organoleptic properties of mushroom beverage with the content of citric

acid

Properties			Citric acid(%)						
F10]	perues	0.05	0.075	0.1	0.2	0.3			
	Color	3.93	3.71	3.79	3.71	4.07			
Organolepti	Aroma	3.00	3.00	3.00	3.00	3.00			
с	Taste	3.36	3.21	2.93	2.79	2.69			
properties	Overall	2 21	2 47	2 17	2.00	276			
	palatability	0.01	0.47	5.17	5.00	2.70			

버섯 음료 제조시 각 부재료의 혼합비율에 따른 이화학적 특성은 아래

- 144 -

Table 12.2.16~12.2.18에 나타내었다. 액상과당의 비율을 다르게 하여 버섯 음 료를 제조한 결과 pH는 액상과당의 함량이 증가함에 따라 약간 감소하는 경 향을 나타내었으며, 당의 함량이 증가함에 따라 당도는 8.00에서 12.6으로 증 가하였다. 갈색도는 액상과당을 4% 첨가하였을 때 0.152에서 12% 첨가한 경 우 0.129로 감소하는 경향을 나타내었으며 색도의 경우 L값은 증가하였고, a 값은 거의 변화가 없었으며 b 값은 약간 감소하는 경향을 나타내었다. 버섯 농축액의 함량을 달리한 음료제조시 농축액의 함량 3%에서 11%로 증가함에 따라 pH는 3.11에서 3.37로 증가하였으며, 당도는 10.2에서 11.4로 갈색도는 0.104에서 0.381로 증가하였다. 색도의 경우 L값은 농축액 자체의 색으로 인하 여 상당히 감소하였으며, a값은 약간 증가하는 경향을 나타내었고, b값은 10.43에서 21.07로 증가하였다. 구연산 함량을 0.05~0.3%로 달리한 버섯음료 의 이화학적 특성을 살펴본 결과 pH는 구연산의 함량이 높아짐에 따라 감소 하였으며 당도는 거의 변화가 없었다. 갈색도는 구연산의 함량이 증가함에 따 라서 증가하는 경향을 나타내었으며, 색도의 경우 L값 및 a 값은 감소하였으 며, b값은 증가하는 경향을 나타내었다.

Table 12.2.16. Physiochemical properties of mushroom beverage with the content of liquid fructose

Physioc	hemical	Liquid fructose content(%)				
prope	erties	4	6	8	10	12
p	H	3.17	3.17	3.15	3.15	3.15
Br	ix°	8.00	9.47	10.5	11.4	12.6
Brown	color	0.152	0.147	0.135	0.125	0.129
Hunter's	L	91.71	91.99	92.05	91.74	93.08
1	а	-1.02	-0.96	-1.01	0.61	-1.02
color	b	13.35	12.84	13.23	12.79	11.81

Physioch	emical	Ν	Mushroom extract concentration(%)					
proper	ties	3	5	7	9	11		
рH	[3.11	3.15	3.21	3.29	3.37		
Brix	۲°	10.2	10.5	11.0	11.2	11.4		
Brown	color	0.104	0.135	0.195	0.274	0.381		
Hunter's	L	94.32	92.05	86.41	81.05	74.03		
1	а	-1.21	-1.01	-0.72	-0.50	0.24		
color	b	10.43	13.23	15.34	18.27	21.07		

Table 12.2.17. Physiochemical properties of mushroom beverage with the content of mushroom extract concentration

Table 12.2.18. Physiochemical properties of mushroom beverage with the content of citric acid

Physioch	emical	Citric acid(%)					
proper	ties	0.05	0.075	0.1	0.2	0.3	
рН		3.23	3.19	3.15	3.01	2.99	
Brix	x°	10.4	10.5	10.5	10.5	10.6	
Brown	color	0.130	0.135	0.142	0.149	0.158	
Hunter's	L	92.12	92.05	90.01	88.25	86.13	
1	а	-0.97	-1.01	-1.12	-1.24	-1.27	
color	b	12.47	13.23	14.39	15.12	17.01	

4) 드링크(음료 및 농축다류)의 시작품 제조

가) 시작품 제조

버섯 가공은 버섯 자실체의 건조물을 분말로 한 것, 또는 자실체나 이들의 균사체 배양물을 물 또는 물과 에탄올의 혼합액으로 추출하여 얻은 성분을 식 용에 적합하도록 가공한 것을 주원료로 하여 섭취가 편리하도록 액상, 페이스 트상, 캡슐, 과립, 분말, 정제 등으로 가공한 것을 말한다. 또한 균사체는 동결 건조 및 열풍건조에 의하여 분말형태로 상품화가 가능하여 생체로 이용시 문 제되는 짧은 저장기간 및 유통기간의 구조를 개선시킬 수 있다. 버섯의 가공 적성을 증대시키고 생리활성성분을 간편하고 효율적으로 섭취할 수 있도록 송이버섯과 표고버섯을 이용한 음료, 엑스, 농축다류 시제품을 개발하였다. 또한 제조한 음료에 대하여 표면단백질을 확인한 결과 음료에서도 표면단백 질이 확인되었으며, 이러한 기능성 성분을 함유한 제품에 대해 별도로 생리활 성의 검증 등에 대한 연구가 진행될 필요성이 있을 것으로 사료된다.

Fig 12.2.9. 송이/표고버섯 음료

Fig 12.2.10. 송이/표고버섯 농축다류 Fig 12.2.11. 송이/표고버섯 엑스

나) 추출물 함유 음료 제품의 formulation확립

표고버섯은 음용시 뒷맛이 입안에 오래 머무는 경향이 있으며 비릿한 맛이 강한 경향이 있고, 송이버섯은 특유의 독특한 향을 지니고 있다. 주재료인 표

- 147 -

고버섯과 송이 버섯의 적정음용농도를 결정하여 선정한 음료, 농축다류 및 엑 스의 최종 배합비는 아래 Table 12.2.19~12.2.21와 같다.

No.	Ingredients	Mixing ratio(%)
1	Fructose	8.0
2	Sugar	3.5
3	Pine-mushroom & Oak mushroom Ext	5.0
4	Citric acid	0.075
5	Vitimin-C	0.038
6	Apple juice concentrate(50Brix)	1.0
7	Apple vinegar(pH 5.0)	3.0
8	Citric acid-Na	0.02
9	Calcium lactate	0.04
10	Honey	0.2
11	Blueberry flavor	0.2
12	Water	78.927
	Total	100

Table 12.2.19. 송이/표고버섯 음료의 배합비

Table 12.2.20. 송이/표고버섯 농축다류의 배합비

No.	Ingredients	Mixing ratio(%)
1	Fructose	15
2	Sugar	7
3	Pine-mushroom & Oak mushroom Ext	20.05
4	Citric acid	0.09
5	Vitimin-C	0.07
6	Apple juice concentrate(50Brix)	2.0
7	Apple vinegar(pH 5.0)	4.5
8	Honey	0.4
9	Blueberry flavor	0.4
10	Water	50.49
	Total	100

No.	Ingredients	Mixing ratio(%)
1	Fructose	15
2	Sugar	7
3	Pine-mushroom & Oak mushroom ext	20.05
4	Citric acid	0.09
5	Vitimin-C	0.07
6	Jujube ext.(17°Brix)	6.4
7	Apple vinegar(pH 5.0)	3.0
8	Honey	0.6
9	Water	47.79
	Total	100

Table 12.2.21. 송이/표고버섯 엑스의 배합비

다) 음료 제품제조공정 확립

Fig 12.2.12. 병 음료 제조공정(Cloudy drink)

- 149 -

라) 엑스 제조공정 확립

Fig 12.2.13. 엑스 제조공정

마) 농축다류 제조공정 확립

Fig. 12.2.14. 농축다류 제조공정

5) 음료의 유통기간 산정 및 품질보증

가) 저장기간에 따른 음료의 이화학적 특성 및 관능적 변화

(1) 버섯음료의 저장기간에 따른 이화학적 특성은 아래 Table 12.2.22와 같다. pH 경우 저장 초기 3.15에서 28일간의 저장기간에 따라 최저값이 3.14이었고, 최고값이 3.18이었다. pH에 있어 저장기간 및 저장온도에 의해 큰 영향을 받 지 않는 것으로 나타나 났다. 당도는 초기 10.5 brix°에서 저장기간에 따라 10.2~10.7°의 범위를 보였으며, 10℃와 고온의 조건인 40℃에서 거의 변화가 없는 것으로 나타났다. 저장기간에 따른 색도의 변화는 L값의 경우 초기 값 92.05에서 28일간 저장한 후 10℃의 경우 91.73, 40℃에서의 경우 87.43으로 각 각 감소하는 경향을 나타내었고 냉장온도의 경우 거의 변화가 없었으나 고온

- 150 -

인 40℃에서 저장할 경우 약간 감소하는 경향이 있었으나 값에 있어 변화는 일어나지 않는 것으로 나타났다. 그러나, 40℃ 이상의 고온에서 장기간 저장할 경우 L값의 감소폭이 좀 더 클 것으로 생각되므로 제품의 유통 및 저장시에 는 적절한 관리가 필요할 것으로 사료된다. a값의 경우 저장 초기 -1.01에서 저장완료 후의 값이 10℃의 경우 -0.94, 40℃의 경우 -0.79으로 나타나 약간 증가하는 경향을 보였다. b값의 경우도 저장온도가 높고, 저장기간이 길어질수 록 값이 약간 증가하는 경향을 나타내었으나, 10℃의 경우 거의 변화가 없는 것으로 나타났다.

(2) 저장기간에 따른 음료의 관능검사 결과는 Table 12.2.23과 같다. 4℃에서 보관한 음료를 대조군으로 하여 10, 40℃에서 저장한 음료를 비교하여 4.0을 대조군과 같은 점수로 보고 상품의 가치가 소실되는 시점을 2.5점으로 하여 평가하였으며, 10℃의 경우 4℃에서 저장한 대조군과 비교하여 기호도에 있어 큰 차이를 나타내지 않았다. 40℃에서 저장한 경우 저장 28일 째 관능검사에 서 기호도면에서 초기보다 많이 상실되어 상품의 가치가 소실되는 시점인 2.5 점에 근접하고 있음을 보여주었다. 따라서, 40℃이상에서 약 4주 이상 저장할 경우에는 기호도면에서 상품가치의 하락이 발생하는 것으로 판단된다.

Storage condition			D : 0	т		1	
Temp.(℃)	Time(Days)	pН	Brix°	L	а	D	
	0	3.15	10.5	92.05	-1.01	13.23	
	7	3.16	10.3	92.01	-1.00	13.34	
10°C	14	3.15	10.5	91.89	-0.97	13.36	
	21	3.15	10.7	92.00	-0.99	13.29	
	28	3.17	10.5	91.73	-0.94	13.35	
	0	3.15	10.5	92.05	-1.01	13.23	
40 °C	7	3.14	10.2	91.87	-0.94	13.68	
	14	3.16	10.6	90.46	-0.90	14.47	
	21	3.18	10.4	89.15	-0.85	14.95	
	28	3.18	10.4	87.43	-0.79	14.86	

Table 12.2.22. Changes in pH, acidity, Aw and moisture of mushroom drink during storage days at 10, 40° C

Storage condition		Color	Flavor	Taste	Overall
Temp.(℃)	Time(Days)	00101	1 14 / 01	raste	palatability
	0	4.00	4.00	4.00	4.00
	7	4.00	4.00	4.00	4.00
10°C	14	4.00	4.00	3.95	4.00
	21	4.00	3.95	3.95	3.90
	28	4.00	3.90	3.90	3.85
	0	4.00	4.00	4.00	4.00
	7	3.85	3.80	3.75	3.60
40 °C	14	3.66	3.65	3.60	3.55
	21	3.50	3.50	3.30	3.30
	28	3.15	3.35	2.95	3.00

Table 12.2.23. Changes in sensory evaluation properties of mushroom drink during storage days at 10, $40\,^\circ\!\mathrm{C}$

나) 살균 및 저장조건에 따른 총균수 측정결과

제조 음료와 농축엑스를 90℃에서 15, 20, 25, 30 및 35분 살균한 시료는 모 두 음성으로 나타났다(Table 12.2.24). 이로 볼 때 90℃에서 15분 이상 처리하 면 음료 및 엑스 중의 균이 대부분 사멸되므로 제조 중 미생물로 인한 변패는 없는 것으로 생각된다. 음료 제조시 미생물로 인한 변패를 방지하기 위한 적 정 살균조건은 살균전의 음료에 대한 미생물 검사를 통하여 미생물 사멸율 및 제품의 pH 등을 충분히 검토한 후 결정해야 할 것으로 판단된다. 또한 아직 저장과정 중에 있으므로 추후의 기간에 대한 검토도 필요할 것으로 생각되는 바이다.

Table 12.2.24. Changes in total aerobic counts of mushroom drink and concentrated drink during storage by sterilization condition

Sterilization	Drink					Concentrated drink			:	
time(min.)	Storage time(day)				Storage time(day)					
at 90℃	0	7	14	21	28	0	7	14	21	28
15	_1)	-	-	_	_	-	-	_	_	_
20	-	-	-	-	-	-	-	-	-	-
25	-	_	-	-	_	-	_	_	-	-
30	-	_	_	_	_	-	_	_	-	_
35	-	-	-	-	-	-	-	-	-	-

¹⁾not detected

제13절 추출물의 농축, 건조, 제품별 제조공정 및 제형화 조건확립

1. 연구수행 방법

가. 송이, 표고버섯 조추출물의 건조조건 확립

1) 재료

본 연구에 사용한 버섯 중 송이버섯은 경북 봉화에서 구입하였고, 표고버섯 은 경북 왜관에서 구입한 것을 재료로 하여 일부는 -70℃ deep freezer(Sanyo, Japan, HDF-382)에서 냉동보관하고, 나머지는 50℃, dry oven(Han Baek, Korea, HB-502M)에서 열풍건조 후 포장하여 저장하면서 사 용하였다.

2) 송이, 표고버섯 조추출물 제조

최적추출조건에 의하여 건조된 버섯을 기준으로 80℃에서 2시간 동안 열수 추출하였다.

나. 송이, 표고버섯 조추출물의 분말화 공정 확립

농축조건 설정을 위해 조추출물을 감압증발농축기를 이용하여 농축온도를 50~100℃로 달리하여, 조추출물의 당도가 30°brix에 이르는 시간을 조사하였으며, 이 때 rpm은 120, 조추출물의 양은 100 ml로 고정하여 실시하였다. 농 축조건에 따라 송이, 표고버섯 추출물을 30°brix로 하여, 동결건조기 내에서 시간에 따라 12, 24, 36 hr 건조하였다.

1) 갈색도 측정

버섯 농축액의 갈색도 측정은 일정량의 시료를 취해 적절히 희석한 후 UV spectrophotometer(Shimadzu UV-1601 PC, Japan)를 이용하여 420 nm에서 흡광도를 측정하였다.

2) 고형분 함량 측정

버섯 농축액의 고형분 함량은 굴절당도계(Model 507-1, Nippon Optical Works Co., Japan)를 이용하여 측정하였다.

3) 송이, 표고버섯 건조분말의 저장 및 수분흡수지수 측정

추출분말의 저장은 분말 3 g씩을 직경 5 cm, 높이 1.4 cm의 알루미늄 용기 에 담은 후 40℃, 90% RH 조건의 항온항습기에 즉시 넣어 가속저장으로 하 였으며, 수분흡수지수는 일정 시간이 지난 다음 저장 중의 무게증가를 재어서 g수분/g고형분으로 계산하여 나타내었다.

다. 송이, 표고버섯 캅셀의 제조조건 확립 및 시작품 제조

1) 캅셀 제조조건 확립

캅셀의 제조는 송이, 표고버섯 캅셀에 대하여 적절한 배합비를 조성표로서 확립한 후, 캅셀에 대한 최적 제조공정을 설계하였다.

2) 시작품 제조

시작품은 확립된 캅셀의 제조공정(Table 13.2.6, Fig. 13.2.7)에 따라 캅셀 시 작품을 제작하였다.

라. 송이, 표고버섯 타블렛의 제조조건 확립 및 시작품 제조

1) 타블렛 제조조건 확립

송이, 표고버섯 타블렛에 대하여 적절한 배합비를 조성표로서 확립한 후, 타 블렛에 대한 최적 제조공정을 설계하였다.

2) 시작품 제조

시작품은 확립된 타블렛의 제조공정에 따라 타블렛 시작품을 제작하였다.

마. 제품의 유통기간 산정 및 품질보증

1) 재료

본 실험에 사용된 재료는 송이, 표고버섯추출물을 이용하여 경북과학대학

- 154 -

바이오건강산업연구소에서 시제품으로 캅셀 및 타블렛을 제조한 것을 이용하였다.

2) 실험 계획

캅셀 및 타블렛의 저장조건은 Table 13.2.8과 같으며 중심합성계획에 의해 실험을 실시하였고, 반응표면분석을 위하여 SAS(Statistical Analysis System) Program을 이용하였다.

- 3) 이화학적 특성시험
- 가) pH 및 산도 측정

타블렛은 0.5 g을 50 ml의 증류수에 넣고 20분간 stirring 한 후 여과한 여 액으로, 캡슐은 검체 2 g을 취한 후 물 50 ml를 넣고 37±2℃를 유지하여 흔들 어 녹인 후 pH 및 산도를 측정하였다. pH는 25℃의 조건에서 pH meter(Metrohm Co., Swiss)를 사용하여 측정하였고 산도는 25℃로 유지된 시 료 20 ml를 취하여 0.1N NaOH로 pH가 8.2 될 때까지 중화 적정하여, 소비된 NaOH 용액의 ml수를 구연산계수(0.0064)로 환산하여 나타내었다.

나) 색도 측정

저장 중의 색도변화는 Chromameter CT-310(Minolta camera Co., Japan)을 사용하여 측정하였으며, L(lightness), a(redness) 및 b(yellowness) 값으로 나 타내었다.

다) 수분 및 수분활성도

타블렛 및 캡슐의 수분은 적외선수분측정장치(Kelt 233525, Japan)를 이용하 여 측정하였고, 수분활성도는 수분활성측정장치(Novasina TH-2, Swiss)를 이 용하여 25℃를 기준으로 하여 값을 측정하였다.

라) 미생물검사

저장시료에 대하여 무균적으로 채취한 후 일반세균수는 PCA(Plate count agar, Merck. Co.)를 사용하여 도말평판배양법으로, 대장균수는 페트리필름을

- 155 -

이용하여 35±2℃에서 24시간 배양한 후 캡슐 및 타블렛의 오염여부를 확인하 였다.

마) 붕해도 시험

식품공전에 의한 방법으로 붕해시험기(JISICO, J-MA, No. 03925)를 이용하 여 왕복속도가 30 rpm이며, 37±2℃가 유지된 시험액 내에서 타블렛은 30분, 캡슐은 20분 내에 붕해되는지의 여부를 조사하여 적합도를 판정하였다.

2. 연구수행 내용 및 결과

가. 송이/표고버섯 조추출물의 건조조건 확립

1) 송이, 표고버섯 조추출물 추출

송이, 표고버섯을 80℃에서 2시간 추출하여 부직포로 여과한 후 8,000 rpm 에서 20분간 원심분리하여 추출액을 얻었다.

2) 송이, 표고버섯 조추출물의 농축액 제조

농축조건 설정을 위해 조추출물을 감압증발농축기를 이용하여 농축온도를 50~100℃로 달리하여, 조추출물의 당도가 30°brix에 이르는 시간을 조사한 결과는 Table 13.2.1과 같다. 송이버섯 추출물을 30°brix로 만드는데 걸리는 시간 은 50℃에서의 경우 80분, 60℃에서 60분으로 점차 온도에 따라 소요되는 시간이 줄어들기 시작하여 100℃의 경우는 19분으로 나타났다. 표고버섯 추출물을 30°brix로 만드는데 걸리는 시간은 50℃에서의 경우 82분, 60℃에서 60분으로 점차 온도에 따라 소요되는 시간이 줄어들기 시작하여 100℃의 경우는 20 분으로 나타났다. 농축시의 온도가 높으면 높을수록 원하는 °brix를 제조하는 데 걸리는 시간이 단축되나 높은 온도에서 농축할 경우 식품 고유의 맛과 향의 변질, 유효성분의 파괴 등의 품질열화가 우려되므로 송이, 표고버섯 조추출 물의 농축은 식품공정에서의 일반적인 농축온도인 60℃에서 실시하였다.

또한 송이, 표고버섯 추출물의 농축에 따른 60℃에서의 당도 변화는 Fig 13.2.1~13.2.2와 같다. 농축시간 20분까지는 당도의 변화가 거의 없다가 농축 시간 약40분에 이르러 급격한 상승을 하여 60분 경과 후 모두 30°brix에 도달

- 156 -

하였다. 따라서, 30°brix의 송이버섯과 표고버섯 농축액 제조를 위해서는 60℃ 이하에서 약 1시간 정도가 소요되는 것으로 나타났으며, 농축액 제조를 위한 공정도는 Fig 13.2.3 및 Fig 13.2.4에 나타내었다.

Table 13.2.1. Times for making concentration(30°brix) in *Tricholoma matsutake* extract and *Lentinus edodes* extract

Tomporaturo	Concentration time(min)				
remperature	Tricholoma matsutake	T (* 11 andread			
(°C)	extract	Lentinus edodes extract			
50	80	82			
60	60	60			
70	39	40			
80	34	32			
90	27	26			
100	19	20			

Fig 13.2.1. Brix degree as concentration time in Tricholoma matsutake

Fig 13.2.2. Brix degree as concentration time in Lentinus edodes

송이버섯 세척
\downarrow
열풍 건조(50℃)
\downarrow
파쇄
\downarrow
추출(80℃에서 2시간)
\downarrow
여과 (부직포 이용)
\downarrow
원심분리
\downarrow
감압증발농축(30°brix, 60℃이하)
Fig 13.2.3. 송이버섯 농축액 제조 공정

표고버섯 세척
\downarrow
열풍 건조(50℃)
\downarrow
파쇄
추출(80℃에서 2시간)
↓
여과 (부직포 이용)
원심분리
감압증발농축(30°brix, 60℃이하)

Fig 13.2.4. 표고버섯 농축액 제조 공정

3) 농축액의 이화학적 특성

30°brix짜리 송이버섯과 표고버섯 농축액의 이화학적 특성을 살펴본 결과는 Table 13.2.2와 같다. 표고버섯 농축액의 경우 색도는 L값의 경우 -41.48, a값 은 -0.35이었고 b값은 2.06으로 나타났다. 갈색도는 0.760이었으며 pH는 6.82 로 나타났다. 또한 수분함량의 경우 71.55%이었고 25℃를 기준으로 측정한 수 분활성도는 0.712로 나타났다. 송이버섯 농축액의 색도는 L값은 -51.94, a값 -1.35 및 b값은 1.42으로 나타났으며 갈색도는 0.840, pH는 6.95로 측정되었다. 송이버섯 농축액의 수분함량은 72.71%이었으며 수분활성도는 0.752이었다.

Table 13.2.2. Phycochemical chracteristic of *Tricholoma matsutake* concentration and *Lentinus edodes concentration* (30°brix)

Namo	Hunter's color			Brown	ъЦ	Mointuro(9/)	Water
Indiffe	L	а	b	color	рп	Moisture(70)	activity
Lentinus edodes	-41.48	-0.35	2.06	0.760	6.82	71.50	0.712
Tricholoma matsutake	-51.94	-1.35	1.42	0.840	6.95	72.71	0.752

4) 농축액에 대한 건조 수율

송이, 표고버섯의 건조분말 수율을 알아보기 위하여 조추출물을 60℃에서 30°Brix로 농축한 후 36 hr 동안 동결건조하여 농축액에 대한 수율을 조사한 결과는 Table 13.2.3과 같다.

Table 13.2.3. The drying yield of *Tricholoma matsutake* concentration and *Lentinus edodes concentration* (30°brix)

obuity	Drying yield(%)				
	Tricholoma matsutake	Lentinus edodes			
30	33	31			

나. 송이/표고버섯 조추출물 분말화 공정확립

1) 동결건조시간에 따른 수분함량

송이버섯과 표고버섯의 동결건조시간에 따른 수분함량 및 수분활성도의 변 화는 아래 Table 13.2.4와 같다. 동결건조시간 12시간까지 수분함량이 급격하 게 감소하였으며, 36시간 건조하였을 때 송이버섯 분말의 수분은 5.01%, 수분 활성도 0.094이었고 표고버섯 분말의 경우 수분 4.99%, 수분활성 0.092를 나타 내었다.

2) 분말화 공정 확립

버섯 농축액의 동결건조시간을 다르게 하여 건조하여 homenigezer로 분쇄 후 분말의 수분흡수지수를 조사한 결과는 아래 Table 13.2.5 및 Fig 13.2.5~ 13.2.6과 같다. 송이버섯과 표고버섯의 수분흡수지수는 송이버섯의 경우 0.08 8~0.259, 표고버섯의 경우 0.092~0.268로 나타났으며, 동결건조 시간이 길어 질수록 수분흡수지수는 상승하였다. 저장 6시간까지는 수분흡수지수곡선이 급 격하게 상승하다가 9시간째부터는 완만한 증가 또는 정지, 감소 형태를 나타 내었다. 그러므로 동결건조시간이 증가할수록 수분흡수지수는 증가하여 수분 흡수에 영향을 끼치는 것으로 나타났으며, 분말 자체를 이용하는 것은 저장에 의한 수분흡습 등으로 어려움이 있을 것으로 예상되며, 분말과 다른 첨가물을

- 160 -

혼합하여 가공제품 형태로 이용함이 적합한 것으로 사료된다.

Freeze	Tricholomo	ı matsutake	Lentinus edodes concentration		
drying	Moisture	Moisture Water		Water	
time(hr)	content (%)	activity	content (%)	activity	
0	72.71	0.899	71.50	0.891	
12	12.36	0.202	11.52	0.193	
24	5.63	0.110	5.34	0.097	
36	5.01	0.094	4.99	0.092	

Table 13.2.4. Drying quality of the *Tricholoma matsutake* and *Lentinus edodes* concentration as freeze-drying time

Table 13.2.5. Water absorption index of *Tricholoma matsutake* powder and *Lentinus edodes* powder as freeze drying time

Freeze-		Water al	psorption index	x(mean±SD)
drying time(hr)	Portion	3hr	6hr	9hr
10	Tricholoma matsutake	0.088±0.03	0.214±0.01	0.256±0.03
12	Lentinus edodes	0.092±0.02	0.220±0.03	0.225±0.01
24	Tricholoma matsutake	0.100±0.03	0.236±0.02	0.259±0.04
24	Lentinus edodes	0.108±0.06	0.228±0.03	0.243±0.02
36	Tricholoma matsutake	0.151±0.06	0.254±0.03	0.249±0.04
	Lentinus edodes	0.124±0.02	0.249±0.03	0.268±0.02

Fig 13.2.5. Effect of vaccum freeze-drying time and storage time on water absorption of powdered *Tricholoma matsutake* at accelerated storage(40°C, 90% RH)

Fig 13.2.6. Effect of vaccum freeze-drying time and storage time on water absorption of powdered *Lentinus edodes* at accelerated storage(40° C, 90% RH)

1) 캅셀의 제조

Table 13.2.6. 송이/표고 캅셀 조성표

No.	원료명	함량(%)	비고
1	농축분말	24	주원료
2	대두추출물분말	17	이소플라본공급
3	유당	19	부원료
4	옥수수전분	21	부원료
5	덱스트린	19	부원료
	계	100	

캅 셀

	→ र्दे	전 _	→ 봉	합	$] \rightarrow$	선별,제분	\rightarrow	경질캅셀
충전용 약제								

Fig 13.2.7. 송이/표고버섯 캅셀의 제조공정도

Fig 13.2.8. 캅셀 제조장치

라. 송이/표고버섯의 타블렛 제조조건 확립

Table 13.2.7. 송이/표고버섯 타블렛 조성표

No.	원료명	함량(%)	비고
1	농축분말	24	주원료
2	대두추출물분말	15	이소플라본공급
3	옥수수전분	21	부원료
4	유당	19	부원료
5	덱스트린	15	부원료
6	CMC	5	부원료
7	스테아린산마그네슘	1	타정보조제
	계	100	

Fig 13.2.9. 송이/표고버섯 타블렛의 제조공정도

Fig 13.2.10. 타블렛 제조장치

마. 송이/표고버섯 추출물 캅셀의 제조

1) 시작품 제작

Fig 13.2.11. 송이/표고버섯 캅셀 제품

- 165 -

2) 캅셀 제품의 표면단백질

제조공정에 따라 제조한 캅셀의 표면단백질을 분석한 결과는 Fig 13.2.12와 같다. 캅셀 100 mg을 20 kDa marker로 SDS-page를 실시한 결과 원액 자체 에서 송이의 표면단백질이 확인되었음을 볼 수 있으며, 2.858 ug/ul의 농도범 위까지는 육안적으로 정성이 가능하였다. 다른 분자량의 범위를 가진 단백질 의 밴드의 경우 캅셀 제조시 부재료로서 대두 추출 분말을 첨가하였기 때문인 것으로 생각된다.

Fig 13.2.12. 캅셀의 단백질 농도 (원액 : 캅셀 100 mg +0.05 M Phosphate Buffer 100 ul)

20 kDa Marker, 2 : 캅셀의 단백질의 원액 25 ul (45.725 ug/ul)
 3 : 캅셀의 단백질의 1/4배 희석액 25 ul (11.431 ug/ul)
 4 : 캅셀의 단백질의 1/16배 희석액 25 ul (2.858 ug/ul)
 5 : 캅셀의 단백질의 1/64배 희석액 25 ul (0.714 ug/ul)
 6 : 캅셀의 단백질의 1/256배 희석액 25 ul (0.179 ug/ul)
 7 : 캅셀의 단백질의 1/1024배 희석액 25 ul (0.045 ug/ul)
 8 : 캅셀의 단백질의 1/4096배 희석액 25 ul (0.011 ug/u

바. 타블렛의 제품화

1) 시작품 제작

Fig 13.2.13. 송이/표고버섯 타블렛 제품

2) 타블렛 제품의 표면단백질

제조공정에 따라 제조한 타블렛의 표면단백질을 분석한 결과는 Fig 13.2.14 와 같다. 타블렛의 경우 캅셀과는 달리 20 kDa 밴드가 잘 나타나지 않았는데 이는 타블렛 제조시 가해지는 타블렛 제조장치의 압력에 의한 각각의 성분의 상호적인 결합성 때문인 것으로 추정되며, 실제로 정제의 경우 상호간의 결합 에 의한 성분 및 약성의 변화 때문에 이에 관련된 여러 연구들이 진행되고 있 는 중이다.

1	17	1	2	3	4	5	6	7	8
1	73								
4	19								
00	37								
1	9	-							
X 1	3								
1	0-	_	-	-		_	_		

Fig 13.2.14. Tablet의 단백질 농도 (원액 : tablet 100 mg +0.05 M Phosphate

Buffer 100 ul)

- 1 : 20 kDa Marker
- 2 : Tablet의 단백질의 원액 25 ul (43.025 ug/ul)
- 3 : Tablet의 단백질의 1/2배 희석액 25 ul (21.513 ug/ul)

- 167 -

 4 : Tablet의 단백질의 1/4배 희석액 25 ul (10.756 ug/ul)

 5 : Tablet의 단백질의 1/8배 희석액 25 ul (5.378 ug/ul)

 6 : Tablet의 단백질의 1/16배 희석액 25 ul (2.689 ug/ul)

 7 : Tablet의 단백질의 1/32배 희석액 25 ul (1.345 ug/ul)

 8 : Tablet의 단백질의 1/64배 희석액 25 ul (0.672 ug/ul)

사. 송이/표고버섯 캅셀 및 타블렛의 유통기한 설정

송이/표고 캅셀 및 타블렛의 최적유통기한을 설정하기 위하여 중심합성계획 에 의해 저장온도 및 저장시간을 설정하고 반응표면분석을 통하여 8주간의 가 속저장조건으로 최적조건을 설정하였다.

1) 저장 중 이화학적 특성변화

가) 타블렛의 이화학적 특성변화

송이/표고버섯 타블렛의 저장 중 이화학적 특성의 변화는 Table 13.2.8과 같다. 약 8주간의 저장기간동안 pH는 6.13~6.20 및 산도는 0.082~0.092%로 큰 변화가 없었으며 수분활성도 또한 0.072~0.074로 큰 변화가 없는 것으로 나타났다. 수분은 3.61~4.51%의 범위를 나타내었으며 L값은 79.17~84.13, a값 은 1.33~2.93 및 b값은 12.01~15.76 범위의 값을 나타내었다. 저장온도 및 저 장일수에 따른 버섯 타블렛의 이화학적 품질변화를 측정하여 SAS 프로그램을 통한 회귀분석결과 Table 13.2.10 및 Table 13.2.12와 같은 결과를 나타내었다. 이들 변화에 대한 저장조건의 예측식에 대한 R²는 0.8281~0.9584이었으며, 산 도는 유의성이 인정되지 않았으며 수분, 수분활성도, L, a 및 b값은 5% 이내 에서 유의성이 인정되었으며, pH는 1%이내에서 유의성이 인정되었다. 또한 수분, L 및 b값은 저장온도 및 시간에 영향을 받았으며 a값은 두 조건 모두에 영향을 받지 않는 것으로 나타났다. 저장조건에 따라 최대, 최소값의 차이는 그리 큰 차이를 나타내지 않았으나 수분 및 색도가 저장 온도 및 시간에 다소 영향을 받는 것으로 나타나 적절한 저장조건의 유지가 필요한 것으로 사료된 다.

Fyn	Storage	conditions		Ph	ysioche	emical prope	erties		
No.	Temp.(℃)	Time(Weeks)	рН	Acidity (%)	Aw	Moisture (%)	L	а	b
1	40	6	6.14	0.087	0.072	3.89	80.95	2.13	14.73
2	40	2	6.17	0.088	0.074	3.61	81.81	2.01	14.55
3	20	6	6.16	0.088	0.073	4.32	81.68	2.02	13.59
4	20	2	6.17	0.088	0.074	4.14	82.47	1.97	13.48
5	30	4	6.18	0.086	0.072	4.25	80.46	2.24	13.67
6	30	4	6.18	0.086	0.072	4.25	80.46	2.24	13.67
7	50	4	6.10	0.092	0.074	3.54	79.97	2.93	15.76
8	10	4	6.15	0.091	0.074	4.51	84.13	2.07	12.87
9	30	8	6.13	0.091	0.072	3.99	82.20	2.18	13.98
10	30	0	6.20	0.085	0.074	4.00	83.24	1.33	12.01

Table 13.2.8. Experimental data on pH, acidity, Aw, moisture content, L, a, b, and $\triangle E$ of mushroom tablet under different conditions based on central composite design for response surface analysis

나) 캅셀의 이화학적 특성변화

: 송이/표고버섯의 저장 중 이화학적 특성의 변화는 Table 13.2.9와 같다. 저 장기간 및 온도를 달리하여 저장한 실험에서 pH는 6.13~6.22의 범위를 나타 내었으며, 산도는 0.088~0.09%의 범위를 나타내었다. 또한 수분활성도는 0.070~0.072로 큰 변화가 없는 것으로 나타났다. 수분은 3.56~3.97%의 범위 를 나타내었으며 L값은 70.74~75,60으로 나타났고, a값은 4.04~5.80 및 b값은 19.70~22.19 범위의 값을 나타내었다. 저장조건에 따른 송이/표고버섯 타블렛 의 이화학적 품질변화를 측정하여 SAS 프로그램을 통한 회귀분석결과 Table 13.2.11 및 Table 13.2.13과 같은 결과를 나타내었다. 이들 변화에 대한 저장조 건의 예측식에 대한 R²는 0.8481~0.9585이었으며 L값은 1%이내의 유의성을 나타내었으며, 나머지 이화학적 특성들은 각각 5~10% 범위내에서 유의성이 인정되었다. 또한 L값이 저장온도에 많은 영향을 받는 것으로 나타났으며 pH, AW 및 Moisture은 저장온도와 저장기간 모두에 영향을 받고 있는 것으 로 나타났다.

Exp	Storage	conditions			Physi	ochemical p	roperties	5	
Exp.	Temp.	Time	ъH	Acidity	Δ ττ	Moisture	T	2	h
No.	(℃)	(Weeks)	рп	(%)		(%)	L	a	U
1	40	6	6.18	0.091	0.070	3.81	71.97	5.39	21.62
2	40	2	6.21	0.090	0.072	3.65	73.27	4.68	20.13
3	20	6	6.19	0.090	0.071	3.93	74.51	4.12	20.70
4	20	2	6.18	0.090	0.072	3.84	75.60	4.04	19.92
5	30	4	6.21	0.088	0.070	3.87	74.89	4.80	20.48
6	30	4	6.21	0.088	0.070	3.87	74.89	4.44	19.71
7	50	4	6.13	0.091	0.072	3.56	70.74	5.80	22.19
8	10	4	6.17	0.094	0.072	3.97	73.82	4.40	20.18
9	30	8	6.15	0.093	0.071	3.45	73.94	4.32	30.40
10	30	0	6.22	0.089	0.072	3.59	75.68	4.32	20.73

Table 13.2.9. Experimental data on pH, acidity, Aw, moisture content, L, a, b, and $\triangle E$ of mushroom tablet under different conditions based on central composite design for response surface analysis

Table 13.2.10. Polynomial equations calculated by RSM program for mushroom tablet

Responses	Polynomial equations	\mathbf{P}^2	Signific
nesponses	i orynomiai equuons	п	ance
pН	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.9584	0.0072
Acidity	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.8281	0.1078
Aw	$\begin{array}{rrrr} Y_{Aw} &=& 0.077238 \ - \ 0.000237X_1 \ - \ 0.000345X_2 \ + \\ && 0.000004643{X_1}^2 \ - 0.000012500X_1X_2 \\ && + 0.000053571{X_2}^2 \end{array}$	0.8983	0.0407
Moisture	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.9049	0.0359
L	$\begin{array}{rrrr} Y_L &=& 89.132738 \ - & 0.30845 X_1 \ -1.215595 X_2 \\ &+ 0.003757 {X_1}^2 0.000875 X_1 X_2 \mbox{+-} 0.135804 {X_2}^2 \end{array}$	0.9014	0.0384
а	$\begin{array}{l} Y_a \ = \ 1.719851 \ - \ 0.033399 X_1 \ + 0.272560 X_2 \\ + 0.000758 {X_1}^2 + 0.000875 X_1 X_2 - 0.0276120.135804 {X_2}^2 \end{array}$	0.8430	0.0914
b	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.8993	0.0399

Responses	Polynomial equtions	R^2	Significa nce
pH	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.8666	0.0677
Acidity	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.8695	0.0650
Aw	$\begin{split} Y_{Aw} &= 0.075449 - 0.000242X_1 - 0.000530X_2 \\ &+ 0.000004732{X_1}^2 - 0.000012500X_1X_2 \\ &+ 0.000087054{X_2}^2 \end{split}$	0.8481	0.0861
Moisture	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.8833	0.0528
L	$\begin{split} Y_L &=~ 72.494048 ~+~ 0.293798 X_1 ~-~ 0.180119 X_2 ~-\\ &0.006254 {X_1}^2 ~-~ 0.002625 X_1 X_2 ~+~ 0.001786 {X_2}^2 \end{split}$	0.9585	0.0072
а	$\begin{split} Y_a &= 5.074226 - 0.068857X_1 - 0.068690X_2 + \\ 0.001277X_1^2 + 0.007875X_1X_2 - 0.016830X_2^2 \end{split}$	0.9168	0.0278
b	$\begin{array}{l} Y_b \ = \ 24.601369 \ - \ 0.205048 X_1 \ - \ 2.264048 X_2 \\ + \ 0.003541 {X_1}^2 + \ 0.008875 X_1 X_2 \ + 0.362277 {X_2}^2 \end{array}$	0.8625	0.0716

Table 13.2.11. Polynomial equations calculated by RSM program for mushroom capsule

			Cond	itions			_
Respon ses	Storage		Stor	rage	Fetin	nated	Morpholog
	temperature		tir	ne	rocn	onco	Morpholog
	(°C)		(we	eek)	Tesp	onse	y
	Max.	Min.	Max.	Min.	Max.	Min.	
pН	30.00	48.05	2.31	5.72	6.19	6.09	Minimum
Acidity	11.51	28.77	5.53	2.01	0.09	0.09	Minimum
Aw	44.43	36.27	1.23	7.80	0.075	0.072	Minimum
Moisture	10.02	48.80	3.81	2.64	4.47	3.47	Maximum
L	15.52	41.57	1.24	4.64	84.02	80.15	Minimum
а	49.56	27.30	4.83	0.04	2.01	0.38	Saddle
b	49.62	22.49	4.77	0.29	15.84	12.17	Saddle

Table 13.2.12. Predicted level of optimum storage conditions for the maximized and minimuned physiochemical properties of mushroom tablet by the ridge analysis of response surface

Table 13.2.13. Predicted level of optimum storage conditions for the maximized and minimuned physiochemical properties of mushroom capsule by the ridge analysis of response surface

_			Conc	litions			_
Dognon	Storage		Stor	rage	Fatir	notod	Mombolog
ses _	temperature		tir	ne	ESUI.	onse	Morpholog
	(°((°C)		eek)	Tesp	onse	у
	Max.	Min.	Max.	Min.	Max.	Min.	
pН	32.21	46.67	1.64	6.21	6.22	6.12	maximum
Acidity	10.19	32.48	4.55	2.90	0.09	0.08	minimum
Aw	42.87	32.96	0.94	5.49	0.07	0.07	minimum
Moisture	14.09	39.56	3.67	0.49	3.98	3.48	maximum
L	24.56	49.71	0.15	4.68	75.90	70.23	saddle
а	49.16	16.93	5.15	7.03	5.97	3.90	saddle
b	32.50	24.80	7.97	2.78	28.94	18.81	minimum

Storage condition	:	F-ratio								
	pН	Acidity	Aw	Moistur e	L	а	b			
Storage temperature (°C)	18.48***	4.83*	5.76*	12.07**	8.76**	2.42	7.78**			
Storage time (week)	12.78**	2.20	7.51**	1.09	5.20*	3.09	2.99			

Table 13.2.14. Analysis of variables for regression model of dependent variables in storage conditions for mushroom tablet

* : Significant at 10% level, ** : Significant at 5% level, *** : Significant at 1% level

Table 13.2.15. Analysis of variables for regression model of dependent variables in storage conditions for mushroom capsule

		F-ratio									
	pН	Acidity	Aw	Moistur e	L	а	b				
Storage temperature (°C)	6.64*	5.85*	4.68*	4.95*	23.74***	12.40**	0.47				
Storage time (week)	4.66*	4.18	5.02*	5.62*	4.11	1.27	0.86**				

* : Significant at 10% level, ** : Significant at 5% level, *** : Significant at 1% level

Fig 13.2.15. Counter map(left) and response surface(right) for pH of mushroom tablet at constant value as a function of storage temperature and storage time.

Fig 13.2.16. Counter map(left) and response surface(right) for Acidity of mushroom tablet at constant value as a function of storage temperature and storage time.

Fig 13.2.17. Counter map(left) and response surface(right) for Aw of mushroom tablet at constant value as a function of storage temperature and storage time.

Fig 13.2.18. Counter map(left) and response surface(right) for Moisture of mushroom tablet at constant value as a function of storage temperature and storage time.

Fig 13.2.19. Counter map(left) and response surface(right) for L value of mushroom tablet at constant value as a function of storage temperature

- 175 -

and storage time.

Fig 13.2.20. Counter map(left) and response surface(right) for a value of mushroom tablet at constant value as a function of storage temperature and storage time.

Fig 13.2.21. Counter map(left) and response surface(right) for b value of mushroom tablet at constant value as a function of storage temperature and storage time.

Fig 13.2.22. Counter map(left) and response surface(right) for pH of mushroom capsule at constant value as a function of storage temperature and storage time.

Fig 13.2.23. Counter map(left) and response surface(right) for Acidity of mushroom capsule at constant value as a function of storage temperature and storage time.

Fig 13.2.24. Counter map(left) and response surface(right) for Aw of mushroom capsule at constant value as a function of storage temperature

- 177 -

and storage time.

Fig 13.2.25. Counter map(left) and response surface(right) for Moisture of mushroom capsule at constant value as a function of storage temperature and storage time.

Fig 13.2.26. Counter map(left) and response surface(right) for L value of mushroom capsule at constant value as a function of storage temperature and storage time.

Fig 13.2.27. Counter map(left) and response surface(right) for a value of mushroom capsule at constant value as a function of storage temperature and storage time.

- 178 -

Fig 13.2.28.Counter map(left) and response surface(right) for b value of mushroom capsule at constant value as a function of storage temperature and storage time.

다) 미생물 검사

저장조건에 따른 보관시료에 대하여 무균적으로 채취한 1 g으로 일반세균 및 대장균을 검사한 결과 Table 13.2.20~13.2.21과 같이 나타났으며 대장균은 저 장기간 중의 모든 시료에 대해 검출되지 않아 음성으로 판정되었다. 식품의약 안전청 고시 중 의약품 등의 미생물 허용 기준 및 시험방법에 의하면 생약추 출물을 함유하는 내용 고형 제제의 총 균수 허용기준은 1×10⁵개 이며 대장균 은 불검출 되어야 한다. 즉 저장기간 동안의 미생물 검사 결과 고시기준에 적 합하여 섭취에 안전한 것으로 생각된다.

Table	13.2.20.	Storage	test	of	mushroom	tablet	containing	Tricholoma
matsut	ake and	Lentinus	edode	s e	extract			

Exp.	Storage	Storage conditions		-1) -1 -7
No.	Temp.(℃)	Time(Weeks)	(Log cfu/g)	내상판
1	40	6	4.23	-
2	40	2	3.62	-
3	20	6	3.20	_
4	20	2	2.46	_
5	30	4	3.05	-
6	30	4	3.05	-
7	50	4	4.72	-
8	10	4	2.99	_
9	30	8	3.42	_
10	30	0	3.20	-

Exp.	Storage	conditions	익바세균	대자규
No.	Temp.(℃)	Time(Weeks)	근근에면	-11 0 12
1	40	6	4.02	-
2	40	2	3.29	_
3	20	6	3.17	_
4	20	2	2.68	_
5	30	4	3.01	_
6	30	4	3.01	_
7	50	4	4.69	_
8	10	4	3.04	_
9	30	8	3.49	_
10	30	0	3.01	_

Table 13.2.21. Storage test of mushroom capsule containing *Tricholoma matsutake* and *Lentinus edodes* extract

라) 붕해도 검사

봉해시험기를 이용하여 식품공전에서의 봉해시험 기준에 의거하여 저장기간 에 따른 송이/표고 버섯 캅셀 및 타블렛의 봉해도를 측정한 결과 저장기간 0~8주 모두 봉해조건시간이내에 잘 용해되는 것으로 나타나 시험기준에 적합 한 것으로 나타났다.(Table 13.2.22)

Table 13.2.22. Disintegration test during the storage time of mushroom tablet and capsule .

Exp.			분히	토
No.	Temp.(℃)	Time(Weeks)	Tablet	Capsule
1	40	6	적합	적합
2	40	2	적합	적합
3	20	6	적합	적합
4	20	2	적합	적합
5	30	4	적합	적합
6	30	4	적합	적합
7	50	4	적합	적합
8	10	4	적합	적합
9	30	8	적합	적합
10	30	0	적합	적합

제14절 과립 및 세립차의 제조, 시작품의 quality control 방법 확립과 시작품의 품질평가

1. 연구수행방법

가. 재료

본 실험에 사용된 재료는 송이 및 표고버섯 추출물을 이용하여 경북과학대 학 바이오건강산업연구소에서 시제품으로 과립 및 세립을 제조한 것을 이용하 였다.

나. 송이/표고버섯의 과립화 및 세립화 조건 확립

부재료의 함량(농축액, 구연산 및 포도당)을 달리하여 제조하여 최적 배합비 를 선정한 후 과립 및 세립을 제조하여 관능검사를 실시하고 제조조건을 확립 하였다.

다. 관능검사 실시

각각의 제조조건에 따라 제조한 과립을 경북과학대학 연구원 6명을 대상으 로 색, 향, 맛 및 전반적인 기호도에 대하여 관능검사를 실시하였다.

라. 송이/표고버섯의 과립차 제품화

과립차의 제조조건에 따라 시작품을 제조하였다.

마. 송이/표고버섯의 세립차 제품화세립차의 제조조건에 따라 시작품을 제조하였다.

바. 과립류의 유통기간 산정 및 품질보증 공정확립

과립류의 저장조건은 Table 14.1.1과 같으며 중심합성계획에 따라 실험을 실시하였고, 반응표면 분석을 위하여 SAS(Statistical Analysis System) program을 이용하였다.

- 181 -

Table 14.1.1. Level of storage conditions

Conditions		-2	-1	0	1	2
Storage	X1 Temp.(℃)	10	20	30	40	50
condition	X2 Time(weeks)	0	1	2	3	4

1) pH 및 산도

송이/표고 과립 0.5 g을 50 ml의 증류수에 넣고 20분간 stirring 한 후 여과 한 여액으로 pH 및 산도를 측정하였다. pH는 25℃의 조건에서 pH meter(Metrohm Co., Swiss)를 사용하여 측정하였고 산도는 25℃로 유지된 시 료 20 ml를 취하여 0.1N NaOH로 pH가 8.2 될 때까지 중화 적정하여, 소비된 NaOH 용액의 ml수를 구연산계수(0.0064)로 환산하여 나타내었다.

2) 수분 및 수분활성도

과립의 수분은 적외선수분측정장치(Kelt 233525, Japan)를 이용하여 측정하 였고, 수분활성도는 수분활성측정장치(TH 200, Novasina Co., Swiss)를 이용 하여 25℃를 기준으로 하여 값을 측정하였다.

3) 색도 측정

저장 중의 색도변화는 색차계(Chromameter CT-310, Minolta Co., Japan)를 사용하여 측정하였으며 L(lightness), a(redness) 및 b(yellowness)의 값으로 계산하여 나타내었다.

2. 연구내용 및 결과

가.. 송이/표고버섯의 과립화 조건 확립

송이/표고버섯 과립의 적정 배합비를 설정하기 위하여 5점 채점법으로 버섯 추출 농축액, 구연산 및 포도당 함량에 따른 관능검사를 실시하였다. 농축액 함량을 5~20%로 다르게 첨가하여 관능검사를 실시한 결과 색의 경우 15% 첨가하였을 때 점수가 3.6으로 가장 높게 나타났다. 향의 경우 농축액의 함량 비율이 증가함에 따라 기호도는 약간 감소하는 경향을 나타내었으며, 이는 버

- 182 -

섯 특유.의 냄새가 짙어지기 때문인 것으로 사료된다. 맛의 경우 20% 이상 첨 가할 경우 기호도가 3.0이하로 나타나 소비자의 기호도에 맞추기 위해서는 추 후 보다 많은 연령층 및 실제 소비자를 대상으로 한 관능검사가 필요할 것으 로 생각된다. 과립 제조시 구연산의 첨가량을 다르게 하여 관능검사를 실시한 결과는 아래 Table 14.2.2과 같이 나타났다. 향과 맛에 있어서는 관능적 특성 에 큰 차이를 보이지 않았으며 맛의 경우 구연산의 첨가량을 0.3%, 0.5% 첨가 하였을 때가 가장 높은 선호도를 보였다. 전반적인 기호도 면에서 과립 제조 시 구연산의 함량은 0.5% 정도 첨가하는 것이 가장 적합한 것으로 나타났다. 과립 제조에서 포도당의 함량을 20~40%로 다르게 하여 관능적 특성을 조사 한 결과는 Table 14.2.3과 같이 나타났다. 색과 향에 있어서는 관능적 특성에 큰 차이가 나타나지 않았으며, 맛의 경우 포도당을 30% 및 40% 첨가하였을 경우가 선호도가 높게 나타났다. 전반적인 기호도 면에서는 포도당을 30% 첨 가하였을 때가 3.3으로 가장 높게 나타났다.

부재료 함량 비율에 따른 과립의 관능적 특성에 대한 결과를 바탕으로 버섯 농축액 함량은 15%, 구연산의 함량 0.5% 및 포도당 함량은 30%로 결정하여 과립 및 세립의 최적 배합비를 선정하였다.

Table 14.2.1. Organoleptic properties with the contents of mushroom extrat concentration

Mushroom extract concentration	5	10	15	20
(%)				
Properties				
Color	3.3	3.5	3.6	3.3
Flavor	3.2	3.2	3.0	2.5
Taste	3.0	3.2	3.4	2.5
Overall palatability	3.0	3.0	3.5	2.4

* 5점 척도법(1-매우 좋지 않다 2-약간 좋지 않다 3-보통이다 4-약간 좋다 5-매우 좋다)

				_
Citric acid (%)	0.1	0.3	0.5	0.7
Properties				
Color	3.3	3.1	3.4	3.3
Flavor	3.0	3.1	3.0	3.1
Taste	3.0	3.4	3.5	2.9
Overall palatability	2.7	3.3	3.5	2.7

Table 14.2.2. Organoleptic properties with the contents of citric acid

* 5점 척도법(1-매우 좋지 않다 2-약간 좋지 않다 3-보통이다 4-약간 좋다 5-매우 좋다)

Table 14.2.3. Organoleptic properties with the contents of glucose

Glucose				
(%)	20	25	30	40
Properties				
Color	3.3	3.3	3.4	3.4
Flavor	3.0	3.0	3.0	3.1
Taste	2.7	3.0	3.2	3.2
Overall palatability	3.0	3.0	3.3	3.2

* 5점 척도법(1-매우 좋지 않다 2-약간 좋지 않다 3-보통이다 4-약간 좋다 5-매우 좋다)

Table 14.2.4. Preparation conditions of mushroom granules and powders

Ingredient	Content (%)
포도당	30
유당	20
옥수수 전분	27
송이버섯 농축액(50brix)	15
사과농축액(68brix)	1
두유 분말	5
무수구연산	0.5
DL-사과산	0.5
비타민C	1.0
합계	100

나. 송이/표고버섯의 과립차 제품화

1) 시제품 제작

송이/표고과립에 제조조건은 아래 Fig. 14.2.1과 같으며 최적배합비에 따라 시제품을 제조하였다(Fig 14.2.2)

·계량 : 결정과당, 정백당(세립당), 무수포도당을 계량한 후에 향을 계량하 여 투입(스포이드 등을 이용 정밀하게 계량하여 분말에 향을 코팅한다).
· 혼합 : 나머지 원료를 계량하여 향을 코팅한 분말에 넣고 골고루 섞어 잘 혼합하고 #30 메쉬로 여과, 분말을 균질하게 만든다.
· 성형 : 균질하게 한 분말을 바닥면에 골고루 넓게 편 후 살균된 정제수 를 담은 스프레이로 물을 분무한 후 혼합하는 과정을 반복하여 입자를 성 형한다.
· 건조 : 55도에서 열풍건조실시 (약 5시간)
· 선별
- 과립 : 20 mesh로 여과하여 20 mesh 체는 통과하고 45 mesh에 걸리는 입자를 선별한다.
· 재작업 : 선별한 입자는 분쇄 후 성형, 건조, 선별 작업을 반복한다.
· 포장 : 선별작업을 통과한 제품에 한해 포장한다.

Fig 14.2.1. 송이/표고 과립화 제조공정

Fig 14.2.2. 송이/표고버섯 과립(시제품)

Fig 14.2.3. 과립 및 세립의 제조공정도

2) 과립의 표면단백질

제조공정에 따라 제조한 과립에 대해 표면단백질을 확인하기 위하여 SDS-page를 실시한 결과는 Fig 14.2.4와 같다. 과립 100 mg을 20 kDa marker로 SDS-page를 실시한 결과 원액 자체에서 송이의 표면단백질이 확인 되었음을 볼 수 있으며, 희석배수가 높아짐에 따라 밴드가 점점 옅어지는 것 을 볼 수 있었으며, 0.202 ug/ul의 농도 범위에서도 표면단백질 밴드의 확인이 가능하였다.

Fig 14.2.4. 과립의 단백질 농도 (원액 : 과립 100 mg +0.05 M Phosphate Buffer 100 ul)

1 : 20 kDa Marker

2: 과립의 단백질의 희석 원액 25 ul (12.925 ug/ul)
3: 과립의 단백질의 1/2배 희석액 25 ul (6.463 ug/ul)
4: 과립의 단백질의 1/4배 희석액 25 ul (3.231 ug/ul)
5: 과립의 단백질의 1/8배 희석액 25 ul (1.616 ug/ul)
6: 과립의 단백질의 1/16배 희석액 25 ul (0.808 ug/ul)
7: 과립의 단백질의 1/32배 희석액 25 ul (0.404 ug/ul)
8: 과립의 단백질의 1/64배 희석액 25 ul (0.202 ug/ul)

다. 송이/표고버섯의 세립화 조건 확립

최적배합비에 따라 세립을 Fig 14.2.5와 같이 제조하였으며, 제조조건은 아래 와 같다.

·계량 : 결정과당, 정백당(세립당), 무수포도당을 계량한 후에 향을 계 량하여 투입(스포이드 등을 이용 정밀하게 계량하여 분말에 향을 코팅 한다).
· 혼합 : 나머지 원료를 계량하여 향을 코팅한 분말에 넣고 골고루 섞어 잘 혼합하고 #30 메쉬로 여과, 분말을 균질하게 만든다.
· 성형 : 균질하게 한 분말을 바닥면에 골고루 넓게 편 후 살균된 정 제수를 담은 스프레이로 물을 분무한 후 혼합하는 과정을 반복하여 입 자를 성형한다.
· 건조 : 55도에서 열풍건조실시 (약 5시간)
· 선별
-세립 : 14 mesh 및 30 mesh의 체로 여과하여 14 mesh 통과하고 30 mesh에 걸리는 입자를 선별한다.
· 재작업 : 선별한 입자는 분쇄 후 성형, 건조, 선별 작업을 반복한다.
· 포장 : 선별작업을 통과한 제품에 한해 포장한다.

Fig 14.2.5. 송이/표고 세립화 제조공정

Fig 14.2.6. 송이/표고버섯 세립(시제품)

- 188 -

라. 과립류의 유통기간 설정 및 품질보증

버섯 과립의 유통기한 설정을 위하여 제조조건에 따라 과립을 제조하고 저 장온도 10, 20, 30, 40, 50℃ 및 저장기간 0, 1, 2, 3, 4주에 따른 이화학적 특성 을 조사하였다. 저장온도 및 기간에 따른 이화학적 특성을 조사한 결과는 Table 와 같다. pH는 3.81~3.95의 범위를 나타내었으며, 산도는 0.38~0.45% 의 값을 나타내었고, 수분활성도는 0.108~0.35 및 수분함량은 3.21~3.81%의 범위에서 나타났다. 과립의 색도는 L값의 경우 저장기간 4주 동안 67.37~ 74.29, a값은 5.48~6.76로 나타났으며, b값은 19.86~27.34으로 나타났다. 각각 의 결과를 이용하여 반응표면 회귀분석을 실시하였으며 종속변수인 이화학적 특성에 대한 회귀식을 얻었다(Table).

1) 저장 중 과립의 pH 및 산도

저장조건에 따른 과립의 pH 변화는 Table 14.2.5과 같으며, 저장조건에 따 른 pH에 대한 회귀식의 R²는 0.8375로 10% 이내의 수준에서 유의성이 인정되 었다(Table 14.2.6). 예측된 정삼점은 최대점으로 저장온도가 높고, 저장기간이 길어질수록 pH 값이 상승하는 것으로 나타났으며, 저장온도보다는 저장기간에 의해 pH의 변화가 좀 더 영향을 받는 것으로 나타났다. 저장조건에 따른 산도 에 대한 회귀식의 R²는 0.8233으로 예측된 정상점은 최대점이며, 산도의 변화 는 저장온도가 높고, 저장기간이 길어질수록 산도의 값은 약간 감소하는 것으 로 나타났다.

2) 저장 중 과립의 수분 및 수분활성도

과립의 저장에 따른 수분함량의 변화는 Table 14.2.5과 같으며, 이 값을 바 탕으로 하여 반응표면분석을 실시한 결과는 Fig 14.2.10과 같고, 이에 대한 회 귀식은 Table 14.2.6에 나타내었다. 수분함량에 대한 회귀식의 R²는 0.8804이며 10% 이내에서 유의성이 인정되었다. 예측된 정상점은 최소점이었으며, 저장기 간이 길수록 수분함량이 증가하는 경향을 나타내었다. 수분활성도에 대한 회 귀식의 R²는 0.8423이며 10% 이내의 수준에서 유의성이 인정되었다. 또한, 저 장기간 보다는 저장온도에 영향을 많이 받는 것으로 나타났다. 3) 저장 중 과립의 색도

저장에 따른 과립의 색도의 변화는 Table 14.2.5과 같으며, 이 결과값을 이 용하여 반응표면분석을 한 결과는 Fig 14.2.11~14.2.13과 같다. 반응표면분석 에 대한 회귀식은 Table 14.2.6에 나타내었다. L값에 대한 회귀식의 R²는 0.8491이며 5% 이내의 수준에서 유의성이 인정되었다. 예측된 정삼점은 최대 점이며, 저장기간 보다는 저장온도에 영향을 많이 받았으며, 저장온도가 높고 기간이 길어질수록 L값은 낮아지는 경향을 나타내어, 저장에 따라 과립의 전 체적으로 약간 어두워지는 경향을 나타냄을 알 수 있었다. a값에 대한 회귀식 의 R²는 0.9032이었으며, 5% 이내의 수준에서 유의성이 인정되었다. 예측된 정상점은 안장점으로 나타났으며, a값 역시 저장기간보다는 저장온도에 영향 을 많이 받는 것으로 나타났다. b값에 대한 회귀식의 R²는 0.8655이며 10% 이 내의 수준에서 유의성이 인정되었다. 예상된 안장점은 안장점이며, 저장온도보 다는 저장기간에 좀 더 영향을 받는 것으로 나타났다.

Table 14.2.5. Experimental data on pH, acidity, Aw, moisture content, L, a and b of mushroom granules under different conditions based on central composite design for response surface analysis

	Sto	rage		1	Physioch	emical prope	orties					
Fyp	cond	litions		i nysiochemical properties								
Exp.	Tomp	Time		Acidity		Moisture						
No.	1 emp	(Weeks	pН		Aw		L	а	b			
	.(()))		(%)		(%)						
1	40	3	3.87	0.40	0.123	3.51	72.04	6.52	23.20			
2	40	1	3.85	0.41	0.120	3.48	7317	6.76	22.08			
3	20	3	3.89	0.44	0.110	3.21	72.18	5.91	21.37			
4	20	1	3.85	0.42	0.108	3.20	74.20	5.64	21.04			
5	30	2	3.83	0.44	0.113	3.25	73.03	5.86	22.30			
6	30	2	3.83	0.44	0.118	3.30	73.23	5.85	22.32			
7	50	2	3.87	0.40	0.135	3.81	67.37	6.99	19.86			
8	10	2	3.81	0.45	0.122	3.54	74.22	5.50	20.07			
9	30	4	3.95	0.38	0.128	3.62	69.05	6.23	27.34			
10	30	0	3.83	0.43	0.109	3.23	74.29	5.48	21.21			

Responses	Polynomial equations	R^2	Significance
pН	$\begin{array}{l} Y_{pH} = 3.801250 \ + \ 0.001083X_1 \ -0.015000X_2 \\ + 0.000012500X_1{}^2 \ - \ 0.000500X_1X_2 \\ + 0.013750X_2{}^2 \end{array}$	0.8375	0.0974
Acidity	$\begin{array}{l} Y_A = & 0.382321 \text{+} 0.002071 X_1 \ \text{+} 0.047143 X_2 \\ & -0.000030357 {X_1}^2 \ \text{-} 0.000750 X_1 X_2 \\ & -0.008036 {X_2}^2 \end{array}$	0.8233	0.1132
Aw	$\begin{array}{l} Y_{Aw} \ = \ 0.130851 \ - \ 0.001757X_1 \ -0.001381X_2 \\ + 0.000035536X_1X_2 + \ 0.000025000X_1X_2 \\ + 0.001054{X_2}^2 \end{array}$	0.8423	0.0922
Moisture	$\begin{array}{l} Y_{M} = 3.960655 0.054345 X_{1} 0.114524 X_{2} \\ \text{+} 0.001045 {X_{1}}^{2} \text{+-} 0.000500 X_{1} X_{2} \text{+-} 0.041964 {X_{2}}^{2} \end{array}$	0.8804	0.0552
L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.8491	0.0850
а	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.9032	0.0371
b	$\begin{array}{l} Y_b \ = \ 17.390714 \mbox{+} 0.321031 X_1 \ - \ 1.498571 X_2 \\ \ -0.005654 {X_1}^2 \mbox{+} \ 0.019750 X_1 X_2 \ \ \mbox{+} 0.512143 {X_2}^2 \end{array}$	0.8655	00688

Table 14.2.6. Polynomial equations calculated by RSM program for mushroom granules

Physiochemical properties	Storage temperature (°C)		Storage time (week)		Estimated response		Morpholog y
	Max.	Min.	Max.	Min.	Max.	Min.	
pН	29.56	12.82	4.00	0.98	3.95	3.81	Maximum
Acidity	10.41	42.03	2.40	3.60	0.45	0.38	Maximum
Aw	49.21	24.55	2.56	0.28	0.14	0.11	Minimum
Moisture	49.49	25.94	2.45	1.31	3.86	3.19	Minimum
L	17.92	48.70	0.41	2.71	75.29	68.28	Maximum
а	49.77	15.98	1.70	0.57	7.12	5.13	Saddle
b	32.17	10.29	3.99	1.66	26.54	19.35	Saddle

Table 14.2.7. Predicted level of optimum storage conditions for the maximized and minimized physiochemical properties of mushroom granules by the ridge analysis of response surface

Table 14.2.8. Analysis of variables for regression model of dependent variable in storage conditions for mushroom granules

Conditions	F-ratio						
	рН	Acidity	Aw	Moisture-	Hunter's color		
					L	а	b
Storage temperature (℃)	0.54	3.63	5.15*	8.17**	4.62*	11.00**	1.46
Storage time (week)	6.05*	3.17	2.09	2.44	3.39	1.45	4.96*

* : Significant at 10% level, ** : Significant at 5% level, *** : Significant at 1% level

Fig 14.2.7. Counter map(left) and response surface(right) for pH of mushroom granules as storage temperature and storage time

Fig 14.2.8. Counter map(left) and response surface(right) for acidity of mushroom granules as storage temperature and storage time

Fig 14.2.9. Counter map(left) and response surface(right) for Aw of mushroom granules as storage temperature and storage time

- 193 -

Fig 14.2.10. Counter map(left) and response surface(right) for moisture of mushroom granules as storage temperature and storage time

Fig 14.2.11. Counter map(left) and response surface(right) for L value of mushroom granules as storage temperature and storage time

Fig 14.2.12. Counter map(left) and response surface(right) for a value of mushroom granules as storage temperature and storage time

- 194 -

Fig 14.2.13. Counter map(left) and response surface(right) for b value of mushroom granules as storage temperature and storage time

바. 요약

송이버섯(Tricholoma matsutake)과 표고버섯(Lentinus edodes)을 이용하여 버섯추출조건의 공정최적화 및 음료 등의 드링크류의 시작품 제작을 목표로 연구를 수행하였다. 식품의 성분 또는 식품의 섭취행태가 만성퇴행성질환의 예방, 성인병 예방, 건강의 유지 및 증진과 밀접한 관련이 있음이 과학적으로 널리 규명됨에 따라서 건강기능성 식품에 대한 소비자들의 관심이 날로 증대 되고 있으며, 식물자원에서 항암, 항알레르기, 항비만, 항산화, 항균 등의 기능 성 물질 탐색에 관한 연구가 활발히 진행되고 있으며, 이들 유용성분을 식품 에 첨가하거나 그 자체를 이용하려는 시도가 진행 중에 있다. 또한 영양적 가 치가 우수하고 면역력의 증진 등 국민건강에 우수한 기능을 담당하는 것으로 알려진 버섯류의 생산과 연구에 대한 관심은 더욱 높아져 가고 있는 실정이 다. 이에 발맞추어 본 실험에서는 송이버섯과 표고버섯을 이용하여 손쉽게 우 수한 효능성분을 섭취할 수 있고 현대인의 기호에 맞는 기능성 식품의 형태로 개발하고자 하였다. 송이버섯과 표고버섯을 주원료로 하여 효능성분의 최적추 출화를 꾀하였고, 기능성 음료 및 농축다류, 엑스 형태의 버섯관련 기능성 제 품을 개발하였다. 이는 송이버섯과 표고버섯의 일반화 확대와 더불어 건강한 식생활의 선도 및 버섯의 소비 증가 유도를 통한 생산농가의 소득 증대를 꾀할 수 있을 것이라 본다.

- 195 -

제 4 장 목표달성도 및 관련분야에의 기여도

* 연도별 연구목표 및 평가착안점에 입각한 연구개발목표의 달성도 및 관련
 분야의 기술발전에의 기여도 등을 기술

1세부과제

구 분	연 구 개 발 목 표	연구개발 내용 및 범위	달성도
1차 년도 (2003.7 ~2004.7)	송이및 표고의 다양한 기능성소재 hydrophobin 의 정제	- hydrophobin의 정제 - 정제된 hydrophobin의 특성규명 - hydrophobin유전자의특성 규명 - hydrophobin 유전자의 클론닝을 위한 송이 자실체 유래 cDNA의 분석	100% 100% 100% 100%
2차 년도 (2004.7~ 2005. 7)	hydrophobin 의 발현	- 분자량이 상이한 복수의 hydrophobin 유전자 - 자실체형성시의 발현기작 - hydrophobin유전자의 분석을 위한 송이 자실체유래 cDNA의 클론닝 및 분석	100% 100% 100%
3차 년도 (2005.7~ 2006. 7)	재조합 hydrophobin	- 송이 hydrophobin genomic DNA의 클론닝 - 효모등에서 재조합 hydrophobin 의 생산 - hydrophobin유전자의 분석을 위한 부위특이적으로 발현하는 송이 cDNA의 클론닝 및 분석 - hydrophobin의 응용성 검토	100% 100% 100%

2 세부과제

구 분	연구개발 목표	연구개발 내용 및 범위	달성 도
1차 년도 (2003.7 ~2004.7)	송이 및 표고버섯의 조추출물로부 터 신기능 관련 유효성분의 검색	 송이, 표고의 생리활성물질 관련 국내외 연구 자료수집 및 예상 우수생리활성의 수집 송이, 표고로부터 보고된 바 있는 우수활성물질의 선발 및 신기능 생리활성 규명 (In vitro 실험) 송이, 표고버섯, 배양균체사로부터 조추출물의 제조 선별된 유효생리활성 분획의 신기능성 타세 미 작용 기적 금며 (In vitro 신형) 	100% 100% 100%
2차 년도 (2004.7~ 2005. 7)	신기능 생리활성 물질의 조추출물 조제와 in vitro 및 in vitro 및 in vivo 실험을 통한 효능 검정	[남색 및 작용 기전 규명 (In Vitro 실업) - 송이, 표고버섯 및 배양균사체로부터 유효생리활성 물질의 조추출물 조제 - 정제물질의 구조분석 및 물질의 신규성 규명 - 유효분획, 정제물질, Lentinan 또는 hydrophobins을 이용한 생리활성 효능 검정 -생리활성물질의 신기능성 규명	100% 100% 100%
3차 년도 (2005.7~ 2006. 7)	신기능 생리활성 물질의 분리 정제법 확립과 in vitro 및 in vivo 실험을 통한 효능 검정	 신기능 생리활성물질의 대량생산 조건 확립 및 생산기술의 특허화 In vivo 동물실험 및 in vitro 실험계를 이용한 우수생리활성 물질의 면역증강 효능 검정 동물실험을 통한 시제품의 효능 조사 우수 생리활성 물질의 안정성 검토 온도/ pH 안정성조사 시간에 따른 효능 천이 조사 In vitro cell model을 이용한 유효성분의 안전성 검토 	100% 100% 100% 100%

- 197 -

3 세부과제

제품의 생산공정 확립으로 기업에서의 산업화시 기술지원에 응용 가능하리라 생각되며 기능성 식품 개발을 위한 기반 기술의 확보로 고부가가치 상품의 개 발이 가능하리라 본다. 또한 소득의 증대와 건강에 관심이 높아짐에 따라 버 섯의 기능성 식품의 개발은 소비자들의 기호성을 만족시키며 기능성 제조분야 에 기여할 수 있으리라 생각된다.

구 분	연구개발 목 표	연구개발 내용 및 범위	달성도
1차 년도 (2003.7 ~2004.7)	대량추출 및 드링크제조공 정 확립	추출 및 제조공정 - 송이/표고 성분함유 천연물의 추출방법 확립 - 송이/표고버섯의 추출조건 최적화 - 추출물의 안정성 검토 - 드링크 제품의 제조공정확립 - 송이 드링크(음료 및 농축다류)의 시작품 제조 - 음료의 유통기간 산정 및 품질보증	100% 100% 100% 100% 100%
2차 년도 (2004.7~ 2005. 7)	추출물의 농축, 건조, 제품별 제조공정, 및 제형화 조건 및 제조 공정확립	송이/표고버섯의 조추출물의 건조조건 확립 송이/표고버섯의 조추출물 분말화 공정확립 송이/표고버섯의 캅셀의 제조조건 확립 송이/표고버섯의의 타브렛의 제조조건 확립 송이/표고버섯의 추출물 캅셀의 제조 (시작품 제작) 제품의 유통기간 산정 및 품질보증	100% 100% 100% 100% 100%
3차 년도 (2005.7~ 2006. 7)	과립 및 세립차의 제조, 시작품의 quality control 방법 확립과 시작품의 품질평가	송이/표고버섯의 과립화 조건 확립 송이/표고버섯의 과립차 제품화(시작품 제작) 송이/표고버섯의 세립화 조건 확립 및 제품화(시작품 제작) 송이/표고버섯의 세립차 제품화(시작품 제작) 과립류의 유통기간 산정 및 품질보증 품질 보증 및 공정확립	100% 100% 100% 100% 100%

- 198 -

🗌 hydrophobin의 정제

ethanol 추출법으로 hydrophobin단백질을 정제하였다. (목표치 : 100% 달 성)

□ 정제된 hydrophobin의 특성규명

상기 방법으로 정제하여, 송이에서 25kDa, 표고에서 24kDa과 11kDa의 hydrophobin 단백의 분자량 확인하였다. (목표치 : 100% 달성)

□ hydrophobin유전자의 특성 규명

T. matsutake로부터 Tmhydl과 Tmhyd2 cDNA 를 클론닝하였으며, 이들은 118개의 아미노산과 115개의 이마노산으로 구성된 ORF의 유전정보를 가지고 있음을 확인하였다. (목표치 : 100% 달성)

 □ hydrophobin 유전자의 클론닝을 위한 송이 자실체 유래 cDNA의 분석 hydrophobin 단백질은 상호간의 상동성이 매우 낮기 때문에, cDNA
 library 를 제작하여 염기배열을 수행함으로서 2종의 hydrophobin cDNA를 클 론닝 할 수 있었다. (목표치 : 100% 달성)

□ 분자량이 상이한 복수의 hydrophobin 유전자

T. matsutake cDNA 약 3000개의 염기배열을 결정하였을 때, 복수의 hydrophobin유전자가 스크리닝되었다. (목표치 : 100% 달성)

□ 자실체형성시의 발현기작

hydrophobin 유전자의 발현기작을 검토하였을 때, 균사상태에서는 거의 발 현이 되지 않았으나, 원기와 자실체에서 발현됨을 확인하였다. (목표치 : 100% 달성)

🗌 응용성 검토

본 연구에서는 협동과제에서 응용성을 검토하였다. (목표치 : 100% 달성)

□ 송이, 표고의 생리활성물질과 관련된 국내외 연구 자료를 수집하였으며, 예상 우
 수생리활성에 대한 자료를 수집하여 신기능성 성분의 탐색을 구체화 하였다.(목표치 100% 달성)

□ 표고 버섯을 Methanol, Methylene chloride, Ethyl acetate, n-butanol, Water 극 성별 용매 5가지로 추출하여 신기능성 성분 탐색을 위한 조추출물 제조하였다.(목표 치 100% 달성)

□ 표고 버섯의 Methanol, Methylene chloride, Ethyl acetate, n-butanol, Water 추 출물의 세포독성을 측정하였다.(목표치 100% 달성)

□ 송이와 표고의 hydrophobin 추출물을 제조하였으며, 추출물들의 세포독성을 측정 하였다.(목표치 100% 달성)

□ 동충하초의 ethyl acetate 분획을 확보하였고, 신기능성 성분을 분석하였으며, 분 획의 항암 역가와 면역 활성의 검정을 완료하였다.(목표치 100% 달성)

□ 표고의 methylene chloride 분획의 암세포 사멸 유도에 대한 분자, 세포생물학적 작용기전을 규명하였다.(목표치 100% 달성)

□ Ergosterol, Linolic acid, Diacetoxyscripenol과 같은 신기능성 성분들의 실용화를 위한 가능성을 검토하였으며, 신규 효능물질 Diacetoxyscripenol의 특허 출원을 준비 중이다. (목표치 100% 달성)

□ Hydrophobin 작용기전을 검정하기 위해 E. coli system을 구축하여 발현을 유도 하였으나, 염기 서열상에 정확한 일치에도 불구하고 단백질은 확인되지 않았다.(목표 치 100% 달성)

□ Diacetoxyscripenol에 대한 세포 및 분자 생물학작용기전을 규명함과 동시에 정상 말초혈액 세포와 암세포주에 대한 작용을 비교하여 안정성을 검정하였다.(목표치 100% 달성)

- 200 -

□ 시제품의 유효량, 유효기간을 설정하여 검토를 완료하였다.(목표치 100% 달성)

□ 추출조건 최적화

송이/표고버섯에서 표면단백질을 추출하여 전기영동으로 표면단백질의 존 재를 확인하였고, 에탄올 용매별로 농도를 다르게 하여 추출한 표면단백질의 추출효율은 에탄올 농도 60%일 때가 가장 효과적인 것으로 나타났다.(목표치 100% 달성)

□ 드링크제조공정확립

송이/표고버섯 천연물을 함유한 드링크 제조공정을 확립하였으며, 저장온 도 및 시간에 따른 이화학적 특성의 변화를 검토하였다.(목표치 100% 달성)

□ 추출물의 농축, 건조, 제품별 제조공정 확립

추출물의 농축, 건조에 따른 이화학적 특성의 변화를 조사하였으며, 폐기율 및 건조수율 등을 조사하였으며, 각각의 공정을 확립하였다.(목표치 100% 달 성)

□ 타블렛 및 캅셀 제조 및 유통기간 설정

송이/표고버섯 추출물을 이용한 타블렛 및 캅셀을 제조하였으며, 표면단백 질은 전기영동을 실시하여 단백질 밴드를 확인하였다. 반응표면분석을 통한 유통기한을 설정하여, 저장에 따른 이화학적 특성의 변화를 모니터링하였다. (목표치 100% 달성)

□ 과립 및 세립차 의 제조 및 품질공정 확립

송이/표고의 과립 및 세립체를 제조하였으며, 반응표면분석을 통하여 저장 에 따른 이화학적 특성의 변화를 모니터링하였다. 또한 각 제품의 제조단계별 공정을 확립하였다. (목표치 100% 달성)

- 201 -

제 5 장 연구개발결과의 활용계획

본 연구의 추진으로 특허 1건을 등록하였으며, 학회발표가 4건이며, 투고중 또는 투고 준비중인 것이 5편으로서, 보고서 제출 후 곧 바로 투고논문 을 작성할 계획임

특허

 송이버섯으로부터 분리된 신규 하이드로포빈 유전자 Tmhyd2. 등록번호 제0554672호(등록일 2006. 2. 16)

▶투고 또는 투고 준비중

- 1. Cloning and expresson of hydrophobin genes from *Tricholoma matsutake.* J. Microbiol. Biotechnol. (투고 준비중)
- 2. Expression profile of cDNAs from friut body of *Tricholoma matsutake*. J. Microbiol. Biotechnol. (투고 준비중)
- 3. Suppressive effect of ethyl acetate extract of *Paecilomyces japonica* on cell cycle progression of human acute leukemia Jurkat T cell clone overexpressing Bcl-2., *Food Chem.*, 2006 (투고중)
- 4. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruptionof cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells., *Biochem. Biophys. Res. Commun.*, 2006 (투고중)
- 5. Chemical composition and anti-tumor apoptogenic activity of extracts from *Lentinus edodes.* J. of Life Science (투고 준비 중)

- 1. Jin-Hyung Lee, Yong-Kyu Shin, Wha-Youl Choi, Jeong-Min Kim1, Jung-Hwa Oh1, Nam-Sun Kim1, Jong-Guk Kim (2004/1/31) Cloning and Characterization of Hydrophobin cDNA *Tmhyd2* from *Tricholoma matsutake*. 한국미생물·생명공학회 영남지부학회 콩코드호텔
- Jin-Hyung Lee, Seung-Pil Jung, Jeong-Min Kim, Jung-Hwa Oh, Nam-Sun Kim, Jong-Guk Kim (2004/6/21) Cloning and characterization of two hydrophobin gene homologue *Tmhyd1* and *Tmhyd2* from *Tricholoma matsutake*. 한국미생물·생명공학회학술대회. 대구 인터불고호텔

[▶]학회 구두 또는 Poster 발표

- 3. Jin-Hyung Lee, Seung-Pil Jung, Jeong-Min Kim, Jung-Hwa Oh, Nam-Sun Kim, Jong-Guk Kim (2005/1/28) Two hydrophobin gene homologues *Tmhyd1* and *Tmhyd2* from *Tridholoma matsutake*. 한국미생물·생명공학회 영남지부학회 콩코드호텔
- Apoptosis provoked by caspase-8 activation and cell cycle-arrest due to down-regulation of cdk4 and cyclinB1 are associated with Diacetoxyscirpenol-induced cytotoxicity toward human Jurkat T cells., 2006 Annual Meeting, and International Symposium for KMB., 2006. 6. 18.
- 이상의 연구결과는 향후 버섯 표면 단백질의 연구개발을 위한 선행연구자료로 서 이용될 수 있음.

제 6 장 연구개발과정에서 수집한 해외과학기술

제1세부 과제

요약문 및 본 보고서의 서론부분에서 국외의 hydrophobin 의 연구개발 현 황을 제시하였으며, 송이의 hydrophobin 유전자에 관한 연구는 본 연구팀에 의해서 최초로 수행되었다.

제2세부 과제

1. Ergosterol

Ergosterol (ergosta-5,7,22-trien-3¹⁰-ol)은 Vitamin D2의 전구체로 UV선에 의해 Vitamin D 형태의 ergocalciferol로 전환되는데 진균의 주요한 세포막 구 성성분이 된다. 따라서 일광이 부족한 유럽이나 미국 등에서는 중요한 영양소 로 취급되며, 미국 FDA에서는 에르고스테롤이 풍부한 버섯류를 10대 항암식 품으로 선정하여 섭취를 권장하고 있으며, 자외선 조사 후의 멜라닌색소 침착, 기미, 주근깨의 생성억제제로 기능이 알려지면서 이에 대한 연구가 활발히 진 행되고 있다.

1) Ergosterol: a new product in the new century

Su Jiahua가 저자인 China Chemical Reporter(26.-Aug-2002)에 따르면 중 국에서 ergosterol 의 대량생산을 위하여 1999년도에 시작하여 2001년도부터 상업적으로 ergosterol이 연간 생산되는데 35 t/a 규모 공장(Dalian Biochemical Co., Ltd)에서 20 tons 생산된다고 보고하였음.

2) Phytosterol의 하나로 상품화되어 사용하는 예

식물 유래의 sterol의 하나인 ergosterol를 분리하여 항구루병제로 Vitamin D 부족으로 어린이에게 발병하는 rickets병과 성인의 골연화증에 사용되고 있 다(http://www.chemicalland21.com).

제3세부과제

송이의 hydrophobin 을 적용한 식품류의 생산은 본 연구그룹에 의해서 최초로 적용되었다.

제 7 장 참고문헌

제 1세부과제 참고 문헌

- Arntz, C., and Tudzynski, P. (1997) Identification of genes induced in alkaloid-producing cultures of Claviceps sp. *Curr. Genet.* 31: 357–360.
- Albuquerque P, Kyaw CM, Saldanha RR, Brigido MM, Felipe MS, Silva-Pereira I. (2004) Pbhyd1 and Pbhyd2: two mycelium-specific hydrophobin genes from the dimorphic fungus *Paracoccidioides brasiliensis. Fungal Genet Biol.* May:41(5): 510-20.
- Beckerman, J. L., and Ebbole, D. J. (1996) MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. *Mol. Plant-Microb. Interact.* 9: 450-456.
- Bowden, C. G., Smalley, E., Guries, R. P., Hubbes, M., and Horgen, P. A. (1996) Lack of association between cerato-ulmin production and virulence in Ophiostoma novo-ulmi. *Mol. Plant-Microb. Interact.* 9: 556–564.
- Kazmierczak, P., Pfeiffer, P., Zhang, L., and VanAlfen, N. K. (1996) Transcriptional repression of specific host genes by the mycovirus Cryphonectria-hypovirus-1. *J. Virol.* 70: 1137-1142.
- Kabir, Y., Yamaguchi, M. and Kimura, S. (1987) Effect of shiitake(*Lentinus edoodes*) and maitake(*Grifola frondosa*) mushrooms on blood pressure and plasma lipids of spontaneously hypertensive rats. *J. Nutr. Sci. Vitaminol.*, **31**: 341–346
- Marcel L. de Vocht, Karin Scholtmeijer, Eric W. van der Vegte, Onno M. H. de Vries, Nathalie Sonveaux, Han A. B. Wosten, Jean-Marie Ruysschaert, Georges Hadziioannou, Joseph G. H. Wessels, and George T. Robillard. (1998) Structural Characterization of the Hydrophobin SC3, as a Monomer and after Self-Assembly at Hydrophobic/Hydrophilic Interfaces. *Biophysical Journal* 74: 2059–2068.
- Maria M. Penas, Sigridur A. Asgeirsdottir, Inigo Lasa, Francisco A. Culianez-Macia, Antonio G. Pisabarro, Joseph G. H. Wessels, and Lucia Ramirez. (1998) Identification, Characterization, and In Situ Detection of a Fruit-Body-Specific Hydrophobin of *Pleurotus ostreatus*. *Applied and Environmental Microbiology* **64**(10): 4028-4034.
- Marie-Anne van Wetter, Han A. B. Wosten and Joseph G. H. Wesseis. (2000) SC3 and SC4 hydrophobins have distinct roles in formation of aerial structures in dikaryons of *Schizophyllum commune. Molecular Microbiology* **36**(1): 201-210.
- 10. Myers, R.H. (1971) Response Surface Methodology. Allyn and Bacon, Inc. Boston, USA.
- Michael J. Kershaw and Nicholas J. Talbot. (1998) Hydrophobin and Repellents : Proteins with Fundamental Roles in Fungal Morphogenesis. *Fungal Genetics and Biology* 23: 18–33.
- Okamoto, H., Otani, H., and Takai, S. (1986) Effect of cerato-ulmin(CU) on electrogenic pumps of elm cell membrane and ion from cells. *Phytopathol.* 76: 116(Abstr.).

- Piet W. J. De Groot, Robert T. P. Roeven, Leo J. L. D. Van Griensven, Jaap Visser and Peter J. Schaap. (1999) Different temporal and spatial expression of two hydrophobin-encoding genes of the edible mushroom Agaricus bisporus. *Microbiology* 145: 1105-1113.
- 14. Peter A. Vesk, Anne E. Ashford, Anne-Laure Markovina and William G. Allaway. (2000) Apoplasmic barriers and their significance in the exodermis and sheath of Eucalyptus pilularis-Pisolithus tinctorius ectomycorrihizas. *New Phytol.* **145**: 333-346.
- Russo, P. S., Blum, F. D., Ipsen, J. D., Abul-Hajj, Y. J., and Miller, W. G. (1982) The surface activity of the phytotoxin cerato-ulmin. *Can. J. Bot.* **60**: 1414–1422.
- Spanu, P. (1997) HCf-1, a hydrophobin from the tomato pathogen Cladosporium fulvum. *Gene.* 193: 89-96.
- 17. Sticlen, M. B., and Bolyard, M. Refinement of physiological roles for cerato-ulmin by analogy with other hydrophobin. *Trends Microbiol.* **2**: 213-215.
- Suzuki, S. and Ohshima, S. (1974) Influence of shiitake(*Lentinus edodes*) on human serum cholesterol. Mushroom Science IX, Proceedings of the Ninth International Scientific Congress on the Cultivation of edible funge, Tokyo, 463-467.
- Tagu Denis and Francis Martin. (1996) Molecular analysis of cell wall proteins expressed during the early steps of ectomycorrhizal development. *New Phytol.*, **133**: 73–85.
- 20. Takai, S., and Hiratsuka, Y. (1980) Accumulation of the material containing the toxin cerato-ulmin on the hyphal surface of Ceratocystis ulmi. *Can. J. Bot.* **58**: 658-662.
- Takai, S., and Hiratsuka, Y. (1984) Scanning electron microscope observations of internal symptoms of white elm following Ceratocystis ulmi infection and cerato-ulmin treatment. *Can. J. Bot.* 62: 1365–1371.
- 22. Talbot, N. J., Kershaw, M. J., Wakley, G. E., de Vries, O. M. H., Wessels, J. G. H., and Hamer, J. E. (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development by Magnaporthe grisea. *Plant Cell* 8: 985–989.
- Tominaga, Y. (1977) Studies on the seed-hyphae of *Tricholoma matsutake* (S. Ito et Imai) Sing. 1. Formation of mycorrhiza in young pot-planted pine(*Pinus desiflora*). *Bull. Hir. Agric. Coll.* 5: 395–398.
- Wessels, J. G. H. (1996) Fungal hydrophobins: Proteins that function at an interface. *Trends Plant Sci.* 1: 9–15.
- Wessels, J. G. H. (1997) Hydrophobins: Proteins that change the nature of the fungal surface. Adv. Micronbial Physiol. 38: 1-45.
- Wosten, H. A. B., Ruardy, T. G., Van der Mei, H. C., Busscher, H. J., and Wessels, J. G. H.(1995) Interfacial self-assembly of a *Schizophyllum commune* hydrophobin into an insoluble amphipathic membrane depends on surface hydrophobicity. *Colloids Surfaces B*. 5: 189–195.
- W.L.Ng, T.P.Ng, H.S.Kwan. (2000) Cloning and haracterization of two hydrophobin genes differentially expressed during fruit body development in *Lentinula edodes*. *FEMS Microbiol. Letters* 185: 139–145.

 Zhang, L., Villalon, D., Sin, Y., Kazmierczak, P., and Van Alfen, N. K. (1994) Virus-associated down-regulation of the gene encoding cryparin, an abundant cell surface protein of the chestnut blight fungus *Cryphonectria parasitica. Gene* 139: 59–64.

제 2세부과제 참고 문헌

- Jang, M. H., Jun, D. Y., Rue, S. W., Han, K. H., Park, W., & Kim, Y. H. (2002). Arginiantimetabolite L-canavanine induces apoptotic cell death in human Jukat T cells via caspase-3 activation regulated by Bcl-2 or Bcl-xL. Biochemical and Biophysical Research Communication, **295**: 283 - .288.
- Kim, Y. H., Proust, J. T., Buchholz, M. J., Chrest, F. J., & Nordin, A. A. (1992). Expression of the murine homologue of the cell cycle control protein p34cdc2 in T lymphocytes. Journal of Immunology, 149: 17 - .23.
- Andrew M. Evens, Sheila Prachand, Bo Shi1, Mary Paniaqua, Leo I. Gordon and Ronald B. Gartenhaus. Imexon-Induced Apoptosis in Multiple Myeloma Tumor Cells Is Caspase-8 Dependent. *Clinical Cancer Research*. 2004 10: 1481-1491.
- Ewaschuk JB, Walker JW, Diaz H, Madsen KL. Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr. 2006 136(6): p1483–1487.
- Beppu F, Hosokawa M, Tanaka L, Kohno H, Tanaka T, Miyashita K. Potent inhibitory effect of trans9, trans11 isomer of conjugated linoleic acid on the growth of human colon cancer cells. J Nutr Biochem. 2006 22
- 6. Song HJ, Sneddon AA, Heys SD, Wahle KW. Induction of apoptosis and inhibition of NF-kappaB activation in human prostate cancer cells by the cis-9, trans-11 but not the trans-10, cis-12 isomer of conjugated linoleic acid. *Prostate*. 2006 66(8): p839-846.
- Sasaki T, Fujii K, Yoshida K, Shimura H, Sasahira T, Ohmori H, Kuniyasu H. Peritoneal metastasis inhibition by linoleic acid with activation of PPARgamma in human gastrointestinal cancer cells. *Virchows Arch.* 2006 448(4): p422–427.
- Jung KC, Park CH, Hwang YH, Rhee HS, Lee JH, Kim HK, Yang CH. Fatty acids, inhibitors for the DNA binding of c-Myc/Max dimer, suppress proliferation and induce apoptosis of differentiated HL-60 human leukemia cell. *Leukemia*. 2006 20(1): p122-127.
- Cury-Boaventura MF, Gorjao R, de Lima TM, Newsholme P, Curi R. Comparative toxicity of oleic and linoleic acid on human lymphocytes. Life Sci. 2006 78(13): p1448-1456.
- 10. Yamasaki M, Miyamoto Y, Chujo H, Nishiyama K, Tachibana H, Yamada K. Trans10, cis12-conjugated linoleic acid induces mitochondria-related apoptosis and lysosomal

destabilization in rat hepatoma cells. Biochim Biophys Acta. 2005 1735(3): p176-184.

- Kobori M, Yoshida M, Ohnishi-Kameyama M, Takei T, Shinmoto H. 5alpha,8alpha-Epidioxy-22E-ergosta-6,9(11),22-trien-3beta-ol from an edible mushroom suppresses growth of HL60 leukemia and HT29 colon adenocarcinoma cells. *Biol Pharm Bull.* 2006 29(4) p755-759.
- Triana J, Lopez M, Perez FJ, Gonzalez-Platas J, Quintana J, Estevez F, Leon F, Bermejo J. Sesquiterpenoids from Pulicaria canariensis and their cytotoxic activities. J Nat Prod. 2005 68(4) p523–531.
- Takei T, Yoshida M, Ohnishi-Kameyama M, Kobori M. Ergosterol peroxide, an apoptosis-inducing component isolated from Sarcodon aspratus (Berk.) S. Ito. *Biosci Biotechnol Biochem.* 2005 69(1) p212-215.
- Hata K, Sugawara F, Ohisa N, Takahashi S, Hori K. Stimulative effects of (22E,24R)-ergosta-7,22-diene-3beta,5alpha,6beta-triol from fruiting bodies of Tricholoma auratum, on a mouse osteoblastic cell line, MC3T3-E1. *Biol Pharm Bull.* 2002 25(8) p1040-1044.
- Desagher,S. and Martinou,J.C. (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10: 369–377.
- Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A. and Yuan, J. (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. *Nature* 403: 98–103.
- Friesen, C., Herr, I., Krammer, P.H. and Debatin, K.M. (1996) Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. *Nature Med.* 2: 574–578.
- 18. Hannun, Y.A. (1997) Apoptosis and dilemma of cancer chemotheraphy. Blood 89: 1845-1853.
- Muller, M., Strand, S., Hug, H., Heinemann, E.M., Walczak, H., Hofmann, W.J., Stremmel, W., Krammer, P.H. and Galle, P.R. (1997) Drug-induced apoptotsis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. *J. Clin. Invest.* 99: 403-13.
- 20. Nagarkatti,N. and Davis,B.A. (2003) Tamoxifeninduces apoptosis in Fas+ tumor cells by upregulating the expression of Fas ligand. Cancer Chemother. *Phamarcol.* **51**: 284–290.
- 21. Kaufman,S.H. and Earnshaw,W.C. (2000) Induction of apoptosis by cancer chemotherapy. *Exp. Cell Res.* **256:** 42–49.

- Herr,I. and Debatin,K.M. (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98: 2603–2614.
- Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T. and Yasuhiko, Y. (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277: 34287-34294.
- Rao,R.V., Castro-Obregon,S., Frankowski,H., Schuler,M., Stoka,V., del Rio,G., Bredesen,D.E. and Ellerby,H.M. (2002) Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. *J. Biol. Chem.* 277: 21836–21842.
- Jimbo,A., Fujita,E., Kouroku,Y., Ohnishi,J., Inohara,N., Kuida,K., Sakamaki,K., Yonehara,S. and Momoi,T. (2003) ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. *Exp. Cell. Res.* 283: 156–166.
- D.Y. Jun, S.W. Rue, K.H. Han, D. Taub, Y.S. Lee, Y.S Bae, Y.H. Kim, Mechanism underlying cytotoxicity of lysine analog, thialysine, toward human acute leukemia Jurkat T cells, *Biochem. Pharmacol.* 66 (2003) 2291–2300.
- Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H.P. and Ron, D. (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. *Science* 287: 664–666.
- Helin, K., Lees, J. A., Vidal, M., Dyson, N., Harlow, E., & Fattaey, A. A. (1992). cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. *Cell*, **70**: 337 .350.
- Krek, W., Ewen, M. E., Shirodkar, S., Arany, Z., Kaelin, W. G., Jr., & Livingston, D. M. (1994). Negative regulation of the growth-promoting transcription factor E2F-1 by a stable bound cyclin A-dependent protein kinase. *Cell*, **78**: 161 .172.
- Weinberg, R. A. (1995). The retinoblastoma protein and cell cycle control. *Cell*, 81: 323 330.
- Solorzano, L., Rieber, M. S., & Rieber, M. Lower (2000). Cyclin H and cyclin-dependent kinase-activating kinase activity in cell cycle arrest induced by lack of adhesion to substratum. *Cancer Research*, 60: 7114 - 7118.
- Adams, P. D. (2001). Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks. *Biochimica Biophysica Acta*, 1471: p123-133.
- 33. Morgan, D. O. (1995). Principles of CDK regulation. Nature, 374: 131 134.
- Sherr, C. J., & Roberts, J. M. (1995). Inhibitors of mammalian G1 cyclin dependent kinases. *Genes and Development*, 9: 1149 - .1163.

- Peter, M., & Herskowltz, I. (1994). Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. *Cell*, **79**: 181 - 184.
- 36. Cole, R. J., & Cox, R. H. (1981). Handbook of toxic fungal metabolites. New York: Academic Press.
- Y.A. Lazebnik, S.H. Kaufmann, S. Desnoyers, G.G. Poirer, W.C. Earnshaw, Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. *Nature* 371 (1994) 346–347.
- R.J. Anto, A. Mukhopadhyay, K. Denning, B.B. Aggarwal, Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl, *Carcinogenesis* 23 (2002)143-150.
- S. Hu, C. Vincenz, J. Ni, R. Gentz R, V.M. Dixit, I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1- and CD-95-induced apoptosis, J. *Biol. Chem.* 272 (1997) 17255-17257.
- 40. H. Li, H. Zhu, C. Xu, J. Yuan, Cleavage of Bid by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis, *Cell* **94** (1998) 491–501.
- D. Yim, R.P. Singh, C. Agarwal, S. Lee, H. Chi, R. Agarwal, A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells, *Cancer Res.* 65 (2005) 1035–1044.
- Z. Yu, W. Li, F. Liu, Inhibition of proliferation and induction of apoptosis by genistein in colon cancer HT-29 cells, *Cancer Lett.* 215 (2004) 159–166.
- R.M. Kluck, E. Bossy-Wetzel, D.R. Green, D.D. Newmeyer, The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis, Science 275 (1997) 1132-1136.
- 44. J. Yang, X. Liu, K. Bhalla, C.N. Kim, A.M. Ibrado, J. Cai, T.I. Peng, D.P. Jones, X. Wang, Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked, *Science* 275 (1997) 1129–1132.
- E.A. Slee, H. Zhu, S.C. Chow, M. MacFarlane, D.W. Nicholson, G.M. Cohen, Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (z-VAD-fmk) inhibits apoptosis by blocking the processing CPP32, *Biochem. J.* **315** (1996) 21–24.
- T. Takizawa, C. Tatematsu, K. Ohashi, Y. Nakanishi, Recruitment of apoptotic cysteine proteases (caspases) in influenza virus-induced cell death, Microbiol. *Immunol.* 43 (1999) 245–252.
- 47. K.M. Broekemeier, M.E. Dempsey, D.R. Pfeiffer, Cyclosporin A is a potent inhibitor of the

inner membrane permeability transition in liver mitochondria, *J. Biol. Chem.* **264** (1989) 7826-7830.

- S. Boehrer, D. Nowak, E. Puccetti, M. Ruthardt, N. Sattler, B. Trepohl, B. Schneider, D. Hoelzer, P.S. Mitrou, K.U. Chow, Prostate-apoptosis- response-gene-4 increases sensitivity to TRAIL-induced apoptosis Leuk. *Res.* 30 (2006) 597-605.
- 49. C. Guillouf, X. Grana, M. Selvakumaran, A. De Luca, A. Giordano, B. Hoffman, D.A. Liebermann, Dissection of the genetic programs of p53-mediated G1 growth arrest and apoptosis: blocking p53-induced apoptosis unmasks G1 arrest, *Blood* 85 (1995) 2691–2698.
- P. Li, D. Nijhawan, I. Budihardjo, S.M. Srinivasula, M. Ahmad, E.S. Alnemri, X. Wang, Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade, *Cell* **91** (1997) 479-489.
- M.A. McDonnell, D. Wang, S.M. Khan, M.G. Vander Heiden, A. Kelekar, Caspase-9 is activated in a cytochrome c-independent manner early during TNF-induced apoptosis in murine cells, *Cell Death Differ.* 10 (2003) 1005–1015

제 3세부과제 참고 문헌

- A. Patrick Gunning, Piet W. J. De Groot, Jaap Visser and Victor J. Morris (1998) Atomic Force Microscopy of a Hydrophobin Protein from the Edible MushroomAgaricus bisporus. *Journal of Colloid and Interface Science*, **201**(2): 118–126
- Anna Collen, Josefine Persson, Markus Linder, Tiina Nakari-Setala, Merja Penttila, Folke Tjerneld and Ulf Sivars (2002) A novel two-step extraction method with detergent/polymer systems for primary recovery of the fusion protein endoglucanase I ,hydrophobin I. *Biochimica et Biophysica Acta (BBA)- General Subjects*, **1569**(1-3): 139–150
- 3. Akira, K. and Masaiior, K. (1964) History and development of flavor nucleotides. *Food Technnol.*, 3, 287
- 4. A.O.A.C (1995) Official Methods of Analysis, 16th ed., Association of Official Analytical Chemist. Wasinton D. C., USA.
- Chu, C. C. and Chi, T. H. : Identification of sulfurous compounds of Lentinus edodes sing. J. Agric. Food Chem., 34., 630(1986)
- Gert C. Segers and Donald L. Nuss (2003) Constitutively activated G negatively regulates virulence, reproduction and hydrophobin gene expression in the chestnut blight fungus Cryphonectria parasitica. *Fungal Genetics and Biology*, **38**(2): 198–208
- Joseph G. H. Wessels (1996) Fungal hydrophobins: proteins that function at an interface. Trends in Plant Science, 1(1): 9–13
- 8. Han A. B. Wosten and Marcel L. de Vocht (2000) Hydrophobins, the fungalcoat unravelled. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(2): 79-86

- Han A. B. Wosten, Marie-Anne van Wetter (1999) How a fungus escapes the water to grow into the air. *Current Biology*, 9(2): 85-88
- Hirazo, S. : Distribution of 5'-ribonucleotides in food and their application to food. Food Technol., 3, 300(1975)
- Jung, M. C., Nam, K.B., Lee, H.J., Chung, T. Y., Ahn, B. H., Kim, D.C., Lee, S.U. and Kim, U, U. Development of Freshness Prolongation Technology for Export Pine-mushroom, Bull. Korea Food Research Institute GA0031-0971(1998)
- Kabir, Y., Yamaguchi, M. and Kimura, S.: Effect of shiitake(*Lentinus edoodes*) and maitake(*Grifola frondosa*) mushrooms on blood pressure and plasma lipids of spontaneously hypertensive rats. *J. Nutr. Sci. Vitaminol.*, 31, 341–346(1987)
- 13. Korean Food Yearbook, p. 572. Nongsuchuksan Newspaper Co., Seoul(2000)
- Martha, L. A. and James, Pl B. (1992) The mathematica handbook, Compatible with mathematica version 2.0, An inprint of academic press, Inc. Harcourt Brace & Co., Massachusettes, pp. 15–511.
- Michael J. Kershaw and Nicholas J. Talbot (1998) Hydrophobins and Repellents: Proteins with Fundamental Roles in Fungal Morphogenesis. *Fungal Genetics* and Biology, 23(1): 18–33
- 16. Ministry of Agriculture and Forestry. Statistical Yearbook of Agriculture, Forestry and Fisheries, Sam Jong Co. Ltd., Seoul(2000)
- 17. Myers, R.H. (1971) Response Surface Methodology. Allyn and Bacon, Inc. Boston, USA.
- Ogawa, M. 1976a. Microbial ecology of 'Shiro' in *Tricholoma matsutake* (S. Ito et Imai) Sing. and its allied species. II. *Tricholoma matsutake* in *Pinus punila var. yezoalpina* forest. Trans. Mycol. Soc., Japan 17: 176–187.
- Ogawa, M. 1976b. Microbial ecology of 'Shiro' in *Tricholoma matsutake* (S. Ito et Imai) Sing. and its allied species. III. *Tricholoma matsutake* in *Picea glehnii and Picea glehnii-Abies sachalinensis forests. Trans. Mycol. Soc., Japan* 17: 188–198.
- Ogawa, M. 1976b. Microbial ecology of 'Shiro' in *Tricholoma matsutake* (S. Ito et Imai) Sing. and its allied species. IV. *Tricholoma matsutake in Tsuga diversifolia forests. Trans. Mycol. Soc., Japan* 18: 20–23.
- Ogawa, M. 1981. Mycorrhiza in the pine forest-the ecological study of matsutake as a microorganism, Kor. J. Mycol, 9: 225–227.
- Ogawa, M. (1977) Microbial ecology of 'Shiro' in *Tricholoma matsutake*(S. Ito et Imai) Sing. and its allied species. VI. *Tricholoma fulvocastaneum* in Quercus serrata-Quercus acutissima forest. Trans. Mycol. Soc. Jap. Aug. 18: 286–297.
- Ogawa, M. (1977) Microbial ecology of mycorrhizal *fugus-Tricholoma matsutake* (Ito et Imai) Sing. in pine forest IV. The shiro of T. matsutake in the fungal community. Bull. Governm. For. Exp. Sta. N. 297, 59.
- 24. Piet W. J. De Groot, Peter J. Schaap, Anton S. M. Sonnenberg, Jaap Visser and Leo J. L. D. Van Griensven (1996) The Agaricus bisporus hypA Gene Encodes a Hydrophobin and
Specifically Accumulates in Peel Tissue of Mushroom Caps during Fruit Body Development. *Journal of Molecular Biology*, **257**(5): 1008–1018.

- Richard C. Staples (2001) A hydrophobin aids water-mediated dispersal of Cladosporium conidia. *Trends in Plant Science*, 6(8): 343–344.
- Suzuki, S. and Ohshima, S. : Influence of shiitake(*Lentinus edodes*) on human serum cholesterol. Mushroom Science IX, Proceedings of the Ninth International Scientific Congress on the Cultivation of edible funge, Tokyo, 463-467(1974).
- Tominaga, Y. (1977) Studies on the seed-hyphae of *Tricholoma matsutake* (S. Ito et Imai) Sing. 1. Formation of mycorrhiza in young pot-planted pine(*Pinus desiflora*). Bull. Hir. Agric. Coll. 5: 395–398.
- W. L. Ng, T. P. Ng and H. S. Kwan (2000) Cloning and characterization of two hydrophobin genes differentially expressed during fruit body development in Lentinula edodes. *FEMS Microbiology Letters*, 185(2): 139–145.

	송이버섯 성숙 자실체 cDNA 1차	2차3차 클론 bla	st X search 결과
Seq. No.	blastX search결과	Seq. No.	blastX search 결과
246208 2635 1-12a-A01	member of the PUF protein family	246256 2635 1-12a-E01	0-antigen acetylase
246209 2635 1-12a-A02	Cdc2 binding protein Sucl	246257 2635 1-12a-E02	hypothetical membrane protein
246210 2635 1-12a-A03	putative protein family member	246258 2635 1-12a-E03	glia maturation factor beta
246211 2635 1-12a-A04	phenylalanine ammonium lyase	246259 2635 1-12a-E04	neuronal calcium sensor 1
246212 2635 1-12a-A05	Rpl2bp	246260 2635 1-12a-E05	phenylacetyl-CoA ligase
246213 2635 1-12a-A06	membrane-associated calcum-binding protein	246261 2635 1-12a-E06	Protein PNAS-27
246220 2635 1-12a-B01	p28	246268 2635 1-12a-F01	hypothetical protein YPL170w - yeast
246221 2635 1-12a-B02	conserved hypothetical protein	246269 2635 1-12a-F02	Grb2-associated binder 2
246222 2635 1-12a-B03	hypothetical protein ZC477.8	246270 2635 1-12a-F03	GTP-binding protein
246223 2635 1-12a-B04	membrane-associated calcum-binding protein	246271 2635 1-12a-F04	neuronal calcium sensor 1
246224 2635 1-12a-B05	F5D14.16 protein	246272 2635 1-12a-F05	hypothetical protein
246225 2635 1-12a-B06	hypothetical protein XP	246273 2635 1-12a-F06	40S ribosomal protein
246232 2635 1-12a-C01	P. aerophilum family 550 protein	246280 2635 1-12a-G01	DNA binding protein PF1
246233 2635 1-12a-C02	60S ribosomal protein L31	246281 2635 1-12a-G02	Hypothetical protein
246234 2635 1-12a-C03	WHITE COLONY PROTEIN WH11	246282 2635 1-12a-G03	thymidine kinase
246235 2635 1-12a-C04	Chain A, Solution Structure Of Poial	246283 2635 1-12a-G04	Peptidyl-LYS metalloendopeptidase
246236 2635 1-12a-C05	membrane-associated calcium-binding protein	246284 2635 1-12a-G05	hypothetical protein
246237 2635 1-12a-C06	CG4589-PB	246285 2635 1-12a-G06	UPF0057 family protein
246244 2635 1-12a-D01	CG16985-PA	246292 2635 1-12a-H01	cytochrome c oxidase polypeptide iv precursor
246245 2635 1-12a-D02	ABC transporter family protein	246293 2635 1-12a-H02	hypothetical protein YEL067c
246246 2635 1-12a-D03	putative v-snare binding protein	246294 2635 1-12a-H03	runt protein 1b
246247 2635 1-12a-D04	envelope protein	246295 2635 1-12a-H04	OSJNBa0050F15.12
246248 2635 1-12a-D05	RNA polymerase II mediator complex protein nut2	246296 2635 1-12а-Н05	AT5g41810/K16L22
246249 2635 1-12a-D06	hypothetical protein	246297 2635 1-12a-H06	methyl-CpG-binding protein 2
246265 2635 1-12a-E10	Protein involved in mitochondrial iron	246214 2635 1-12a-A07	ebiP9174

부록 : hydrophobin 유전자 클론닝 수행시 결정된 cDNA의 Blast X 결과

- 214 -

	accumulation		
246266 2635 1-12a-E11	Similar to expressed sequence AA960436	246215 2635 1-12a-A08	putative RanBP7/importin-beta/Cse 1p superfamily RanGTP-binding
246267 2635 1-12a-E12	similar to Aggrecan core protein precursor	246216 2635 1-12a-A09	Le.MFB2
246274 2635 1-12a-F07	agCP5004	246217 2635 1-12a-A10	hypothetical protein
246275 2635 1-12a-F08	putative metal homeostatis protein	246218 2635 1-12a-A11	conserved hypothetical protein
246276 2635 1-12a-F09	glutamine synthetase	246219 2635 1-12a-A12	class IV chitin synthase - smut fungus
246277 2635 1-12a-F10	hypothetical protein	246226 2635 1-12a-B07	hypothetical protein DKFZp586D0920.1
246278 2635 1-12a-F11	hypothetical protein	246226 2635 1-12a-B08	unknown protein
246279 2635 1-12a-F12	hypothetical protein	246228 2635 1-12a-B09	transiently expressed axonal glycoprotein
246286 2635 1-12a-G07	transcriptional adaptor-like protein	246229 2635 1-12a-B10	Threonine synthase
246287 2635 1-12a-G08	Glucose-6-phosphate 1-dehydrogenase (G6PD)	246230 2635 1-12a-B11	probable membrane protein
246288 2635 1-12a-G09	ORF YOL119c	246231 2635 1-12a-B12	related to PDR16 protein
246289 2635 1-12a-G10	peptidyl-Lys metalloendopeptidase	246238 2635 1-12a-C07	hypothetical protein
246290 2635 1-12a-G11	DNA binding protein PF1	246239 2635 1-12a-C08	26S proteasome subunit Rpt1
246291 2635 1-12a-G12	inositolphosphorylceramid e synthase	246240 2635 1-12a-C09	microsomal endopeptidase MEP - rabbit
246298 2635 1-12a-H07	agCP1702	246241 2635 1-12a-C10	hypothetical protein
246299 2635 1-12a-H08	Hypothetical transport protein	246242 2635 1-12a-C11	B-(1-6) glucan synthase
246300 2635 1-12а-Н09	glyceraldehyde-3-phosphat e dehydrogenase	246243 2635 1-12a-C12	reductase RED1
246301 2635 1-12a-H10	ATP/ADP translocator	246250 2635 1-12a-D07	D-AMINO ACID OXIDASE
246302 2635 1-12a-H11	conserved hypothetical protein	246251 2635 1-12a-D08	Cellulase CelE ortholog
246303 2635 1-12a-H12	Sodium/potassium- transporting ATPase alpha-4 chain	246252 2635 1-12a-D09	M83163 circumsporozoite protein-related
Gat1-3_A02	monooxygenase, NtaA/SnaA/SoxA family	246253 2635 1-12a-D10	CG8725-PA
Gat1-3_A03	Unknown	246254 2635 1-12a-D11	hypothetical protein
Gat1-3_A05	hypothetical protein	246255 2635 1-12a-D12	envelope protein
Gat1-3_A06	Histone H4	246262 2635 1-12a-E07	enolase
Gat1-3_A07	putative dehydrogenase	246263 2635 1-12a-E08	hypothetical protein
Gat1-3_A08	No significant similarity	246264 2635	88 kDa immunoreactive

	found.	1-12a-E09	mannoprotein
Gat1-3_A09	WHITE COLONY PROTEIN	Gat1-4_B04	Thioredoxin
Gat1-3_A11	24 kDa RAS-like protein	Gat1-4_B05	165aa long conserved hypothetical protein
Gat1-3_A12	No significant similarity found.	Gat1-4_B06	predicted protein
Gat1-3_B01	No significant similarity found.	Gat1-4_B07	tropoelastin
Gat1-3_B03	ammonium permease MEPA	Gat1-4_B08	metallothionein
Gat1-3_B05	WHITE COLONY PROTEIN	Gat1-4_B09	ALL-1 protein
Gat1-3_B06	Similar to holocytochrome c synthetase	Gat1-4_B10	hypothetical protein
Gat1-3_B07	No significant similarity found.	Gat1-4_B11	hypothetical protein
Gat1-3_B08	No significant similarity found.	Gat1-4_B12	4MeS
Gat1-3_B09	IPP isomerase	Gat1-4_C01	conserved hypothetical protein
Gat1-3_B10	hydrophobin-251	Gat1-4_C02	hypothetical protein
Gat1-3_B11	similar to KIAA0776 protein	Gat1-4_C03	hypothetical protein
Gat1-3_B12	GLP	Gat1-4_C04	hypothetical protein
Gat1-3_C01	GLP	Gat1-4_C05	No significant similarity found.
Gat1-3_C02	No significant similarity found.	Gat1-4_C06	dihydroxy-acid dehydratase
Gat1-3_C03	conserved hypothetical protein	Gat1-4_C09	ubiquitin-conjugating enzyme E2
Gat1-3_C05	No significant similarity found.	Gat1-4_C10	No significant similarity found.
Gat1-3_C06	vaccinia virus F9L-like protein	Gat1-4_C11	similar to Zinc finger protein 334
Gat1-3_C07	No significant similarity found.	Gat1-4_C12	hypothetical protein
Gat1-3_C08	No significant similarity found.	Gat1-4_D01	40S RIBOSOMAL PROTEIN
Gat1-3_C09	outer dense fiber of sperm tails 1	Gat1-4_D02	hypothetical protein
Gat1-3_C10	unknown	Gat1-4_D03	ENSANGP0000016221
Gat1-3_C11	No significant similarity found.	Gat1-4_D04	ENSANGP0000008809
Gat1-3_C12	No significant similarity found.	Gat1-4_D05	OSJNBa0029H02
Gat1-3_D01	hypothetical protein	Gat1-4_D06	No significant similarity found.
Gat1-3_D09	F5I14.29/F5I14	Gat1-4_D08	related to VeA protein
Gat1-3_D10	hemin transport system ATP-binding protein	Gat1-4_D09	hypothetical protein
Gat1-3_D11	predicted protein	Gat1-4_D10	No significant similarity found.
Gat1-3_D12	subunit VII of cytochrome c oxidase	Gat1-4_D11	Hypothetical ORF
Gat1-3_E01	DNA-3-methyladenine glycosidase	Gat1-4_D12	RNA recognition motif

Gat1-3_E02	conserved hypothetical protein	Gat1-4_E01	cyclin F
Gat1-3_E03	related to stress response protein rdslp	Gat1-4_E02	Similar to insulin receptor
Gat1-3_E04	putative non-ribosomal peptide synthetase	Gat1-4_E03	conserved hypothetical protein
Gat1-3_F01	hypothetical protein	Gat1-4_E04	No significant similarity found.
Gat1-3_F04	hypothetical protein	Gat1-4_E05	vaccinia virus F9L-like protein
Gat1-3_F05	No significant similarity found.	Gat1-4_E06	ribosomal protein P2
Gat1-3_F07	No significant similarity found.	Gat1-4_E07	No significant similarity found.
Gat1-3_F08	No significant similarity found.	Gat1-4_E08	genscan
Gat1-3_F09	hypothetical protein	Gat1-5_B11	putative mitochondrial NAD-dependent malate dehydrogenase
Gat1-3_F10	histone 2, H3cal	Gat1-5_B12	CG4589-PC
Gat1-3_F11	PROBABLE TRANS-ACONITATE METHYLTRANSFERASE PROTEIN	Gat1-5_C01	variant erythrocyte surface antigen-la
Gat1-3_F12	calmodulin	Gat1-5_C03	No significant similarity found.
Gat1-3_G01	hypothetical protein T26J14	Gat1-5_C04	ORF106
Gat1-3_G02	CG3950-PA	Gat1-5_C05	No significant similarity found.
Gat1-3_G04	ubiquitin conjugating enzyme	Gat1-5_C06	
Gat1-3_G05	No significant similarity found.	Gat1-5_C07	
Gat1-3_G10	gtp-binding nuclear protein spil	Gat1-5_C08	putative cationic amino acid transporter
Gat1-3_H01	palI related protein	Gat1-5_C09	hypothetical protein
Gat1-3_H04	Dihydroorotate dehydrogenase	Gat1-5_C10	CipC protein
Gat1-3_H08	signal recognition particle receptor FtsY	Gat1-5_C11	40S ribosomal protein S26
Gat1-3_H09	No significant similarity found.	Gat1-5_C12	CG5446-PA
Gat1-3_H10	Zinc finger C-x8-C-x5-C-x3-H type containing protein	Gat1-5_D01	Meiotic Sister-Chromatid recombination
Gat1-3_H11	hypothetical protein	Gat1-5_D02	Histone H4
Gat1-3_H12	hypothetical protein	Gat1-5_D03	F-actin capping protein, beta subunit
Gat1-4_A01	40S ribosomal protein	Gat1-5_D04	unnamed protein product
Gat1-4_A02	hypothetical protein	Gat1-5_D05	No significant similarity found.
Gat1-4_A03	hypothetical protein	Gat1-5_D08	similar to internalin, putative peptidoglycan bound protein
Gat1-4_A04	putative SMC family protein	Gat1-5_D09	mitogen

- 217 -

	•		
Gat1-4_A05	two-component hybrid sensor and regulator	Gat1-5_D10	hypothetical protein
Gat1-4_A06	Cdc2 binding protein Sucl	Gat1-5_D11	predicted protein
Gat1-4_A07	hypothetical protein	Gat1-5_D12	MdcR
Gat1-4_A08	No significant similarity found.	Gat1-5_E01	putative secreted glycosyl hydrolase
Gat1-4_A09	similar to permease	Gat1-5_E02	putative glucanase precursor
Gat1-4_A10	WHITE COLONY PROTEIN WH11	Gat1-5_E03	hypothetical protein
Gat1-4_A11	ribonuclease HII	Gat1-5_E04	putative laccase
Gat1-4_B02	conserved hypothetical protein	Gat1-5_E05	hypothetical protein
Gat1-4_B03	hypothetical protein	Gat1-5_E06	nifB protein - Bradyrhizobium japonicum
Gat1-4_E09	alkaline serine protease Pen c2	Gat1-5_E07	No significant similarity found.
Gat1-4_E10	No significant similarity found.	Gat1-5_E08	insect intestinal mucin IIM14
Gat1-4_E11	hypothetical protein K03C7	Gat1-5_E10	No significant similarity found.
Gat1-4_E12	putative membrane protein family member	Gat1-5_E11	methionyl-tRNA synthetase
Gat1-4_F01	tRNA modification GTPase	Gat1-5_E12	member of the PUF protein family
Gat1-4_F02	conserved hypothetical protein	Gat1-5_F01	hypothetical protein
Gat1-4_F03	hypothetical protein	Gat1-5_F02	unnamed protein product
Gat1-4_F04	RIKEN cDNA 1300013J15	Gat1-5_F03	hypothetical protein
Gat1-4_F05	probable ribosomal protein 10	Gat1-5_F04	hypothetical protein
Gat1-4_F06	PRIA PROTEIN PRECURSOR	Gat1-5_F05	LPD1
Gat1-4_F07	No significant similarity found.	Gat1-5_F06	hypothetical protein
Gat1-4_F08	No significant similarity found.	Gat1-5_F07	phosphoprotein phosphatase
Gat1-4_F09	ribosomal protein L35	Gat1-5_F08	hypothetical protein
Gat1-4_F10	ENSANGP0000015206	Gat1-5_F09	probable UDPglucose 6-dehydrogenase
Gat1-4_F11	conserved hypothetical protein	Gat1-5_F10	HEAT SHOCK PROTEIN HSS1
Gat1-4_F12	hydrophobin-251	Gat1-5_F12	No significant similarity found.
Gat1-4_G01	AT13424p	Gat1-5_G01	conserved hypothetical protein
Gat1-4_G02	No significant similarity found.	Gat1-5_G02	putative hydroxylase
Gat1-4_G03	neuronal calcium sensor 1	Gat1-5_G03	putative senescence-associated protein
Gat1-4_G04	No significant similarity found.	Gat1-5_G04	Paz8
Gat1-4_G05	Similar to RIKEN cDNA	Gat1-5_G05	hypothetical protein
Gat1-4_G06	hydrophobin 3	Gat1-5_G06	hypothetical protein
Gat1-4_G07	cytochrome b	Gat1-5_G07	NADH dehydrogenase

			subunit 4
Gat1-4_G08	hypothetical protein	Gat1-5_G08	ELONGATION FACTOR 1-ALPHA
Gat1-4_G09	triacylglycerol lipase	Gat1-5_G09	hypothetical protein
Gat1-4_G10	hydrophobin	Gat1-5_G10	60s ribosomal protein 12
Gat1-4_G11	conserved hypothetical protein	Gat1-5_G11	P0496H05.16
Gat1-4_G12	ethylene receptor	Gat1-5_G12	NADP-SPECIFIC GLUTAMATE DEHYDROGENASE
Gat1-4_H01	Repressor Protein From Bacteriophage 434	Gat1-5_H01	ELONGATION FACTOR 1-ALPHA
Gat1-4_H02	conserved hypothetical protein	Gat1-5_H02	tripeptidyl peptidase A
Gat1-4_H03	MPUlp	Gat1-5_H03	hypothetical protein
Gat1-4_H04	very hypothetical protein	Gat1-5_H04	hypothetical protein
Gat1-4_H05	Profilin II	Gat1-5_H05	hypothetical protein
Gat1-4_H06	CG12012-PA	Gat1-5_H06	Predicted CDS, protein-tyrosine phophatase family member
Gat1-4_H07	60S ribosomal protein	Gat1-5_H07	Similar to nuclear receptor coactivator 5
Gat1-4_H08	phospholipase A2	Gat1-5_H08	Similar to nuclear receptor coactivator 5
Gat1-4_H09	hypothetical protein	Gat1-5_H09	putative aspartyl-proteinase
Gat1-4_H10	hypothetical protein	Gat1-5_H10	Cell division cycle protein 48 homolog
Gat1-4_H11	WHITE COLONY PROTEIN WH11	Gat1-5_H11	cytochrome oxidase I
Gat1-4_H12	rab3 interacting protein variant 3	Gat1-5_H12	thrombomucin
Gat1-5_A01	4MeS	Gat2-1_A01	P0410E01.14
Gat1-5_A02	No significant similarity found.	Gat2-1_F03	putative 3-ketoacyl-CoA thiolase
Gat1-5_A03	hypothetical protein	Gat2-1_F04	related to neomycin resistance protein NEO1
Gat1-5_A04	cytochrome P450 1A	Gat2-1_F05	ENSANGP00000017007
Gat1-5_A05	asparagine synthetase	Gat2-1_F06	mitochondrial inner membrane translocase subunit tim17 homolo
Gat1-5_A07	No significant similarity found.	Gat2-1_F07	No significant similarity found.
Gat1-5_A08	related to palI protein	Gat2-1_F08	S-adenosylmethionine synthetase
Gat1-5_A09	pol protein	Gat2-1_F09	Glucose-6-phosphate 1-dehydrogenase
Gat1-5_A10	putative transferase	Gat2-1_F10	conserved hypothetical protein
Gat1-5_A11	hypothetical protein	Gat2-1_F12	mitochondrial ribosomal protein L2
Gat1-5_A12	enigma homolog	Gat2-1_G03	gtp-binding nuclear protein spil
Gat1-5_B01	conserved hypothetical protein	Gat2-1_G04	macrofage activating glycoprotein

	-		
Gat1-5_B02		Gat2-1_G05	putative protein
Gat1-5_B03	histidine-rich protein - Plasmodium lophurae	Gat2-1_G07	heat shock protein
Gat1-5_B04	macrolide-binding protein FKBP12	Gat2-1_G08	Hypothetical ORF; has similarity to F-box proteins
Gat1-5_B05	Smadl	Gat2-1_G11	Hypothetical protein
Gat1-5_B06	hypothetical protein	Gat2-1_H01	CG2807-PA
Gat1-5_B07	Histone H4	Gat2-1_H02	sexual differentiation process putative subtilase-type proteinase
Gat1-5_B08	hydrophobin-251	Gat2-1_H03	hypothetical protein
Gat1-5_B09		Gat2-1_H04	ADP-RIBOSYLATION FACTOR
Gat1-5_B10	Cdc2 binding protein Sucl	Gat2-1_H05	NY-REN-62 antigen
Gat2-1_A02	hypothetical protein	Gat2-1_H06	hypothetical protein At2g06990
Gat2-1_A03	Hypothetical ORF	Gat2-1_H08	probable dicarboxylate carrier protein
Gat2-1_A04	hypothetical protein	Gat2-1_H09	No significant similarity found.
Gat2-1_A05	D8Wsu96e protein	Gat2-1_H10	hypothetical protein
Gat2-1_A06	hypothetical protein	Gat2-1_H11	DHHC-type zinc finger domain-containing protein
Gat2-1_A07	unknown	Gat2-1_H12	unnamed protein product
Gat2-1_A08	hypothetical protein	Gat2-2_A01	Eph receptor tyrosine kinase
Gat2-1_A09	JAK3M	Gat2-2_A02	Spindolin precursor
Gat2-1_A10	cytochrome-c oxidase (EC 1.9.3.1) chain I	Gat2-2_A03	CG12920-PA
Gat2-1_A11	<pre>mannosyl-oligosaccharide 1,2-alpha-mannosidase</pre>	Gat2-2_A04	peptidyl-Lys metalloendopeptidase
Gat2-1_B01	expressed protein	Gat2-2_A05	hypothetical protein
Gat2-1_B02	Similar to eukaryotic translation elongation factor 1 gamma	Gat2-2_A06	sin3 associated polypeptide p18
Gat2-1_B03	88 kDa immunoreactive mannoprotein	Gat2-2_A07	hypothetical protein
Gat2-1_B04	hypothetical protein	Gat2-2_A08	KETOL-ACID REDUCTOISOMERASE
Gat2-1_B05	Cytochrome B2, mitochondrial precursor (L-lactate dehydrogenase	Gat2-2_A09	transcription factor
Gat2-1_B06	conserved hypothetical protein	Gat2-2_A10	reverse transcriptase domain protein
Gat2-1_B07	hypothetical protein	Gat2-2_A11	ENSANGP0000009913
Gat2-1_B08	LP06350p	Gat2-2_A12	LONGATION FACTOR 1-ALPHA
Gat2-1_B09	cell division cycle mutant	Gat2-2_B01	glucan 1,3-beta-glucosidase
Gat2-1_B10	<pre>mannosyl-oligosaccharide 1,2-alpha-mannosidase</pre>	Gat2-2_B02	polyprotein
Gat2-1_B12	oxidoreductase	Gat2-2_B03	mlo3 protein
Gat2-1_C01	putative response	Gat2-2_B04	probable cell division

	regulator CelR2		control protein CDC12
Gat2-1_C02	RNA recognition motif (RRM)-containing protein	Gat2-2_B05	hypothetical protein
Gat2-1_C03	SI:zCl39K23.3 (novel protein similar to human CTL2)	Gat2-2_B06	hypothetical protein
Gat2-1_C04	MULTIPLE SUGAR-BINDING TRANSPORT ATP-BINDING PROTEIN MSMK	Gat2-2_B07	possible ribonuclease
Gat2-1_C05	similar to putative GTP-binding protein	Gat2-2_B08	hypothetical protein
Gat2-1_C06	putative cinnamoyl -coa reductase	Gat2-2_B09	hypothetical protein
Gat2-1_C07	acetyl-CoA acetyl transferase	Gat2-2_B10	hypothetical protein 9530023G02
Gat2-1_C08	hypothetical protein	Gat2-2_B11	peptide synthetase ScpsB
Gat2-1_C11	hypothetical protein	Gat2-2_C01	CG12467-PA
Gat2-1_C12	CG13213-PA	Gat2-2_C02	putative zinc finger by similarity
Gat2-1_D01	2S albumin - common sunflower	Gat2-2_C03	spherical body protein 4 SBP4
Gat2-1_D03	Son of sevenless homolog 2	Gat2-2_C04	hypothetical protein
Gat2-1_D04	peptidyl-Lys metalloendopeptidase	Gat2-2_C05	Hypothetical ORF
Gat2-1_D05	polymerase-associated factor 67kda	Gat2-2_C06	probable secretory pathway GDP dissociation inhibitor
Gat2-1_D06	protein kinase Sch9	Gat2-2_C07	hypothetical protein
Gat2-1_D07	Esterase-like protein	Gat2-2_C08	hypothetical protein
Gat2-1_D08	No significant similarity found.	Gat2-2_C09	cactus CG5848-PB
Gat2-1_D09	septin	Gat2-2_C10	cellulose 1,4-beta-cellobiosidase
Gat2-1_D10	hypothetical protein	Gat2-2_C11	hypothetical protein
Gat2-1_D11	pantothenase	Gat2-2_C12	Peroxisomal copper amine oxidase
Gat2-1_D12	similar to Vinculin	Gat2-2_D01	putative eukaryotic translation initiation factor 3 gamma subunit
Gat2-1_E01	Polyporopepsin	Gat2-2_D03	Hypothetical ORF
Gat2-1_E02	large subunit ribosomal protein L3	Gat2-2_D04	myeloid/lymphoid or mixed-lineage leukemia 2
Gat2-1_E03	RNA binding protein; 5 rrm RNA recognition motifs	Gat2-2_D05	hypothetical protein
Gat2-1_E04	hypothetical protein BC009231	Gat2-2_D06	WW domain binding protein 4
Gat2-1_E05	CG8736-PA	Gat2-2_G05	hypothetical protein
Gat2-1_E06	ENSANGP00000020006	Gat2-2_G06	No significant similarity found.
Gat2-1_E07	mitochondrial import receptor subunit	Gat2-2_G07	hypothetical protein
Gat2-1_E08	aminopeptidase B	Gat2-2_G08	hypothetical protein
Gat2-1_E09	Penicillin-binding protein	Gat2-2_G09	6330583M11Rik protein

		i	· · · · · · · · · · · · · · · · · · ·
Gat2-1_E10	No significant similarity found.	Gat2-2_G10	88 kDa immunoreactive mannoprotein
Gat2-1_E11	CG32656-PA	Gat2-2_G11	hypothetical protein
Gat2-1_F01	putative aspartyl-proteinase	Gat2-2_G12	hypothetical protein
Gat2-1_F02	No significant similarity found.	Gat2-2_H01	similar to golgin 97
Gat2-2_D07	env protein	Gat2-2_H02	59.5 kDa protein
Gat2-2_D08	N protein	Gat2-2_H03	cellular aspartic protease
Gat2-2_D10	conserved hypothetical protein	Gat2-2_H04	acetyl-CoA acetyl transferase
Gat2-2_D11	gag-pro-pol precursor protein	Gat2-2_H05	hypothetical protein
Gat2-2_E01	hypothetical protein F5E19	Gat2-2_H06	COP9 complex homolog subunit 6 CG6932-PA
Gat2-2_E02	conserved hypothetical protein	Gat2-2_H07	Polyporopepsin
Gat2-2_E03	hypothetical protein	Gat2-2_H08	PHO85 cyclin
Gat2-2_E04	hypothetical protein	Gat2-2_H09	phenylalanyl-tRNA synthetase subunit
Gat2-2_E04	hypothetical protein	Gat2-2_H10	similar to Zinc finger protein 45
Gat2-2_E05	hypothetical protein	Gat2-2_H11	transcriptional regulator
Gat2-2_E05	hypothetical protein	Gat2-2_H12	hypothetical protein
Gat2-2_E06	hypothetical protein T8F5	Gat2-2_E11	ENSANGP0000018885
Gat2-2_E06	hypothetical protein T8F5	Gat2-2_E11	ENSANGP0000018885
Gat2-2_E07	similar to hypothetical protein	Gat2-2_E12	hypothetical protein
Gat2-2_E07	similar to hypothetical protein	Gat2-2_E12	hypothetical protein
Gat2-2_E08	bl15379	Gat2-2_F01	hypothetical protein
Gat2-2_E08	bl15379	Gat2-2_F01	hypothetical protein
Gat2-2_E09	hypothetical protein	Gat2-2_F02	Transaldolase
Gat2-2_E09	hypothetical protein	Gat2-2_F02	Transaldolase
Gat2-2_E10	hypothetical protein	Gat2-2_F03	Sspl
Gat2-2_E10	hypothetical protein	Gat2-2_F03	Sspl
Gat2-2_F10	hypothetical protein	Gat2-2_F04	putative delta-sterol c-methyltransferase
Gat2-2_F11	aldose reductase	Gat2-2_F05	Hypothetical ORF
Gat2-2_F12	Proto-oncogene protein c-fos	Gat2-2_F06	putative eukaryotic translation initiation factor 3 gamma subunit
Gat2-2_G01	unnamed protein product	Gat2-2_F07	mKIAA1147 protein
Gat2-2_G02	No significant similarity found.	Gat2-2_F08	hypothetical protein
Gat2-2_G03	acetyl-CoA acetyl transferase	Gat2-2_F09	Dunl and Pan2-Pan3 cooperate to regulate the stoichiometry
Gat2-2 G04	hypothetical protein		

송이버섯 원기(미분화자실체) cDNA 1차2차3차 클론 blast X search 결과			
Seq. No.	blastx search 결과	Seq. No.	blastx search 결과
246112 2634 1-11a-A01	putative proteine disulfate isomerase	246160 2634 1-11a-E01	conserved hypothetical protein
246113 2634 1-11a-A02	adenine glycosylase	246161 2634 1-11a-E02	Olf-1/EBF associated Zn finger protein Roaz
246114 2634 1-11a-A03	similar to RIKEN cDNA 1700006A11	246162 2634 1-11a-E03	CG32046-PA
246115 2634 1-11a-A04	alveolar soft part sarcoma chromosome region	246163 2634 1-11a-E04	phosphoribosyl aminoimidazole carboxylase
246116 2634 1-11a-A05	protein x 0001	246164 2634 1-11a-E05	Hypothetical ORF
246117 2634 1-11a-A06	No significant similarity found	246165 2634 1-11a-E06	vipl protein
246124 2634 1-11a-B01	peroxisomal membrane protein 2,	246172 2634 1-11a-F01	ebiP5557
246125 2634 1-11a-B02	conserved hypothetical protein	246173 2634 1-11a-F02	mitochondrial outer membrane protein 22kDa protein
246126 2634 1-11a-B03	No significant similarity found	246174 2634 1-11a-F03	UPF0057 family protein
246127 2634 1-11a-B04	ribosomal protein L35	246175 2634 1-11a-F04	class V zygote-specific protein - Chlamydomonas reinhardtii
246128 2634 1-11a-B05	hypothetical protein	246176 2634 1-11a-F05	HYDROPHOBIN-1
246129 2634 1-11a-B06	Chloroplast envelope membrane protein	246177 2634 1-11a-F06	Histone H2B
246136 2634 1-11a-C01	hypothetical protein	246184 2634 1-11a-G01	conserved hypothetical protein
246137 2634 1-11a-C02	Hypothetical ORF	246185 2634 1-11a-G02	RIKEN CDNA A030005L19
246138 2634 1-11a-C03	xylosyl transferase I	246186 2634 1-11a-G03	hypothetical protein
246139 2634 1-11a-C04	hypothetical protein	246187 2634 1-11a-G04	endonucleas1
246140 2634 1-11a-C05	unknown protein	246188 2634 1-11a-G05	hypothetical protein
246141 2634 1-11a-C06	macrolide-binding protein FKBP12	246189 2634 1-11a-G06	PACAP receptor
246148 2634 1-11a-D01	gamma subunit of G protein coupled to mating factor receptors	246196 2634 1-11a-H01	proenkephalin
246149 2634 1-11a-D02	unknown	246197 2634 1-11a-H02	hypothetical protein
246150 2634 1-11a-D03	hypothetical protein	246198 2634 1-11a-H03	nuclear protein
246151 2634 1-11a-D04	Hypothetical ORF Ypl199cp	246199 2634 1-11a-H04	putative histone
246152 2634 1-11a-D05	small heat shock protein	246200 2634 1-11a-H05	WHITE COLONY PROTEIN WH11
246153 2634	hypothetical protein	246201 2634	Hypothetical protein

- 223 -

1-11a-D06		1-11a-H06	ZK84
246207 2634	beta-glucosidase	246118 2634	ORF1
1-11a-H12	precursor	1-11a-A07	
246119 2634 1-11a-A08	A rax1 mutation converts the budding pattern of an ax11 null mutant	246166 2634 1-11a-E07	conserved hypothetical protein
246120 2634	ESTs Z43979	246167 2634	required for
1-11a-A09		1-11a-E08	gluconate-H+ symport
246121 2634	activator of Hsp70 and	246168 2634	hypothetical protein
1-11a-A10	Hsp90 chaperones	1-11a-E09	
246122 2634	hypothetical protein	246169 2634	Macrophage receptor
1-11a-A11		1-11a-E10	MARCO
246123 2634	glyceraldehyde-3-phosphat	246170 2634	CYP1 activatory protein
1-11a-A12	e dehydrogenase	1-11a-E11	
246130 2634 1-11a-B07	NBS/LRR	246171 2634 1-11a-E12	cytochrome P450
246131 2634	Inositol-3-phosphate	246178 2634	T1N6.2 protein
1-11a-B08	synthase	1-11a-F07	
246132 2634 1-11a-B09	Amino_oxidase	246179 2634 1-11a-F08	PCAF-associated factor 400
246133 2634 1-11a-B10	PUTATIVE ZINC-CONTAINING ALCOHOL DEHYDROGENASE PROTEIN	246180 2634 1-11a-F09	4 predicted transmembrane helices
246134 2634	RIKEN CDNA 5730442K12	246181 2634	kinesin heavy
1-11a-B11	gene	1-11a-F10	chain-like protein
246135 2634	hypothetical protein	246182 2634	poly(a)+ rna export
1-11a-B12		1-11a-F11	protein
246142 2634	putative ATP-dependent	246183 2634	photosystem I P700
1-11a-C07	RNA helicase	1-11a-F12	apoprotein A2
246143 2634 1-11a-C08	beta-actin	246190 2634 1-11a-G07	unnamed protein product
246144 2634 1-11a-C09	CDP-diacylglycerolserin e O-phosphatidyltransferase	246191 2634 1-11a-G08	hypothetical protein R05D7.4 - Caenorhabditis elegans
246145 2634 1-11a-C10	HYPOTHETICAL 85.0 KD PROTEIN	246192 2634 1-11a-G09	hypothetical ABC transpoter permease protein
246146 2634	HYPOTHETICAL 85.0 KD	246193 2634	agCP13815
1-11a-C11	PROTEIN	1-11a-G10	
246147 2634	saccharopine	246194 2634	placental protein 17b1
1-11a-C12	dehydrogenase	1-11a-G11	
246154 2634	hypothetical protein	246195 2634	probable cell division
1-11a-D07		1-11a-G12	control protein CDC12
246155 2634	EB1-like protein	246202 2634	19 kDa protein having
1-11a-D08		1-11a-H07	G-X-X-X-Q-X-W motif
246156 2634	hypothetical protein	246203 2634	related to
1-11a-D09		1-11a-H08	hormone-sensitive lipase
246157 2634 1-11a-D10	putative nucleolin	246204 2634 1-11a-H09	Hypothetical ORF
246158 2634 1-11a-D11	ATP/ADP translocator	246205 2634 1-11a-H10	agCP13654
246159 2634 1-11a-D12	Jak2 kinase	246206 2634 1-11a-H11	homoaconitase
Won1-1_A02	putative ribosomal protein S15	Won1-1_D03	hypothetical protein
Won1-1_A03	unknown protein	Won1-1_D04	predicted protein

Won1-1_A04	Cytochrome oxidase assembly	Won1-1_D05	similar to apoptosis inhibitory protein5
Won1-1_A05	putative translation initiation factor IF-2	Won1-1_D06	expressed protein
Won1-1_A06	similar to protein tyrosine phosphatase	Won1-1_D07	lymphotoxin beta receptor
Wonl-1_A07	ubiquitin	Won1-1_D08	hypothetical protein
Won1-1_A08	hypothetical protein	Won1-1_D09	hypothetical protein
Won1-1_A09	hypothetical protein	Won1-1_D10	No significant similarity found.
Won1-1_A10	similar to Laminin alpha-3 chain precursor	Won1-1_D11	D-alanine-D-alanine ligase
Won1-1_A11	60S ribosomal protein L6	Won1-1_D12	conserved hypothetical transmembrane protein
Won1-1_A12	Hypothetical protein	Won1-1_E02	small heat shock protein
Won1-1_B02	PDGFA associated protein 1	Won1-1_E03	hypothetical protein
Won1-1_B04	60s ribosomal protein 121	Won1-1_E04	hypothetical protein
Won1-1_B05	adaptor medium chain 1	Won1-1_E05	short stop CG18076-PH
Won1-1_B06	gene product responsible for alpha-isopropylmalate synthase II	Won1-1_E06	No significant similarity found.
Won1-1_B07	oligopeptide ABC transporter ATP-binding protein	Won1-1_E07	vaccinia virus F9L-like protein
Won1-1_B08	PTS system, glucose-specific IIABC component	Won1-1_E08	hypothetical protein
Won1-1_B09	Raslp	Won1-1_E09	ribosomal protein S27
Won1-1_B10	ZNF297~partially supported by GENSCAN and GrailEXP	Won1-1_E10	similar to ubiqutin carboxyl-terminal hydrolase 13
Won1-1_B11	Hypothetical ORF; Ydr215cp	Won1-1_E11	ribosomal protein 22 of the small subunit
Won1-1_B12	hypothetical protein	Won1-1_E12	hypothetical protein
Won1-1_C02	related to nadh-ubiquinone oxidoreductase subunit b17.2	Won1-1_F02	Predicted CDS, Q/N-rich domain Prion like protein PQN-77
Won1-1_C03	GRB2-associated binding protein 2	Won1-1_F03	manganese superoxide dismutase
Wonl-1_C04	hypothetical protein	Won1-1_F04	gtp-binding protein sarl
Won1-1_C05	ADP-RIBOSYLATION FACTOR 6	Won1-1_F05	COP9 complex homolog subunit 6 CG6932-PA
Won1-1_C06	RIKEN CDNA 0610007P06	Won1-1_F06	No significant similarity found.
Won1-1_C07	GLP_572_52586_50424	Won1-1_F07	conserved protein
Won1-1_C08	unknown	Won1-1_F08	Vacuolar ATP synthase subunit F
Won1-1_C10	RNA recognition motif (RRM)-containing protein	Won1-1_F09	No significant similarity found.
Won1-1_C11	metallothionein	Won1-1_F10	hypothetical protein
Won1-1_C12	protein F10A5.7	Won1-1_F11	hypothetical protein
Won1-1_D01	xylanase-arabinofuranosid	Won1-1_F12	No significant

	ase bifunctional enzyme		similarity found.
Won1-2_D06	No significant similarity found.	Won1-1_G01	Hypothetical ORF
Won1-2_D07	No significant similarity found.	Won1-1_G02	involved in transcriptional regulation of CUP1
Won1-1_G03	Imidazoleglycerol-phospha te dehydratase	Won1-2_A09	polyubiquitin
Won1-1_G04	neuronal calcium sensor 1	Won1-2_A10	predicted protein
Won1-1_G05	CG12586-PA	Won1-2_A11	RIKEN cDNA 4932431P20
Won1-1_G06	hypothetical protein	Won1-2_A12	WHITE COLLAR 2 PROTEIN
Won1-1_G07	40S ribosomal protein S23	Won1-2_B02	YIP3 PROTEIN
Won1-1_G08	ribosomal small subunit protein homologous to mammalian S5	Won1-2_B03	Vacuolar ATP synthase subunit E
Won1-1_G09	hypothetical protein	Won1-2_B04	hypothetical protein
Won1-1_G10	protein n-terminal amidase	Won1-2_B05	unknown
Won1-1_G11	predicted protein	Won1-2_B06	VP9
Won1-1_G12	ATP-binding cassette, sub-family C	Won1-2_B07	Histone H4
Wonl-1_H01	CG14718-PA	Won1-2_B08	PROBABLE 3-DEMETHYLUBIQUINONE-9 3-METHYLTRANSFERASE PROTEIN
Won1-1_H02	hypothetical protein	Won1-2_B09	Predicted CDS, putative membrane protein family member
Won1-1_H03	No significant similarity found.	Won1-2_B10	No significant similarity found.
Won1-1_H04	hypothetical protein	Won1-2_B11	hypothetical protein
Won1-1_H05	F5M15.9	Won1-2_B12	small heat shock protein
Won1-1_H06	fructose biphosphate aldolase	Won1-2_C03	ribosomal protein S10
Won1-1_H07	probable SnodProt1 PRECURSOR	Won1-2_C04	hypothetical protein
Won1-1_H08	Genome polyprotein	Won1-2_C05	Bone morphogenetic protein 15 precursor
Won1-1_H09	capsid protein	Won1-2_C06	No significant similarity found.
Won1-1_H10	hydrophobin-251	Won1-2_C07	No significant similarity found.
Won1-1_H11	DNA mismatch repair enzyme	Won1-2_C08	hypothetical protein
Won1-1_H12	conserved hypothetical protein	Won1-2_C09	metallothionein
Won1-2_A02	No significant similarity found.	Won1-2_C10	No significant similarity found.
Won1-2_A03	aspartate beta-hydroxylase	Won1-2_C11	No significant similarity found.
Won1-2_A04	protein T24P13.4	Won1-2_C12	Transcript Antisense to Ribosomal RNA
Won1-2_A05	Microsomal signal peptidase 12 kDa subunit	Won1-2_D01	unnamed protein product
Won1-2_A06	BLE1 protein	Won1-2_D02	No significant

			similarity found.
Won1-2_A07	40S ribosomal protein S29	Won1-2_D03	Sp3 transcription factor
Won1-2_A08	Histone H4	Won1-2_D04	hypothetical protein
		Won1-2_D05	septin-1
Won1-2_D08	hypothetical protein	Won1-3_A06	related to syntaxin 12
Won1-2_D09	cofilin	Won1-3_A07	hydrophobin-251
Won1-2_D10	similar to Drosophila melanogaster	Won1-3_A09	pta
Won1-2_D11	hypothetical protein	Won1-3_A10	polyketide synthase - Streptomyces sp.
Won1-2_D12	Hypothetical ORF; Ypl264cp	Won1-3_A11	hypothetical protein
Won1-2_E01	heterogeneous nuclear ribonucleoprotein C; heterogeneous nuclear	Won1-3_A12	alpha-mannosidase, putative
Won1-2_E03	hypothetical protein	Won1-3_B02	virulence factor
Won1-2_E04	No significant similarity found.	Won1-3_B03	related to triose phosphate/3-phosphoglyc erate/phosphate
Won1-2_E06	BC016284 nuclear DNA-binding	Won1-3_B04	DnaK protein; heat shock protein 70
Won1-2_E07	hypothetical protein XP_165315	Won1-3_B05	Predicted CDS, serpentine Receptor, class H SRH-243
Won1-2_E08	Transcription initiation factor IIA gamma chain	Won1-3_B06	hypothetical protein
Won1-2_E09	hypothetical protein	Won1-3_B07	putative endosomal Vps protein complex subunit
Won1-2_E10	hypothetical protein	Won1-3_B08	conserved hypothetical protein
Won1-2_E11	unnamed protein product	Won1-3_B09	hypothetical protein
Won1-2_E12	anti-Dengue virus single-chain antibody	Won1-3_B10	No significant similarity found.
Won1-2_F02	No significant similarity found.	Won1-3_B11	cyc4 protein
Won1-2_F03	predicted protein	Won1-3_B12	hypothetical protein
Won1-2_F04	alpha-1,3/4-fucosidase precursor	Won1-3_C04	CGI-141 protein
Won1-2_F05	conserved hypothetical protein	Won1-3_C07	ribosomal protein S16
Won1-2_F06	No significant similarity found.	Won1-3_C08	Hypothetical protein Y55B1AR.2
Won1-2_F07	hypothetical protein	Won1-3_C09	aryl-alcohol oxidase precursor
Won1-2_F08	conserved hypothetical protein	Won1-3_C10	hypothetical protein
Won1-2_F09	calcineurin temperature suppressor Ctsl	Won1-3_C11	related to UDP N-ACETYLGLUCOSAMINE TRANSPORTER
Won1-2_F10	helicase/primase-associat ed protein - equine herpesviru	Won1-3_C12	Microsomal signal peptidase 12 kDa subunit
Won1-2_F11	ENSANGP00000019138	Won1-3_D06	similarity to iron-sulpher cluster

			proteins
Won1-2_F12	No significant similarity found.	Won1-3_D08	40S ribosomal protein
Won1-2_G01	squeeze CG5557-PA	Won1-3_D09	hypothetical protein
Won1-2_G02	leucine-rich repeat extensin family	Wonl-3_D10	hypothetical protein
Won1-2_G03	No significant similarity found.	Won1-3_D11	hypothetical protein
Won1-2_G04	histocompatibility 28	Won1-3_D12	metallothionein
Won1-2_G05	F-box and leucine-rich repeat protein 5	Won1-3_E01	50S ribosomal subunit L24
Won1-2_G06	sema domain, seven thrombospondin repeats	Won1-3_E03	subunit B protein of DNA gyrase
Won1-2_G07	short-chain dehydrogenase/oxidoreduct ase	Won1-3_E04	unknown protein
Won1-2_G08	nonstructural polyprotein	Won1-3_E05	phosphatidylserine synthase
Won1-2_G09	Heat-stable 19 kDa antigen precursor	Won1-3_E06	unnamed protein product
Won1-2_G10	hypothetical protein XP_297857	Won1-3_E08	glycosyl hydrolase family 9
Won1-2_G11	DYNEIN 8 KD LIGHT CHAIN, FLAGELLAR OUTER ARM	Won1-3_E09	40s ribosomal protein s11
Won1-2_G12	Hypothetical ORF; Yal049cp	Won1-3_E10	metallothionein
Won1-2_H01	DNA binding protein PF1 - rice	Won1-3_E12	conserved hypothetical protein
Won1-2_H02	hypothetical protein	Won2-1_A05	Aldo/keto reductase family family member
Won1-2_H03	hypothetical protein	Won2-1_A06	ligatin
Won1-2_H04	hypothetical protein	Won2-1_A07	hypothetical protein
Won1-2_H05	DNA damage inducible; implicated in the production	Won2-1_A08	hypothetical protein
Won1-2_H06	Ubiquitin-conjugating enzyme E2-16 kDa	Won2-1_A09	hypothetical protein
Won1-2_H07	Neurospora crassa	Won2-1_A10	cyclopentanone 1,2-monooxygenase
Won1-2_H08	actin binding protein ShroomS	Won2-1_A11	related to hormone-sensitive lipase
Won1-2_H09	ENSANGP00000020691	Won2-1_A12	putative membrane transporter
Won1-2_H10	60s ribosomal protein 110a	Won2-1_B01	bl15379
Won1-2_H11	hypothetical protein putative 60s ribosomal protein	Won2-1_B06	hypothetical protein
Won1-2_H12	No significant similarity found.	Won2-1_B07	hypothetical protein
Won1-3_A01	Scorpion Toxin	Won2-1_B08	Similar to GDP-mannose 4, 6-dehydratase
Won1-3_A02	RIKEN CDNA 1810013D05	Won2-1_B09	Multicopy Suppressor of STA10 - 11
Won1-3_A03	Vacuolar ATP synthase 16 kDa proteolipid subunit	Won2-1_B10	probable metabolite transporter

Won1-3_A04	Hypothetical ORF; Ylr162wp	Won2-1_B11	Actin 1 (Beta-actin)
Won1-3_A05	putative olfactory receptor	Won2-1_B12	hypothetical protein
Won1-3_F01	unnamed protein product	Won2-1_C02	epoxide hydrolase
Won1-3_F02	ecdysteroid-inducible polypeptide EIP40	Won2-1_C04	acetylglutamate synthase
Won1-3_F03	hypothetical protein	Won2-1_C05	hypothetical protein
Won1-3_F06	similar to RE44923p	Won2-1_C06	similar to malonyl-CoA decarboxylase
Won1-3_F07	outer dense fiber of sperm tails 1	Won2-1_C07	88 kDa immunoreactive mannoprotein
Won1-3_F09	timeless	Won2-1_C08	OSJNBb0072N21.5
Won1-3_F10	CG6184-PA	Won2-1_C09	hypothetical protein
Won1-3_F11	cyclophilin A	Won2-1_C10	placental protein 17b1
Won1-3_F12	hypothetical protein	Won2-1_C11	HYDROPHOBIN-1 PRECURSOR
Won1-3_G01	60s ribosomal protein L15.2/L15B	Won2-1_C12	vitelline coat component precursor HrVC120
Won1-3_G02	No significant similarity found.	Won2-1_D02	hypothetical protein
Won1-3_G03	hypothetical protei	Won2-1_D04	aspartyl-trna synthetase, cytoplasmic
Won1-3_G04	14-3-3 protein	Won2-1_D05	TATA binding protein?
Won1-3_G05	putative cyclophili	Won2-1_D06	putative delta-sterol c-methyltransferase
Won1-3_G06	No significant similarity found.	Won2-1_D08	probable secretory pathway GDP dissociation inhibitor
Won1-3_G07	beta(2) microglobulin	Won2-1_D09	hypothetical protein SPAC31G5.12c - fission yeast
Won1-3_G09	glutathione peroxidase	Won2-1_D10	UBE-1b
Won1-3_G10	hypothetical protein	Won2-1_D11	putative secreted alpha-galactosidase
Wonl-3_G11	similar to gamete-specific homeodomain protein GSP1	Won2-1_D12	NADP-SPECIFIC GLUTAMATE DEHYDROGENASE (NADP-GDH)
Won1-3_G12	mitogen-activated protein kinase-like protein HOG1	Won2-1_E04	No significant similarity found.
Won1-3_H01	copper chaperone TahA	Won2-1_E05	Epsin 1
Won1-3_H02	neuronal calcium sensor 1	Won2-1_E06	DyP
Won1-3_H03	LIS 290 protein precursor	Won2-1_E08	draper CG2086-PB
Won1-3_H04	pilus assembly protein pilG - Neisseria gonorrhoeae	Won2-1_E09	thiamin pyrophosphokinase 1
Won1-3_H05	histidine-rich protein - Plasmodium lophurae	Won2-1_E10	Hypothetical gene
Won1-3_H06	unnamed protein product	Won2-1_E11	hypothetical protein
Won1-3_H07	zinc finger protein HIT-10	Won2-1_E12	Sensory box sensor histidine kinase/response regulator VieS
Won1-3_H08	Vacuolar ATP synthase	Won2-1_F01	?No significant

-			
	subunit E		similarity found.
Won1-3_H09	40s ribosomal protein s3	Won2-1_F05	?No significant similarity found.
Won1-3_H10		Won2-2_B04	translation initiation factor 3 (47 kDa subunit) related protein
Won1-3_H11	hypothetical protein	Won2-2_B05	similar to DnaJ protein SB73
Won1-3_H12	B2-aldehyde-forming enzyme	Won2-2_B06	DnaK protein
Won2-1_A01	hypothetical protein	Won2-2_B07	hypothetical protein
Won2-1_A02	expressed protein	Won2-2_B08	RecF
Won2-1_A04	ENSANGP0000013885	Won2-2_B10	ornithine aminotransferase
Won2-1_F07	P450L1A1	Won2-2_B11	Dictyostelium. Serine/threonine protein kinase
Won2-1_F08	putative secreted protein	Won2-2_C01	Vps62p
Won2-1_F09	hypothetical protein	Won2-2_C02	PROBABLE TRANSPORTER TRANSMEMBRANE PROTEIN
Won2-1_F10	hypothetical protein	Won2-2_C03	similar to peptidylprolyl isomerase A
Won2-1_F11	similar to hypothetical protein FLJ35105	Won2-2_C04	probable aspartyl aminopeptidase
Won2-1_F12	non-structural polyprotein	Won2-2_C05	hypothetical protein
Won2-1_G01	putative protein	Won2-2_C06	88 kDa immunoreactive mannoprotein
Won2-1_G02	HSPC092	Won2-2_C07	GLP_160_24117_24659
Won2-1_G06	interacts with PP2C; Ydr161wp	Won2-2_C08	mushroom bodies tiny CG18582-PA
Won2-1_G07	No significant similarity found.	Won2-2_C09	conserved hypothetical protein
Won2-1_G08	stearoyl-CoA 9-desaturase	Won2-2_C12	septin 3
Won2-1_G09	14-3-3 protein	Won2-2_D01	CBS-domain protein
Won2-1_G10	poly(a)+ rna export protein	Won2-2_D03	nucleoporin-related protein
Won2-1_G11	No significant similarity found.	Won2-2_D04	hypothetical protein
Won2-1_G12	No significant similarity found.	Won2-2_D05	putative ethylene-forming enzyme
Won2-1_H01	hypothetical protein	Won2-2_D06	collagen type V alpha 2
Won2-1_H02	methionyl-tRNA formyltransferase [Buchnera aphidicola str	Won2-2_D07	N-acetyl-gamma-glutamyl -phosphate reductase and acetylglutamate kinase
Won2-1_H03	Multicopy Suppressor of STA10 - 11	Won2-2_E01	hypothetical protein
Won2-1_H05	reverse transcriptase/ribonucleas e H	Won2-2_E02	DnaJl protein
Won2-1_H06	uridine nucleosidase	Won2-2_E03	Hfb2 protein
Won2-1_H07	GAMM1 protein-related	Won2-2_E04	hypothetical protein
Won2-1_H08	ENSANGP0000016785	Won2-2_E05	selenoprotein P

			precursor - mouse
Won2-1_H09	heat shock protein 90 homolog	Won2-2_E06	Biotin sulfoxide reductase
Won2-1_H10	putative secreted glycosyl hydrolase	Won2-2_E07	Hypothetical ORF; Yoll38cp
Won2-1_H11	related to stress response protein rdslp	Won2-2_E08	related to cecrl protein
Won2-1_H12	magnesium and cobalt transport protein (corA)	Won2-2_E11	putative
Won2-2_A01	P0458E05.32	Won2-2_F01	erythrocyte protein band 4.1-like 4a
Won2-2_A02	methionine aminopeptidase-like 1	Won2-2_F02	casein kinase i homologue
Won2-2_A03	ENSANGP0000015295	Won2-2_F03	hypothetical protein XP_295522
Won2-2_A04	hypothetical protein	Won2-2_F04	putative
Won2-2_A05	Enolase	Won2-2_F05	No significant similarity found.
Won2-2_A06	PROBABLE PRPD PROTEIN	Won2-2_F06	hypothetical protein
Won2-2_A07	RAD 23B protein - channel catfish	Won2-2_F07	acetamidase
Won2-2_A08	developmentally regulated GTP-binding protein	Won2-2_F09	ELONGATION FACTOR 1-ALPHA
Won2-2_A09	SET-domain transcriptional regulator family	Won2-2_F11	CEL4a mannanase
Won2-2_A10	blr3044	Won2-2_G01	?No significant similarity found.
Won2-2_A11	amine oxidase, flavin-containing	Won2-2_G02	NST UDP-galactose or UDP-N-acetylglucosamine
Won2-2_A12	putative oxidoreductase	Won2-2_G03	similar to Toll-like receptor 7 precursor
Won2-2_B01	thyroid hormone receptor-associated protein	Won2-2_G05	hypothetical protein
Won2-2_B02	probable NADH-ubiquinone oxireductase	Won2-2_G06	hypothetical protein
Won2-2_B03	hypothetical protein	Won2-2_G07	No significant similarity found.
Won2-3_H01	RAD 23B protein - channel catfish	Won2-2_G08	BLOCK 25
Won2-3_H02	Voltage-dependent L-type calcium channel alpha-1D subunit	Won2-2_G09	predicted protein
Won2-3_H03	ATP-dependent RNA helicase	Won2-2_G10	dolichyl-phosphate-mann ose:protein mannosyltransferase
Won2-3_H04	No significant similarity found.	Won2-2_G11	hypothetical protein
Won2-3_H04	No significant similarity found.	Won2-2_H01	hypothetical protein
Won2-3_H05	No significant similarity found.	Won2-2_H02	hypothetical protein
Won2-3 H07	alpha-amylase	Won2-2 H03	oxaloacetate carrier

Won2-3_H10	Down syndrome cell adhesion molecule-like protein	Won2-2_H04	hypothetical protein
Won2-3_H11	hypothetical protein	Won2-2_H05	CAP-Gly domain containing protein
Won2-3_H12	conserved hypothetical protein	Won2-2_H07	FK506 binding protein
Won2-3_E08	hypothetical protein XP_300853	Won2-2_H08	similar to hypothetical protein
Won2-3_E09	putative 3-ketoacyl-CoA thiolase	Won2-2_H09	Putative polyprotein
Won2-3_E10	hypothetical protein	Won2-2_H10	TRANSCRIPTION INITIATION FACTOR TFIID SUBUNIT 72/90-100 kDa
Won2-3_E11	hypothetical protein	Won2-2_H11	phosphatidylserine decarboxylase
Won2-3_E12	hypothetical protein	Won2-2_H12	NADH:quinone oxidoreductase
Won2-3_F01	2-isopropylmalate synthase	Won2-3_A01	putative ubiquitin
Won2-3_F02	HIRIP3	Won2-3_A02	transposaseB
Won2-3_F03	putative regulator	Won2-3_B05	CHP-rich zinc finger protein, putative
Won2-3_F03	putative regulator	Won2-3_B07	hypothetical protein
Won2-3_F04	similar to ankyrin 2, isoform 1	Won2-3_B08	No significant similarity found.
Won2-3_F05	transcriptional regulator, AraC family	Won2-3_B09	No significant similarity found.
Won2-3_F06	similar to Aspartate aminotransferase	Won2-3_B11	Cytosolic long-chain acyl-CoA thioester hydrolase family member
Won2-3_F07	hypothetical protein	Won2-3_C01	No significant similarity found.
Won2-3_F08	putative oxidoreductase	Won2-3_C02	hypothetical protein XP_240201
Won2-3_F09	hypothetical protein	Won2-3_C03	yolkless CG1372-PA
Won2-3_F10	predicted protein	Won2-3_C03	yolkless CG1372-PA
Won2-3_F11	predicted protein	Won2-3_C04	hypothetical protein XP_295320
Won2-3_F12	possible integral membrane	Won2-3_C05	Zeaxanthin epoxidase, chloroplast precursor
Won2-3_G01	hypothetical protein	Won2-3_C05	Zeaxanthin epoxidase, chloroplast precursor
Won2-3_G02	No significant similarity found.	Won2-3_C06	No significant similarity found
Won2-3_G03	conserved hypothetical protein	Won2-3_C06	No significant similarity found.
Won2-3_G04	hypothetical protein	Won2-3_C07	somatic embryogenesis receptor kinase-like protein
Won2-3_G04	hypothetical protein	Won2-3_C09	hypothetical protein
Won2-3_G05	hypothetical protein	Won2-3_C10	hypothetical protein
Won2-3_G06	hypothetical protein	Won2-3_C11	large subunit ribosomal protein L3
Won2-3_G07	phosphoribosylanthranilat	Won2-3_C12	hypothetical protein

	e transferase		MGC50831
Won2-3_G08	S-adenosylmethionine synthetase	Won2-3_D01	bl14755
Won2-3_G09	ENSANGP0000022137	Won2-3_D02	hypothetical protein
Won2-3_G10	NADH-UBIQUINONE OXIDOREDUCTASE 49 KD SUBUNIT PRECURSOR	Won2-3_D02	hypothetical protein
Won2-3_G11	proteasome subunit	Won2-3_D03	No significant similarity found
Won2-3_G12	antiviral protein	Won2-3_D03	No significant similarity found.
Won2-3_D12	conserved hypothetical protein	Won2-3_D04	hypothetical protein
Won2-3_E01	O-ACETYLHOMOSERINE (THIOL)-LYASE	Won2-3_D04	hypothetical protein
Won2-3_E02	Hypothetical protein T06D8.1b	Won2-3_D05	No significant similarity found.
Won2-3_E03	Myosin II heavy chain	Won2-3_D06	EUKARYOTIC INITIATION FACTOR 4A (EIF-4A)
Won2-3_E03	Myosin II heavy chain	Won2-3_D07	phosphoglyceromutase
Won2-3_E04	CG6118-PA	Won2-3_D08	88 kDa immunoreactive mannoprotein
Won2-3_E04	CG6118-PA	Won2-3_D09	F-box and leucine-rich repeat protein 6 isoform 2
Won2-3_E05	p41-Arc	Won2-3_D10	CG31763-PA
Won2-3_E05	p41-Arc	Won2-3_E07	probable auxin transport protein - rice
Won2-3_E06	hypothetical protein		

송이 성숙자실체 cDNA 클론 blastx 결과분석(3차1000개 총정리)			
sequencs No.	homology search	sequencs No.	homology search
M18_A03	riboflavin synthase, putative	M18_F04	hypothetical protein AN5835.2
M18_A04	proline iminopeptidase	M18_F05	hypothetical protein CNBA1490
M18_A05	hypothetical protein MG09398.4	M18_F07	hypothetical protein UM03356.1
M18_A06	PREDICTED: hypothetical protein XP_625278	M18_F08	unnamed protein product
M18_A08	hypothetical protein CNBH2760	M18_F09	glyceraldehyde-3-phosph ate dehydrogenase
M18_A09	Polyporopepsin	M18_F10	expressed protein
M18_A11	adenylate kinase, putative	M18_F11	hypothetical protein UM04658.1
M18_A07	hypothetical protein CNM01990	M18_F12	Hypothetical Protein RRSL_01530
M18_A12	hypothetical protein CNK01610	M18_G01	hypothetical protein UM02442.1 1/17
M18_B01	polyketide synthase type I	M18_G03	hypothetical protein Afu2g02370 Identities = 30/104

- 233 -

			(28%), Positives = 46/104 (
M18_B02	hypothetical protein UM06094.1	M18_G04	ribosomal protein L13, putative
M18_B03	putative phosphatase	M18_G05	putative aldehyde dehydrogenase (NAD+)
M18_B04	hypothetical protein CNJ03030	M18_G06	hypothetical protein UM05477.1
M18_B05	hypothetical protein UM05584.1	M18_G07	hypothetical protein DDB0188170
M18_B07	hypothetical protein UM00045.1	M18_G08	conserved hypothetical protein
M18_B08	DNA topoisomerase III	M18_G09	glutamate biosynthesis-related protein, putative
M18_B09	hypothetical protein UM00257.1	M18_G11	hypothetical protein MG00220.4
M18_B10	conserved hypothetical protein	M18_G12	neutral protease I
M18_B11	ATP synthase alpha chain, mitochondrial precursor,	M18_H01	hypothetical protein UM02328.1
M18_B12	cell wall organization and biogenesis-related protein,	M18_H02	3-methyl-2-oxobutanoate hydroxymethyltransferas e
M18_C01	MFS transporter, putative	M18_H03	DEAD/DEAH box helicase
M18_C03	hypothetical protein CNBB1410	M18_H04	proline iminopeptidase
M18_C04	hypothetical protein AN3499.2	M18_H05	hypothetical protein
M18_C06	hypothetical protein UM00240.1	M18_H07	hypothetical protein UM04017.1
M18_C07	hypothetical protein UM06423.1	M18_H08	unknown
M18_C08	putative aspartyl-proteinase	M18_H09	hypothetical protein UM05736.1
M18_C09	SDS22	M18_H10	hypothetical protein CNBA6600
M18_C05	conserved hypothetical protein	M18_H11	PREDICTED: similar to ankyrin repeat and MYND domain containing
M18_C11	PREDICTED: similar to CG4643-PA, isoform A	M18_H12	hypothetical protein CNC02420
M18_C12	expressed protein	M18_C10	hypothetical protein UM05348.1
M18_D02	hypothetical protein	M18_D06	hypothetical protein UM02487.1
M18_D03	ornithine aminotransferase	M18_E02	hypothetical protein AN6736.2
M18_D04	related to rasp f 7 allergen	M18_F06	glucose-6-phosphate 1-dehydrogenase
M18_D05	cyclin-dependent protein kinase	M18_G02	formate dehydrogenase, putative
M18_D08	TPA: TPA_exp: putative tyrosine recombinase	M18_G10	hypothetical protein CNBE1460
M18_D07	hypothetical protein	M18_H06	conserved hypothetical

	SaroDRAFT_1635		protein
M18_D09	hypothetical protein CNBA3660	M19_A03	MORN repeat-containing protein
M18_D10	afadin	M19_A04	hypothetical protein CNBA1910
M18_D11	hypothetical protein CNBA1470	M19_A05	hypothetical protein CNBE1320
M18_D12	unnamed protein product	M19_A06	multidrug resistance protein fnxl
M18_E01	hypothetical protein CND05430	M19_A07	heat shock protein, putative
M18_E03	hypothetical protein CNBG2310	M19_A09	DNA gyrase, A subunit
M18_E04	hypothetical protein FG02594.1	M19_A11	phenylalanine ammonium lyase
M18_E05	mitochondrion protein, putative	M19_A08	
M18_E06	hypothetical protein AN8149.2	M19_A12	KIAA1064 protein
M18_E07	hypothetical protein CNBC3180	м19_в01	hypothetical protein CNBC3770
M18_E08	GA12126-PA	M19_B02	PREDICTED: similar to APG16L beta isoform
M18_E09	hypothetical protein	M19_B03	
M18_E12	hypothetical protein AN7572.2	M19_B04	Chain A, The Structure Of Alpha-Galactosidase From Trichoderma Reesei Complexed With Beta-D-Galactose
M18_F01	hypothetical protein AN0188.2	м19_в05	related to stress response protein rds1p
M18_E11	hypothetical protein XOO1786	M19_B07	hypothetical protein UM03323.1
M18_F02	hypothetical protein UM03524.1	м19_в08	ENSANGP00000019363
M18_F03	hypothetical protein CNBB0780	м19_в09	hypothetical protein CNBE1910
M18_A01	hypothetical protein UM06398.1	M19_B11	hypothetical protein AcidDRAFT_0930
M18_A10	hypothetical protein FG02352.1	M19_B10	hypothetical protein FG03872.1
M18_B06	4-aminobenzoate hydroxylase	M19_B12	conserved hypothetical protein
M18_C02		M19_D12	cytochrome P450
M19_C01	formate dehydrogenase, putative	M19_E03	hypothetical protein CNA03430
M19_C03	glycine hydroxymethyltransferase, putative	M19_E04	putative beta-1,3-glucanase
M19_C04	hypothetical protein FG04681.1	M19_E05	hypothetical protein UM02461.1
M19_C05	cytoplasm protein, putative	M19_E06	hypothetical protein CNBF3960
M19_C06	ribonuclease H, putative	M19_E07	hypothetical protein UM04060.1

- 235 -

M19_C07	unnamed protein product	M19_E08	hypothetical protein
M19_C08	hypothetical protein UM01098.1	 M19_E11	putative aldehyde dehydrogenase (NAD+)
M19 C09	expressed protein	M19 E12	hypothetical protein
 M19_C11	Ste7	 M19_E09	hypothetical protein UM03771.1
M19_C12	putative senescence-associated protein	M19_F01	L10e protein, putative
M19_D01	related to malate dehydrogenase (oxaloacetate-decarboxyla ting) (NADP+) [Neurospora crassa]	M19_F02	3-ketoacyl-CoA ketothiolase (Katl), putative
M19_D02	hypothetical protein UM04564.1	M19_D05	alpha2 b2 adrenergic receptor
M19_D04	unknown	M19_E01	L-arabinitol 4-dehydrogenase, putative
M19_D03	hypothetical protein CNBK1210	M19_F03	hypothetical protein CNBC0620
M19_D07	unknown	M19_F04	hypothetical protein UM01991.1
M19_D08	unnamed protein product	M19_F05	hypothetical protein CNBK3120
M19_D09	hypothetical protein UM00953.1	M19_F07	
M19_D10	hypothetical protein UM02240.1	M19_F08	expressed protein
M19_D11	Gq protein alpha subunit	M19_F09	QDE2 protein
M19_A10	hypothetical protein DDB0204637	M19_F10	ClpB protein
M19_B06	NADH-cytochrome b5 reductase	M19_F11	PREDICTED: similar to CG7922-PA
M19_C02	phosphoenolpyruvate carboxykinase, putative	M19_F12	hypothetical protein FG11617.1
M19_C10	putative glycosyl hydrolase	M19_G01	fructose-bisphosphate aldolase, putative
M19_D06	endopeptidase, putative	M19_G03	hypothetical protein CNBB5620
M19_E02	hypothetical protein UM03933.1	M19_G04	integral to plasma membrane protein
M19_F06	B-(1-6) glucan synthase	M19_G05	expressed protein
M19_G02	hypothetical protein UM03763.1	M19_G06	hypothetical protein UM03449.1
M19_G10	hypothetical protein UM04659.1	M19_G07	Methionyl-tRNA synthetase
М19_Н06	3-ketoacyl-CoA ketothiolase (Kat1)	M19_G08	PREDICTED: similar to Myosin I
M20_H06	hypothetical protein CNBC3770	M19_G09	exo-1,3-beta-glucanase
M20_G10	probable nucleotide exsicion repair protein RAD16	M19_G11	hypothetical protein UM00961.1

- 236 -

M20_G02	hypothetical protein CNBC3770	M19_G12	hypothetical protein AN7870.2
M20_F06	Putative helicase	M19_H01	Extracellular elastinolytic metalloproteinase precursor, putative
M20_E02	hypothetical protein CNBE2600	M19_H02	hypothetical protein FG08539.1
M20_C10	Peptidase M22, glycoprotease	м19_н03	aldo-keto reductase (AKR13), puatative
M20_C02	hypothetical protein CNBA2810	м19_н04	14-3-3
M20_B06	PREDICTED: similar to Collagen alpha 2(V) chain precursor	M19_H05	hypothetical protein CNBI0550
M20_A10	Hypothetical protein CBG05930	M19_H07	40S ribosomal protein S0, putative
M20_A02	oxidoreductase, putative	м19_н08	hypothetical protein CNBA7530
M20_H12	hypothetical protein	M19_H09	pyruvate dehydrogenase el component alpha subunit, mitochondrial precursor, putative
M20_H11	nitrate/nitrite sensory protein	M19_H10	Carbohydrate-binding family V/XII:Fibronectin, type III
M20_H09	B-(1-6) glucan synthase	M19_H11	COG1960: Acyl-CoA dehydrogenases
M20_H08	conserved hypothetical protein	M19_H12	hypothetical protein AN7870.2
M20_H07	conserved transmembrane protein-like	M19_A01	possible secreted DNA ligase
M20_H05	tRNA binding protein, putative	M19_A02	hypothetical protein DDB0190702
M20_H04	alpha-galactosidase-like protein	М20_В08	hypothetical protein UM00936.1
M20_H03	hypothetical protein MG05212.4	м20_в09	hypothetical protein MG08260.4
м20_н02	Hoblp, putative	M20_B10	DNA polymerase III alpha subunit:Protein splicing (intein) site
M20_H01	hypothetical protein CNBI0840	M20_B11	hypothetical protein UM00961.1
M20_G12	hypothetical protein CNA03430	M20_B12	TPR repeat
M20_G11	unnamed protein product	M20_C01	hypothetical protein
M20_G09	ferredoxin	M20_C03	glycogen phosphorylase, putative
M20_G08	meiotic recombination-related protein, putative	M20_C04	3-ketoacyl-CoA ketothiolase (Kat1), putative
M20_G07	hypothetical protein MG00912.4	M20_C05	unnamed protein product
M20_G06	t-complex protein 1, delta subunit (tcp-1-delta), putative	M20_C06	fatty acid desaturase, putative

- 237 -

M20_G05	cytochrome P450	M20_C07	CV1808
M20_G04	SRF related protein	M20_C08	C-3 sterol dehydrogenase
M20_G03	hypothetical protein UM01445.1	M20_C09	hypothetical protein
M20_G01	disulfide-isomerase precursor, putative	M20_C12	protein scd2/ral3, putative
M20_F12	hypothetical protein CNBH0720	M20_C11	hypothetical protein UM03355.1
M20_F11	hypothetical protein UM04889.1	M20_D01	hypothetical protein DEHA0B03696g
M20_F10	expressed protein	M20_D02	cyclin-dependent protein kinase, putative
M20_F09	hypothetical protein UM04724.1	M20_D03	hypothetical protein CNBG2470
M20_F08	chitinase	M20_D04	hypothetical protein
M20_F07	hypothetical protein UM00622.1	M20_D07	hypothetical protein UM05160.1
M20_F05		M21_A03	endopeptidase, putative
M20_F04	expressed protein	M21_A04	hypothetical protein CNBA2210
M20_F03	hypothetical protein CNBC3770	M21_A05	expressed protein
M20_F02	hypothetical protein PY01929	M21_A06	hypothetical protein AN7953.2
M20_F01		M21_A07	ENSANGP0000019496
M20_E12		M21_A08	putative dipeptidase
M20_E11	conserved hypothetical protein	M21_A09	UL36
M20_E09	hypothetical protein UM02461.1	M21_D11	PREDICTED: similar to RIKEN cDNA 2310057N15
M20_E08	hypothetical protein UM02261.1	M21_D12	hypothetical protein CNK01610
M20_E07	hypothetical protein FG10043.1	M21_E01	acetylornithine aminotransferase
M20_E06	fructose-bisphosphate aldolase, putative	M21_E03	hypothetical protein CNBB1410
M20_E05	hypothetical protein CNBH0310	M21_E04	Hydrophobe/amphiphile efflux-1 HAE1
M20_E04	chaperone regulator, putative	M21_E05	hypothetical protein CNBG1810
M20_E03	expressed protein	M21_E06	peptidyl-Lys metalloendopeptidase
M20_E01	conserved hypothetical protein	M21_E07	unnamed protein product
M20_D12	hypothetical protein UM03599.1	M21_E08	translation elongation factor
M20_D11	Hypothetical protein LOC393216	M21_E09	hypothetical protein UM02367.1
M20_D10	retrotransposon protein, putative, Ty3-gypsy sub-class	M21_E11	hypothetical protein UM02347.1

- 238 -

M20_D09	putative peroxisomal enoyl-CoA hydratase	M21_E12	B-(1-6) glucan synthase
M20_D08		M21_F01	hypothetical protein UM03449.1
M20_A03	hypothetical protein DDB0186547	M21_F02	PREDICTED: similar to IgE-binding protein
M20_A04	glutamine synthetase	M21_F05	Phosducin-like
M20_A05	hypothetical protein UM05584.1	M21_F03	FAD dependent oxidoreductase
M20_A07	hypothetical protein CNM01200	M21_F07	hypothetical protein AN5593.2
M20_A08	hypothetical protein AN0245.2	M21_F08	mitochondrion protein
M20_A11	Acetoacetyl-CoA synthase	M21_F09	glycine-tRNA ligase
M20_A09	unnamed protein product	M21_F10	hypothetical protein CNBG0540
M20_A12	hypothetical protein CNBA2150	M21_F11	hypothetical protein CNBC1760
м20_в02	conserved hypothetical protein	M21_F12	unnamed protein product
M20_B01	hypothetical protein SfumDRAFT_2856	M21_G03	hypothetical protein UM02340.1
м20_в03	ER to Golgi transport-related protein, putative	M21_G01	phospholipid-translocat ing ATPase
M20_B04	hypothetical protein CNN01470	M21_G04	hypothetical protein UM03647.1
M20_B05	hypothetical protein UM01708.1	M21_G05	hypothetical protein UM00262.1
M20_B07	hypothetical protein UM05143.1	M21_G06	hypothetical protein CNBG1810
M21_A11	ENSANGP0000023984	M21_G07	UDP-glucose dehydrogenase
M21_A12	hypothetical protein CNBG1810	M21_G08	unnamed protein product
M21_B01	putative drought-induced protein DI	M21_G09	AmMst-1
M21_B02	hypothetical protein UM00707.1	M21_G11	PREDICTED: similar to dJ1184F4.4
M21_B03	Temporarily assigned gene name protein 308	M21_G12	mitochondrial carrier protein
M21_B04	translation elongation factor EF1-alpha	M21_H01	hypothetical protein UM00588.1
M21_B05	hypothetical protein UM05482.1	M21_H02	unnamed protein product
M21_B07	GA11496-PA	M21_H03	hypothetical protein CNN01470
M21_B08	hypothetical protein CNBC2230	M21_H04	hypothetical protein UM04724.1
M21_B09	hypothetical protein	M21_H05	unnamed protein product
M21_B10	K+ transporting ATPase	M21_H07	SPBC1198.13c
M21_B11	hypothetical protein	M21_H08	acyl-CoA dehydrogenase
M21_B12	hypothetical protein	M21_H09	PREDICTED: similar to

- 239 -

	CNBG1810		MITF-2B protein
M21_C01		M21_H10	putative peptidase U32 family protein
M21_C03	hypothetical protein	M21_H11	hypothetical protein UM00333.1
M21_C04	L10e protein	M22_A09	hypothetical protein UM04112.1
M21_C05	chordin-related protein 2 variant IX	M22_A08	expressed protein
M21_C06	trehalose phosphorylase	M22_A11	glutamine synthetase
M21_C07	conserved hypothetical protein	M22_A12	
M21_C08	conserved hypothetical protein	M22_B01	unknown protein
M21_C11	Cytochrome B561	M22_B02	meiotic recombination-related protein
M21_C09	Protein of unknown function DUF444	M22_B03	50s ribosomal protein 136
M21_C12	putative retrotransposon protein	M22_B04	hypothetical protein UM02261.1
M21_D01	hypothetical protein UM02597.1	M22_B05	unnamed protein product
M21_D02	hypothetical protein UM05393.1	M22_B07	acyl-CoA dehydrogenase
M21_D03	hypothetical protein SaroDRAFT_0750	M22_B08	hypothetical protein UM06189.1
M21_D04	hypothetical protein UM01812.1	M22_B09	MGC97721 protein
M21_D05	unnamed protein product	M22_B10	beta-catenin
M21_D07	hypothetical protein CNBK0320	M22_B11	Protein of unknown function DUF444
M21_D08	expressed protein	M22_B12	PREDICTED: similar to EH domain binding protein 1
M21_D09	hypothetical protein CNK01610	M22_C01	transaldolase
M21_D10		M22_C03	PREDICTED: similar to chromosome 11 open reading frame 24
M21_H12	hypothetical protein CNE03490	M22_C04	transferase
M21_A02	peptidyl-Lys metalloendopeptidase	M22_C05	acetyl-CoA acetyl transferase
M21_A10	hypothetical protein CNBG1810	M22_C06	acetyl-CoA acetyl transferase
M21_B06.	ribonucleotide reductase small subunit	M22_C07	unnamed protein product
M21_C10	Extracellular elastinolytic metalloproteinase precursor	M22_C08	hypothetical protein UM06399.1
M21_D06	hypothetical protein LOC503590	M22_C09	related to hydroxyproline-rich glycoprotein precursor

M21_F06	putative histone	M22_C11	RAB GDP-dissociation inhibitor
M21_E02	GDP-fucose transporter-like protein	M22_C12	HLH transcription factor
M21_G02	glyceraldehyde-3-phosphat e dehydrogenase (phosphorylating)	M22_D01	alpha2 tubulin
M21_G10	retrotransposon protein	M22_D02	glutathione S-transferase
м21_н06	unnamed protein product	M22_D04	cysK1, RSp0276; probable cysteine synthase A protein
M22_A03	hypothetical protein AN1479.2	M22_D05	CD45
M22_A04	MYC1	M22_D07	ORF K10
M22_A05	hypothetical protein AN7870.2	M22_D08	
M22_A06	hypothetical protein UM05393.1	M22_D09	proteophosphoglycan ppg4
M22_A07	hypothetical protein UM02461.1	M22_D10	chaperone regulator
M22_H06		M22_D11	glycerol-3-phosphate dehydrogenase
M22_D12	hypothetical protein	M22_G07	conserved hypothetical protein
M22_E03	secreted glycosyl hydrolase	M22_G08	conserved hypothetical protein
M22_E04	peptidyl-Lys metalloendopeptidase	M22_G09	hypothetical protein CNBE0400
M22_E05	GA18339-PA	M22_G11	hypothetical protein AN9144.2
M22_E06	hypothetical protein UM05559.1	M22_G12	isocitrate dehydrogenase
M22_E07	expressed protein	M22_H01	
M22_E08		M22_H02	expressed protein
M22_E09	pregnancy-associated glycoprotein 19	M22_H03	putative cyclic AMP-dependent protein kinase regulatory subunit
M22_E11	hypothetical protein MG07210.4	M22_H04	
M22_E12		M22_H05	Mandelate racemase/muconate lactonizing enzyme
M22_F01	hypothetical protein UM03687.1	M22_H07	unnamed protein product
M22_F02	unnamed protein product	M22_H08	expressed protein
M22_F03	unnamed protein product	M22_H09	t-SNARE
M22_F04.	hypothetical protein CaO19_4689	M22_H10	translation elongation factor 1 alpha
M22_F05	5-methyltetrahydrofolate- -homocysteine methyltransferase	M22_H11	hypothetical protein UM01098.1
M22_F09	PREDICTED: similar to	M22_H12	

	CG3184-PA		
M22_F07	unnamed protein product	M22_A01	conserved hypothetical protein
M22_F08	electron transfer flavoprotein-ubiquinone oxidoreductase	M22_A02	PREDICTED: similar to DKFZP5660084 protein
M22_F10	hypothetical protein UM01072.1	M22_A10	DNA-C5-methyltransferas e
M22_F11	acetyl-CoA C-acetyltransferase	M22_B06	hypothetical protein CNBF2870
M22_F12	hypothetical protein CNBE0410	M22_C02	PREDICTED: similar to Myosin Ib (Myosin I alpha)
M22_G01	hypothetical protein UM03993.1 /	M22_C10	hypothetical protein CNBB2970
M22_G03	acetyl-CoA acetyl transferase	M22_D06	short chain dehydrogenase/reductase of the rossmann fold
M22_G04	SPAC513.07	M22_E02	PREDICTED: hypothetical protein XP_901406
M22_G05	hypothetical protein UM05818.1	M22_F06	conserved hypothetical protein
M22_G06	conserved hypothetical protein	M22_G02	meiotic recombination-related protein
M22_G10	23S rRNA methylase		

송이버섯 원기(미분화자실체) cDNA 클론 3차 1000개 blastx 분석결과			
seq No.	homology search	seq No.	homology search
M13-2_A04	meiotic recombination-related protein	M13-2_C04	hypothetical protein UM04971.1
M13-2_A05	cytoplasm protein	M13-2_C06	conserved hypothetical protein
M13-2_A03	hypothetical protein AN0188.2	M13-2_C07	conserved hypothetical protein
M13-2_A06	hypothetical protein UM04004.1	M13-2_C08	unknown
M13-2_A07	phospholipid-translocating ATPase	M13-2_C09	hypothetical protein MG09527.4
M13-2_A08	hypothetical protein CaO19.4195	M13-2_C10	LOC496252 protein
M13-2_A09	conserved expressed protein	M13-2_C11	leucine aminopeptidase
M13-2_A10	hypothetical protein MG06838.4	M13-2_C12	ATP dependent RNA helicase (Dbp9)
M13-2_A12	mucin-associated surface protein (MASP)	M13-2_D01	Succinate dehydrogenase/fumarate reductase Fe-S protein subunit
M13-2_B01	alpha-1,2-mannosyltransfer ase	M13-2_D03	PREDICTED: similar to tubulin
M13-2_B02	hypothetical protein CNBA6410	M13-2_D04	

- 242 -

M13-2_B03	phosphoglycerate mutase III	M13-2_D05	Hemolysin-type calcium-binding region
M13-2_B04	hypothetical protein UM00700.1	M13-2_D06	class II aldolase/adducin domain protein
M13-2_B05	5-methyltetrahydropteroylt riglutamatehomocysteine S-methyltransferase	M13-2_D07	cytochrome P450
M13-2_B06	hypothetical protein AN0895.2	M13-2_D08	hypothetical protein FG04793.1
M13-2_B07	protein kinase	M13-2_D09	serine/threonine protein kinase with WD40 repeats
M13-2_B09	gamma-tubulin complex component 3 (gcp-3)	M13-2_D10	TATA-box binding protein
M13-2_B10	hypothetical protein CNBC3770	M13-2_D12	hypothetical protein CNA02490
M13-2_B11	hypothetical protein UM02411.1	M13-2_E01	hypothetical protein CNBG4600
M13-2_B12	unknown protein	M13-2_E02	gi 67592444 ref XP_6656 40.1
M13-2_C01	DUF914 domain membrane protein	M13-2_E03	hypothetical protein
M13-2_C02		M13-2_E04	peptidaseo
M13-2_C03		M13-2_E05	hypothetical protein CNBC6140
M13-2_F01	hypothetical protein	M13-2_E	hypothetical protein UM01231.1
M13-2_F02	hypothetical protein UM02859.1	M13-2_E09	AFR538Cp
M13-2_F03	putative outer membrane protein probably involved in nutrient binding	M13-2_E06	glycine hydroxymethyltransferas e
M13-2_F04		M13-2_E10	
M13-2_F06	hypothetical protein CNBB2410	M13-2_E11	hypothetical protein CNBA7070
M14_G08	hypothetical protein CNBC5550	M13-2_E12	translation elongation factor la
M13-2_G01	PREDICTED: similar to PHD finger protein 14	M13-2_F07	Mature parasite-infected erythrocyte surface antigen (MESA) or PfEMP2
M13-2_G03	cytochrome P450	M13-2_F08	hypothetical protein UM00961.1
M13-2_G04	COG0609: ABC-type Fe3+-siderophore transport system, permease component	M13-2_F09	hypothetical protein CNBB1410
M13-2_G05	hypothetical protein CNBF2850	M13-2_F10	NysRII
M13-2_G06	hypothetical protein	M13-2_F11	hypothetical protein UM01870.1
M13-2_G07	GTP cyclohydrolase I	M13-2_F12	hypothetical protein NCU07296.1
M13-2_G08	related to cytochrome P450	M14_B04	NAD-specific glutamate

	3A7		dehydrogenase
M13-2_G09	hypothetical protein MG05274.4	M14_B05	ENSANGP00000025869)
M13-2_G10	hypothetical protein CNBE5060	M14_B07	hypothetical protein UM01257.1
M13-2_G12	hypothetical protein	M14_B08	PREDICTED: similar to neuropilin 2 isoform 2 precursor isoform 5
M13-2_H01	B-(1-6) glucan synthase	M14_B10	phenylalanine ammonium lyase
M13-2_H02	hypothetical protein CNBB1410	м14_в09	glucose-6-phosphate isomerase
M13-2_H03	glucoamylase	M14_B11	HrZF-1
M13-2_H04	hypothetical protein FG10043.1	M14_B12	F-box and WD domain protein
M13-2_H05	extensin	M14_C01	
M13-2_H06	hypothetical protein CNBK1340	M14_C03	Bbs4 protein
M13-2_H07	inorganic diphosphatase	M14_C04	hypothetical protein CNBL0530
M13-2_H09	expressed protein	M14_C05	unnamed protein product
M13-2_H10	type XVIII collagen long variant	M14_C06	hypothetical protein CNL05210
M13-2_H11	hypothetical protein CNBD3660	M14_C07	expressed protein
M13-2_H12		M14_C08	Glycerophosphoryl diester phosphodiesterase
M13-2_A01	unnamed protein product	M14_C09	hypothetical protein UM02548.1
M13-2_A02	translation elongation factor	M14_C11	regulation of amino acid metabolism-related protein
M13-2_A11		M14_C12	PREDICTED: similar to rho guanine nucleotide exchange factor 5 isoform 1
M13-2_B08		M14_D01	RAD9 homolog
M13-2_C05	macrolide 2'-phosphotransferase	M14_D02	conserved hypothetical protein
M13-2_D02	hypothetical protein AN3072.2	M14_D03	unknown
M13-2_D11	ATP-dependent Clp protease, putative	M14_D04	hypothetical protein UM01834.1
M13-2_E08		M14_D05	putative argonaute protein
M13-2_F05	Ori binding protein	M14_D07	fructose-bisphosphate aldolase
M13-2_G02	conserved hypothetical protein	M14_D08	zinc finger protein 265 isoform 2
M13-2_G11		M14_D09	unnamed protein product
M13-2_H08	aconitase	M14_D10	Le.MFB2

M14_A03	hypothetical protein CNBK3120	M14_D11	hypothetical protein CND04530
M14_A04	conserved hypothetical protein	M14_D12	unnamed protein product
M14_A05	PREDICTED: similar to sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1	M14_E01	hypothetical protein CaOl9_8519
M14_A06	unnamed protein product	M14_E03	hypothetical protein UM05205.1
M14_A07	hypothetical protein CNBF3880	M14_E04	unnamed protein product
M14_A08	hypothetical protein CNBA3060	M14_E05	hypothetical protein
M14_A09	hypothetical protein CNBA5790	M14_E06	hypothetical protein CNBB1930
M14_A11	hypothetical protein UM06296.1	M14_E07	subtilisin-like serine protease
M14_A12	unknown protein	M14_E09	hypothetical protein UM02758.1
M14_B01	hypothetical protein CNBC2690	M14_E11	hypothetical protein CNBL1620
M14_B02	hypothetical protein UM05347.1	M14_E12	hypothetical protein CNBB2170
M14_B03	cytochrome P450	M14_F01	hypothetical protein UM03993.1
M15_B09	subtilisin-like serine protease	M14_E08	hypothetical protein UM00262.1
M15_B10	MGC81116 protein	M14_F02	hypothetical protein CNBE4860
M15_B11	mitochondrion protein	M14_F03	transaldolase
M15_B12	conserved hypothetical protein	M14_F04	PREDICTED: similar to mitochondrial ribosomal protein S5
M15_C01	hypothetical protein UM04251.1	M14_F05	hypothetical protein FG03439.1
M15_C03	actin binding protein	M14_F07	hypothetical protein Mdeg02001572
M15_C04	GDP-fucose transporter-like protein	M14_F08	53 kda brgl-associated factor b (actin-related protein baf53b)
M15_C05	RNA helicase Gu - human (fragment)	M14_F09	hypothetical protein CNBF3080
M15_C06	NAD-specific glutamate dehydrogenase	M14_F10	conserved hypothetical protein
M15_C07	N,N'-diacetylchitobiose phosphorylase	M14_F11	hypothetical protein UM00461.1
M15_C08	IMP dehydrogenase	M14_F12	frizzled 10
M15_C09	hypothetical protein UM04650.1	M14_G01	T-box transcription factor
M15_C11	hypothetical protein CNBJ1910	M14_G03	hypothetical protein UM00381.1
M15_C12	large subunit ribosomal protein L3	M14_G04	hypothetical protein UM00900.1
M15_D01	hypothetical protein	M14_G05	expressed protein

	AN5036.2		
M15_D02	hypothetical protein UM00257.1	M14_G06	hypothetical protein UM03993.1
M15_D03	unknown	M14_G07	hypothetical protein CNBA5660
M15_D04	Cytochrome P450	M14_G09	hypothetical protein AN8872.2
M15_D05	AmMst-1 7	M14_G11	
M15_D07	conserved hypothetical protein	M14_G12	hypothetical protein UM03356.1
M15_D08	chordin-related protein 2 variant IX	M14_H01	hypothetical protein CNA01550
M15_D09	OmpW	M14_H02	expressed protein
M15_D10	unnamed protein product	M14_H03	Mg2+ transport ATPase protein B
M15_D11	hypothetical protein UM02511.1	M14_H04	Excinuclease ABC
M15_D12	F-box domain-containing protein	M14_H05	hypothetical protein CNBA2060
M15_E01	IMP dehydrogenase/GMP reductase	M14_H07	hypothetical protein UM02750.1
M15_E03	Voltage-gated potassium channel beta-2 subunit	M14_H08	hypothetical protein AN1725.2
M15_E04	hypothetical protein DR_2144	M14_H09	hypothetical protein UM05650.1
M15_E05	mitogen-activated kinase	M14_H10	pre-mRNA splicing factor
M15_E07	hypothetical protein AN9144.2	M14_H12	
M15_E06	B-(1-6) glucan synthase	M14_H11	hypothetical protein
M15_E08	hypothetical protein UM00961.1	M14_A01	14-3-3
M15_E09	hypothetical protein UM01988.1	M14_A02	
M15_E11	phosphoribosylaminoimidazo le-succinocarboxamide synthetase Pur7	M14_A10	unnamed protein product
M15_E12	unnamed protein product	M14_B06	hypothetical protein UM01005.1
M15_F01	hypothetical protein	M14_C02	chaperone regulator
M15_F02	hypothetical protein FG00454.1	M14_C10	PREDICTED: similar to 5-3 exoribonuclease
M15_F03	hypothetical protein RHE_PA00024	M14_D06	hypothetical protein FG08977.1
M15_F04	conserved hypothetical protein	M14_E02	hypothetical protein UM04379.1
M15_F05	hypothetical protein UM04656.1	M14_E10	
M15_F07	PREDICTED: similar to essential meiotic endonuclease 1 homolog	M14_F06	Short-chain dehydrogenase/reductase SDR
M15_F08	hypothetical protein CNBG2750	M14_G02	GA10904-PA
M15_F09	hypothetical protein CNBN1150	M14_G10	hypothetical protein MG07936.4

- 246 -

M15_F10	hypothetical protein UM00489.1	M14_H06	chaperone, putative
M15_F11	expressed protein	M15_A03	conserved hypothetical protein
M15_F12	hypothetical protein CNBD2140	M15_A04	Hypothetical protein F20D6.11
M15_G01	hypothetical protein UM01834.1	M15_A05	Peptidase T2, asparaginase 2
M15_G03	hypothetical protein UM06338.1	M15_A06	1-acylglycerol-3-phosph ate 0-acyltransferase
M15_G04	exopolyphosphatase	M15_A07	amino acid feature
M15_G06	mitochondrion protein	M15_A08	hypothetical protein DDB0188531
M15_G05	hypothetical protein UM02897.1	M15_A09	acetyl-CoA acetyl transferase
M15_G07	Alpha amylase	M15_A11	hypothetical protein
M15_G09	hypothetical protein	M15_A12	neutral protease III
M15_G08	LOC496252 protein	M15_B01	Hypothetical protein M04C7.1
M15_G11	Signal recognition particle 54 kDa protein	M15_B02	polymerase subunit PB2
M15_G12	hypothetical protein MG06869.4	M15_B03	hypothetical protein UM04650.1
M15_H02		M15_B04	hypothetical protein UM04739.1
M15_H03	acetylornithine aminotransferase	M15_B07	hypothetical protein CNBH1080
M15_H01	acetyl-CoA acetyl transferase	M15_B05	D-lactate dehydrogenase
M15_H04	endopeptidase	M15_B08	internexin neuronal intermediate filament protein
M15_H05	UDP-N-acetylglucosamined olichyl-phosphateN-acetylg lucosaminephosphotransfera se	M15_H12	peroxisome proliferator-activated receptor gamma
M15_H07	hypothetical protein UM02347.1	M15_A01	probable cytochrome P450 monooxygenase - maize
M15_H08	unnamed protein product	M15_A02	NADH dehydrogenase subunit 1
м15_н09	hypothetical protein UM03449.1	M15_A10	translation elongation factor EF1-alpha
M15_H10		M15_B06	hypothetical protein CNBA1650
M15_H11	GA13831-PA	M15_C02	variable lymphocyte receptor diversity region
M16_B07	expressed protein	M15_C10	expressed protein
M16_B08	putative aspartic protease	M15_D06	PREDICTED: similar to heterogeneous nuclear ribonucleoprotein
M16_B09	glyceraldehyde-3-phosphate dehydrogenase	M15_E02	hypothetical protein UM02928.1
M16_B10	hypothetical protein	M15_E10	

	CNBC5320		
M16_B11	hypothetical protein NCU00649.1	M15_F06	hypothetical protein UM02609.1
M16_B12	AEL066Cp	M15_G02	hypothetical protein CNBI1140
M16_C01	ATPas	M15_H06	retrotransposon protein
M16_C03	ENSANGP0000012135	M15_G10	hypothetical protein UM00961.1
M16_C04	glycerol-3-phosphate dehydrogenase	M16_A03	RAB GDP-dissociation inhibitor
M16_C08	hypothetical protein CNBN0640	M16_A04	conserved hypothetical protein
M16_C05	unnamed protein product	M16_A05	
M16_C06	COG0028: Thiamine pyrophosphate-requiring enzymes	M16_A06	hypothetical protein UM03993.1
M16_C07	expressed protein	M16_A07	B-(1-6) glucan synthase
M16_C09	Hsp70 family protein	M16_A08	unnamed protein product
M16_C11	hypothetical protein CNBE3610	M16_A09	hypothetical protein UM00643.1
M16_C12	hypothetical protein CNG00640	M16_A11	hypothetical protein
M16_D01	ORF1	M16_A12	hypothetical protein UM06301.1
M16_D02	putative secreted protein	M16_B01	glyceraldehyde-3-phosph ate dehydrogenase
M16_D03	hypothetical protein UM00197.1	M16_B02	fatty acyl coA reductase
M16_D04	hypothetical protein UM06274.1	M16_B03	hypothetical protein UM02461.1
M16_D05	beta-tubulin	M16_B04	hypothetical protein CNBA8100
M16_D07	hypothetical protein UM05365.1	M16_B05	putitive lysogenic protein
M16_D08	related to purine-cytosine permease	M16_H02	hypothetical protein UM01258.1
M16_D09	oxalate decarboxylase	M16_H03	phage protein-related
M16_D10	actin binding protein	M16_H04	conserved hypothetical protein
M16_D11	MFBC	M16_H05	conserved hypothetical protein
M16_D12	hypothetical protein UM04849.1	M16_H06	hypothetical protein CNB01100
M16_E01	unnamed protein product	M16_H07	hypothetical protein PY01929
M16_E03	anti-proliferation factor	M16_H08	hypothetical protein UM03061.1
M16_E04	NADH dehydrogenase subunit F	M16_H09	hypothetical protein
M16_E05	hypothetical protein CNBA6940	M16_H10	expressed protein
M16_E06	exo-1,3-beta-glucanase	M16_H11	Hypothetical protein CBG15274
M16_E07	hypothetical protein UM04060.1	M16_H12	hypothetical protein UM00262.1
---------	---	---------	---
M16_E09	Hypothetical protein LOC500318	M17_A03	serine/threonine kinase receptor associated protein
M16_E11	hypothetical protein MED193_06494	M17_A04	glyoxal oxidase precursor
M16_E08	unnamed protein product	M17_A05	trehalose phosphorylase
M16_E12		M17_A06	poly(ADP)-ribose polymerase
M16_F01	PREDICTED: similar to Collagen alpha 2(V) chain precursor	M17_A07	hypothetical protein
M16_F02	conserved hypothetical protein	M17_A08	ORF216
M16_F03	hypothetical protein UM02758.1	M17_A09	hypothetical protein UM02546.1
M16_F04	pheromone receptor	M17_A12	F-box protein family-like
M16_F08	Beta-hexosaminidase precursor	M17_B01	hypothetical protein UM03728.1
M16_F05		M17_A11	DNA-directed RNA polymerase II largest subunit
M16_F07	hypothetical protein UM01662.1	M17_B02	hypothetical protein DDB0167175
M16_F09		M17_B03	unnamed protein product
M16_F10	putative aspartyl-proteinase	M17_B04	hypothetical protein UM00961.1
M16_F11	hypothetical protein UM06149.1	M17_B05	7-transmembrane pheromone receptor Bar3
M16_F12	ComEC/Rec2-related protein	M17_B07	hypothetical protein AN7334.2
M16_G01	hypothetical protein	M17_B08	hypothetical protein CNBA7100
M16_A01	hypothetical protein UM02001.1	M17_B09	hypothetical protein
M16_A10	hypothetical protein DDB0215686	M17_B10	SPBC21B10.05c
M16_B06	chordin-related protein 2 variant IX	M17_B11	40 kDa cyclophilin
M16_C02	Cytochrome P450	M17_B12	CG5146-PA
M16_C10	DIHYDROPYRIMIDINE DEHYDROGENASE (NADP+)	M17_C01	ligase
M16_D06	grrl protein	M17_C03	hypothetical protein UM01769.1
M16_E02	argininosuccinate lyase	M17_C04	unnamed protein product
M16_E10		M17_C05	PREDICTED: similar to zinc finger protein 281
M16_F06	conserved hypothetical protein	M17_C06	hypothetical protein UM00900.1
M16_G02	PREDICTED: similar to Collagen alpha 2(V) chain precursor	M17_C07	hypothetical protein

M16_G03		M17_C08	unnamed protein product
M16_G04	s110442	M17_C09	hypothetical protein AN9524.2
M16_G05	conserved hypothetical protein	M17_C12	Heat shock protein HSS1
M16_G06	GA20808-PA	M17_D01	Mfs1.1
M16_G07	hypothetical protein CNBG0540	M17_D02	hypothetical protein UM01941.1
M16_G08	hypothetical protein UM05205.1	M17_D03	hypothetical protein UM04787.1
M16_G09	hypothetical protein UM04522.1	M17_C11	SPAC1002.08c
M16_G10	hypothetical protein	M17_D04	hypothetical protein CNBC6060
M16_G11	AAL075Wp	M17_D05	conserved hypothetical protein
M16_G12	hypothetical protein UM05584.1	M17_D07	hypothetical protein CNBE0270
M16_H01	hypothetical protein UM01258.1	M17_D08	PROBABLE GLYCINE RICH PROTEIN
M17_G03	hypothetical protein UM00898.1	M17_D09	hypothetical protein UM01371.1
M17_G04	hypothetical protein CNBC3770	M17_D10	1200016B10Rik protein
M17_G05	cleavage and polyadenylation specific protein	M17_D11	unnamed protein product
M17_G07	Golgi to vacuole transport-related protein	M17_D12	hypothetical protein
M17_G06	glyceraldehyde-3-phosphate dehydrogenase	M17_E01	B-(1-6) glucan synthase
M17_G08	LOC398631 protein	M17_E03	expressed protein
M17_G09	hypothetical protein CNBK3120	M17_E04	putative O-antigen polymerase
M17_G11	hypothetical protein UM01355.1	M17_E05	PREDICTED: similar to protein phosphatase 1
M17_G12	unnamed protein product	M17_E06	hypothetical protein UM01175.1
M17_H01		M17_E07	chitinase
M17_H02	hypothetical protein UM00018.1	M17_E08	hypothetical protein CaO19.4075
M17_H03	hypothetical protein MG06869.4	M17_E09	glycylpeptide N-tetradecanoyltransfer ase
M17_H04	DNA replication origin binding protein	M17_E11	hypothetical protein UM01098.1
M17_H05	Cytochrome P450 oxidoreductase	M17_E12	unknown protein
M17_H08		M17_F01	methionine aminopeptidase
M17_H09		M17_F02	putative protein
M17_H10		M17_F03	hypothetical protein UM01606.1
M17_H11		M17_F04	hypothetical protein

			CNBA2340
M17_H12		M17_F07	hypothetical protein LOC550008
M17_A02	endopeptidase	M17_F08	hypothetical protein MG04882.4
M17_C02	hypothetical protein UM00309.1	M17_F09	unknown protein
M17_B06	unnamed protein product	M17_F11	g2431
M17_C10	putative PPR protein	M17_F12	PREDICTED: similar to G protein-coupled receptor 158 isoform
M17_A10	unknown protein	M17_G01	hypothetical protein CNK01610
M17_D06	heat shock protein	M17_G02	hypothetical protein UM02609.1
M17_E02	subtilisin-like serine protease	M17_G10	ribosomal large subunit assembly and maintenance-related protein
M17_F06	hypothetical protein UM01098.1		

	송이버섯 원기 cDNA 클론 4차(1150) blastx 결과분석			
Seq No	homology search	Seq No	homology search	
MDW-1a_A01_M DW-1a_001	PREDICTED: similar to Mitogen-activated protein kinase	MDW-6a_F07_M DW-6a_060	Heat shock protein HSS1	
MDW-1a_A02_M DW-1a_005	putative WD repeat protein	MDW-6a_F08_M DW-6a_064	hypothetical protein UM03198.1	
MDW-1a_A03_M DW-1a_018	hypothetical protein	MDW-6a_F09_M DW-6a_076	heat shock protein	
MDW-1a_A04_M DW-1a_022	HSS1	MDW-6a_F10_M DW-6a_080	pyranose 2-oxidase [Tricholoma matsutake]	
MDW-1a_A05_M DW-1a_034	heterokaryon incompatibility protein HET-C	MDW-6a_F11_M DW-6a_092	hypothetical protein UM01749.1	
MDW-1a_A06_M DW-1a_038		MDW-6a_F12_M DW-6a_096	Heat shock protein HSS1	
MDW-1a_A07_M DW-1a_050	HSS1	MDW-6a_G01_M DW-6a_004	sphingomyelin phosphodiesterase	
MDW-1a_A08_M DW-1a_054		MDW-6a_G02_M DW-6a_017	hypothetical protein UM03191.1	
MDW-1a_A09_M DW-1a_066		MDW-6a_G03_M DW-6a_021	conserved hypothetical protein	
MDW-1a_A10_M DW-1a_070	HSS1	MDW-6a_G04_M DW-6a_033	hypothetical protein UM02347.1	
MDW-1a_A11_M DW-1a_082		MDW-6a_G05_M DW-6a_037	SPAC56E4.06c	
MDW-1a_A12_M DW-1a_086	hypothetical protein UM05818.1	MDW-6a_G06_M DW-6a_049	bud site selection-related protein	
MDW-1a_B01_M DW-1a_009	unnamed protein product	MDW-6a_G07_M DW-6a_053	hypothetical protein	

MDW-1a_B02_M	HSS1	MDW-6a_G08_M	hypothetical protein
DW-1a_013		DW-6a_065	CNBB4410
MDW-1a_B03_M DW-1a_026		MDW-6a_G09_M DW-6a_069	hypothetical protein
MDW-1a_B04_M	transcription factor	MDW-6a_G10_M	hypothetical protein
DW-1a_030	AbaA	DW-6a_081	UM02098.1
MDW-1a_B05_M	alphal tubulin	MDW-6a_G11_M	hypothetical protein
DW-1a_042		DW-6a_085	UM02347.1
MDW-1a_B06_M	ATP-binding cassette	MDW-6a_G12_M	
DW-1a_046	(ABC) transporter	DW-6a_097	
MDW-1a_B07_M	conserved hypothetical protein	MDW-6a_H01_M	Heat shock protein
DW-1a_058		DW-6a_012	HSS1
MDW-1a_B08_M		MDW-6a_H02_M	hypothetical protein
DW-1a_062		DW-6a_025	AN5499.2
MDW-1a_B09_M	hypothetical protein	MDW-6a_H03_M	expressed protein
DW-1a_074	UM02347.1	DW-6a_029	
MDW-1a_B10_M		MDW-6a_H04_M	Heat shock protein
DW-1a_078		DW-6a_041	HSS1
MDW-1a_B11_M DW-1a_090	HSS1	MDW-6a_H05_M DW-6a_045	chaperone
MDW-1a_B12_M	HSS1	MDW-6a_H06_M	hypothetical protein
DW-1a_094		DW-6a_057	UM05579.1
MDW-1a_C01_M	HSS1	MDW-6a_H07_M	Heat shock protein
DW-1a_002		DW-6a_061	HSS1
MDW-1a_C02_M	unnamed protein	MDW-6a_H08_M	argininosuccinate
DW-1a_006	product	DW-6a_073	synthetase
MDW-la_C03_M DW-la_019		MDW-6a_H09_M DW-6a_077	meiotic recombination-related protein
MDW-1a_C04_M DW-1a_023	HSS1	MDW-6a_H10_M DW-6a_089	
MDW-1a_C05_M	hypothetical protein	MDW-6a_H11_M	hypothetical protein
DW-1a_035	CNBF3470	DW-6a_093	UM01296.1
MDW-1a_C06_M		MDW-6a_H12_M	hypothetical protein
DW-1a_039		DW-6a_101	UM00714.1
MDW-1a_C07_M DW-1a_051	Glutamine synthetase	MDW-7a_A01_M DW-7a_001	
MDW-1a_C08_M		MDW-7a_A02_M	hypothetical protein
DW-1a_055		DW-7a_005	UM01258.1
MDW-1a_C09_M	HSS1	MDW-7a_A03_M	polyadenylate-binding
DW-1a_067		DW-7a_018	protein, putative
MDW-1a_C10_M		MDW-7a_A04_M	phenylalanine ammonium
DW-1a_071		DW-7a_022	lyase
MDW-1a_C11_M	Chitin synthetase II	MDW-7a_A05_M	hypothetical protein
DW-1a_083		DW-7a_034	UM04464.1
MDW-1a_C12_M		MDW-7a_A06_M	Heat shock protein
DW-1a_087		DW-7a_038	HSS1
MDW-1a_D01_M DW-1a_010	meiotic recombination-related protein	MDW-7a_A07_M DW-7a_050	meiotic recombination-related protein
MDW-1a_D02_M DW-1a_014	HSS1	MDW-7a_A08_M DW-7a_054	endopeptidase
MDW-1a_D03_M DW-1a_027	transcriptional regulatory protein	MDW-7a_A09_M DW-7a_066	Cap5p
MDW-1a_D04_M DW-1a_031	SPAC57A7.12	MDW-7a_A10_M DW-7a_070	

MDW-1a_D05_M	hypothetical protein	MDW-7a_A11_M	hypothetical protein
DW-1a_043	UM04971.1	DW-7a_082	CNBL1000
MDW-1a_D06_M DW-1a_047		MDW-7a_A12_M DW-7a_086	hypothetical protein
MDW-1a_D07_M DW-1a_059	mRNA catabolism	MDW-7a_B01_M DW-7a_009	HSS1
MDW-1a_D08_M		MDW-7a_B02_M	hypothetical protein
DW-1a_063		DW-7a_013	AN8771.2
MDW-1a_D09_M DW-1a_075		MDW-7a_B03_M DW-7a_026	
MDW-1a_D10_M	hypothetical protein	MDW-7a_B04_M	ornithine
DW-1a_079	UM05120.1	DW-7a_030	aminotransferase
MDW-la_D11_M DW-1a_091	HSS1	MDW-7a_B05_M DW-7a_042	hexokinase
MDW-1a_D12_M		MDW-7a_B06_M	FAD/FMN-containing
DW-1a_095		DW-7a_046	dehydrogenases
MDW-1a_E01_M		MDW-7a_B07_M	pyranose 2-oxidase
DW-1a_003		DW-7a_058	[Tricholoma matsutake]
MDW-1a_E02_M		MDW-7a_B08_M	hypothetical protein
DW-1a_008		DW-7a_062	UM00296.1
MDW-1a_E03_M	endo-1,4-beta-mannosid	MDW-7a_B09_M	general amidase-C
DW-1a_020	ase	DW-7a_074	
MDW-1a_E04_M	HSS1	MDW-7a_B10_M	hypothetical protein
DW-1a_024		DW-7a_078	UM02998.1
MDW-1a_E05_M	hypothetical protein	MDW-7a_B11_M	hexokinase
DW-1a_036	UM02587.1	DW-7a_090	
MDW-1a_E06_M	hypothetical protein	MDW-7a_B12_M	HSS1
DW-1a_040	UM06226.1	DW-7a_094	
MDW-1a_E07_M	40S ribosomal protein	MDW-7a_C01_M	hypothetical protein
DW-1a_052	S0	DW-7a_002	UM04412.1
MDW-1a_E08_M		MDW-7a_C02_M	hypothetical protein
DW-1a_056		DW-7a_006	CNBF3470
MDW-1a_E09_M	heat shock protein	MDW-7a_C03_M	hypothetical protein
DW-1a_068		DW-7a_019	AN1812.2
MDW-1a_E10_M	HSS1	MDW-7a_C04_M	WD-repeat protein,
DW-1a_072		DW-7a_023	putative
MDW-1a_E11_M	hypothetical protein	MDW-7a_C05_M	hypothetical protein
DW-1a_084	Afulg17610	DW-7a_035	UM02347.1
MDW-1a_E12_M	hypothetical protein	MDW-7a_C06_M	glucose oxidase
DW-1a_088	UM02098.1	DW-7a_039	
MDW-1a_F01_M DW-1a_011	HSS1	MDW-7a_C07_M DW-7a_051	peroxisomal hydratase-dehydrogenas e-epimerase (hde)
MDW-1a_F02_M		MDW-7a_C08_M	hypothetical protein
DW-1a_016		DW-7a_055	FG11602.1
MDW-1a_F03_M	hypothetical protein	MDW-7a_C09_M	hypothetical protein
DW-1a_028	UM02347.1	DW-7a_067	UM02347.1
MDW-1a_F04_M DW-1a_032	RAN protein binding protein	MDW-7a_C10_M DW-7a_071	COG2303: Choline dehydrogenase and related flavoproteins
MDW-1a_F05_M	hypothetical protein	MDW-7a_C11_M	metalloproteinase 9
DW-1a_044	UM02347.1	DW-7a_083	
MDW-1a_F06_M		MDW-7a_C12_M	hypothetical protein
DW-1a_048		DW-7a_087	AN7549.2
MDW-1a_F07_M		MDW-7a_D01_M	

DW-1a_060		DW-7a_010	
MDW-1a_F08_M DW-1a_064		MDW-7a_D02_M DW-7a_014	HSS1
MDW-1a_F09_M DW-1a_076		MDW-7a_D03_M DW-7a_027	Glc-6-P isomerase
MDW-1a_F10_M DW-1a_080	HSS1	MDW-7a_D04_M DW-7a_031	HSS1
MDW-1a_F11_M		MDW-7a_D05_M	hypothetical protein
DW-1a_092		DW-7a_043	UM01304.1
MDW-1a_F12_M DW-1a_096		MDW-7a_D06_M DW-7a_047	HSS1
MDW-1a_G01_M	hypothetical protein	MDW-7a_D07_M	endo-1,3(4)-beta-gluca
DW-1a_004	UM04511.1	DW-7a_059	nase
MDW-1a_G02_M DW-1a_017	HSS1	MDW-7a_D08_M DW-7a_063	HSS1
MDW-1a_G03_M	unnamed protein	MDW-7a_D09_M	ENSANGP0000003674
DW-1a_021	product	DW-7a_075	
MDW-1a_G04_M	hypothetical protein	MDW-7a_D10_M	hypothetical protein
DW-1a_033	CNBC3750	DW-7a_079	UM03191.1
MDW-1a_G05_M	hypothetical protein	MDW-7a_D11_M	formin
DW-1a_037	UM01849.1	DW-7a_091	
MDW-1a_G06_M	hypothetical protein	MDW-7a_D12_M	HSS1
DW-1a_049	CNBK0320	DW-7a_095	
MDW-1a_G07_M	protein kinase	MDW-7a_E01_M	hypothetical protein
DW-1a_053		DW-7a_003	UM03198.1
MDW-1a_G08_M DW-1a_065		MDW-7a_E02_M DW-7a_008	COG2183: Transcriptional accessory protein
MDW-1a_G09_M	vacuolar ATP synthase	MDW-7a_E03_M	translation elongation
DW-1a_069		DW-7a_020	factor 2
MDW-1a_G10_M	unnamed protein	MDW-7a_E04_M	hypothetical protein
DW-1a_081	product	DW-7a_024	CNBC5320
MDW-1a_G11_M	vacuole protein,	MDW-7a_E05_M	PREDICTED: similar to
DW-1a_085	putative	DW-7a_036	CG31439-PA
MDW-1a_G12_M	LPD1	MDW-7a_E06_M	putative L-aminoacid
DW-1a_097		DW-7a_040	oxidase
MDW-1a_H01_M	hydroxymethylglutaryl-	MDW-7a_E07_M	hypothetical protein
DW-1a_012	CoA synthase	DW-7a_052	FG09931.1
MDW-1a_H02_M DW-1a_025	conserved hypothetical protein	MDW-7a_E08_M DW-7a_056	meiotic recombination-related protein
MDW-1a_H03_M	carboxylic acid	MDW-7a_E09_M	HSS1
DW-1a_029	transport protein	DW-7a_068	
MDW-1a_H04_M	HSS1	MDW-7a_E10_M	4-aminobutyrate
DW-1a_041		DW-7a_072	transaminase
MDW-1a_H05_M	mRNA catabolism	MDW-7a_E11_M	hypothetical protein
DW-1a_045		DW-7a_084	UM02835.1
MDW-1a_H06_M	LPD1	MDW-7a_E12_M	hypothetical protein
DW-1a_057		DW-7a_088	FG08843.1
MDW-1a_H07_M	HSS1	MDW-7a_F01_M	hypothetical protein
DW-1a_061		DW-7a_011	CNBE1430
MDW-1a_H08_M DW-1a_073		MDW-7a_F02_M DW-7a_016	
MDW-1a_H09_M	Mannosyl-oligosacchari	MDW-7a_F03_M	amino-acid
DW-1a_077	de	DW-7a_028	N-acetyltransferase

- 254 -

	alpha-1,2-mannosidase precursor		
MDW-1a_H10_M DW-1a_089	heat shock protein sks2	MDW-7a_F04_M DW-7a_032	alphal tubulin
MDW-1a_H11_M		MDW-7a_F05_M	ATP dependent RNA
DW-1a_093		DW-7a_044	helicase
MDW-1a_H12_M	HSS1	MDW-7a_F06_M	hypothetical protein
DW-1a_101		DW-7a_048	AN1812.2
MDW-2a_A01_M DW-2a_001		MDW-7a_F07_M DW-7a_060	
MDW-2a_A02_M		MDW-7a_F08_M	hypothetical protein
DW-2a_005		DW-7a_064	UM02347.1
MDW-2a_A03_M DW-2a_018	HSS1	MDW-7a_F09_M DW-7a_076	DyP
MDW-2a_A04_M DW-2a_022	NADP-specific glutamate dehydrogenase (NADP-GDH)	MDW-7a_F10_M DW-7a_080	protein kinase
MDW-2a_A05_M	serine/threonine-prote	MDW-7a_F11_M	Heat shock protein
DW-2a_034	in kinas	DW-7a_092	HSS1
MDW-2a_A06_M	hypothetical protein	MDW-7a_F12_M	Heat shock protein
DW-2a_038	CNBM0670	DW-7a_096	HSS1
MDW-2a_A07_M	HSS1	MDW-7a_G01_M	hypothetical protein
DW-2a_050		DW-7a_004	SPAC694.07c
MDW-2a_A08_M DW-2a_054	HSS1	MDW-7a_G02_M DW-7a_017	conserved hypothetical protein
MDW-2a_A09_M DW-2a_066		MDW-7a_G03_M DW-7a_021	conserved hypothetical protein
MDW-2a_A10_M DW-2a_070	dipeptidyl-peptidase and tripeptidyl-peptidase JEC21]	MDW-7a_G04_M DW-7a_033	Heat shock protein HSS1
MDW-2a_A11_M	heat shock protein	MDW-7a_G05_M	hypothetical protein
DW-2a_082		DW-7a_037	UM00883.1
MDW-2a_A12_M	ubiquitin activating	MDW-7a_G06_M	Heat shock protein
DW-2a_086	enzyme	DW-7a_049	HSS1
MDW-2a_B01_M		MDW-7a_G07_M	probable carnitine
DW-2a_009		DW-7a_053	transport protein
MDW-2a_B02_M DW-2a_013		MDW-7a_G08_M DW-7a_065	meiotic recombination-related protein
MDW-2a_B03_M		MDW-7a_G09_M	hypothetical protein
DW-2a_026		DW-7a_069	UM05831.1
MDW-2a_B04_M DW-2a_030		MDW-7a_G10_M DW-7a_081	meiotic recombination-related protein
MDW-2a_B05_M		MDW-7a_G11_M	response to
DW-2a_042		DW-7a_085	drug-related protein
MDW-2a_B06_M	hypothetical protein	MDW-7a_G12_M	
DW-2a_046	AN3777.2	DW-7a_097	
MDW-2a_B07_M	phenylalanine ammonium	MDW-7a_H01_M	chaperone
DW-2a_058	lyase	DW-7a_012	
MDW-2a_B08_M DW-2a_062	meiotic recombination-related protein	MDW-7a_H02_M DW-7a_025	protein kinase
MDW-2a_B09_M DW-2a_074	sulfite reductase	MDW-7a_H03_M DW-7a_029	conserved hypothetical protein

MDW-2a_G06_M DW-2a_049		MDW-2a_B10_M DW-2a_078	
MDW-2a_G07_M DW-2a_053	chaperone	MDW-2a_B11_M DW-2a_090	
MDW-2a_G08_M DW-2a_065		MDW-2a_B12_M DW-2a_094	HSS1
MDW-2a_G09_M DW-2a_069		MDW-2a_C01_M DW-2a_002	
MDW-2a_G10_M DW-2a_081	chaperone	MDW-2a_C02_M DW-2a_006	
MDW-2a_G11_M DW-2a_085		MDW-2a_C03_M DW-2a_019	
MDW-2a_G12_M DW-2a_097	HSS1 [Puccinia graminis f. sp. tritici]	MDW-2a_C04_M DW-2a_023	heat shock transcription factor 2
MDW-2a_H01_M DW-2a_012		MDW-2a_C05_M DW-2a_035	
MDW-2a_H02_M DW-2a_025		MDW-2a_C06_M DW-2a_039	
MDW-2a_H03_M DW-2a_029	serine carboxypeptidase (CpdS)	MDW-2a_C07_M DW-2a_051	HSS1
MDW-2a_H04_M DW-2a_041	hypothetical protein	MDW-2a_C08_M DW-2a_055	
MDW-2a_H05_M DW-2a_045		MDW-2a_C09_M DW-2a_067	
MDW-2a_H06_M DW-2a_057	unnamed protein product	MDW-2a_C10_M DW-2a_071	cytoplasm protein
MDW-22 H07 M	hypothetical protein	MDW 22 011 M	meiotic
DW-2a_061	UM02347.1	DW-2a_083	recombination-related protein
MDW-2a_107_M DW-2a_061 MDW-2a_H08_M DW-2a_073	UM02347.1	MDW-2a_C11_M DW-2a_083 MDW-2a_C12_M DW-2a_087	recombination-related protein hypothetical protein UM06226.1
MDW-2a_107_M DW-2a_061 MDW-2a_H08_M DW-2a_073 MDW-2a_H09_M DW-2a_077	meiotic recombination-related protein	MDW-2a_C11_M DW-2a_083 MDW-2a_C12_M DW-2a_087 MDW-2a_001_M DW-2a_010	recombination-related protein hypothetical protein UM06226.1 hypothetical protein UM05293.1
MDW-2a_N07_M DW-2a_061 MDW-2a_H08_M DW-2a_073 MDW-2a_H09_M DW-2a_077 MDW-2a_H10_M DW-2a_089	meiotic recombination-related protein	MDW-2a_083 MDW-2a_083 MDW-2a_087 MDW-2a_001_M DW-2a_010 MDW-2a_012_M DW-2a_014	recombination-related protein hypothetical protein UM06226.1 hypothetical protein UM05293.1 hypothetical protein UM02347.1
MDW-2a_1107_M DW-2a_061 MDW-2a_H08_M DW-2a_073 MDW-2a_H09_M DW-2a_077 MDW-2a_H10_M DW-2a_089 MDW-2a_H11_M DW-2a_093	meiotic recombination-related protein serine/threonine-prote in kinase	MDW-2a_C11_M DW-2a_083 MDW-2a_087 MDW-2a_087 MDW-2a_010 MDW-2a_010 MDW-2a_014 MDW-2a_014 MDW-2a_027	recombination-related protein hypothetical protein UM06226.1 hypothetical protein UM05293.1 hypothetical protein UM02347.1 laccase 1
MDW-2a_107_M DW-2a_061 MDW-2a_H08_M DW-2a_073 MDW-2a_H09_M DW-2a_077 MDW-2a_077 MDW-2a_089 MDW-2a_089 MDW-2a_093 MDW-2a_H12_M DW-2a_101	meiotic recombination-related protein serine/threonine-prote in kinase Beta-hexosaminidase precursor	MDW-2a_C11_M DW-2a_083 MDW-2a_087 MDW-2a_001_M DW-2a_010 MDW-2a_014 MDW-2a_014 MDW-2a_027 MDW-2a_027 MDW-2a_021	recombination-related protein hypothetical protein UM06226.1 hypothetical protein UM05293.1 hypothetical protein UM02347.1 laccase 1 HSS1
MDW-2a_107_M DW-2a_061 MDW-2a_H08_M DW-2a_073 MDW-2a_H09_M DW-2a_077 MDW-2a_077 MDW-2a_089 MDW-2a_089 MDW-2a_093 MDW-2a_093 MDW-2a_101 MDW-3a_001	meiotic recombination-related protein serine/threonine-prote in kinase Beta-hexosaminidase precursor hypothetical protein FG08843.1	MDW-2a_C11_M DW-2a_083 MDW-2a_087 MDW-2a_087 MDW-2a_010 MDW-2a_010 MDW-2a_014 MDW-2a_014 MDW-2a_027 MDW-2a_027 MDW-2a_0231 MDW-2a_031	recombination-related protein hypothetical protein UM06226.1 hypothetical protein UM05293.1 hypothetical protein UM02347.1 laccase 1 HSS1 related to nucleolar phosphoprotein
MDW-2a_107_M DW-2a_061 MDW-2a_H08_M DW-2a_073 MDW-2a_H09_M DW-2a_077 MDW-2a_H10_M DW-2a_089 MDW-2a_H11_M DW-2a_093 MDW-2a_H12_M DW-2a_101 MDW-3a_001 MDW-3a_005	meiotic recombination-related protein serine/threonine-prote in kinase Beta-hexosaminidase precursor hypothetical protein FG08843.1 HSS1	MDW-2a_C11_M DW-2a_083 MDW-2a_087 MDW-2a_087 MDW-2a_010 MDW-2a_014 MDW-2a_014 MDW-2a_027 MDW-2a_027 MDW-2a_031 MDW-2a_043 MDW-2a_043	recombination-related protein hypothetical protein UM06226.1 hypothetical protein UM05293.1 hypothetical protein UM02347.1 laccase 1 HSS1 related to nucleolar phosphoprotein
MDW-2a_107_M DW-2a_061 MDW-2a_H08_M DW-2a_073 MDW-2a_H09_M DW-2a_077 MDW-2a_077 MDW-2a_089 MDW-2a_089 MDW-2a_093 MDW-2a_111_M DW-2a_093 MDW-2a_101 MDW-3a_A01_M DW-3a_001 MDW-3a_005 MDW-3a_018	meiotic recombination-related protein serine/threonine-prote in kinase Beta-hexosaminidase precursor hypothetical protein FG08843.1 HSS1	MDW-2a_C11_M DW-2a_083 MDW-2a_087 MDW-2a_087 MDW-2a_010 MDW-2a_010 MDW-2a_014 MDW-2a_013 MDW-2a_027 MDW-2a_031 MDW-2a_043 MDW-2a_043 MDW-2a_047 MDW-2a_047 MDW-2a_047 MDW-2a_059	recombination-related protein hypothetical protein UM06226.1 hypothetical protein UM05293.1 hypothetical protein UM02347.1 laccase 1 HSS1 related to nucleolar phosphoprotein recombination-related protein
MDW-2a_107_M DW-2a_061 MDW-2a_H08_M DW-2a_073 MDW-2a_H09_M DW-2a_077 MDW-2a_H10_M DW-2a_089 MDW-2a_H11_M DW-2a_093 MDW-2a_H12_M DW-2a_101 MDW-3a_A01_M DW-3a_001 MDW-3a_005 MDW-3a_018 MDW-3a_022	meiotic recombination-related protein serine/threonine-prote in kinase Beta-hexosaminidase precursor hypothetical protein FG08843.1 HSS1	MDW-2a_C11_M DW-2a_083 MDW-2a_087 MDW-2a_087 MDW-2a_010 MDW-2a_010 MDW-2a_014 MDW-2a_014 MDW-2a_027 MDW-2a_027 MDW-2a_031 MDW-2a_043 MDW-2a_043 MDW-2a_047 MDW-2a_047 MDW-2a_059 MDW-2a_059	recombination-related protein hypothetical protein UM06226.1 hypothetical protein UM05293.1 hypothetical protein UM02347.1 laccase 1 HSS1 related to nucleolar phosphoprotein recombination-related protein
MDW 2a_107_M DW-2a_061 MDW-2a_H08_M DW-2a_073 MDW-2a_H09_M DW-2a_077 MDW-2a_H10_M DW-2a_089 MDW-2a_H11_M DW-2a_093 MDW-2a_H12_M DW-2a_101 MDW-3a_A01_M DW-3a_001 MDW-3a_005 MDW-3a_005 MDW-3a_018 MDW-3a_022 MDW-3a_024 MDW-3a_034	meiotic recombination-related protein serine/threonine-prote in kinase Beta-hexosaminidase precursor hypothetical protein FG08843.1 HSS1	MDW-2a_C11_M DW-2a_083 MDW-2a_087 MDW-2a_087 MDW-2a_010 MDW-2a_010 MDW-2a_014 MDW-2a_002_M DW-2a_027 MDW-2a_027 MDW-2a_031 MDW-2a_043 MDW-2a_043 MDW-2a_047 MDW-2a_047 MDW-2a_059 MDW-2a_059 MDW-2a_063 MDW-2a_075	recombination-related protein hypothetical protein UM06226.1 hypothetical protein UM05293.1 hypothetical protein laccase 1 laccase 1 HSS1 related to nucleolar phosphoprotein recombination-related protein SPAC23A1.04c
MDW-2a_107_M DW-2a_061 MDW-2a_H08_M DW-2a_073 MDW-2a_H09_M DW-2a_077 MDW-2a_H10_M DW-2a_089 MDW-2a_H11_M DW-2a_093 MDW-2a_H12_M DW-2a_101 MDW-3a_A01_M DW-3a_001 MDW-3a_005 MDW-3a_005 MDW-3a_005 MDW-3a_018 MDW-3a_018 MDW-3a_022 MDW-3a_034 MDW-3a_034	meiotic recombination-related protein serine/threonine-prote in kinase Beta-hexosaminidase precursor hypothetical protein FG08843.1 HSS1	MDW-2a_C11_M DW-2a_083 MDW-2a_087 MDW-2a_087 MDW-2a_010 MDW-2a_010 MDW-2a_002_M DW-2a_003 MDW-2a_003 MDW-2a_003 MDW-2a_043 MDW-2a_043 MDW-2a_047 MDW-2a_047 MDW-2a_047 MDW-2a_059 MDW-2a_063 MDW-2a_063 MDW-2a_075 MDW-2a_079	recombination-related protein hypothetical protein UM06226.1 hypothetical protein UM05293.1 hypothetical protein UM02347.1 laccase 1 HSS1 related to nucleolar phosphoprotein meiotic recombination-related protein SPAC23A1.04c

DW-3a_050		DW-2a_091	
MDW-3a_A08_M DW-3a_054		MDW-2a_D12_M DW-2a_095	HSS1
MDW-3a_A09_M DW-3a_066	Ste20-like kinase Don3	MDW-2a_E01_M DW-2a_003	NAD-specific glutamate dehydrogenase
MDW-3a_A10_M DW-3a_070		MDW-2a_E02_M DW-2a_008	HSS1
MDW-3a_A11_M DW-3a_082	translation elongation factor la	MDW-2a_E03_M DW-2a_020	
MDW-3a_A12_M DW-3a_086		MDW-2a_E04_M DW-2a_024	
MDW-3a_B01_M DW-3a_009	protein transporter	MDW-2a_E05_M DW-2a_036	hypothetical protein UM02347.1
MDW-3a_B02_M DW-3a_013	HSS1	MDW-2a_E06_M DW-2a_040	endopeptidase
MDW-3a_B03_M DW-3a_026		MDW-2a_E07_M DW-2a_052	inositol-3-phosphate synthase
MDW-3a_B04_M DW-3a_030	unnamed protein product	MDW-2a_E08_M DW-2a_056	hypothetical protein UM05549.1
MDW-3a_B05_M DW-3a_042	chaperone	MDW-2a_E09_M DW-2a_068	
MDW-3a_B06_M DW-3a_046		MDW-2a_E10_M DW-2a_072	Coatomer subunit delta
MDW-3a_B07_M DW-3a_058	meiotic recombination-related protein	MDW-2a_E11_M DW-2a_084	chaperone, putative
MDW-3a_B08_M DW-3a_062		MDW-2a_E12_M DW-2a_088	glucoamylase
MDW-3a_B09_M DW-3a_074	chaperone	MDW-2a_F01_M DW-2a_011	
MDW-3a_B10_M DW-3a_078	polyadenylate-binding protein	MDW-2a_F02_M DW-2a_016	
MDW-3a_B11_M DW-3a_090	phenylacetyl-CoA ligase	MDW-2a_F03_M DW-2a_028	phosphate transporter
MDW-3a_B12_M DW-3a_094	subtilisin-like serine protease	MDW-2a_F04_M DW-2a_032	phosphoadenosine-phosp hosulfate synthase (PAPS) bifunctional enzyme
MDW-3a_C01_M DW-3a_002	HSS1	MDW-2a_F05_M DW-2a_044	translation initiation factor
MDW-3a_C02_M DW-3a_006		MDW-2a_F06_M DW-2a_048	spermidine synthase (spe-3)
MDW-3a_C03_M DW-3a_019	chaperone	MDW-2a_F07_M DW-2a_060	conserved hypothetical protein
MDW-3a_C04_M DW-3a_023	LPD1	MDW-2a_F08_M DW-2a_064	AAL075Wp
MDW-3a_C05_M DW-3a_035		MDW-2a_F09_M DW-2a_076	nucleolar GTP-binding protein 1
MDW-3a_C06_M DW-3a_039		MDW-2a_F10_M DW-2a_080	hypothetical protein
MDW-3a_C07_M DW-3a_051	HSS1	MDW-2a_F11_M DW-2a_092	
MDW-3a_C08_M DW-3a_055		MDW-2a_F12_M DW-2a_096	
MDW-3a_C09_M	ENTH domain protein	MDW-2a_G01_M	glyoxal oxidase

DW-3a_067		DW-2a_004	precursor
MDW-3a_C10_M DW-3a_071	Hsp70 family protein	MDW-2a_G02_M DW-2a_017	HSS1
MDW-3a_C11_M DW-3a_083	expressed protein	MDW-2a_G03_M DW-2a_021	putative aldehyde dehydrogenase (NAD+)
MDW-3a_C12_M DW-3a_087	Chain A	MDW-2a_G04_M DW-2a_033	
MDW-3a_D01_M DW-3a_010		MDW-2a_G05_M DW-2a_037	
MDW-3a_D02_M DW-3a_014	HSS1	MDW-3a_G10_M DW-3a_081	meiotic recombination-related protein
MDW-3a_D03_M DW-3a_027	laccase	MDW-3a_G11_M DW-3a_085	
MDW-3a_D04_M DW-3a_031		MDW-3a_G12_M DW-3a_097	translation elongation factor la
MDW-3a_D05_M DW-3a_043	meiotic recombination-related protein	MDW-3a_H01_M DW-3a_012	HSS1
MDW-3a_D06_M DW-3a_047	chaperone	MDW-3a_H02_M DW-3a_025	hypothetical protein AN1725.2
MDW-3a_D07_M DW-3a_059	chitin synthase regulator 2	MDW-3a_H03_M DW-3a_029	ATUBP4
MDW-3a_D08_M DW-3a_063		MDW-3a_H04_M DW-3a_041	heat shock protein
MDW-3a_D09_M DW-3a_075	meiotic recombination-related protein	MDW-3a_H05_M DW-3a_045	carboxylic acid transport protein
MDW-3a_D10_M DW-3a_079		MDW-3a_H06_M DW-3a_057	HSS1
MDW-3a_D11_M DW-3a_091	phospholipase D	MDW-3a_H07_M DW-3a_061	cytochrome P450
MDW-3a_D12_M DW-3a_095	putative cytoplasmic methionyl tRNA synthetase	MDW-3a_H08_M DW-3a_073	
MDW-3a_E01_M DW-3a_003	HSS1	MDW-3a_H09_M DW-3a_077	HSS1
MDW-3a_E02_M DW-3a_008	transcription	MDW 20 HIO M	
	corepressor	DW-3a_089	serine/threonine-prote in kinase
MDW-3a_E03_M DW-3a_020	corepressor	MDW-3a_H10_M DW-3a_089 MDW-3a_H11_M DW-3a_093	serine/threonine-prote in kinase argininosuccinate synthetase
MDW-3a_E03_M DW-3a_020 MDW-3a_E04_M DW-3a_024	corepressor	MDW-3a_089 MDW-3a_089 MDW-3a_H11_M DW-3a_093 MDW-3a_H12_M DW-3a_101	serine/threonine-prote in kinase argininosuccinate synthetase NADP-specific glutamate dehydrogenase (NADP-GDH)
MDW-3a_E03_M DW-3a_020 MDW-3a_E04_M DW-3a_024 MDW-3a_E05_M DW-3a_036	corepressor mitogen-activated kinase	MDW-3a_089 MDW-3a_089 MDW-3a_H11_M DW-3a_093 MDW-3a_101 MDW-4a_001	serine/threonine-prote in kinase argininosuccinate synthetase NADP-specific glutamate dehydrogenase (NADP-GDH) HSS1
MDW-3a_E03_M DW-3a_020 MDW-3a_E04_M DW-3a_024 MDW-3a_E05_M DW-3a_036 MDW-3a_E06_M DW-3a_040	corepressor mitogen-activated kinase HSS1	MDW-3a_A10_M DW-3a_089 MDW-3a_H11_M DW-3a_093 MDW-3a_101 MDW-4a_101 MDW-4a_001 MDW-4a_005	serine/threonine-prote in kinase argininosuccinate synthetase NADP-specific glutamate dehydrogenase (NADP-GDH) HSS1 COP9 signalosome complex subunit 1
MDW-3a_E03_M DW-3a_020 MDW-3a_E04_M DW-3a_024 MDW-3a_E05_M DW-3a_036 MDW-3a_E06_M DW-3a_040 MDW-3a_E07_M DW-3a_052	corepressor mitogen-activated kinase HSS1	MDW-3a_A10_M DW-3a_089 MDW-3a_H11_M DW-3a_093 MDW-3a_101 MDW-4a_A01_M DW-4a_001 MDW-4a_005 MDW-4a_005 MDW-4a_018	serine/threonine-prote in kinase argininosuccinate synthetase NADP-specific glutamate dehydrogenase (NADP-GDH) HSS1 COP9 signalosome complex subunit 1
MDW-3a_E03_M DW-3a_020 MDW-3a_E04_M DW-3a_024 MDW-3a_E05_M DW-3a_036 MDW-3a_E06_M DW-3a_E06_M DW-3a_040 MDW-3a_E07_M DW-3a_052 MDW-3a_E08_M DW-3a_056	corepressor mitogen-activated kinase HSS1	MDW-3a_A10_M DW-3a_089 MDW-3a_H11_M DW-3a_093 MDW-3a_101 MDW-4a_A01_M DW-4a_001 MDW-4a_005 MDW-4a_005 MDW-4a_018 MDW-4a_022	serine/threonine-prote in kinase argininosuccinate synthetase NADP-specific glutamate dehydrogenase (NADP-GDH) HSS1 COP9 signalosome complex subunit 1
MDW-3a_E03_M DW-3a_020 MDW-3a_E04_M DW-3a_024 MDW-3a_E05_M DW-3a_036 MDW-3a_E06_M DW-3a_040 MDW-3a_E07_M DW-3a_052 MDW-3a_E08_M DW-3a_056 MDW-3a_E09_M DW-3a_068	corepressor mitogen-activated kinase HSS1 hypothetical protein UM01296.1	MDW-3a_A10_M DW-3a_089 MDW-3a_H11_M DW-3a_093 MDW-3a_101 MDW-4a_A01_M DW-4a_001 MDW-4a_005 MDW-4a_005 MDW-4a_005 MDW-4a_018 MDW-4a_022 MDW-4a_024 MDW-4a_034	serine/threonine-prote in kinase argininosuccinate synthetase NADP-specific glutamate dehydrogenase (NADP-GDH) HSS1 COP9 signalosome complex subunit 1 membrane protein

DW-3a_072		DW-4a_038	UM02347.1
MDW-3a_E11_M DW-3a_084	unnamed protein product	MDW-4a_A07_M DW-4a_050	
MDW-3a_E12_M DW-3a_088		MDW-4a_A08_M DW-4a_054	heat shock protein
MDW-3a_F01_M DW-3a_011	HSS1	MDW-4a_A09_M DW-4a_066	hypothetical protein
MDW-3a_F02_M DW-3a_016		MDW-4a_A10_M DW-4a_070	
MDW-3a_F03_M DW-3a_028		MDW-4a_A11_M DW-4a_082	
MDW-3a_F04_M DW-3a_032		MDW-4a_A12_M DW-4a_086	malate synthase protein
MDW-3a_F05_M DW-3a_044	SNF1	MDW-4a_B01_M DW-4a_009	
MDW-3a_F06_M DW-3a_048	phosphate transporter	MDW-4a_B02_M DW-4a_013	
MDW-3a_F07_M DW-3a_060	HSS1	MDW-4a_B03_M DW-4a_026	
MDW-3a_F08_M DW-3a_064	HSS1	MDW-4a_B04_M DW-4a_030	clathrin binding protein
MDW-3a_F09_M DW-3a_076		MDW-4a_B05_M DW-4a_042	
MDW-3a_F10_M DW-3a_080	chitin synthase regulator 2	MDW-4a_B06_M DW-4a_046	HSS1
MDW-3a_F11_M DW-3a_092	chaperone	MDW-4a_B07_M DW-4a_058	hypothetical protein AN8771.2
MDW-3a_F12_M DW-3a_096	HSS1	MDW-4a_B08_M DW-4a_062	HSS1
MDW-3a_G01_M DW-3a_004	1-pyrroline-5-carboxyl ate dehydrogenase	MDW-4a_B09_M DW-4a_074	HSS1
MDW-3a_G02_M DW-3a_017		MDW-4a_B10_M DW-4a_078	
MDW-3a_G03_M DW-3a_021	NAD-specific glutamate dehydrogenase	MDW-4a_B11_M DW-4a_090	chaperone
MDW-3a_G04_M DW-3a_033	fumarate reductase (NADH)	MDW-4a_B12_M DW-4a_094	AmMst-1
MDW-3a_G05_M DW-3a_037	hypothetical protein UM02347.1	MDW-4a_C01_M DW-4a_002	hypothetical protein
MDW-3a_G06_M DW-3a_049		MDW-4a_C02_M DW-4a_006	UDP-glucose dehydrogenase
MDW-3a_G07_M DW-3a_053		MDW-4a_C03_M DW-4a_019	hypothetical protein AN1912.2
MDW-3a_G08_M DW-3a_065	Sphingosine-1-phosphat e lyase	MDW-4a_C04_M DW-4a_023	HSS1
MDW-3a_G09_M DW-3a_069	heat shock protein 70	MDW-4a_C05_M DW-4a_035	HSS1
MDW-4a_D04_M DW-4a_031		MDW-4a_C06_M DW-4a_039	hypothetical protein UM02476.1
MDW-4a_D05_M DW-4a_043	FAD linked oxidase	MDW-4a_C07_M DW-4a_051	leucine aminopeptidase
MDW-4a_D06_M DW-4a_047		MDW-4a_C08_M DW-4a_055	
MDW-4a_D07_M DW-4a_059	chitin deacetylase	MDW-4a_C09_M DW-4a_067	hypothetical protein UM01859.1

MDW-4a_D08_M	hypothetical protein	MDW-4a_C10_M	Heat shock protein
DW-4a_063	CNBB4410	DW-4a_071	HSS1
MDW-4a_D09_M		MDW-4a_C11_M	unnamed protein
DW-4a_075		DW-4a_083	product
MDW-4a_D10_M DW-4a_079	Heat shock protein HSS1	MDW-4a_C12_M DW-4a_087	
MDW-4a_D11_M DW-4a_091		MDW-4a_D01_M DW-4a_010	
MDW-4a_D12_M DW-4a_095		MDW-4a_D02_M DW-4a_014	
MDW-4a_E01_M	hypothetical protein	MDW-4a_D03_M	
DW-4a_003	UM02347.1	DW-4a_027	
MDW-4a_E02_M DW-4a_008		MDW-4a_G01_M DW-4a_004	
MDW-4a_E03_M DW-4a_020		MDW-4a_G02_M DW-4a_017	adenylosuccinate lyase
MDW-4a_E04_M		MDW-4a_G03_M	Heat shock protein
DW-4a_024		DW-4a_021	HSS1
MDW-4a_E05_M DW-4a_036		MDW-4a_G04_M DW-4a_033	
MDW-4a_E06_M DW-4a_040	Heat shock protein HSS1	MDW-4a_G05_M DW-4a_037	
MDW-4a_E07_M DW-4a_052	mRNA processing-related protein	MDW-4a_G06_M DW-4a_049	
MDW-4a_E08_M		MDW-4a_G07_M	Heat shock protein
DW-4a_056		DW-4a_053	HSS1
MDW-4a_E09_M DW-4a_068	conserved hypothetical protein	MDW-4a_G08_M DW-4a_065	
MDW-4a_E10_M DW-4a_072		MDW-4a_G09_M DW-4a_069	
MDW-4a_E11_M	putative aldehyde	MDW-4a_G10_M	4-aminobutyrate
DW-4a_084	dehydrogenase (NAD+)	DW-4a_081	transaminase
MDW-4a_E12_M DW-4a_088	heat shock protein	MDW-4a_G11_M DW-4a_085	casein kinase I
MDW-4a_F01_M DW-4a_011		MDW-4a_G12_M DW-4a_097	conserved hypothetical protein
MDW-4a_F02_M DW-4a_016		MDW-4a_H01_M DW-4a_012	
MDW-4a_F03_M		MDW-4a_H02_M	unnamed protein
DW-4a_028		DW-4a_025	product
MDW-4a_F04_M	Heat shock protein HSS1	MDW-4a_H03_M	Heat shock protein
DW-4a_032		DW-4a_029	HSS1
MDW-4a_F05_M		MDW-4a_H04_M	hypothetical protein
DW-4a_044		DW-4a_041	UM06226.1
MDW-4a_F06_M	AMP-dependent	MDW-4a_H05_M	subtilisin-like serine protease
DW-4a_048	synthetase and ligase	DW-4a_045	
MDW-4a_F07_M	hypothetical protein	MDW-4a_H06_M	
DW-4a_060	UM01056.1	DW-4a_057	
MDW-4a_F08_M	hypothetical protein	MDW-4a_H07_M	acetyl-CoA acetyl
DW-4a_064	CNBA3060	DW-4a_061	transferase
MDW-4a_F09_M	hypothetical protein	MDW-4a_H08_M	Glc-6-P isomerase
DW-4a_076	UM06067.1	DW-4a_073	
MDW-4a_F10_M		MDW-4a_H09_M	hypothetical protein
DW-4a_080		DW-4a_077	UM01258.1

MDW-4a_F11_M DW-4a_092	Dehydrogenase	MDW-4a_H10_M DW-4a_089	aminolevulinic acid synthetase
MDW-4a_F12_M DW-4a_096	Heat shock protein HSS1	MDW-4a_H11_M DW-4a_093	hypothetical protein CNBB4410
MDW-5a_B12_M DW-5a_094	hypothetical protein	MDW-4a_H12_M DW-4a_101	
MDW-5a_C01_M		MDW-5a_A01_M	Ustilago maydis 521 hypothetical protein
MDW-5a_C02_M DW-5a_006	translation elongation factor 2	MDW-5a_A02_M DW-5a_005	Filobasidiella neoformans 1-pyrroline-5-carboxyl ate dehydrogenase
MDW-5a_C03_M DW-5a_019		MDW-5a_A03_M DW-5a_018	
MDW-5a_C04_M DW-5a_023		MDW-5a_A04_M DW-5a_022	Filobasidiella neoformans heat shock protein 70
MDW-5a_C05_M DW-5a_035	hypothetical protein CNBC4700	MDW-5a_A05_M DW-5a_034	Neurospora crassa strain OR74A
MDW-5a_C06_M DW-5a_039	HSS1	MDW-5a_A06_M DW-5a_038	Cryptococcus neoformans var. neoformans JEC21 chromosome 7
MDW-5a_C07_M DW-5a_051	20S proteasome subunit	MDW-5a_A07_M DW-5a_050	Filobasidiella neoformans expressed protein
MDW-5a_C08_M DW-5a_055		MDW-5a_A08_M DW-5a_054	Aspergillus fumigatus Af293 hypothetical protein
MDW-5a_C09_M DW-5a_067	hypothetical protein CNK03180	MDW-5a_A09_M DW-5a_066	Ustilago maydis 521 hypothetical protein
MDW-5a_C10_M DW-5a_071	mRNA catabolism	MDW-5a_A10_M DW-5a_070	Filobasidiella neoformans heat shock protein 70
MDW-5a_C11_M DW-5a_083		MDW-5a_A11_M DW-5a_082	
MDW-5a_C12_M DW-5a_087		MDW-5a_A12_M DW-5a_086	Ustilago maydis 521 hypothetical protein
MDW-5a_D01_M DW-5a_010		MDW-5a_B01_M DW-5a_009	meiotic recombination-related protein
MDW-5a_D02_M DW-5a_014		MDW-5a_B02_M DW-5a_013	meiotic recombination-related protein
MDW-5a_D03_M DW-5a_027		MDW-5a_B03_M DW-5a_026	
MDW-5a_D04_M DW-5a_031		MDW-5a_B04_M DW-5a_030	
MDW-5a_D05_M DW-5a_043	HSS1	MDW-5a_B05_M DW-5a_042	HSS1
MDW-5a_D06_M DW-5a_047	hypothetical protein CNBI1650	MDW-5a_B06_M DW-5a_046	hypothetical protein
MDW-5a_D07_M DW-5a_059		MDW-5a_B07_M DW-5a_058	hypothetical protein UM02946.1
MDW-5a_D08_M DW-5a_063	hypothetical protein CNK03180	MDW-5a_B08_M DW-5a_062	Heat shock protein HSS1
MDW-5a_D09_M	hypothetical protein	MDW-5a_B09_M	tyrosine-tRNA ligase

DW-5a_075	Afu8g05280	DW-5a_074	
MDW-5a_D10_M	hypothetical protein	MDW-5a_B10_M	conserved hypothetical protein
DW-5a_079	UM02287.1	DW-5a_078	
MDW-5a_D11_M DW-5a_091		MDW-5a_B11_M DW-5a_090	
MDW-5a_D12_M	hypothetical protein	MDW-5a_F09_M	heat shock protein 70, putative
DW-5a_095	FG04793.1	DW-5a_076	
MDW-5a_E01_M		MDW-5a_F10_M	hypothetical protein
DW-5a_003		DW-5a_080	UM02347.1
MDW-5a_E02_M	HSS1	MDW-5a_F11_M	hypothetical protein
DW-5a_008		DW-5a_092	UM04022.1
MDW-5a_E03_M		MDW-5a_F12_M	hypothetical protein
DW-5a_020		DW-5a_096	CNBN0090
MDW-5a_E04_M	hypothetical protein	MDW-5a_G01_M	hypothetical protein
DW-5a_024	UM04792.1	DW-5a_004	UM01296.1
MDW-5a_E05_M		MDW-5a_G02_M	hypothetical protein
DW-5a_036		DW-5a_017	AN8082.2
MDW-5a_E06_M	HSS1	MDW-5a_G03_M	hypothetical protein
DW-5a_040		DW-5a_021	UM02043.1
MDW-5a_E07_M DW-5a_052		MDW-5a_G04_M DW-5a_033	HSS1
MDW-5a_E08_M DW-5a_056	meiotic recombination-related protein	MDW-5a_G05_M DW-5a_037	hypothetical protein LOC553807
MDW-5a_E09_M DW-5a_068	hypothetical protein	MDW-5a_G06_M DW-5a_049	HSS1
MDW-5a_E10_M		MDW-5a_G07_M	hypothetical protein
DW-5a_072		DW-5a_053	CNBE4860
MDW-5a_E11_M DW-5a_084	hypothetical protein UM00662.1	MDW-5a_G08_M DW-5a_065	glutamine:fructose-6-p hosphate amidotransferase
MDW-5a_E12_M DW-5a_088		MDW-5a_G09_M DW-5a_069	HSS1
MDW-5a_F01_M		MDW-5a_G10_M	UDP-glucose
DW-5a_011		DW-5a_081	dehydrogenase
MDW-5a_F02_M		MDW-5a_G11_M	unnamed protein
DW-5a_016		DW-5a_085	product
MDW-5a_F03_M	hypothetical protein	MDW-5a_G12_M	hypothetical protein
DW-5a_028	CNN00100	DW-5a_097	CNBB4410
MDW-5a_F04_M	HSS1	MDW-5a_H01_M	hypothetical protein
DW-5a_032		DW-5a_012	UM02347.1
MDW-5a_F05_M	hypothetical protein	MDW-5a_H02_M	
DW-5a_044	FG08843.1	DW-5a_025	
MDW-5a_F06_M DW-5a_048	argininosuccinate synthetase	MDW-5a_H03_M DW-5a_029	glutamine:fructose-6-p hosphate amidotransferase
MDW-5a_F07_M	HSS1	MDW-5a_H04_M	hypothetical protein
DW-5a_060		DW-5a_041	UM04971.1
MDW-5a_F08_M	hypothetical protein	MDW-5a_H05_M	hypothetical protein
DW-5a_064	UM01834.1	DW-5a_045	UM02897.1
MDW-5a_H06_M	HSS1	MDW-6a_B12_M	hypothetical protein
DW-5a_057		DW-6a_094	UM00274.1
MDW-5a_H07_M	hypothetical protein	MDW-6a_C01_M	
DW-5a_061	UM04971.1	DW-6a_002	
MDW-5a_H08_M	hypothetical protein	MDW-6a_C02_M	

DW-5a 073	TIM03791 1	DW-6a 006	
MDW_52_075	humothatigal protain	MDW-62 CO2 M	Host shock protoin
DW-5a_077	CNBE4860	DW-6a_019	HSS1
MDW-5a_H10_M DW-5a_089	transcription factor AbaA	MDW-6a_C04_M DW-6a_023	Heat shock protein HSS1
1001 E 111 1			cellular response to
MDW-5a_HII_M DW-5a_093		MDW-6a_C05_M DW-6a_035	glucose starvation-related
			protein
MDW-5a_H12_M DW-5a_101	HSS1	MDW-6a_C06_M DW-6a_039	Heat shock protein HSS1
MDW-6a A01 M	Yarrowia lipolytica	MDW-6a C07 M	
DW-6a_001	CLIB122 of Yarrowia	DW-6a_051	Mpkl
MDW-6a_A02_M		MDW-6a_C08_M	hypothetical protein
		DW-0a_055	CNB12410
MDW-6a_A03_M	Ustilago maydis 521	MDW-6a_C09_M	incompatibility
DW-6a_018	hypothetical protein	DW-6a_067	protein HET-C
MDW-6a_A04_M	Ustilago maydis 521	MDW-6a_C10_M	Heat shock protein
DW-6a_022	Hypothetical protein	DW-0a_071	nooi
DW-6a_034	hypothetical protein	DW-6a_083	UM02711.1
MDW 62 DOG M	Filobasidiella	MDW 62 C12 M	
DW-6a_038	neoformans heat shock	DW-6a_087	
_	protein 70	_	
MDW-6a_A07_M DW-6a_050	Ustilago maydis 521 hypothetical protein	MDW-6a_D01_M DW-6a_010	70 kDa heat shock protein 2
MDW-6a A08 M	Filobasidiella	MDW-6a D02 M	
DW-6a_054	neoformans protein kinase	DW-6a_014	
			putative regulator of
MDW-6a_A09_M	hypothetical protein	MDW-6a_D03_M	G protein signaling
DW=0a_000	FG10815.1	DW-0a_027	Thn1; RGS
MDW-6a_A10_M	UDP-glucose	MDW-6a_D04_M	hypothetical protein
DW-6a_070	denydrogenase	DW-6a_031	UM06423.1
MDW-6a_A11_M		MDW-6a_D05_M	melotic recombination-related
DW-6a_082		DW-6a_043	protein
MDW-6a_A12_M		MDW-6a_D06_M	
DW-6a_086		DW-6a_047	
MDW-6a_B01_M DW-6a_009	hypothetical protein UM05584.1	MDW-6a_D07_M DW-6a_059	hypothetical protein UM02897.1
MDW-6a_B02_M		MDW-6a_D08_M	calcium-transporting
DW-6a_013		DW-6a_063	ATPase
MDW-6a_B03 M	West sheet word word	MDW-6a_D09 M	ER to Golgi
DW-6a_026	Heat shock protein HSSI	DW-6a_075	transport-related protein
MDW-6a B04 M		MDW-6a D10 M	P
DW-6a_030		DW-6a_079	pyruvate kinase
MDW-6a B05 M	NADP-dependent	MDW-6a D11 M	hypothetical protein
DW-6a_042	glutamate	DW-6a_091	CNC05090
MDW 62 DOG M	achiyar ogenase (MADP+)	MDW_62 D12 M	
DW-6a_046		DW-6a_DIZ_M	cytoplasm protein
MDW-6a_B07_M	meiotic	MDW-6a_E01_M	putative protein
DW-6a 058	recombination-related	DW-6a_003	kinase/endoribonucleas

			- 1
	protein		e Irel
MDW-6a_B08_M DW-6a_062	hypothetical protein	MDW-6a_E08_M DW-6a_056	hypothetical protein MG09717.4
MDW-6a_B09_M DW-6a_074		MDW-6a_E09_M DW-6a_068	
MDW-6a_B10_M DW-6a_078	meiotic recombination-related protein	MDW-6a_E10_M DW-6a_072	hypothetical protein UM00465.1
MDW-6a_B11_M DW-6a_090		MDW-6a_E11_M DW-6a_084	serine/threonine-prote in kinase
MDW-6a_E02_M DW-6a_008		MDW-6a_E12_M DW-6a_088	
MDW-6a_E03_M DW-6a_020		MDW-6a_F01_M DW-6a_011	hypothetical protein
MDW-6a_E04_M DW-6a_024		MDW-6a_F02_M DW-6a_016	
MDW-6a_E05_M DW-6a_036	expressed protein	MDW-6a_F03_M DW-6a_028	
MDW-6a_E06_M DW-6a_040	chitin deacetylase	MDW-6a_F04_M DW-6a_032	hypothetical protein UM02209.1
MDW-6a_E07_M DW-6a_052	hypothetical protein UM00247.1	MDW-6a_F05_M DW-6a_044	Heat shock protein HSS1
		MDW-6a_F06_M DW-6a_048	
MDW-7a_H04_M DW-7a_041	peptidyl-prolyl cis-trans isomerase	MDW-8a_A05_M DW-8a_034	hypothetical protein CNBF4440
MDW-7a_H05_M DW-7a_045	Heat shock protein HSS1	MDW-8a_A06_M DW-8a_038	MSF multidrug transporter
MDW-7a_H06_M DW-7a_057	conserved hypothetical protein	MDW-8a_A07_M DW-8a_050	HSS1
MDW-7a_H07_M DW-7a_061		MDW-8a_A08_M DW-8a_054	HSS1
MDW-7a_H08_M DW-7a_073	hypothetical protein CNBB4410	MDW-8a_A09_M DW-8a_066	hypothetical protein
MDW-7a_H09_M DW-7a_077	related to hydroxyproline-rich glycoprotein precursor	MDW-8a_A10_M DW-8a_070	
MDW-7a_H10_M DW-7a_089	Heat shock protein HSS1	MDW-8a_A11_M DW-8a_082	hypothetical protein UM02347.1
MDW-7a_H11_M DW-7a_093	Heat shock protein HSS1	MDW-8a_A12_M DW-8a_086	
MDW-7a_H12_M DW-7a_101		MDW-8a_B01_M DW-8a_009	delta24(24-1) sterol reductase
MDW-8a_A01_M DW-8a_001	aryl-alcohol oxidase precursor	MDW-8a_B02_M DW-8a_013	
MDW-8a_A02_M DW-8a_005		MDW-8a_B03_M DW-8a_026	mRNA catabolism
MDW-8a_A03_M DW-8a_018		MDW-8a_B04_M DW-8a_030	hypothetical protein CNBN0090
MDW-8a_A04_M DW-8a_022		MDW-8a_B05_M DW-8a_042	alpha-2,8-syalyltransf erase ST8Sia-III
MDW-8a_C05_M DW-8a_035		MDW-8a_B06_M DW-8a_046	ER to Golgi transport-related protein
MDW-8a_C06_M DW-8a_039		MDW-8a_B07_M DW-8a_058	hypothetical protein

MDW-8a_C07_M DW-8a_051	chaperone	MDW-8a_B08_M DW-8a_062	
MDW-8a_C08_M DW-8a_055	hypothetical protein UM01258.1	MDW-8a_B09_M DW-8a_074	WSC domain protein
MDW-8a_C09_M DW-8a_067	elongation factor 1-gamma (ef-1-gamma)	MDW-8a_B10_M DW-8a_078	SNF1
MDW-8a_C10_M DW-8a_071	laccase	MDW-8a_B11_M DW-8a_090	
MDW-8a_C11_M DW-8a_083	HSS1	MDW-8a_B12_M DW-8a_094	
MDW-8a_C12_M DW-8a_087	PREDICTED: similar to Mitogen-activated protein kinase kinase kinase 14	MDW-8a_C01_M DW-8a_002	
MDW-8a_D01_M DW-8a_010	hypothetical protein LOC548946	MDW-8a_C02_M DW-8a_006	HSS1
MDW-8a_D02_M DW-8a_014	lanosterol synthase	MDW-8a_C03_M DW-8a_019	peroxidase
MDW-8a_D03_M DW-8a_027	hypothetical protein CaO19.6835	MDW-8a_C04_M DW-8a_023	HSS1
MDW-8a_D04_M DW-8a_031	RAN protein binding protein	MDW-8a_F08_M DW-8a_064	mitogen-activated protein kinase
MDW-8a_D05_M DW-8a_043	hypothetical protein CNBF1420	MDW-8a_F09_M DW-8a_076	N-acetylglucosamine-6- phosphate deacetylase (NagA)
MDW-8a_D06_M DW-8a_047	Glutamate synthase	MDW-8a_F10_M DW-8a_080	HSS1
MDW-8a_D07_M DW-8a_059	HSS1	MDW-8a_F11_M DW-8a_092	peroxidase
MDW-8a_D08_M DW-8a_063	vesicle-mediated transport-related protein	MDW-8a_F12_M DW-8a_096	hypothetical protein UM02869.1
MDW-8a_D09_M DW-8a_075	HSS1	MDW-8a_G01_M DW-8a_004	
MDW-8a_D10_M DW-8a_079	prolyl oligopeptidase/ serine-type endopeptidase/ serine-type peptidase	MDW-8a_G02_M DW-8a_017	PREDICTED: similar to gastric mucin
MDW-8a_D11_M DW-8a_091	general transcription factor spTFIIE alpha subunit	MDW-8a_G03_M DW-8a_021	
MDW-8a_D12_M DW-8a_095	HSS1	MDW-8a_G04_M DW-8a_033	hypothetical protein AN1725.2
MDW-8a_E01_M DW-8a_003	homoserine O-acetyltransferase	MDW-8a_G05_M DW-8a_037	Hypothetical protein CBG06432
MDW-8a_E02_M DW-8a_008	related to stress response protein rdslp	MDW-8a_G06_M DW-8a_049	pyranose 2-oxidase
MDW-8a_E03_M DW-8a_020	20S proteasome subunit	MDW-8a_G07_M DW-8a_053	hypothetical protein CNBA3060
MDW-8a_E04_M DW-8a_024	fumarate reductase (NADH)	MDW-8a_G08_M DW-8a_065	unnamed protein product
MDW-8a_E05_M DW-8a_036	chaperone	MDW-8a_G09_M DW-8a_069	Glc-6-P isomerase
MDW-8a_E06_M DW-8a_040	hypothetical protein UM01219.1	MDW-8a_G10_M DW-8a_081	NADP-dependent glutamate dehydrogenase
MDW-8a_E07_M	hypothetical protein	MDW-8a_G11_M	AFL194Wp

DW-8a_052	UM02347.1	DW-8a_085	
MDW-8a_E08_M DW-8a_056	ATP dependent RNA helicase (Dhh1)	MDW-8a_G12_M DW-8a_097	
MDW-8a_E09_M DW-8a_068	hypothetical protein	MDW-8a_H01_M DW-8a_012	pyruvate kinase
MDW-8a_E10_M DW-8a_072	HSS1	MDW-8a_H02_M DW-8a_025	gibberellin-induced receptor-like kinase TMK
MDW-8a_E11_M DW-8a_084	chromate ion transporter	MDW-8a_H03_M DW-8a_029	HSS1
MDW-8a_E12_M DW-8a_088	EBNA-1	MDW-8a_H04_M DW-8a_041	HSS1
MDW-8a_F01_M DW-8a_011		MDW-8a_H05_M DW-8a_045	GTP-binding protein 1 (g-protein 1)
MDW-8a_F02_M DW-8a_016	hypothetical protein FG03198.1	MDW-8a_H06_M DW-8a_057	oxoglutarate dehydrogenase (succinyl-transferring)
MDW-8a_F03_M DW-8a_028		MDW-8a_H07_M DW-8a_061	rRNA intron-encoded homing endonuclease
MDW-8a_F04_M DW-8a_032	PREDICTED: similar to Mitogen-activated protein kinase kinase	MDW-8a_H08_M DW-8a_073	HSS1
MDW-8a_F05_M DW-8a_044	PREDICTED: similar to Mitogen-activated protein kinase kinase	MDW-8a_H09_M DW-8a_077	HSS1
MDW-8a_F06_M DW-8a 048	PREDICTED: similar to gastric mucin	MDW-8a_H10_M DW-8a_089	NAD-specific glutamate dehydrogenase
	_		
 MDW-8a_F07_M DW-8a_060	HSS1	MDW-8a_H11_M DW-8a_093	hypothetical protein Tb09.211.1950
MDW-8a_F07_M DW-8a_060 MDW-9a_A09_M DW-9a_066	HSS1 hypothetical protein UM02940.1	MDW-8a_H11_M DW-8a_093 MDW-8a_H12_M DW-8a_101	hypothetical protein Tb09.211.1950
MDW-8a_F07_M DW-8a_060 MDW-9a_A09_M DW-9a_066 MDW-9a_A10_M DW-9a_070	HSS1 hypothetical protein UM02940.1 hypothetical protein CNEG1750	MDW-8a_H11_M DW-8a_093 MDW-8a_H12_M DW-8a_101 MDW-9a_A01_M DW-9a_001	hypothetical protein Tb09.211.1950 Protease-1 (PRT1) protein, putative
MDW-8a_F07_M DW-8a_060 MDW-9a_A09_M DW-9a_066 MDW-9a_A10_M DW-9a_070 MDW-9a_070 MDW-9a_082	HSS1 hypothetical protein UM02940.1 hypothetical protein CNBG1750 hypothetical protein CND02140	MDW-8a_H11_M DW-8a_093 MDW-8a_H12_M DW-8a_101 MDW-9a_A01_M DW-9a_001 MDW-9a_A02_M DW-9a_005	hypothetical protein Tb09.211.1950 Protease-1 (PRT1) protein, putative related to Sls2 protein
MDW-8a_F07_M DW-8a_060 MDW-9a_A09_M DW-9a_066 MDW-9a_A10_M DW-9a_070 MDW-9a_070 MDW-9a_082 MDW-9a_082	HSS1 hypothetical protein UM02940.1 hypothetical protein CNBG1750 hypothetical protein CND02140 hypothetical protein UM02897.1	MDW-8a_H11_M DW-8a_093 MDW-8a_H12_M DW-8a_101 MDW-9a_A01_M DW-9a_001 MDW-9a_A02_M DW-9a_005 MDW-9a_A03_M DW-9a_018	hypothetical protein Tb09.211.1950 Protease-1 (PRT1) protein, putative related to Sls2 protein hypothetical protein UM02347.1
MDW-8a_F07_M DW-8a_060 MDW-9a_A09_M DW-9a_066 MDW-9a_A10_M DW-9a_070 MDW-9a_070 MDW-9a_082 MDW-9a_082 MDW-9a_086 MDW-9a_086 MDW-9a_009	HSS1 hypothetical protein UM02940.1 hypothetical protein CNBG1750 hypothetical protein CND02140 hypothetical protein UM02897.1 ubiquitin-protein ligase	MDW-8a_H11_M DW-8a_093 MDW-8a_101 MDW-9a_A01_M DW-9a_001 MDW-9a_005 MDW-9a_005 MDW-9a_018 MDW-9a_018 MDW-9a_022	hypothetical protein Tb09.211.1950 Protease-1 (PRT1) protein, putative related to Sls2 protein hypothetical protein UM02347.1 hypothetical protein UM03198.1
MDW-8a_F07_M DW-8a_060 MDW-9a_066 MDW-9a_066 MDW-9a_070 MDW-9a_070 MDW-9a_082 MDW-9a_082 MDW-9a_086 MDW-9a_086 MDW-9a_009 MDW-9a_009 MDW-9a_013	HSS1 hypothetical protein UM02940.1 hypothetical protein CNBG1750 hypothetical protein CND02140 hypothetical protein UM02897.1 ubiquitin-protein ligase	MDW-8a_H11_M DW-8a_093 MDW-8a_101 MDW-9a_001 MDW-9a_001 MDW-9a_005 MDW-9a_005 MDW-9a_018 MDW-9a_018 MDW-9a_022 MDW-9a_022 MDW-9a_034	hypothetical protein Tb09.211.1950 Protease-1 (PRT1) protein, putative related to S1s2 protein hypothetical protein UM02347.1 hypothetical protein UM03198.1 F-box domain protein
MDW-8a_F07_M DW-8a_60 MDW-9a_066 MDW-9a_066 MDW-9a_010_M DW-9a_070 MDW-9a_082 MDW-9a_082 MDW-9a_082 MDW-9a_086 MDW-9a_801_M DW-9a_009 MDW-9a_802_M DW-9a_013 MDW-9a_803_M DW-9a_026	HSS1 hypothetical protein UM02940.1 hypothetical protein CNBG1750 hypothetical protein CND02140 hypothetical protein UM02897.1 ubiquitin-protein ligase Heat shock protein HSS1	MDW-8a_H11_M DW-8a_093 MDW-8a_101 MDW-9a_101 MDW-9a_001 MDW-9a_005 MDW-9a_005 MDW-9a_03 MDW-9a_018 MDW-9a_018 MDW-9a_022 MDW-9a_034 MDW-9a_034	hypothetical protein Tb09.211.1950 Protease-1 (PRT1) protein, putative related to Sls2 protein hypothetical protein UM02347.1 hypothetical protein UM03198.1 F-box domain protein Cytoplasmic arginyl-tRNA synthetase; Ydr341cp
MDW-8a_F07_M MDW-8a_600 MDW-9a_066 MDW-9a_066 MDW-9a_070 MDW-9a_070 MDW-9a_082 MDW-9a_082 MDW-9a_086 MDW-9a_801_M DW-9a_009 MDW-9a_803_M DW-9a_026 MDW-9a_804_M DW-9a_030	HSS1 hypothetical protein UM02940.1 hypothetical protein CNBG1750 hypothetical protein UM02140 hypothetical protein UM02897.1 ubiquitin-protein ligase Heat shock protein HSS1 ER to Golgi transport-related protein	MDW-8a_H11_M DW-8a_093 MDW-8a_101 MDW-9a_001 MDW-9a_001 MDW-9a_005 MDW-9a_005 MDW-9a_005 MDW-9a_018 MDW-9a_018 MDW-9a_022 MDW-9a_034 MDW-9a_034 MDW-9a_038 MDW-9a_038	hypothetical protein Tb09.211.1950 Protease-1 (PRT1) protein, putative related to Sls2 protein hypothetical protein UM02347.1 hypothetical protein UM03198.1 F-box domain protein Cytoplasmic arginyl-tRNA synthetase; Ydr341cp polyadenylate-binding protein, putative
MDW-8a_F07_M DW-8a_600 MDW-9a_060 MDW-9a_066 MDW-9a_066 MDW-9a_070 MDW-9a_070 MDW-9a_082 MDW-9a_082 MDW-9a_082 MDW-9a_009 MDW-9a_009 MDW-9a_003 MDW-9a_026 MDW-9a_030 MDW-9a_030 MDW-9a_042	HSS1 hypothetical protein UM02940.1 hypothetical protein CNBG1750 hypothetical protein UM02897.1 ubiquitin-protein ligase Heat shock protein HSS1 ER to Golgi transport-related protein QDE2 protein	MDW-8a_H11_M DW-8a_093 MDW-8a_H12_M DW-8a_101 MDW-9a_A01_M DW-9a_001 MDW-9a_005 MDW-9a_005 MDW-9a_018 MDW-9a_018 MDW-9a_018 MDW-9a_022 MDW-9a_034 MDW-9a_034 MDW-9a_038 MDW-9a_038 MDW-9a_050 MDW-9a_054	hypothetical protein Tb09.211.1950 Protease-1 (PRT1) protein, putative related to Sls2 protein hypothetical protein UM02347.1 hypothetical protein UM03198.1 F-box domain protein Cytoplasmic arginyl-tRNA synthetase; Ydr341cp polyadenylate-binding protein, putative hypothetical protein
MDW-8a_F07_M DW-8a_600 MDW-9a_060 MDW-9a_066 MDW-9a_066 MDW-9a_070 MDW-9a_070 MDW-9a_082 MDW-9a_082 MDW-9a_082 MDW-9a_009 MDW-9a_009 MDW-9a_009 MDW-9a_013 MDW-9a_013 MDW-9a_026 MDW-9a_026 MDW-9a_030 MDW-9a_040 MDW-9a_046	HSS1 hypothetical protein UM02940.1 hypothetical protein CNBG1750 hypothetical protein UM02897.1 ubiquitin-protein ligase Heat shock protein HSS1 ER to Golgi transport-related protein QDE2 protein hypothetical protein UM04971.1	MDW-8a_H11_M DW-8a_093 MDW-8a_H12_M DW-8a_101 MDW-9a_A01_M DW-9a_001 MDW-9a_005 MDW-9a_005 MDW-9a_018 MDW-9a_018 MDW-9a_022 MDW-9a_022 MDW-9a_034 MDW-9a_034 MDW-9a_038 MDW-9a_038 MDW-9a_050 MDW-9a_054 MDW-9a_054	hypothetical protein Tb09.211.1950 Protease-1 (PRT1) protein, putative related to Sls2 protein hypothetical protein UM02347.1 hypothetical protein UM03198.1 F-box domain protein Cytoplasmic arginyl-tRNA synthetase; Ydr341cp polyadenylate-binding protein, putative hypothetical protein Heat shock protein
MDW-8a_F07_M DW-8a_600 MDW-9a_060 MDW-9a_066 MDW-9a_070 MDW-9a_070 MDW-9a_070 MDW-9a_082 MDW-9a_082 MDW-9a_086 MDW-9a_009 MDW-9a_009 MDW-9a_009 MDW-9a_013 MDW-9a_013 MDW-9a_026 MDW-9a_026 MDW-9a_030 MDW-9a_042 MDW-9a_042 MDW-9a_046 MDW-9a_058	HSS1 hypothetical protein UM02940.1 hypothetical protein CNBG1750 hypothetical protein UM02897.1 ubiquitin-protein ligase Heat shock protein HSS1 ER to Golgi transport-related protein QDE2 protein hypothetical protein UM04971.1 conserved hypothetical protein	MDW-8a_H11_M DW-8a_093 MDW-8a_H12_M DW-8a_101 MDW-9a_A01_M DW-9a_001 MDW-9a_005 MDW-9a_005 MDW-9a_018 MDW-9a_018 MDW-9a_022 MDW-9a_022 MDW-9a_034 MDW-9a_034 MDW-9a_038 MDW-9a_038 MDW-9a_050 MDW-9a_054 MDW-9a_054 MDW-9a_054 MDW-9a_096 MDW-9a_004	hypothetical protein Tb09.211.1950 Protease-1 (PRT1) protein, putative related to Sls2 protein hypothetical protein UM02347.1 hypothetical protein UM03198.1 F-box domain protein Cytoplasmic arginyl-tRNA synthetase; Ydr341cp polyadenylate-binding protein, putative hypothetical protein Heat shock protein HSS1

- 266 -

MDW-9a_B09_M	alphal tubulin	MDW-9a_G03_M	Heat shock protein
DW-9a_074		DW-9a_021	HSS1
MDW-9a_B10_M	Heat shock protein HSS1	MDW-9a_G04_M	hypothetical protein
DW-9a_078		DW-9a_033	MG07210.4
MDW-9a_B11_M DW-9a_090	endopeptidase	MDW-9a_G05_M DW-9a_037	hypothetical protein
MDW-9a_B12_M DW-9a_094		MDW-9a_G06_M DW-9a_049	meiotic recombination-related protein
MDW-9a_C01_M	hypothetical protein	MDW-9a_G07_M	hypothetical protein
DW-9a_002	UM02597.1	DW-9a_053	UM00304.1
MDW-9a_C02_M		MDW-9a_G08_M	Heat shock protein
DW-9a_006		DW-9a_065	HSS1
MDW-9a_C03_M DW-9a_019	YLR151C	MDW-9a_G09_M DW-9a_069	meiotic recombination-related protein
MDW-9a_C04_M		MDW-9a_G10_M	Heat shock protein
DW-9a_023		DW-9a_081	HSS1
MDW-9a_C05_M	acetyl-CoA acetyl	MDW-9a_G11_M	hypothetical protein
DW-9a_035	transferase	DW-9a_085	UM03353.1
MDW-9a_C06_M	Heat shock protein HSS1	MDW-9a_G12_M	Heat shock protein
DW-9a_039		DW-9a_097	HSS1
MDW-9a_C07_M	glucoamylase	MDW-9a_H01_M	acetyl-CoA acetyl
DW-9a_051		DW-9a_012	transferase
MDW-9a_C08_M	SPBC19G7.16	MDW-9a_H02_M	hypothetical protein
DW-9a_055		DW-9a_025	AN2467.2
MDW-9a_C09_M DW-9a_067		MDW-9a_H03_M DW-9a_029	heat shock protein
MDW-9a_C10_M	hypothetical protein	MDW-9a_H04_M	hypothetical protein
DW-9a_071	UM01258.1	DW-9a_041	CNBB1930
MDW-9a_C11_M	cytochrome oxidase	MDW-9a_H05_M	conserved hypothetical protein
DW-9a_083	assembly protein	DW-9a_045	
MDW-9a_C12_M	hypothetical protein	MDW-9a_H06_M	hypothetical protein
DW-9a_087	UM04971.1	DW-9a_057	
MDW-9a_D01_M	hypothetical protein	MDW-9a_H07_M	hypothetical protein
DW-9a_010	UM04848.1	DW-9a_061	
MDW-9a_D02_M DW-9a_014		MDW-9a_H08_M DW-9a_073	hypothetical protein
MDW-9a_D03_M		MDW-9a_H09_M	Heat shock protein
DW-9a_027		DW-9a_077	HSS1
MDW-9a_D04_M DW-9a_031	methylenetetrahydrofol ate reductase-like protein	MDW-9a_H10_M DW-9a_089	Heat shock protein HSS1
MDW-9a_D05_M DW-9a_043	Heat shock protein HSS1	MDW-9a_H11_M DW-9a_093	NOG2
MDW-9a_D06_M	hypothetical protein	MDW-9a_H12_M	
DW-9a_047	CNBA2820	DW-9a_101	
MDW-9a_D07_M	hypothetical protein	MDW-10a_A01_	
DW-9a_059	UM03156.1	MDW-10a_001	
MDW-9a_D08_M	heat-induced catalase	MDW-10a_A02_	sugar transporter
DW-9a_063		MDW-10a_005	family protein
MDW-9a_D09_M	Heat shock protein HSS1	MDW-10a_A03_	hypothetical protein
DW-9a_075		MDW-10a_018	UM00907.1
MDW-9a_D10_M DW-9a_079	hypothetical protein CNBD2760	MDW-10a_A04_ MDW-10a_022	meiotic recombination-related protein

- 267 -

MDW-9a_D11_M	Heat shock protein HSS1	MDW-10a_A05_	hypothetical protein
DW-9a_091		MDW-10a_034	UM04242.1
MDW-9a_D12_M	Heat shock protein HSS1	MDW-10a_A06_	subtilisin-like serine
DW-9a_095		MDW-10a_038	protease
MDW-9a_E01_M		MDW-10a_A07_	hypothetical protein
DW-9a_003		MDW-10a_050	CNBK0820
MDW-9a_E02_M	hypothetical protein	MDW-10a_A08_	hypothetical protein
DW-9a_008	UM01835.1	MDW-10a_054	
MDW-9a_E03_M DW-9a_020		MDW-10a_C09_ MDW-10a_067	peroxidase
MDW-9a_E05_M	hypothetical protein	MDW-10a_C10_	hypothetical protein
DW-9a_036	CNBF3470	MDW-10a_071	UM04759.1
MDW-9a_E06_M	ornithine	MDW-10a_C11_	hypothetical protein
DW-9a_040	aminotransferase	MDW-10a_083	UM04371.1
MDW-9a_E07_M DW-9a_052	Heat shock protein HSS1	MDW-10a_C12_ MDW-10a_087	heat shock protein 70
MDW-9a_E08_M	hypothetical protein	MDW-10a_D01_	QDE2 protein
DW-9a_056	MG08270.4	MDW-10a_010	
MDW-9a_E09_M		MDW-10a_D02_	hypothetical protein
DW-9a_068		MDW-10a_014	MG07606.4
MDW-9a_E10_M	hypothetical protein	MDW-10a_D03_	Heat shock protein
DW-9a_072	CNBC3780	MDW-10a_027	HSS1
MDW-9a_E11_M	hypothetical protein	MDW-10a_D04_	t-SNARE
DW-9a_084	MG00594.4	MDW-10a_031	
MDW-9a_E12_M	putative aspartic	MDW-10a_D05_	hypothetical protein
DW-9a_088	protease	MDW-10a_043	CNBA7890
MDW-9a_F01_M	hypothetical protein	MDW-10a_D06_	Heat shock protein
DW-9a_011	CNBK2930	MDW-10a_047	HSS1
MDW-9a_F02_M	hypothetical protein	MDW-10a_D07_	Heat shock protein
DW-9a_016	CNBC4700	MDW-10a_059	HSS1
MDW-9a_F03_M	hypothetical protein	MDW-10a_D08_	hypothetical protein
DW-9a_028	UM00312.1	MDW-10a_063	CNBB4410
MDW-9a_F04_M		MDW-10a_D09_	hypothetical protein
DW-9a_032		MDW-10a_075	UM02962.1
MDW-9a_F05_M	Heat shock protein HSS1	MDW-10a_D10_	hypothetical protein
DW-9a_044		MDW-10a_079	AN1915.2
MDW-9a_F06_M	hypothetical protein	MDW-10a_D11_	
DW-9a_048	UM03062.1	MDW-10a_091	
MDW-9a_F07_M	Heat shock protein HSS1	MDW-10a_D12_	hypothetical protein
DW-9a_060		MDW-10a_095	UM00348.1
MDW-9a_F08_M DW-9a_064	chitinase	MDW-10a_E01_ MDW-10a_003	
MDW-9a_F09_M	hypothetical protein	MDW-10a_E02_	hexokinase
DW-9a_076	CNBL1190	MDW-10a_008	
MDW-9a_F10_M DW-9a_080	Heat shock protein HSS1	MDW-10a_E03_ MDW-10a_020	mRNA processing-related protein
MDW-9a_F11_M DW-9a_092	Heat shock protein HSS1	MDW-10a_E04_ MDW-10a_024	meiotic recombination-related protein
MDW-10a_A09_	Heat shock protein	MDW-10a_E05_	hypothetical protein
MDW-10a_066	HSS1.	MDW-10a_036	AN6124.2
MDW-10a_A10_	hypothetical protein	MDW-10a_E06_	heat-induced catalase
MDW-10a_070	CNB01100	MDW-10a_040	
MDW-10a_A11_	transporter	MDW-10a_E07_	hypothetical protein
MDW-10a_082		MDW-10a_052	UM01098.1

- 268 -

MDW-10a_A12_ MDW-10a_086		MDW-10a_E08_ MDW-10a_056	
MDW-10a_B01_	hypothetical protein	MDW-10a_E09_	hypothetical protein
MDW-10a_009	UM02899.1	MDW-10a_068	MG11100.4
MDW-10a_B02_	hypothetical protein	MDW-10a_E10_	Heat shock protein
MDW-10a_013	UM01258.1	MDW-10a_072	HSS1
MDW-10a_B03_		MDW-10a_E11_	Heat shock protein
MDW-10a_026		MDW-10a_084	HSS1
MDW-10a_B04_	hypothetical protein	MDW-10a_E12_	NAD-specific glutamate
MDW-10a_030	FG00659.1	MDW-10a_088	dehydrogenase
MDW-10a_B05_	hypothetical protein	MDW-10a_F01_	heat-induced catalase
MDW-10a_042	UM06226.1	MDW-10a_011	
MDW-10a_B06_	hypothetical protein	MDW-10a_F02_	hypothetical protein
MDW-10a_046	UM04371.1	MDW-10a_016	UM04080.1
MDW-10a_B07_ MDW-10a_058	hypothetical protein UM01032.1	MDW-10a_G12_ MDW-10a_097	meiotic recombination-related protein
MDW-10a_B08_	Heat shock protein HSS1	MDW-10a_H01_	polysaccharide
MDW-10a_062		MDW-10a_012	synthase
MDW-10a_B09_	heat shock protein 60	MDW-10a_H02_	Heat shock protein
MDW-10a_074		MDW-10a_025	HSS1
MDW-10a_B10_	QDE2 protein	MDW-10a_H03_	Heat shock protein
MDW-10a_078		MDW-10a_029	HSS1
MDW-10a_B11_	Ul snRNP 70K protein	MDW-10a_H04_	hypothetical protein
MDW-10a_090	(short form)	MDW-10a_041	UM01624.1
MDW-10a_B12_	Heat shock protein HSS1	MDW-10a_H05_	Heat shock protein
MDW-10a_094		MDW-10a_045	HSS1
MDW-10a_C01_	19 kDa protein having	MDW-10a_H06_	hypothetical protein
MDW-10a_002	G-X-X-X-Q-X-W motif	MDW-10a_057	CNBE5260
MDW-10a_C03_	DyP	MDW-10a_H07_	hypothetical protein
MDW-10a_019		MDW-10a_061	UM04452.1
MDW-10a_C04_ MDW-10a_023	conserved hypothetical protein	MDW-10a_H08_ MDW-10a_073	
MDW-10a_C05_	hypothetical protein	MDW-10a_H09_	hypothetical protein
MDW-10a_035		MDW-10a_077	UM02461.1
MDW-10a_C06_	hypothetical protein	MDW-10a_H10_	Heat shock protein
MDW-10a_039	UM04612.1	MDW-10a_089	HSS1
MDW-10a_C07_	NAD-specific glutamate	MDW-10a_H11_	Heat shock protein
MDW-10a_051	dehydrogenase	MDW-10a_093	HSS1
MDW-10a_C08_ MDW-10a_055	Heat shock protein HSS1	MDW-10a_H12_ MDW-10a_101	
MDW-10a_F03_ MDW-10a_028	hypothetical protein	MDW-11a_A01_ MDW-11a_001	
MDW-10a_F04_	conserved hypothetical protein	MDW-11a_A02_	Heat shock protein
MDW-10a_032		MDW-11a_005	HSS1
MDW-10a_F05_	hypothetical protein	MDW-11a_A03_	hypothetical protein
MDW-10a_044	MG06849.4	MDW-11a_018	CNBE1860
MDW-10a_F06_	hypothetical protein	MDW-11a_A04_	glycogen phosphorylase
MDW-10a_048	CNB01100	MDW-11a_022	
MDW-10a_F07_ MDW-10a_060	Mpk1	MDW-11a_A05_ MDW-11a_034	hypothetical protein
MDW-10a_F08_	Heat shock protein HSS1	MDW-11a_A06_	Heat shock protein
MDW-10a_064		MDW-11a_038	HSS1
MDW-10a_F09_	hypothetical protein	MDW-11a_A07_	hypothetical protein
MDW-10a_076	UM02051.1	MDW-11a_050	

- 269 -

MDW-10a_F10_	hypothetical protein	MDW-11a_A08_	hypothetical protein
MDW-10a_080	UM02835.1	MDW-11a_054	UM01715.1
MDW-10a_F11_	hypothetical protein	MDW-11a_A09_	
MDW-10a_092	CNBD2240	MDW-11a_066	
MDW-10a_F12_ MDW-10a_096	meiotic recombination-related protein	MDW-11a_A10_ MDW-11a_070	hypothetical protein UM02623.1
MDW-10a_G01_	hypothetical protein	MDW-11a_A11_	hypothetical protein
MDW-10a_004	CNBK2060	MDW-11a_082	UM01183.1
MDW-10a_G02_ MDW-10a_017	stromal membrane-associated protein	MDW-11a_A12_ MDW-11a_086	hypothetical protein
MDW-10a_G03_	hypothetical protein	MDW-11a_B01_	hypothetical protein
MDW-10a_021	CNBC4250	MDW-11a_009	UM00335.1
MDW-10a_G04_	sequence similarity to	MDW-11a_B02_	Heat shock protein
MDW-10a_033	yeast MALR protein	MDW-11a_013	HSS1
MDW-10a_G05_	polysaccharide	MDW-11a_B03_	Heat shock protein
MDW-10a_037	synthase	MDW-11a_026	HSS1
MDW-10a_G06_ MDW-10a_049	DyP	MDW-11a_B04_ MDW-11a_030	NADP-dependent glutamate dehydrogenase (NADP+)
MDW-10a_G07_	hypothetical protein	MDW-11a_B05_	Heat shock protein
MDW-10a_053		MDW-11a_042	HSS1
MDW-10a_G08_	hypothetical protein	MDW-11a_B06_	hypothetical protein
MDW-10a_065	SPAPB18E9.04c	MDW-11a_046	AN2366.2
MDW-10a_G09_	hypothetical protein	MDW-11a_B07_	Heat shock protein
MDW-10a_069	CNBK2580	MDW-11a_058	HSS1
MDW-10a_G10_	Heat shock protein HSS1	MDW-11a_B08_	Heat shock protein
MDW-10a_081		MDW-11a_062	HSS1
MDW-10a_G11_	ATP dependent RNA	MDW-11a_B09_	hypothetical protein
MDW-10a_085	helicase	MDW-11a_074	UM05365.1
MDW-11a_C12_	polysaccharide	MDW-11a_B10_	hypothetical protein
MDW-11a_087	synthase	MDW-11a_078	
MDW-11a_D01_	chaperone	MDW-11a_B11_	hypothetical protein
MDW-11a_010		MDW-11a_090	CNBL1190
MDW-11a_D02_ MDW-11a_014	hexokinase	MDW-11a_B12_ MDW-11a_094	NADH-ubiquinone oxidoreductase 30.4 kDa subunit
MDW-11a_D03_ MDW-11a_027	mandelate racemase/muconate lactonizing enzyme	MDW-11a_C01_ MDW-11a_002	transporter
MDW-11a_D04_	Heat shock protein HSS1	MDW-11a_C02_	Heat shock protein
MDW-11a_031		MDW-11a_006	HSS1
MDW-11a_D05_		MDW-11a_C03_	hypothetical protein
MDW-11a_043		MDW-11a_019	UM01056.1
MDW-11a_D06_ MDW-11a_047	protein kinase	MDW-11a_C04_ MDW-11a_023	
MDW-11a_D07_	peroxidase	MDW-11a_C05_	Heat shock protein
MDW-11a_059		MDW-11a_035	HSS1
MDW-11a_D08_	hypothetical protein	MDW-11a_C06_	hypothetical protein
MDW-11a_063	UM02991.1	MDW-11a_039	
MDW-11a_D09_	hypothetical protein	MDW-11a_C07_	phosphoenolpyruvate
MDW-11a_075		MDW-11a_051	carboxykinase
MDW-11a_D10_	Protease-1 (PRT1)	MDW-11a_C08_	Heat shock protein
MDW-11a_079	protein	MDW-11a_055	HSS1
MDW-11a_D11_	hypothetical protein	MDW-11a_C09_	Heat shock protein

MDW-11a_091	UM04971.1	MDW-11a_067	HSS1
MDW-11a_D12_ MDW-11a_095	GBA4.USTMA Guanine nucleotide-binding protein alpha-4 subunit	MDW-11a_C10_ MDW-11a_071	serine/threonine protein kinase B-related Ukbl
MDW-11a_E01_ MDW-11a_003	hypothetical protein	MDW-11a_C11_ MDW-11a_083	SNF1
MDW-11a_E02_	hypothetical protein	MDW-11a_E10_	hypothetical protein
MDW-11a_008	FG08843.1	MDW-11a_072	UM04371.1
MDW-11a_E03_		MDW-11a_E11_	hypothetical protein
MDW-11a_020		MDW-11a_084	CNBD2760
MDW-11a_E04_	heat-induced catalase	MDW-11a_E12_	hypothetical protein
MDW-11a_024		MDW-11a_088	CNBF3470
MDW-11a_E05_ MDW-11a_036	meiotic recombination-related protein	MDW-11a_F01_ MDW-11a_011	hypothetical protein UM02347.1
MDW-11a_E06_ MDW-11a_040	meiotic recombination-related protein	MDW-11a_F02_ MDW-11a_016	conserved hypothetical protein
MDW-11a_E07_	expressed protein	MDW-11a_F03_	Heat shock protein
MDW-11a_052		MDW-11a_028	HSS1
MDW-11a_E08_	Heat shock protein HSS1	MDW-11a_F04_	Heat shock protein
MDW-11a_056		MDW-11a_032	HSS1
MDW-11a_E09_ MDW-11a_068	hypothetical protein CNBG1750	MDW-11a_F05_ MDW-11a_044	meiotic recombination-related protein
MDW-11a_G11_	hypothetical protein	MDW-11a_F06_	hypothetical protein
MDW-11a_085		MDW-11a_048	CNBB4410
MDW-11a_G12_ MDW-11a_097	chaperone	MDW-11a_F07_ MDW-11a_060	conserved hypothetical protein
MDW-11a_H01_	hypothetical protein	MDW-11a_F08_	
MDW-11a_012	FG11516.1	MDW-11a_064	
MDW-11a_H02_ MDW-11a_025	hypothetical protein CNBI1450	MDW-11a_F09_ MDW-11a_076	regulation of budding-related protein
MDW-11a_H03_	acetyl-CoA acetyl	MDW-11a_F10_	chaperone
MDW-11a_029	transferase	MDW-11a_080	
MDW-11a_H04_	translation elongation	MDW-11a_F11_	cytochrome P450
MDW-11a_041	factor la	MDW-11a_092	
MDW-11a_H05_ MDW-11a_045	Heat shock protein HSS1	MDW-11a_F12_ MDW-11a_096	conserved hypothetical protein
MDW-11a_H06_	phenylalanine ammonium	MDW-11a_G01_	Heat shock protein
MDW-11a_057	lyase	MDW-11a_004	HSS1
MDW-11a_H07_	Heat shock protein HSS1	MDW-11a_G02_	hypothetical protein
MDW-11a_061		MDW-11a_017	CNBM0230
MDW-11a_H08_ MDW-11a_073	RING finger protein	MDW-11a_G03_ MDW-11a_021	
MDW-11a_H09_	Heat shock protein HSS1	MDW-11a_G04_	hypothetical protein
MDW-11a_077		MDW-11a_033	UM03680.1
MDW-11a_H10_	hypothetical protein	MDW-11a_G05_	hypothetical protein
MDW-11a_089	UM05643.1	MDW-11a_037	
MDW-11a_H11_ MDW-11a_093	phosphoadenosine-phosp hosulfate synthase (PAPS) bifunctional enzyme	MDW-11a_G06_ MDW-11a_049	calnexin
MDW-11a_H12_		MDW-11a_G07_	hypothetical protein
MDW-11a_101		MDW-11a_053	UM02347.1

- 271 -

MDW-12a_A01_ MDW-12a_001	DyP	MDW-11a_G08_ MDW-11a_065	meiotic recombination-related protein
MDW-12a_A02_ MDW-12a_005	DyP	MDW-11a_G09_ MDW-11a_069	serine/threonine-prote in kinase
MDW-12a_A03_ MDW-12a_018	ATP dependent RNA helicase	MDW-11a_G10_ MDW-11a_081	Heat shock protein HSS1
MDW-12a_A04_ MDW-12a_022	hypothetical protein	MDW-12a_B09_ MDW-12a_074	
MDW-12a_A05_ MDW-12a_034	hypothetical protein CNBA7070	MDW-12a_B10_ MDW-12a_078	hypothetical protein
MDW-12a_A06_ MDW-12a_038		MDW-12a_B11_ MDW-12a_090	SPBC4B4.04
MDW-12a_A07_ MDW-12a_050	hypothetical protein UM02922.1	MDW-12a_B12_ MDW-12a_094	HSP70
MDW-12a_A08_ MDW-12a_054	hypothetical protein UM05006.1	MDW-12a_C01_ MDW-12a_002	Heat shock protein HSS1
MDW-12a_A09_ MDW-12a_066	Heat shock protein HSS1	MDW-12a_C02_ MDW-12a_006	
MDW-12a_A10_ MDW-12a_070	predicted protein	MDW-12a_C03_ MDW-12a_019	
MDW-12a_A11_ MDW-12a_082		MDW-12a_C04_ MDW-12a_023	Heat shock protein HSS1
MDW-12a_A12_ MDW-12a_086	subtilisin-like serine protease	MDW-12a_C05_ MDW-12a_035	Heat shock protein HSS1
MDW-12a_B01_ MDW-12a_009	hypothetical protein AN7678.2	MDW-12a_C06_ MDW-12a_039	meiotic recombination-related protein
MDW-12a_B02_ MDW-12a_013	cAMP-dependent protein kinase	MDW-12a_C07_ MDW-12a_051	meiotic recombination-related protein
MDW-12a_B03_ MDW-12a_026	Heat shock protein HSS1	MDW-12a_C08_ MDW-12a_055	Heat shock protein HSS1
MDW-12a_B04_ MDW-12a_030	Heat shock protein HSS1	MDW-12a_C09_ MDW-12a_067	retrograde transport
MDW-12a_B05_ MDW-12a_042	Le.MFB1	MDW-12a_C10_ MDW-12a_071	conserved hypothetical protein
MDW-12a_B06_ MDW-12a_046	hypothetical protein UM02442.1	MDW-12a_C11_ MDW-12a_083	hypothetical protein UM02991.1
MDW-12a_B07_ MDW-12a_058	hypothetical protein CNBB4410	MDW-12a_C12_ MDW-12a_087	hypothetical protein UM03724.1
MDW-12a_B08_ MDW-12a_062	Heat shock protein HSS1	MDW-12a_D01_ MDW-12a_010	meiotic recombination-related protein
MDW-12a_E10_ MDW-12a_072	hypothetical protein CNBB1420	MDW-12a_D02_ MDW-12a_014	translation elongation factor la
MDW-12a_E11_ MDW-12a_084	Heat shock protein HSS1	MDW-12a_D03_ MDW-12a_027	hypothetical protein
MDW-12a_E12_ MDW-12a_088	Heat shock protein HSS1	MDW-12a_D04_ MDW-12a_031	glutamine:fructose-6-p hosphate amidotransferase
MDW-12a_F01_ MDW-12a_011	hypothetical protein CNBD5860	MDW-12a_D05_ MDW-12a_043	mucin
MDW-12a_F02_ MDW-12a_016	Heat shock protein HSS1	MDW-12a_D06_ MDW-12a_047	Heat shock protein HSS1
MDW-12a_F03_	Heat shock protein HSS1	MDW-12a_D07_	hypothetical protein

MDW-12a_028		MDW-12a_059	MG09717.4
MDW-12a_F04_ MDW-12a_032		MDW-12a_D08_ MDW-12a_063	isocitrate lyase
MDW-12a_F05_ MDW-12a_044	phosphoadenosine-phosp hosulfate synthase (PAPS) bifunctional enzyme	MDW-12a_D09_ MDW-12a_075	meiotic recombination-related protein
MDW-12a_F06_ MDW-12a_048	hypothetical protein AN5245.2	MDW-12a_D10_ MDW-12a_079	PREDICTED: similar to carboxypeptidase A5
MDW-12a_F07_ MDW-12a_060	hypothetical protein UM06423.1	MDW-12a_D11_ MDW-12a_091	meiotic recombination-related protein
MDW-12a_F08_ MDW-12a_064	conserved hypothetical protein	MDW-12a_D12_ MDW-12a_095	PRO1 protein
MDW-12a_F09_ MDW-12a_076	Heat shock protein HSS1	MDW-12a_E01_ MDW-12a_003	meiotic recombination-related protein
MDW-12a_F10_ MDW-12a_080	ER to Golgi transport-related protein	MDW-12a_E02_ MDW-12a_008	meiotic recombination-related protein
MDW-12a_F11_ MDW-12a_092		MDW-12a_E03_ MDW-12a_020	hypothetical protein UM03680.1
MDW-12a_F12_ MDW-12a_096	hypothetical protein UM01258.1	MDW-12a_E04_ MDW-12a_024	chitin deacetylase
MDW-12a_G01_ MDW-12a_004	hypothetical protein	MDW-12a_E05_ MDW-12a_036	ER to Golgi transport-related protein
MDW-12a_G02_ MDW-12a_017	Heat shock protein HSS1	MDW-12a_E06_ MDW-12a_040	meiotic recombination-related protein
MDW-12a_G03_ MDW-12a_021	hypothetical protein CNBL1190	MDW-12a_E07_ MDW-12a_052	hypothetical protein AN1923.2
MDW-12a_G04_ MDW-12a_033		MDW-12a_E08_ MDW-12a_056	Heat shock protein HSS1
MDW-12a_G05_ MDW-12a_037	hypothetical protein	MDW-12a_E09_ MDW-12a_068	
MDW-12a_G06_ MDW-12a_049	hypothetical protein UM01888.1	MDW-12a_H04_ MDW-12a_041	hypothetical protein FG02690.1
MDW-12a_G07_ MDW-12a_053	Hkrlp	MDW-12a_H05_ MDW-12a_045	Heat shock protein HSS1
MDW-12a_G08_ MDW-12a_065	Heat shock protein HSS1	MDW-12a_H06_ MDW-12a_057	hypothetical protein UM01304.1
MDW-12a_G09_ MDW-12a_069	RNA-binding protein	MDW-12a_H07_ MDW-12a_061	expressed protein
MDW-12a_G10_ MDW-12a_081	Heat shock protein HSS1	MDW-12a_H08_ MDW-12a_073	hypothetical protein
MDW-12a_G11_ MDW-12a_085	hypothetical protein CNBF3470	MDW-12a_H09_ MDW-12a_077	centromere/microtubule binding protein cbf5
MDW-12a_G12_ MDW-12a_097	Heat shock protein HSS1	MDW-12a_H10_ MDW-12a_089	Heat shock protein HSS1
MDW-12a_H01_ MDW-12a_012	hypothetical protein CNBG4700	MDW-12a_H11_ MDW-12a_093	microtubule binding protein
MDW-12a_H02_ MDW-12a_025	endo-1,4-beta-mannosid ase	MDW-12a_H12_ MDW-12a_101	calnexin
MDW-12a_H03_ MDW-12a_029	chaperone		

송이균사 cDNA 클론 4차1000개 blastx 분석결과			
Seq. NO.	Homology	Seq. NO.	Homology
MEK-1a_A01_M	hypothetical protein	MEK-1a_D09_M	translation initiation
EK-1a_001	37.t00010	EK-1a_075	factor
MEK-1a_A02_M	FMR1-tm1Cgr	MEK-1a_D10_M	hypothetical protein
EK-1a_005		EK-1a_079	UM05473.1
MEK-1a_A03_M		MEK-1a_D11_M	probable dicarboxylate
EK-1a_018		EK-1a_091	carrier protein
MEK-1a_A04_M	hypothetical protein	MEK-1a_D12_M	
EK-1a_022	CNBC3680	EK-1a_095	
МЕК-1а_А05_М	alternative oxidase	MEK-1a_E01_M	hypothetical protein
ЕК-1а_034		EK-1a_003	UM03146.1
MEK-1a_A06_M	beta-actin	MEK-1a_E02_M	cytochrome P450
EK-1a_038		EK-1a_008	monooxygenase
МЕК-1а_А07_М	Cytochrome P450	MEK-1a_E04_M	UDP-glucose
ЕК-1а_050		EK-1a_024	dehydrogenase Ugdlp
MEK-1a_A08_M	hypothetical protein	MEK-1a_E05_M	AML1
EK-1a_054	CNBA1020	EK-1a_036	
MEK-1a_A09_M	putative aldehyde	MEK-1a_E07_M	gl/s-specific cyclin
EK-1a_066	dehydrogenase (NAD+)	EK-1a_052	pcll
MEK-1a_A10_M	acyl-protein	MEK-1a_E08_M	glyoxal oxidase
EK-1a_070	thioesterase-1	EK-1a_056	precursor
MEK-1a_A11_M	gamma-aminobutyric	MEK-1a_E09_M	SPCC16C4.15
EK-1a_082	acid transporter	EK-1a_068	
MEK-1a_B01_M	hypothetical protein	MEK-1a_E10_M	G protein alpha chain
EK-1a_009	Afulg14150	EK-1a_072	
MEK-1a_B02_M	transcription factor	MEK-1a_E11_M	putative transcription
EK-1a_013		EK-1a_084	factor RlmA
MEK-1a_B03_M		MEK-1a_E12_M	acetyl-CoA
EK-1a_026		EK-1a_088	C-acetyltransferase
MEK-1a_B04_M EK-1a_030	Glycylpeptide N-tetradecanoyltransfe rase Cryptococcus neoformans var. grubii	MEK-1a_F01_M EK-1a_011	glyceraldehyde-3-phosph ate dehydrogenase
MEK-1a_B05_M	conserved hypothetical protein	MEK-1a_F02_M	hypothetical protein
EK-1a_042		EK-1a_016	FG05580.1
MEK-1a_B06_M	expressed protein	MEK-1a_F04_M	hypothetical protein
EK-1a_046		EK-1a_032	UM02365.1
MEK-1a_B07_M	3'(2'),5'-bisphosphate	MEK-1a_F05_M	hypothetical protein
EK-1a_058	nucleotidase	EK-1a_044	FG08843.1
МЕК-1а_В09_М	hypothetical protein	MEK-1a_F06_M	expressed protein
ЕК-1а_074	CNBF1410	EK-1a_048	
MEK-1a_B10_M EK-1a_078	TRI7	MEK-1a_F07_M EK-1a_060	glucoamylase
MEK-1a_B11_M	Heat shock protein	MEK-1a_F08_M	translation elongation
EK-1a_090	HSS1	EK-1a_064	factor la
MEK-1a_B12_M	hypothetical protein	MEK-1a_F09_M	hypothetical protein
EK-1a_094	MG04760.4	EK-1a_076	CaO19.2163
MEK-1a_C01_M EK-1a_002	branched-chain alpha-keto acid dehydrogenase E1-alpha subunit	MEK-1a_F10_M EK-1a_080	NADH-quinone oxidoreductase
MEK-1a_C03_M	formate dehydrogenase	MEK-1a_F11_M	fumarate reductase

EK-1a_019		EK-1a_092	(NADH)
MEK-1a_C04_M EK-1a_023		MEK-1a_G01_M EK-1a_004	polysaccharide synthase
MEK-1a_C05_M	ATP-synthase	MEK-1a_G02_M	conserved hypothetical protein
EK-1a_035	delta-subunit	EK-1a_017	
MEK-1a_C07_M EK-1a_051		MEK-1a_G03_M EK-1a_021	putative laminarinase
MEK-1a_C08_M	chaperone	MEK-1a_G04_M	hypothetical protein
EK-1a_055		EK-1a_033	CNN01470
MEK-1a_C09_M EK-1a_067	sterol 24-C-methyltransferase	MEK-1a_G05_M EK-1a_037	pyruvate dehydrogenase el component alpha subunit
MEK-1a_C10_M	hypothetical protein	MEK-1a_G06_M	ubiquitin
EK-1a_071	AN0019.2	EK-1a_049	
MEK-1a_C11_M		MEK-1a_G07_M	phosphoprotein
EK-1a_083		EK-1a_053	phosphatase
MEK-1a_C12_M	hypothetical protein	MEK-1a_G08_M	acyl-CoA dehydrogenase
EK-1a_087	UM04005.1	EK-1a_065	
MEK-1a_D01_M	translation initiation	MEK-1a_G09_M	probable dicarboxylate
EK-1a_010	factor	EK-1a_069	carrier protein
MEK-1a_D02_M	hypothetical protein	MEK-1a_G12_M	hypothetical protein
EK-1a_014	AN6087.2	EK-1a_097	CNBG0340
MEK-1a_D05_M	small heat shock protein	MEK-1a_H02_M	hypothetical protein
EK-1a_043		EK-1a_025	UM05230.1
MEK-1a_D06_M EK-1a_047	squalene epoxidase 1	MEK-1a_H04_M EK-1a_041	Heat shock protein HSS1
MEK-1a_D07_M EK-1a_059	iron ion homeostasis-related protein	MEK-1a_H05_M EK-1a_045	formate dehydrogenase
MEK-1a_D08_M	3-ketoacyl-CoA	MEK-1a_H06_M	hypothetical protein
EK-1a_063	ketothiolase (Kat1)	EK-1a_057	CNBN1570
MEK-2a_A07_M EK-2a_050		MEK-1a_H07_M EK-1a_061	protein transporter
MEK-2a_A08_M	actin binding protein	MEK-1a_H08_M	fructose-1,6-bisphospha
EK-2a_054		EK-1a_073	te aldolase
MEK-2a_A09_M		MEK-1a_H09_M	hypothetical protein
EK-2a_066		EK-1a_077	UM02955.1
MEK-2a_A10_M		MEK-1a_H11_M	hypothetical protein
EK-2a_070		EK-1a_093	UM03220.1
MEK-2a_A11_M	hypothetical protein	MEK-1a_H12_M	calnexin
EK-2a_082	UM05831.1	EK-1a_101	
MEK-2a_A12_M EK-2a_086		MEK-2a_A01_M EK-2a_001	actin 1
MEK-2a_B01_M EK-2a_009	putative S-phase specific ribosomal protein cyc07	MEK-2a_A02_M EK-2a_005	
MEK-2a_B02_M	acetyl-CoA acetyl	MEK-2a_A05_M	
EK-2a_013	transferase	EK-2a_034	
MEK-2a_B04_M		MEK-2a_A06_M	cytochrome P450
EK-2a_030		EK-2a_038	monooxygenase
MEK-2a_B06_M EK-2a_046	phosphoadenosine-phosp hosulfate synthase (PAPS) bifunctional enzyme	MEK-2a_D06_M EK-2a_047	
MEK-2a_B07_M	peroxidase	MEK-2a_D07_M	phosphopyruvate
EK-2a_058		EK-2a_059	hydratase

MEK-2a_B08_M	hypothetical protein	MEK-2a_D08_M	long-chain-fatty-acid-C
EK-2a_062	UM02685.1	EK-2a_063	oA-ligase
MEK-2a_B09_M EK-2a_074	formate dehydrogenase	MEK-2a_D09_M EK-2a_075	expressed protein
MEK-2a_B10_M		MEK-2a_D10_M	hypothetical protein
EK-2a_078		EK-2a_079	CNBB1930
MEK-2a_B11_M EK-2a_090		MEK-2a_D11_M EK-2a_091	damaged DNA binding protein
MEK-2a_B12_M	hypothetical protein	MEK-2a_D12_M	
EK-2a_094	CNBC4950	EK-2a_095	
MEK-2a_C01_M	NADH-dependent flavin	MEK-2a_E03_M	cytochrome P450
EK-2a_002	oxidoreductase	EK-2a_020	
MEK-2a_C02_M	pchl	MEK-2a_E05_M	endoplasmic reticulum
EK-2a_006		EK-2a_036	protein
MEK-2a_C04_M	hypothetical protein	MEK-2a_E06_M	hypothetical protein
EK-2a_023	CNBC2350	EK-2a_040	CNB01100
MEK-2a_C05_M	G protein alpha	MEK-2a_E07_M	cytochrome P450
EK-2a_035	subunit	EK-2a_052	
MEK-2a_C06_M	3-deoxy-7-phosphoheptu	MEK-2a_E08_M	Hoblp
EK-2a_039	lonate synthase	EK-2a_056	
MEK-2a_C07_M EK-2a_051		MEK-2a_E09_M EK-2a_068	TapA protein
MEK-2a_C08_M	hypothetical protein	MEK-2a_E10_M	transport-related
EK-2a_055	UM00767.1	EK-2a_072	protein
MEK-2a_C09_M	hypothetical protein	MEK-2a_F04_M	
EK-2a_067	UM03160.1	EK-2a_032	
MEK-2a_C10_M EK-2a_071	ubiquinol-cytochrome C reductase complex core protein 2 precursor	MEK-2a_F05_M EK-2a_044	alpha-ketoglutarate-dep endent taurine dioxygenase
MEK-2a_C11_M EK-2a_083	formate dehydrogenase	MEK-2a_F06_M EK-2a_048	
MEK-2a_C12_M	ATP synthase alpha	MEK-2a_F07_M	hypothetical protein
EK-2a_087	chain	EK-2a_060	CNBA6880
MEK-2a_D01_M EK-2a_010	expressed protein	MEK-2a_F08_M EK-2a_064	SPCC1223.07c
MEK-2a_D03_M EK-2a_027		MEK-2a_F09_M EK-2a_076	
MEK-2a_D04_M	hypothetical protein	MEK-2a_F10_M	conserved hypothetical protein
EK-2a_031	CNBB4650	EK-2a_080	
MEK-2a_D05_M EK-2a_043		MEK-2a_F11_M EK-2a_092	
MEK-3a_A01_M	NADH-dependent flavin	MEK-2a_G01_M	DyP
EK-3a_001	oxidoreductase	EK-2a_004	
MEK-3a_A02_M	heat-shock protein 90	MEK-2a_G02_M	cytochrome P450
EK-3a_005		EK-2a_017	monooxygenase
MEK-3a_A03_M EK-3a_018		MEK-2a_G03_M EK-2a_021	K+/H+ antiporter
MEK-3a_A04_M EK-3a_022	T-complex protein 1, zeta subunit (tcp-1-zeta)	MEK-2a_G04_M EK-2a_033	membrane protein
MEK-3a_A05_M	SPAC21E11.06	MEK-2a_G05_M	hypothetical protein
EK-3a_034		EK-2a_037	CNK01610
MEK-3a_A06_M EK-3a_038	alpha-ketoglutarate-de pendent taurine dioxygenase	MEK-2a_G06_M EK-2a_049	mitochondrial carrier protein

MEK-3a_A07_M EK-3a_050	hypothetical protein UM02889.1	MEK-2a_G07_M EK-2a_053	squalene epoxidase 1
MEK-3a_A08_M EK-3a_054		MEK-2a_G08_M EK-2a_065	
MEK-3a_A09_M EK-3a_066	hypothetical protein CNBK0110	MEK-2a_G09_M EK-2a_069	
MEK-3a_A10_M EK-3a_070	ATP synthase alpha chain	MEK-2a_G10_M EK-2a_081	
MEK-3a_B01_M EK-3a_009	translation elongation factor la	MEK-2a_G11_M EK-2a_085	hypothetical protein UM01666.1
MEK-3a_B02_M EK-3a_013	long-chain-fatty-acid- CoA-ligase	MEK-2a_G12_M EK-2a_097	glycerol dehydrogenase
MEK-3a_B04_M EK-3a_030	hypothetical protein UM05240.1	MEK-2a_H03_M EK-2a_029	expressed protein
MEK-3a_B05_M EK-3a_042	ATP synthase alpha chain	MEK-2a_H04_M EK-2a_041	
MEK-3a_B07_M EK-3a_058	asparaginyl-tRNA synthetase	MEK-2a_H05_M EK-2a_045	phospho-2-dehydro-3-deo xyheptonate aldolase
MEK-3a_B08_M EK-3a_062	glyoxal oxidase precursor	MEK-2a_H06_M EK-2a_057	
MEK-3a_B09_M EK-3a_074	adenylosuccinate lyase	MEK-2a_H07_M EK-2a_061	hypothetical protein UM00170.1
MEK-3a_B10_M EK-3a_078	long-chain-fatty-acid- CoA-ligase	MEK-2a_H08_M EK-2a_073	polyadenylate-binding protein
MEK-3a_B11_M EK-3a_090	isocitrate lyase	MEK-2a_H09_M EK-2a_077	hypothetical protein UM02955.1
MEK-3a_B12_M EK-3a_094		MEK-2a_H10_M EK-2a_089	phenylacetyl-CoA ligase
MEK-3a_C01_M	hypothetical protein	MEK-2a_H11_M	alpha-ketoglutarate-dep
EK-3a_002	MG03030.4	EK-2a_093	endent taurine dioxygenase
EK-3a_002 MEK-3a_C03_M EK-3a_019	MG03030.4	EK-2a_093 MEK-2a_H12_M EK-2a_101	endent taurine dioxygenase
EK-3a_002 MEK-3a_C03_M EK-3a_019 MEK-3a_C04_M EK-3a_023	MG03030.4	EK-2a_093 MEK-2a_H12_M EK-2a_101 MEK-3a_E09_M EK-3a_068	endent taurine dioxygenase glucanase
EK-3a_002 MEK-3a_C03_M EK-3a_019 MEK-3a_C04_M EK-3a_023 MEK-3a_035	MG03030.4 aldehyde dehydrogenase (alddh)	EK-2a_093 MEK-2a_H12_M EK-2a_101 MEK-3a_E09_M EK-3a_068 MEK-3a_E10_M EK-3a_072	endent taurine dioxygenase glucanase carbamoyl-phosphate synthase
EK-3a_002 MEK-3a_C03_M EK-3a_019 MEK-3a_023 MEK-3a_023 MEK-3a_035 MEK-3a_035 MEK-3a_039	MG03030.4 aldehyde dehydrogenase (alddh) glutathione-disulfide reductase	EK-2a_093 MEK-2a_H12_M EK-2a_101 MEK-3a_E09_M EK-3a_068 MEK-3a_E10_M EK-3a_072 MEK-3a_E11_M EK-3a_084	endent taurine dioxygenase glucanase carbamoyl-phosphate synthase t-complex protein 1, zeta subunit (tcp-1-zeta), putative
EK-3a_002 MEK-3a_C03_M EK-3a_019 MEK-3a_023 MEK-3a_023 MEK-3a_035 MEK-3a_039 MEK-3a_C07_M EK-3a_051	MG03030.4 aldehyde dehydrogenase (alddh) glutathione-disulfide reductase sulfur metabolite repression control protein	EK-2a_093 MEK-2a_H12_M EK-2a_101 MEK-3a_E09_M EK-3a_068 MEK-3a_E10_M EK-3a_072 MEK-3a_072 MEK-3a_084 MEK-3a_E12_M EK-3a_088	endent taurine dioxygenase glucanase carbamoyl-phosphate synthase t-complex protein 1, zeta subunit (tcp-1-zeta), putative cytochrome P450 monooxygenase
EK-3a_002 MEK-3a_C03_M EK-3a_019 MEK-3a_C04_M EK-3a_023 MEK-3a_035 MEK-3a_035 MEK-3a_039 MEK-3a_051 MEK-3a_051 MEK-3a_055	MG03030.4 aldehyde dehydrogenase (alddh) glutathione-disulfide reductase sulfur metabolite repression control protein hypothetical protein UM03348.1	EK-2a_093 MEK-2a_H12_M EK-2a_101 MEK-3a_E09_M EK-3a_068 MEK-3a_E10_M EK-3a_072 MEK-3a_E12_M EK-3a_084 MEK-3a_E12_M EK-3a_088 MEK-3a_F01_M EK-3a_011	endent taurine dioxygenase glucanase carbamoyl-phosphate synthase t-complex protein 1, zeta subunit (tcp-1-zeta), putative cytochrome P450 monooxygenase conserved hypothetical protein
EK-3a_002 MEK-3a_C03_M EK-3a_019 MEK-3a_C04_M EK-3a_023 MEK-3a_035 MEK-3a_035 MEK-3a_039 MEK-3a_051 MEK-3a_051 MEK-3a_055 MEK-3a_007_M EK-3a_067	MG03030.4 aldehyde dehydrogenase (alddh) glutathione-disulfide reductase sulfur metabolite repression control protein hypothetical protein UM03348.1 C-3 sterol dehydrogenase	EK-2a_093 MEK-2a_H12_M EK-2a_101 MEK-3a_E09_M EK-3a_068 MEK-3a_E10_M EK-3a_072 MEK-3a_E11_M EK-3a_084 MEK-3a_E12_M EK-3a_088 MEK-3a_011 MEK-3a_011	endent taurine dioxygenase glucanase carbamoyl-phosphate synthase t-complex protein 1, zeta subunit (tcp-1-zeta), putative cytochrome P450 monooxygenase conserved hypothetical protein integral membrane protein 25D9-6
EK-3a_002 MEK-3a_C03_M EK-3a_019 MEK-3a_C04_M EK-3a_023 MEK-3a_035 MEK-3a_035 MEK-3a_C05_M EK-3a_051 MEK-3a_051 MEK-3a_055 MEK-3a_067 MEK-3a_071	MG03030.4 aldehyde dehydrogenase (alddh) glutathione-disulfide reductase sulfur metabolite repression control protein hypothetical protein UM03348.1 C-3 sterol dehydrogenase	EK-2a_093 MEK-2a_H12_M EK-2a_101 MEK-3a_E09_M EK-3a_068 MEK-3a_E10_M EK-3a_072 MEK-3a_E11_M EK-3a_084 MEK-3a_E12_M EK-3a_088 MEK-3a_F01_M EK-3a_011 MEK-3a_F02_M EK-3a_032	endent taurine dioxygenase glucanase carbamoyl-phosphate synthase t-complex protein 1, zeta subunit (tcp-1-zeta), putative cytochrome P450 monooxygenase conserved hypothetical protein integral membrane protein 25D9-6 DyP
EK-3a_002 MEK-3a_C03_M EK-3a_019 MEK-3a_023 MEK-3a_023 MEK-3a_035 MEK-3a_039 MEK-3a_051 MEK-3a_051 MEK-3a_055 MEK-3a_055 MEK-3a_067 MEK-3a_071 MEK-3a_071 MEK-3a_083	MG03030.4 aldehyde dehydrogenase (alddh) glutathione-disulfide reductase sulfur metabolite repression control protein hypothetical protein UM03348.1 C-3 sterol dehydrogenase endopeptidase	EK-2a_093 MEK-2a_H12_M EK-2a_101 MEK-3a_E09_M EK-3a_068 MEK-3a_E10_M EK-3a_072 MEK-3a_E11_M EK-3a_084 MEK-3a_E12_M EK-3a_088 MEK-3a_F01_M EK-3a_011 MEK-3a_F02_M EK-3a_032 MEK-3a_F05_M EK-3a_044	endent taurine dioxygenase glucanase carbamoyl-phosphate synthase t-complex protein 1, zeta subunit (tcp-1-zeta), putative cytochrome P450 monooxygenase conserved hypothetical protein integral membrane protein 25D9-6 DyP DNA-directed DNA polymerase
EK-3a_002 MEK-3a_C03_M EK-3a_019 MEK-3a_C04_M EK-3a_023 MEK-3a_035 MEK-3a_039 MEK-3a_07 MEK-3a_051 MEK-3a_051 MEK-3a_055 MEK-3a_067 MEK-3a_071 MEK-3a_071 MEK-3a_071 MEK-3a_083 MEK-3a_087	MG03030.4 aldehyde dehydrogenase (alddh) glutathione-disulfide reductase sulfur metabolite repression control protein hypothetical protein UM03348.1 C-3 sterol dehydrogenase endopeptidase hypothetical protein UM03609.1	EK-2a_093 MEK-2a_H12_M EK-2a_101 MEK-3a_E09_M EK-3a_068 MEK-3a_E10_M EK-3a_072 MEK-3a_E11_M EK-3a_084 MEK-3a_E12_M EK-3a_088 MEK-3a_F01_M EK-3a_011 MEK-3a_F02_M EK-3a_032 MEK-3a_F05_M EK-3a_044 MEK-3a_048	endent taurine dioxygenase glucanase carbamoyl-phosphate synthase t-complex protein 1, zeta subunit (tcp-1-zeta), putative cytochrome P450 monooxygenase conserved hypothetical protein integral membrane protein 25D9-6 DyP DNA-directed DNA polymerase elongation factor 3
EK-3a_002 MEK-3a_C03_M EK-3a_019 MEK-3a_C04_M EK-3a_023 MEK-3a_035 MEK-3a_035 MEK-3a_039 MEK-3a_051 MEK-3a_051 MEK-3a_055 MEK-3a_055 MEK-3a_067 MEK-3a_067 MEK-3a_071 MEK-3a_071 MEK-3a_071 MEK-3a_071 MEK-3a_083 MEK-3a_087 MEK-3a_010	MG03030.4 aldehyde dehydrogenase (alddh) glutathione-disulfide reductase sulfur metabolite repression control protein hypothetical protein UM03348.1 C-3 sterol dehydrogenase endopeptidase hypothetical protein UM03609.1 hypothetical protein CNBC3900	EK-2a_093 MEK-2a_H12_M EK-3a_068 MEK-3a_068 MEK-3a_072 MEK-3a_072 MEK-3a_072 MEK-3a_072 MEK-3a_084 MEK-3a_E12_M EK-3a_088 MEK-3a_F01_M EK-3a_011 MEK-3a_F02_M EK-3a_032 MEK-3a_F05_M EK-3a_044 MEK-3a_048 MEK-3a_060	endent taurine dioxygenase glucanase carbamoyl-phosphate synthase t-complex protein 1, zeta subunit (tcp-1-zeta), putative cytochrome P450 monooxygenase conserved hypothetical protein integral membrane protein 25D9-6 DyP DNA-directed DNA polymerase elongation factor 3 ABC multidrug transporter

EK-3a_027		EK-3a_064	CNBC5530
MEK-3a_D05_M		MEK-3a_F09_M	translation elongation
EK-3a_043		EK-3a_076	factor la
MEK-3a_D06_M EK-3a_047		MEK-3a_F10_M EK-3a_080	hexokinase
MEK-3a_D07_M	salicylate	MEK-3a_F11_M	
EK-3a_059	1-monooxygenase	EK-3a_092	
MEK-3a_D08_M	hypothetical protein	MEK-3a_F12_M	
EK-3a_063	UM06056.1	EK-3a_096	
MEK-3a_D09_M EK-3a_075	NADH-ubiquinone oxidoreductase 51 kDa subunit	MEK-3a_G01_M EK-3a_004	endosomal integral membrane protein (P24a)
MEK-3a_D10_M EK-3a_079		MEK-3a_G02_M EK-3a_017	
MEK-3a_D11_M		MEK-3a_G03_M	translation elongation
EK-3a_091		EK-3a_021	factor EF1-alpha
MEK-3a_D12_M	RAB GDP-dissociation	MEK-3a_G04_M	
EK-3a_095	inhibitor	EK-3a_033	
MEK-3a_E01_M EK-3a_003	ATP:ADP antiporter	MEK-3a_G07_M EK-3a_053	putative cyclic AMP-dependent protein kinase regulatory subunit
MEK-3a_E02_M EK-3a_008		MEK-3a_G08_M EK-3a_065	SPCC24B10.15
MEK-3a_E03_M	damaged DNA binding	MEK-3a_G09_M	
EK-3a_020	protein	EK-3a_069	
MEK-3a_E04_M EK-3a_024	cytokinesis-related protein, putative	MEK-3a_G10_M EK-3a_081	alpha-ketoglutarate-dep endent taurine dioxygenase
MEK-3a_E05_M EK-3a_036	conserved hypothetical protein	MEK-3a_G11_M EK-3a_085	
MEK-3a_E08_M EK-3a_056		MEK-3a_G12_M EK-3a_097	mitochondrial processing peptidase beta subunit
MEK-3a_H11_M EK-3a_093	conserved hypothetical protein	MEK-3a_H03_M EK-3a_029	
MEK-3a_H12_M	hypothetical protein	MEK-3a_H04_M	
EK-3a_101	UM05061.1	EK-3a_041	
MEK-4a_A01_M	hypothetical protein	MEK-3a_H05_M	formate dehydrogenase
EK-4a_001	UM03348.1	EK-3a_045	
MEK-4a_A02_M	aldehyde dehydrogenase	MEK-3a_H06_M	hypothetical protein
EK-4a_005	(alddh)	EK-3a_057	CPE1875
MEK-4a_A03_M	conserved hypothetical protein	MEK-3a_H07_M	hypothetical protein
EK-4a_018		EK-3a_061	CNBA4660
MEK-4a_A04_M EK-4a_022	ubiquitin carboxyl-terminal hydrolase	MEK-3a_H08_M EK-3a_073	sulfite reductase (NADPH)
MEK-4a_A05_M		MEK-3a_H10_M	related to multidrug
EK-4a_034		EK-3a_089	resistant protein
MEK-4a_A06_M	peptidyl-prolyl	MEK-4a_C08_M	hypothetical protein
EK-4a_038	cis-trans isomerase	EK-4a_055	CNF01570
MEK-4a_A07_M	40S ribosomal protein	MEK-4a_C09_M	conserved hypothetical protein
EK-4a_050	S0	EK-4a_067	
MEK-4a_A08_M	cytochrome P450	MEK-4a_C11_M	zinc finger protein 207
EK-4a_054	monooxygenase pc-3	EK-4a_083	
MEK-4a_A09_M	heat-induced catalase	MEK-4a_C12_M	

EK-4a_066		EK-4a_087	
MEK-4a_A10_M	hypothetical protein	MEK-4a_D01_M	hypothetical protein
EK-4a_070		EK-4a_010	UM05503.1
MEK-4a_A11_M EK-4a_082	conserved hypothetical protein	MEK-4a_D03_M EK-4a_027	cell surface receptor/MFS transporter FLVCR
MEK-4a_A12_M EK-4a_086	aspartyl proteinase	MEK-4a_D04_M EK-4a_031	
MEK-4a_B01_M EK-4a_009		MEK-4a_D05_M EK-4a_043	cytochrome P450
МЕК-4а_В02_М		MEK-4a_D06_M	hypothetical protein
ЕК-4а_013		EK-4a_047	CNBG3370
MEK-4a_B03_M		MEK-4a_D07_M	sulfate
EK-4a_026		EK-4a_059	adenyltransferase MET3
MEK-4a_B04_M	hypothetical protein	MEK-4a_D08_M	histone Hl
EK-4a_030	UM00961.1	EK-4a_063	
MEK-4a_B05_M EK-4a_042	transmembrane protein	MEK-4a_D09_M EK-4a_075	
MEK-4a_B06_M EK-4a_046		MEK-4a_D10_M EK-4a_079	vesicle budding-related protein
MEK-4a_B07_M	hypothetical protein	MEK-4a_D11_M	delta 12-fatty acid
EK-4a_058	UM01258.1	EK-4a_091	desaturase
MEK-4a_B08_M EK-4a_062		MEK-4a_D12_M EK-4a_095	
MEK-4a_B09_M	88 kDa immunoreactive	MEK-4a_E02_M	
EK-4a_074	mannoprotein MP88	EK-4a_008	
MEK-4a_B10_M EK-4a_078		MEK-4a_E03_M EK-4a_020	
MEK-4a_B11_M	hypothetical protein	MEK-4a_E04_M	zinc-finger protein
EK-4a_090	UM05612.1	EK-4a_024	zpr1
MEK-4a_B12_M	hypothetical protein	MEK-4a_E06_M	
EK-4a_094	UM01545.1	EK-4a_040	
MEK-4a_C01_M EK-4a_002		MEK-4a_E07_M EK-4a_052	malate synthase protein
MEK-4a_C02_M	hypothetical protein	MEK-4a_E08_M	cytoplasm protein
EK-4a_006	UM00309.1	EK-4a_056	
MEK-4a_C03_M	histone deacetylase	MEK-4a_E09_M	hypothetical protein
EK-4a_019	clr3	EK-4a_068	
MEK-4a_C05_M EK-4a_035		MEK-4a_E10_M EK-4a_072	isoprenoid biosynthesis-related protein
MEK-4a_C06_M EK-4a_039	protein transporter	MEK-4a_E11_M EK-4a_084	chaperone
MEK-4a_C07_M EK-4a_051		MEK-4a_E12_M EK-4a_088	Diacylglycerol kinase catalytic domain (presumed) protein
MEK-4a_H08_M	septin-1	MEK-4a_F01_M	hypothetical protein
EK-4a_073		EK-4a_011	UM05061.1
MEK-4a_H09_M	chromatin assembly	MEK-4a_F03_M	Mitogen-activated
EK-4a_077	complex protein	EK-4a_028	protein kinase CPK1
MEK-4a_H10_M	acetyl-CoA acetyl	MEK-4a_F05_M	
EK-4a_089	transferase	EK-4a_044	
MEK-4a_H11_M	MFS lactose permease, putative	MEK-4a_F06_M	Mitogen-activated
EK-4a_093		EK-4a_048	protein kinase CPK1
MEK-4a_H12_M		MEK-4a_F08_M EK-4a_064	alpha-ketoglutarate-dep endent taurine

			dioxygenase
MEK-5a_A01_M EK-5a_001	cytidine deaminase	MEK-4a_F10_M EK-4a_080	expressed protein
MEK-5a_A02_M	hypothetical protein	MEK-4a_F11_M	t-complex protein 1
EK-5a_005	UM01478.1	EK-4a_092	
MEK-5a_A03_M EK-5a_018	hypothetical protein CNBC4950	MEK-4a_F12_M EK-4a_096	conjugation with cellular fusion-related protein
MEK-5a_A04_M	putative	MEK-4a_G01_M	hypothetical protein
EK-5a_022	aspartyl-proteinase	EK-4a_004	UM02148.1
MEK-5a_A05_M	hypothetical protein	MEK-4a_G02_M	translation elongation
EK-5a_034	UM01466.1	EK-4a_017	factor la
MEK-5a_A06_M	hypothetical protein	MEK-4a_G04_M	LPD1
EK-5a_038	UM00622.1	EK-4a_033	
MEK-5a_A07_M	acetyl-CoA	MEK-4a_G05_M	
EK-5a_050	acetyltransferase	EK-4a_037	
MEK-5a_A08_M	hypothetical protein	MEK-4a_G07_M	
EK-5a_054	UM03348.1	EK-4a_053	
MEK-5a_A09_M EK-5a_066	hypothetical protein	MEK-4a_G08_M EK-4a_065	
MEK-5a_A10_M	alphal tubulin	MEK-4a_G09_M	3-hydroxyisobutyryl-CoA
EK-5a_070		EK-4a_069	hydrolase
MEK-5a_A11_M EK-5a_082	conserved hypothetical protein	MEK-4a_G12_M EK-4a_097	3-methyl-2-oxobutanoate hydroxymethyltransferas e
MEK-5a_A12_M	aryl-alcohol oxidase	MEK-4a_H01_M	
EK-5a_086	precursor	EK-4a_012	
MEK-5a_B01_M EK-5a_009	conserved hypothetical protein	MEK-4a_H03_M EK-4a_029	nucleus protein
MEK-5a_B02_M	unnamed protein	MEK-4a_H04_M	
EK-5a_013	product	EK-4a_041	
MEK-5a_B03_M	unnamed protein	MEK-4a_H05_M	heat shock protein
EK-5a_026	product	EK-4a_045	
MEK-5a_B04_M EK-5a_030	conserved hypothetical protein	MEK-4a_H06_M EK-4a_057	chitin synthase
MEK-5a_B05_M	WD repeats and SOF	MEK-4a_H07_M	mismatch repair-related protein
EK-5a_042	domain containing 1	EK-4a_061	
MEK-5a_B06_M	hypothetical protein	MEK-5a_C09_M	hypothetical protein
EK-5a_046	UM05240.1	EK-5a_067	UM03007.1
MEK-5a_B08_M	large subunit	MEK-5a_C11_M	hypothetical protein
EK-5a_062	ribosomal protein L3	EK-5a_083	UM01279.1
MEK-5a_B09_M	hypothetical protein	MEK-5a_C12_M	MALATE SYNTHASE,
EK-5a_074	CaO19.6835	EK-5a_087	GLYOXYSOMAL
MEK-5a_B10_M	hypothetical protein	MEK-5a_D01_M	hypothetical protein
EK-5a_078	CNBB4700	EK-5a_010	CNBF2210
MEK-5a_B11_M	hypothetical protein	MEK-5a_D02_M	hypothetical protein
EK-5a_090	UM04938.1	EK-5a_014	FG01923.1
MEK-5a_B12_M EK-5a_094	G protein alpha chain	MEK-5a_D03_M EK-5a_027	hypothetical membrane protein
MEK-5a_C01_M EK-5a_002	DyP	MEK-5a_D04_M EK-5a_031	hypothetical protein
MEK-5a_C02_M	hypothetical protein	MEK-5a_D05_M	hypothetical protein
EK-5a_006	UM02955.1	EK-5a_043	
MEK-5a_C03_M	hypothetical protein	MEK-5a_D06_M	hypothetical protein
EK-5a_019	MG01092.4	EK-5a_047	CNBF4370

MEK-5a_C04_M	endoplasmic reticulum	MEK-5a_D07_M	hypothetical protein
EK-5a_023	protein	EK-5a_059	
MEK-5a_C05_M	hypothetical protein	MEK-5a_D08_M	hypothetical protein
EK-5a_035	CNBE4510	EK-5a_063	CNBC3750
MEK-5a_C06_M	hypothetical protein	MEK-5a_D09_M	formate dehydrogenase
EK-5a_039	CNBA1450	EK-5a_075	
MEK-5a_C07_M	hypothetical protein	MEK-5a_D10_M	hypothetical protein
EK-5a_051	CNBF1330	EK-5a_079	FG06158.1
MEK-5a_C08_M	hypothetical protein	MEK-5a_D11_M	hypothetical protein
EK-5a_055	CNBB2520	EK-5a_091	UM04060.1
MEK-5a_G10_M	unnamed protein	MEK-5a_D12_M	hypothetical protein
EK-5a_081	product	EK-5a_095	UM00981.1
MEK-5a_G11_M	hypothetical protein	MEK-5a_E01_M	formate dehydrogenase
EK-5a_085	FG05695.1	EK-5a_003	
MEK-5a_G12_M	hypothetical protein	MEK-5a_E02_M	hypothetical protein
EK-5a_097	Afu5g04180	EK-5a_008	UM00652.1
MEK-5a_H01_M EK-5a_012	hypothetical protein	MEK-5a_E03_M EK-5a_020	conserved hypothetical protein
MEK-5a_H02_M	hypothetical protein	MEK-5a_E04_M	NADH dehydrogenase
EK-5a_025	CNBE1910	EK-5a_024	subunit 2
MEK-5a_H03_M	hypothetical protein	MEK-5a_E05_M	conserved hypothetical protein
EK-5a_029	CNBG0750	EK-5a_036	
MEK-5a_H04_M	similar to KIAA1389	MEK-5a_E06_M	hypothetical protein
EK-5a_041	protein	EK-5a_040	UM01824.1
MEK-5a_H05_M	hypothetical protein	MEK-5a_E07_M	conserved hypothetical protein
EK-5a_045	CNBA5450	EK-5a_052	
MEK-5a_H06_M	amp deaminase	MEK-5a_E08_M	hypothetical protein
EK-5a_057		EK-5a_056	UM03892.1
MEK-5a_H07_M EK-5a_061	Bacterial transcriptional activator domain	MEK-5a_E09_M EK-5a_068	hypothetical protein
MEK-5a_H08_M	hypothetical protein	MEK-5a_E10_M	conserved hypothetical protein
EK-5a_073	UM02704.1	EK-5a_072	
MEK-5a_H09_M	hypothetical protein	MEK-5a_E11_M	hypothetical protein
EK-5a_077		EK-5a_084	CNBF1330
MEK-5a_H10_M	hypothetical protein	MEK-5a_E12_M	hypothetical protein
EK-5a_089	UM03353.1	EK-5a_088	glr0482
MEK-5a_H11_M	LOC398631 protein	MEK-5a_F01_M	hypothetical protein
EK-5a_093		EK-5a_011	AN2200.2
MEK-6a_A01_M	hypothetical protein	MEK-5a_F02_M	PREDICTED: similar to
EK-6a_001		EK-5a_016	MASK-4E-BP3 protein
MEK-6a_A02_M EK-6a_005	ATP-binding protein	MEK-5a_F03_M EK-5a_028	hypothetical protein
MEK-6a_A03_M	hypothetical protein	MEK-5a_F04_M	hypothetical protein
EK-6a_018	CNBL2770	EK-5a_032	UM05831.1
MEK-6a_A04_M	predicted protein	MEK-5a_F05_M	hypothetical protein
EK-6a_022		EK-5a_044	DDB0217507
MEK-6a_A05_M	MITOCHONDRIAL	MEK-5a_F06_M	NRPS
EK-6a_034	PRECURSOR	EK-5a_048	
MEK-6a_A06_M	hypothetical protein	MEK-5a_F07_M	unnamed protein product
EK-6a_038	UM02442.1	EK-5a_060	
MEK-6a_A07_M EK-6a_050	probable dipeptidylpeptidase III	MEK-5a_F09_M EK-5a_076	ENSANGP00000021394
MEK-6a_A08_M	hypothetical protein	MEK-5a_F10_M	oxalate decarboxylase

EK-6a_054	UM04341.1	EK-5a_080	
MEK-6a_A09_M	hypothetical protein	MEK-5a_F11_M	CG5996-PB
EK-6a_066	CNBL0460	EK-5a_092	
MEK-6a_A10_M EK-6a_070	cAMP responsive element binding protein 3	MEK-5a_F12_M EK-5a_096	oxidoreductase
MEK-6a_A11_M	hypothetical protein	MEK-5a_G01_M	hypothetical protein
EK-6a_082		EK-5a_004	CNBG2440
MEK-6a_A12_M	hypothetical protein	MEK-5a_G02_M	sulfate
EK-6a_086		EK-5a_017	adenyltransferase MET3
MEK-6a_B01_M EK-6a_009	NRPS	MEK-5a_G03_M EK-5a_021	hypothetical protein
MEK-6a_B02_M EK-6a_013	putative transposase	MEK-5a_G04_M EK-5a_033	ADR117Wp
MEK-6a_B03_M	SJCHGC03138 protein	MEK-5a_G05_M	hypothetical protein
EK-6a_026		EK-5a_037	CaO19.8506
MEK-6a_B04_M	hypothetical protein	MEK-5a_G06_M	translation elongation
EK-6a_030	FG01836.1	EK-5a_049	factor la
MEK-6a_B05_M	IMP dehydrogenase	MEK-5a_G08_M	hypothetical protein
EK-6a_042		EK-5a_065	UM05869.1
MEK-6a_B06_M	hypothetical protein	MEK-5a_G09_M	putative aldehyde
EK-6a_046	UM03844.1	EK-5a_069	dehydrogenase (NAD+)
MEK-6a_B07_M	hypothetical protein	MEK-6a_G08_M	hypothetical protein
EK-6a_058	UM00913.1	EK-6a_065	UM03995.1
MEK-6a_B08_M EK-6a_062	putative cyclic AMP-dependent protein kinase regulatory subunit	MEK-6a_G09_M EK-6a_069	polyprotein
MEK-6a_B09_M	hypothetical protein	MEK-6a_G10_M	hypothetical protein
EK-6a_074	CNBK1720	EK-6a_081	
MEK-6a_B10_M	hypothetical protein	MEK-6a_G11_M	PAB1 binding protein
EK-6a_078	CNBB2060	EK-6a_085	(Pbp1)
MEK-6a_B11_M	hypothetical protein	MEK-6a_G12_M	hypothetical protein
EK-6a_090		EK-6a_097	UM03494.1
MEK-6a_B12_M	hypothetical protein	MEK-6a_H01_M	protein scd2/ral3
EK-6a_094	UM01495.1	EK-6a_012	
MEK-6a_C01_M	unnamed protein	MEK-6a_H02_M	replicase
EK-6a_002	product	EK-6a_025	
MEK-6a_C03_M	conserved hypothetical protein	MEK-6a_H03_M	hypothetical protein
EK-6a_019		EK-6a_029	UM05019.1
MEK-6a_C04_M EK-6a_023	IMP dehydrogenase	MEK-6a_H04_M EK-6a_041	alpha-ketoglutarate-dep endent taurine dioxygenase
MEK-6a_C05_M	hypothetical protein	МЕК-6а_Н05_М	Hypothetical protein
EK-6a_035		ЕК-6а_045	CBG22958
MEK-6a_C06_M EK-6a_039	LP05062p	MEK-6a_H06_M EK-6a_057	phosphoadenosine-phosph osulfate synthase (PAPS) bifunctional enzyme
MEK-6a_C07_M	unnamed protein	MEK-6a_H07_M	DigA protein
EK-6a_051	product	EK-6a_061	
MEK-6a_C08_M	hypothetical protein	MEK-6a_H08_M	hypothetical protein
EK-6a_055		EK-6a_073	UM02685.1
MEK-6a_C09_M	unnamed protein	MEK-6a_H09_M	cytochrome P450
EK-6a_067	product	EK-6a_077	
MEK-6a_C10_M	ATP dependent RNA	MEK-6a_H11_M	hypothetical protein

EK-6a_071	helicase (Dhh1	EK-6a_093	UM01460.1
MEK-6a_C11_M	hypothetical protein	MEK-6a_H12_M	endopeptidase
EK-6a_083	UM03698.1	EK-6a_101	
MEK-6a_C12_M	actin 1	MEK-7a_A02_M	hypothetical protein
EK-6a_087		EK-7a_005	UM02461.1
MEK-6a_D01_M	hypothetical protein	MEK-7a_A03_M	SJCHGC03138 protein
EK-6a_010	Afu8g01570	EK-7a_018	
MEK-6a_D02_M	hypothetical protein	MEK-7a_A04_M	hypothetical protein
EK-6a_014		EK-7a_022	SPBC4.05
MEK-6a_D03_M	hypothetical protein	MEK-7a_A05_M	acetateCoA ligase
EK-6a_027	AN1339.2	EK-7a_034	
MEK-6a_D05_M	unnamed protein	MEK-7a_A06_M	phosphate transporter
EK-6a_043	product	EK-7a_038	
MEK-6a_D06_M EK-6a_047	hypothetical protein	MEK-7a_A07_M EK-7a_050	reverse transcriptase
MEK-6a_D07_M	hypothetical protein	MEK-7a_A08_M	hypothetical protein
EK-6a_059	UM02043.1	EK-7a_054	UM05176.1
MEK-6a_D08_M	hypothetical protein	MEK-7a_A09_M	hypothetical protein
EK-6a_063	UM01834.1	EK-7a_066	
MEK-6a_D09_M	unnamed protein	MEK-7a_A10_M	hypothetical protein
EK-6a_075	product	EK-7a_070	UM00961.1
MEK-6a_D10_M EK-6a_079	Glc-6-P isomerase	MEK-7a_A11_M EK-7a_082	phosphoglycerate mutase
MEK-6a_D11_M	hypothetical protein	MEK-7a_A12_M	expressed protein
EK-6a_091	DDB0217890	EK-7a_086	
MEK-6a_D12_M	hypothetical protein	MEK-7a_B01_M	Ras2
EK-6a_095	UM02921.1	EK-7a_009	
MEK-6a_E02_M	unnamed protein	MEK-7a_B02_M	hypothetical protein
EK-6a_008	product	EK-7a_013	UM03449.1
MEK-6a_E03_M	hypothetical protein	MEK-7a_B03_M	hypothetical protein
EK-6a_020	AcidDRAFT_4187	EK-7a_026	UM02955.1
MEK-6a_E05_M EK-6a_036	hypothetical protein SPBC3D6.14c	MEK-7a_B04_M EK-7a_030	PREDICTED: similar to Mitogen-activated protein kinase kinase
МЕК-6а_Е06_М	hypothetical protein	MEK-7a_B07_M	hypothetical protein
ЕК-6а_040	MG10126.4	EK-7a_058	MG03030.4
MEK-6a_E07_M	translation elongation	MEK-7a_B08_M	hypothetical protein
EK-6a_052	factor la	EK-7a_062	UM02894.1
МЕК-6а_Е08_М ЕК-6а_056	hypothetical protein UM00279.1	MEK-7a_B09_M EK-7a_074	putative sphingolipid long chain base sensory protein
МЕК-6а_Е09_М	hypothetical protein	MEK-7a_B11_M	hypothetical protein
ЕК-6а_068	Afu2g16640	EK-7a_090	UM01892.1
MEK-6a_E10_M	hypothetical protein	MEK-7a_B12_M	hypothetical protein
EK-6a_072	DDB0205829	EK-7a_094	UM00972.1
MEK-6a_E11_M	hypothetical protein	MEK-7a_C01_M	hypothetical protein
EK-6a_084	FG07569.1	EK-7a_002	FG04853.1
MEK-6a_E12_M	hypothetical protein	MEK-7a_C02_M	hypothetical protein
EK-6a_088	CNBF3070	EK-7a_006	UM03449.1
MEK-6a_F01_M	hypothetical protein	MEK-7a_C03_M	unnamed protein product
EK-6a_011	CNBH2250	EK-7a_019	
MEK-6a_F02_M EK-6a_016	No significant similarity found.	MEK-7a_C05_M EK-7a_035	unnamed protein product

- 283 -

MEK-6a_F04_M	hypothetical protein	MEK-7a_C07_M	hypothetical protein
EK-6a_032	UM05847.1	EK-7a_051	UM04005.1
MEK-6a_F05_M EK-6a_044	hypothetical protein	MEK-7a_C08_M EK-7a_055	unnamed protein product
MEK-6a_F06_M	hypothetical protein	MEK-7a_C09_M	hypothetical protein
EK-6a_048	UM05989.1	EK-7a_067	Afulg12120
МЕК-6а_F07_М	hypothetical protein	MEK-7a_C10_M	hypothetical protein
ЕК-6а_060	CNBN0950	EK-7a_071	UM04060.1
MEK-6a_F08_M	glucuronyl hydrolase	MEK-7a_C12_M	farnesyl-diphosphate
EK-6a_064		EK-7a_087	farnesyltransferase
MEK-6a_F09_M	hypothetical protein	MEK-7a_D01_M	hypothetical protein
EK-6a_076	UM01666.1	EK-7a_010	CNE03080
MEK-6a_F10_M	hypothetical protein	MEK-7a_D02_M	hypothetical protein
EK-6a_080	Ava_4013	EK-7a_014	UM00686.1
MEK-6a_F11_M	hypothetical protein	MEK-7a_G09_M	hypothetical protein
EK-6a_092	PA3323	EK-7a_069	UM00961.1
MEK-6a_F12_M EK-6a_096	hypothetical protein CNBH1840	MEK-7a_G10_M EK-7a_081	putative cyclic AMP-dependent protein kinase regulatory subunit
MEK-6a_G01_M	hypothetical protein	MEK-7a_G12_M	hypothetical protein
EK-6a_004	CNC00130	EK-7a_097	UM03995.1
MEK-6a_G02_M	hypothetical protein	MEK-7a_H01_M	hypothetical protein
EK-6a_017	UM01172.1	EK-7a_012	UM04371.1
MEK-6a_G03_M	1-acylglycerol-3-phosp	MEK-7a_H02_M	actin 1
EK-6a_021	hate 0-acyltransferase	EK-7a_025	
MEK-6a_G04_M	delta-12 fatty acid	MEK-7a_H05_M	subtilisin-like serine protease
EK-6a_033	desaturase	EK-7a_045	
MEK-6a_G05_M	hypothetical protein	MEK-7a_H06_M	conserved hypothetical protein
EK-6a_037	UM01709.1	EK-7a_057	
MEK-6a_G06_M	hypothetical protein	MEK-7a_H09_M	hypothetical protein
EK-6a_049	MG06510.4	EK-7a_077	UM02461.1
MEK-6a_G07_M	hypothetical protein	MEK-7a_H10_M	
EK-6a_053	CNBC3900	EK-7a_089	
		MEK-7a_H11_M EK-7a_093	Dihydroorotate dehydrogenase
MEK-7a_D03_M EK-7a_027	hypothetical protein AN6853.2	MEK-7a_H12_M EK-7a_101	isoprenoid biosynthesis-related protein
MEK-7a_D04_M	hypothetical protein	MEK-8a_A02_M	hypothetical protein
EK-7a_031	CNBG2440	EK-8a_005	UM01034.1
MEK-7a_D06_M	conserved hypothetical protein	MEK-8a_A03_M	hypothetical protein
EK-7a_047		EK-8a_018	UM01478.1
MEK-7a_D07_M	CoPCNA	MEK-8a_A04_M	hypothetical protein
EK-7a_059		EK-8a_022	UM04074.1
MEK-7a_D09_M	unnamed protein	MEK-8a_A05_M	hypothetical protein
EK-7a_075	product CBS767]	EK-8a_034	CNBF3990
MEK-7a_D10_M	DNA polymerase Delta	MEK-8a_A06_M	hypothetical protein
EK-7a_079		EK-8a_038	AN9114.2
MEK-7a_D11_M	actin binding protein	MEK-8a_A07_M	hypothetical protein
EK-7a_091		EK-8a_050	FG05946.1
MEK-7a_D12_M	hypothetical protein	MEK-8a_A08_M	hypothetical protein
EK-7a_095		EK-8a_054	UM03995.1
MEK-7a_E01_M	Cytochrome P450	MEK-8a_A10_M	hypothetical protein
EK-7a_003		EK-8a_070	UM03257.1

- 284 -
| MEK-7a_E04_M | hypothetical protein | MEK-8a_A11_M | unnamed protein product |
|---------------------------|--|---------------------------|-------------------------------------|
| EK-7a_024 | UM03995.1 | EK-8a_082 | |
| MEK-7a_E06_M
EK-7a_040 | alcohol oxidase | MEK-8a_A12_M
EK-8a_086 | chitin synthase |
| MEK-7a_E07_M
EK-7a_052 | putative cyclic
AMP-dependent protein
kinase regulatory
subunit | MEK-8a_B01_M
EK-8a_009 | translation elongation
factor la |
| MEK-7a_E08_M
EK-7a_056 | expressed protein | MEK-8a_B03_M
EK-8a_026 | expressed protein |
| MEK-7a_E09_M | hypothetical protein | MEK-8a_B04_M | mannose-6-phosphate |
| EK-7a_068 | CNBH3400 | EK-8a_030 | isomerase |
| MEK-7a_E10_M
EK-7a_072 | ATP:ADP antiporter | MEK-8a_B05_M
EK-8a_042 | conserved hypothetical protein |
| MEK-7a_E11_M
EK-7a_084 | mitochondrion protein | MEK-8a_B07_M
EK-8a_058 | conserved hypothetical protein |
| MEK-7a_E12_M | hypothetical protein | MEK-8a_B08_M | hypothetical protein |
| EK-7a_088 | CNBH2170 | EK-8a_062 | MG06559.4 |
| MEK-7a_F01_M | hypothetical protein | MEK-8a_B09_M | hypothetical protein |
| EK-7a_011 | UM03995.1 | EK-8a_074 | CNBI2370 |
| MEK-7a_F03_M | MSF multidrug | MEK-8a_B11_M | hypothetical protein |
| EK-7a_028 | transporter | EK-8a_090 | UM05144.1 |
| MEK-7a_F04_M | hypothetical protein | MEK-8a_B12_M | fumarate hydratase |
| EK-7a_032 | UM03191.1 | EK-8a_094 | |
| MEK-7a_F05_M | transcriptional | MEK-8a_C01_M | hypothetical protein |
| EK-7a_044 | regulatory protein | EK-8a_002 | UM02704.1 |
| MEK-7a_F06_M
EK-7a_048 | formate dehydrogenase | MEK-8a_E03_M
EK-8a_020 | hypothetical protein |
| MEK-7a_F07_M | hst3 protein | MEK-8a_E04_M | hypothetical protein |
| EK-7a_060 | | EK-8a_024 | UM00923.1 |
| MEK-7a_F08_M | NADH kinase | MEK-8a_E05_M | response to |
| EK-7a_064 | | EK-8a_036 | drug-related protein |
| MEK-7a_F10_M | hypothetical protein | MEK-8a_E06_M | glyceraldehyde-3-phosph |
| EK-7a_080 | CNBA6490 | EK-8a_040 | ate dehydrogenase |
| MEK-7a_F11_M | Na+/H+ exchanger | MEK-8a_E07_M | RAB GDP-dissociation |
| EK-7a_092 | family protein | EK-8a_052 | inhibitor |
| MEK-7a_G02_M
EK-7a_017 | sorbitol dehydrogenase | MEK-8a_E08_M
EK-8a_056 | catalase |
| MEK-7a_G04_M
EK-7a_033 | conserved hypothetical protein | MEK-8a_E09_M
EK-8a_068 | ammonium transporter |
| MEK-7a_G05_M | hypothetical protein | MEK-8a_E10_M | hypothetical protein |
| EK-7a_037 | UM05103.1 | EK-8a_072 | MG03840.4 |
| MEK-7a_G07_M | hypothetical protein | MEK-8a_E11_M | laccase 1 |
| EK-7a_053 | MG09130.4 | EK-8a_084 | |
| MEK-7a_G08_M
EK-7a_065 | expressed protein | MEK-8a_E12_M
EK-8a_088 | CDC1 |
| MEK-8a_C02_M | unnamed protein | MEK-8a_F01_M | hypothetical protein |
| EK-8a_006 | product | EK-8a_011 | CNBF2910 |
| MEK-8a_C03_M | hypothetical protein | MEK-8a_F02_M | isocitrate lyase |
| EK-8a_019 | UM00528.1 | EK-8a_016 | |
| MEK-8a_C05_M | hypothetical protein | MEK-8a_F03_M | hypothetical protein |
| EK-8a_035 | CaO19.2163 | EK-8a_028 | CNBH0650 |
| MEK-8a_C06_M | hypothetical protein | MEK-8a_F04_M | Ranl-like protein |
| EK-8a_039 | UM02955.1 | EK-8a_032 | kinase |
| MEK-8a_C07_M | hypothetical protein | MEK-8a_F05_M | hypothetical protein |
| EK-8a_051 | CNBI3540 | EK-8a_044 | CNBB5460 |

MEK-8a_C08_M	GDP-mannose	MEK-8a_F06_M	hypothetical protein
EK-8a_055	transporter	EK-8a_048	UM00936.1
MEK-8a_C10_M	putative aldehyde	MEK-8a_F07_M	microtubule binding protein
EK-8a_071	dehydrogenase (NAD+)	EK-8a_060	
MEK-8a_C11_M	isocitrate	MEK-8a_F08_M	hypothetical protein
EK-8a_083	dehydrogenase (NAD+)	EK-8a_064	UM03995.1
MEK-8a_D01_M	hypothetical protein	MEK-8a_F09_M	unnamed protein product
EK-8a_010	UM04961.1	EK-8a_076	
MEK-8a_D02_M	hypothetical protein	MEK-8a_F11_M	cytochrome P450
EK-8a_014	UM01898.1	EK-8a_092	
MEK-8a_D03_M	hypothetical protein	MEK-8a_F12_M	hypothetical protein
EK-8a_027	UM00987.1	EK-8a_096	CNBF0040
MEK-8a_D04_M	hypothetical protein	MEK-9a_B06_M	hypothetical protein
EK-8a_031	UM03995.1	EK-9a_046	UM02894.1
MEK-8a_D06_M	hypothetical protein	MEK-9a_B07_M	hypothetical protein
EK-8a_047	CNBN0970	EK-9a_058	
MEK-8a_D07_M EK-8a_059	citrate synthase	MEK-9a_B08_M EK-9a_062	mlo2
MEK-8a_D08_M	translation elongation	MEK-9a_B09_M	hypothetical protein
EK-8a_063	factor la	EK-9a_074	UM02894.1
MEK-8a_D09_M	hypothetical protein	MEK-9a_B10_M	acid phosphatase
EK-8a_075	CNBG3800	EK-9a_078	
MEK-8a_D10_M	unnamed protein	MEK-9a_B11_M	SPCC4G3.12c
EK-8a_079	product	EK-9a_090	
MEK-8a_D11_M	hypothetical protein	MEK-9a_B12_M	adenylosuccinate lyase
EK-8a_091	UM05176.1	EK-9a_094	
MEK-8a_D12_M	hypothetical protein	MEK-9a_C01_M	hypothetical protein
EK-8a_095	CNBE2190	EK-9a_002	UM05949.1
MEK-8a_E01_M EK-8a_003	actin 1	MEK-9a_C02_M EK-9a_006	beta-glucosidase
MEK-8a_E02_M	ABR027Cp	MEK-9a_C05_M	argininosuccinate
EK-8a_008		EK-9a_035	synthetase
MEK-8a_G03_M	cytokinesis protein	MEK-9a_C06_M	hypothetical protein
EK-8a_021	SepA	EK-9a_039	CNBG2470
MEK-8a_G11_M EK-8a_085	expressed protein	MEK-9a_C08_M EK-9a_055	SPCC132.02
MEK-8a_G12_M	hypothetical protein	MEK-9a_C09_M	alpha DNA polymerase
EK-8a_097	UM02723.1	EK-9a_067	
MEK-8a_H01_M	hypothetical protein	MEK-9a_C10_M	beta galactosidase
EK-8a_012	UM04594.1	EK-9a_071	alpha
MEK-8a_H02_M	hypothetical protein	MEK-9a_C11_M	hypothetical protein
EK-8a_025	CNE03280	EK-9a_083	CNF00800
MEK-8a_H03_M EK-8a_029	putative aspartyl-proteinase	MEK-9a_C12_M EK-9a_087	dihydrolipoyllysine-res idue acetyltransferaseneofor mans JEC21]
MEK-8a_H04_M	hypothetical protein	MEK-9a_D01_M	NADPH oxidase isoform 2
EK-8a_041	UM03198.1	EK-9a_010	
MEK-8a_H05_M EK-8a_045	SPCC126.12	MEK-9a_D02_M EK-9a_014	hypothetical protein
MEK-8a_H06_M	unnamed protein	MEK-9a_D03_M	PHD-finger protein
EK-8a_057	product	EK-9a_027	
MEK-8a_H09_M	unnamed protein	MEK-9a_D04_M	unnamed protein product
EK-8a_077	product	EK-9a_031	
MEK-9a_A01_M EK-9a_001	prolidase	MEK-9a_D05_M EK-9a_043	CAP

MEK-9a_A02_M EK-9a_005	DyP	MEK-9a_D06_M EK-9a_047	WD-repeat protein
MEK-9a_A03_M	hypothetical protein	MEK-9a_D07_M	hypothetical protein
EK-9a_018	UM04610.1	EK-9a_059	CNBC4950
MEK-9a_A04_M	hypothetical protein	MEK-9a_D08_M	acyl-CoA thioester
EK-9a_022		EK-9a_063	hydrolase
MEK-9a_A05_M	hypothetical protein	MEK-9a_D09_M	hypothetical protein
EK-9a_034	CNH02380	EK-9a_075	CNB01270
MEK-9a_A06_M	SPBC215.13	MEK-9a_D10_M	hypothetical protein
EK-9a_038		EK-9a_079	UM00767.1
MEK-9a_A07_M	hypothetical protein	MEK-9a_D11_M	putative cell surface
EK-9a_050	CNBB0150	EK-9a_091	protein
MEK-9a_A09_M	hypothetical protein	MEK-9a_D12_M	hypothetical protein
EK-9a_066	CNBG0400	EK-9a_095	UM00857.1
MEK-9a_A10_M	hypothetical protein	MEK-9a_E01_M	calcineurin catalytic
EK-9a_070	CNBA2340	EK-9a_003	subunit; Ucnl
MEK-9a_A11_M	Phospho-2-dehydro-3-de	MEK-9a_E02_M	NADPH oxidase isoform 2
EK-9a_082	oxyheptonate aldolase	EK-9a_008	
MEK-9a_A12_M	DyP	MEK-9a_E03_M	hypothetical protein
EK-9a_086		EK-9a_020	CNF04820
MEK-9a_B01_M	hypothetical protein	MEK-9a_E04_M	hypothetical protein
EK-9a_009	CNBL1190	EK-9a_024	UM05176.1
MEK-9a_B02_M	hypothetical protein	MEK-9a_E05_M	adenylosuccinate lyase
EK-9a_013	UM05700.1	EK-9a_036	
MEK-9a_B03_M	hypothetical protein	MEK-9a_E06_M	DUF500 and UBA/TS-N
EK-9a_026	UM04060.1	EK-9a_040	domain protein
MEK-9a_B05_M	threonine synthase	MEK-9a_E07_M	hypothetical protein
EK-9a_042		EK-9a_052	UM05184.1
MEK-9a_F10_M	phosphoadenosine-phosp	MEK-9a_E10_M	GTP-binding protein
EK-9a_080	hosulfate synthase	EK-9a_072	Yptl
MEK-9a_F12_M	HSL1	MEK-9a_E11_M	heterotrimeric
EK-9a_096		EK-9a_084	G-protein GTPase
MEK-9a_G01_M EK-9a_004	vacuolar ATP synthase	MEK-9a_E12_M EK-9a_088	protein-vacuolar targeting-related proteinneoformans JEC21
MEK-9a_G02_M	cytokinesis-related	MEK-9a_F01_M	ketoreductase Af293
EK-9a_017	protein	EK-9a_011	
MEK-9a_G03_M	Alcohol oxidase (AOX)	MEK-9a_F02_M	DUF895 domain membrane
EK-9a_021		EK-9a_016	protein
MEK-9a_G05_M	hypothetical protein	MEK-9a_F03_M	probable dicarboxylate
EK-9a_037	CNBA6410	EK-9a_028	carrier protein
MEK-9a_G06_M	isocitrate	MEK-9a_F04_M	cyclohydrolase
EK-9a_049	dehydrogenase	EK-9a_032	
MEK-9a_G07_M	phosphoadenosine-phosp	MEK-9a_F05_M	Alg2
EK-9a_053	hosulfate synthase	EK-9a_044	
MEK-9a_G08_M	hypothetical protein	MEK-9a_F07_M	hypothetical protein
EK-9a_065	UM02955.1	EK-9a_060	UM00488.1
MEK-9a_G09_M	fructose-1,6-bisphosph	MEK-9a_F08_M	hypothetical protein
EK-9a_069	ate aldolase	EK-9a_064	UM01666.1
MEK-9a_G10_M EK-9a_081	unnamed protein product	MEK-10a_C06_ MEK-10a_039	alpha-ketoglutarate-dep endent taurine dioxygenase
MEK-9a_G11_M	hypothetical protein	MEK-10a_C07_	putative aldehyde
EK-9a_085	CNBN1150	MEK-10a_051	dehydrogenase (NAD+)
MEK-9a_G12_M	hypothetical protein	MEK-10a_C08_	carbamoyl phosphate

EK-9a_097	AN7678.2	MEK-10a_055	synthetase
МЕК-9а_Н01_М	oxidoreductase	MEK-10a_C09_	hypothetical protein
ЕК-9а_012		MEK-10a_067	UM01559.1
MEK-9a_H02_M	snoRNA binding protein	MEK-10a_C10_	pre-mRNA splicing
EK-9a_025		MEK-10a_071	factor
MEK-9a_H03_M EK-9a_029	unnamed protein product	MEK-10a_C11_ MEK-10a_083	histone acetyltransferase (Esal)
MEK-9a_H04_M EK-9a_041	elongation factor 1-gamma (ef-1-gamma)	MEK-10a_D01_ MEK-10a_010	related to a retinal short-chain dehydrogenase/reductase
MEK-9a_H05_M	aryl-alcohol	MEK-10a_D02_	QDE2 protein
EK-9a_045	dehydrogenase	MEK-10a_014	
MEK-9a_H06_M	tryptophan	MEK-10a_D04_	WD domain protein
EK-9a_057	2,3-dioxygenase	MEK-10a_031	
MEK-9a_H07_M EK-9a_061	alpha-ketoglutarate-de pendent taurine dioxygenase	MEK-10a_D05_ MEK-10a_043	mitochondrial carrier protein (Rim2)
MEK-9a_H08_M	NADH dehydrogenase	MEK-10a_D06_	cytochrome P450
EK-9a_073	(ubiquinone)	MEK-10a_047	monooxygenase
MEK-9a_H09_M	aminomethyltransferase	MEK-10a_D07_	Endo-b-N-acetylglucosam
EK-9a_077		MEK-10a_059	inidase
MEK-9a_H10_M	hypothetical protein	MEK-10a_D09_	serine/threonine
EK-9a_089	CNBB0460	MEK-10a_075	protein kinase
MEK-9a_H11_M EK-9a_093	mRNA catabolism	MEK-10a_D10_ MEK-10a_079	Hoblp
MEK-10a_A03_	aconitase	MEK-10a_D11_	UDP-glucose
MEK-10a_018		MEK-10a_091	dehydrogenase
MEK-10a_A05_	SPAC1296.04	MEK-10a_D12_	hypothetical protein
MEK-10a_034		MEK-10a_095	UM06423.1
MEK-10a_A06_	translation elongation	MEK-10a_E01_	hypothetical protein
MEK-10a_038	factor la	MEK-10a_003	Afu2g11670
MEK-10a_A07_	related to malate	MEK-10a_E03_	ATP SYNTHASE BETA CHAIN
MEK-10a_050	dehydrogenase	MEK-10a_020	
MEK-10a_A08_	CDC1	MEK-10a_E04_	heat shock
MEK-10a_054		MEK-10a_024	transcription factor 2
MEK-10a_A09_	hypothetical protein	MEK-10a_E05_	putative urease
MEK-10a_066	MG04516.4	MEK-10a_036	
MEK-10a_A10_	SPAC21E11.06	MEK-10a_E06_	putative aldehyde
MEK-10a_070		MEK-10a_040	dehydrogenase (NAD+)
MEK-10a_A12_ MEK-10a_086	conserved hypothetical protein	MEK-10a_E07_ MEK-10a_052	epoxide hydrolase
MEK-10a_B01_	gamma-glutamyltranspep	MEK-10a_E08_	related to multidrug
MEK-10a_009	tidase	MEK-10a_056	resistant protein
MEK-10a_B02_ MEK-10a_013	alpha-ketoglutarate-de pendent taurine dioxygenase	MEK-10a_E09_ MEK-10a_068	transporter
MEK-10a_B04_ MEK-10a_030	transmembrane protein	MEK-10a_E10_ MEK-10a_072	allantoinase
MEK-10a_B05_ MEK-10a_042	oxysterol binding protein	MEK-10a_H10_ MEK-10a_089	electron transporter, transferring electrons within CoQH2-cytochrome c reductase complex
MEK-10a_B06_ MEK-10a_046	rRNA processing-related protein	MEK-10a_H12_ MEK-10a_101	glutathione transferase

MEK-10a_B07_	translation elongation	MEK-11a_A01_	Glutamine synthetase
MEK-10a_058	factor la	MEK-11a_001	
MEK-10a_B08_	88 kDa immunoreactive	MEK-11a_A02_	acyl-CoA thioester
MEK-10a_062	mannoprotein MP88	MEK-11a_005	hydrolase
MEK-10a_B09_ MEK-10a_074	general RNA polymerase II transcription factor	MEK-11a_A03_ MEK-11a_018	related to multidrug resistant protein
MEK-10a_B10_	NAD-dependent formate	MEK-11a_A04_	hypothetical protein
MEK-10a_078	dehydrogenase	MEK-11a_022	UM04060.1
MEK-10a_B11_	hypothetical protein	MEK-11a_A05_	19 kDa protein having
MEK-10a_090	UM00262.1	MEK-11a_034	G-X-X-X-Q-X-W motif
MEK-10a_B12_ MEK-10a_094	3-phosphoglycerate kinase	MEK-11a_A06_ MEK-11a_038	oxidoreductase, 20G-Fe(II) oxygenase family
MEK-10a_C01_ MEK-10a_002	lipase	MEK-11a_A07_ MEK-11a_050	oxidoreductase, 20G-Fe(II) oxygenase family
MEK-10a_C02_	asparaginyl-tRNA	MEK-11a_A08_	unnamed protein product
MEK-10a_006	synthetase	MEK-11a_054	
MEK-10a_C03_	chaperone regulator	MEK-11a_A09_	putative membrane
MEK-10a_019		MEK-11a_066	protein
MEK-10a_C04_	amidohydrolase	MEK-11a_A10_	farnesyl-diphosphate
MEK-10a_023		MEK-11a_070	farnesyltransferase
MEK-10a_E11_ MEK-10a_084	phosphoadenosine-phosp hosulfate synthase (PAPS) bifunctional enzyme	MEK-11a_A11_ MEK-11a_082	alpha/beta hydrolase
MEK-10a_E12_ MEK-10a_088	hypothetical protein	MEK-11a_A12_ MEK-11a_086	Cytochrome P450
MEK-10a_F01_	IMP dehydrogenase	MEK-11a_B01_	dihydrolipoyllysine-res
MEK-10a_011		MEK-11a_009	idue acetyltransferase
MEK-10a_F02_	aminomethyltransferase	MEK-11a_B03_	hypothetical protein
MEK-10a_016		MEK-11a_026	UM04005.1
MEK-10a_F03_ MEK-10a_028	SPAC22F8.09	MEK-11a_B04_ MEK-11a_030	WD domain protein
MEK-10a_F04_	damaged DNA binding	MEK-11a_B05_	hypothetical protein
MEK-10a_032	protein	MEK-11a_042	UM04085.1
MEK-10a_F05_ MEK-10a_044	catalase	MEK-11a_B06_ MEK-11a_046	conjugation with cellular fusion-related protein
MEK-10a_F06_	hypothetical protein	MEK-11a_B07_	bZIP transcription
MEK-10a_048	UM06133.1	MEK-11a_058	factor (Fcr3)
MEK-10a_F07_	uroporphyrin-III	MEK-11a_B08_	atp2
MEK-10a_060	C-methyltransferase	MEK-11a_062	
MEK-10a_F08_	nuclear membrane	MEK-11a_B09_	metalloendopeptidase
MEK-10a_064	protein	MEK-11a_074	
MEK-10a_F09_	protein kinase	MEK-11a_B10_	cytochrome P450
MEK-10a_076		MEK-11a_078	monooxygenase pc-3
MEK-10a_F10_ MEK-10a_080	acyl-CoA dehydrogenase	MEK-11a_B11_ MEK-11a_090	hypothetical protein
MEK-10a_F11_	conserved hypothetical protein	MEK-11a_B12_	nucleoside-diphosphatas
MEK-10a_092		MEK-11a_094	e
MEK-10a_F12_	unnamed protein	MEK-11a_C01_	argininosuccinate
MEK-10a_096	product	MEK-11a_002	synthetase
MEK-10a_G02_	NADH-ubiquinone	MEK-11a_C02_	probable chaperonin of
MEK-10a_017	oxidoreductase	MEK-11a_006	the TCP1 ring complex

- 289 -

MEK-10a_G03_	hypothetical protein	MEK-11a_C03_	polysaccharide synthase
MEK-10a_021	MG05325.4	MEK-11a_019	
MEK-10a_G04_ MEK-10a_033	probable dipeptidylpeptidase III	MEK-11a_C04_ MEK-11a_023	heat shock protein
MEK-10a_G05_ MEK-10a_037	mRNA catabolism	MEK-11a_C05_ MEK-11a_035	ADL331Cp
MEK-10a_G06_	hypothetical protein	MEK-11a_C06_	cation transporter
MEK-10a_049	CNBB2700	MEK-11a_039	
MEK-10a_G07_	unnamed protein	MEK-11a_C07_	conserved hypothetical protein
MEK-10a_053	product	MEK-11a_051	
MEK-10a_G08_ MEK-10a_065	conserved hypothetical protein	MEK-11a_C09_ MEK-11a_067	conserved hypothetical protein
MEK-10a_G10_ MEK-10a_081	mitochondrial processing peptidase beta subunit	MEK-11a_C10_ MEK-11a_071	oxidoreductase, 20G-Fe(II) oxygenase family
MEK-10a_G11_	elongation factor	MEK-11a_C11_	trehalose phosphorylase
MEK-10a_085	1-alpha	MEK-11a_083	
MEK-10a_G12_ MEK-10a_097	chaperone	MEK-11a_C12_ MEK-11a_087	putative transcriptional regulator of filamentous growth
MEK-10a_H01_ MEK-10a_012	ACL034Wp	MEK-11a_D01_ MEK-11a_010	cytochrome P450
MEK-10a_H03_	hypothetical protein	MEK-11a_D02_	unnamed protein product
MEK-10a_029	UM02635.1	MEK-11a_014	
MEK-10a_H04_	ADL331Cp	MEK-11a_D03_	hypothetical protein
MEK-10a_041		MEK-11a_027	CNBE2130
MEK-10a_H05_	hypothetical protein	MEK-11a_D04_	probable dicarboxylate
MEK-10a_045	CNF02490	MEK-11a_031	carrier protein
MEK-10a_H07_	hypothetical protein	MEK-11a_D05_	O-acetylhomoserine
MEK-10a_061	AN0019.2	MEK-11a_043	sulfhydrylase
MEK-10a_H08_ MEK-10a_073	streptomycin biosynthesis protein StrI	MEK-11a_D08_ MEK-11a_063	b-carotene oxygenase
MEK-10a_H09_	related to glucan 1,	MEK-11a_D09_	HMG-box transcription
MEK-10a_077	4-alpha-glucosidase	MEK-11a_075	factor Ropl-1
MEK-11a_E06_	putative transcription	MEK-11a_D10_	hypothetical protein
MEK-11a_040	factor	MEK-11a_079	UM04613.1
MEK-11a_E07_	KH domain protein	MEK-11a_D11_	hypothetical protein
MEK-11a_052		MEK-11a_091	AN3057.2
MEK-11a_E08_	major facilitator	MEK-11a_D12_	nuclear protein BimA
MEK-11a_056	protein	MEK-11a_095	
MEK-11a_E09_ MEK-11a_068	regulator of filamentous growth and virulence Rfg1	MEK-11a_E01_ MEK-11a_003	Dihydrolipoyl dehydrogenase
MEK-11a_E11_	MFS transporter	MEK-11a_E02_	hypothetical protein
MEK-11a_084		MEK-11a_008	AN6888.2
MEK-11a_F02_	hypothetical protein	MEK-11a_E03_	delta 12-fatty acid
MEK-11a_016		MEK-11a_020	desaturase
MEK-11a_F03_ MEK-11a_028	alpha-galactosidase	MEK-11a_E04_ MEK-11a_024	putative tRNA isopentenyltransferase
MEK-11a_F04_ MEK-11a_032	glucanase	MEK-11a_H07_ MEK-11a_061	expressed protein
MEK-11a_F06_ MEK-11a_048	kinesin	MEK-11a_H08_ MEK-11a_073	tif34

- 290 -

MEK-11a_F07_ MEK-11a_060	O-acetylhomoserine sulfhydrylase	MEK-11a_H09_ MEK-11a_077	C2H2 transcription factor
MEK-11a_F09_ MEK-11a_076	Beta-hexosaminidase precursor	MEK-11a_H10_ MEK-11a_089	expressed protein
MEK-11a_F10_ MEK-11a_080	RNA polymerase II transcription factor	MEK-11a_H11_ MEK-11a_093	hypothetical protein Afulg17610
MEK-11a_F11_ MEK-11a_092	serine/threonine protein kinase MST4	MEK-11a_H12_ MEK-11a_101	putative aldehyde dehydrogenase (NAD+)
MEK-11a_F12_ MEK-11a_096	lipid metabolism-related protein	MEK-12a_A01_ MEK-12a_001	phosphopyruvate hydratase
MEK-11a_G01_ MEK-11a_004	dihydrolipoyllysine-re sidue acetyltransferase	MEK-12a_A03_ MEK-12a_018	tRNA (guanine-N7-)-methyltra nsferase
MEK-11a_G02_ MEK-11a_017	regulatory protein	MEK-12a_A04_ MEK-12a_022	alpha-ketoglutarate-dep endent taurine dioxygenase
MEK-11a_G03_ MEK-11a_021	NAD binding Rossmann fold oxidoreductase	MEK-12a_A05_ MEK-12a_034	vesicle-mediated transport-related protein
MEK-11a_G05_ MEK-11a_037	hypothetical protein UM04173.1	MEK-12a_A06_ MEK-12a_038	hypothetical protein AN9114.2
MEK-11a_G06_ MEK-11a_049	cytoplasm protein	MEK-12a_A07_ MEK-12a_050	hypothetical protein UM02955.1
MEK-11a_G07_ MEK-11a_053	Probable glutaminyl-tRNA synthetase	MEK-12a_A08_ MEK-12a_054	hypothetical protein CNK01610
MEK-11a_G08_ MEK-11a_065	hypothetical protein FG05010.1	MEK-12a_A09_ MEK-12a_066	ubiquinol-cytochrome c reductase iron-sulfur subunit
MEK-11a_G09_ MEK-11a_069	delta24(24-1) sterol reductase	MEK-12a_A10_ MEK-12a_070	formate dehydrogenase
MEK-11a_G10_ MEK-11a_081	hypothetical protein FG08756.1	MEK-12a_A11_ MEK-12a_082	hypothetical protein UM04005.1
MEK-11a_G11_ MEK-11a_085	anion transporter	MEK-12a_B01_ MEK-12a_009	3-isopropylmalate dehydratase
MEK-11a_G12_ MEK-11a_097	ssb2	MEK-12a_B02_ MEK-12a_013	ATP SYNTHASE BETA CHAIN
MEK-11a_H01_ MEK-11a_012	hypothetical protein UM06226.1	MEK-12a_B03_ MEK-12a_026	beta tubulin 2
MEK-11a_H02_ MEK-11a_025	hypothetical protein FG05773.1	MEK-12a_B04_ MEK-12a_030	unnamed protein product
MEK-11a_H03_ MEK-11a_029	G protein alpha subunit	MEK-12a_B05_ MEK-12a_042	hypothetical protein CNBA6410
MEK-11a_H04_ MEK-11a_041	alternative oxidase	MEK-12a_B06_ MEK-12a_046	actin cross-linking
МЕК-11а_Н05_ МЕК-11а_045	ATP synthase	MEK-12a_B07_ MEK-12a_058	related to monocarboxylate transporter
МЕК-11а_Н06_ МЕК-11а_057	RAB GDP-dissociation inhibitor	MEK-12a_B08_ MEK-12a_062	hypothetical protein
MEK-12a_D10_ MEK-12a_079	88 kDa immunoreactive mannoprotein MP88	MEK-12a_B09_ MEK-12a_074	putative sphingolipid long chain base sensory protein
MEK-12a_D11_ MEK-12a_091	hypothetical protein UM01953.1	MEK-12a_B10_ MEK-12a_078	hypothetical protein CNBL1190

- 291 -

MEK-12a_D12_	Coatomer subunit delta	MEK-12a_B11_	protein phosphatase 2A
MEK-12a_095		MEK-12a_090	regulatory B subunit
MEK-12a_E03_	G protein alpha	MEK-12a_B12_	putative
MEK-12a_020	subunit	MEK-12a_094	aspartyl-proteinase
MEK-12a_E04_ MEK-12a_024	DUF89 domain protein	MEK-12a_C02_ MEK-12a_006	DNA repair and meiosis protein Mrell
MEK-12a_E05_	translation elongation	MEK-12a_C03_	membrane associated
MEK-12a_036	factor la	MEK-12a_019	DnaJ chaperone
MEK-12a_E06_	acetyl-CoA acetyl	MEK-12a_C04_	ATPase
MEK-12a_040	transferase	MEK-12a_023	
MEK-12a_E08_	pyruvate kinase	MEK-12a_C05_	ATP dependent DNA
MEK-12a_056		MEK-12a_035	helicase
MEK-12a_E09_	atp2	MEK-12a_C06_	hypothetical protein
MEK-12a_068		MEK-12a_039	AN3093.2
MEK-12a_E10_	putative aldehyde	MEK-12a_C07_	2-nitropropane
MEK-12a_072	dehydrogenase (NAD+)	MEK-12a_051	dioxygenase
MEK-12a_E11_	unnamed protein	MEK-12a_C08_	t-complex protein 1
MEK-12a_084	product	MEK-12a_055	
MEK-12a_F01_ MEK-12a_011	putative S-phase specific ribosomal protein cyc07	MEK-12a_C09_ MEK-12a_067	acetateCoA ligase
MEK-12a_F03_	beta galactosidase	MEK-12a_C10_	hypothetical protein
MEK-12a_028	alpha	MEK-12a_071	FG00158.1
MEK-12a_F04_	aminotransferase,	MEK-12a_C11_	yeast bleomycin
MEK-12a_032		MEK-12a_083	hydrolase
MEK-12a_F05_ MEK-12a_044	ribonuclease H	MEK-12a_C12_ MEK-12a_087	CAIB/BAIF family enzyme
MEK-12a_F06_ MEK-12a_048	transcriptional regulatory protein	MEK-12a_D01_ MEK-12a_010	probable 26S proteasome regulatory particle chain RPT5
MEK-12a_F07_	t-complex protein 1	MEK-12a_D02_	mitochondrial ribosomal
MEK-12a_060		MEK-12a_014	protein S15
MEK-12a_F08_	O-acetylhomoserine	MEK-12a_D03_	methylmalonate-semialde
MEK-12a_064	sulfhydrylase	MEK-12a_027	hyde dehydrogenase
MEK-12a_F09_	phosphoglycerate	MEK-12a_D04_	alpha2 tubulin
MEK-12a_076	mutase	MEK-12a_031	
MEK-12a_F10_ MEK-12a_080	translation initiation factor	MEK-12a_D05_ MEK-12a_043	НурА
MEK-12a_F11_	Cytochrome P450	MEK-12a_D06_	translation elongation
MEK-12a_092		MEK-12a_047	factor
MEK-12a_F12_ MEK-12a_096	hemolysin	MEK-12a_D07_ MEK-12a_059	possible sphingolipid long chain base sensory protein
MEK-12a_G01_	hypothetical protein	MEK-12a_D09_	receptor
MEK-12a_004	UM02307.1	MEK-12a_075	
MEK-12a_G02_	NADPH oxidase isoform	MEK-12a_G03_	LacZ alpha peptide
MEK-12a_017	2	MEK-12a_021	
MEK-12a_G04_ MEK-12a_033	transporter	MEK-12a_H01_ MEK-12a_012	cytochrome P450
MEK-12a_G05_	LPD1	MEK-12a_H05_	Mn2+ homeostasis
MEK-12a_037		MEK-12a_045	protein (Perl)
MEK-12a_G06_ MEK-12a_049	acetyl-CoA acetyl transferase	MEK-12a_H06_ MEK-12a_057	mitochondrial processing peptidase beta subunit
MEK-12a_G08_	Cytosolic	MEK-12a_H07_	HD2 homeodomain
MEK-12a_065	asparaginyl-tRNA	MEK-12a_061	mating-type protein

- 292 -

	synthetase		
MEK-12a_G09_ MEK-12a_069	ATP synthase alpha chain	MEK-12a_H09_ MEK-12a_077	heat-shock protein 90
MEK-12a_G10_ MEK-12a_081	G-protein alpha subunit Gpa3	MEK-12a_H10_ MEK-12a_089	phenylalanine ammonium lyase
MEK-12a_G11_ MEK-12a_085	squalene monooxygenase	MEK-12a_H11_ MEK-12a_093	endopeptidase
MEK-12a_H12_ MEK-12a_101	beta galactosidase alpha		

주 의 1. 이 보고서는 농림부에서 시행한 농림기술개발사업의 연구보고서입니다. 2. 이 보고서 내용을 발표할 때에는 반드시 농림부에서 시행한 농림기술개발 사업의 연구결과임을 밝혀야 합니다. 3. 국가과학기술 기밀유지에 필요한 내용은 대외적으로 발표 또는 공개하 여서는 아니됩니다.