최 종 연구보고서

호냉성 유당분해효소와 Nanofiltration을 이용한 저감미 유당분해우유의 개발

> 연구기관 상지대학교

농 림 부

최종보고서

2002년도 농림기술개발사업에 의하여 완료한 "호냉성 유당분해 효소와 nanofiltration을 이용한 저감미 유당분해우유의 개발"에 관한 연구의 최종보고서를 별첨과 같이 제출합니다.

첨부 : 1. 최종보고서 10부

2. 최종보고서 디스켓 1매

2005. 10. 14.

주관연구기관 : 상지대학교

총괄연구책임자 : 최 석 호 (인)

주관연구기관장 : 상지대학교 총장 (직인)

농림부장관귀하

제 출 문

농림부 장관 귀하

본 보고서를 "호냉성 유당분해효소와 nanofiltration을 이용한 저감미 유당분해우유의 개발"과제의 최종보고서로 제출합니다.

2005년 10월 14일

주관연구기관명 : 상지대학교 총괄연구책임자 : 최 석 호 협동연구책임자 : 안 종 건 연 구 원 : 원 향 례 이 승 배

요 약 문

I. 제 목 : 호냉성 유당분해효소와 nanofiltration을 이용한 저감미 유당분해우유의 개발

II. 연구개발의 목적 및 필요성

유당분해우유는 국내 많은 소비자들이 경험하는 유당소화장애를 예방할 수 있는 우유이나 단맛이 강하기 때문에 기호성이 높지 못하다. 또한 유당분해처리 후에 가열하여 살균하면 갈변화에 의한 영양소의 손실을 유발하고 이취를 형성 할 수 있다. 감미의 원인이 되는 포도당과 galactose를 nanofiltration 막여과법을 이용하여 일부 제거하여 우유와 동일한 맛을 가질 수 있다. 포도당과 galactose 을 투과시키고 칼슘, 비타민 및 단백질을 선택적으로 농축할 수 있는 nanofiltration 여과막을 선발하여 이용하면 칼슘과 인 및 비타민의 손실을 최소 한으로 할 수 있으리라고 예상한다.

원유를 호냉성 유당분해효소로 처리하여 생산된 유당분해우유를 열처리하여 효소와 미생물을 불활성화시키고 nanofiltration하여 농축하고 물을 첨가하여 원 래의 부피로 환원하고 살균하여 충전하여 저감미 유당분해우유를 생산할 수 있 다. 위와 같은 공정으로 저감미 유당분해우유를 생산하기 위하여 냉장온도에서 원유의 유당을 분해할 수 있는 호냉성 β-galactosidase가 필요하다. 자연계에 존재 하는 유당분해능력이 있는 저온성 미생물로부터 호냉성 β-galactosidase를 분리하 여 실용화하기 위하여 특성을 조사하고 분자유전학적 방법을 이용하여 대량 생 산할 수 있는 기술을 개발할 필요가 있다.

유당분해능력이 있는 Enterobacteriaceae에 속하는 균주들과 효모를 분리하여 호냉성 pegalactosidase의 생산과 특성을 조사할 필요가 있다. 또한 재조합 단백질 을 대량 생산하는 효모인 *Pichia pastoris*에 호냉성 pegalactosidase를 *Pichia pastoris의* chromosomal DNA에 삽입하므로서 호냉성 유당분해효소를 안정하게 대 량으로 생산할 필요가 있다.

본 연구는 첫째로 유당분해우유를 nanofiltration으로 여과 농축한 후 환원하 여 제조한 저감미 유당분해우유의 화학적 조성을 조사하고 관능검사를 실시하여 감미를 비교하였으며 실험동물 사양실험을 실시하여 영양학적 가치를 조사하는 것 이었다. 둘째로 호냉성 β-galactosidase를 생산하는 세균과 효모를 각각 부 식토양과 목장원유에서 분리하여 효소의 순수정제하고 특성을 조사하는 것이었 다. 셋째로 호냉성 β-galactosidase의 유전자를 *Pichia pastoris*에 형질전환 하여 유전자의 구조를 조사하였다.

III. 연구 개발 내용 및 범위

가. Nanofiltration을 이용한 저감미 유당분해우유의 개발

원유를 β-galactosidase(Validase)를 4℃로 24 시간 처리하여 유당분해우 유를 제조하였다. 제조된 유당분해우유를 65℃에서 10분 열처리한 후에 nanofiltraion membrane을 이용하여 여과하여 농축하였다. 원유와 농축 전과 후의 유당분해우유의 성분을 조사하여 우유 성분들의 농축도를 조사하였다. 또한 원유를 β-galactosidase(Validase)를 4℃로 40시간 처리하여 유당분해우유를 제조하여 유당을 거의 완전히 분해하였다. 제조된 유당분해우유를 65℃에서 10 분 열처리한 후에 nanofiltraion membrane을 이용하여 여과하여 농축하고 물을 가하여 원래의 부피로 환원하였다. 환원된 유당분해우유를 65℃에서 30분간 살 균하여 저감미 유당분해우유를 제조하였다. 제조된 저감미 유당분해우유의 화학 성분함량과 감미를 조사하였다.

나. Nanofiltration을 이용하여 제조된 저감미 유당분해우유를 공급한 흰쥐의 체 내 칼슘 이용성

유당분해우유를 nanofiltration 막여과법을 이용하여 농축한 유당분해우유를 실험동물에 공급하여 유당분해우유의 영양학적 문제점과 체내 칼슘이용성을 검 토하고자 하였다. 체중이 약 180g되는 Sprague-Dawley 중 수컷 횐쥐 200마 리를 2그룹으로 나눈 후 칼슘급원으로 탈지분유와 유당분해 분유를 공급하고 무 기질은 AIN-93 형태로 공급하여 6주간의 사양시험을 시행한 후 혈액의 칼 슘과 인 함량, 혈당, 크레아티닌 농도, ALP의 활성, 간과 신장의 무게, 칼슘과 회분의 함량, 뼈의 칼슘과 회분의 함량, 길이, 무게와 칼슘의 이용성을 측정하였 다.

- 3 -

다. *Pantoea* sp. B-1에서 분리한 호냉성 β-galactosidase의 생화학적 특성 및 우 유 내 유당분해 활성

국내에서 겨울철에 부식토양에서 P-galactosidase 활력이 있는 *Pantoea* sp. B-1을 분리하였다. 이 균주의 세포 추출물로부터 DEAE-Sephacel chromatography와 affinity chromatography를 이용하여 P-galactosidase를 순수분 리하였다. 이 효소의 생화학적 특성, 효소학적 특성과 우유의 유당분해능력을 조 사하였다.

라. Candida kefyr에서 분리한 호냉성 i-galactosidase의 생화학적 특성

국내 목장에서 수집한 우유에서 ₱-galactosidase 활력이 있는 *Candida kefyr* 을 분리하여 세포추출물로부터 원심분리, DEAE-Sephacel chromatography, hydroxyapatite chromatography 및 Sephpacryl H300 chromatography를 이용하 여 ₱-galactosidase를 순수분리하였다. 이 효소의 생화학적 효소학적 특성을 조사 하였다.

마. 호냉성 유당분해효소생산균주의 분리 및 선발

경기도 포천군 북부지역 목장 원유시료에서 163 균주를 분리하였고 네팔의 히말라야 39개 지역의 토양에서 148 균주를 획득하였다. 알래스카 Barrow 11개 지역에서 45균주, Fairbanks 13개 지역에서 53균주, Nome 15개 지역에서 60균주 를 획득하였으며, 캐나다 Ontario 지역에서 모두 유당분해력이 없는 것으로 나타 나 선발하지 않았다. 남극해수와 토양시료 22개에서 25균주를 선발하였다, 모두 호냉성 유당분해능이 있는 균주 496종을 분리하였다

바. 호냉성 유당분해효소 유전자 분리 및 유전자 구조

호냉성 유당분해효소를 생산하는 10균주를 대상으로 Quiagen Kit를 이용하 여 chromosomal DNA분리하여 Sau3A1으로 부분분해하여 pRSET 에 각각 삽 입한 후 *E. coli* Top 10F'에 전이하고 X-gal이 포함된 배지에서 X-gal을 분해 한 청색colony 형성으로 발현을 판단하였다.

사 호냉성 유당분해 효소의 생산체계 확립 및 재조합 유당분해효소의 유당분해

- 4 -

E. coli에서 유당분해효소 유전자가 소실되는 것을 방지하기 위하여 Pichia pastoris 에 전이하여 발현을 시도하여 효소 생산 체계를 확립하고자 하였다. 재 조합 유당분해효소의 우유에서의 유당분해활성을 조사하였다.

IV. 연구개발결과 및 활용에 대한 건의

가. Nanofiltration을 이용한 저감미 유당분해우유의 개발

유당분해효소로 우유의 유당을 분해한 후 nanofiltration으로 1.6의 농축율로 농축한 후 가수하여 제조한 나노여과유당분해우유는 우유가 원유와 유사한 감미 를 가지고 있었으며 칼슘과 인이 각각 칼슘과 인이 각각 97.5mg%과 92.9mg%로 시판되고 있는 한외여과유당분해우유의 78.1mg%과 69.8mg% 보다 높았다. 이 연구에서 개발된 나노여과유당분해우유는 시판되고 있는 한외여과유당분해우유 보다 칼슘과 인의 손실이 적은 우수한 방법이다.

나. Nanofiltration을 이용하여 제조된 저감미 유당분해우유를 공급한 흰쥐의 체 내 칼슘 이용성

유당 분해우유가 탈지우유에 비해 변을 통한 칼슘의 배설량은 높게 나타났으 나 혈청의 칼슘, 인, 크레아티닌 농도와 ALP 활성, 간과 신장의 무게와 칼슘 함 량, 뼈의 무게, 길이에도 차이가 없는 것으로 나타났다. 단위 몸무게(100g)당 뼈 의 무게는 유당분해우유 공급군이 유의하게 높게 나타났으나(p<0.05), 회분의 양은 탈지우유군이 높게 나타났다(p<0.05). 그러나 회분의 양과 뼈의 강도가 반드시 일치하지는 않는다는 보고들이 있으므로 이 결과는 크게 칼슘의 이용성 에 주요한 의미를 부여한다고는 볼 수 없다. 이와 같은 결과는 nanofiltration 막여과법을 이용하여 농축한 후 포도당과 갈락토스의 비율을 적절히 조절하여 개발된 유당분해우유가 영양적으로 생체에 미치는 영향이 탈지우유군에 비해 떨어지지 않고 유당불내증을 예방할 수 있는 유익한 식품으로의 사용가능성을 보여주고 있다.

다. *Pantoea* sp. B-1에서 분리한 β-galactosidase의 생화학적 특성 및 우유 내 유당분해 활성 Pantoea sp. B-1의 세포 추출물에 비해 순수분리된 β-galactosidase는 28.5배 효소활성도가 높았으며 ONPG 가수분해 활력은 30℃에서 156.8µmol/min・mg이 었다. β-galactosidase의 반응 최적 온도는 45℃이고 최적 pH는 5.5~7.5이었다. β -galactosidase의 열안정성을 조사한 결과 45℃이상의 온도에서 불활성화 되는 것으로 나타났다. 다른 β-galactosidase와의 우유 내 유당분해능력을 비교한 결과 Pantoea spp. B-1에서 분리된 β-galactosidase는 대장균의 효소보다 활력이 높았 으나 Kluyveromyces lactis 효소(Validase)보다는 상대적으로 낮았다.

라. Candida kefyr Y-3에서 분리한 호냉성 ₽-galactosidase의 생화학적 특성

Candida kefyr의 세포추출물에 비해 정제된 β-galactosidase는 1,200배 효소활 성도가 높았으며 회수율은 20%이었다. 정제된 β-galactosidase의 최적 pH는 pH 7.5였고, 최적 온도는 35℃였다. 열 안정성은 20℃와 25℃에서의 활성은 120분이 경과한 후에도 감소하지 않고 유지되었으나, 30℃에서는 점점 감소하였고 40℃와 45℃에서는 10분 이후에 활성이 모두 감소하여 거의 나타나지 않았다.

마. 호냉성 유당분해효소생산균주의 분리 및 선발

유당 분해능력이 매우 우수하다고 판단되는 균주를 우유시료에서는 MB26-4, MC14-3, 네팔 히말라야의 HB20-4와 HB27-1를 알라스카 북극지역에서는 B1-2, F5-1, F10-5, N12-5, 남극시료에서는 S7-1, S14-2를 최종 10종을 선발하 였다. 선발된 10종의 균주를 형태학적, 이화학적특성, 지방산의 조성 및 16S rDNA sequencing의 결과에 의해 MB26-4는 *Hafnia alvei*, MC14-3는 *Hafnia alvei*, HB20-4는 *Arthrobacter psychrophilus*, HB27-1는 *Hafnia alvei*, B1-2는 *Serratia grimesii*, F5-1 *Hafnia alvei*, F10-5 *Hafnia alvei*, N12-5 *Rhanella aquaticus*, S7-1은 *Pseudoalteromonas sp.*, S14-2는 *Hafnia alvei*, 로 각각 동 정되었다. 분리한 10종의 적정 pH, 적정온도, 온도 안정성등을 조사하였다.

바. 호냉성 유당분해효소의 유전자 분리 및 유전자 구조

MC14-3(A1), MC14-3(A3), N12-5, MB26-4에서 p-galactosidase유전자를 분 리하였으며, 분리한 유전자들을 각각 MC14-3(A1)p-gal, MC14-3(A3)p-gal, N12-5p-gal 라고 명명하고 염기서열을 결정하였다. MB26-4에서 유전자 부분 단 편이 분리 되었으며 MC14-3(A1)p-gal 과 동일하였다. MC14-3(A1)p-gal은 888 염기로 유전자의 N 말단 부위의 부분 유전자가 분리되었으며 cloning에 사용된 pRSET C 의 종결 코돈을 포함하는 109bp의 단편이 C 말단 부위를 구성하고 있 다. MC14-3(A3)p-gal 은 918 염기쌍으로 구성되어 있었다. MC14-3(A1)p-gal p -galactosidase의 최적온도는 37℃ 최적 pH는 6.8이며, MC14-3(A3)p-gal p -galactosidase의 최적온도는 37℃, 최적 pH는 7.2이다.

사 호냉성 유당분해 효소의 생산체계 확립 및 재조합 유당분해효소의 우유의 유 당분해

[▶]-Galactosidase 유전자, MC14-3(A1)[▶]-gal 을 PCR에 의해 복제한 후 YT&A 에 삽입한 후 HindⅢ 로 분해하여 MC14-3(A1)[▶]-ga을 pRSET C 에 삽입하였다. pRSET C를 EcoR I 으로 분해하여 MA14-3(A1)[▶]-gal 을 포함하는 DNA 단편을 pPICZn C 에 삽입하여 *Pichia pastoris* 에 전이하는데 사용하였다. Lac-MA14-3(A1)가 삽입된 pPICZn C이 *Pichia pastoris* X-33의 chromosomal DNA에 integration 된 경우 *Pichia pastoris* X-33의 chromosomal DNA 의 3"AOX1 primer와 5'AOX1 primer를 사용하여 PCR로 확인하였다. MC14-3(A1)[▶] -gal이 전이된 *Pichia pastoris* X-33을 BMMY broth에서 20℃혹은 30℃에서 발 현을 시도 했으나 발현되지 않았다. 재조합 유당분해효소를 이용하여 우유의 유 당을 분해하였다.

아. 활용에 대한 건의

본 연구개발의 결과는 원유로부터 저감미 유당분해우유를 생산하기 위한 새 로운 공정으로 사용될 수 있다. 핀랜드에서 개발하여 특허등록이 된 한외여과법 에 비해 본 연구에 특허출원한 nanofiltration 방법이 차이점과 우수성이 인정이 되어 등록이 되면 산업적으로 응용할 수 있다.

본 연구에서 개발한 Pantoea의 p-galactosidase는 시판되는 Klyveromyces lactis의 p-galactosidase보다 내열성이 강하여 유당분해우유를 제조하기 위하여 사용하기 보다는 발효유를 제조에 사용하는 것이 바람직하다. 반면에 Candida kefyr에서 분리한 p-galactosidase는 열안정성이 낮아 냉장온도에서 활력이 높은 효소로 밝혀져 실용화를 위한 연구가 필요하다. M14-3(A1)⁶-gal 과 M14-3(A3)⁶-gal 의 ⁶-galactosidase가 실용성이 있을 것 으로 판단되며 이의 실용화를 추진할 것이다. 실용화하기 위해서는 고정화가 필 요하며, 원유에 존재하는 미생물 및 미생물이 분비하는 단백질 분해효소에 의한 영향이 검토 되어야 할 것이다.

SUMMARY

I. The purpose of Study

The purpose of study is to develop lactose-hydrolyzed milk with low sweetness by using nanofiltration method, to evaluate nutritional quality of lactose-hydrolyzed milk in mouse feeding experiment, to purify and characterize psychophillic p-galactosidase from *Pantoea* spp. and *Candida kefyr*. and to characterize p-galactosidase gene cloned into *Pichia pastoris*.

II. Results and Conclusion

1. Development of lactose-hydrolyzed milk with low sweetness by using nanofiltration

lactose-hvdrolvzed milk concentrated 1.6 times was bv using nanaofiltration membrane and reconstituted to original volume by adding water. The reconstituted lactose-hydrolyzed milk had similar sweetness as milk. The contents of calcium, phosphorus, and vitamin B_2 in the reconstituted lactose-hydrolyzed milk were 96%, 91%, and 80% of those of milk, respectively. However The contents of calcium, phosphorus, and vitamin B₂ in commercial reconstitute lactose-hydrolyzed milk were 92%, 81%, and 80% of those of milk. The reconstituted lactose-hydrolyzed milk was proved to be nutritionally better than the commercial reconstituted lactose-hydrolyzed milk.

2. In vivo Utilization by white rat of Calcium in Lactose-Hydrolyzed Milk is concentrated by using Nanofiltration

Twenty of Sprague–Dawley male rats with the weight of 180g each were divided into two groups. Milk powder and lactose hydrolyzed milk powder were provided as the source of protein and calcium. Mineral mixture adjusted to the AIN–93 was provided in the feed for six weeks. Calcium utilization was measured by metabolic experiment. There was no difference between the experimental groups in diet intake, body weight and FER. There was no difference between the experimental groups in the contents of calcium, phosphorus and creatinin in serum, and the ALP activity. There was no difference in the contents of calcium of liver and kidney. There was no difference between the experimental groups in the weight and length of the bone and its calcium content. However, the weight of bone per unit of body weight(100g) was significantly high in the group that lactose hydrolyzed milk was $provided(p \le 0.05)$ and the content of ash of the bone was significantly high in the group provided with milk powder (p<0.05). The blood glucose was not significantly different, however it increased gradually in the group provided with lactose hydrolyzed milk powder during experimental period. The excretion of calcium in feces was significantly high in the group that lactose hydrolyzed milk powder was provided(p < 0.05), and there was no difference between the experimental groups in calcium intake, urinary calcium excretion, calcium absorption, calcium retention. These results showed that the lactose-hydrolyzed milk powder is no less nutritionally effective on the body than milk powder.

3. Biochemical Characteristics and Lactose Hydrolysis Activity in Milk of Psychrotrophic *B*-Galactosidase from *Pantoea* sp. B-1

The specific enzyme activity of the purifed β -galactosidase was 28.5 times higher than that of cell-free extract of *Pantoea* sp. B-1 isolated from humus soil. The specific ONPG-hydrolyzing activity at 30°C of the purified enzyme was 156.8µmol/min · mg. The optimum temperature and pH for the enzyme activity was 45°C and 5.5~7.5, respectively. The enzyme activity was inactiviated at the temperature above 45°C. The lactose-hydrolyzing activity of the purified β -galactosidase in the milk was higher than that from *Excherichia coli* and lower than Validase from *Kluyveromyces lactis*.

4. The purification and characterization of *p*-galactosidase from *Candida kefyr* Y-3

The specific enzyme activity of the purifed p-galactosidase was 1,200

times higher than that of cell-free extract of *Candida kefyr* isolated from milk. The specific ONPG-hydrolyzing activity at 30°C of the purified enzyme was 113.6μ mol/min · mg. The optimum temperature and pH for the enzyme activity was 35°C and 7.5, respectively. The enzyme activity was stable at 2 0°C and inactiviated above 30°C.

5. Isolation and selection of p-galactosidase-producing psychrophilic bacteria

Ten strains of **p**-Galactosidase-producing psychrophilic bacteria was isolated from farm milk in Korea, Himalaya Nepal, Northern region of Alaska, and antiarctic area. There were identified six strains of *Hafnia alvei*, *Arthrobacter psychrophilus*, *Serratia grimesii*, *Rhanella aquaticus*, *Pseudoalteromonas sp*. Their optimum temperature and pH and heat stability was determined.

6. Isolation and characterization of psychrophilic p-galactosidase gene

The β -galactosidase gene was isolated from the bacterial strains of MC14-3(A1), MC14-3(A3), N12-5 and MB26-4. The isolated genes were named MC14-3(A1) β -gal, MC14-3(A3) β -gal, and N12-5 β -gal and their DNA sequences were determined. The gene isolated from MB26-4 was identical with MC14-3(A1) β -gal. The gene of MC14-3(A1) β -gal consisted of 888 bp containing N-terminal region of the β -galactosidase gene and 109 bp containing C-terminal region of pRSET C including terminal codon. MC14-3(A3) β -gal contains 918 bp. The optimum tempeature and pH of β -galactosidase of MC14-3(A1) β -gal were 37°C and 6.8, respectively. The optimum temperature and pH of β -galactosidase were 37°C and 7.2, respectively.

7. Production of recombinant palactosidase and lactose hydrolysisL

The gene of MC14-3(A1)^[]-gal was synthesized by PCR and inserted into YT&A vector. The inserted vector was digested with HindIII and

MC14-3(A1)^[]-ga was inserted into pRSET C. The pRSET C vector was digested with EcoR I and the resultant DNA fragment containing MA14-3(A1)^[]-gal was inserted into pPICZ^[] C. The vector was used to transform *Pichia pastoris*. pPICZ^[] C containing Lac-MA14-3(A1) was integrated into chromosomal DNA of *Pichia pastoris* X-33. The integrated *Pichia pastoris* X-33 which was determined to containing the gene using PCR didnot produce the enzyme in BMMY broth at 20°C and 30°C. The characteristics of lactose hydrolysis by recombinant ^[]-galactosidase was determined.

CONTENTS

Chapter 1. Indtroduction and scope of study oject 16	6
Chapter 2. Development of lactose-hydrolyzed milk with low sweetness by using nanofiltration 1	17
Chapter 3. In vivo Utilization by white rat of calcium in lactose-hydrolyze milk concentrated by using nanofiltration26	ed 6
Chapter 4. Biochemical Characteristics and Lactose Hydrolysis Activity in Milk of Psychrotrophic ^B -Galactosidase from <i>Pantoea</i> sp. B-13	6
Chapter 5. The purification and characterization of p-galactosidase from <i>Candida kefyr</i> Y-35	5
Chapter 6. Isolation and selection of p-galactosidase-producing psychrophil bacteria	lic 8
Chapter 7. Isolation and characterization of psychrophilic palactosidase ger	ne 9
Chapter 8. Production of <i>B</i> -galactosidase by integration into chromosome of <i>Pichia pastoris</i>	of 5
Chapter 9. Lactose hydrolysis by recombinant p-galactosidase192	2
Chapter 10. Achievement of study and plan for application of study results	97

제	1	장	연구개발과제의 개요	- 16
제	2	장	Nanofiltration을 이용한 저감미 유당분해우유의 개발	17
			제1절 서론	17
			제2절 재료 및 방법	19
			제3절 결과 및 고찰	20
			제4절 요약	24
			제5절 참고문헌	25
제	3	장	Nanofiltration을 이용하여 제조된 저감미 유당분해우유를 공급한 :	흰쥐의
체	내	칼	슘 이용성	26
			제1절 서론	26
			제2절 재료 및 방법	27
			제3절 결과 및 고찰	30
			제4절 요약	33
			제5절 참고문헌	33
제	4	장	Pantoea sp. B-1에서 분리한 호냉성 β-galactosidase의 생화학적	특성
및	ዯ	ት	내 유당분해 활성	36
			제1절 서론	36
			제2절 재료 및 방법	37
			제3절 결과 및 고찰	40
			제4절 요약	52
			제5절 참고문헌	52
제	5	장	<i>Candida kefyr</i> Y-3에서 분리한 호냉성 ௺-galactosidase의 생화학적	Ì
특	성-			55
			제1절 서론	55
			제2절 재료 및 방법	56
			제3절 결과 및 고찰	59
			제4절 요약	65
			제5절 참고문헌	66

목 차

제 6 전). 호냉성 유당분해효소 생산균주의 분리 및 선발	68
	제1절 서론	68
	제2절 재료 및 방법	69
	제3절 결과 및 고찰	74
	제4절 요약	168
제 7 전) 호냉성 유당분해효소의 유전자의 분리 및 유전자 구조	169
	제1절 서론	169
	제2절 재료 및 방법	169
	제3절 결과 및 고찰	173
	제4절 요약	184
제 8 전) 호냉성 유당분해 효소의 생산체계 확립	185
	제1절 서론	185
	제2절 재료 및 방법	185
	제3절 결과 및 고찰	186
	제4절 요약	191
제 9 전	ᅡ 재조합 유당분해 효소에 의한 우유 유당 분해	192
	제1절 서론	192
	제2절 재료 및 방법	192
	제3절 결과 및 고찰	193
	제5절 참고문헌	194
제 10	장 목표 달성도 및 연구개발결과의 활용계획	197

제 1 장 연구개발과제의 개요

유당분해우유는 국내 많은 소비자들이 경험하는 유당소화장애를 예방할 수 있는 우유이나 단맛이 강하기 때문에 기호성이 높지 못하다. 또한 유당분해처리 후에 가열하여 살균하면 갈변화에 의한 영양소의 손실을 유발하고 이취를 형성 할 수 있다. 감미의 원인이 되는 포도당과 galactose를 nanofiltration 막여과법을 이용하여 일부 제거하여 우유와 동일한 맛을 가질 수 있다. 포도당과 galactose 을 투과시키고 칼슘, 비타민 및 단백질을 선택적으로 농축할 수 있는 nanofiltration 여과막을 선발하여 이용하면 칼슘과 인 및 비타민의 손실을 최소 한으로 할 수 있으리라고 예상한다.

원유를 호냉성 유당분해효소로 처리하여 생산된 유당분해우유를 열처리하여 효소와 미생물을 불활성화시키고 nanofiltration하여 농축하고 물을 첨가하여 원 래의 부피로 환원하고 살균하여 충전하여 저감미 유당분해우유를 생산할 수 있 다. 위와 같은 공정으로 저감미 유당분해우유를 생산하기 위하여 냉장온도에서 원유의 유당을 분해할 수 있는 호냉성 β-galactosidase가 필요하다. 자연계에 존재 하는 유당분해능력이 있는 저온성 미생물로부터 호냉성 β-galactosidase를 분리하 여 실용화하기 위하여 특성을 조사하고 분자유전학적 방법을 이용하여 대량 생 산할 수 있는 기술을 개발할 필요가 있다.

유당분해능력이 있는 Enterobacteriaceae에 속하는 균주들과 효모를 분리하여 호냉성 p-galactosidase의 생산과 특성을 조사할 필요가 있다. 또한 재조합 단백질 을 대량 생산하는 효모인 *Pichia pastoris*에 호냉성 p-galactosidase를 *Pichia pastoris의* chromosomal DNA에 삽입하므로서 호냉성 유당분해효소를 안정하게 대 량으로 생산할 필요가 있다.

본 연구는 첫째로 유당분해우유를 nanofiltration으로 여과 농축한 후 환원하 여 제조한 저감미 유당분해우유의 화학적 조성을 조사하고 관능검사를 실시하여 감미를 비교하였으며 실험동물 사양실험을 실시하여 영양학적 가치를 조사하는 것 이었다. 둘째로 호냉성 β-galactosidase를 생산하는 세균과 효모를 각각 부 식토양과 목장원유에서 분리하여 효소의 순수정제하고 특성을 조사하는 것이었 다. 셋째로 호냉성 β-galactosidase의 유전자를 *Pichia pastoris*에 형질전환 하여 유전자의 구조를 조사하였다.

제 2 장 Nanofiltration을 이용한 저감미 유당분해 우유의 개발

제 1 절 서 론

우유는 양질의 단백질, 칼슘 및 리보플라빈과 같은 필수 영양소를 함유하는 매우 영양학적으로 중요한 식품이다. 우유에는 탄수화물로서 유당을 4.8~5.2% 함 유하고 있으며 우유를 섭취하면 유당은 소장 내 점막에 위치한 유당분해효소에 의해 포도당과 갈락토오스로 분해되어 소화 흡수된다. 그러나 일부 서양인을 포 함하여 대부분의 동양인과 흑인은 유아기를 지나 이유된 후에 성장하면서 소장 내 유당분해효소가 급격히 감소하여 유당분해능력이 결핍하게 된다(Vesa et al., 2000; Jackson and Savalsno, 2001; Kim, 1994; Boey, 2001). 따라서 대체로 200 ml(약 10g의 유당을 함유) 정도의 우유는 대부분의 사람에게 유당소화장애 증상 들이 일어나지 않지만 유당을 20~50g 이상을 공복에 섭취하면 유당분해능력이 결핍된 사람에게 이 증상이 일어난다. 유당소화장애 증상은 우유를 섭취할 경우 에 소장 내에서 유당이 소화 흡수되지 않아 대장내로 유입되어 장내 삼투압의 증가에 의한 수분의 흡수 억제 및 대장균 등의 증식에 의하여 산도의 증가, 가스 및 독소의 생성에 의한 분변의 연성화, 가스의 배출 및 설사를 유발하게 된다. 이러한 증상들을 경험한 사람은 우유의 섭취를 기피하는 중요한 원인의 하나가 되고 있다. 성장기의 청년과 성인들의 우유의 섭취량 감소는 칼슘의 공급부족으 로 인한 신체적 성장의 억제 및 골다공증을 유발할 수 있다.

유당소화장애가 있는 사람을 위하여 유당분해효소 또는 고정화 유당분해효소 로 우유를 처리하여 유당을 포도당과 갈락토오스로 분해시켜 제조한 유당분해우 유가 개발되어 생산되고 있다(Kohler et al., 1994). 그러나 유당분해우유는 포도 당과 갈락토오스를 함유하여 우유보다 단맛이 강하고 고온에서 가열 처리할 때 에 갈변화반응이 촉진될 수 있고 신선한 맛이 감소하며 또한 삼투압이 높아 소 화 생리에 적절하지 않아 소비가 촉진되지 못하고 있다.

우유를 한외여과(ultrafiltration) 방법으로 여과하여 일부 유당을 제거한 후 물을 가하여 환원시킨 후 유당분해효소로 처리하여 무유당우유(Lange, 2003;

Tossavainen and Sahlstein, 2003)를 개발되었다. 2001년에 Valio Ltd에서 유당을 물리적으로 완전히 제거한 무유당우유를 생산하였다(Mattila-Sandholm and Saarela, 2003). 그러나 한외여과 방법은 농축율에 따라 유당뿐만 아니라 우유 내 칼슘과 리보플라빈 등의 영양소가 상당히 제거되어 영양소의 상당한 손실이 있 을 수 있다.

막여과는 역삼투, 나노여과(nanofiltration), 한외여과, 미세여과 방법으로 구분 된다. 우유의 당을 제거하고 단백질과 지방을 농축할 수 있는 방법으로서 나노여 과와 한외여과를 이용할 수 있다. 나노여과는 분자량이 300 이상인 유기화합물과 칼슘, 마그네슘, 인산과 같은 다가이온을 농축한다(Nyström et al,, 1995). 한외여 과는 분자량이 1,000~1,000,000 이상인 물질을 농축할 수 있는 방법이다(Renner and 띠-Salam, 1991). 유당분해우유에 함유된 유당의 분자량이 354이고 포도당과 갈락토오스의 분자량이 180이고 리보플라빈의 분자량이 376이므로 나노여과를 이용하여 유당과 리보플라빈을 농축하고 포도당과 갈락토오스를 여과할 수 있다.

Lange(2003)와 Tossavainen와 Sahlstein(2003)은 한외여과막을 이용하여 우유 의 유당을 여과시킨다. 이 방법은 유당과 분자량이 유사한 리보플라빈도 여과할 뿐만 아니라 칼슘의 상당량도 여과할 수 있다. 반면에 본 연구개발에서 나노여과 방법은 유당분해우유의 포도당과 갈락토오스을 여과하고 리보플라빈과 칼슘의 손실을 한외여과에 비해서 상대적으로 억제할 수 있는 장점이 있다.

본 연구은 유당분해우유를 nanofiltration 방법으로 여과하여 농축한 후 가수하 여 포도당과 갈락토오스의 농도를 감소시켜 감미를 감소시키는 반면에 칼슘과 리보플라빈의 손실이 적은 저유당우유를 개발하는 것이다.

- 18 -

제 2 절 재료 및 방법

1. 우유

본 연구에서 사용한 우유는 상지대학교 부속 시범목장에서 구입하였 다.

2. 유당분해우유의 제조

유당이 부분적으로 가수분해된 유당분해우유를 제조하기 위하여서 Validase(Valley Research) 0.03%를 우유에 첨가한 후 4℃에서 24시간 반 응시켰다. 유당이 완전히 가수분해된 유당분해우유를 제조하기 위하여 Validase(Valley Research) 0.1%를 우유에 첨가한 후 4℃에서 40시간 반 응시켰다.

3. Nanofiltration 농축

유당분해우유(90ℓ)를 72℃로 가열하여 효소를 불활성화 시킨 후에 4 5~50℃로 냉각시켰다. Nanofiltration membrane DS2DL (Osmonics)에 130~140psi의 압력과 분당 30ℓ의 유량으로 유당분해우유를 여과하였다. 이때에 투과액의 유량은 분당 1ℓ이었다. 유당분해우유가 적절한 농축율 에 도달할 때 까지 유당분해우유를 순환하여 통과하였다. 농축율이 농축 율과 농축계수를 아래의 식을 이용하여 계산하였다

- 농축율 = 농축액의 부피에 대한 원료액의 부피의 비율
 - = 원료액 내 특정 성분의 농도에 대한 농축액 내 특정 성분의 농도의
 비율

농축계수 = 1 - 투과액의 농도/농축액의 농도

4. 저감미 유당우유의 제조

Nanofiltration 농축한 유당분해우유의 농축율에 따라 정수처리된 식수를 첨가 하여 원래의 부피로 환원하였다. 환원된 유당분해우유를 63℃에서 30분 가열하여 살균하였다.

5. 관능검사

우유 시료 간의 감미를 비교하기 위하여 10명의 대학생을 대상으로 Friedman의 단순순위검사를 실시하였다. 각 우유의 순위합계를 계산하여 유의성 을 검정하기 위하여 Kramer의 통계표를 이용하였다(김, 1993).

6. 성분 분석

수분 함량은 해사를 우유에 첨가하여 섞으면서 수조에서 부분적으로 건조시킨 뒤에 105℃의 오븐에서 항량에 도달할 때 까지 건조하여 측정하였다. 100%에서 수분함량을 뺀 값을 고형분으로 계산하였다. 조단백질은 Kjeldahl 방법으로 측정 하였으며 유지방은 Gerber 방법으로 측정하였다. 칼슘과 나트륨은 원자흡광분석 법을 이용하였으며 유당, 포도당 및 갈락토오스 및 비타민 B₂는 HPLC 방법으로 측정하였다.

제 3 절 결과 및 고찰

1. 유당분해우유와 nanofiltration의 농축액과 투과액의 성분 조성

60kg의 우유에 0.03%의 Validase를 가하여 4℃에서 24시간 반응하여 유당분 해우유를 제조하였다. 제조된 유당분해우유를 nanofiltration membrane으로 농축 율이 2.1이 되게 여과하였다. 우유, 유당분해우유, 농축액 및 투과액의 성분 함량 을 조사하였다. 우유와 유당분해우유의 유당 함량이 각각 4.83%과 0.43%이어서 91%의 유당이 가수분해되었음을 알 수 있었으며 유당분해효소 처리에 의해 다른 성분의 변화는 매우 적었다(Table 1).

Nanofiltration membrane은 45℃의 유당분해우유를 130psi의 압력에서 분당 30ℓ의 유량으로 농축하였으며 농축율이 2.13에 도달할 때까지 유당분해우유를 재순환하여 여과하였다. 성분 분석 결과 농축액은 모든 성분에서 투과액 보다 함 량이 높았으며 glucose, galactose 및 카트륨 함량의 차이가 비교적 적었다. 투과 액의 주요 성분은 포도당과 galactose 이었으며 다음으로 조회분과 유당이었다.

Composition	Raw	Lactose-hydr	Potontoto	Dormonto
Composition	Milk	olyzed milk	Retentate	renneate
Solid (%)	13.0	12.9	23.4	4.4
Crude protein (%)	3.34	3.37	6.70	0.14
Milk fat (%)	4.3	4.3	9.2	0
Crude ash (%)	0.71	0.71	1.33	0.31
Lactose (%)	4.83	0.43	0.73	0.23
Glucose(%)	0	2.26	2.73	2.17
Galactose (%)	0	1.76	1.95	1.66
Ca(mg%)	117.1	112.7	166.3	6.07
Na(mg%)	36.9	38.8	41.7	32.4
Riboflavin (mg%)	0.08	0.07	0.12	0.03

Table 1. Chemical compositions of milk, lactose-hydrolyzed milk and its retentate and filtrate obtained after nanofiltration at concentration factor of 2.1

2. 유당분해우유의 nanofiltration에서의 농축율과 농축계수

유당분해우유, 농축액 및 투과액의 성분 함량으로부터 농축율과 농축계수를 계산하였다. 유지방의 농축율은 2.17로 유당분해우유의 농축율과 유사하였으며 농축계수가 1.00으로서 완전히 농축액으로 분획됨을 알 수 있다. 유당분해우유의 농축율을 계산할 때에 농축액과 투과액의 비율로부터 계산하는 것 보다는 유지 방의 함량으로부터 계산하는 것이 편리하고 정확하다. Nanofiltration membrane element 자체의 부피 때문에 정확한 농축계수를 계산하는 것이 어려우며 특히 membrane을 재사용할 때에 membrane에 함유된 세척수의 양을 정확히 계산하 는 것이 거의 불가능하기 때문이다.

유지방 다음으로 조단백질의 농축계수가 0.98로서 높았으며 이는 요소와 같은 비단백태질소 미량 성분이 여과막을 통과하기 때문이다. 다음으로 칼슘의 농축계 숙가 0.96이었다. 칼슘은 우유에서 콜로이드 형태로서 다량 존재하고 이온 형태 의 칼슘도 2가 양이온이므로 여과막을 투과하기 어려운 것으로 추정된다. 반면에 나트륨은 농축계수가 0.15로서 대부분이 여과막을 투과하였다.

당류에 있어서 이당류인 유당 농축계수가 0.68이고 단당류인 포도당과

galactose의 농축계수가 각각 0.21과 0.15이었다. 이당류는 분자량이 342이고 단 당류는 180이기 때문에 분자량의 차이 때문에 농축계수에 차이가 있는 것으로 생각된다. 분자량이 376인 riboflavin은 농축계수가 0.76으로서 유당보다 약간 높 았다.

Table 2. Concentration factor and coefficient of retention of chemical components in nanofitration of lactose-hydrolyzed milk at the concentration factor of 2.1

Composition	Concentration	Coefficient of
	factor	retention
Solid (%)	1.81	0.81
Crude protein (%)	1.99	0.98
Milk fat (%)	2.20	1.00
Crude ash (%)	1.87	0.77
Lactose (%)	1.70	0.68
Glucose(%)	1.21	0.21
Galactose (%)	1.11	0.15
Ca(mg%)	1.48	0.96
Na(mg%)	1.07	0.22
Riboflavin (mg/ ℓ)	1.72	0.76

이 연구에서 사용한 nanofiltration membrane은 단당류와 이당류를 부분적으 로 선별 농축하였다. 우유 또는 유당분해우유를 nanofiltration membrane을 이용 하여 유당을 제거하는 것은 비효율적이다. 반면에 포도당과 galactose는 나트륨 과 유사한 낮은 농축계수를 가지고 있어 효율적으로 유당분해우유로부터 제거되 었다. 반면에 칼슘은 대부분이 농축되며 riboflavin은 유당과 유사한 정도의 농축 되기 때문에 이 들 영양소의 손실을 최소화하면서 감미를 가진 단당류를 제거할 수 있다.

3. 저감미 유당분해우유의 제조

우유(90ℓ)에 0.1%의 Validase를 첨가한 후에 4℃에서 40시간 반응시켜 유당 분해우유를 제조하였다. 제조한 유당분해우유를 73℃로 가열한 후 45℃로 냉각시 키고 nanofiltration membrane으로 농축율이 1.6이 되게 농축한 후 물을 가하여 원래의 부피로 만들고 65℃에서 30분간 가열하여 살균하였다. 이와같이 제조된 나노여과유당분해우유를 시중에서 판매되고 있는 한외여과유당분해우유 및 시유 와 10명의 대학생을 대상으로 단위순위검사법에 의한 관능검사로 감미를 비교하 였다. 각 우유 시료를 감미가 강한 순서로 1~4의 순위를 매겼다. 나노여과유당 분해우유, 한외여과유당분해우유 및 시유의 순위합계는 22, 18, 29로 한외여과유 당분해우유, 나노여과유당분해우유, 시유의 순서로 감미가 높은 것으로 보였으나 Kramer 표에 의하면 유의성은 없었다.

원유, 시유, 한외여과유당분해우유 및 나노여과유당분해우유의 화학성분을 비 교하였다. 나노여과된 유당분해우유는 한외여과유당분우유에 비해 glucose와 galactos의 함량이 약간 낮은 반면에 칼슘과 인이 각각 97.5mg%과 92.9mg%로 한외여과유당분해우유의 78.1mg%과 69.8mg% 보다 높았다. 한편 나트륨은 나노 여과유당분해우유가 한외여과유당분해우유보다 약간 높았으며 riboflavin에는 차 이가 없었다.

본 연구에서 제조한 나노여과유당분해우유가 시중에서 판매되고 있는 한외여 과유당분해우유의 원료가 되는 우유가 다르고 살균방법이 다르므로 직접 비교하 기 어려우나 칼슘과 인의 함량은 나노여과유당분해우유가 더 높았다. 특히 한외 여과유당분해우유의 조단백질 함량이 3.36%으로 나노여과유당분해우유의 3.10% 뿐만 아니라 원유의 3,14% 및 시유의 3.13보다 높아 제조 단계에서 물을 적게 첨 가되는 것으로 보였다. 이상의 분석결과 종합할 때에 나노여과분해우유가 한외여 과분해우유보다 칼슘과 인의 손실이 적었다.

	Dow	Morlzot	Ultrafiltrated	Nanofiltrated
Composition	naw	Market	lactose-hydrolyzed	lactose-hydrolyzed
	IIIIK	IIIIK	market milk	milk
Crude protein (%)	3.14	3.13	3.36	3.10
Milk fat (%)	3.5	3.5	3.5	3.5
Lactose (%)	5.00	4.95	0	0.06
Glucose (%)	0	0	1.51	1.45
Galactose (%)	0	0	1.41	1,29
Ca (mg%)	101.1	98.5	92.9	97.5
P (mg%)	86.0	80.6	69.8	78.1
Na (mg%)	46.4	41.9	33.8	35.5
Riboflavin (mg%)	0.10	0.11	0.08	0.08

Table 3. Chemical compositions of raw milk, market milk, nanofiltrated lactose-hydrolyzed milk and ultrafiltrated lactose-hydrolyzed market

제 4 절 요 약

원유를 ▶-galactosidase(Validase)를 4℃로 24 시간 처리하여 유당분해우유를 제 조하였다. 제조된 유당분해우유를 65℃에서 10분 열처리한 후에 nanofiltraion membrane을 이용하여 여과하여 농축하였다. 원유와 농축 전과 후의 유당분해우 유의 성분을 조사하여 우유 성분들의 농축도와 농축계숙를 조사하였다. 농축도와 농축계수가 가장 높은 성분은 유지방이었으며 낮은 성분들은 나트륨, glucose와 galactose이었다.또한 원유를 ▶-galactosidase(Validase)를 4℃로 40시간 처리하여 유 당분해우유를 제조하여 유당을 거의 완전히 분해하였다. 제조된 유당분해우유를 65℃에서 10분 열처리한 후에 nanofiltraion membrane을 이용하여 여과하여 농축하 고 물을 가하여 원래의 부피로 환원하였다. 환원된 유당분해우유를 65℃에서 30 분간 살균하여 저감미 유당분해우유를 제조하였다. 제조된 저감미 유당분해우유 의 화학성분함량과 감미를 조사하였다. 유당분해효소로 우유의 유당을 분해한 후 nanofiltration으로 1.6의 농축율로 농축한 후 가수하여 제조한 나노여과유당분해 우유는 우유가 원유와 유사한 감미를 가지고 있었으며 칼슘과 인이 각각 칼슘과 인이 각각 97.5mg%과 92.9mg%로 시판되고 있는 한외여과유당분해우유의 78.1mg%과 69.8mg% 보다 높았다. 이 연구에서 개발된 나노여과유당분해우유는 시판되고 있는 한외여과유당분해우유 보다 칼슘과 인의 손실이 적은 우수한 방법이다.

제 5 절 참고문헌

1. Boey, C.C. 2001. Lactase deficiency among Malaysian children with recurrent abdominal pain. J. Paediatr. Child Health. 37:157-60.

2. Jackson, K.A. and Savaiano, D.A. 2001. Lactose maldigestion, calcium intake, and osteoporosis in African-, Asian-, and Hispaic-Americans. J. Am. Coll. Nutr. 20:198S-207S.

3. Kim, J.W. 1994. Studies on the lactose intolerance of Korean. Korean J. Dairy Sci., 16:105–114.

4. Kohler, J.J., Erickson, A.B., Meyer, J.L. 1994. Method and apparatus for producing reduced lactose milk. U.S. patent, 5,357,852.

5. Lange, M. 2003. Process for making a lactose-free milk and milk so processed. U.S. patent 20030031754.

6. Mattila-Sandholm, T. and Saarela, M, 2003. Functional dairy products, Woodhead Publishing Ltd pp. $9\!\sim\!10$

7. Nyström, M., Kaipia, L. and Luque, S. Marianne, 1995. Fouling and retention of nanofiltration membranes. J. Membrane Sci. 98: 249–262).

8. Renner, E. and Abd El-Salam, M.H. 1991. Application of ultrafiltration in the dairy industry, Elsevier Applied Science.

9.. Tossavainen, O. and Sahlstein, J. 2003. Process for producing a lactose-free milk product. WO 03/094623.

10. Vesa, T.H., Marteau, P., Korpela, R. 2000. Lactose intolerance. J. Am. Coll. Nutr. 19:165S-175S.

11. 김광옥, 김상숙, 성내경, 이영춘. 1993, 관능검사 방법 및 응용. 신광출판사.

제 3 장 Nanofiltration을 이용하여 제조된 저감미 유당분해우유를 공급한 흰쥐의 체내 칼슘 이용성

제 1 절 서 론

칼슘은 필수 영양소로서 골격과 치아의 형성, 근육 수축, 신경전도, 신경 전 달물질의 방출, 혈액 응고, 특정 효소의 활성화, 세포분화, 세포막의 투과성, 세포 분열 등 조직과 세포수준에서 여러 생리•생화학적 반응을 조절하고 활성화한다. 한국인을 대상으로 한 영양섭취 실태조사들에서 보면 칼슘은 아직도 권장량에 부족되는 영양소로 나타나고 있다. 칼슘의 섭취부족은 거의 모든 연령층에서 나 타나고 있는데 칼슘부족과 관계가 깊은 골다공증은 최근 중년기 이후의 여성에 게 심각한 문제로 대두되고 있다. 2001 국민건강 · 영양조사 결과에 의하면 한국 이의 평균 칼슘 섭취량은 권장량의 70% 정도로 미달되며, 권장량의 75% 이하를 섭취한 칼슘 부족 대상자의 수는 ⅔에 달하고 있다. 칼슘의 급원 식품으로는 체 내 이용성이 비교적 낮게 평가되고 있는 식물성식품으로부터 60%를 차지하고 있 어서 우리나라 국민의 칼슘섭취 현황은 양과 질적인 면에서 많은 문제점을 내포 하고 있다. 칼슘의 체내이용률은 최대 60%를 넘지 않으며 보통 성인의 흡수율은 25-30%이다. 이처럼 칼슘은 장내 흡수가 제한되기 때문에 섭취하는 총량과 함께 생체 이용효율이 칼슘급원으로의 유용성을 결정하는 중요한 요인이 된다. 따라서 우유는 생체이용효율이 높은 칼슘급원 식품으로서 널리 권장되고 있는 식품이다. 우리나라의 경우 우유 및 유제품의 섭취량은 날로 증가하고 있기는 하나 한국인 의 식습관 상 우유 및 유제품은 토착화되기 어려운 여러 가지 문제점을 안고 있 다. 우유 및 유제품을 섭취하면 소화기 장애를 경험하는 사람이 많고, 우유 등을 음용식품으로 생각하는 사람들이 아직도 적은 것으로 보고 되고 있다. 장년기에 는 한국 사람의 대다수가 우유의 섭취에 의해 발생되는 유당불내증의 증상을 가지고 있는 것으로 알려져 있다.물론 섭취량의 다소에 따라 증상의 강도가 다르 지만 우유의 섭취로 인한 장운동의 이상을 겪은 소비자는 우유의 섭취를 중단하 는 경향이 높은 것으로 알려져 있다.

유당분해우유는 국내 많은 소비자들이 경험하는 유당불내증을 예방할 수 있

는 우유이나 단맛이 강하기 때문에 기호성이 높지 못하며 유당분해 처리 후에 가열처리함으로서 갈변화에 의한 영양소의 손실 및 이취를 형성할 수 있다. 이러 한 단점을 개선하기 위하여 우유에 유당분해효소를 첨가하여 유당을 분해시킨 원유를 nanofiltration 막여과법을 이용하여 농축한 후 포도당과 갈락토스의 비율 을 적절히 조절하면 갈변화, 영양소의 손실, 감미를 감소시킬 수 있다. Nanofiltration 막 여과법은 물과 당은 투과시키고 광물질, 비타민 및 단백질은 선택적으로 농축할 수 있는 방법으로 칼슘과 인 및 비타민의 손실을 최소한으로 할 수 있다. 따라서 본 연구는 이러한 공정을 거쳐 개발된 유당분해우유를 실험 동물에 공급하여 유당분해우유의 영양학적 문제점과 체내 칼슘이용성을 검토하 고자 하였다.

제 2 절 재료 및 방법

1. 실험 동물 및 식이

제중 약 180g의 Sprague-Dawlry 종 수컷 흰쥐 20마리를 2군으로 나누어 환경 조절된 실험동물 사육실(온도 22±2℃, 상대습도 65±5%, 조명 06:00 Am[~]06:00 Pm)에서 stainless-steel wire cage 에 한 마리씩 분리 사육하였 으며, 실험군은 체중에 따라 완전 임의 배치하였다. 모든 실험 식이와 탈이온수 를 자유섭취 방법(ad libitum)으로 급여하며 대사 cage와 사육에 사용된 모든 기구는 무기질 오염을 막기 위해 0.4% EDTA로 씻은 후 탈이온수로 헹구어 사 용하였다. 실험기간 동안 체중과 식이섭취량은 2일에 한번씩 일정시간에 측정하 였다. 실험식이는 정제식이(semipurifided diet)로서 공급하였고 실험군은 칼슘 급원으로 탈지분유와 유당분해 분유를 공급하고 무기질은 AIN-93 형태로 공 급하여 6주간의 사양시험을 시행하였다. 실험군과 실험식이는 Table 1과 같 다. 유당분해분유의 제조는 상지대학교 실습목장에서 생산되는 우유 80kg에 β -galactosidase(Validase, Valley Research) 24㎡를 첨가하여 4℃에서 24시 간 배양하여 유당분해우유를 제조하였다. 유당분해우유를 nanofiltration membrane (model number DL4040F1020, Osmonics)에 여과하여 36kg으로 농축하였다. 농축된 유당분해우유를 분무건조기(Production Minor Spray Dryer, Niro)를 사용하여 유당분해분유를 제조하였다.

2. 시료수집 및 분석방법

가. 시료의 수집

1) 혈액

식이섭취 조건을 일정하게 하기위하여 도살하기 전 하룻밤 절식시킨 후, ethyl ether로 마취한 후 경동맥혈을 채취하였다. 채취한 혈액은 냉장고(4℃)에 서 하룻밤동안 방치한 후, 3,000rpm에서 20분간 원심분리하여 혈청을 얻었으며 분석 전까지 냉동보관 하였다.

2) 간, 신장 및 뼈조직

혈액 채취 후 즉시 간, 신장, 대퇴골(femur)을 적출하였다. 간과 신장조직은 부착되어 있는 지방이나 근육을 깨끗이 제거한 후 냉장 생리식염수(0.9% NaCl 용액)로 세척하여 혈액을 제거한 다음 여과지로 물기를 닦고 무게를 측정하였다. 뼈조직은 부착되어있는 근육, 지방, 인대 등을 전부 제거한 후 무게와 길이를 측 정하였다. 모든 시료는 회화 처리 전까지 냉동 보관하였다.

3) 변, 뇨

변과 뇨는 실험식이 급여기간 중 실험 종료전 4일간 plastic metabolic cage 에서 수집하였으며, 변은 그대로, 뇨는 여과지에 걸른 후 총량을 측정한 후 분석 할 때까지 냉동보관하였다.

나. 시료분석

1) 혈액, 조직, 변 및 뇨 중의 칼슘과 인 함량

혈액, 조직, 변 및 뇨중의 칼슘과 인의 함량은 오주환 등(1993)이 사용한 방 법으로 분석하였다. 혈청은 TCA(tricholroacetic acid)용액으로 제단백한 후, 1% LaCl₂ 용액으로 희석하여 원자흡광광도계(Atomic absorption spectrophotometer ; Hitachi Z-6000)로 422.7nm에서 칼슘함량을 측정했다. 간, 신장, 대퇴골은 105±10℃ 건조기에서 12시간 동안 예비 건조시킨 후, 55 0~600℃회화로에서 6~8시간 회화하여 얻은 회분을 HCl(1N)용액으로 용해한 후, 1% LaCl₂ 용액으로 희석하여 원자흡광광도계로 칼슘 함량을 정량하였다. 변 중의 칼슘의 함량 측정은 뼈조직과 동일한 방법으로, 뇨의 칼슘은 혈액의 분 석과 동일한 방법으로 정량했다.

2) 체내 칼슘이용성의 측정

체내 칼슘이용성을 보기 위하여 혈액, 간, 신장, 뼈, 분, 뇨의 칼슘함량을 측 정하였고 그 밖에 인, creatinine, ALP와 뼈의 무게 등을 측정하였다

3. 통계처리

실험결과는 SPSS program을 이용하여 각 실험군마다 평균과 표준오차를 계 산하였고, 군간의 차이를 Student's t-test로 검증하였다.

Groups ¹⁾		
	FFM	LHM
Ingredients		
Starch	502.52	523.22
Casein	29.9	9.2
Milk powder	300	-
Lactose hydrolyzed		000
milk powder	-	300
Soybean oil	67	67
Cellulose	50	50
Vit. Mix ²⁾	10	10
Min. Mix	$35^{3)}$	$35^{4)}$
L-cystine	3.0	3.0
Choline bitartrate	2.5	2.5
THBQ	0.008	0.008

Table 1. Composition of experimental diet (g/kg)

1)FFM: The group that milk powder was provided, LHM: The group that lactose hydrolyzed milk powder was provided

2) Vitamin. mixture : AIN 93

3) Mineral mixture(g/kg mix.) : $Ca_3(PO4_{12}, 4.23; MgSO_4, 38.1; Fe-citrate, 5.01; CuSO_4·5H_2O, 1.53; MnSO_4·H_2O, 0.74; ZnCl_2, 4.43; I_2, 0.002; (NH_4)_6Mo·7O_{24}4H_2O, 0.025; and Sucrose, 945.93$

4) Mineral mixture(g/kg mix.) : $Ca_3(P04)_2$, 3.03 ; MgSO₄, 22.7 ; Fe-citrate, 4.98; CuSO₄·5H₂O, 1.49 ; MnSO₄·H₂O, 0.74 ; ZnCl₂, 4.11 ; I₂ 0.002 ; (NH₄)₆Mo·7O₂₄4H₂O, 0.025 ; and Sucrose, 962.92

제 3 절 결과 및 고찰

연구는 우유에 유당분해효소를 첨가하여 유당을 분해시킨 원유를 nanofiltration 막여과법을 이용하여 농축한 후 포도당과 갈락토스의 비율을 적 절히 조절하여 개발된 유당분해우유를 실험동물에 공급하여 유당분해우유의 영 양학적 문제점과 체내 칼슘이용성을 검토하고자 하였다. 체중이 약 180g되는 Sprague - Dawley 중 수컷 흰쥐 200마리를 2그룹으로 나눈 후 칼슘급원으로 탈지분유와 유당분해 분유를 공급하고 무기질은 AIN-93 형태로 공급하여 6 주간의 사양시험을 시행한 후 혈액의 칼슘과 인 함량, 혈당, 크레아티닌 농도, ALP의 활성, 간과 신장의 무게, 칼슘과 회분의 함량, 뼈의 칼슘과 회분의 함량, 길이, 무게와 칼슘의 이용성을 측정하였다. 그 결과는 다음과 같다.

1. 식이 섭취량, 체중, 식이효율은 실험군 간의 차이가 없었다.

2. 혈청의 칼슘, 인, 크레아티닌 농도와 ALP 활성은 실험군 간의 차이를 보이 지 않았다.

3. 간과 신장의 칼슘 함량은 차이를 보이지 않았다.

4. 뼈의 무게, 길이, 칼슘의 함량은 실험군 간의 차이를 보이지 않았으나 단위 몸무게 (100g)당 뼈의 무게는 유당분해우유 공급군이 유의하게 높게 나타났으 나(p<0.05), 회분의 양은 탈지우유군이 높게 나타났다(p<0.05).

5. 혈당은 차이가 없었으나 유당분해우유 공급군이 실험기간 동안 증가하는 경 향을 보였다.

6. 칼슘의 대사실험에서는 변을 통한 칼슘의 배설이 유당분해우유 공급군이 높
게 나타났으나 칼슘 섭취량, 뇨를 통한 배설량, 칼슘 흡수량, 칼슘흡수율, 칼슘
보유량, 칼슘 보유율은 차이가 없었다.

Group	Initial body wt. (g)	Final body wt. (g)	Weight gain (g/d)	Feed intake (g/d)	Feed efficiency ratio
FFM	181.47±2.53	365.67±6.40	6.58±0.24	22.14±1.35	0.30±0.01
LHM	178.70±3.47	341.33±8.09	5.81±0.38	19.49±0.62	0.30±0.02

Table 2. Weight gain and feed efficiency ratio in rats fed experimental diet

 $^{1)}$ CO : Control, FFM : Fat free milk diet, LHM : Lactose hydrolyzed milk diet Values are mean $\pm SE$

All values are not different significantly

Table 3. Concentration of calcium, phosphorus and creatinine and ALP (alkaline phosphatase) activity in serum

Group	Ca(mg/dl)	P(mg/dl)	Creatinine(mg/dl)	ALP(K-A)
FFM	11.67±0.08	7.72±0.14	66.47±2.05	0.28±0.09
LHM	11.54±0.17	7.94±0.12	61.24±2.25	0.28±0.08

Values are mean \pm SE

All values are not different significantly

Table	4.	Weight	and	calcium	in	liver	and	kidney	of	the	rats
		110-0									

		Liver			Kidney			
Group	Wet wt (g)	ash(mg/g)	water (%)	Ca/wet wt(µg/g)	Wet wt (g)	Wet wt /100gBW (mg/100gB W)	water (%)	Ca/wet wt(µg/g)
FFM	9.59±0.37	373.06±1.52	69.59±0.1	38.08±3.73	2.16±0.04 ^a	0.59±0.01	75.03±0.17	132.40±8.26

 $LHM \hspace{0.1cm} 9.91 \pm 0.53 \hspace{0.1cm} 373.74 \pm 1.54 \hspace{0.1cm} 70.43 \pm 0.35 \hspace{0.1cm} 37.74 \pm 1.95 \hspace{0.1cm} 2.26 \pm 0.02^{b} \hspace{0.1cm} 0.67 \pm 0.02 \hspace{0.1cm} 76.46 \pm 0.24 \hspace{0.1cm} 126.02 \pm 15.62 \hspace{0.1cm} 126.02 \pm 15.62 \hspace{0.1cm} 126.02 \pm 15.62 \hspace{0.1cm} 126.02 \pm 126.02 \hspace{0.1cm} 126.02 \hspace{0.1cm$

Values are mean±SE N.S : Not significant

Values with different superscipts are significantly different at p<0.05

Group		Liver			Kidney			
	wt(g)	ash(mg/g)	calcium(µg/g)	_	wt.(g)	ash (mg/g)	calcium(µg/g)	
FFM	9.59±0.37	373.06±1.52	38.08±3.73		2.15±0.03	235.29±0.33	132.40±8.26	
LHM	9.91±0.26	373.74±1.54	37.74±1.95		2.26±0.02	234.60±1.14	126.02±5.62	

Table 5. Weight, ash and calcium contents in liver and kidney

Values are mean±SE N.S : Not significant All values are not different significantly

Table 6. Wet weight, length, ash and calcium content of femur

Grou p	Wet wt (g)	Length (cm)	water (%)	Wet wt (mg/g wet wt.)	Ash (mg/g)	Ca (mg/g)	Ca% (Ca/Ash×1 00)	
FFM	0.84±0.01	3.61±0.01	31.30±0.57	230.01±5.43 ^a	422.87±2.81 ^b	137.93±15.23	32.66±3.68	
LHM	0.86±0.02	3.61±0.02	33.91±0.41	252.25±3.87 ^b	407.07±6.50 ^a	118.64±4.75	29.20±1.28	
Values are mean±SE								

Values with different superscipts are significantly different at p<0.05

Table 7. Concentration of blood glucose during experimental period.

Group	0 week	1 week	2 week	3 week	4 week	5 week	6 week	
FFM	121.71±3.19	118.71±2.34	121.29±2.83	118.14±5.57	124.14±4.28	132.00±2.13	133.05±3.03	
LHM	118.25±3.03	121.50±4.78	125.63±2.76	126.50±3.57	127.88±2.80	127.50±2.16	128.59±3.37	
Values are mean±SE								

All values are not different significantly

Table 8. Ca intake, Ca excretion, Ca absorption and Ca retention

group	Ca intake (mg/day)	Fecal Ca	Urinary Ca	Apparent Ca	Apparent Ca	Са	Са
		excretion	excretion	absorption	absorption	retention	retention
		(mg/day)	(mg/day)	(mg/day)	(%)	(mg/day)	(%)
FFM	70.16±4.69	17.16±1.15 ^a	0.12±0.01	53.12±2.26	76.43±2.08	53.02±2.14	72.21±1.92
LHM	74.86±4.18	26.12±1.08 ^b	0.08±0.03	4964±5.35	66.32±2.18	49.58±5.37	67.71±2.17

Values are mean±SE

Values with different superscipts are significantly different at p<0.05

제 4 절 요 약

유당 분해우유가 탈지우유에 비해 변을 통한 칼슘의 배설량은 높게 나타났으 나 혈청의 칼슘, 인, 크레아티닌 농도와 ALP 활성, 간과 신장의 무게와 칼슘 함 량, 뼈의 무게, 길이에도 차이가 없는 것으로 나타났다. 단위 몸무게(100g)당 뼈 의 무게는 유당분해우유 공급군이 유의하게 높게 나타났으나(p<0.05), 회분의 양은 탈지우유군이 높게 나타났다(p<0.05). 그러나 회분의 양과 뼈의 강도가 반드시 일치하지는 않는다는 보고들이 있으므로 이 결과는 크게 칼슘의 이용성 에 주요한 의미를 부여한다고는 볼 수 없다. 이와 같은 결과는 nanofiltration 막여과법을 이용하여 농축한 후 포도당과 갈락토스의 비율을 적절히 조절하여 개발된 유당분해우유가 영양적으로 생체에 미치는 영향이 탈지우유군에 비해 떨어지지 않고 유당불내증을 예방할 수 있는 유익한 식품으로의 사용가능성을 보여주고 있다.

제 5 절 참고문헌

1 .김숙희. 1993. 한국인의 ca 영양과 골다공중. 한국영양학회지

26(2):203-212

2. 농림수산부, 한국유가공협회. 1993. 낙농관계자료 65

3. 오주환·이연숙. 1993. 난소절제 골다공증 모델 흰쥐의 체내 칼슘·이용성 저하
 에 대한 칼슘 섭취 수준의 효과. 한국영양학회지 26(3):277-285

4. 이보경·장유경·조수현. 1992. 폐경후 여성의 골밀도에 대한 환경, 생리적 요 인의 영향. 한국영양학회지 25(7):656-667

5. 이성현·황보영숙·김지연·이연숙. 1997. 칼슘급원식품의 체내이용성 연구. 한 국영양학회지 30(5):499-505

6. 이연숙·김은미. 1998. 성장기 동안 저칼슘식이를 섭취한 흰쥐에서 난소절제
 및 칼슘섭취량이 골격대사에 미치는 영향. 한국영양학회지 31(3):279-288

 기연숙· 이종현. 1999. 칼슘과 철의 과다섭취가 성장기 흰쥐의 체내 무기질 이용성에 미치는 영향. 한국영양학회지 32(3):248-258

8. 이종현·이연숙. 2000. 골다공증 모델 흰쥐에서 칼슘과 철 보충제의 과다섭취
가 골격손실과 신석회 침착 및 신장기능에 미치는 영향. 한국영양학회지
33(2):147-157

9. 정혜경·장남수·이현숙· 장영은. 1996. 칼슘 급원의 종류가 흰쥐의 체내 칼슘 및 골격대사에 미치는 영향. 한국영양학회지 29(5):480-488

10. 한국영양학회. 1998. 제 7차 한국인의 영양권장량

11. Giansiracusa, D.F., and Kantowitz, F.G. 1984. Metabolic bone disease, NewYork Academy Press, pp243-245

 Grerer, J.L., Krzykowski, C.E., Khazen, R.R., and Krashoc, C.L.
 Mineral utilization by rats fed various commercially available calcium supplements or milk. J. Nutr 117 : 717-724

13. Judy, Z.M., David, L.S., Lawrence, F., Charles, S., Xiangu, J., and Johnston, C.C. 1998. Calcium absorption form calcium carbonate and a new form of calcium(CCM) in healthy male and female adolescents. Am J Clin Nutr 48:1291-1294

14. Levenson, D.I., and Bockman, R.S. 1994. A review of calcium preparations. Nutr Rev 52(7):221-232

15. Mudassir, S.S., Carol, S.A., Michael, J.N., Lawrence, R.S., John, S.F.
1987. Gastrointestinal absorption of calcium from milk and calcium salts. The New J of Medicine Aug. 27:532-536

16. Shipp, C.C., Maletskos, C.J., Dawson-huges, B. 1987. Measurement of calcium retention with a whole body counter. Calcif Tissue Int.41. : 307-312

17. Spencer, H.,and Nih, K.L. 1986. Osteoporosis factors contributing to osteoporosis. J Nutr 116 : 316-318

제 4 장 *Pantoea* sp. B-1에서 분리한 호냉성 β -galactosidase의 생화학적 특성 및 우유 내 유 당분해 활성

제 1 절 서 론

우유 내에 5%정도 함유되어 있는 유당은 우유음용의 매우 큰 장애 요인이다. 즉 소장에서 유당분해효소가 부족하여 복부팽만, 복통, 경련, 설사 등과 같은 유 당소화장애를 일으킨다(Swagerty 등, 2002). 한국인의 연령별, 성별, 유당장애현 상을 확인하고, 유당분해효소처리 우유 및 발효 처리유를 섭취시켜 본 결과(김종 우, 1994) 유당소화 장애가 감소하는 것으로 보고하고 있다. 유당소화 장애의 경 우 서양인에 비해 동양인의 경우 더 많이 나타나는 현상으로 86~100%로 보고하 고 있다(Alm, 1982).

유당분해우유는 유당소화장애를 해결하여 우유소비량을 증가시킬 수 것이다 (Holsinger, 1978). 유당분해효소에 의한 유당가수분해 시험(Mann과 Thompkins, 1988; Baik 등, 1980)등이 보고되었고, 유산균을 첨가하여 유당을 발효시킴으로서 유당의 소화 장애를 개선한 연구(Montes등, 1995; Rosado등, 1992; Tianan등, 1996)가 있다.

☞-Galactosidase은 유제품의 유당을 가수분해하여 유당소화장애를 막아주고 감미도를 높이는데 이용되며, 당전이활성은 인간의 장내 유용미생물인 bifidobacteria의 성장을 증진시키는 갈락토올리고당의 제조에 이용된다(이 등, 2003).

▶-Galactosidase(▶-D-galactoside galactohydrolase, (EC3.2.1.23)은 자연계에 널리 분포하는 효소로 동물(Got 등, 1964 : Shukla, 1975: Gray 등 1975), 효모 (Mahoney 등, 1978 : Dickson 등, 1979 : Van Huynh. 등, 1985 : Castillo 등, 1983), 곰팡이(Greenberg 등, 1981 : Park 등 1979 : Takenishi 등, 1983)와 같은 미생물에서 분리 정제되어 효소의 생화학적 특성과 효소의 산업적 이용에 관련 된 연구가 진행되어 보고되고 있다. ▶-Galactosidase는 ▶-D-galactoside 결합을

가수분해하는 효소이며, №(1→4) 또는 №(1→6) 결합을 가지고 있는 oligosaccharide를 가수분해 한다(Nijpels 등, 1892).

저온성 미생물들이 생산하는 효소들은 중온성 효소가 활성을 가지지 못하는 0~20℃의 낮은 온도에서도 높은 효소 활성을 가지고 있어 우유의 저온 유통 과 정 중에 효소를 처리할 수 있을 것으로 기대 된다. Brenchley(1996)는 극한 온도 에서 효소활성이 높은 호냉성 i-galactosidase를 발견하여 유당분해우유생산에 이용할 수 있는 가능성을 제시하였다. Loveland(1994)는 낮은 온도의 환경에서 분리한 호냉성 균이 생성하는 효소는 낮은 온도에서 높은 활성을 갖고 있으며, 분리한 균은 Arthrobacter로서 실활 되는 온도는 40℃이며 최적온도는 20℃이하 라고 보고하였다.

Lynn (1996)는 Saccharomyces lactis에서 생산한 유당분해효소는 25℃와 중 성 pH에서 활성을 가지고 있다고 보고하였으며 낙농가에서 냉각 저장 중에 있는 원유에 첨가하여 운송 과정 중 유당을 분해하는 것을 시도 하였다. McCammon 등 (1998)은 남극에서 P-galactosidase를 생성하는 균주를 분리하였으며 이들은 그람 음성 간균인 새로운 Flavobacterium spp.으로 최고 성장 온도는 30~31℃이 고 최저성장온도는 -7℃이며 최적온도는 26℃이었다.

본 연구에서는 국내토양에서 분리한 호냉성 세균으로부터 ௺-galactosidase을 순수분리하고 효소의 생화학적특성과 우유에서의 유당 분해 능력을 조사하였다.

제 2 절 재료 및 방법

1. 호냉성 β-galactosidase 생산 미생물의 분리 및 선발

1) 토양 시료

겨울철 발왕산 정상 숲의 부식 토양을 채취하여 4℃로 저장하여 실험실로 신속히 운반하여 저장하였다.

2) 미생물의 분리 및 선발

채취해온 토양을 2% 유당용액을 섞으면서 분무하여 7℃에 보관하였다가 50mg /ml의 X-Gal(5-Bromo-4-Chloro-3-indoly-β-D-galactoside)가 포함된 Tryptic Soy Agar(Difco, USA)에 도말한 후 10℃에서 7일간 배양하여 강한 녹색 집락을 형성하는 균주를 선발하였다.

2. Pantoea spp. B-1의 동정

가장 강한 녹색을 띠는 균주를 유당(5%)이 포함된 Tryptic Soy Agar에 도말 하여 37℃에서 24시간 배양한 후 oxidase test와 oxidation・fermentation test를 실시하고 API kit 20E(Biomerieux sa, France)를 사용하여 동정하고 그람 염색을 하였다.

3. 세포 추출액의 제조

분리한 세균을 유당(5%)이 포함된 Tryptic soy broth 7ℓ에 1% 접종하여 1 5℃에서 이틀간 배양하여 배양액을 3,000rpm에서 30분간 원심 분리하여 상등액 을 버리고 균체를 모아 인산염완충생리염수(PBS, pH7.2)으로 2회 세척한 후 20mM Tris(pH 8.0)에 분산하여 초음파 분쇄기(Sonics & Material Inc. Vibra cell)를 사용하여 75% Amplitude에서 pulse on 2.5초, pulse off 5초로 얼음에 냉 각하면서균분산액이 상대적으로 처음 분산액보다 투명해질 때 까지 세포벽을 파 괴하고 10,000rpm에서 20분간 원심 분리하여 상등액을 세포 추출액으로 사용하 였다.

4. DEAE-Sephacel 크로마토그래피

DEAE-Sephacel 크로마토그래피는 칼럼에 DEAE-Sephacel을 충전하고 20mM Tris(pH 8.0)을 통과 시켜 칼럼을 세척하고 세포추출액을 통과 시켜 단백 질을 칼럼 내에 부착시킨 후 20mM Tris(pH8.0) 와 20mM Tris(pH8.0),1M NaCl 용액을 Gradient Maker에 넣어 NaCl의 농도를 차츰 증가시키며 단백질을 용출 시켜 분획을 수집하였다. 모아진 분획의 단백질량(280nm)과 효소 활력을 측정하 여 효소의 활력이 높은 분획만을 모아 affinity 크로마토그래피에 사용되는 0.067M sodium phosphate(pH 7.5)에 하룻밤 동안 투석하여 NaCl을 제거 하였다.

5. Affinity 크로마토그래피

p-Aminobenzyl-1-thio-1-galactopyranoside agarose(Sigma)를 칼럼에 충전하

여 0.067M sodium phosphate(pH 7.5)을 컬럼 부피에 약 2배정도의 부피를 흘려 칼럼을 세척한 후 투석된 시료를 통과시켜 효소를 부착시켰다. 효소가 부착되어 있는 칼럼에 0.067M sodium phosphate(pH 7.5), 1mM MgCl₂, 1M KCl 용액을 사용하여 비 특이적으로 결합되어 있는 단백질을 용출 시키고 0.1M sodium borate(pH 10)용액을 통과시켜 β-galactosidase를 용출시켰다.

6. 🏽 - Galactosidase의 ONPG 분해 활성

ONPG(o-nitrophenyl-β-D-galactopyranoside)로 부터 생성된 o-nitrophenol를 측정하여 효소활력을 결정하였다. ONPG(4mg/ml)를 함유하는 0.1M sodium phosphate(pH7.5) 99µl에 4.5M β-mercaptoethanol, 0.1M MgCl₂ 4.5µl를 가하고 0.1M sodium phosphate buffer(pH7.5) 301.5µl를 가한 후 시료 45µl를 혼합하여 30℃에서 30분 동안 반응시킨 후 1M Na₂CO₃ 용액을 넣어 반응을 중단시키고 420nm에서 흡광도를 측정하였다.

7.. 유당 가수분해 활성 측정

우유 내 유당을 가수분해하여 생성된 glucose를 측정하기 위하여 Glucose(HK) assay reagent(Sigma)과 포도당 표준용액을 사용하여 시료대조구, 시약대조구, 시료, 표준포도당의 반응액을 제조하여 35℃에서 30분간 반응 시킨 후 60℃에서 15분간 가열하여 반응을 중단시킨 후 340nm에서 측정하였다.

8. 단백질 정량

단백질은 bovine serum albumin(Sigma)를 표준으로 하는 BCA Protein Assay (Pierce)를 사용하여 측정하였다. 크로마토그래피를 통해 얻어진 각 분획 의 단백질 정량은 280nm에서 흡광도를 측정하여 농도로 표시하였다.

9. SDS-PAGE

각 크로마토그래피에서 얻어진 분획의 단백질 분포를 확인하기 위하여 10% SDS-polyacrylamide gel에서 50V로 전기영동을 하였으며 Comassie Blue R-250 으로 염색하였다. 표준 단백질 Marker(Bi0-Rad)에는 myosin (200,000), -galactosidase (116,250), phosphorylase b (97,400), serum albumin (66,200) ovalbumin (45,000), carbonic anhydrase (31,000), trypsin inhibitor (21,500), lysozyme (14,400), aprotinin (6,500)이 있었다.

10. 등전점 전기영동

등전점 전기영동은 다른 상업적 효소들과의 차이점을 알아보기 위해 MultiphorⅡ Electrophoresis System(Amersham)에서 CleanGel IEF polyacrylamide(pH 3.5~9.5)(Amersham)을 사용하여 실시하였다. 표준 단백질 Maker로 사용된 단백질에는 trypsinogen (pH9.3), lentil lectin basic (pH8.65), lentil lectin middle (pH8.45), lentil lectin acidic (pH8.15), horse myoglobin basic (pH7.35), horse myoglobin (pH6.85), human carbonic anhydrase B (pH6.55), bovine carbonic anhydrase B (pH6.85), ₱-lactoglobulin A (pH5.2), soybean trypsin inhibitor (pH4.55), methyl red(dye) (pH3.75), amyloglucosidase (pH3.5)를 사용하였다.

제 3 절 결과 및 고찰

1. Pantoea spp. B-1의 분리 및 동정

호냉성 β-galactosidase를 생산하는 균주를 선발하기 위해 겨울철 토양을 2% 유당용액과 섞으며 분무하여 7℃에 저장해 두었다가 X-Gal(50mg/ml) 0.8ml, 0.1M IPTG 1ml 및 유당(5%)가 첨가된 Tryptic Soy Agar(Difco.USA)에 도말하여 1 0℃에서 일주일간 배양하여 균의 집락색이 청색을 띠는 집락을 총 9개를 선발 하였고 균주를 A-1, B-1, B-2, B-3, E-1, E-2, E-3, E-4, E-5로 각각 명명하였 다.

이 총 9 종의 균주 중 청색이 가장 강한 집락이 가진 균주는 B-1이였으며 -galactosidase assay를 5℃, 15℃, 25℃, 35℃, 45℃에서 30분간 반응시켜 비교한 결과 다른 균주에 비해 B-1균주가 가장 강하게 나타났다. E-1의 경우 5℃나 1 0℃에서 의 활력이 중온에서보다 활력이 좋게 나타났지만 효소의 활성도가 B-1 보다 적어 B-1균주를 연구에 사용하였다(Table 1).

B-1균주를 그람 염색과 Oxidase test, O·F test와 MacConkey Agar에 도말하

여 확인한 결과 그람음성 간균이었으며 cytochrome oxidase반응은 음성이고 포 도당의 산화와 발효는 각각 양성이고 MacConkey agar에서 성장하였다.API 20E kit와 API 50CH kit 동정 결과 *Pantoea* spp.로 동정되었다(Table 2, 3).

Bacterial	5°C	15°C	25℃	35°C	45℃
strains	00	10.0	20 0	00 0	40.0
A-1	0.021	0.054	0.078	0.047	0.040
B-1	0.424	1.391	2.827	4.752	6.156
B-2	0.010	0.020	0.036	0.040	0.034
B-3	0.007	0.017	0.023	0.031	0.030
E-1	0.077	0.257	0.223	0.161	0.096
E-2	0.011	0.021	0.017	0.030	0.026
E-3	0.013	0.022	0.025	0.037	0.009
E-4	0.012	0.026	0.043	0.043	0.027
E-5	0.013	0.029	0.041	0.044	0.025

Table 1 ^[]-Galactosidase activity of bacterial strains isolated from soils.

Biochemical test	Response
Beta-galactosidase	+
Arginine dihydrolase	-
Lysine decarboxylase	-
Ornithine decarboxylase	-
Citrate utilization	+
H2S production	-
Urease	-
Tryptophane Deaminase	-
Indole production	-
acetoin production	+
Gelatinase	-
Oxidation / fermentation	
D-glucose	т
D-mannitol	+
Inositol	-
Sorbitol	-
Rhamnose	+
Sucrose	+
Melibiose	+
Amygdailn	+
Arabinose	+
Cytochrome-oxidase	-
NO 2 production	+
N_2 production	-
Motility	+
Growth	+
Glucose fermentation	+
Glucose oxidation	+

Table 2. Biochemical characteristics of Pantoea spp

Carbahadaataa	Incubati	Incubation time			
Carbonydrates	24hr	48hr			
Glycerol	-	+			
E亚thritol	-	-			
D-Arabinose	-	-			
L-Arabinose	+	+			
D-Ribose	+	+			
D-Xylose	+	+			
L-Xylose	-	-			
D-Adonitol	_	-			
Methyl-B-D-Xylopyranoside	-	-			
D-Galactose	+	+			
D-Glucose	+	+			
D-F겨ctose	+	+			
D-Mannose	+	+			
L-Sorbose	_	_			
L-Rhamnose	+	+			
Dulcitol	+	+			
Inositol	_	_			
D-Mannitol	+	+			
D-Sorbitol	_	_			
Methyl==D-mannonyranoside	_	_			
Methyl=D-glucopyranoside	+	+			
N-Acetylalucosamine	+	+			
Amyadalin	<u> </u>	_			
Arbutin	+	+			
Faculinformia citrato		÷			
Solicin					
D. Callabiana	+	*			
D-Maltasa					
D Lastere (herring origin)	+	*			
D-Lactose (bovine origin)	+				
D-Mendiose	+	÷.			
D-Saccharose (sucrose)	+	+			
D-1 rehalose	+	+			
Inulin	-	-			
D-Melezitose	-	-			
D-Ramnose	+	+			
Amidon (starch)	=	-			
Glycogen	-	-			
Xylito	-	-			
Gentiobiose	+	+			
D-Turanose	-	-			
D-Lyxose	-	-			
D-Tagatose	-	-			
D-Fucose	-	-			
L-Fucose	-	-			
D-Arabitol	-	-			
L-Arabitol	-	-			
Potassium gluconate	-	-			
Potassium 2-ketogluconate	-	-			
Potassium 5-ketogluconate	-	-			

Table 3. Oxidation and fermentation characteristics ofPantoea spp. B-1

2. Pantoea spp. B-1의 B-galactosidase의 분리

Pantoea spp. B-1로부터 P-galactosidase를 순수 분리하기 위해 초음파 분쇄 기로 세포벽을 파괴하고 DEAE-Sephacel 이온교환 크로마토그래피와 Affinity 크로마토그래피를 연속적으로 실시하여 P-galactosidase를 순수 분리하였다. DEAE-Sephacel 이온교환 크로마토그래피에서는 칼럼에 부착 되지 않는 단백 질이 처음에 용출되어 나오고 NaCl의 농도를 높일수록 칼럼에 부착되어 있는 단백질들이 용출되는 것을 확인할 수 있다(Fig 1).

순수분리를 확인하기 위해 SDS-PAGE 로 각 단계별 추출물을 전기 영동한 결과 세포 추출물의 밴드들은 다양한 분자량의 단백질들의 밴드가 나타나있고 DEAE-Sephacel 이온교환 크로마토그래피의 밴드들은 세포추출물보다 많은 단 백질이 제거되었다는 것을 확인할 수 있고 affinity 크로마토그래피 단일밴드로 나타나 순수 분리됨을 확인하였다. 그리고 순수 분리된 p-galactosidase의 분자 량은 표준단백질에 들어 있는 *E coli*.의 p-galactosidase의 분자량인 119,000과 유 사하였다(Fig 2).

세포 추출물의 총 단백질량은 76.7mg/ml였으며 DEAE-Sephacel 이온교환 크로마 토그래피는 16.9mg/ml, affinity 크로마토그래피는 0.5mg/ml로 단백질량이 크게 줄 어 들은 반면에 p-galactosidase 활성도 세포 추출물이 5.5µmol/min·mg이고 DEAE-Sephacel 이온교환 크로마토그래피는 16.6µmol/min·mg, Affinity 크로마토 그래피는 156.8µmol/min·mg로 단백질 1mg당 p-galactosidase 활성도는 매우 많이 증가했다는 것을 확인할 수 있었다. 또한 회수율을 세포추출물에서 100%로 볼 때 최종 회수율이 19%로 상당히 높은 회수율을 달성하였다(Table 4).

Fig 1. DEAE-Sephacel Chromatography of cell extracts obtained from *Pantoea* spp. B-1.

Fig 2. SDS-PAGE of ccell fractions from *Pantoea* spp. B-1.el chromatography and affinity chromatography of the cell extracts. 1. Molecular weight marker protein, 2. Cell extract of *Pantoea* spp.B-1, 3. DEAE-Sephacel chromatography, 4. Affinity chromatography

	Vol (ml)	Total Protein (mg)	Total Activity (µmol/min)	Specific activity (µmol/min•mg)	Recovery (%)	Purification (fold)
Cell extract	60	76.7	421.9	5.5	100	1.0
DEAE-Sephacel chromatography	28	16.9	280.5	16.6	66	3.0
Affinity chromatography	15	0.5	78.4	156.8	19	28.5

Table 4. ^B-Galactosidase activity of cell extract and chromatography fractions from *Pantoea* spp. B-1

3. ♬-Galactosidase의 최적온도 및 pH

Pantoea spp. B-1에서 추출한 p-galactosidase의 최적온도는 5℃부터 60℃까 지 5℃간격으로 p-galactosidase assay를 3반복으로 실시하여 평균값을 구한 결 과를 그래프로 나타낸 결과 45℃에서 최대 활성을 보였으며 5℃와 10℃인 저온 에서의 활성은 45℃에 비해 활력은 떨어지지만 약 17%와 22%의 활력이 남아있 는 것으로 보아 저온에서도 효소를 활용할 수 있을 것으로 기대 된다. (Fig 3). pH별 활성은 pH 6.0~7.5의 범위에서 높았으며 pH 7.0에서 가장 높아 최적 pH 는 7.0이였으며 pH 5.0이하와 pH 8.0이상의 산성과 알칼리성 pH 범위에서는 효 소의 활력이 감소하였다. (Fig 4).

Fig 3. Effect of temperature on the activity of β -galactosidase purified from *Pantoea* spp. B-1.

Fig 4. Effect of pH on the activity of β-galactosidase purified from *Pantoea* spp. B-1.

4. 🖡 - Galactosidase의 열안정성

▶-galactosidase의 열안정성을 조사하기 위해 30℃, 35℃, 40℃, 45℃, 50℃의 수조에서 가열하면서 10분 간격으로 시료를 채취하여 ▶-galactosidase assay를 실시하였다. 그 결과 30℃와 35℃에서의 활력은 120분이 경과한 후에도 감소하지 않고 유지되거나 더 활력이 증가하였고 40℃는 약간 감소하였으며, 45℃에서는 120분후에는 20%까지 활력이 감소하였고 50℃는 10분 이후에 활력이 모두 감소 하여 거의 나타나지 않아 45℃이상에서 활력이 감소하는 것으로 확인 되었다(Fig 5).

Fig 5. Heating stability of p-galactosidase purified from Pantoea spp. B-1.

5. Pantoea spp. B-1에서 추출한 1-Galactosidase의 활성 비교

상업적으로 판매되고 있는 E. coli **β**-galactosidase(Sigma), Lactozyme(Sigma) 및 Validase(Valley Reserch)를 사용하여 Pantoea spp. B-1 의 ▶-galactosidase를 5℃, 10℃, 30℃, 40℃에서 ONPG가수분해활력을 측정하여 본 결과 대장균과 Pantoea spp.B-1 i-galactosidase 는 40℃에서 가장 높은 활성 을 보였고 Lactozyme(Sigma)과 Validase(Valley Reserch)는 효모인 Kluvvermyces lactis에서 분리된 효소로서 30℃에서 가장 높은 활성을 보였다. 이와 같이 세균에서 분리된 효소는 효모에서 분리한 효소 보다 저온에서의 활력 이 좋지 않았지만 Pantoea spp. B-1의 🎜 galactosidase는 대장균에서 분리된 🖡 -galactosidase보다 저온에서의 활력이 좋은 것으로 나타났다(Fig 6).

유당을 이용한 유당 가수 분해 활성을 4℃와 30℃에서 *E coli* -galactosidase(Sigma), Validase(Valley Reserch)와 *Pantoea* spp. B-1의 -galactosidase의 가수 분해 활성을 조사한 결과 *Kluyvermyces lactis*에서 분리 된 β-galactosidase보다 *Pantoea* spp. B-1의 β-galactosidase의 활력이 떨어지지 만 *E coli* β-galactosidase보다는 4℃와 30℃에서 모두 활력이 높았다(Table 5).

Fig 6. Comparison of β -galactosidase from *pantoea* spp. B-1 with other commerced preparation of β -galactosidase

B-Galactosidase	Incubation Temperature (µmol/min • mg)		
₽ Galactosidase -	4°C	30°C	
Pantoea spp. B-1	0.37	3.99	
<i>Kluyveromyces lactis</i> (Validase)	1.13	9.45	
β-Galactosidase from <i>E. coli</i>	0.17	2.76	

Table 5. Lactose hydrolyzing activity of p-galactosidase in milk.

6. Pantoea spp. B-1에서 추출한 p-galactosidase의 등전점

등전점 전기영동을 실시하여 *Pantoea* spp. B-1에서 추출한 β-galactosidase의 등전점을 조사한 결과 각 효소에 여러개의 단백질 band로 분리되었다. *Pantoea* spp. B-1에서 추출한 β-galactosidase의 등전점은 약 pH 6,5과 6.65이며 *E. coli* β-galactosidase의 등전점은 pH 5.2,~5.5 및 5.8이였으며 *Kluyvermyces lactis*에서 분리한 Validase의 등전점은 pH 5.7과 6.3로 *E. coli, Kluyvermyces lactis*의 효 소보다 *Pantoea* spp. B-1에서 추출한 β-galactosidase의 등전점이 낮았다(Fig 7).

Fig 7. Isoelectric focusing of *Pantoea* spp. B-1, *E. coli* and *Kluyvermyces lactis* of p-galactosidase A. Marker protein (1. pH 4.55, 2. 5.2, 3. 5.85, 4. 6.54, 5. 7.3, 6. 8.05, 7. 8.45, 8. 8.65, 9. 9.3), B. *Pantoea* spp. B-1, C. *E. coli* p-galactosidase D. *Kluyvermyces lactis* Validase

7.. 분리된 β-galactosidase 활성 및 Km 과 Vmax 값

효소의 반응속도를 알아보고자 반응액중 ONPG의 농도를 달리하여 반응액을 제조해 30℃에서 5분간 반응한 결과로 반응속도를 계산하였다. 효소의 Vmax는 222.3µmol/min mg 이였고 Km 값은 1.234×10⁻⁵M 이였으며 유당에 대한 반응속도를 계산하기 위해 기질을 ONPG가 아닌 유당를 사 용하여 반응속도를 계산하였다. 시료내 포도당의 mol수는 27.8mol 이였으며 각 반응액내 효소의 질량은 0.225µg이였고 유당에 대한 Vmax는 24.7µm ol/min mg 이고 Km값은 1.73mM 였다.

제 4 절 요 약

유당소화장애에 유용하게 이용할 수 있는 β-galactosidase를 국내의 토양에서 분리한 *Pantoea* spp. B-1로 부터 분리하였고 효소의 생화학적 특성과 우유에서 의 유당분해능력을 조사하였다. 겨울철 토양에서 β-galactosidase를 생산하는 균 주를 분리하였으며 그람 염색과 API 20E kit로 동정한 결과 그람음성 간균이고 *Pantoea* spp. B-1로 확인되었다. *Pantoea* spp. B-1 균주의 세포 추출물로부터 DEAE-Sephacel chromatography와 affinity chromatography를 이용하여 β -galactosidase를 분리하였다. 그 결과 세포 추출물에 비해 28.5배의 순수 분리율 을 탈성하였고, ONPG 가수분해 활력은 30℃에서 156.8µmol/min·mg이었다. β -galactosidase의 반응 최적 온도는 45℃이고 최적 pH는 5.5~7.5이었다. β -galactosidase의 열안정성을 조사한 결과 45℃이상의 온도에서 불활성 되는 것 으로 나타났다. 다른 β-galactosidase와의 우유 내 유당분해능력을 비교한 결과 *Pantoea* spp. B-1에서 분리된 β-galactosidase는 대장균의 효소보다 활력이 높았 으나 *Kluyveromyces lactis* 효소(Validase)보다는 상대적으로 낮았다.

제 5 절 참고문헌

1. Alm L. 1982. Effect of fermentation on lactose, glucose, and galactose content in milk and suitability of milk products for lactose intolerant individuals. *J Dairy Sci.* Mar;65(3):346–352.

2. Brenchley, J.E. 1966. Psychrophilic microorganisms and their cold-active enzymes . *J. Ind. microbiol.* 17:432–437.

3. Castillo, F.J. and Moreno, B. 1983. Properties of lactase produced by candida pseudotropicalis. *J. Dairy Sci.*, 66, 1616–1621.

4. Dickson, R.C., Dickson, L.R. and Markin, J.S. 1979. Purification and properties of an inducible β-galactosidase isolated from the yeast *Kluyveromyces lactis. J. Bacteriol.*, 137, 51–61.

5. Gray, G.M. and Santiage, N.A. 1969. Intestinal p-galactosidase. I. Seperation and characterization of three enzymes in normal human intestine. *J. Clin. Invest.*, 48, 716–728.

6. Greenberg, N.A. and Mahoney, R.R. 1981. Rapid purification of -galactosidase (*Aspergillus niger*) from an cammercial prepartion. *J. Food Sci.*, 46, 684–687.

7. Holsinger VH. 1978. Lactose-modified milk and whey. *Food Technology*. 35:40.

8. Loveland, J., K. Gutshall, J. Kasmie, P. Prema, and J.E. Brenchley. 1994. Characterization of psychrotrphic microorganism production *β* –galactosidase activities. *Appl. Environ. Microbiol.* 60(1):12–18.

9. Mahoney, R.R. and Whitaker, J.R. 1978. Purification and physicochemical properties of *p*-galactosidase from *Kluyveromyces fragilis. J. Food Sci.*, 43, 584–591.

10. Swagerty DL Jr, Walling AD, Klein RM. 2002: Lactose intolerance. Am Fam Physician. May 1;65(9):1845–50.

11. McCammon, R. G., B. H. Innesm J. P. Bowman, P. D. Franzmann, S. J. Dobson, P. E. Holloway, J. H. Skerratt, P. D. nichol and L. M. Rankin. 1998. *Flavobacterium hiberum* sp. nov., a lactose-untilizing bacterium from a fresh water antartic lake. Int. J. Sys. Bacteriol. 48:1405-1412

12. Park, Y.K., De Santi, M.S.S and Pastore, G.M. 1979. Production and characterization of *B*-galactosidase from *Aspergillus oryzae. J. Food Sci*, 44, 100–103.

13. Takenishi, S., Watanabe, Y., Miva, T. and Kobayashi, R. 1983. Purification and some properties of **p**-galactosidase from Penicillium Multicolor *Agric. Biol. Chem.*, 47, 2533–2540.

14. Van Huynh, N. and Decleire, M. 1985. In situ activation of *p*-galactosidase of *Kluyveromyces bulgaricus* resting cells by sodium and potassium phosphates and chlorides. *Appl. Microbiol. Biotechnol.*, 21, 390–393.

14. 김종우. 1994. 한국인의 유당소화장애에 관한 연구. Korean J.Dairy Sci.

16(1):105-114.

15. 이경섭, 김창진, 윤기흥. 2003. Streptomyces sp. YB-9가 생산하는 균체의 ▮ -Galactosidase의 특성 *Agric.Chem. Biotechnol.* 46(4). 299-304(2003).

제 5 장 우유에서 분리한 *Candida kefyr* Y-3에서 정제한 β-galactosidase의 생화학적 특성

제 1 절 서론

▶ galactosidase(▶ -D-galactoside galactohydrolase : EC 3.2. 1.23)는 자연계에 존재하는 효소로 유당과 같은 ▶ -D-galactopyranosides에서 비환원 말단 ▶ -D-galactose를 가수분해하거나, galactose의 전이반응을 촉매하여 동·식물 및 미생물에서 두루 발견된다. 이 효소는 동물, 식물, 미생물에서 분리정제 되어 효 소의 생화학적 특성과 산업적 이용에 관련된 연구가 많이 보고되어 있다.

▶-galactosidase는 유당의 ▶-1,4 결합을 분해하여 glucose와 galactose를 생산 하는 효소이다. 유당은 우유에만 있는 유일한 탄수화물로, 소장 상피세포에서 분 비되는 ▶-galactosidase에 의해 분해되고 섭취한 유당량이 많거나 효소결핍으로 분해되지 못하면, 복부팽만, 복통, 경련, 설사 등의 증상을 일으키는 유당소화장 애증(lactose intolerance)의 원인이 된다.

이와 같은 문제점을 해결하기 위한 방법으로 우유 안의 유당을 유당분해효소인 p-galactosidase를 이용하여 가수분해하는 것이다. p-galactosidase에 의해 유당 이 분해되면 glucose와 galactose로 분해됨으로서 유당소화장애증을 완화시킬 수 있다.

미생물은 다량의 ▶-galactosidase를 생산할 수 있는 좋은 생산원으로, 그 중 효모는 다량의 효소를 생산(균체 내 효소를 유도적으로 생산한다)하기 때문에 많 은 연구들이 보고되어 있다.

본 연구에서는 강원도 목장에서 집유한 우유에서 분리한 Candida kefyr로부터 🖡 -galactosidase를 분리하고 효소학적 특성을 조사하였다.

제 2 절 재료 및 방법

1. 유당분해효소 생성 효모

강원지역 목장들에서 집유한 우유를 40ng/ℓ X-Gal을 첨가한 Sabouraud lactose agar, pH 3.5 ± 0.1에 접종하여 15℃에서 배양하며 청색 집락을 형성하는 Candida kefyr Y-3를 사용하였다.

2. 효소생산을 위한 효모의 배양

Candida kefyr를 Tryptone Soya Agar + 0.5% Lactose에 Streaking 한 후 3 0℃에서 24시간 배양한다. 평판에 콜로니가 생기면 50ml의 Tryptone Soya Broth + 0.5% Lactose에 30℃에서 24시간 1차 계대배양을 하고, 2차 계대배양도 같은 방식으로 배양한다. 3차 계대배양은 1.5ℓ의 Tryptone Soya Broth + 0.5% Lactose에 30℃에서 24시간 배양한다.

3. 효소의 추출 및 정제

가. 효소의 추출

효모배양액 1.5ℓ를 3000rpm에서 30분간 원심분리한 후, 상등액을 버리고 Pellet에 0.2M Tris, 0.2M Nacl, 10mM megnesium acetate, 10mM mercaptoethanol, 5% glycerol pH 7.6(BB용액)에 분산하여 3000rpm에서 30분간 원심분리한다. 상등액을 버리고 Pellet에 BB용액을 분산하여 Sonicate한다. Sonicate한 분쇄액을 15000rpm에서 20분간 원심분리(1S)후, 상등액만 추출하여 34000rpm에서 5시간 원심분리(2S)한다. 투명해진 상등액에 Nacl(2g/100mℓ)과 Polyethylene glycol(10g/100mℓ)을 첨가하여 15℃의 온도에서 12시간 교반한다. 이를 다시 12000rpm에서 20분 원심분리(3P)하는데, 이때는 Pellet를 사용한다. Pellet에 2.5mM Sodium Phospate, 20% Glycerol pH 7.5와 20% Glycerol을 1:3 의 비율로 용해시킨다. 2시간 교반 후 12000rpm에서 20분간 원심분리하여 상등 액(4S, 최종효모추출액)을 얻는다.

나. DEAE-Sepharose Chromatography

DEAE-Sepharose를 Column에 충진하여 2.5 × 4㎝의 Column을 만든다. 2.5mM Sodium Phospate, 20% Glycerol pH 7.5으로 Resi를 평형화 시킨 후, 효 모추출액을 통과시켜 흡착시킨 다음 0~0.3M Nacl을 각 60㎡씩 Gradient로 단백 질을 용출시켜 분획을 수집한다. 효소활성이 나타나는 부분만을 모아 다음에 사 용될 Hydroxyapatite(Bio-Gel HTP Gel) Chromatography에 사용되는 용액 40mM Sodium Phosphate Buffer(pH 6.8), 10% Glycerol에 하룻동안 투석한다.

다. Hydroxyapatite(Bio-Gel HTP Gel) Chromatography

Hydroxyapatite를 Column에 충진하여 1.5 × 2.5cm의 Column을 만든다. 40mM Sodium Phosphate Buffer(pH 6.8), 10% Glycerol로 평형화 시킨 후, 효소 액(효소활성이 있는 부분을 모아 투석한 효소액 : Volume 16.5ml)을 통과시켜 흡 착시킨 다음 40mM Sodium Phosphate Buffer(pH 6.8), 10% Glycerol과 0.5mM Potassium Phosphate Buffer(pH 6.8), 10% Glycerol를 각 60ml씩 Gradinet하여 단백질을 용출시킨다. 효소활성이 나타나는 부분만을 모아 다음에 사용될 Sephacryl 300HR Gel Filtration Chromatography의 효소액으로 사용한다.

라. Sephacryl 300HR Gel Filtration Chromatography

Sephacryl 300HR을 Column에 충진하여 2.5 × 115cm의 Column을 만든다. 2.5mM Sodium Phospate, 20% Glycerol pH 7.5으로 Resi를 평형화 시킨 후, 효 소액(Hydroxyapatite Chromatography에서 효소활성이 나타났던 부분 : Volume 8ml)을 통과시킨 다음 2.5mM Sodium Phospate, 20% Glycerol pH 7.5으로 단백 질을 용출시킨다. 효소활성이 나타나는 부분을 모아 Polyethylene Glycol을 이용 하여 5ml로 농축시킨다.

3. SDS-PAGE 전기영동

Laemmli(1970)의 SDS-PAGE 방법에 따라 실시하였다. 각 Chromatography 에서 얻어진 분획의 순수분리 정도를 확인하기 위하여 단백질 시료를 62.5mM Tris-cl(pH 6.8), 2% SDS, 10% Glycerol, 5% [↑]-mercaptoethanol, 0.01% bromophenol과 1 : 1로 혼합한 다음 95℃에서 5분간 가열하여 사용하였고, Polyacrylamide Gel 8%에 100V로 전기영동 후 Coomassie Brilliant Blue R-250 으로 염색한 후 40% Methand과 7% Acetic Acid를 함유한 탈색용액으로 탈색하 였다. Marker는 Prestained SDS-PAGE Standards, Broad Range를 사용하였다.

4. 단백질 정량

각 정제과정에서 단백질은 UV/Visible Spectrophotometer를 이용하여 280nm 에서 흡광도를 측정하였다. 효소용액 중의 단백질 함량은 Biocinchoninic Acid(BCA, Bio-rad) 단백질 정량법을 이용하여 BSA를 표준물질로 하여 562nm 에서 흡광도를 측정하였다.

5. 효소활성 측정(B-galactosidase assay)

P-galactosidase의 활성은 100 × Mgcl₂ 4.5μl, 1 × ONPG(O-Nitrophenyl--D-Galactopyranoside) 99μl, 0.1M Sodium Phosphate(pH 7.5) 301.5μl와 효소액 100배 희석시켜 45μl를 혼합하여 30℃에서 30분 반응시킨 후 1M Naco₃용액으로 반응을 중단시켰다. 그 다음 420nm에서 흡광도를 측정(UV/Vis Spectrophotmeter)하였다.

6. ₱-galactosidase의 최적 pH 및 온도

▶-galactosidase의 pH에 다른 효소활성의 측정은 0.1M Phosphate Buffer(pH 6~8), 0.1M Tris Buffer(pH 8~10), 0.1M Acetate Buffer(pH 4~6), 0.1M Mops Buffer(pH 6~8)를 사용하여 30℃에서의 효소의 잔존활성을 측정하였다. 또한 효 소의 최적 반응온도는 반응액을 최적 pH로 하고 온도를 5℃에서 50℃로 5℃간격 으로 조절한 다음 효소활성을 측정하였다.

7. 🌶-galactosidase의 열 안정성

▶-galactosidase의 열 안정성은 20℃에서 45℃까지 5℃간격으로 각 온도에서 0분에서 120분간씩 10분 간격으로 처리한 다음 효소의 잔존활성을 측정하였다.

제 3 절 결과 및 고찰

1. β-galactosidase의 분리

 ▶ galactosidase를 순수 분리하기 위해 DEAE-Sepharose 이온교환 크로마토 그래피(Fig 1)와 Hydroxyapatite 이온교환 크로마토그래피(Fig 2), Sephacryl 300HR gel filtration 크로마토그래피(Fig 3)를 연속적으로 실시하여 ▶ -galactosidase를 순수 분리하였다.

Fig 1. DEAE-Sepharose ion exchange chromatography of β -galactosidase from *Candida kefyr*.

Fig 2. Hydroxyapatite ion exchange chromatography of β -galactosidase from *Candida kefyr.*

Fraction Number

Fig 3. Sephacryl 300HR gel filtration chromatography of p-galactosidase from

Candida kefyr.

순수분리를 확인하기 위해 SDS-PAGE 로 각 단계별 추출물을 전기영동한 결과 효소 추출물의 밴드들은 다양한 분자량의 단백질들의 밴드가 나타나 있고 DEAE-Sepharose ion exchange chromatography와 Hydroxyapatite ion exchange chromatography의 밴드들은 효소 추출물보다 많은 단백질이 제거되었 다는 것을 확인 할 수 있고, Sephacryl 300HR gel filtration chromatography에서 단일밴드로 나타나 순수 분리됨을 확인하였다(Fig 4).

A B C D E F G H

Fig 4. SDS-PAGE of purified p-galactosidase from *Candida kefyr*.
A. Prestained SDS-PAGE Standards, Broad Range, B. 1S, C. 2S, D. 3P,
E. 4S, F. DEAE-Sepharose chromatography, G. Hydroxyapatite chromatography, H. Sephacryl 300HR gel filtration chromatography

원심분리하여 얻은 상등액의 총 단백질량은 27.2mg였으며 DEAE-Sepharose chromatography는 3.23mg, Hydroxyapatite chromatography는 2.16mg, Sephacryl 300HR chromatography는 0.85mg로 단백질량이 크게 줄어들은 반면에 -galactosidase 활성도는 최종 효모추출물 20.16µmol/min·mg이고, DEAE-Sepharose chromatography는 76.29µmol/min·mg, Hydroxyapatite chromatography 90.31µmol/min·mg, Sephacryl 300HR chromatography는 113.62µmol/min·mg로 활성도가 증가했다는 것을 확인 할 수 있었다. 또한 회수율은 100%으로 볼 때 최종 회수율이 20%인 것을 확인하였다.

Cell extract fractions	Vol(ml)	Total Protein(mg)	Total Activity (µmol/min)	Specific Activity (µmol/min•mg)	Recovery (%)	Purification (fold)
1S	44.3	4977.5	475.16	0.10	100	1
2S	44.74	362.4	481.53	1.33	101	140
4S	43.88	27.2	548.34	20.16	115	212
DEAE-Sepharose	16.5	3.23	246.4	76.29	52	803
Hydroxyapatite	8	2.16	195.08	90.31	41	950
Sephacryl 300HR	5	0.85	96.57	113.62	20	1196

Table 1. β -galactosidase activity of cell extract and chromatography fraction from *Candida kefyr*.

2. ₿-galactosidase의 최적온도

Candida kefyr에서 추출한 ▶-galactosidase의 최적온도는 5℃, 10℃, 20℃, 2 5℃, 30℃, 35℃, 40℃, 45℃, 50℃까지 ▶-galactosidase assay를 2번 반복으로 실 시하여 평균값을 구한 결과를 그래프로 나타내었다. 효소반응온도는 5℃에서 3 5℃까지 증가하다가 35℃에서 최적반응 온도를 보였으며 40℃ 이상에서는 효소 활성이 급격히 감소하였다.

Fig 5. Effect of temperature on the activity of β -galactosidase purified from *Candida kefyr.*

3. β-galactosidase의 최적 pH

▶-galactosidase의 pH에 따른 효소활성의 측정은 0.1M Phosphate buffer(pH 6~8), 0.1M Tris buffer(pH 8~10), 0.1M Acetate buffer(pH 4~6), 0.1M Mops buffer(pH 6~8)를 사용하여 30℃에서 효소의 활성을 측정하였다. pH별 활성은 pH 6.0~7.5의 범위에서 높았으며 0.1M Mops buffer pH 7.5에서 가장 높은 활성 을 보였다. 거의 모든 buffer는 pH 5.0이하와 pH 8.0이상의 산성과 알칼리성 pH 범위에서는 효소의 활성이 크게 감소하였다.

Fig 6. Effect of pH on the activity of β -galactosidase purified from *Candida* kefyr.

4. ₿-galactosidase의 열안정성

▶-galactosidase의 열안정성을 조사하기 위해 20℃, 25℃, 30℃, 40℃, 45℃에 서 0~120분까지 10분 간격으로 시료를 채취하여 ▶-galactosidase assay를 실시 하였다. 그 결과 20℃와 25℃에서의 활성은 120분이 경과한 후에도 감소하지 않 고 유지되었으며, 30℃에서 점점 감소하였으며 40℃와 45℃에서는 10분 이후에 활성이 모두 감소하여 거의 나타나지 않았다.

5. 기질 농도에 대한 I-galactosidase의 활성도

기질 농도에 따른 효소의 ONPG의 가수분해 반응속도를 25℃에서 2분과 5분 동안 반응시킨 후 측정하였다. 2분에서의 반응속도가 5분 보다 높아 2분에서의 반응속도를 가질 농도와의 상관관계를 구하여 Michalis-Menten plot과 Lineweaver-Burke plot를 계산하여 그래프를 그렸다(Fig 8). -GalactosidaseVmax는 195.3µmol/min・mg이고 Km은 0.75mM이었다.

Fig 7. Heating stability of p-galactosidase purified from Candida kefyr.

제 4 절 요약

우유에서 분리한 *Candida kefyr* Y-3의 세포추출액에서 정제된 -galactosidase의 활성도는 113.62µmol/min・mg이 이었으며 회수율은 20%이었다. 효소의 최적 pH는 7.5였고, 최적 온도는 35℃였다. 열 안정성은 20℃와 25℃에서 의 활성은 120분이 경과한 후에도 감소하지 않고 유지되었으나, 30℃에서는 점점 감소하였고 40℃와 45℃에서는 10분 이후에 활성이 모두 감소하여 거의 나타나 지 않았다. Vmax는 195.3µmol/min・mg이고 Km은 0.75mM이었다.

Fig 8. Michaelis-Menten plot and Lineweaver-Burke plot of *p*-galactosidase purified from *Candida kefyr*

제 5 절 참고 문헌

1. Bouvy, F. A. M. 1975. Applications for lactase treated whey. Food Product. Develop. 2:10-14.

2. Davis, B. J. 1964. Electrophoresis, Ann. N. Y. Acad. Sci. 121:404-427.

3. Guy, E. J. and E. W. Bingham. 1978. Properties of β-galactosidase of in milk and milk products. J. Dairy Sci. 61:147-151

4. Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:265-275 5. 김동신, 박상교. 1990. 누룩스타터를 이용한 산-알콜 발효유제품에 관한 연구.

- I. 유당분해 효모의 분리 및 특성. Korean J. Dairy Sci. 12(4):279-285
- 6. 박상교. 1997. *Kluyveromyces marxianus*의 성장과 ₱-galactosidase의 추출 및 정제. Koreran J. Dairy Sci. 19(3):219-228
- 7. 박상교. 1997. Kluyveromyces marxianus에서 분리한 🎙-galactosidase의 효소
- 학적 특성. Korean J. Dairy Sci. 19(3):229-238

제 6 장 호냉성 유당분해효소생산균주의 분리 및 선발

제 1 절 서 론

호냉성 미생물이 연구는 1960년 초에 미생물의 생태나 이화학적인 특성에서 부터 연구가 시작되었고 (Stoke 1963; Farrell & Rose 1967) 1980년대 중반에 극 한환경 미생물에 대한 관심이 커지면서(Sharp와 Munster, 1986) 저온성 미생물 의 유전학적 특성과 저온에서의 생장 원리에 대한 연구가 시작되었다(Gounot, 1986 : Herbt, 1986 : Russel, 1990). 이들 호냉성 미생물은 저온에서 적응하기 위 한 특별한 물질을 생성하는데, 이는 cold-active효소, cold-shock 단백질, anti freeze proteins, ice-nucleation proteins, 불포화 지방산 등 이다. 호냉성 미생물 은 amylase, ₱-galactosidase, protease와 lipase등을 생산하는 것이 보고된 바 있 는데, 이들 저온성 효소들은 중온성효소가 활성을 가지지 못하는 0-20℃의 낮은 온도에서도 높은 효소활성을 가지고 온도상승에 의해 쉽게 불활성화 하는 특성 이 있어 식품산업을 포함하는 여러 산업분야에서 산업적으로 유용하다(Coomb과 Brenchly, 1999 : Mahsunah 등, 2000).

유당분해효소는 자연계에 널리 존재하며 이를 생산하는 세균, 효모, 곰팡이 등의 미생물이 유당분해효소 생산원으로 이용되어 왔다. 1980년대 까지는 적정온 도가 30-40℃인 중온성 유당분해효소가 주로 개발되었고 1990년대부터 적정온도 가 60℃ 이상인 고온성 유당분해효소에 대한 연구가 시작되었다. 그러나 0-5℃에서 활성을 가지는 유당분해효소에 대한 연구는 1990년대 말부터 시작되어 연구 결과가 극소수에 지나지 않고 있다(Charles, 2000). Brenchley(1992)는 극한온도 에서 효소활성이 높은 cold active β-galactosidedase를 발견하여 유당분해우유생 산에 이용할 수 있는 가능성을 제시한 바 있다. Loveland(1994)는 낮은 온도의 환경에서 분리한 호냉성균이 생성하는 효소는 낮은 온도에서 높은 활성을 갖고 있으며, 이 연구자가 분리한 *Arthrobacter* 의 효소의 실활 온도는 40℃이며 최적 온도는 20℃ 이하라고 보고 하였다. Lynn(1996)는 *Saccharomyces lactis*에서 생 산한 유당분해효소는 3-25℃와 중성 pH에서 활성을 가지고 있다고 보고 했으며, 낙농가에서 냉각 저장 중에 있는 원유에 첨가하여 운송과정중에 유당을 부해하 는 것을 시도하였다. McCammin 등(1998)은 남극에서 ௺-galactosidase를 생성하 는 균주를 분리하였으며 이들은 그람 음성간균인 새로운 *Flavobacterium* spp.으 로 최고성장온도는 30-31℃이고 최적성장온도는 -7℃이며 최적온도는 26℃이었 다.

본 연구는 호냉성 유당분해효소의 생산원으로 저온에서 효소활성을 가진 호 냉성 균을 선택하였다. 호냉성 균을 분리하기 위하여 한대지방의 토양시료나 남 극의 해수 및 원류를 채취하여 각각의 선택배지에 2℃에서 20일-1개월 배양하여 생성되는 모든 colony를 대상으로 하였다. 선발된 colony중 lactose와 x-gal이 함 유된 배지에서 선발한 후 4℃에서 cold active p-galactosidase의 활성이 높은 균주를 선발하였다.

제 2 절 재료 및 방법

1. 시료의 채취

저온성 -galactosidase를 생산하는 호냉성균을 분리하기 위한 시료로 국내 원유, 히말라야 토양, 북극의 토양 및 해수, 캐나다 Ontario지역의 토양 및 남극 의 해수를 시료로 다음과 같이 사용하였다.

가. 국내 생산원유

경기도 포천군 북부지역 40개 낙농목장에서 원유를 채취 했으며, 채취한 원 유는 냉장상태로 24시간 이내에 실험실로 운반하였다.

나. 히말라야 지역

네팔 히말라야 쿰부히말 지역의 고도 4500-6000m 39개 지역에서 토양을 채 취하였다.

다. 알라스카 북극 지역

Barrow 11개 지역, Nome 15개 지역, Fairbanks 13개 지역에서 토양 혹은 해수 시료를 채취하였다.

라. 캐나다 Ontario 지역

Toronto 3개 지역, Kitchener 3개 지역에서 토양시료를 채취하였다.

마. 남극지역

남극의 펭귄마을지역과 해수 등 22개의 시료를 채취하였다.

2. 미생물의 분리 및 선발

```
가. 시료의 증균(enrichment)
```

1) 토양시료

멸균된 BHI (Brain Heart Infusion)배지 45 ml에 시료 5 g을 넣은 후 shaking incubator(다솔과학 DS-23SNC)에서 4℃에서 30일간 200rpm 으로 진 하여 증균 배양하였다. 배지 조성은 Table 1과 같다.

Table 1. Composition of BHI medium

Ingredients	g/L
Calf Brains,	200.0 g
Beef Heart,	200.0 g
Infusion from	250.0 g
Proteose peptone	10.0 g
Dextrose	2.0g
Sodium chloride	5.0g
Disodium Phosphate	2.5 g
Distilled water	950ml
рН	7.4±0.2

* BHI 배지는 Difco사의 완제품을 사용하였고, 20% Lactose 50ml를 멸균 후 첨가하였다.

2) 해수 시료

멸균된 Sea Water Composition(SWC)배지와 Zobell 배지 45 ml에 시료 5 g 넣은 후 shaking incubator(다솔과학 DS-23SNC)에서 4℃에서 30일간 200rpm 로 진탕하여 증균 배양하였다. 배지조성은 Table 2과 Table 3과 같다
Ingredients	g/L
Bacto tryptone	5
Yeast extract	3
Glycerol	3
Sae water	700
D.W	250ml
pH	7.0

Table 2. Composition of Sea Water composition(SWC) medium

* 20% lactose 50ml 멸균후 접종

Table 3. Composition of Zobell medium

Ingredients	g/L
	_
Peptone	5
Yeast extract	1
Sea water	500ml
D.W	450ml
pH	7.0

* 20% lactose 50ml 멸균후 접종

나. 균주의 분리 및 선발

30일간 증균한 시료들을 멸균한 0.85% 생리 식염수로 십진으로 10⁶⁻⁷ 배 희 석하여 0.01% X-gal(5-bromo-4-chloro-3-indolyl-β-D-galactoside)이 포함된 BHI 고체배지에 1% IPTG, 5% lactose 첨가한[단, 배지 조성성분에 Agar를 15g/ℓ를 넣고 IPTG와 X-gal 이 들어간 만큼의 양을 Distilled water에서 빼고 IPTG 10ml 첨가한 후 0.01% X-gal(5-brome-4-chloro-3-indolyl-β -D-galactoside)를 0.3% dimethylforamide 용액에 희석하여 배지에 첨가한다] 후 1ml를 채취하여 incubator 에서 15℃에서 3-5일간 배양하여 blue colony를 형성 하는 것을 모두 분리하였다. 분리한 균주를 동일한 방법으로 4℃, 30일간 배양하 여 Blue colony를 형성여부를 확인하고 X-gal분해력이 높을 것으로 추측되는 짙 은 blue colony를 선발하였다.

다. 선발 균주의 순수분리

증균한 배지에 Blue colony 집락을 형성한 균을 loop로 떠서 0.01% X-gal 를 포함한 BHI 고체배지에 streaking, 도말하여 incubator(4℃)에서 15일간 배양 하여 1차 선발하였으며, 1차 선발 배지에 형성된 균체 집락에서 균을 loop로 떠 서 BHI 고체배지에 2차 streaking, 도말하여 incubator(SANYO MIR-153)에서 15℃, 3-5일간 배양하였다.

3. ₿-galactosidase의 활성 측정

선발된 균주를 액체배지에서 배양후 세포의 완충용액 현탁액의 A₆₀₀=8.0으로 표준화 하여 세포내에 존재하는 **β**-galactosidase의 활성을 ONPG와 원유의 유당 을 기질로 하여 측정하였다.

가. 미생물의 배양

멸균된 test tube에 액체배지 5ml 각각 넣은 후 마지막으로 streaking 한 배 지의 균을 한 백금이 떠서 접종한 후 vortex mixer로 균체를 균일하게 혼합한 후 incubator(VISION VS-8480SH)에서 15℃, 200rpm으로 3-5일간 진탕 배양하 였다. 본 배양을 하기 위해 멸균된 삼각 플라스크에 액체배지를 100ml 넣은 후 Sub-culture한 균을 1~2% 접종하여 shaking incubator에서 4℃, 200rpm으로 7-10일간 진탕 배양하였고, 미생물체량 측정을 위해 600nm에서 흡광도(A₆₀₀)로 측정하였다.

나. ₱-galactosidase의 활성 측정

배양액 100ml을 원심분리하여(SORVALL^R SUPER T 21, 4℃, 10,000 rpm, 20min)하여 균체를 회수한 후 A₆₀₀=8이 되도록 0.01M Na-phosphate buffer(pH 6.8)에 침전물을 현탁시킨 후 sonification(NiSSEi사 Ultrasonic generator model US-300 G60132, 100Hz, 30초간 5-20회반복)으로 세포를 파쇄하여 효소활성 측정 을 위한 조효소액으로 사용하였다. 효소활성 측정을 위한 기질은 ONPG와 원유 의 lactose를 사용하였다.

ONPG(n-nitrophenyl-f-D-galactopyranoside)를 0.04M 농도로 0.01M Naphosphate buffer(pH 6.8)에 용해하여 기질용액으로 사용하였다. 기질용액 0.2ml 에 0.01M Na- phosphate buffer(pH 6.8) 1.6ml 넣고 조효소액 0.2ml 첨가하여 4℃ water bath(다솔과학 Shaking water bath DS-23SNC, 200rpm)에서 2 시간 반응 후 0.5M Na₂CO₃ 수용액을 2ml 첨가하여 420nm의 흡광도(HEWLETT PACKARD 8453)로 효소활성을 측정하였다.

원유를 원심분리(6000×g, 10분, 4℃)하여 지방을 제거한 탈지유 1.6 ml에 조 효소액 0.4 ml를 첨가하여 4℃ water bath(Shaking water bath DS-23SNC, 200rpm)에서 5일간 반응 후 Mutarotase-Glucose Oxidase 법(Wako, 2003)으로 glucose함량을 측정하였다.

4. 미생물의 동정

X-gal 분해력, 4℃ 및 15℃ 성장유무, ONPG분해력 및 우유 유당 분해력 등 을 근거하여 선발된 균주를 동정하였다.

가. 형태 및 크기

Gram staining하여 광학현미경(1000×)하에서 Gram 염색성, 형태, 크기를 관 찰하였다.

나. 생화학적 성질

운동성, 포자형성 여부, 배지 번식양태, 대사생산물질, 주요 효소 생산성, 당 이용성 등 속(genus)의 분류에 필수적인 성질을 조사하였다.

다. 지방산 조성

세포내 지방산을 Yamada 방법에 의하여 추출후 GC(Hewlett Packard Series Ⅱ model 6890)에서 분석하였다. Flame ionization dector를 사용하였고, injection 온도는 250℃, column 온도는 200℃이었고 운반가스는 질소이었다.

라. 16s rDNA sequensing

DNA를 추출하고 universial primer를 사용하여 PCR에의해 16s rDNA를 증폭하였다. Sequence를 Genetic analyzer 377(Perkin Elmer)를 사용하여 PHYLIP(Felsenstein, 1993)방법에 의해 분석하였다.

제 3 절 결과 및 고찰

1. 균주의 분리 및 선발

가. 국내 원유로부터 분리 및 선발

경기도 포천군 북부지역 40개 목장에서 채취한 원유에서 X-gal을 분해한 균주 163개를 분리하였다. 이들을 4℃, 15℃ 성장유무, X-gal 분해 여부를 확인하 여, X-gal분해력이 높은 균주 31균주를 분리하였다. 분리한 균주는 MA1-3, MA2-1, MA3-1, MA5-9, MA19-3, MA20-4, MA27-6, MA40-1, MA40-3, MB4-1. MB24-2, MB25-2, MB26-3, MB26-4, MB33-1, MB35-1, MB37-1, MB39-4, MB42-5, MC8-1, MC9-3, MC14-3, MC14-7, MC16-2,MC 22-4, MC23-5,MC 30-1, MC30-5, MC32-1, MC38-5로 Table 4와 같다. Table 5는 우유에서 분리한 31균주 조효소액의 ONPG 분해력와 우유 유당 분해능력에 근거하여 매우 우수하다고 판단되는 6균주를 선발하였다. 선발된 균주는 MA1-1, MA1-3, MA2-1, MA3-1, MB26-4, MC14-3 이다.

나. 히말라야 지역 시료로부터 균주의 분리 및 선발

네팔 히말라야 쿰부히말의 고도 4500-6000m 39개 지역 토양시료를 채취하 여 15℃에서 3-5일간 배양후 X-gal을 분해력이 있는 균주 148개를 획득하였다. 이들을 4℃, 15℃ 성장유무, X-gal능을 조사하여 분해력이 우수한 72균주를 분 리하였으며(Table 6), 분리한 72균주 조효소액의 ONPG와 우유 유당 분해력을 조사하였으며 그 결과는 Table 7 에 나타났다. X-gal 분해력에 근거하여 분리한 72균주 조효소액의 ONPG분해와 우유 유당 분해능력에 근거하여 매우 우수하다 고 판단되는 균주는 HB1-2, HB4-4, HB20-4, HB22-5, HB27-1, HB39-5로 5균 주를 선발하였다.

Farm name	Strain (MA)	colony size	Growth at 15℃	Growth at 4℃	Hydrolysis of X-gal
1. 대성	1	L	+	+	+(Strong)
	2	S	+	_	_
	3	L	+	+	+(Weak)
	4	S	+	_	_
	5	S	+	_	-
2.신백은	1	L	+	+	+
	2	L	+	-	-
	3	L	+	+	+
	4	L	+	_	-
	5	L	+	+	-
3.중앙	1	S	+	+	+
	2	S	+	+	_
	3	L유백색	+	_	-
	4	L	_	_	-
	5	L유백색	+	_	_
5.율리	1	L	+	-	-
	2	L	+	_	+
	3	L	+	+	+
	4	L	+	+	-
	5	L	+	+	-
	6	L	+	-	-
	7	L	+	_	-
	8	S	+	+	+
	9	L	+	+	+
7,세화	1	S	+	_	-
	2	S	+	-	-
	3	S	+	-	-
	4	S	+	-	_
8.가원			Not fou	ind.	
17.석남	1	L	+	+	+
	2	L	+	+	_
19.초원	1	L	+	-	-
	2	L	+	+	-
	3	L	+	-	+
	4	L	+	-	-

Table 4. Isolation of psychrophilic bacteria from raw milk

	Strain	colony	Growth at	Growth at	Hydrolysis of
Farm	No.	size	15°C	4°C	X-gal
	(MC)	(on plate)	15 C	40	A gai
8. 가원	1	L	+	+	+(strong)
	2	L	+	+	+
	3	L	+	+	+
	4	L	+	+	+(weak)
	5	L	+	+	+
	6	L	+	+	+
9. 선동	1	L	+	+	+
	2	L	+	+	-
	3	S	+	+	+(strong)
	4	L	+	+	+
	5	L	+	+	_
14. 원흥	1	L	+	+	+(weak)
	2	L	+	+	+(weak)
	3	L	+	+	+
	4	L	+	+	+
	5	L	+	+	+
	6	L	+	+	+
	7	L	+	+	+(strong)
	8	L	+	+	+
16. 성수	1	L	+	+	+
	2	L	+	+	+(strong)
	3	S	+	+	+
	4	S	+	+	+(weak)
	5	S	+	-	_
22. 삼성	1	S	+	+	+(weak)
	2	S	+	+	+
	3	S	+	+	+
	4	L	+	+	+(strong)
	5	L	+	+	+(weak)
23. 홍천	1	L	+	+	+
	2	L	+	+	+
	3	L	+	+	+
	4	L	+	_	-
	5	L	+	+	+(strong)

Table 4 - continued

Forme	Strain.	colony	Growth at	Growth at	Hydrolysis of
Farm	(MC)	size	15 °C	4℃	X-gal
30. 이수정	1	L	+	+	+(strong)
	2	L	+	+	+
	3	L	+	+	+
	4	L	+	+	+
	5	L	+	+	+(strong)
	6	L	+	+	+(weak)
	7	L	+	+	+(weak)
	8	L	+	-	_
32. 은골	1	L	+	+	+(strong)
	2	S	+	+	+
	3	L	+	+	+
	4	L	+	+	+
	5	L	+	+	+
38. 향촌	1	L	+	+	+
	2	S	+	+	+
	3	L	+	+	+
	4	L	+	+	+
	5	L	+	+	+(strong)

Table 4 -continued

		TT 1 ' C	Hyrolysis of
No.	Isolated strains	Hyrolysis of $ONPG(A_{420})$	Lactose
			(glucose mg/dl)
1	MA1-1	2.1945	30.744
2	MA1-3	1.9968	36.591
3	MA2-1	2.6455	57.787
4	MA3-1	1.80305	41.789
5	MA5-9	0.4955	ND
6	MA19-3	0.0144	ND
7	MA20-4	1.87945	ND
8	MA27-6	0.0245	ND
9	MA40-1	0.360045	6.173
10	MA40-3	0.4745	ND
11	MB4-1	0.16184	ND
12	MB24-2	0.89819	19.224
13	MB25-2	0.18079	ND
14	MB26-3	0.104935	ND
15	MB26-4	0.11465	52.612
16	MB33-1	0.171765	ND
17	MB35-1	0.15074	ND
18	MB37-1	0.15199	ND
19	MB39-4	0.15159	ND
20.	MB42-5	0.18598	ND
21	MC8-1	0.0249	ND
22	MC9-3	0.7702	ND
23	MC14-3	0.5302	28.073
24	MC14-7	0.55740	14.194
25	MC16-2	1.08715	3.943
26	MC22-4	1.4075	ND
27	MC23-5	1.118	18.932
28	MC30-1	1.098	ND
29	MC30-5	0.53351	ND
30	MC32-1	0.3096	ND
31	MC38-5	0.4255	ND

Table 5. Hydrolysis of ONPG and lactose of isolated bacteria from raw milk

Origin Nomo	Strain	Colon	Growth at	Growth at	Hydrolysis of
Origin Name	No	У	15℃	4℃	X-gal
1. 4700	HB1-1		+	+	+++
(쿰중→딩보헤)	HB1-2		+	+	+++
	HB1-3		+	-	_
	HB1-4		+	-	_
	HB1-5		+	-	_
	HB1-6		+	+	+++
	HB1-7		+	+	+++
	HB1-8		+	+	+++
	HB1-9		+	+	++
	HB1-10		+	_	+++
2. 4900(쿰중)	HB2-1		+	+	-
	HB2-2		+	+	-
	HB2-3		_	_	-
	HB2-4		+	+	_
	HB2-5		+	_	_
	HB2-6		_	_	_
	HB2-7		_	_	_
	HB2-8		+	+	-
	HB2-9		+	_	+
4. 4950(쿰중근처)	HB4-1		+	+	++
	HB4-2		+	+	Mixed
	HB4-3		+	+	++
	HB4-4		+	+	++
	HB4-5		_	_	++
	HB4-6		+	_	+
	HB4-7		+	+	_
	HB4-8		_	_	+
	HB4-9		_	+	_
	HB4-10		_	_	+
5. 4950(쿰중근처)	HB5-1		+	+	++
	HB5-2		+	+	++
	HB5-3		_	_	_
	HB5-4		_	_	_
	HB5-5		_	_	_
7. 5000(BL→쿰중)	HB7			Not foun	d
8. 5000(BL→쿰중)	HB8-1		_	+	_
3 /	HB8-2		-	_	-
	HB8-3		-	_	-
	HB8-4		—	_	_
	HB8-5		-	_	_

Table 6. Isolation of bacteria from soils of Mt. Hymalaya

	1			
Origin nomo	Strain	Colon Growth at	Growth	Hydrolysis of
	No.	У 15℃	at 4℃	X-gal
	HB8-8	+	+	_
	HB8-6	+	—	-
	HB8-7	+	+	-
	HB8-9	+	+	-
	HB8-10	+	+	+
9. 5050(BL→쿰중)	HB9-1	-	+	-
	HB9-2	+	+	++
	HB9-3	+	+	++
	HB9-4	—	-	-
	HB9-5	_	—	-
	HB9-6	+	+	++
	HB9-7	_	+	_
	HB9-8	-	+	-
10. 5050(BL→쿰중)	HB10			
11. 5100(BL근처)	HB11			
12. 5100(BL근처)	HB12		Not for	ınd
13. 5100(BL근처)	HB13			
14. 5400(L1근처)	HB14			
15. 5430(L1근처)	HB15-1	-	+	-
	HB15-2	-	+	-
	HB15-3	-	+	-
	HB15-4	-	-	-
	HB15-5	-	-	-
	HB15-6	_	-	-
	HB15-7	-	_	-
	HB15-8	-	+	-
	HB15-9	_	+	_
	HB15-10	-	_	_
	HB15-11	_	_	_
16. 5470(L1근처)	HB16		Not for	ind
17. 5490(L1근처)	HB17-1	+	+	++
	HB17-2	+	+	++
	HB17-3	+	+	++
	HB17-4	+	+	+++
	HB17-5	_	+	_

Table 6-continued

18. 5500(바위밑L1) HB18-1 + + + + HB18-2 - + - HB18-3 - + - HB18-4 HB18-5 HB18-6 - + - HB18-7 - + -	K-gal
HB18-2 - + - HB18-3 - + - HB18-4 HB18-5 HB18-6 - + - HB18-7 - + -	+
HB18-3 - + - HB18-4 HB18-5 HB18-6 - + - HB18-7 - + -	-
HB18-4 HB18-5 HB18-6 - + - HB18-7 - + -	-
HB18-5 HB18-6 - + - HB18-7 - + -	-
HB18-6 - + - HB18-7 - + -	-
HB18-7 - + -	-
	-
HB18-8 - + -	-
HB18-9 - + -	-
HB18-10 +	-
19. 5530(임자체L1근처) HB19-1 +	+
HB19-2 + + +	+
HB19-3 + + +	+
HB19-4 + +	-
HB19–5 – – –	-
HB19-6 - + -	-
HB19-7 – – –	-
HB19-8	-
20. 5550(L1근처) HB20-1	-
HB20-2 + + +	-
HB20-3 + + ++	+
HB20-4 + + ++	+
HB20-5 + + ++	+
HB20-6 + + ++	+
HB20-7 – – –	-
HB20-8 + + ++	+
HB20-9 + - ++	+
HB20-10 + + ++	-+
21. 4700(쿰중→딩보헤) HB21-1 + + +	-
HB21-2 + + +	-
HB21-3 +	-
HB21-4 + + +	-
HB21-5 + + +	-
HB21-7 +	_

Table 6-continued

	Strain	C - 1	Growth	at Growth at	Hydrolysis
Origin name	No.	Colony	15℃	4°C	of X-gal
22. 4750(쿰중)	HB22-1		+	_	_
	HB22-2		+	+	+
	HB22-3		+	+	+
	HB22-4		+	+	+
	HB22-5	청록색	+	+	+
23. 4900(쿰중)	HB23-1		-	_	-
	HB23-2		+	+	-
	HB23-3		+	+	-
	HB23-4		+	_	-
	HB23-5	_	+	_	
26. 4950(쿰중)	HB26-1		+	+	W
	HB26-2		+	+	+
	HB26-3		+	+	+
	HB26-4		+	+	+
	HB26-5		+	+	+
27.4950(쿰중)	HB27-1	유백색	+	+	+
	HB27-2	유백색	+	+	+
29.5000 B.C 근처	HB29-1	Yellow	+	+	+
	HB29-2	Yellow	+	+	+
30.5050 B.L-쿰중	HB30-1		+	+	+
	HB30-2		+	+	+
	HB30-3	g a s 생	+	+	+
	111000 0	성			
31. 5050 B.L쿰중	HB31-1	엷은Y	+	+	+
	HB31-2		+	+	+
34. 5100 B.C 근처	HB34-1		+	+	-
	HB34-2		+	+	-
	HB34-3	진한Y	+	+	+
	HB34-4	진한Y	+	+	+
35.5400L1-B.L	HB35-1	엷은Y	+	+	+
	HB35-2		-	_	-
	HB35-3	진한Y	+	+	+
36. 5450 L1 근처	HB36-1		_	+	_
	HB36-2		+	_	_
	HB36-3		+	_	-
	HB36-4		+	+	-
	HB36-5		+	+	_

Table 6-continued

Origin name	Sample Name	Colony	Growth at 15℃	Growth at 4℃	Hydrolysis of X-gal
37. 5470 L1근처	HB37-1	엷은Y	+	+	+
	HB37-2	엷은Y	+	+	+
	HB37-3		—	+	_
	HB37-4	엷은Y	+	+	++
	HB37-5	엷은Y	+	+	++
38. 5490 L1근처	HB38-1	Yellow	+	+	+
	HB38-2	Yellow	+	+	+
39. 5510 L1 근처	HB39-2		+	+	++
	HB39-3		+	+	+
	HB39-5		+	+	++

Table 6-continued

		:		
Origin Nomo	Sample	ONDC	Lactose	Final
Oligin Manie	No.	(A rec)	(glucose	Selection
		(11420)	mg/dl)	
1. 4700(쿰중→딩보헤)	HB1-1	0.57270	ND	
	HB1-2	3.33935	41.53	\checkmark
	HB1-6	ND	ND	
	HB1-7	ND	ND	
	HB1-8	ND	ND	
	HB1-9	ND	ND	
_2. 4900(쿰중)	HB2-6		ND	
4. 4950(쿰중근처)	HB4-1	ND	14.13	
	HB4-3	ND	ND	
	HB4-3	ND	ND	
	HB4-4	0.14673	3.74	\checkmark
5. 4950(쿰중근처)	HB5-1	0.10717	ND	
	HB5-2	ND	ND	
17. 5490(L1근처)	HB17-1	ND	ND	
	HB17-2	ND	ND	
	HB17-3	ND	ND	
	HB17-4	ND	1.51	
	HB17-5			
18. 5500(바위밑L1)	HB18-1	ND	ND	
19. 5530(임자체L1근처)	HB19-2	ND	ND	
	HB19-3	ND	ND	
	HB19-4	ND	ND	
20. 5550(L1근처)	HB20-2	ND	ND	
	HB20-3	ND	0.87	
	HB20-4	0.23319	9.22	\checkmark
	HB20-5	ND	ND	
	HB20-6		ND	
	HB20-8	ND	1.34	
	HB20-10	ND	7.10	
21. 4700(쿰중-딤보체)	HB21-1	ND	ND	
	HB21-2	ND	ND	
	HB21-4	ND	ND	
	HB21-5	ND	ND	
22 4750(쿰즛)	HB22-2	0.28950	ND	
22. TION 1 0 /	HB22-2	ND	15.86	
	11022 0		10.00	

Table 7. Hydrolysis of ONPG and lactose of isolated bacteria from Mt. Hymalaya.

		Hydrol		
Origin name	Sample	ONPG	Lactose	Final
0	No.	(A_{420})	(Glucose	selection
	HB22-4	0.21274	ND	
	HB22-5	0.54030	196.36	\checkmark
	HB26-1	0.24406	ND	•
	HB26-2	0.93453	ND	
	HB26-3	0.45797	ND	
	HB26-4	1.01695	ND	
	HB26-5	0.62459	ND	
27. 4950(쿰중)	HB27-1	1.8238	33.72	\checkmark
	HB27-2	0.71802	ND	
29. 5000(BL근처)	HB29-1	ND	ND	
	HB29-2	ND	ND	
30. 5050(BL-쿰중)	HB30-1	ND	ND	
	HB30-2	ND	ND	
	HB30-3	ND	ND	
31. 5050(BL-쿰중)	HB31-1	ND	5.08	
	HB31-2	ND	ND	
34. 5100(BL근처)	HB34-3	ND	ND	
	HB34-4	ND	ND	
35. 5400(L1-BL)	HB35-1	0.23490	ND	
	HB35-3	ND	ND	
37. 5470(L1근처)	HB37-1	0.27598	ND	
	HB37-2	ND	ND	
	HB37-4	ND	ND	
	HB37-5	0.43921	ND	
38. 5490(L1근처)	HB38-1	ND	ND	
	HB38-2	ND	5.27	
39. 5510(L1근처)	HB39-2	ND	ND	
	HB39-3	0.34281	ND	
	HB39-5	ND	24.11	\checkmark

Table 7-continued

다. 알라스카 북극 지역 시료로부터 균주 분리 및 선발

알라스카 Barrow 11개 지역, Fairbanks 13개 지역, Nome 15개 지역과 Kitchener 5지역에서 채취한 토양시료에서 X-gal을 분해하는 균주를 각각 55, 54, 57과 23균주를 획득하였다. 이들 중 4℃, 15℃성장 유무와 X-gal 분해력이 우 수한 균주를 Barrow, Fairbanks, Nome 시료 각기 21, 29, 21균주를 분리하였으 나 Kitechener지역에서는 선발되지 않았다.

Barrow, Fairbanks, Nome에서 획득한 균주들의 4℃ 성장유무 및 X-gal 분해 양태가 각기 Table 8, Table 9, Table 10에 나타냈었다. Table 11은 알래스 카 Barrow 지역에서 x-gal 분해능이 높은 균주 중 36균주의 ONPG 분해능을 나 타낸 것으로 B10-5가 가장 높게 나타났다. Table 12는 Fairbanks에서 분리한 54 균주 중 29균주의 ONPG분해능과 유당분해능을 나타낸 것으로 분해력이 가장 높 은 것은 F7-5로 나타났다. 또한 Table 13은 Nome지역에서 분리한 것으로 21균 주의 ONPG분해력을 조사한 것으로 N12-5가 가장 높게 나타났다.

라. 캐나다 Ontario지역 토양 시료에서의 균주 분리 및 선발

Ontario 토론토 3개 지역과 Kitchener 3개 지역에서 채취한 시료로부터 15℃ 에서 X-gal을 분해하는 균주를 각기 14, 11균주 획득하였다(Table 14). 이들 중 4℃성장 유무, X-gal 분해력이 우수한 균주를 각기 5균주, 6균주를 분리하였다. Table 15는 분리된 이들 11 균주들의 15℃, 4℃성장 유무 및 X-gal 분해능 나타 낸 것으로 ONPG 분해력은 있으나 lactose 분해력이 측정되지 않아 이 지역에서 분리한 균주는 선발하지 않았다.

마. 남극 해수에서 균주 분리 및 선발

남극해수에서 4℃, 15℃성장 유무와 X-gal 분해력에 근거하여 25균주를 분 리하였다(Table 16). 분리한 25균주의 ONPG 분해력에 근거하여(Table 17), S14-2 두 균주를 선발하였다.

Area	No	colony size	Growth	Growth	Hydrolysis of
	110.	(on plate)	at 15℃	at 4℃	X-gal
В5.	1	유백색	+	+	+
Ocean icemud	2	유백색	+	+	++
	3	유백색	+	+	+
	4	유백색	+	+	+
	5	유백색	+	+	++
B6	1	점질성	-	—	-
Ocean mud	2	white, yellow	+	+	++
	3	유백색	+	+	+
	4	유백색	+	+	+
	5	유백색	+	+	+
B7	1	유백색	+	+	+++
Ocean tundra	2	유백색	+	+	++
	3	유백색	+	+	++
	4	유백색	+	+	++
	5		+	+	++
B8			Not foun	d	
Ocean pepple			Not Iouii	u	
В9	1		+	+	+
Ocean mud	2		+	+	+
	3	Yellow	+	+	+++
	4	Yellow	+	+	+++
	5		+	+	+++
B10	1	mite mellem	i	1	
Tundra	1	white-yellow	Ŧ	+	++
	2		+	+	++
	3		+	+	++
	4		+	+	++
	5		+	+	++

Table 8. Isolation of psychrophilic bacteria from Barrow area

	<u>ــــــــــــــــــــــــــــــــــــ</u>	colony size	Growth at	Growth	Hydrolysis of	
Area	No.	(on plate)	15℃	at 4℃	X-gal	
B10	1	균의 모양이				
Tundra		모두 유사함	+	+	++	
	0	white-				
	Z	yellow	+	+	++	
	3	·	+	+	++	
	4		+	+	++	
	5		+	+	++	
B11	1	균의 모양이	+	+	++	
Tundra	1	유사함				
	2		+	+	++	
	3		+	+	++	
	4		+	+	++	
D10	5	그이 피아이	+	+	++	
Tundra	1	판의 도장이 유사함	+	+	++	
	2		+	+	++	
	3		+	+	++	
	4		+	+	++	
	5		+	+	++	
B13	1	Yellow	+	+	++	
Tundra	2		+	+	+++	
	3		+	+	+++	
	4		+	+	+++	
	5		+	+	+++	
B14 Tundra	1	1-4균의 모양이 같음	+	+	+++	
	2		+	+	+++	
	3		+	+	+++	
	4		+	+	+++	
	5	white	+	+	++	
B15 Tundra	1	융기된 형태의 모양	+	+	+++	
	2		+	+	+++	
	3		+	+	+++	
	4		+	+	+++	
	5	white-yellow	+	+	+++	

Table 8-continued

Aroo	No	colony size	Growth at	Growth at	Hydolysis
Alea	110.	(on plate)	15℃	4℃	of X-gal
F1	1	유백색	+	+	++
Brook&Swamp in	2	유백색	+	+	++
Army Camp.	3	유백색	+	+	_
F2 Brook&Swampin	1	유백색	+	+	+++
Army Camp.	2	유백색	+	+	++
	3	점질성	_	—	++
	4	불투명한 유백색	+	+	++
	5	투명,smooth	+	+	+
F3	1	slimness	+	+	+++
Brook&Swamp in	2	mat	+	+	++
Army Camp.	3	유백색	+	+	++
F4	1	mat함	+	+	+++
Brook&Swamp in	2		+	+	+++
Army Camp.	3		+	+	+++
F5 4th Fairbanks	1	white, yellow	+	+	++
	2		+	+	++
	3		+	+	++
	4		+	+	_
	5	_	—	+	+++
F6 Fairbanks Lake	1	slime 백색	+	+	++
	2	mat	+	+	++
	3	slime, 백색	+	+	++
F7 Fairbanks Lake	1	_	_	_	_
	2	_	_	-	_
	3	유백색	+	+	+++
	4	유백색	+	+	+++
	5	유백색	+	+	++

Table 9. Isolation of psychrophilic bacteria from Fairbanks area

	NT	colony size	Growth at	Growth	Hydrolysis
Area	NO.	(on plate)	15℃	at 4℃	of X-gal
F8 Fairbanks Lake	1	유백색	+	+	+++
	2	유백색	+	+	++
	3	유백색	+	+	++
	4		+	+	++
	5		+	+	++
F9 Fairbanks Lake	1	모양이 같음	+	+	+++
	2		+	+	+++
	3		+	+	++
	4		+	+	++
	5		+	+	++
F10 Fairbanks Fox	1	유백색	+	+	+++
	2	유백색	+	+	+++
	3	유백색	+	+	++
	4	유백색	+	+	++
	5	유백색	+	+	+++
F11 Fairbanks Fox	1	점질성	+	+	++
	2	유백색	+	+	++
	3	유백색	+	+	+
	4	유백색	+	+	+
	5	유백색	+	+	+
F12 Fairbanks Fox	1	유백색	+	+	+++
	2	유백색	+	+	++
	3	유백색	+	+	+++
	4	사이즈가			
	4	큰편임	+	+	+++
	5	rough	+	+	+++
F13 Fairbanks Chena	1	mat	+	+	++
	2	smooth	+	+	++
	3	smooth	+	+	++
	4	_	+	+	++
	5	mat	+	+	+++

Table 9-continued

Area	No.	colony size (on plate)	Growth at 15℃	Growth at 4℃	Hydrolysis of X-gal	
N1 Berring ocean r N2 Ocean Tundra		Not found				
N3 Tundra	1	점질성	+	+	+++	
	2	유백색	+	+	+++	
	3	유백색	+	+	+++	
	4	유백색	+	+	+++	
	5	유백색	+	+	+++	
N4 Tundra	1	유백색	+	+	++	
	2	유백색	+	+	++	
	3	smooth	+	+	++	
	4	사이즈가 작음편	+	+	++	
	5		+	+	++	
N5 Gold River Tundra	1	유백색	+	+	++	
	2	유백색	+	+	++	
	3	유백색	+	+	++	
	4	유백색	+	+	++	
	5	유백색	+	+	++	
N6 Tundra	1	유백색	+	+	++	
	2	유백색	+	+	++	
	3	유백색	+	+	++	
	4	유백색	+	+	++	
	5	유백색	+	+	++	
	3		+	+	W	
	4		+	+	W	
	5		+	+	W	
N14 Summit(mountain)			Not for	und	-	
N15 Brook	1		+	+	++	
	2		+	+	++	
	3		+	+	++	
	4		+	+	++	
	5		+	+	++	

Table 10. Isolation of psychrophilic bacteria from Nome area

No	Isolated strains	Hydrolysis of ONPG(A ₄₂₀)
1	B5-2	0.13365
2	B5-5	0.12855
3	B6-2	0.73538
4	B6-4	0.16253
5	B9-1	0.15202
6	B9-3	0.70805
7	B9-4	0.4245
8	B7-1	0.9922
9	B7-4	0.28602
11	B10-5	2.95455
12	B11-2	0.3703
13	B11-4	2.66325
14	B12-1	3.83391
15	B12-3	1.441
16	B13-1	0.171745
17	B13-5	1.27635
18	B14-2	2.72445
19	B14-5	2.65065
20	B15-2	0.70633
21	B15-5	0.861845

Table 11. Hydrolysis of ONPG of isolated bacteria from Barrow area

No	Isolated strains	Hydrolysis of ONPG(A ₄₂₀)
1	F1-1	2.6571
2	F2-1	0.27033
3	F2-4	2.6895
4	F3-1	0.9600
5	F3-2	3.01185
6	F4-1	2.69055
7	F4-2	2.6706
8	F5-1	2.66245
9	F5-2	2.66145
10	F6-1	0.133695
11	F6-2	2.6631
12	F7-4	0.11338
13	F7-5	2.6981
14	F8-1	0.931155
15	F8-2	1.6356
16	F8-3	1.9281
17	F8-4	0.28055
18	F9-1	2.68010
19	F9-5	2.68295
20	F10-1	2.70675
21	F10-5	2.70005
22	F11-3	2.60935
23	F11-5	2.6715
24	F12-1	0.264265
25	F12-4	0.308755
26	F12-5	2.66476
27	F13-3	0.430605
28	F13-4	2.65945
29	F13-5	2.67945

Table 12. Hydrolysis of ONPG of isolated bacteria from Fairbanks area

No	Isolated strains	Hydrolysis of ONPG(A ₄₂₀)
1	N3-1	0.255195
2	N3-2	0.2424
3	N4-3	0.41797
4	N4-4	0.47534
5	N5-1	2.68635
6	N5-5	2.75375
7	N6-3	2.674
8	N6-5	2.6694
9	N7-1	2.665
10	N7-2	2.6695
11	N8-1	0.199755
12	N8-3	0.20185
13	N9-4	2.6834
14	N9-5	2.6555
15	N10-2	2.67975
16	N11-2	2.6755
17	N11-3	2.6935
18	N12-4	2.679
19	N12-5	2.66795
20	N15-3	2.7063
21	N15-4	2.69595

Table 13. Hydrolysis of ONPG of isolated bacteria from Nome area

Area	No.	colony pigment (on plate)	Growth at 15℃	Growth at 4℃	Hydrolysis of X-gal
K1 Waldowoods	1	유백색	+	+	W
	2	유백색	+	+	++
	3	유백색	+	+	W
	4	유백색	+	+	+++
	5	유백색	+	+	+++
K2 Coneston college	1	유백색	+	+	+++
	2	유백색	+	+	++
	3	유백색	+	+	+
	4	유백색	+	+	+
K3	1	pin-point	+	+	_
	2	pin-point	+	+	-
	3	유백색	+	+	++
	4	사이즈가 큰편임	+	+	++
	5		+	+	-
T1	1	같은 colony	+	+	+++
	2		+	+	+ + +
	3		+	+	+++
	4		+	+	+++
	5		+	+	++
T2 Ontario lake	1	pin-point	+	+	+
	2	pin-point	+	+	+++
	3	pin-point	+	+	W
	4	pin-point	+	+	++
	5	pin-point	+	+	W
Т3	1	같은 colony	+	+	++
	3		+	+	++
	4	유백색	+	+	++
	5	유백색	+	+	++

Table 14. Isolation of psychrophilic bacteria from Ontario area

No.	Isolated strians	Hydolysis of ONPG	Hydrolysis of lactose
1	K1-2	0.3022	N.D
2	K1-3	1.1704	N.D
3	K2-1	0.4652	N.D
4	K2-4	2.6203	N.D
5	K3-3	0.2282	N.D
6	K3-4	0.5315	N.D
7	T1-1	0.5575	N.D
8	T1-3	0.8025	N.D
9	T2-4	0.2226	N.D
10	T3-1	2.642	N.D
11	T3-5	2.6575	N.D

Table 15. Hydrolysis of ONPG and lactose of isolated bacteria from Ontario area

Area	No.	colony pigment (on plate)	Growth at 15℃	Growth at 4℃	Hydrolysis of X-gal		
S5 KR6 해수표먼	1	유백색	+	+	+++		
	2	유백색	+	+	+++		
	3	유백색	+	+	+++		
	4	유백색	+	+	+++		
	5	유백색	+	+	+++		
	6	유백색	+	+	+++		
	7	유백색	+	+	+++		
S6 KR 7 해수표면		Not found					
S7 KR 9 해수표면	1	유백색	+	+	++		
S8 KR10 해수표면	1	Yellow	+	+	++		
S9 SOI 2 해수표면		Not found					
S10 펭귄마을			Not	found			
S11 KARP MB-86m			Not	found			
S12 KARP ST6-200m	1	Yellow	+	+	++		
S13 KAST 150m		Not found					
S14 KR 150m	2	유백색	+	+	++		
	3	유백색	+	+	+++		

Table 16. Isolation of psychrophilic bacteria from Antartic polar

Area	No.	colony pigment (on plate)	Growth at 15℃	Growth at 4℃	Hydrolysis of X-gal		
S15 KR4 150m		Not found					
S16 KR4 150m	1	pin=point	+	+	W		
S17 KR6	1	pin-point	+	+	_		
	2	pin-point	+	+	+		
	3	유백색	+	+	++		
	4	사이즈가 큰편임	+	+	++		
	5	유백색	+	+	+		
	6	같은 colony	+	+	+++		
	7	유백색	+	+	+++		
	8	유백색	+	+	+++		
	9	유백색	+	+	+++		
	10	유백색	+	+	++		
	11	pin-point	+	+	+		
	12	pin-point	+	+	+++		
	13	pin-point	+	+	W		
S18 KR7 해수 150m			Not	found			
S19 KR9 해수 150m			Not	found			
S20 SOI-2 해수 100m			Not	found			
S21 SOI-2v해수 150m		Not found					

Table 16-continued

No	Isolated strains	Hydrolysis of ONPG(A ₄₂₀)
1	S5-1	0.30809
2	S5-2	0.009705
3	S5-3	0.12951
4	S5-4	0.11443
5	S5-5	0.11398
6	S5-6	0.09870
7	S5-7	0.13061
8	S7- 1	0.72787
9	S8-1	0.49154
10	S12-1	0.05772
11	S14-2	1.57118
12	S14-3	1.90167
13	S16-1	0.42653
14	S17-2	0.24435
15	S17-3	0.23518
16	S17-4	0.27486
17	S17-5	0.26850
18	S17-6	0.15954
19	S17-7	0.23167
20	S17-8	0.25065
21	S17-9	0.21098
22	S17-10	0.47753
23	S17-11	0.24418
24	S17-12	0.19819
25	S17-3	0.23284

Table 17. Hydrolysis of ONPG and lactose of isolated bacteria from Antartic polar

2. 선발미생물의 동정

가. 그람염색성 및 형태

우유시료에서 분리, 선발한 6균주는 모두 그람음성 간균 이었다. 히말라야 시 료에서 분리한 5균주는 모두 간균이었으며, H1-2와 H27-1은 그람음성, H4-4, H20-4, H22-5는 그람 양성균 이었다. 우유 시료에서 분리, 선발한 미생물은 Fig 1에, 히말라야 시료에서 분리, 선발 한 미생물은 Fig 2에 나타내었다.

알래스카 Barrow 지역에서 분리한 3균주중 B1-2와 B14-5는 그람 음성균 이고 B10-5는 그람 양성간균으로 나타났다(Fig 3). Faribanks에서 분리한 5균주 는 모두 그람음성간균이며 Fig 4와 같다. Nome에서 분리한 5균주 모두 그람음 성, 간균으로 나타났다(Fig 5). 분리된 모든 균은 spore를 형성하지 않는 것으로 나타났다. Fig 6은 남극지역의 바다에서 분리된 균의 형태로 분리된 2균주는 그 람음성간균으로 나타났다.

Fig 1. Photograph of isolated psychrophilic bacteria from milk

H1-2

H4-4

Fig 2. Photograph of isolated psychrophilic bacteria from soil of Mt. Hymalaya

Fig 3. Photograph of isolated psychrophilic bacteria from soil of Barrow area

F5-2(G-)

F7-5(G-)

F9-1(G-)

Fig 4. Photograph of isolated psychrophilic bacteria from soil of Fairbank area

N10-2(G-)

N15-3(G-)

Fig 5. Photograph of isolated psychrophilic bacteria from soil of Nome

S7-1(G-)

S14-2(G-)

Fig 6. Photograph of isolated psychrophilic bacteria from sea site at the Antartic polar area

나. 생리 생화학적 특성

원유 시료에서 분리, 선발한 미생물과 히말라야 지역 시료에서 분리, 선발한 미생물의 생리화학적 특성이 Table 18과 Table 19에 나타내었다. 원유시료에서 분리, 선발한 미생물은 모두 포자를 형성하지 않았고 catalase와 oxidase를 생산 하고 gelatin을 분해하였다. MA1-1과 MA1-3은 hemolysis를 보여 실용화 하는 데에 유의해야할 것 으로 판단되며, MA1-1과 MA1-3는 Aeromonas로 추정되고, MA2-1과 MA3-1은 Chrysomonas로, MB26-3은 Agrobacter로, MC14-3은 Pseudomonas로 추정된다.

히말라야 시료에서 분리, 선발한 5군주 중 H4-4, H20-4, H22-5는 포자를 형 성하였다. 다섯군주 모두 catalase를 생성하였고, H22-5를 제외한 군주들이 oxidase를 생산하였으며, 다섯군주 모두 gelatin을 이용하지 못하였다. H1-2, H4-4가 hemolysis가 있었다. H1-2는 *Aeromonas*로, H4-4, H20-5, H22-4는 *Bacillus*로, H27-1은 *Agrobacter*로 추정된다.

Strains	እ ለ 1 1	N/A1 0	NIA9 1	NTAO 1	MD92 4	
Tests	MA1-1	MA1-3	MA2-1	MA3-1	MB26-4	MC14-3
1. Morphological						-
properties						
Shape	Rod	Rod	Rod	Rod	Rod	Rod
Motility	_	_	+	-	+	_
Gram's stain	G(-)	G(-)	G(-)	G(-)	G(-)	G(-)
Spore formation	-	_	-	-	_	-
2. Growth on medium						
Agar plate medium(4, 15)	+.+	+,+	+,+	+,+	+,+	+,+
Agar slant medium (slant/buttom)	+	+	+	+	+	+
Liquied medium(4)	+	+	+	+	+	+
3. Biochemical properties						
Catalase	+	+	+	+	+	+
Oxidase	+	+	+	+	+	+
ONPG	+	+	+	+	+	+
Coloring matter formation	-	_	-	-	+	+
Citric acid	_	_	+	+	+	_
H_2S	-	_	-	-	-	_
Gas production	+	_	+	-	+	_
MacConkey	+	+	+	+	+	+
Hemolysis	+	+	_	_	-	_
Growth(TSI)	+	+	+	+	+	+
(slant/buttom)	A/A	A/A	A/A	A/A	A/A	A/A
ADH	-	_	_	_	_	_
LDC	—	_	_	_	+	_
ODC	_	_	_	_	+	_
Urea	_	_	_	_	+	_
Oxidation-fermentation (glu)	O/F	O/F	O/F	O/F	O/F	O/F

Table 18. Physiological and biochemical properties of isolated bacteria from milk

3. Biochemical properties	MA1-1	MA1-3	MA2-1	MA3-1	MB26-4	MC14-3
TDA	-	-	_	_	_	_
IND	_	_	-	_	-	_
VP	_	_	-	_	_	_
Gelatine liquefacient	_	-	-	-	-	-
Glucose	+	+	+	+	+	+
Mannose	+	+	+	+	+	+
Inositol	_	-	_	_	-	_
Sorbitol	_	-	_	_	-	_
Rhamnose	+	-	+	+	+	+
Saccarose	+	-	+	+	-	_
Melbizio	+	-	+	+	_	_
Amygdalin	+	-	+	+	_	_
Arabinose	+	-	+	+	+	+
Sucrose	+	+	+	+	-	+
Xylose	+	+	+	+	+	+
Presumptive identification	Aeromonas	Aeromonas	Chrysomonas	Chrysomonas	Agrobacter	Pseudomonas

Table 18 continued

Strains	111.0		1120 4	1122 5	
Tests	H1-2	H4-4	H20-4	H22-3	H27-1
1. Morphological properties					
Shape	Rod	Rod	Rod	Rod	Rod
Motility	+	+	_	_	+
Gram's stain	-	+	+	+	_
Spore formation	-	+	+	+	-
2. Growth on medium					
Agar plate medium(4, 15)	+,+	+,+	+,+	+,+	+,+
Agar slant medium					
(slant/buttom)	+,+	+,+	+,+	+,+	+,+
Liquid medium(4)	+	+	+	+	+
3. Biochemical properties					
Catalase	+	+	+	+	+
Oxidase	+	+	+	_	+
ONPG	+	+	+	+	+
Coloring matter formation	-	_	_	+	+
Citric acid	+	_	_	+	+
H_2S	_	-	_	_	_
Gas production	+	-	_	_	+
MacConkey	+	-	-	-	+
Hemolysis	+	+	-	-	-
Growth(TSI)	+	+	+	+	+
(slant/buttom)	K/A	K/A	A/K	A/K	K/A
TRP	-	_	_	_	_
ADH	+	_	_	_	_
ESC	+	+	+	+	+
Urea	+	_	+	_	_
NO ₃	+	+	+	+	+

Table 19. Physiological and biochemical properties of isolated bacteria from soil of Mt. Hymalaya.
3. Biochemical properties	H1-2	H4-4	H20-5	H22-4	H27-1
PNPG	+	+	+	+	+
Gelatin utilization	_	_	_	_	_
Glycerol	+	+	_	+	+
Erythritol	-	_	_	_	_
D-arabinose	_	_	_	_	_
L-arabinose	+	+	_	+	+
Ribose	+	+	_	+	+
D-xylitol	+	+	_	+	+
L-xyritol	_	_	_	_	_
Adonitol	-	+	_	+	-
B-methyl-D-xyloside	-	+	_	+	-
Galactose	-	_	_	-	-
Glucose	_	+	+	+	+
Fructose	-	_	_	-	-
Mannose	-	_	_	_	+
Sorbose	_	_	+	_	_
Rhamnose	+	+	_	+	+
Dulcitol	+	+	+	+	-
Nositol	-	_	_	_	-
Mannitol	-	_	_	_	+
Sorbitol	+	+	_	+	-
a-Methyl-D-mannoside	-	+	_	+	-
a-methyl-D-glucoside	+	_	+	_	-
N-Acetyl-Glucosamine	-	+	+	+	-
Amygdaline	_	+	-	+	-
Arbutin	+	+	_	+	+
Esculin	+	-	_	+	+

Table 19continued

Test	H1-2	H4-4	H20-5	H22-4	H27-1
Salicin	-	+	_	+	+
Cellobiose	+	+	_	+	+
Maltose	+	+	_	+	+
Lactose	+	+	_	+	+
Melibiose	+	+	_	+	+
Sucrose	+	_	-	_	+
Trehalose	+	+	_	+	+
Inulin	-	_	_	_	_
Melezitose	-	_	-	_	_
Raffinose	+	+	_	+	+
Starch	-	_	-	_	_
Glycogen	-	_	_	_	+
Xylitol	-	_	-	_	_
Genitobiose	+	+	_	+	+
D-turanose	-	_	_	_	_
D-Lyxose	-	_	+	_	_
D-Tagatose	+	_	+	+	_
D-Fucose	-	_	+	+	_
L-Fucose	-	_	+	+	_
D-Arabitol	+	_	_	_	_
L-Arabitol	-		+	_	_
Gluconate	+	_	+	+	+
2-keto-gluconate	+	_	-	+	_
5-keto-gluconate	+	_	+	+	_
Presumptive identification	Aeromonas	Bacillus	Bacillus	Bacllus	Agrobacter

Table 19 continued

Table 20은 알래스카 Barrow지역에서 B1-2 균주의 생리 생화학적 특성을 나 타낸 것으로 그람음성의 간균으로 catalase양성, oxidase음성으로 ONPG와 PNPG의 분해능이 있으며 hemolysis가 음성으로 나타났다. 또한 운동성이 없으 며 citric aicd의 양성으로 B1-2는 Serratia sp추정된다. Table 21와 Table 22는 B10-5와 B14-5의 생리생화학적 특성으로 그람음성의 간균으로 catalase양성, oxidase음성으로 ONPG와 PNPG의 분해능이 있으며 hemolysis가 음성으로 나타 났다. 또한 운동성이 없으며 citric aicd의 음성으로 *Enterobacter* sp. 로 추정된 다. Fairbanks에서 분리한 균의 생리생화학적 조사결과 F5-2는 그람음성의 간균 으로 catalase양성, oxidase음성으로 ONPG와 PNPG의 분해능이 있으며 hemolysis가 음성으로 나타났다. 또한 운동성이 없으며 citric aicd와 acetic acid 음성이고 sorbitol 을 이용하지 않는 것으로 Hafnia sp 추정된다 (Table 23). F7-2 (Table 24), F9-1 (Table 25)와 F9-5 (Table 26)는 생리생화학적 특성이 모두 유사한 것으로 catalase양성, oxidase음성으로 ONPG와 PNPG의 분해능이 있으며 hemolysis가 음성으로 나타났다. 또한 운동성이 없으며 citric aicd와 acetic acid 양성이고 sorbitol를 이용하는 것으로 은 Aeromonas sp 추정되며, F10-5는 Serratia sp. 추정된다(Table 27). 알라스카 Nome 지역에서 분리한 균 주의 생리생화학적 특성을 나타낸 것으로 N6-3은 Paenibacillus sp (Table 28), N10-2 (Table 29)와 N15-3 (Table 30)는 Vibrio sp.로 N12-4 (Table 31)와 N12-5 (Table 32)는 Rahnella sp. 추정된다.

남극의 해수에서 분리한 균주의 생리생화학적 특성을 조사한 결과 S7-1은 그 람음성의 간균으로 catalase양성, oxidase음성으로 ONPG와 PNPG의 분해능이 있으며 hemolysis가 음성으로 나타났다. 또한 운동성이 없으며 citric aicd의 음성 으로 VP 양성, indol을 형성하지 않으며 lactose를 이용하는 것으로 *Pseudoalteromonas* sp.로 추정된다 (Table 33). S14-2는 그람음성의 간균으로 catalase양성, oxidase음성으로 ONPG와 PNPG의 분해능이 있으며 hemolysis가 음성으로 나타났다. 또한 운동성이 없으며 citric aicd와 acetic acid 음성이고 sorbitol 을 이용하지 않는 것으로 *Hafnia* sp. 로 추정된다(Table 34).

1.Morphological		2. Growth on		3. Biochemical	
properties		medium		properties	
Shape	R	Agar(4,15)	+,	+Catalase	+
Motility	-	Slant	+	Oxidase	-
Gram	_	Liquied	+	ONPG	+
C				DNDC	
Spore	-			PNPG	+
				Hemolysis	_
Substrate		Substrate		Substrate	
4.Utilization;	-	Monomethylsuccinate	-	L-Alanylglycine	+
Acyclodextrin	-	Carboxylic acids		L-Asparagine	+
Dextrin	+	Acetic acid	-	L-Aspartic acid	+
Glycogen	-	Cis-aconotic acid	-	L-Glutamic acid	-
N-Acetyl-D- galactosamin	+	Citric acid	+	Glycyl-L-Aspartic acid	-
N-Acetyl-D-glucosamin	+	Formic acid	+	Glycyl-L-Glutamic aicd	+
Adonitol	-	D-Galactonic acid lactone	-	L-Histidine	-
L-Arabinose	+	D-Galacturonic acid	d	Hydroxy-L-Proline	-
D-Arabitol	-	D-Gluconic aicd	+	L-Leucine	-
Cellobiose	-	D-Glucosaminic acid	-	L-Ornitine	-
L-Erythritol	-	D-Glucuronic acid	-	L-Phenylalanine	-
D-Fructose	+	I-Hydroxy butric acid	-	L-Proline	-
L-Fucose	+	I-Hydroxy butyric aicd	-	L-Pyroglutamic aicd	-
D-Galactose	+	[₩] -Hydoxy butyric aicd	-	D-Serine	+
Gentiobiose	-	₽-Hydroxy phenylacetic acid	+	L-Serine	+
ū-D-Glucose	+	Itaconic acid	-	L-Threonine	-
<i>m</i> -Inositol	+	-Ketobutyric acid	-	D.L- Carnitine	-
∎-D-Lactose	+	-Ketoglutaric acid	+	[₩] -Aminobutyric aicd	-
Lactulose	-	-Ketovaleric aicd	-	Urocanic aicd	-
Maltose	+	D.L-Lactic acid	+	Nuclosides	
D-Mannitol	+	Malonic aicd	-	Inosine	+
D-Mannose	+	Propionic acid	-	Uridine	+
D-Melibiose	+	Quinic acid	-	Thymidine	+
P-Methyl-D-glucoside	+	D-Saccharic acid	-	Alcohols	
D-Psicose	+	Sebacic acid	-	2-Amino ethanol	-
D-Raffinose	+	Bromosuccinic acid	+	2,3-Butanediol	-
L-Rhamnose	-	Succinic acid	-	Glycerol	+
D-Sorbitol	-	Succinamic acid	-	Phosphorylated compounds	
Sucrose	+	Detergents	-	DL ₁ -glycerol phosphate	+
D-Trehalose	-	Tween 40	-	Glucose -1- Phosphate	+
Turanose	-	Tween 80	+	Glucose-6-Phosphate	+
Xylitol	-	Amino acids		Glucuron amide	-
Esters:		D-Alanine	+	Alanineamide	-
Methyl pyruvate	-	L-Alanine	+	Putrescine	-
Presumptive		Correction on			
identification		Serralia sp.			

Table 20. Physiological and biochemical properties of strain B1-2

1.Morphological properties	2. Growth on medium	3. Biochemical properties	
Shape	R Agar(4,15)	+,+Catalase	+
Motility	- Slant	+ Oxidase	-
Gram	- Liquied	+ ONPG	+
Spore	-	PNPG	+
		Hemolysis	-

Table 21. Physiological and biochemical properties of strain B10-5

Substrate		Substrate		Substrate	
4.Utilization;		Monomethylsuccinate	-	L-Alanylglycine	+
Acyclodextrin	-	Carboxylic acids		L-Asparagine	+
Dextrin	-	Acetic acid	-	L-Aspartic acid	-
Glycogen	-	Cis-aconotic acid	-	L-Glutamic acid	-
N-Acetyl-D- galactosamin	-	Citric acid	-	Glycyl-L-Aspartic acid	-
N-Acetyl-D-glucosamin	+	Formic acid	-	Glycyl-L-Glutamic aicd	-
Adonitol	-	D-Galactonic acid lactone	-	L-Histidine	-
L-Arabinose	+	D-Galacturonic acid	-	Hydroxy-L-Proline	-
D-Arabitol	+	D-Gluconic aicd	+	L-Leucine	-
Cellobiose	+	D-Glucosaminic acid	-	L-Ornitine	-
L-Erythritol	-	D-Glucuronic acid	-	L-Phenylalanine	-
D-Fructose	+	II-Hydroxy butric acid	-	L-Proline	-
L-Fucose	-	I-Hydroxy butyric aicd	-	L-Pyroglutamic aicd	-
D-Galactose	+	[₩] -Hydoxy butyric aicd	-	D-Serine	d
Gentiobiose	-	₽-Hydroxy phenylacetic acid	-	L-Serine	d
ū−D-Glucose	+	Itaconic acid	-	L-Threonine	-
<i>m</i> -Inositol	-	I-Ketobutyric acid	-	D.L- Carnitine	-
∎-D-Lactose	-	Ketoglutaric acid	-	[₩] -Aminobutyric aicd	-
Lactulose	-	-Ketovaleric aicd	-	Urocanic aicd	-
Maltose	+	D.L-Lactic acid	-	Nuclosides	
D-Mannitol	+	Malonic aicd	-	Inosine	+
D-Mannose	-	Propionic acid	-	Uridine	+
D-Melibiose	+	Quinic acid	-	Thymidine	+
I-Methyl-D-glucoside	-	D-Saccharic acid	-	Alcohols	
D-Psicose	-	Sebacic acid	-	2-Amino ethanol	-
D-Raffinose	+	Bromosuccinic acid	+	2,3-Butanediol	-
L-Rhamnose	-	Succinic acid	-	Glycerol	+
D-Sorbitol	-	Succinamic acid	-	Phosphorylated compounds	
Sucrose	+	Detergents	-	DLa-glycerol phosphate	+
D-Trehalose	+	Tween 40	-	Glucose -1- Phosphate	+
Turanose	+	Tween 80	-	Glucose-6-Phosphate	+
Xylitol	-	Amino acids	-	Glucuron amide	-
Esters:		D-Alanine	-	Alanineamide	-
Methyl pyruvate	-	L-Alanine	+	Putrescine	-
Presumptive		Enternal materia and			
identification		Emeroducier sp			

Table 22. Physiological and biochemical properties of strain B14-5

1.Morphological properties	2. Growth on medium	3. Biochemical properties	
Shape	R Agar(4,15)	+,+Catalase	+
Motility	- Slant	+ Oxidase	-
Gram	- Liquied	+ ONPG	+
Spore	-	PNPG	+
		Hemolysis	-

Substrate		Substrate		Substrate	
4.Utilization;		Monomethylsuccinate	-	L-Alanylglycine	-
Acyclodextrin	-	Carboxylic acids		L-Asparagine	-
Dextrin	+	Acetic acid	-	L-Aspartic acid	+
Glycogen	-	Cis-aconotic acid	-	L-Glutamic acid	-
N-Acetyl-D- galactosamin	-	Citric acid	-	Glycyl-L-Aspartic acid	-
N-Acetyl-D-glucosamin	+	Formic acid	-	Glycyl-L-Glutamic aicd	-
Adonitol	-	D-Galactonic acid lactone	-	L-Histidine	-
L-Arabinose	-	D-Galacturonic acid	-	Hydroxy-L-Proline	-
D-Arabitol	-	D-Gluconic aicd	+	L-Leucine	-
Cellobiose	-	D-Glucosaminic acid	-	L-Ornitine	-
L-Erythritol	-	D-Glucuronic acid	-	L-Phenylalanine	-
D-Fructose	+	II-Hydroxy butric acid	-	L-Proline	-
L-Fucose	-	I-Hydroxy butyric aicd	-	L-Pyroglutamic aicd	-
D-Galactose	+	¶-Hydoxy butyric aicd	-	D-Serine	d
Gentiobiose	-	P-Hydroxy phenylacetic acid	-	L-Serine	d
∎-D-Glucose	+	Itaconic acid	-	L-Threonine	-
<i>m</i> -Inositol	-	Ketobutyric acid	-	D.L- Carnitine	-
ū−D-Lactose	+	ii-Ketoglutaric acid	-	¶-Aminobutyric aicd	-
Lactulose	-	ii-Ketovaleric aicd	-	Urocanic aicd	-
Maltose	-	D.L-Lactic acid	+	Nuclosides	
D-Mannitol	+	Malonic aicd	-	Inosine	+
D-Mannose	+	Propionic acid	-	Uridine	+
D-Melibiose	+	Quinic acid	-	Thymidine	+
I-Methyl-D-glucoside	+	D-Saccharic acid	-	Alcohols	
D-Psicose	-	Sebacic acid	-	2-Amino ethanol	-
D-Raffinose	-	Bromosuccinic acid	-	2,3-Butanediol	-
L-Rhamnose	-	Succinic acid	-	Glycerol	+
D-Sorbitol	-	Succinamic acid	-	Phosphorylated compounds	
Sucrose	+	Detergents	-	DLū-glycerol phosphate	-
D-Trehalose	+	Tween 40	-	Glucose -1- Phosphate	+
Turanose	-	Tween 80	-	Glucose-6-Phosphate	+
Xylitol	-	Amino acids	-	Glucuron amide	-
Esters:		D-Alanine	-	Alanineamide	-
Methyl pyruvate	+	L-Alanine	-	Putrescine	-
Presumptive		Entersheater an			
identification		Emerodacier sp.			

Substrate		Substrate		Substrate	
4.Utilization;		Monomethylsuccinate	-	L-Alanylglycine	d
Acyclodextrin	-	Carboxylic acids		L-Asparagine	-
Dextrin	+	Acetic acid	-	L-Aspartic acid	+
Glycogen	-	Cis-aconotic acid	-	L-Glutamic acid	-
N-Acetyl-D- galactosamin	-	Citric acid	-	Glycyl-L-Aspartic acid	-
N-Acetyl-D-glucosamin	+	Formic acid	-	Glycyl-L-Glutamic aicd	-
Adonitol	-	D-Galactonic acid lactone	-	L-Histidine	-
L-Arabinose	+	D-Galacturonic acid	d	Hydroxy-L-Proline	-
D-Arabitol	+	D-Gluconic aicd	+	L-Leucine	-
Cellobiose	+	D-Glucosaminic acid	-	L-Ornitine	-
L-Erythritol	-	D-Glucuronic acid	-	L-Phenylalanine	-
D-Fructose	+	u-Hydroxy butric acid	-	L-Proline	-
L-Fucose	-	I-Hydroxy butyric aicd	-	L-Pyroglutamic aicd	-
D-Galactose	+	¶-Hydoxy butyric aicd	-	D-Serine	d
Gentiobiose	+	₽-Hydroxy phenylacetic acid	-	L-Serine	d
ū−D−Glucose	+	Itaconic acid	-	L-Threonine	-
<i>m</i> -Inositol	-	[∎] -Ketobutyric acid	-	D.L- Carnitine	-
ū−D-Lactose	+	Ketoglutaric acid	-	¶-Aminobutyric aicd	-
Lactulose	+	Ketovaleric aicd	-	Urocanic aicd	-
Maltose	+	D.L-Lactic acid	-	Nuclosides	
D-Mannitol	+	Malonic aicd	-	Inosine	+
D-Mannose	+	Propionic acid	-	Uridine	+
D-Melibiose	+	Quinic acid	-	Thymidine	+
I-Methyl-D-glucoside	+	D-Saccharic acid	-	Alcohols	
D-Psicose	-	Sebacic acid	-	2-Amino ethanol	-
D-Raffinose	+	Bromosuccinic acid	+	2,3-Butanediol	-
L-Rhamnose	-	Succinic acid	-	Glycerol	+
D-Sorbitol	-	Succinamic acid	-	Phosphorylated compounds	
Sucrose	+	Detergents	-	DLa-glycerol phosphate	+
D-Trehalose	+	Tween 40	-	Glucose -1- Phosphate	+
Turanose	+	Tween 80	-	Glucose-6-Phosphate	+
Xylitol	-	Amino acids	-	Glucuron amide	-
Esters:		D-Alanine	-	Alanineamide	-
Methyl pyruvate	+	L-Alanine	+	Putrescine	-
Presumptive		Uatria on			
identification		mujilla sp.			

Table 23. Physiological and biochemical properties of strain B14-5

1.Morphological		2. Growth on		3. Biochemical	
properties		medium		properties	
Chapa	R	$A_{\text{reg}}(4.15)$		Cotologo	
Shape		Aga(4,13)	т,	-Catalase	Ŧ
Motility	-	Slant	+	Oxidase	-
Gram	-	Liquied	+	ONPG	+
Spore	-			PNPG	+
		-		Hemolysis	-
Substrate		Substrate		Substrate	
4.Utilization;	-	Monomethylsuccinate	-	L-Alanylglycine	+
Acyclodextrin	-	Carboxylic acids		L-Asparagine	d
Dextrin	+	Acetic acid	+	L-Aspartic acid	+
Glycogen	-	Cis-aconotic acid		L-Glutamic acid	+
N-Acetyl-D- galactosamin	-	Citric acid	d	Glycyl-L-Aspartic acid	-
N-Acetyl-D-glucosamin	+	Formic acid	+	Glycyl-L-Glutamic aicd	+
Adonitol	-	D-Galactonic acid lactone	-	L-Histidine	-
L-Arabinose	+	D-Galacturonic acid	+	Hydroxy-L-Proline	-
D-Arabitol	-	D-Gluconic aicd	+	L-Leucine	-
Cellobiose	+	D-Glucosaminic acid	-	L-Ornitine	-
L-Erythritol	-	D-Glucuronic acid	-	L-Phenylalanine	-
D-Fructose	+	-Hydroxy butric acid	-	L-Proline	-
L-Fucose	-	I-Hydroxy butyric aicd	-	L-Pyroglutamic aicd	-
D-Galactose	+	-Hydoxy butyric aicd	-	D-Serine	d
Gentiobiose	+	₽-Hydroxy phenylacetic acid	-	L-Serine	+
ū−D−Glucose	+	Itaconic acid	-	L-Threonine	-
<i>m</i> -Inositol	-	-Ketobutyric acid	-	D.L- Carnitine	-
n-D-Lactose	+	[∎] -Ketoglutaric acid	-	¶-Aminobutyric aicd	-
Lactulose	+	Ketovaleric aicd	-	Urocanic aicd	-
Maltose	+	D.L-Lactic acid	-	Nuclosides	-
D-Mannitol	+	Malonic aicd	-	Inosine	+
D-Mannose	+	Propionic acid	-	Uridine	+
D-Melibiose	+	Quinic acid	d	Thymidine	+
₽-Methyl-D-glucoside	+	D-Saccharic acid	-	Alcohols	-
D-Psicose	d	Sebacic acid	-	2-Amino ethanol	-
D-Raffinose	+	Bromosuccinic acid	-	2,3-Butanediol	-
L-Rhamnose	+	Succinic acid	-	Glycerol	+
D-Sorbitol	+	Succinamic acid	-	Phosphorylated compounds	
Sucrose	+	Detergents		DLa-glycerol phosphate	+
D-Trehalose	+	Tween 40	-	Glucose -1- Phosphate	+
Turanose	-	Tween 80	-	Glucose-6-Phosphate	+
Xylitol	-	Amino acids		Glucuron amide	-
Esters:		D-Alanine	d	Alanineamide	-
Methyl pyruvate	+	L-Alanine	d	Putrescine	-
Presumptive		A			
identification		Aeromonas sp.			

Table 24. Physiological and biochemical properties of strain F7-5

1.Morphological		2. Growth on		3. Biochemical	
properties		medium		properties	
Shape	R	Agar(4,15)	+,	+Catalase	+
Motility	_	Slant	+	Oxidase	_
Gram	_	Liquied	+	ONPG	+
cialli		Liquieu			
Spore	-			PNPG	+
				Hemolysis	
Substrate		Substrate		Substrate	
4.Utilization;	-	Monomethylsuccinate	+	L-Alanylglycine	+
Acyclodextrin	-	Carboxylic acids		L-Asparagine	+
Dextrin	+	Acetic acid	+	L-Aspartic acid	+
Glycogen		Cis-aconotic acid	-	L-Glutamic acid	+
N-Acetyl-D- galactosamin	-	Citric acid	+	Glycyl-L-Aspartic acid	+
N-Acetyl-D-glucosamin	+	Formic acid	+	Glycyl-L-Glutamic aicd	+
Adonitol	-	D-Galactonic acid lactone	-	L-Histidine	-
L-Arabinose	+	D-Galacturonic acid	+	Hydroxy-L-Proline	-
D-Arabitol	-	D-Gluconic aicd	+	L-Leucine	-
Cellobiose	+	D-Glucosaminic acid	-	L-Ornitine	-
L-Erythritol	-	D-Glucuronic acid	-	L-Phenylalanine	-
D-Fructose	+	I-Hydroxy butric acid	-	L-Proline	-
L-Fucose	+	Hydroxy butyric aicd	-	L-Pyroglutamic aicd	-
D-Galactose	+	¶-Hydoxy butyric aicd	-	D-Serine	d
Gentiobiose	+	₽-Hydroxy phenylacetic acid	-	L-Serine	+
ū−D-Glucose	+	Itaconic acid	-	L-Threonine	-
<i>m</i> -Inositol	-	II-Ketobutyric acid	-	D.L- Carnitine	-
¤-D-Lactose	+	I-Ketoglutaric acid	-	[₩] -Aminobutyric aicd	-
Lactulose	+	II-Ketovaleric aicd	-	Urocanic aicd	-
Maltose	+	D.L-Lactic acid	d	Nuclosides	
D-Mannitol	+	Malonic aicd	d	Inosine	+
D-Mannose	+	Propionic acid	d	Uridine	+
D-Melibiose	+	Quinic acid	-	Thymidine	+
P-Methyl-D-glucoside	+	D-Saccharic acid	+	Alcohols	
D-Psicose	+	Sebacic acid	-	2-Amino ethanol	-
D-Raffinose	+	Bromosuccinic acid	+	2,3-Butanediol	-
L-Rhamnose	+	Succinic acid	+	Glycerol	+
D-Sorbitol	+	Succinamic acid	-	Phosphorylated compounds	
Sucrose	+	Detergents		DLa-glycerol phosphate	+
D-Trehalose	+	Tween 40	-	Glucose -1- Phosphate	+
Turanose	-	Tween 80	+	Glucose-6-Phosphate	+
Xylitol	-	Amino acids		Glucuron amide	-
Esters:		D-Alanine	d	Alanineamide	-
Methyl pyruvate	+	L-Alanine	+	Putrescine	_
Presumptive		A anomana an			
identification		Aeromonas sp.			

Table 25. Physiological and biochemical properties of strain F9-1

1.Morphological		2. Growth on		3. Biochemical	
properties		medium		properties	
Shape	R	Agar(4,15)	+,	+Catalase	+
Motility	-	Slant	+	Oxidase	-
Gram	-	Liquied	+	ONPG	+
Spore	_	-		PNPG	+
o por o				Hemolysis	_
Substrate	-	Substrate	-	Substrate	=
4 Utilization:		Monomethylsuccinate	+	L-Alanylølycine	+
Acvelodextrin	_	Carboxylic acids		L-Asparagine	+
Dextrin	+	Acetic acid	+	L-Aspartic acid	+
Glycogen	d	Cis-aconotic acid	_	L-Glutamic acid	+
N-Acetvl-D- galactosamin	_	Citric acid	+	Glvcvl-L-Aspartic acid	+
N-Acetvl-D-glucosamin	+	Formic acid	+	Glvcvl-L-Glutamic aicd	+
Adonitol	_	D-Galactonic acid lactone	_	L-Histidine	_
L-Arabinose	+	D-Galacturonic acid	+	Hvdroxy-L-Proline	_
D-Arabitol	_	D-Gluconic aicd	+	L-Leucine	_
Cellobiose	+	D-Glucosaminic acid	_	L-Ornitine	_
L-Erythritol	_	D-Glucuronic acid	_	L-Phenylalanine	_
D-Fructose	+	i-Hydroxy butric acid	_	L-Proline	_
L-Fucose	+	I-Hydroxy butyric aicd	_	I -Pyroglutamic aicd	_
D-Galactose	+	Hydroxy butyric aicd	_	D-Serine	_
Gentiobiose	+	-Hydroxy phenylacetic acid	_	I -Serine	+
ii-D-Glucose	+	Itaconic acid	_	I -Threonine	_
m-Inositol	_	ii-Ketobutyric acid	_	DI - Carnitine	_
ii-D-Lactose	+	II-Ketoglutaric acid	d	T-Aminobutyric aicd	_
Lactulose	_	II-Ketovaleric aicd	-	Urocanic aicd	_
Maltose	+	DI-Lactic acid	d	Nuclosides	
D-Mannitol	+	Malonic aicd	d	Inosine	+
D-Mannose	+	Propionic acid	-	Uridine	+
D-Melibiose	+	Quinic acid	d	Thymidine	+
R-Methyl-D-glucoside	+	D-Saccharic acid	+	Alcohols	
D-Psicose	+	Sebacic acid	_	2-Amino ethanol	_
D-Raffinose	+	Bromosuccinic acid	+	2 3-Butanediol	_
L-Bhamnose	+	Succinic acid	+	Glycerol	+
D-Sorbitol	+	Succinamic acid	_	Phosphorylated compounds	
Sucrose	+	Detergents		DL n=glycerol_phosphate	+
D-Trehalose	+	Tween 40	d	Glucose -1- Phosphate	+
Turanose	+	Tween 80	+	Glucose-6-Phosphate	+
Xvlitol	_	Amino acids		Glucuron amide	_
Feters'		D-Alanine	d	Alanineamide	_
Methyl pyruvate	+	I – Alonino	4	Putroscino	_
D	Ŧ		Ŧ	1 uttestille	
Presumptive		A aromonas sp			
identification		meromonus sp.			

Table 26. Physiological and biochemical properties of strain F9-5

1.Morphological		2. Growth on		3. Biochemical	
properties		medium		properties	
Shape	R	Agar(4,15)	+,	Catalase	+
Motility	-	Slant	+	Oxidase	-
Gram	_	Liquied	+	ONPG	+
Chone				DNDC	
Spore	-			PNPG	+
				Hemolysis	-
Substrate		Substrate		Substrate	
4.Utilization;		Monomethylsuccinate	-	L-Alanylglycine	-
Acyclodextrin	-	Carboxylic acids		L-Asparagine	-
Dextrin	-	Acetic acid	+	L-Aspartic acid	+
Glycogen	+	Cis-aconotic acid	-	L-Glutamic acid	-
N-Acetyl-D- galactosamin	-	Citric acid	+	Glycyl-L-Aspartic acid	-
N-Acetyl-D-glucosamin	-	Formic acid	+	Glycyl-L-Glutamic aicd	-
Adonitol	d	D-Galactonic acid lactone	+	L-Histidine	+
L-Arabinose	+	D-Galacturonic acid	+	Hydroxy-L-Proline	-
D-Arabitol	+	D-Gluconic aicd	+	L-Leucine	-
Cellobiose	-	D-Glucosaminic acid	+	L-Ornitine	+
L-Erythritol	+	D-Glucuronic acid	+	L-Phenylalanine	+
D-Fructose	-	I-Hydroxy butric acid	-	L-Proline	+
L-Fucose	+	-Hydroxy butyric aicd	+	L-Pyroglutamic aicd	+
D-Galactose	+	[₩] -Hydoxy butyric aicd	+	D-Serine	-
Gentiobiose	+	p -Hydroxy phenylacetic acid	-	L-Serine	+
ū-D-Glucose	-	Itaconic acid	+	L-Threonine	-
<i>m</i> -Inositol	-	I-Ketobutyric acid	+	D.L- Carnitine	-
¤-D-Lactose	+	^{II} -Ketoglutaric acid	+	¶-Aminobutyric aicd	+
Lactulose	+	I-Ketovaleric aicd	-	Urocanic aicd	+
Maltose	+	D.L-Lactic acid	-	Nuclosides	
D-Mannitol	+	Malonic aicd	-	Inosine	+
D-Mannose	_	Propionic acid	-	Uridine	+
D-Melibiose	+	Quinic acid	-	Thymidine	+
-Methyl-D-glucoside	+	D-Saccharic acid	-	Alcohols	+
D-Psicose	+	Sebacic acid	-	2-Amino ethanol	+
D-Raffinose	+	Bromosuccinic acid	-	2,3-Butanediol	+
L-Rhamnose	+	Succinic acid	-	Glycerol	_
D-Sorbitol	+	Succinamic acid	-	Phosphorylated compounds	+
Sucrose	-	Detergents		DL ₁ -glycerol phosphate	+
D-Trehalose	+	Tween 40	-	Glucose -1- Phosphate	+
Turanose	+	Tween 80	-	Glucose-6-Phosphate	+
Xylitol	+	Amino acids		Glucuron amide	+
Esters:		D-Alanine	+	Alanineamide	+
Methyl pyruvate	_	L-Alanine	+	Putrescine	+
Presumptive			-		
resamptive		Serratia sp.			
identification					

Table 27. Physiological and biochemical properties of strain F10-5

1.Morphological	2. Growth on	3. Biochemical	
properties	medium	properties	
Shape	R Agar(4,15)	+,+Catalase	+
Motility	- Slant	+ Oxidase	-
Cram	- Liquid	+ ONIPC	-
Gran	Liquied		
Spore	-	PNPG	+
		Hemolysis	
Substrate	Substrate	Substrate	
4.Utilization;	Monomethylsuccinate	 L-Alanylglycine 	+
Acyclodextrin	- Carboxylic acids	L-Asparagine	-
Dextrin	+ Acetic acid	d L-Aspartic acid	+
Glycogen	- Cis-aconotic acid	 L-Glutamic acid 	-
N-Acetyl-D- galactosamin	- Citric acid	_ Glycyl-L-Aspartic acid	-
N-Acetyl-D-glucosamin	+ Formic acid	+ Glycyl-L-Glutamic aicd	-
Adonitol	- D-Galactonic acid lactone	 L-Histidine 	-
L-Arabinose	+ D-Galacturonic acid	 Hydroxy-L-Proline 	-
D-Arabitol	+ D-Gluconic aicd	+ L-Leucine	-
Cellobiose	+ D-Glucosaminic acid	 L-Ornitine 	-
L-Erythritol	- D-Glucuronic acid	 L-Phenylalanine 	-
D-Fructose	+ u-Hydroxy butric acid	 L-Proline 	-
L-Fucose	 I-Hydroxy butyric aicd 	 L-Pyroglutamic aicd 	-
D-Galactose	+ W-Hydoxy butyric aicd	- D-Serine	+
Gentiobiose	+ p-Hydroxy phenylacetic acid	- L-Serine	+
∎-D-Glucose	+ Itaconic acid	 L-Threonine 	-
<i>m</i> -Inositol	 – ii–Ketobutyric acid 	- D.L- Carnitine	-
∎-D-Lactose	+ u-Ketoglutaric acid	 – ¶–Aminobutyric aicd 	-
Lactulose	+ u-Ketovaleric aicd	- Urocanic aicd	-
Maltose	+ D.L-Lactic acid	+ Nuclosides	
D-Mannitol	+ Malonic aicd	- Inosine	+
D-Mannose	+ Propionic acid	- Uridine	+
D-Melibiose	+ Quinic acid	- Thymidine	+
-Methyl-D-glucoside	+ D-Saccharic acid	+ Alcohols	
D-Psicose	+ Sebacic acid	- 2-Amino ethanol	-
D-Raffinose	+ Bromosuccinic acid	+ 2,3-Butanediol	_
L-Rhamnose	- Succinic acid	+ Glvcerol	+
D-Sorbitol	- Succinamic acid	 Phosphorvlated compounds 	
Sucrose	+ Detergents	DL _u -glycerol phosphate	+
D-Trehalose	- Tween 40	- Glucose -1- Phosphate	+
Turanose	- Tween 80	- Glucose-6-Phosphate	+
Xylitol	- Amino acids	Glucuron amide	_
Esters:	D-Alanine	+ Alanineamide	-
Methyl pyruvate	+ L-Alanine	+ Putrescine	-
Presumptive			
identification	Paenibacillus sp.		
acminication			

Table 28. Physiological and biochemical properties of strain N6-3

1.Morphological		2. Growth on	_	3. Biochemical					
properties	perties medium			properties					
properties	I	Recutation 1		properties					
Shape		Agar(4,15)	+,+	+Catalase	+				
Motility	-	Slant	+	Oxidase	-				
Gram	-	Liquied	+	ONPG	+				
Spore	_			PNPG	+				
				Hemolysis	_				
	_								
Substrate		Substrate	_	Substrate					
4.Utilization;		Monomethylsuccinate	-	L-Alanylglycine	+				
Acyclodextrin	-	Carboxylic acids		L-Asparagine	-				
Dextrin	+	Acetic acid	d	L-Aspartic acid	+				
Glycogen	-	Cis-aconotic acid	-	L-Glutamic acid	-				
N-Acetyl-D- galactosamin	-	Citric acid	-	Glycyl-L-Aspartic acid	-				
N-Acetyl-D-glucosamin	+	Formic acid	+	Glycyl-L-Glutamic aicd	-				
Adonitol	-	D-Galactonic acid lactone	-	L-Histidine	-				
L-Arabinose	+	D-Galacturonic acid	+	Hydroxy-L-Proline	-				
D-Arabitol	+	D-Gluconic aicd	+	L-Leucine	-				
Cellobiose	+	D-Glucosaminic acid	_	L-Ornitine	-				
L-Ervthritol	-	D-Glucuronic acid	-	L-Phenylalanine	-				
D-Fructose	+	-Hvdroxy butric acid	-	L-Proline	-				
L-Fucose	_	I-Hydroxy butyric aicd	_	L-Pyroglutamic aicd	_				
D-Galactose	+	=Hydoxy butyric aicd	_	D-Serine	+				
Gentiobiose	+	=Hydroxy phenylacetic acid	_	I –Serine	+				
a-D-Clucose	+	Itacopic acid	_	L -Threenine	_				
m-Inositol	_	a-Ketobutyric acid	_	DI - Carnitine	_				
-D-L actors	+	-Kotoglutaria agid	_	D.L Carintine	_				
Lactuse		Ketoglutaric acid		Annihobutyne aleu					
Lactulose	т	DLL i i		N 1 1					
Maltose	+	D.L-Lactic acid	+	Nuclosides					
D-Mannitol	+	Malonic aicd	_	Inosine	+				
D-Mannose	+	Propionic acid	-	Uridine	+				
D-Melibiose	+	Quinic acid	-	Thymidine	+				
₽-Methyl-D-glucoside	+	D-Saccharic acid	+	Alcohols					
D-Psicose	+	Sebacic acid	-	2-Amino ethanol	-				
D-Raffinose	+	Bromosuccinic acid	+	2,3-Butanediol	-				
L-Rhamnose	+	Succinic acid	+	Glycerol	+				
D-Sorbitol	-	Succinamic acid	-	Phosphorylated compounds					
Sucrose	+	Detergents		DL ^a -glycerol phosphate	+				
D-Trehalose	+	Tween 40	-	Glucose -1- Phosphate	+				
Turanose	-	Tween 80	-	Glucose-6-Phosphate	+				
Xylitol	-	Amino acids		Glucuron amide	-				
Esters:		D-Alanine	+	Alanineamide	-				
Methyl pyruvate	+	L-Alanine	+	Putrescine	-				
Presumptive		T7'1 '			-				
identification		Vibrio sp.							
lucinincation									

Table 29. Physiological and biochemical properties of $\$ strain N10-2 $\$

Table 30.	Physiological	and	biochemical	properties of	strain	N12-4

properties medium properties Shape R Agar(4,15) +,*Catalase Motility - Slant + Oxidase Gram - Liquied + OxPG Spore - PNPG Hemolysis Substrate Substrate Substrate L-Alanylglycine Acyclodextrin Carboxylic acids L-Asparagine Dextrin + Acetic acid + L-Asparagine Dextrin + Acetic acid + L-Asparatic acid N-Acetyl-D-galactosamin Citric acid + Citycl-L-Splucosamin Citycl-L-Glutamic acid N-Acetyl-D-glucosamin + Formic acid + Glycyl-L-Glutamic acid L-Provinine L-Arabitol D-Glactoronic acid + L-Provinine L-Provinine L-Provinine L-Erythritol D-Glactoronic acid L-Provinine L-Provinine L-Provinine L-Provinine L-Erythritol D-Glactoronic acid L-Proline L-Provinine L-Provinine <th>1.Morphological</th> <th></th> <th>2. Growth on</th> <th></th> <th>3. Biochemical</th> <th></th>	1.Morphological		2. Growth on		3. Biochemical	
Shape R Agar(4,15) +, Catalase Motility - Slant + Oxidase Gram - Liquied + ONPG Spore - PNPG Hemolysis Substrate Substrate Acyclodextrin Carboxylic acids L -Alanylglycine Acyclodextrin Carboxylic acids L -Alanylglycine Acyclodextrin Carboxylic acid L -Glumic acid N-Acetyl-D- galactosamin Citric acid + N-Acetyl-D-galactosamin Formic acid L-Hurinic acid N-Acetyl-D-gulucosamin Formic acid L-Unitime acid Adonitol D-Galactorinc acid lactone L -Hurinic acid L-Farabitol D-Glucosninic acid L -Proline D-Frantose + D-Glucosninic acid L -Proline L-Freves + Hydroxy butyric aicd D-Serine G-D-Serine Gentiobiose + P-Hydroxy butyric aicd D-Serine G-D-Serine Gentiobiose + R-Ketobutyric aicid Urcanitic aicid Urcanitic aicid Matose + D-Lactic aicid	properties		medium		properties	
Shape Agar(4,15) +, Catalase Motility - Slant + Oxidase Gram - Liquied + ONPG Spore - PNPG Hemolysis - Hemolysis Substrate Substrate Substrate Acyclodextrin Carboxylic acids L-Asparagine Dextrin + Acetic acid + N-Acetyl-D-galactosamin Citric acid + Glycyl-L-Aspartic acid N-Acetyl-D-galactosamin D-Galactonic acid lactone L-Histidine L-Arapitol D-Arabitol D-Galacturonic acid Hydroxy-L-Proline D-Folucosmine acid L-Phenylalanine L-Furythritol D-Glucuronic acid L-Phenylalanine L-Provintine Catalaxio L-Furose + P-Hydroxy butyric aicd D-Serine B-Serine Catalaxio a-D-Glucose + P-Hydroxy butyric aicd L-Serine D-Catactose D-Catactosci Curocanic aicid L-Treonine m-Inositol Ketobutyric acid Inosine D-Catactosci Curocanic aicid D-Catrose Hydroxy		R				
Motility - Slant + Oxidase Gram - Liquied + ONPG Spore - PNPG Hemolysis Substrate Substrate Substrate Acyclodextrin Carboxylic acids L-Alanylglycine Acyclodextrin + Acetic acid + N-Acetyl-D-galacosamin + Carboxylic acids L-Glutamic acid N-Acetyl-D-glucosamin + Formic acid + Glycyl-L-Glutamic acid N-Acetyl-D-glucosamin + D-Glactonic acid acid + Hydroxy-L-Proline D-Arabitol D-Gluconic acid + L-Leucine Cellobiose L-Erythritol D-Gluconic acid L-Phorpline D-Fructose D-Frucose + B-Hydroxy butyric aicd L-Proline D-Frucose + Hydroxy butyric aicd L-Serine Gentiobiose + P-Hydroxy butyric aicd L-Serine Gentiobiose + D-L-actic acid M-Acetoplutric aicd m-Inositol - -Ketobutyric aicd D.L-Carnitine	Shape		Agar(4,15)	+,	+Catalase	+
Gram – Liquied + ONPG Spore – PNPG Hemolysis Substrate Substrate Substrate 4.Utilization: Monomethylsuccinate L-Alanylglycine Acyclodextrin Carboxylic acids L-Asparagine Dextrin + Acetic acid + L-Aspartia acid Glycogen d Cis-aconotic acid L-Glutamic acid Av-Acetyl-D-galactosamin Citric acid + Glycyl-L-Glutamic acid Adonitol D-Galactonic acid lactone L-Histidine L-Arabinose + D-Galacturonic acid + Hydroxy-L-Proline D-Arabitol D-Gluconic aicd + L-Cuexcine Cellobiose + D-Glucona aicd + L-Cuexcine Cellobiose + D-Glucosaminic acid L-Proline D-Fructose + 0-Hydroxy butyric aicd L-Proline D-Fructose + 0-Hydroxy butyric aicd L-Proline L-Fucose + 0-Hydroxy butyric aicd L-Proline D-Galactose + 0-Hydroxy butyric aicd L-Proline D-Glucose + 0-Hydroxy butyric aicd L-Proline L-Fucose + 0-Hydroxy butyric aicd L-Serine 0-D-Glucose + 0-Hydroxy butyric aicd L-Serine 0-D-Glucose + 0-Ketoglutaric acid M-Carbine 0-D-Glucose + 0-Ketoglutaric acid M-Carbine 0-D-Glucose + 0-Ketoglutaric acid M-Carbine 0-D-Glucose + 0-Ketoglutaric acid M-Carbine 0-D-Glucose + 0-Ketoglutaric acid M-Carbine 0-D-Lactose + 0-Ketoglutaric acid M-Carbine 0-D-Lactose + 0-Ketoglutaric acid M-Carbine D-Mannitol + Malonic aicd M-Carbine D-Mannose + Propionic acid M-Cohols D-Paicose + 0-Saccharic acid M-Chools D-Sacharic acid H-Chools D-Sacharic acid H-Chools D-Trehalose H-Chools H-Carbine D-Trehalose H-Chools H-Carbine D-Trehalose H-Chools H-Carbine D-Trehalose H-Chools H-Carbine D-Trehalose H-Carbine H-Chools D-Trehalose H-Chools H-Carbine D-Trehalose H-Carbine H-Chools H-Carbine D-Trehalose H-Carbine H-Chools H-Carbine D-Trehalose H-Carbine Hethyl pyrvate H-C-Alanine H-Chools H-Carbine He	Motility	-	Slant	+	Oxidase	-
Spore - PNPG Hemolysis Substrate Substrate Substrate 4Utilization: Monomethylsuccinate L-Alanylglycine Acyclodextrin Carboxylic acids L-Alanylglycine Dextrin + Acetic acid + Acetyl-D-galactosamin - Glycogen d N-Acetyl-D-glucosamin - Glycold + Adonitol D-Galactonic acid + Glycyl-L-Aspartic acid Adonitol D-Galactonic acid lactone L-Histidine L-Arabinose + D-Galactonic acid L-Phenylalanine D-Arabitol D-Gluconic acid L-Promitine L-Provine L-Frythritol D-Gluconic acid L-Promylalanine D-Serine Gentiobiose + #-Hydroxy butyric aicd D-Serine Gentiobiose + #-Hydroxy butyric aicd D-Serine Gentiobiose + #-Hydroxy butyric aicd Urconic aid m-Inositol #-Ketobutyric acid Urconic aid Urconic aid Maltose + #-Hydroxy butyric aicd Urconic aid Maltose + D-L-Lactic acid Muclosides D-Mannose + Propinic acid Horenine D-Methyl-D-gluco	Gram	-	Liquied	+	ONPG	+
Substrate Substrate Substrate 4.Utilization: Monomethylsuccinate L-Alanylglycine Acyclodextrin Carboxylic acids L-Alanylglycine Dextrin + Acetic acid + Dextrin + Acetic acid + N-Acetyl-D-galactosamin Citric acid + Glycogen N-Acetyl-D-glucosamin + Formic acid + Glycyl-L-Aspartic acid N-Acetyl-D-glucosamin + Formic acid + Hydroxyl-Proline D-Arabinose + D-Galacturonic acid + Hydroxyl-Proline D-Arabitol D-Gluconic acid + Hydroxyl-Proline D-Fructose + Hydroxy butric acid L-Proline L-Fucose + Hydroxy butric acid L-Proline L-Fucose + Hydroxy butric acid L-Serine a-D-Glucose + Hydroxy butric acid L-Serine a-D-flucose + #Lydoxy butric acid D-Serine a-D-flucose + B-Ketopaleric acid <td>Spore</td> <td>_</td> <td></td> <td></td> <td>PNPG</td> <td>+</td>	Spore	_			PNPG	+
Substrate Substrate Substrate 4.Utilization: Monomethylsuccinate L-Alanylglycine Acyclodextrin Carboxylic acids L-Asparagine Dextrin + Acetic acid + L-Asparagine Dextrin + Acetic acid + L-Asparagine Dextrin + Acetic acid + L-Asparatic acid N-Acetyl-D-galactosamin Citric acid + Glycyl-L-Aspartic acid N-Acetyl-D-galactosamin Citric acid + Glycyl-L-Chattamic aicd L-Arabinose + D-Galactoronic acid + Hydroxy-L-Proline D-Arabitol D-Gluconic acid + L-Poroline - D-Fructose + B-Hydroxy butryic acid L-Propline - D-Fructose + #-Hydroxy butryic acid L-Serine - a-D-Glucose + #-Hydroxy butryic acid L-Serine - a-D-Glucose + #-Hydroxy butryic acid L-Serine - m-Tositol # -Ketob	Sport				Hemolysis	_
4.Utilization: Monomethylsuccinate L-Alanylglycine Acyclodextrin Carboxylic acids L-Asparagine Dextrin + Acetic acid + Dextrin + Acetic acid + Glycogen d Cisr-aconotic acid L-Glutamic acid N-Acetyl-D-glucosamin + Formic acid + Glycyl-L-Aspartic acid Adonitol D-Galacturonic acid lactone L-Histidine L-Histidine D-Arabitol D-Gluconic acid + Hydroxy-L-Proline D-Fructose + D-Gluconcinic acid L-Phenylalanine D-Fructose + #-Hydroxy butyric acid L-Proline L-Flocose + #-Hydroxy butyric acid D-Serine Gentiobiose + #-Hydroxy butyric acid D-Serine a-D-Glucose + #-Hydroxy butyric acid D.L-Camitine a-D-Glucose + #-Ketobutyric acid Urocanic acid a-D-Glucose + #-Ketobutyric acid Urocanic acid a-D-Glucose + #-Ketobutyric acid Urocanic acid Matose +	Substrate		Substrate	-	Substrate	
Acyclodextrin Carboxylic acids L -Asparagine Dextrin + Acetic acid + Dextrin + Acetic acid + Montantonia Ciris aconotic acid L -Aspartic acid N-Acetyl-D- galactosamin Ciric acid + Glycyl-L-Glutamic acid N-Acetyl-D-glucosamin D-Galactonic acid lactone L -Histidine L-Arabinose + D-Galactonic acid + Hydroxy-L-Proline D-Arabitol D-Gluconic acid + L-Prenylalanine L D-Fructose + D-Glucovarinic acid L -Proline L L-Fuctose + Hydroxy butyric acid L -Proline L L-Fuctose + Hydroxy butyric acid L -Proline L L-Fucose + Hydroxy butyric acid L -Serine D Glucose a-D-Glucose + # Hydroxy butyric acid L -Timeonine DL- Carnitine a-D-Lactose + # Ketoylutaric acid W -Aminobutyric acid L -Timeonine D-Mannitol + Malose DL-Lactic acid M Nuclosides D	4 Utilization:		Monomethylsuccinate		L-Alanylglycine	+
Dextrin+Acetic acid+L -Aspartic acidGlycogendCis-aconotic acid+Glycyl-L-Aspartic acidN-Acetyl-D- galactosamin+Formic acid+Glycyl-L-Glutamic acidN-Acetyl-D-glucosamin+Formic acid+Hydroxy-L-ProlineL-Arabinose+D-Galactonic acid+Hydroxy-L-ProlineL-ArabitolD-Gluconic acid+L-Devine-Cellobiose+D-Gluconic acidL-ProvineL-FyrthritolD-Glucouronic acidL-Provine-D-Galactose+#-Hydroxy butyric acidL-Provine-Cellobiose+#-Hydroxy butyric acidD-Serine-Centobiose+#-Hydroxy phenylactic acidL-Threonine-m-Inositol#-Ketobutyric acidUrocanic aicdUrocanic aicd-m-Inositol#-Ketobutyric acidUrocanic aicdUrocanic aicd-malose+D-L-Lactic aciddNuclosides-D-Mannitol+Malonic aicdInosineD-Mannitol+Bromosuccinic acid+2,3-ButanediolD-Raffinose+Bromosuccinic acid+2,3-ButanediolD-Raffinose+Bromosuccinic acid+2,3-ButanediolD-Sorbitol+Succinanic acid+GlycerolD-Sorbitol+Succinanic acid+Canino ethanolD-Sorbitol+Succinanic acid+	Acyclodextrin		Carboxylic acids		L-Asparagine	+
GlycogendCis-aconotic acidL-Glutamic acid N -Acetyl-D- galactosamin+Formic acid+Glycyl-L-Aspartic acid N -Acetyl-D-glucosamin+Formic acid+Glycyl-L-Glutamic acidL-Arabinose+D-Galacturonic acid+Hydroxy-L-ProlineL-ArabitolD-Glucosamini cacid+L-LeucineCellobiose+D-Glucosamini cacidL-ProlineL-ErythritolD-Glucosamini cacidL-ProlineD-Fructose+a-Hydroxy butric acidL-ProlineL-Fucose+a-Hydroxy butryic acidL-Proglucamic acidD-GlucoseD-Glucose+B-Hydroxy butryic acidD-SerineB-SerineB-Serinea-D-Glucose+Itaconic acidMinobutyric acidD-Carnitine m -InositolKetoputyric acidD.L- Carnitine m -InositolKetoputric acidUrocanic acidMaltose+D_L-Lattic aciddNuclosidesD-Mannose+Projonic acidUridineD-Mannose+B-Saccharic acid+2-Amino butyricD-Sicose+Sebacic acid2-Amino ethanolD-Sicose+Succinamic acid+AlcoholsD-Pisicose+D-Glucoric acid+ClycerolD-Nelibiose+DetergentsDLa-glycerol phosphateD-Sicose+Sebacic acid+ClycerolD-Sorbitol+Succinamic acid<	Dextrin	+	Acetic acid	+	L-Aspartic acid	+
$ \begin{aligned} & \text{N-Acetyl-D-galactosamin} \\ & \text{N-Acetyl-D-galactosamin} \\ & \text{Formic acid} \\ & \text{Hore Arabinos} \\ & \text{Hore Arabino} \\ & \text{Hore Arabinos} \\ & Hore$	Glycogen	d	Cis-aconotic acid		L-Glutamic acid	+
N-Acetyl-D-glucosamin + Formic acid + Glycyl-L-Glutamic aicd Adonitol D-Galactonic acid lactone + Hydroxy-L-Proline D-Arabitol D-Gluconic aicd + Hydroxy-L-Proline D-Arabitol D-Gluconic aicd + Hydroxy-L-Proline L-Erythritol D-Gluconic aicd + L-Ducine D-Fructose + #-Hydroxy butric acid L-Proline L-Frythritol D-Glucovonic acid L-Proline -Proglutamic aicd D-Galactose + #-Hydroxy butric acid L-Proline -Serine Gentiobiose + #-Hydroxy butyric aicd D-Serine -Serine m-D-Glucose + #-Ketoglutaric acid W-Aminobutyric aicd D.L- Carnitine m-Inositol #-Ketoglutaric acid Wicroanic aicd Wicroanic aicd Wicroanic aicd Maltose + D-Saccharic acid Inosine D-Saccharic acid Inosine D-Mannose + Projoinic acid + Alcohols D-Saccharic acid 2-Amino ethanol D-Rafinose + Sbacic acid + Alcohols	N-Acetyl-D- galactosamin		Citric acid	+	Glvcvl-L-Aspartic acid	
AdonitolD-Galactonic acid lactoneL-HistidineL-Arabinose+D-Galacturonic acid+Hydroxy-L-ProlineD-ArabitolD-Gluconic acid+L-LeucineCellobiose+D-Gluconic acidL-OrnitineL-ErythritolD-Glucuronic acidL-PhenylalanineD-Fructose+#-Hydroxy butric acidL-PhenylalanineD-Fructose+#-Hydroxy butric acidL-ProlineL-Fucose+#-Hydroxy butric acidL-Serine@-D-Glucose+#-Hydroxy phenylacetic acidL-Serinem-Inositol#-Ketoplutric acidD-Carnitine#-D-Lactose+#-Ketoglutaric acidWr-Aminobutyric aicdD-Mannose+D-Saccharic acidUrocanic aicdD-Mannose+Propionic acidUrodineD-Nachibose+Quinic acidInosineD-Mannose+Secaciai2-Amino ethanolD-Saccharic acid+Secaciai2-Amino ethanolD-Satose+Succinic acid+Qinic aciddThymidineP-Methylose+Succinic acid+D-Satoric acid+Sucorose+D-Satoric acid+GlycerolD-Satoric acid+GlycerolD-Satoric acid+GlycerolD-Satoric acid+GlycerolD-Satoric acid+GlycerolD-Satoric acid+Ca-BophateD-Trehalose+Tween 80d <t< td=""><td>N-Acetyl-D-glucosamin</td><td>+</td><td>Formic acid</td><td>+</td><td>Glvcvl-L-Glutamic aicd</td><td></td></t<>	N-Acetyl-D-glucosamin	+	Formic acid	+	Glvcvl-L-Glutamic aicd	
L-Arabinose + D-Galacturonic acid + Hydroxy-L-Proline D-Arabitol D-Gluconic acid + L-Leucine Cellobiose + D-Glucosaminic acid L-Phenylalanine D-Fructose + i-Hydroxy butyric acid L-Pyroglutamic acid D-Galactose + i-Hydroxy butyric acid D-Galactose + i-Hydroxy butyric acid D-Galactose + i-Hydroxy butyric acid D-Galactose + i-Hydroxy phenylacetic acid L-Serine Gentiobiose + i-Hydroxy phenylacetic acid L-Serine i-D-Glucose + i-Ketoglutaric acid U-Carnitine i-D-Glucose + i-Ketoglutaric acid U-Carnitine i-Netobutyric acid U-Carnitine i-Netobutyric acid U-Carnitine i-Netobutyric acid U-Carnitine D-Mannose + DL-Lactic acid U-Carnitine D-Mannose + Propionic acid Urocanic acid D-Mannose + Propionic acid Urocanic acid D-Raffinose + Sebacic acid + Alcohols D-Psicose + Sebacic acid + Alcohols D-Psicose + Sebacic acid + Alcohols D-Raffinose + Dtergents DLa-glycerol phosphate D-Trehalose + Detergents DLa-glycerol phosphate Turanose + Tween 40 Glucose -1-Phosphate Maino acids Glucose -1-Phos	Adonitol		D-Galactonic acid lactone		L-Histidine	+
D-ArabitolD-Gluconic aicd+L-LeucineCellobiose+D-Glucosaminic acidL-OrnitineL-ErythritolD-Glucuronic acidL-PhenylalanineD-Fructose+#-Hydroxy butric acidL-PhenylalanineL-Fucose+#-Hydroxy butric acidD-SerineGentiobiose+#-Hydroxy phenylacetic acidL-Serinea-D-Glucose+Itaconic acidL-Threoninem-InositolKetobutyric acidD-Carnitinea-D-Lactose+Ketobutyric acidUrocanic acidMaltose+Lactic aciddNuclosides+Lactic aciddMaltose+Lactic aciddD-Mannose+Projonic acidUridineD-Raffinose+Sebacic acid2-Amino ethanolD-Raffinose+Succinic acid+Alfannose+Succinic acid+D-Raffinose+Succinic acid+D-Sorbitol+Succinic acid+D-Trehalose+Tween 40Glucose -1 - PhosphateD-Trehalose+Tween 80dAlanineamideKylitolAmino acidsGlucon amideGlucor -1 - PhosphateD-Alanine+Tween 80dAlanineamideMethyl pyruvate+L-Alanine+PutrescinePresumptive+L-Alanine+Putrescine	L-Arabinose	+	D-Galacturonic acid	+	Hvdroxv-L-Proline	
Cellobiose+D-Glucosaminic acidL-OrnitineL-ErythritolD-Glucuronic acidL-PhenylalanineD-Fructose+#-Hydroxy butric acidL-ProlineL-Fucose+#-Hydroxy butric acidL-ProlineD-Glactose+#-Hydroxy butric acidD-SerineGentiobiose+#-Hydroxy phenylacetic acidL-Serinem-D-Glucose+Itaconic acidU-Serinem-Inositol#-Ketobutyric acidD.L- Carnitinem-Inositol#-Ketoglutaric acidW-Aminobutyric aicdLactulose+#-Ketoglutaric acidUrocanic aicdMaltose+D.L-Lactic aciddD-Mannitol+Malonic acidUrocanic aicdD-Mannose+Propionic acidUridineD-Psicose+Sebacic acid2-Amino ethanolD-Psicose+Succinamic acid+Afflinose+Bromosuccinic acid+D-Sorbitol+Succinamic acidPhosphorylated compoundsSucrose+DetergentsDL#-glycerol phosphateD-Trehalose+Tween 40Glucose -1- PhosphateTuranose+Tween 80dAlanineamideYiltolAmino acidsGlucuron amideEsters:D-AlaninedAlanineamidePresumptive+L-Alanine+PutrescinePresumptive+L-Alanine+Putrescine	D-Arabitol		D-Gluconic aicd	+	L-Leucine	
L-Erythritol D-Glucuronic acid L-Phenylalanine D-Fructose + I-Hydroxy butric acid L-Proline L-Fucose + I-Hydroxy butyric aicd L-Pyroglutamic aicd D-Galactose + I-Hydroxy butyric aicd D-Serine Gentiobiose + I-Hydroxy phenylacetic acid L-Serine II-D-Glucose + Itaconic acid L-Threonine II-D-Glucose + Itaconic acid II-Carnitine II-D-Glucose + II-Ketobutyric aicd II-Carnitine II-D-Lactose + II-Ketoglutaric acid II-Carnitine II-D-Lactose + II-Ketoglutaric acid II-Carnitine II-Mannose + D.L-Lactic acid II-Carnitine II-Mannose + Propionic acid II-Serine II-Methyl-D-glucoside + II-Carnitine II-Methyl-D-glucoside + D-Saccharic acid II-Serine II-Methyl-D-glucoside + D-Saccharic acid II-Serine II-Methyl-D-glucoside + Bromosuccinic acid + Alcohols D-Raffinose + Bromosuccinic acid + Cay-Butanediol L-Rhamnose + Succinic acid + Glycerol D-Sorbitol + Succinanic acid + Glycerol D-Sorbitol + Succinanic acid II-Serine II-Rhamnose + Detergents II-Canglycerol phosphate D-Trehalose + Tween 40 Glucose -1-Phosphate Turanose + Tween 80 d Glucose -1-Phosphate Turanose + Tween 80 d Alanineamide Esters: II-Calanine + Putrescine Presumptive Vibrio sp.	Cellobiose	+	D-Glucosaminic acid		L-Ornitine	
D-Fructose+ \ddot{u} -Hydroxy butric acidL-ProlineL-Fucose+ \ddot{u} -Hydroxy butyric aicdL-ProlineD-Galactose+ \ddot{v} -Hydroxy butyric aicdD-SerineGentiobiose+ \ddot{v} -Hydroxy phenylacetic acidL-Serine \ddot{u} -D-Glucose+Itaconic acidL-Threonine m -Inositol \ddot{u} -Ketopulyric acidD.L- Carnitine \ddot{u} -D-Lactose+ \ddot{u} -Ketopuleric acidW-Aminobutyric aicdLactulose+ \ddot{u} -Ketopuleric acidUrocanic aicdD-Mannose+D.L-Lactic aciddNuclosides+Propionic acidUrocanic aicdD-Mannose+Propionic acidUridineD-Raffinose+Sebacic acid2-Amino ethanolD-Raffinose+Bromosuccinic acid+Alenhonse+Bromosuccinic acid+Q-Methyl-D-glucoside+D-Saccharic acid+D-Sorbitol+Succinic acid+D-Sorbitol+Succinic acid+D-Trehalose+Tween 40Glucose -1-D-Trehalose+Tween 80dGlucose -1-D-Trehalose+Tween 80dMethyl pyruvate+L-Alanine+Presumptive+L-Alanine+Presumptive+L-Alanine+Vibrio sp.+Vibrio sp.	L-Erythritol		D-Glucuronic acid		L-Phenylalanine	
L-Fucose + #-Hydroxy butyric acid L-Pyroglutamic acid D-Galactose + #-Hydroxy butyric acid D-Serine Gentiobiose + #-Hydroxy phenylacetic acid L-Pyroglutamic acid m-D-Glucose + Itaconic acid L-Serine m-Inositol -Ketobutyric acid D.L- Carnitine m-D-Lactose + -Ketoglutaric acid W-Aminobutyric aicd Lactulose + -Ketovaleric acid Urocanic aicd Maltose + D.L-Lactic acid d Nuclosides D-Mannitol + Malonic aicd Inosine D-Mannose D-Mannose + Propionic acid Uridine Uridine D-Methyl-D-glucoside + D-Saccharic acid + Alcohols D-Psicose + Sebacic acid 2-Amino ethanol L-Rhamnose + Succinaric acid + Glycerol D-Sorbitol + Succinaric acid + Glycerol D-Sorbitol + Succinaric acid + Glucose -1- Phosphate D-Trehalose + Tween	D-Fructose	+	i-Hydroxy butric acid		L-Proline	
D-Galactose + + Hydoxy butyric aicd D-Serine Gentiobiose + # Hydoxy phenylacetic acid L-Serine n-D-Glucose + Itaconic acid L-Threonine m-Inositol n-Ketobutyric acid D-Carnitine n-D-Lactose + n-Ketoglutaric acid W-Aminobutyric aicd Lactulose + n-Ketovaleric aicd Urocanic aicd D-Mannitol + Malonic acid Inosine D-Mannose + Propionic acid Uridine D-Melibiose + Quinic acid d Thymiteme D-Raffinose + Bromosuccinic acid + Alcohols D-Psicose + Succinaric acid + Alcohols D-Raffinose + Bromosuccinic acid + Glycerol D-Sorbitol + Succinaric acid + Glycerol D-Sorbitol + Succinaric acid + Glycerol D-Sorbitol + Succinaric acid + Glycerol D-Trehalose + Tween 40 Glucose -1-	L-Fucose	+	I-Hydroxy butyric aicd		L-Pyroglutamic aicd	
Gentiobiose + # Hydroxy phenylacetic acid L-Serine m-D-Glucose + Itaconic acid L-Threonine m-Inositol m-Ketoplutaric acid DL- Carnitine m-D-Lactose + m-Ketoplutaric acid W-Aminobutyric aicd Lactulose + m-Ketoplutaric acid W-Aminobutyric aicd Maltose + DL-Lactic acid d Nuclosides D-Mannitol + Malonic aicd Inosine D D-Mannose + Propionic acid Uridine Urocanic aicd D-Mannose + Propionic acid Uridine D D-Melibiose + Quinic acid d Thymidine P-Methyl-D-glucoside + D-Saccharic acid + 2,3-Butanediol L-Rhamnose + Succinic acid + 2,3-Butanediol L-Rhamnose + Succinic acid + Glucose -1 - Phosphate D-Trehalose + Detergents DLa-glucorol phosphate D-Trehalose + Tween 80 d Glucuron amide Esters: D-Alan	D-Galactose	+	Trydoxy butyric aicd		D-Serine	
and D-Glucose+Itaconic acidL-Threeninem-Inositolm-Ketobutyric acidD.L- Carnitinem-D-Lactose+m-Ketobutyric acidW-Aminobutyric acidLactulose+m-Ketovaleric acidWrocanic acidMaltose+D.L-Lactic aciddNuclosidesD-Mannitol+Malonic acidInosineD-Mannose+Propionic acidUridineD-Melibiose+Quinic aciddD-Reftyl-D-glucoside+D-Saccharic acid+Alcohols2-Amino ethanolD-Raffinose+Bromosuccinic acid+Querol-Sorbitol+Succinic acid+D-Raffinose+Bromosuccinic acid+D-Sorbitol+Succinamic acid+Glucose -1-D-Sorbitol+Tween 40Glucose -1-D-Trehalose+Tween 80dGlucose-6-PhosphateTuranose+Tween 80dAlanineamideMetyl pyruvate+L-Alanine+PutrescinePresumptive+L-Alanine+Putrescine	Gentiobiose	+	-Hydroxy phenylacetic acid		L-Serine	+
m-Inositol In-Ketobutyric acid D.L - Carnitine In-Lactose + In-Ketoglutaric acid In-Aminobutyric aicd Lactulose + In-Ketoglutaric acid Inosine D-Mannitol + D.L-Lactic acid d Nuclosides D-Mannitol + Malonic aicd Inosine Inosine D-Mannose + Propionic acid Uridine Inosine D-Mannose + Propionic acid Uridine D-Mannose + Propionic acid Uridine D-Methyl-D-glucoside + D-Saccharic acid + Alcohols D-Psicose + Sebacic acid 2-Amino ethanol Inosine D-Raffinose + Bromosuccinic acid + 2,3-Butanediol L-Rhamnose + Succinaic acid + Glycerol D-Sorbitol + Succinamic acid Phosphorylated compounds Sucrose + Detergents DLII-glycerol phosphate D-Trehalose + Tween 40 Glucose -1- Phosphate Turanose + Tween 80 d<	īi-D-Glucose	+	Itaconic acid		L-Threonine	
in Holson in Arterooutry in data in Diabatic and the data in D-Lactose + in-Ketoglutaric acid if Arterooutry in data Lactulose + in-Ketoglutaric acid Urocanic aicd Maltose + D.L-Lactic acid d Nuclosides D-Mannitol + Malonic acid Inosine D D-Mannose + Propionic acid Uridine D-Melibiose + Quinic acid d Thymidine I-Methyl-D-glucoside + D-Saccharic acid + Alcohols D-Psicose + Sebacic acid 2-Amino ethanol D-Raffinose + Bromosuccinic acid + 2,3-Butanediol L-Rhamnose + Succinamic acid + Glycerol D-Sorbitol + Succinamic acid Phosphorylated compounds Sucrose + Detergents DLin-glycerol phosphate D-Trehalose + Tween 40 Glucose -1- Phosphate Turanose + Tween 80 d Alanineamide Kylitol Amino acids Glucuron amide <td><i>m</i>-Inositol</td> <td></td> <td>I-Ketobutyric acid</td> <td></td> <td>DI - Carnitine</td> <td></td>	<i>m</i> -Inositol		I-Ketobutyric acid		DI - Carnitine	
Lactobe + In-Ketoghtanic ded In Finishout, if end Lactulose + In-Ketoghtanic ded Urocanic aicd Maltose + D.L-Lactic acid d Nuclosides D-Mannitol + Malonic aicd Inosine Inosine D-Mannose + Propionic acid Uridine D-Melibiose + Quinic acid d Thymidine I-Methyl-D-glucoside + D-Saccharic acid + Alcohols D-Psicose + Sebacic acid 2-Amino ethanol D-Raffinose + Bromosuccinic acid + 2,3-Butanediol L-Rhannose + Succinic acid + Glycerol D-Sorbitol + Succinic acid + Glycerol D-Trehalose + Tween 40 Glucose -1- Phosphate Turanose + Tween 80 d Alanineamide Kylitol Amino acids Glucuron amide Esters: D-Alanine + Putrescine Presumptive + L-Alanine + Putrescine <td>ii-D-Lactose</td> <td>+</td> <td>I-Ketoglutaric acid</td> <td></td> <td>T-Aminobutyric aicd</td> <td></td>	ii-D-Lactose	+	I-Ketoglutaric acid		T-Aminobutyric aicd	
Mattose+D.L-Lactic aciddNuclosidesD-Mannitol+Malonic aicdInosineD-Mannose+Propionic acidUridineD-Melibiose+Quinic aciddThymidineII-Methyl-D-glucoside+D-Saccharic acid+AlcoholsD-Psicose+Sebacic acid2-Amino ethanolD-Raffinose+Bromosuccinic acid+2,3-ButanediolL-Rhannose+Succinic acid+GlycerolD-Sorbitol+Succinianic acidPhosphorylated compoundsSucrose+DetergentsDLI-glycerol phosphateD-Trehalose+Tween 40Glucose -1- PhosphateTuranose+Tween 80dGlucose-6-PhosphateXylitolAmino acidsGlucuron amideEsters:D-AlaninedAlanineamideMethyl pyruvate+L-Alanine+Presumptive+Vibrio sp.	Lactulose	+	— Ketoyaleric aicd		Urocanic aicd	
DefinitionFinal factor termdefinitionD-Mannicol+Malonic acidInosineD-Mannose+Propionic acidUridineD-Melibiose+Quinic aciddII-Methyl-D-glucoside+D-Saccharic acid+AlcoholsD-Psicose+Sebacic acid2-Amino ethanolD-Raffinose+Bromosuccinic acid+2,3-ButanediolL-Rhamnose+Succinic acid+GlycerolD-Sorbitol+Succinianic acidPhosphorylated compoundsSucrose+DetergentsDLI-glycerol phosphateD-Trehalose+Tween 40Glucose -1-Turanose+Tween 80dGlucose-6-PhosphateXylitolAmino acidsGlucuron amideEsters:D-AlaninedAlanineamideMethyl pyruvate+L-Alanine+PutrescineVibrio sp.	Maltose	+	DI-Lactic acid	d	Nuclosides	
D-Mannose + Propionic acid Uridine D-Mannose + Propionic acid Uridine D-Melibiose + Quinic acid d Thymidine I-Methyl-D-glucoside + D-Saccharic acid + Alcohols D-Psicose + Sebacic acid 2-Amino ethanol D-Raffinose + Bromosuccinic acid + 2,3-Butanediol L-Rhamnose + Succinic acid + Glycerol D-Sorbitol + Succinic acid Phosphorylated compounds Sucrose + Detergents DLI-glycerol phosphate D-Trehalose + Tween 40 Glucose -1- Phosphate Turanose + Tween 80 d Glucose -6-Phosphate Xylitol Amino acids Glucuron amide Esters: D-Alanine d Alanineamide Methyl pyruvate + L-Alanine + Putrescine Putrescine Presumptive + Vibrio sp. + Nurscine +	D-Mannitol	+	Malonic aicd	u	Inosine	+
D-Mainosc 1 Appoint deal Orbital D-Melibiose + Quinic acid d Thymidine P-Methyl-D-glucoside + D-Saccharic acid + Alcohols D-Psicose + Sebacic acid 2-Amino ethanol D-Raffinose + Bromosuccinic acid + 2,3-Butanediol L-Rhamnose + Succinic acid + Glycerol D-Sorbitol + Succinamic acid Phosphorylated compounds Sucrose + Detergents DLū-glycerol phosphate D-Trehalose + Tween 40 Glucose -1- Phosphate Turanose + Tween 80 d Glucose-6-Phosphate Xylitol Amino acids Glucuron amide Esters: D-Alanine d Alanineamide Presumptive + L-Alanine + Putrescine Putrescine	D-Mannose	+	Propionic acid		Uridine	+
D-Methyl-D-glucoside + D-Saccharic acid + Alcohols D-Psicose + Sebacic acid 2-Amino ethanol D-Raffinose + Bromosuccinic acid + Alcohols D-Raffinose + Bromosuccinic acid + Alcohols L-Rhamnose + Succinic acid + Glycerol D-Sorbitol + Succinamic acid Phosphorylated compounds Sucrose + Detergents DLū-glycerol phosphate D-Trehalose + Tween 40 Glucose -1- Turanose + Tween 80 d Glucose-6-Phosphate Xylitol Amino acids Glucuron amide Esters: D-Alanine d Alanineamide Methyl pyruvate + L-Alanine + Putrescine Putrescine Presumptive - Vibrio sp. - - - -	D-Melibiose	+	Quinic acid	d	Thymidine	+
D-Psicose + Sebacic acid 2-Amino ethanol D-Raffinose + Bromosuccinic acid + 2,3-Butanediol L-Rhamnose + Succinic acid + Glycerol D-Sorbitol + Succinic acid Phosphorylated compounds Sucrose + Detergents DLū-glycerol phosphate D-Trehalose + Tween 40 Glucose -1- Turanose + Tween 80 d Glucose-6-Phosphate Xylitol Amino acids Glucuron amide Esters: D-Alanine d Alanineamide Methyl pyruvate + L-Alanine + Putrescine Putrescine Presumptive - Vibrio sp. Sp. - -	B-Methyl-D-glucoside	+	D-Saccharic acid	+	Alcohols	
D-Raffinose + Bromosuccinic acid + 2,3-Butanediol L-Rhamnose + Succinic acid + Glycerol D-Sorbitol + Succinic acid + Glycerol D-Sorbitol + Succinic acid + Phosphorylated compounds Sucrose + Detergents DLū-glycerol phosphate D-Trehalose + Tween 40 Glucose -1- Phosphate Turanose + Tween 80 d Glucose -6-Phosphate Xylitol Amino acids Glucuron amide Esters: D-Alanine d Alanineamide Methyl pyruvate + L-Alanine + Putrescine Presumptive Vibrio sp. * *	D-Psicose	+	Sebacic acid		2-Amino ethanol	
L-Rhamnose + Succinic acid + Glycerol D-Sorbitol + Succinanic acid Phosphorylated compounds Sucrose + Detergents DLin-glycerol phosphate D-Trehalose + Tween 40 Glucose -1- Turanose + Tween 80 d Glucose -6-Phosphate Xylitol Amino acids Glucuron amide Esters: D-Alanine d Alanineamide Methyl pyruvate + L-Alanine + Putrescine Presumptive Vibrio sp. Vibrio sp. Vibrio sp.	D-Raffinose	+	Bromosuccinic acid	+	2.3-Butanediol	
D-Sorbitol + Succinamic acid Phosphorylated compounds Sucrose + Detergents DLā-glycerol phosphate D-Trehalose + Tween 40 Glucose -1- Turanose + Tween 80 d Glucose-6-Phosphate Xylitol Amino acids Glucuron amide Esters: D-Alanine d Alanineamide Presumptive + L-Alanine + Putrescine	L-Rhamnose	+	Succinic acid	+	Glycerol	+
Sucrose + Detergents DLā-glycerol phosphate D-Trehalose + Tween 40 Glucose -1- Turanose + Tween 80 d Glucose -6-Phosphate Xylitol Amino acids Glucuron amide Esters: D-Alanine d Alanineamide Methyl pyruvate + L-Alanine + Putrescine Presumptive Vibrio sp. Vibrio sp. Vibrio sp.	D-Sorbitol	+	Succinamic acid		Phosphorylated compounds	
D-Trehalose + Tween 40 Glucose -1- Phosphate Turanose + Tween 80 d Glucose -6-Phosphate Xylitol Amino acids Glucuron amide Esters: D-Alanine d Alanineamide Methyl pyruvate + L-Alanine + Putrescine Presumptive Vibrio sp. Vibrio sp.	Sucrose	+	Detergents		DL _n -glycerol phosphate	+
Turanose + Tween 80 d Glucose-6-Phosphate Xylitol Amino acids Glucuron amide Esters: D-Alanine d Alanineamide Methyl pyruvate + L-Alanine + Putrescine Presumptive Vibrio sp.	D-Trehalose	+	Tween 40		Glucose -1- Phosphate	+
Xylitol Amino acids Glucuron amide Esters: D-Alanine d Alanineamide Methyl pyruvate + L-Alanine + Putrescine Presumptive Vibrio sp. Vibrio sp. Vibrio sp.	Turanose	+	Tween 80	d	Glucose-6-Phosphate	+
Esters: D-Alanine d Alanineamide Methyl pyruvate + L-Alanine + Putrescine Presumptive Vibrio sp.	Xvlitol		Amino acids	-	Glucuron amide	_
Methyl pyruvate + L-Alanine + Putrescine Presumptive Vibrio sp.	Esters:		D-Alanine	d	Alanineamide	_
Presumptive Vibrio sp.	Methyl pyruvate	+	L-Alanine	+	Putrescine	_
Vibrio sp.	Presumptive					
identification	identification		<i>Vibrio</i> sp.			

1.Morphological	-	2. Growth on		3. Biochemical	
properties		medium			
Shape	R	Agar(4,15)	+,	+Catalase	+
Motility	-	Slant	+	Oxidase	_
Gram	_	Liquied	+	ONPG	+
S				DNIDC	
Spore	-			PNPG	+
				Hemolysis	-
Substrate		Substrate	-	Substrate	
4.Utilization;		Monomethylsuccinate	+	L-Alanylglycine	+
Acyclodextrin	-	Carboxylic acids		L-Asparagine	+
Dextrin	+	Acetic acid	+	L-Aspartic acid	+
Glycogen	d	Cis-aconotic acid	+	L-Glutamic acid	+
N-Acetyl-D- galactosamin	-	Citric acid	+	Glycyl-L-Aspartic acid	+
N-Acetyl-D-glucosamin	+	Formic acid	+	Glycyl-L-Glutamic aicd	+
Adonitol	-	D-Galactonic acid lactone	+	L-Histidine	-
L-Arabinose	+	D-Galacturonic acid	+	Hydroxy-L-Proline	-
D-Arabitol	-	D-Gluconic aicd	+	L-Leucine	-
Cellobiose	+	D-Glucosaminic acid	d	L-Ornitine	-
L-Erythritol	+	D-Glucuronic acid	d	L-Phenylalanine	-
D-Fructose	+	n-Hydroxy butric acid	-	L-Proline	-
L-Fucose	+	I-Hydroxy butyric aicd	-	L-Pyroglutamic aicd	-
D-Galactose	+	¶-Hydoxy butyric aicd	-	D-Serine	+
Gentiobiose	+	₽-Hydroxy phenylacetic acid	-	L-Serine	+
n-D-Glucose	+	Itaconic acid	-	L-Threonine	-
<i>m</i> -Inositol	-	[∎] -Ketobutyric acid	-	D.L- Carnitine	-
ū−D-Lactose	+	n-Ketoglutaric acid	+	¶-Aminobutyric aicd	-
Lactulose	+	n-Ketovaleric aicd	-	Urocanic aicd	-
Maltose	+	D.L-Lactic acid	+	Nuclosides	
D-Mannitol	+	Malonic aicd	+	Inosine	+
D-Mannose	+	Propionic acid	d	Uridine	+
D-Melibiose	+	Quinic acid	d	Thymidine	+
I-Methyl-D-glucoside	+	D-Saccharic acid	+	Alcohols	
D-Psicose	+	Sebacic acid	-	2-Amino ethanol	-
D-Raffinose	+	Bromosuccinic acid	+	2,3-Butanediol	-
L-Rhamnose	+	Succinic acid	+	Glycerol	+
D-Sorbitol	+	Succinamic acid	-	Phosphorylated compounds	
Sucrose	+	Detergents		DLa-glycerol phosphate	+
D-Trehalose	+	Tween 40	-	Glucose -1- Phosphate	+
Turanose	d	Tween 80	+	Glucose-6-Phosphate	+
Xylitol	-	Amino acids		Glucuron amide	-
Esters:		D-Alanine	+	Alanineamide	-
Methyl pyruvate	+	L-Alanine	+	Putrescine	-
Presumptive		Dahaalla on	-		
identfication		numenu sp.			

Table 31. Physiological and biochemical properties of strain N12-5

1.Morphological		2. Growth on		3. Biochemical	
properties		medium		properties	
Shape	R	Agar(4,15)	+,+	Catalase	+
Motility	-	Slant	+	Oxidase	_
Gram	_	Liquied	+	ONPG	+
Contraction		Diquied		DNDC	
Spore	-			PNPG	+
				Hemolysis	
Substrate		Substrate	-	Substrate	
4.Utilization;	-	Monomethylsuccinate	d	L-Alanylglycine	-
Acyclodextrin	-	Carboxylic acids		L-Asparagine	+
Dextrin	+	Acetic acid	-	L-Aspartic acid	+
Glycogen	-	Cis-aconotic acid	-	L-Glutamic acid	-
N-Acetyl-D- galactosamin	-	Citric acid	+	Glycyl-L-Aspartic acid	-
N-Acetyl-D-glucosamin	-	Formic acid	d	Glycyl-L-Glutamic aicd	-
Adonitol	-	D-Galactonic acid lactone	-	L-Histidine	-
L-Arabinose	+	D-Galacturonic acid	d	Hydroxy-L-Proline	-
D-Arabitol	+	D-Gluconic aicd	+	L-Leucine	-
Cellobiose	+	D-Glucosaminic acid	-	L-Ornitine	-
L-Erythritol	-	D-Glucuronic acid	-	L-Phenylalanine	-
D-Fructose	+	□-Hydroxy butric acid	-	L-Proline	-
L-Fucose	-	I-Hydroxy butyric aicd	-	L-Pyroglutamic aicd	-
D-Galactose	+	¶-Hydoxy butyric aicd	-	D-Serine	-
Gentiobiose	+	₽-Hydroxy phenylacetic acid	-	L-Serine	d
∎-D-Glucose	+	Itaconic acid	-	L-Threonine	-
<i>m</i> -Inositol	-	□ -Ketobutyric acid	-	D.L- Carnitine	-
¤-D-Lactose	+	[□] -Ketoglutaric acid	-	¶-Aminobutyric aicd	-
Lactulose	+	■-Ketovaleric aicd	-	Urocanic aicd	-
Maltose	+	D.L-Lactic acid	-	Nuclosides	
D-Mannitol	+	Malonic aicd	-	Inosine	+
D-Mannose	+	Propionic acid	-	Uridine	+
D-Melibiose	+	Quinic acid	-	Thymidine	+
₽-Methyl-D-glucoside	+	D-Saccharic acid	-	Alcohols	
D-Psicose	+	Sebacic acid	-	2-Amino ethanol	-
D-Raffinose	+	Bromosuccinic acid	+	2,3-Butanediol	-
L-Rhamnose	-	Succinic acid	d	Glycerol	+
D-Sorbitol	-	Succinamic acid	-	Phosphorylated compounds	
Sucrose	+	Detergents		DLa-glycerol phosphate	+
D-Trehalose	+	Tween 40	-	Glucose -1- Phosphate	+
Turanose	+	Tween 80	+	Glucose-6-Phosphate	+
Xylitol	-	Amino acids		Glucuron amide	-
Esters:		D-Alanine	-	Alanineamide	-
Methyl pyruvate	d	L-Alanine	d	Putrescine	_
Presumptive		Rabnalla sp			
identification		numenu sp.			

Table 32 Physiological and biochemical properties of strain N15-3

1.Morphological	2. Growth on	3. Biochemical	-
properties	medium	properties	
Shape	R Agar(4,15)	+,+Catalase	+
Motility	– Slant	+ Oxidase	-
Gram	- Liquied	+ ONPG	+
Spore	_	PNPG	+
		Hemolysis	-

Table 33. Physiological and biochemical properties of strain S7-1

Test	Raction	Tests	Reaction				
Nitrate reduction	-	Mannitol	_				
VP test	+	Inositol	_				
Indole formation	-	Sorbitol	+				
Hydrogen sulfide		D1					
formation	—	Rhamnose	—				
Citric acid utilization	-	Sucrose	_				
Urease test,	-	Mellibiose	_				
Gelatin liquiefaction	+	Amygdalin	+				
Arginine	-	Arabinose	+				
Lysine	-	Galatose	_				
Ornithine	-	Saccharose,	+				
Tryptophane	-	Trehalose,	_				
Glucose	-	Lactose	+				
Fructose	_	Xylose	_				
Presumptive	Psaudo	Decudealteromenae en					
identification	1 Seullo	aneromonas sp.					

.Morphological		2. Growth on		3. Biochemical	
properties		medium			
Shape	R	Agar(4,15)	+,	+Catalase	+
Motility	_	Slant	+ Oxidase		-
Gram	_	Liquied	+	ONPG	+
C.		Elquica		DNDC	
Spore	-			PNPG	+
				Hemolysis	-
Substrate		Substrate		Substrate	
4.Utilization;		Monomethylsuccinate	-	L-Alanylglycine	+
Acyclodextrin	-	Carboxylic acids		L-Asparagine	+
Dextrin	+	Acetic acid	-	L-Aspartic acid	+
Glycogen	-	Cis-aconotic acid	+	L-Glutamic acid	+
N-Acetyl-D-galactosamin	+	Citric acid	+	Glycyl-L-Aspartic acid	-
N-Acetyl-D-glucosamin	+	Formic acid	+	Glycyl-L-Glutamic aicd	-
Adonitol	-	D-Galactonic acid lactone	-	L-Histidine	+
L-Arabinose	-	D-Galacturonic acid	+	Hvdroxv-L-Proline	-
D-Arabitol	-	D-Gluconic aicd	+	L-Leucine	_
Cellobiose	-	D-Glucosaminic acid	_	L-Ornitine	_
L-Ervthritol	_	D-Glucuronic acid	_	L-Phenylalanine	_
D-Fructose	+	I-Hydroxy butric acid	_	L-Proline	+
L-Fucose	_	I-Hydroxy butyric aicd	_	L-Pyroglutamic aicd	_
D-Galactose	+	Hydroxy butyric aicd	_	D-Serine	+
Gentiobiose	+	I-Hydroxy phenylacetic acid	+	I -Serine	+
ii=D=Glucose	+	Itaconic acid	_	L -Threenine	_
m-Inositol	+	I-Ketobutyric acid	_	DI - Carnitine	_
n-D-Lactose	+	-Ketoplutaric acid	+	N=Aminobutyric aicd	_
Lactulose	_	I-Ketoyaleric aicd	_	Urocanic aicd	_
Maltose	+	DI -Lactic acid	+	Nuclosides	
D-Mannitol	+	Malonic aicd	_	Inosine	+
D-Mannose	+	Propionic acid	_	Uridine	+
D-Melibiose	_	Quipia acid	_	Thumiding	+
Methodse		Quillic acid		Alashala	
p-Meuryi-D-glucoside	т	D-Saccharic acid	_	Alcollois	
D-Fsicose	т	Promoguacinia acid	_	2 ² Annino ethanol	
D-Rannose	т	Sussinia said	Ŧ	2,5-Butaneuloi	_
L-Knamnose D. Carbital	_	Succinic acid	-	Discontractorial according	+
D-Sorbitol	+	Succinamic acid	_	Phosphorylated compounds	
Sucrose	+	Detergents	-	DLn-glycerol phosphate	+
D-1 rehalose	+	Tween 40	_	Glucose -1- Phosphate	+
Turanose	+	Tween 80	+	Glucose-6-Phosphate	+
Aylitol	+	Amino acids		Gucuron amide	-
Esters		D-Alanine	+	Alanineamide	+
Methyl pyruvate	+	L-Alanine	+	Putrescine	-
Presumptive		Hatria an			
identification		majnua sp.			

Table 34. Physiological and biochemical properties of strain S14-2

다. 16S rDNA sequencing 결과

1) 우유시료

우유에서 분리한 MB26-4와 MC14-3 균주는 16S rDNA 유전자는 1498bp 이 었다. 유사균종과의 % similarity를 조사한 결과 본 균주는 표준균주와 98.8% 유 사도를 나타내었다(Table 35, Table 36). 16S rDNA 구조에 근거하여 Neighbor-joining method에 의하여 계통수(phylogenetic tree)를 작성하고 그 결 과는 Fig 7에 나타내었으며 tree의 scale bar는 0.01 substitution per site를 의미 한다. 이상의 결과로 우유에서 분리한 두 균주는 *Hafnia alvei*로 추정된다.

2) 히말라야 시료

히말라야에서 분리한 H20-4 균주는 16S rDNA 유전자는 1492bp 이었다. 유 사균종과의 염기서열의 % similarity를 조사한 결과 본 균주는 표준균주와 98.6% 유사도를 나타내었으며 *Atrthtobacter psychrolactophilus* 유연균으로 분류되었 다(table 37, Fig 8). H27-1의 16S rDNA 유전자 염기서열 조사결과 크기가 1498bp 이었다. 유사균종과의 % similarity를 조사한 결과 본 균주는 표준균주와 98.8% 유사도를 나타내었으며 *Hafnia alvei* 의 유연균으로 분류되었다(Table 38, Fig 9).

3) 알래스카시료

알래스카 Barrow 지역에서 분리한 B1-2 균주는 형태학적, 이화학적, 지방산 조성 및 16S rDNA 유전자의 크기는 1424bp 이며 유사균종과의 염기서열의 % similarity를 조사한 결과 본 균주는 표준균주와 99.6% 유사도를 나타내었다 (Table 39, Fig 10). Fairbanks에서 분리한 F5-2 균주는 16S rDNA 염기서열 결 과 유전자는 1498bp 이었다. 유사균종과의 염기서열 % similarity를 조사한 결과 본 균주는 표준균주와 98.8% 유사도를 나타내었으며 *Hafnia alvei* 유연균으로 분류되었다(Table 40, Fig 11). F10-5 균주의 16S rDNA 유전자는 1498bp 이며 유사균종과의 염기서열의 % similarity를 조사한 결과 본 균주는 표준균주와 99.6% 유사도를 나타내었으며 *Hafnia alvei* 유연균으로 분류되었다(Table 41, Fig 12). Nome에서 분리한 N12-5 균주의 16S rDNA 유전자는 1498bp 이며 유 사균종과의 % similarity를 조사한 결과 본 균주는 표준균주와 98.8% 유사도를 나타내었으며 Rhanella aquaticus 유연균으로 분류되었다(Table 42, Fig 13).

4) 남극시료

남극에서 분리한 SR-1 균주 16S rDNA는 1491bp 이며 유사균종과의 % similarity를 조사한 결과 본 균주는 표준균주와 99.9% 유사도를 나타내었으며 *Pseudoalteromonas sp.*로 유연균으로 분류되었다(table 43, Fig 14).

S14-2는 16s rDNA는 1498bp 이며 유사균종과의 % similarity를 조사한 결과 본 균주는 표준균주와 99.6% 유사도를 나타내었으며 *Hafnia alvei* 유연균으로 분 류되었다(Table 44, Fig 15).

Table 35. Levels of 16S rDNA sequence similarity for strain MB26-4 with strains of some other related taxa.

Strain	% Similarity in												
	1	2	3	4	5	6	7	8	9	10	11	12	13
1 Strains S1								-		-			
2 Obesumbacterium proteus DSM 2777T	97.8												
3 Hafnia alvei ATCC 13337T	97.7	98.8											
4 Serratia marcescens DSM 30121T	96.7	96.7	96.3										
5 Serratia rubidaea DSM 4480T	95.8	95.7	95.4	95.3									
6 Yersinia pestis D-28	96.2	95.6	95.8	95.9	95.1								
7 Rahnella aquatica DSM 4594T	97.5	96.8	96.1	95.9	95.6	95.8							
8 Erwinia amylovora DSM 30165T	95.2	95.5	95.1	95.3	95.0	94.4	93.9						
9 Klebsiella pneumoniae DSM 30104T	96.8	96.9	96.5	96.4	97.7	96.1	95.0	95.6					
10 Citrobacter freundii DSM 30039T	96.0	96.1	96.1	96.7	96.9	95.2	94.7	95.0	96.2				
11 Pectobacterium carotovorum DSM 30168T	96.8	96.9	96.0	96.0	96.9	95.5	95.3	95.9	95.9	97.2			
12 Pectobacterium cacticidum LMG 17936T	96.1	96.0	95.2	95.2	95.5	94.7	94.3	95.3	94.8	96.4	95.3		
13 Brenneria salicis DSM 30166T	94.1	94.6	94.1	94.4	94.1	93.8	93.2	93.3	94.4	94.6	94.0	95.1	
14 Vibrio cholerae CECT 514T	91.5	91.1	91.1	91.6	91.3	91.2	91.3	90.7	90.2	91.0	91.1	91.69	91.4

Strain						% Si	milarity	/ in					
	1	2	3	4	5	6	7	8	9	10	11	12	13
1 Strain S1										-			
2 Obesumbacterium proteus DSM 2777T	97.8												
3 Hafnia alvei ATCC 13337T	97.7	98.8											
4 Serratia marcescens DSM 30121T	96.7	96.7	96.3										
5 Serratia rubidaea DSM 4480T	95.8	95.7	95.4	95.3									
6 Yersinia pestis D-28	96.2	95.6	95.8	95.9	95.1								
7 Rahnella aquatica DSM 4594T	97.5	96.8	96.1	95.9	95.6	95.8							
8 Erwinia amylovora DSM 30165T	95.2	95.5	95.1	95.3	95.0	94.4	93.9						
9 Klebsiella pneumoniae DSM 30104T	96.8	96.9	96.5	96.4	97.7	96.1	95.0	95.6					
10 Citrobacter freundii DSM 30039T	96.0	96.1	96.1	96.7	96.9	95.2	94.7	95.0	96.2				
11 Pectobacterium carotovorum DSM 30168T	96.8	96.9	96.0	96.0	96.9	95.5	95.3	95.9	95.9	97.2			
12 Pectobacterium cacticidum LMG 17936T	96.1	96.0	95.2	95.2	95.5	94.7	94.3	95.3	94.8	96.4	95.3		
13 Brenneria salicis DSM 30166T	94.1	94.6	94.1	94.4	94.1	93.8	93.2	93.3	94.4	94.6	94.0	95.1	
14 Vibrio cholerae CECT 514T	91.5	91.1	91.1	91.6	91.3	91.2	91.3	90.7	90.2	91.0	91.1	91.6	91.4

Table 36. Levels of 16S rDNA sequence similarity for strain MC14-3 with strains of some other related taxa.

Figure 7. Phylogenetic tree based on 16S rRNA sequences of strain MB26-4, MC14-3, and strains of some other related taxa. Bootstrap values (1000replications) are shown as percentage at each node only if they are 50% or greater. Scale bar represents 0.01 substitution per nucleotide position.

Table 37. Levels of 16S rDNA sequence similarity for strain	H20-4	with
strains of some other related taxa.		

								% S	imila	arity	in :							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 Strain H20-4																		
2 Arthrobacter psychrolactophilus ATCC 700733T	98.6																	
3 Arthrobacter oxydans DSM 20119T	97.4	96.9																
4 Arthrobacter polychromogenes DSM 20136T	97.4	96.9	99.9															
5 Arthrobacter sulfonivorans ATCC BAA-112T	97.4	96.8	97.9	97.9														
6 Arthrobacter roseusDSM 14508T	97.0	96.2	97.7	97.6	97.6													
7 Arthrobacter aurescensDSM 20116T	96.4	95.9	97.4	97.0	97.2	96.8												
8 Arthrobacter chlorophenolicus DSM 12829T	97.1	96.5	98.3	98.2	97.7	97.4	97.3											
9 Arthrobacter luteolus DSM 13067T	95.7	94.9	96.6	96.3	96.2	96.3	97.8	96.7										
10 Arthrobacter koreensis KCTC 9922T	95.0	94.3	96.0	95.7	95.4	95.5	97.0	95.8	99.1									
11 Arthrobacter globiformis DSM 20124T	96.1	95.8	97.7	97.5	97.7	96.5	96.5	97.1	96.2	95.4								
12 Arthrobacter citreus DSM 20133T	95.3	94.6	96.3	96.0	95.9	96.2	96.6	96.5	98.8	98.1	95.7							
13 Arthrobacter ureafaciens DSM 20126T	96.0	95.7	97.2	96.8	97.2	96.1	97.9	96.9	96.6	96.1	96.8	96.2						
14 Arthrobacter ilicis DSM 20138T	95.9	95.2	96.9	96.7	96.5	96.2	98.8	97.0	97.4	96.9	95.8	96.2	97.6					
15 Arthrobacter histidinovorans DSM 20115T	96.3	95.7	97.8	97.5	97.4	96.8	98.6	97.6	97.0	96.4	96.9	96.5	98.7	98.5				
16 Arthrobacter pascens DSM 20545T	96.6	96.3	97.8	97.6	97.8	96.9	96.8	97.2	95.9	95.1	99.3	95.5	96.4	96.1	97.2			
17 Arthrobacter nicotinovorans DSM 420T	96.3	96.0	97.8	97.6	97.4	96.9	98.8	97.9	97.1	96.4	97.0	96.6	99.0	98.6	99.7	97.2		
18 Kocuria rosea DSM 20447T	94.8	94.4	95.7	95.5	95.5	96.3	95.8	95.4	95.6	95.0	96.1	95.0	94.9	95.3	95.7	96.5	95.7	
19 Nesterenkonia halobia DSM 20541T	92.9	92.6	93.5	93.2	93.4	93.1	93.0	92.9	93.1	92.5	94.7	92.6	92.8	92.6	93.1	94.5	93.3	94.1
Anthrobaster kie 10 - Anthrobaster kie 10 - Anthrobaster 10 - Anthrobaster 10 - Stra 10 - Stra 10 - Stra 10 - Stra 10 - Stra 4nthrobaster children 10 - Anthrobaster 10 - Stra Anthrobaster 10 - Stra Anthrobaster 0 - Anthrobaster Anthrobaster 0 - Net	terialm Indover acter catare colorist denir strate in H2 catalis catal	over a name I factor constructions ifficial r hate observer harder or and or an	ne D8 08 M- is D81 D8M ohis I 167 ko 167 ko	8.4.20 4207 (M.20) (2011) (2011) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2014) (20	1157 (X807) 1267 (67 (X 87 (X 1306) 1282 (X 1306) 127 (X	(323) 43) 328074 23403 2340 2340	06) 44)) 24342 202 ⁷ ((X807 F2350 0) 20267) 708074	2) A2(11) 97) 30: 700 40) 90) 91)	6496) 0733 ⁷	(AFI	341.78	2						

Fig 8. Phylogenetic tree based on 16S rRNA sequences of strain H20-4 and the representative of some other related taxa.

Stucin					(% Sin	nilari	ty in					
Strain	1	2	3	4	5	6	7	8	9	10	11	12	13
1 Strains H27-1		_							_				
2 Obesumbacterium proteus DSM 2777T	97.8												
3 Hafnia alvei ATCC 13337T	97.7	98.8											
4 Serratia marcescens DSM 30121T	96.7	96.7	96.3										
5 Serratia rubidaea DSM 4480T	95.8	95.7	95.4	95.3									
6 Yersinia pestis D-28	96.2	95.6	95.8	95.9	95.1								
7 Rahnella aquatica DSM 4594T	97.5	96.8	96.1	95.9	95.6	95.8							
8 Erwinia amylovora DSM 30165T	95.2	95.5	95.1	95.3	95.0	94.4	93.9						
9 Klebsiella pneumoniae DSM 30104T	96.8	96.9	96.5	96.4	97.7	96.1	95.0	95.6					
10 Citrobacter freundii DSM 30039T	96.0	96.1	96.1	96.7	96.9	95.2	94.7	95.0	96.2				
11 Pectobacterium carotovorum DSM 30168T	96.8	96.9	96.0	96.0	96.9	95.5	95.3	95.9	95.9	97.2			
12 Pectobacterium cacticidum LMG 17936T	96.1	96.0	95.2	95.2	95.5	94.7	94.3	95.3	94.8	96.4	95.3		
13 Brenneria salicis DSM 30166T	94.1	94.6	94.1	94.4	94.1	93.8	93.2	93.3	94.4	94.6	94.0	95.1	
14 Vibrio cholerae CECT 514T	91.5	91.1	91.1	91.6	91.3	91.2	91.3	90.7	90.2	91.0	91.1	91.6	91.4

Table 38. Levels of 16S rDNA sequence similarity fo strains H27-1 with strains of some other related taxa.

Fig 9. Phylogenetic tree based on 16S rRNA sequences of strain H27-1 and the representative of some other related taxa.

Table 39.	Levels	of	16S	rDNA	sequence	similarity	for	strain	В1	with	the	strain	IS
of some of	other rel	late	d ta:	xa.									

Stanin							% S	imila	rity in	:					
Stram	1												13	14	15
1 Strain B1-2															
2 Serratia grimesii DSM 30063T	99.6														
3 Serratia proteamaculans DSM 4543T	99.6	99.7													
4 Serratia quinivorans DSM 4597T	99.4	99.5	99.6												
5 Serratia marcescens DSM 30121T	96.4	96.5	96.2	96.9											
6 Serratia rubidaea DSM 4480T	96.1	95.6	95.3	95.7	97.5										
7 Serratia entomophila DSM 12358T	97.5	97.7	97.5	97.8	97.7	96.9									
8 Serratia ficaria DSM 4569T	97.7	98.0	97.7	98.0	97.7	96.8	99.3								
9 Serratia fonticola DSM 4576T	98.3	98.3	98.4	98.2	96.4	96.1	97.3	97.4							
10 Serratia odorifera DSM 4582T	97.0	96.9	96.7	96.9	97.9	97.0	98.2	98.4	96.8						
11 Serratia plymuthica DSM 4540T	98.5	98.8	98.5	98.9	97.3	95.9	98.3	98.8	97.4	97.5					
12 Obesumbacterium proteus DSM 2777T	97.6	98.0	98.0	98.3	96.3	95.4	96.9	97.0	97.5	96.2	97.8				
13 Hafnia alvei ATCC 13337T	97.5	97.9	97.9	98.2	96.3	95.3	96.9	97.0	97.6	96.2	97.7	99.8			
14 Rahnella aquatica DSM 4594T	97.3	96.5	96.3	96.0	95.6	95.8	96.1	96.0	96.3	95.3	96.3	96.1	95.9		
15 Erwinia amylovora DSM 30165T	95.3	95.6	95.5	95.5	95.0	94.4	95.5	95.7	95.4	95.5	95.7	95.1	95.3	94.2	
16 Klebsiella pneumoniaeDSM 30104T	96.2	96.4	96.3	96.2	97.7	96.1	96.6	97.0	96.2	96.9	96.4	96.5	96.4	95.6	96.5

0.01

Fig 10. Phylogenetic tree based on 16S rDNA sequences of strain B1-2 and the representative of some other related taxa.

Table 40. Levels of 16S rDNA sequence similarity for strains F5-2 with the strains of some other related taxa.

Strain					%	Sin	nilar	ity i	n				
	1	2	3	4	5	6	7	8	9	10	11	12	13
1 Strains F5-2												-	
2 Obesumbacterium proteus DSM 2777T	97.8												
3 Hafnia alvei ATCC 13337T	97.7	98.8											
4 Serratia marcescens DSM 30121T	96.7	96.7	96.3										
5 Serratia rubidaea DSM 4480T	95.8	95.7	95.4	95.3									
6 Yersinia pestis D-28	96.2	95.6	95.8	95.9	95.1								
7 Rahnella aquatica DSM 4594T	97.5	96.8	96.1	95.9	95.6	95.8							
8 Erwinia amylovora DSM 30165T	95.2	95.5	95.1	95.3	95.0	94.4	93.9						
9 Klebsiella pneumoniae DSM 30104T	96.8	96.9	96.5	96.4	97.7	96.1	95.0	95.6					
10 Citrobacter freundii DSM 30039T	96.0	96.1	96.1	96.7	96.9	95.2	94.7	95.0	96.2				
11 Pectobacterium carotovorum DSM 30168T	96.8	96.9	96.0	96.0	96.9	95.5	95.3	95.9	95.9	97.2			
12 Pectobacterium cacticidum LMG 17936T	96.1	96.0	95.2	95.2	95.5	94.7	94.3	95.3	94.8	96.4	95.3		
13 Brenneria salicis DSM 30166T	94.1	94.6	94.1	94.4	94.1	93.8	93.2	93.3	94.4	94.6	94.0	95.1	
14 Vibrio cholerae CECT 514T	91.5	91.1	91.1	91.6	91.3	91.2	91.3	90.7	90.2	91.0	91.1	91.6	91.4
84.5 100 99.6 51.0 84.5 100 99.6 100 90.6 100 100 100 100 100 100 100 10	Citroba Citroba Citroba	sumbac nia alv s H27- n F5-2 n S1 train l Rahnei – Yers marcie erratia la pne Erwin acter fi rium c scteriu. Brenn	cterium ei ATO -1 N12-5 Ila aqui sinia po escens rubida umonia agui ta amy reundii arotov m cact beria so	n prote CC 133 aatica I estis D DSM aea DSI vlovora DSM orum I icidum alicis I — V	205 DSM 4 337 ^T (N 205 M 205 M 20121 5 M 30039 DSM 3 205 M 30039 DSM 3 2 LMG DSM 3 2 1 DSM 3	M 277 459155 594 ^T (A 75274) ^T (AJ23 80 ^T (AJ 30163 ^T (AJ2; 80168 ^T 17936 0166 ^T holera	7 ^T (AJ 33431) 1233436 1233426 5 ^T (AJ2 33408) (AJ233 5 ^T (AJ2 (AJ233 6 ^T (AJ2 (AJ233 6 ^T (AJ2 (AJ233) 10 ^T (AJ2 10 ^T	233422 (26) (0) 233410) 23409) 3419) 27 514) , T (X76)	337)			

0.01

Fig 11. Phylogenetic tree based on 16S rDNA sequences of strain F5-2 and the representative of some other related taxa.

Strain						% Sir	nilarit	y in					
	1	2	3	4	5	6	7	8	9	10	11	12	13
1 Strains F10-5		-								-			
2 Obesumbacterium proteus DSM 2777T	97.8												
3 Hafnia alvei ATCC 13337T	97.7	98.8											
4 Serratia marcescens DSM 30121T	96.7	96.7	96.3										
5 Serratia rubidaea DSM 4480T	95.8	95.7	95.4	95.3									
6 Yersinia pestis D-28	96.2	95.6	95.8	95.9	95.1								
7 Rahnella aquatica DSM 4594T	97.5	96.8	96.1	95.9	95.6	95.8							
8 Erwinia amylovora DSM 30165T	95.2	95.5	95.1	95.3	95.0	94.4	93.9						
9 Klebsiella pneumoniae DSM 30104T	96.8	96.9	96.5	96.4	97.7	96.1	95.0	95.6					
10 Citrobacter freundii DSM 30039T	96.0	96.1	96.1	96.7	96.9	95.2	94.7	95.0	96.2				
11 Pectobacterium carotovorum DSM 30168T	96.8	96.9	96.0	96.0	96.9	95.5	95.3	95.9	95.9	97.2			
12 Pectobacterium cacticidum LMG 17936T	96.1	96.0	95.2	95.2	95.5	94.7	94.3	95.3	94.8	96.4	95.3		
13 Brenneria salicis DSM 30166T	94.1	94.6	94.1	94.4	94.1	93.8	93.2	93.3	94.4	94.6	94.0	95.1	
14 Vibrio cholerae CECT 514T	91.5	91.1	91.1	91.6	91.3	91.2	91.3	90.7	90.2	91.0	91.1	91.6	91.4
54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 71.5 54.5	erratii — Sa e entor ficaria nuthic i DSM acculd praculd cola D rium p vola D rium p vola D rium p vola D rium p vola D vola	a mara erratia odoriy nophili i DSM a DSM 1 3006 ns DS SSM 4 SSM 4	cescer a rubia fera D a DSl 14569 A 4544 33 ^T (A. M 455 597 ^T (576 ^T (. s DSN 7 ^T (MS -28 (X M 459 3010 058M 1 3010 058M 2 507 1 100 100 100 100 100 100 100 1	ss DSl laea I SSM 4 M 123 O ^T (AJ2 O ^T (AJ2 123343 43 ^T (A (AJ233 AJ233 4 277' 99155) 75274 4 ^T (AJ 80165 168 ^T (G 179	M 301 DSM 4 582 ^T (558 ^T (<i>i</i> , 333428 23343 00) J23342 429) 7 ^T (AJ J23342 J23342 2342 2342 2342 2342 2342 2342 2342 2342 2342 2	21 ^T ((AJ233 (AJ233 (AJ233) (AJ233) (AJ233 (AJ233) (AJ233) (AJ233) (AJ23) (AJ223) (AJ223) (AJ223) (AJ223) (AJ223) (AJ23) (A	AJ233- (AJ23 (AJ23) (AJ	431) 3436)					

Table 41. Levels of 16S rDNA sequence similarity for strain F10-5 with strains of some other related taxa.

Fig 12. Phylogenetic tree based on 16S rDNA sequences of strain F10–5 and the representative of some other related taxa.

0.01

Vibrio cholerae CECT 514^T (X76337)

Strain					%	5 Sin	nilari	ity ir	1				
	1	2	3	4	5	6	7	8	9	10	11	12	13
1 Strains N12-5													
2 Obesumbacterium proteus DSM 2777T	97.8												
3 Hafnia alvei ATCC 13337T	97.7	98.8											
4 Serratia marcescens DSM 30121T	96.7	96.7	96.3										
5 Serratia rubidaea DSM 4480T	95.8	95.7	95.4	95.3									
6 Yersinia pestis D-28	96.2	95.6	95.8	95.9	95.1								
7 Rahnella aquatica DSM 4594T	97.5	96.8	96.1	95.9	95.6	95.8							
8 Erwinia amylovora DSM 30165T	95.2	95.5	95.1	95.3	95.0	94.4	93.9						
9 Klebsiella pneumoniae DSM 30104T	96.8	96.9	96.5	96.4	97.7	96.1	95.0	95.6					
10 Citrobacter freundii DSM 30039T	96.0	96.1	96.1	96.7	96.9	95.2	94.7	95.0	96.2				
11 Pectobacterium carotovorum DSM 30168T	96.8	96.9	96.0	96.0	96.9	95.5	95.3	95.9	95.9	97.2			
12 Pectobacterium cacticidum LMG 17936T	96.1	96.0	95.2	95.2	95.5	94.7	94.3	95.3	94.8	96.4	95.3		
13 Brenneria salicis DSM 30166T	94.1	94.6	94.1	94.4	94.1	93.8	93.2	93.3	94.4	94.6	94.0	95.1	
14 Vibrio cholerae CECT 514T	91.5	91.1	91.1	91.6	91.3	91.2	91.3	90.7	90.2	91.0	91.1	91.69	91.4

Table 42. Levels of 16S rDNA sequence similarity for strain N12-5 with strains of some othe related taxa.

Fig 13. Phylogenetic tree based on 16S rDNA sequences of strain N12–5 and the representative of some other related taxa.

<u> </u>							% S	Similar	ity in	.:						
Strain	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1 Strain S7-1																
2 Pseudoalteromonas paragorgicola KMM 3548T	99.5															
3 Pseudoalteromonas elyakovii ATCC 700519T	99.6	99.9														
4 Pseudoalteromonas distincta ATCC 700518T	99.5	99.7	99.9													
5 Pseudoalteromonas agarivorans KMM 255T	99.4	99.7	99.7	99.6												
6 Pseudoalteromonas antarctica CECT 4664T	98.9	98.7	98.9	98.7	98.6											
7 Pseudoalteromonas translucida KMM 520T	99.1	99.0	99.1	98.8	98.8	99.2										
8 Pseudoalteromonas haloplanktisATCC 14393T	99.2	99.5	99.6	99.4	99.3	99.0	99.0									
9 Pseudoalteromonas nigrifaciens NCIMB 8614T	99.5	99.7	99.9	99.7	99.6	99.1	99.2	99.9								
10 Pseudoalteromonas undina NCIMB 2128T	99.1	99.4	99.5	99.3	99.4	99.0	99.1	99.6 9	99.7							
11 Pseudoalteromonas atlantica IAM 12927T	99.4	99.6	99.7	99.6	99.9	98.6	98.7	99.3 9	99.6	99.5						
12 Pseudoalteromonas carrageenovora ATCC 12662T	99.2	99.4	99.6	99.4	99.4	98.4	98.5	99.1 9	99.4	99.5	99.7					
13 Pseudoalteromonas issachenkonii LMG 19697T	99.1	99.5	99.5	99.4	99.4	98.3	98.7	98.8 9	99.3	99.5	99.5	99.5				
14 Pseudoalteromonas tetraodonis IAM 14160T	98.7	99.1	99.2	98.9	99.0	98.0	98.1	98.7 9	98.9	99.1	99.2	99.1	99.9			
15 Pseudoalteromonas mariniglutinosa KMM 3635T	97.7	97.5	97.5	97.3	97.5	96.8	96.9	97.1 9	97.3	97.4	97.6	97.3	98.0	98.0		
16 Pseudoalteromonas rubra ATCC 729570T	96.0	90.3	96.4	96.1	96.3	95.4	95.4	96.2 9	96.4	96.5	96.7	96.8	96.9	97.0	95.8	

Table 43. Levels of 16S rDNA sequence similarity for strain S7-1 with the strains of some other related taxa.

0.01

Fig 14. Phylogenetic tree based on 16S rRNA sequences of strain S7-1 and the representative of some other related taxa.

Strain					%	Sim	nilar	rity	in			
	1	2	3	4	5	6	7	8	9	10	11	12 13
1 Strains S14-2								-				
2 Obesumbacterium proteus DSM 2777T	97.8											
3 Hafnia alvei ATCC 13337T	97.7	98.8										
4 Serratia marcescens DSM 30121T	96.7	96.7	96.3									
5 Serratia rubidaea DSM 4480T	95.8	95.7	95.4	95.3								
6 Yersinia pestis D-28	96.2	95.6	95.8	95.9	95.1							
7 Rahnella aquatica DSM 4594T	97.5	96.8	96.1	95.9	95.6	95.8						
8 Erwinia amylovora DSM 30165T	95.2	95.5	95.1	95.3	95.0	94.4	93.9					
9 Klebsiella pneumoniae DSM 30104T	96.8	96.9	96.5	96.4	97.7	96.1	95.0	95.6				
10 Citrobacter freundii DSM 30039T	96.0	96.1	96.1	96.7	96.9	95.2	94.7	95.0	96.2			
11 Pectobacterium carotovorum DSM 30168T	96.8	96.9	96.0	96.0	96.9	95.5	95.3	95.9	95.9	97.2		
12 Pectobacterium cacticidum LMG 17936T	96.1	96.0	95.2	95.2	95.5	94.7	94.3	95.3	94.8	96.4	95.3	
13 Brenneria salicis DSM 30166T	94.1	94.6	94.1	94.4	94.1	93.8	93.2	93.3	94.4	94.6	94.0	95.1
14 Vibrio cholerae CECT 514T	91.5	91.1	91.1	91.6	91.3	91.2	91.3	90.7	90.2	91.0	91.1	91.6 91.4

Table 44. Levels of 16S rDNA sequence similarity for strain S14-2 with the strains of some other related taxa.

0.01

Fig 15. Phylogenetic tree based on 16S rRNA sequences of strain S14-2 and the representative of some other related taxa.

3. 선발된 미생물의 성장특성 조사

가. 우유시료

우유에서 분리선발한 미생물의 성장특성을 조사하였는바, 선발된 MA1-1, MA1-3, MA2-1, MA3-1, M**B2**6-4와 MC14-3 모두 최적 성장온도는 20℃이고 (Fig 16) 성장최적 pH는 6.0-7.0이었다(Fig 17).

나. 히말라야 시료

히말라야 지역에서 분리, 선발한 균주 H1-2, H4-4, H20-4, H22-5, H27-1의 성장최적 온도는 모두 20℃이었으며 (Fig 18), 최적 pH는 6.7-7.0이나 H27-1은 모든 pH에서 성장하였다(Fig 19).

다. 알래스카 시료

알래스카 Barrow지역에서 분리선발한 균주의 성장최적온도는 B1-2와 B14-5는 30℃, B10-5는 20℃이었고(Fig 20), 성장최적 pH는 모두 7-8이었다(Fig 21).

Fairbanks에서 분리, 선발한 균 F5-2, F7-5, F9-1, F9-5, F10-5의 최적 성장온 도는 5균주 모두 30℃이었으며(Fig 22), 최적 pH는 7-8이었다(Fig 23). Nome 지 역에서 분리,선발한 균주 N6-3, N10-2, N12-4, N12-5, N15-3 최적성장온도는 모두 30℃이며(Fig 24) 최적 pH는 7.5-8.5이었다(Fig 25).

라. 남극시료

남극에서 분리선발한 S7-1과 S14-2균주의 성장 최적온도는 20℃이며(Fig 26) 최적 pH는 7.0이었다(Fig 27).

Fig 16. Effect of temperature on the growth of isolated bacteria from milk

Fig 17. Effect of pH on the growth of isolated bacteria from milk

Fig 18. Effect of temperature on the growth of isolated bacteria from Mt. Hymalaya

Fig 19. Effect of pH on the growth of isolated bacteria from Mt. Hymalaya

Fig 20. Effect of temperature on the growth of isolated bacteria from Barrow

Fig 21. Effect of pH on the growth of isolated bacteria from Barrow

Fig 22. Effect of temperature on the growth of isolated bacteria from Fairbanks

Fig 23. Effect of pH on the growth of isolated bacteria from Fairbanks

Fig 24. Effect of temperature on the growth of isolated bacteria from Nome

Fig 25. Effect of pH on the growth of isolated bacteria from Nome

Fig 26. Effect of temperature on the growth of isolated bacteria from Antartic polar

Fig 27. Effect of pH on the growth of isolated bacteria from Antartic polar

4) 선발된 균주의 β-galactosidase 특성

(1)우유시료 미생물

원유에서 분리, 선발한 미생물이 생산한 β-galactosidase의 pH 및 온도별 활 성, 4℃, 15℃. 37℃에서의 안정성은 Fig 28, 29, 30, 31과 같다. 이들은 모두 적정 pH가 7.0-7.5로서 중성에서 활성이 높았다. 적정온도는 10-20℃로서 낮았고 MB26-4의 적정온도가 10℃로서 제일 낮았다. M26-4를 제외 하고는 모두 4℃에 서 적정온도의 80%를 유지하였다. 4℃, 15℃, 37℃에서의 안정성은 MA1-1을 제 외하고는 좋지 않았으나 MA1-1은 4℃에서 뿐만 아니라 37℃에서도 5일 동안 활성을 유지하였다.

(2) 히말라야 시료 미생물

히말라야 토양시료에서 분리, 선발한 미생물 ௺-galactosidase의 pH 및 온도 별 활성, 4℃, 15℃. 37℃에서의 안정성은 Fig 32, 33, 34, 35와 같다. H4-4와 H22-5는 pH 7.5-7.7에서 최고활성을 나타내었고 그 이하의 pH에서는 활성이 매 우 적었다. H1-2와 H27-1.은 pH6.0가 적정 pH이나 pH6.0 이상의 중성 및 알카 리 pH에서 높은 활성을 가지고 있었다. H20-4는 모든 pH에서 활성이 유사하였 다. H4-4와 H20-4는 15℃가, H22-5는 20℃가 적정 온도이었으며, H20-1은 20℃ 이하와 40℃에서 높은 활성을 가지는 특이한 현상을 보였다. H1-2는 40℃ 이하 의 모든 온도에서 유사한 활성을 가지고 있었다. 4℃와 15℃에서는 모두 5일간 활성이 유지되었고, H1-2는 37℃에서도 5일간 활성에 변화가 없이 유지되어 안 정성이 매우 좋았다.

(3) 알래스카 시료 미생물

알래스카 Barrow 지역에서 분리한 균주의 효소 적정온도는 B1-2와 B10-5는 15℃이었고, B14-5는 4℃에서 20℃까지 같은 최적 활성을 가지고 있으며(Fig 36), 적정 pH는 B1-2와 B10-5는 pH7, B14-5는 8.5 이었다(Fig 37). 4℃,15℃에서 약 30일간 효소활성을 유지하였으며, 37℃에서의 효소안정성은 Fig 38과 같다.

알라스카 Faribanks에서 분리, 선발한 미생물의 효소의 pH와 온도별 활성은 Fig 39와 같이 적정온도는 15℃이고, 적정 pH는 7.5-8,5이었다(Fig 40) . 4℃와 15℃에서 약 30일간 초기효소활성을 유지하였으며 37℃에서의 효소 안정성은 Fig 41과 같이 나타났다. 알라스카 Nome에서 분리선발한 미생물의 효소의 적정 pH와 온도별 활성은 Fig 42과 같으며, 적정온도는 15℃이고 적정 pH는 7.5-8,0 이었났다(Fig 43). 4℃와 15℃에서 효소안정성은 약 30일간 초기효소활성을 유지 하며 37℃에서의 효소 안정성은 Fig 44과 같다.

(4) 남극시료 미생물

남극에서 분리선발한 미생물의 효소의 최적 pH와 온도별 활성은 과 같이 최 적온도는 15-20℃이고(Fig 45) 최적 pH는 7.5-8,0로 나타났다(Fig 46). 4℃와 1 5℃에서 효소안정성은 약 30일간 초기효소활성을 유지하며 37℃에서의 효소 안 정성은 Fig 47와 같다.

Fig 28. p-galactosidase activity at different pH of bacteria from milk

Fig 29. ^[]-galactosidase activity at different temperatures of bacteria from milk

Fig 32. Stability of β -galactosidase activity at 4°C and 15°C 9**f (bacteria from milk)

Fig 31. Stability of p-galactosidase activity at 37°C of bacteria from milk

Fig 32. ^[]-galactosidase activity at different pH of bacteria from Hymalaya

Fig 33. ^[]-galactosidase activity at different temperatures of bacteria from Hymalaya

Fig 34. Stability of ${\it p}\mbox{-galactosidase}$ activity at $4\,{\it C}$ and $15\,{\it C}$ of bacteria from Hymalaya

Fig 35. Stability of β -galactosidase activity at 37 °C of bacteria from Hymalaya

Fig 36. ^B-galactosidase activity at different temperatures of bacteria from Barrow

Fig 37. p-galactosidase activity at different pH of bacteria from Barrow

Fig 38.. Stability of galactosidase at 37°C of bacteria from Barrow

Fig 39. β -galactosidase activity at different temperatures of bacteria from Fairbank

Fig 40. ^[]-galactosidase activity at different pH of bacteria from Fairbanks

Fig 41. Stability p-galactosidase activity at 37°C of bacteria from Fairbanks

Fig 42. β -galactosidase activity at different temperatures of bacteria from Nome

Fig 43. ^[]-galactosidase activity at different pH of bacteria from Nome

Fig 44. Stability of p-galactosidase at 37°C (Bacteria from Nome)

Fig 45. β -galactosidase activity at different temperature of bacteria from Antartic

Fig 46. p-galactosidase activity at different pH of bacteria from Antartic

Fig 47. Stability of p-galactosidase activity at 37°C of bacteria from Antartic

제 3 절 요약

경기도 포천군 북부지역 목장 원유시료에서 163 균주를 분리하였고 네팔의 히말라야 39개 지역의 토양에서 148 균주를 획득하였다. 알래스카 Barrow 11개 지역에서 45균주, Fairbanks 13개 지역에서 53균주, Nome 15개 지역에서 60균주 를 획득하였으며, 캐나다 Ontario 지역에서 모두 유당분해력이 없는 것으로 나타 나 선발하지 않았다. 남극해수와 토양시료 22개에서 25균주를 선발하였다, 모두 호냉성 유당분해능이 있는 균주 496종을 분리하였다 이 중 X-gal 분해력, ONPG분해와 우유 유당 분해능력이 매우 우수하다고 판단되는 균주를 우유시료 에서는 MB26-4, MC14-3, 네팔 히말라야의 HB20-4와 HB27-1를 알라스카 북 극지역에서는 B1-2, F5-1, F10-5, N12-5, 남극시료에서는 S7-1, S14-2를 최종 10종을 선발하였다. 선발된 10종의 균주를 형태학적, 이화학적특성, 지방산의 조 성 및 16S rDNA sequencing의 결과에 의해 MB26-4는 Hafnia alvei, MC14-3는 Hafnia alvei, HB20-4는 Arthrobacter psychrophilus, HB27-1는 Hafnia alvei, B1-2 Serratia grimesii., F5-1 Hafnia alvei., F10-5 Hafnia alvei, N12-5 Rhanella aquaticus, S7-1은 Pseudoalteromonas sp., S14-2는 Hafnia alvei, 로 각각 동정되었다. 분리한 10종의 적정 pH, 적정온도, 온도 안정성등을 조사하 였다.

제 7 장 호냉성 유당분해효소 유전자 분리 및 유전 자 구조

제 1 절 서론

호냉성 유당분해 효소의 유전자를 분리하여 구조를 규명하는 것은 효소의 특성을 예측하고 개선할 수 있는 근거로 사용할 수 있다. 호냉성 효소는 일반적 으로 저온에서 활성이 높으나 미생물의 번식이 활발하지 않아 효소 생산효율이 좋지 않다. 유전자를 분리하여 생산효율이 높은 미생물에 전이하면 생산 효율을 증대 할 수 있다. 그러므로 호냉성 유당분해효소 생산미생물로 확보, 분리한 미 생물로부터 유전자를 분리하여 대장균에 전이하였고, nucleotide배열순서를 규명 하였으며, 대장균에서 발현 된 효소의 최적온도와 최적 pH를 조사하였다.

제 2 절 재료 및 방법

1. 유전자의 분리

가. Chromosomal DNA의 부분분해에 의한 유전자 분리

1) Chromosomal DNA 분리

각 지역에서 분리한 최종 10 균주을 그람음성균과 그람양성균으로 분리하 여 chromosomal DNA를 Qiagen Kit(Qiagen Co.)를 이용하여 분리하였다. Gram 음성 세균과 Gram 양성 세균의 분리방법은 Fig 1과 Fig 2와 같다.

1. Cell culture(A600: 0.5-1.0) 5ml - 10ml 2. Cell harvest (10,000rpm, 2min) 3. $180\mu\ell$ ATL buffer add to pellet 4. 20µl Proteinase K Vortexing 55℃에서 배양 완천히 Lysed될 때 까지 (vortex를 해주거나, shaking water bath에서 1-3시간 정도 아니면 overnight 시켜서 완전히 투명해 질 때 까지함) 5. 15sec Vortexing Add 200 µl buffer AL 철저하게 Mixing 70℃에서 10분간 배양 (시료와 buffer AL은 즉시 섞고, 철저히 vortexing아니면 pipetting으로 섞는다) If : 흰친전물이 생기면 Buffer AL을 더 넣는다.70에서 모두 녹아 버린다. 6. Add 200µℓ Et-OH (100%) 철저히 vortexing (시료처리중 중요한 부분이며, Et-OH를 철저하게 시켜야만 한다, 첨가후 침전물이 생길수 있으나 column에 모두 침전된다) 7. Mixture를 모두 DNeasy Mini spin column에 넣는다.(2ml tube) Centrifuge 8000rpm, 1min 모인 tube를 버리고 column을 다시 8. 새로운 2ml collection tube에 DNeasy MINI Spin column을 넣고 <u>500µl Buffer AW1</u>을 첨가한다. 8000rpm, 1min 모운 여액을 버리고 coulmn만이용 9. 다시 새로운 2ml collection tube에 DNeasy MINI Spin column <u>500µl Buffer AW2</u>를 넣고 14,000rpm에서 3min(Column을 건조하기 위해서) 10. DNeasy MINI Spin column을 1.5-2.0mlcnetrifuge tube 에 넣고 100µl Buffer AE(Onto DNeasy MINI Spin membrane, warm) Room temp, 5min 8,000rpm, 1min Elution 100p-200p 모운다 11. 다시 DNeasy MINI Spin membrane에 200 # Buffer AE 넣고 Room temp, 5min 8,000rpm, 1min Elution 12. Electrophoresis한다(1% Agarose gel, 75V) Fig 1. Isolation of chromosomal DNA of bacteria(Gram-)

1. Cell culture(A600: 0.5-1.0) 5ml - 10ml 2. Cell harvest (10,000rpm, 2min) 3. 180 ul의 lysozyme(20mg/ml) 4. 37℃에서 30분간 배양 5. 25ul proteinase K 와 200ul Buffer AL넣고 mixing 6. Add <u>200µℓ Et-OH</u> (100%) 철저히 vortexing (시료처리중 중요한 부분이며, Et-OH를 철저하게 시켜야만 한다, 첨가후 침전물이 생길수 있으나 column에 모두 침전된다) 7. Mixture를 모두 DNeasy Mini spin column에 넣는다.(2ml tube) Centrifuge 8000rpm, 1min 모인 tube를 버리고 column을 다시 8. 새로운 2ml collection tube에 DNeasy MINI Spin column을 넣고 <u>500µl Buffer AW1</u>을 첨가한다. 8000rpm, 1min 모운 여액을 버리고 coulmn만이용 9. 다시 새로운 2ml collection tube에 DNeasy MINI Spin column <u>500µl Buffer AW2</u>를 넣고 14,000rpm에서 3min(Column을 건조하기 위해서) 10. DNeasy MINI Spin column을 1.5-2.0 mlcnetrifuge tube 에 넣고 100µl Buffer AE(Onto DNeasy MINI Spin membrane, warm) Room temp, 5min 8,000rpm, 1min Elution 100p-200p 모운다 11. 다시 DNeasy MINI Spin membrane에 200 # Buffer AE 넣고 Room temp, 5min 8,000rpm, 1min Elution 12. Electrophoresis한다(1% Agarose gel, 75V)

Fig 2. Isolation of chromosomal DNAof bacteria(Gram+)

2) Chromosomal DNA의 부분 분해

Chromosomal DNA(25ug/200ul)에 Sau3A1 2unit를 첨가한 후 30℃에서 반 응하여 부분 분해하였다. 분해는 chromosomal DNA가 분해 되어 agarose 전기 영동상에서 나타나지 않고 DNA가 크기별로 골고루 분포될 때 까지 진행하였다.

3) 4-10kb DNA 절편분리정제

부분분해한 chromosomal DNA 분해물을 agarose에서 전기영동 후 QIAquick gel extraction kit를 (Quigen Co.)을 이용하여 분리하였다.

4) Cloning

4-10kb DNA 절편을 pRSET(Invitrogen)에 ligation 후 *E. coli* Top10F'에 삽 입하였다. *E.coli*의 형질전환은 electroporation으로 실시하였다. 형질전환 *E. coli* 를 ampicillin과 X-gal을 함유하는 LB agar에 배양하여 X-gal분해 후 나타나는 청색으로 유전자의 발현을 확인하여 저온성 유당분해효소 유전자를 가지는 colony를 분리하였다. 분리한 colony로부터 plasmid를 분리, 제조한 후 subcloning, DNA sequencing을 거쳐 유전자를 분리하였다.

2. DNA sequencing

BIG Dye Automatic sequencer(ABI 377)과 PE9600 Thermocycler(Perkin Elmer)를 이용하여 유전자의 nucleotide의 sequence를 결정하였다.

3. 효소특성

분리된 *E.coli*의 crude cell extract를 polyacrylamide 7.5%의 SDS-PAGE와 Native-PAGE를 실시하여 (Laemmli, 1970) Coomassie brilliant blue 염색으로 band를 확인하였다. Crude enzyme의 최적온도와 최적 pH를 조사하였다. 적정 pH는 4.6~9.6에서 조사하였고 pH4.66~6.64는 citrate-NaOH(0.01M) buffer, pH6.1~7.68은 Na-phosphate(0.01M)buffer를 사용하였으며, 각 pH의 buffer에서의 초기반응속도를 측정하였다. 적정온도는 4℃~60℃에서 조사하였으며 효소의 활성 은 Na-phosphate pH6.8(0.01M)에서 측정하였다. 활성에 대한 기질의 농도는 ONPG를 Na-phosphate(pH 6.8, 0.01M)를 기질로 사용하였다.

제 3 절 결과 및 고찰

1. 호냉성 유당분해 효소의 유전자 및 cloning

가. 유전자 분리

1) Chromosomal DNA 분리

최종 분리한 10균주를 대상으로 Quiagen Kit를 이용하여 chromosomal DNA분리하였으며 분리된 chromosomal DNA는 Fig 3과 같다.

2) SAU3AI으로 partial digestion

분리한 chromosomal DNA을 Sau3A1으로 부분분해한 결과는 Fig 4와 같다

3) 4-6kb DNA 절편분리

부분분해한 chromosomal DNA 분해물을 agarose에서 전기영동 후 gene clean법(Quigen co.)을 이용하여 분리한 결과는 Fig 5와 같다.

4) 유전자 발현

분리한 유전자를 pRSET 에 각각 삽입한 후 *E. coli* Top 10F'에 전이하고 X-gal이 포함된 배지에서 X-gal을 분해한 청색colony 형성으로 발현을 판단하였다. 발현된 균주는 Fig 6와 같다.

나. 유전자 구조

MC14-3(A1), MC14-3(A3), N12-5, MB26-4에서 p-galactosidase유전자를 분 리하였으며, 분리한 유전자들을 각각 MC14-3(A1)p-gal, MC14-3(A3)p-gal, N12-5p-gal 라고 명명하였다. 이들의 염기서열은 Fig 7, 8에 제시되어 있는 바와 같다. MB26-4에서 유전자 부분 단편이 분리 되었으나 이는 MC14-3(A1)p-gal 과 동일하였다.

MC14-3(A1) -gal은 888 염기로 유전자의 N 말단 부위의 부분 유전자가 분 리되었으며 cloning에 사용된 pRSET C 의 종결 코돈을 포함하는 109bp의 단편 이 C 말단 부위를 구성하고 있다. 그러므로 이 유전자로부터 발현, 생산되는 -galactosidase는 295개의 아미노산으로 구성되어 있고 33,709 da의 분자량과 pH 5.27의 pI값을 가지고 있는 것으로 추정된다. MC14-3(A3) -gal, deoxyribonucleotide 918쌍으로 구성되어 있으며, 생산되는 -galactosidase는 305개의 아미노산으로 구성되어 있고, 34,806 da의 분자량과 pH 5.46의 pI값을 가지고 있는 것으로 추정된다.

다. 효소 특성

MC14-3(A1)[®]-gal, MC14-3(A3)[®]-gal 이 발현된 대장균의 cell free extracts 의 SDS-PAGE 결과가 Fig 9, 10 에 제시되어 있으며, 모두 30-35 kD에서 새로 운 band가 확인 되었다.

최적 온도와 최적 pH를 조사하였는데 MC14-3(A1)β-gal β-galactosidase의 경우 최적온도는 37℃ 최적 pH는 6.8(Fig 11)이며, MC14-3(A3)β-gal β -galactosidase의 최적온도는 37℃, 최적 pH는 7.2(Fig 12) 이다. 이들 유전자를 분리한 미생물이 생산한 β-galactosidase의 적정 pH는 대장균에서 발현된 β -galactosidase와 유사하나 적정 온도는 상이하였다.

Fig 3. Chromosomal DNA at agarose electrophoresis

Fig 4. Partial digestion of chromosomal DNA by Sau3A1

Fig 5. DNA fraction of 4kb-6kb isolated after partial digestion

(MB26-4)

(MC14-3)

(H20-4)

(H27)

(B1-2)

(F5-1)

(F10-5)

(N12-5)

(S7-1)

(S14-2)

Fig 6. Photographs of transformants
(DNA sequence)

ATGATATTGATCGTTAATAGGACCTCAATAATGACATCTGTTCAAATT GATAATTCTTTTAGCTCGTTGTCCGCTGTGCTTTTCCGTCGTGATTGGG AAAATCCTGCTTGTACTCAATATCGTCGTTTAGCGGCACATCCGCCTTT TTGCAGTTGGCGCAGCGAGCAAGAGGCTCGCGATGGCCAGGCTTCAGACC AGAGCGAGTGCCTGAAGCATGGTTGCAGCATGACCTAGATAATGCTGAT GAACTACAGGTGCCTTCTAATTGGCAAATGGCAGGCTATGACGCGCCGA TTTATACCAACGTGACTTATCCCTTTCCCGTAAACCCTCCTTTTGTACC TAAAGAAAATCCGACTGGATGTTATTCACTTAGCTTTAGCGTGGACGAT GAGTGGCTAGAGCAGGGAGGGCAAACCCGTATTATTTTGATGGCGTGA ACTCTGCTTTTTATCTTTGGTGTAACGGCGAATGGATTGGCTATTCGCA GGACAGCCGATTACCAGCCGAATTTGACCTCAGCCACGCTCTTCGCAAAG GCAAAAATCGAATCGCCGTGATGGTGCTACGTTGGAGCGATGGCAGTTA CTTGGAAGATCAGGATATGTGGCGCATGAGCGGTATATTCCGCGATGTG ACTTTGCTGCATAAGCCACGTGTTCATCTCCATGATATCCAACTGCGTA CCCATTTGGCTGCGGGATTTCATTGCGCTGAATTAGAAGCTCA**GATCCG** AGCTCGAGATCTGCAGCTGGTACCATGGAATTCGAAGCTTGATCCG GCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGC TGAGCAATAA

(Amino acids sequence)

MILIVNRTSIMTSVQIDNSFSSLSAVLFRRDWENPACTQYRRLAAHPPFCSWR SEQEARDGQASDQLISLNGAWAFSYFSQPERVPEAWLQHDLDNADELQVPS NWQMAGYDAPIYTNVTYPFPVNPPFVPKENPTGCYSLSFSVDDEWLEQGGQ TRIIFDGVNSAFYLWCNGEWIGYSQDSRLPAEFDLSHALRKGKNRIAVMVLR WSDGSYLEDQDMWRMSGIFRDVTLLHKPRVHLHDIQLRTHLAAGFHCAELE AQ**IRARDLQLVPWNSKLDPAANKARKEAELAAATAEQ**.

Fig 7. DNA and amino acids sequences of partial p-galactosidase gene of Lac-MC14-3(A1)[MC14-3(A1)p-gal] and its p-galactosidase

* The fragments of bold letters came from pRSET C, cloning vector.

(DNA sequence)

ATGAGCAAGCCTTCTTCAGCGCAGGTGAAAGCTTTTTTGCTGAACCTGC AGGACTCCCTGTGCCAACAGATTGCCGCAGCCGATGGTCAATCCACATTT CGTGAAGACAATTGGCAGCGTGAGGCTGGCGGCGGTGGTCGCAGTCGCGT GCTCACTCAGGGCGCCGTTTTTGAACAGGCCGGCGTTAATTTCTCGCACG TTACCGGTGGACAACTCCCCGCTTCCGCCACGGCTCATCGCCCTGAACTC AAAATCCTTACGTACCCACCAGCCACGCCAACGTGCGTTTCTTTATCGCT GAAAAAGAAGGCGAGGAACCGGTTTGGTGGTTTGGCGGTGGCTTTGACC TCACGCCGTTTTATCCGTTTAAAGACGATGTGCTGCATTGGCACCGCACC GCGCGCAATCTGTGCCTGCCTTTTGGTGAAGATGTTTACCCGCGCTATA AAAAATGGTGTGACGAATATTTCTACATCAAGCACCGTCAGGAGTCTCG CGGCGTAGGGGGGCTGTTCTTTGACGATTTAAATACGCCTGACTTTGAT CACTGCTTCGCTTTCATGCAAGCAGTGGGCGCTGGTTTTAGCGACGCCTA TTTACCTATCGTCGCCAAACGCAAAGATATGCCATTCAGCGATCGTGAA CGTCAATTTCAGTTATATCGCCGTGGGCGCTACGTTGAATTTAATCTGG TCTGGGATCGCGGAACACTGTTTGGTTTGCAAACCGGTGGTCGAACTGA GTCGATTCTCATGTCGATGCCGCCGTTGGTTCGCTGGGAGTATGACTTCC ACCCCGAACCGGACTCACCGGAAGCCGCACTGGAGCGTGATTTTTACCC GTGCAAGACTGGCTGGGAGAAGAATAA

(Amino acids sequence)

MSKPSSAQVKAFLLNLQDSLCQQIAAADGQSTFREDNWQREAGGGGRSRVL TQGAVFEQAGVNFSHVTGGQLPASATAHRPELAGRSFEAMGVSLVIHPQNP YVPTSHANVRFFIAEKEGEEPVWWFGGGFDLTPFYPFKDDVLHWHRTARNL CLPFGEDVYPRYKKWCDEYFYIKHRQESRGVGGLFFDDLNTPDFDHCFAFM QAVGAGFSDAYLPIVAKRKDMPFSDRERQFQLYRRGRYVEFNLVWDRGTLF GLQTGGRTESILMSMPPLVRWEYDFHPEPDSPEAALERDFLPVQDWLGEE.

Fig 8. DNA and amino acids sequences of β -galactosidase gene of Lac-MC14-3(A3)[MC14-3(A3)\beta-gal] and its β -galactosidase

Fig 9. SDS-PAGE elctrophoresis of partial MC14-3(A1)β-gal β-galactosidase. Lane 1, MW marker; lane 2, E.coli; lane 3: partial Lac MC14-3(A1) β -galactosidase

Fig 10. SDS-PAGE elctrophoresis of MC14-3(A3)p-gal p-galactosidase. Lane 1, MW marker; lane 2, E.coli; lane 3: partial Lac MC14-3(A3) p-galactosidase

Fig 11. Optimum temperature and pH of partial MC14-3(A1) β -gal β -galactosidase

Fig 12. Optimum temperature and pH of MC14-3(A3) β -gal β -galactosidase

제 4 절 요 약

호냉성 유당분해효소의 gene bank를 확립하여 유당분해효소의 유전자를 분리 및 cloning 하였다. 선발된 10종의 β-galactosidase를 생산하는 호냉성 미생 물에서 chromosomal DNA, 제한효소의 부분분해 방법으로 pRSET^{a,b,c}, 을 사용하여 2개의 β-galactosidase유전자를 분리하였다. 분리한 MC14-3(A1)β-gal, MC14-3(A3)β-gal의 유전자의 염기서열을 규명하였다. MC14-3(A1)β-gal는 유전자의 N 말단쪽 단편이었으나 cloning vector이 C 말단 부위가 결합하여 발현될 수 있었다. MC14-3(A1)β-gal β-galactosidase의 경우 최적온도는 37℃ 최적 pH는 6.8(Fig 11)이며, MC14-3(A3)β-gal β-galactosidase 의 최적온도는 37℃, 최적 pH는 7.2이다.

제 8 장 호냉성 유당분해효소의 생산체계 확립

제 1 절 서 론

효소 생산체계 확립에서 있어서 효소생산원의 안정한 유지는 대단히 중요하 다. *E. coli* 의 plasmid는 세대가 반복되면서 소실될 수 있기 때문에 plasmid에 삽입되어 있는 유전자를 *E, coli*에서 발현하는 체계는 안정하지 못하다. 유전자를 효모의 chromosomal DNA에 삽입하여 효모에 전이 하므로서 이러한 문제를 해 결할 수 있다. *Pichia pastoris*의 alcohol oxidase 발현 promoter를 이용하여 외부 유전자를 cloning하고, 발현하는 체계가 개발된 바 있으며(Cregg 등, 1993), 이러 한 체계는 발현 효율이 높을 뿐만 아니라 secreation signal이 존재하는 plasmid 를 사용하면 발현된 단백질이 세포외로 분비되어 실용화하는데 유리하기 때문에 널리 이용되고 있다.

이 연구에서 분리한 유전자는 plasmid에 결합한 상태로 *E. coli* 세포안에 존 재 하기 때문에 번식 과정에서 소실될 우려가 있기 때문에 이를 안정화 할 필요 가 있다. 그러므로 유전자를 안정화 하고 이용성을 개선하기 위해 *Pichia pastoris* 에 전이하여 발현을 시도하였으며, 그 결과에 따라 효소 생산 체계를 확 립하고자 하였다.

제 2 절 재료 및 방법

1. Pichia pastoris에 저온성 i-galactosidase 유전자의 전이 및 발현

가. pPICZa C 에 MC14-3(A1) -gal의 전이

pRSET C(Invitrogen)에 cloning 된 MA14-3(A1)[®]-gal *Pichia pastoris*의 chromosomal DNA에 전이하는 plasmid인 pPICZa C 에 삽입하는데 필요한 restriction enzyme site가 존재하지 않기 때문에 유전자를 PCR 에 의해 복제 후 yT&A vector에 삽입, pRSET C의 HindIII site에 삽입한 후 EcoR I 으로 분해 하여 유전자 분리, 분리한 유전자를 pPICZa C의 EcoR I site 에 삽입 등의 단계 를 거쳐 유전자를 pPICZa C에 삽입하였다.

pRSET C에 삽입되어 있는 유전자를 PCR하는데 사용한 forward primer는 5'atgatattgatcgttaat3' 이었고, reverse primer는 5'ttattgctcagcggtggca3'이었다.

PCR은 MA14-3(A1)^β-gal 이 삽입되어 있는 pRSET C 를 94℃에서 5분간 denaturation 한 후 annealing 및 elongation(94℃ 30초, 55℃ 30초, 72℃ 1분) cycle을 25회 실시한 후 72℃에서 7분 처리하였다. 복제된 유전자를 분리하여 yT&A vector(Donginbiotech)의 두개의 site 사이에 존재하는 flanking site에 삽입한 후 HindⅢ로 분해하여 분리하고, 이 단편을 pRSET C의 HindⅢ site에 삽입 하였다. pRSET C에 삽입된 유전자를 EcoR I 으로 분해, 분리한 후 pPICZn C의 EcoR I site 에 삽입 하였다.

MC14-3(A1)⁽⁾-gal 및 MC14-3(A1)을 포함하는 DNA 단편은 agarose electrophoresis(1%)후 gel을 절단, 정제(Quiazen)하여 분리하였다.

Transformation 및 cloning 은 yT&A vector는 *E. coli* XL I blue를, 그 외에는 *E. coli* TOP10F'를 사용하였다. 배지는 *E. coli* XL I blue는 LB(Amp+) broth 혹 은 LB(Amp+) agar를 사용하였고, *E. coli* TOP10F'의 경우는 LB(Amp+, Tet+) broth 혹은 LB(Amp+, Tet+) agar를 사용하여 37℃에서 정치(agar), 혹은 진탕 (broth, 200rpm)배양 하였다.

나. Pichia pastoris의 chromosomal DNA에 MC14-3(A1)p-gal 의 전이

MC14-3(A1)β-gal 이 삽입된 pPICZa C를 BstXI으로 분해 한 후 *Pichia pastoris* X-33에 전이하였다. 전이는 *Pichia* EasyComp Transformation Kit(Invitrogen)를 사용하여 화학적 방법으로 실시하였다. 전이 후 YPDS(Zeocin+, Invitrogen)agar 배지에 도포 한 후 30℃에서 배양하였다.

다. Pichia pastoris에 전이된 MA14-3(A1) -gal 의 발현

MC14-3(A1)^β-gal 이 전이된 것이 확인된 *Pichia pastoris* X-33을 baffled flask의 BMGY(Invitrogen) broth에서 A₆₀₀=4.0 까지 30℃에서 250rpm을 진탕배 양 하였다. 3000×g 로 원심분리후 BMMY(Invitrogen)에 A₆₀₀=0.1 로 희석, 현탁 하여 30℃ 혹은 20℃에서 진탕 배양(250rpm)하였다. M14-3(A1)^β-gal의 발현은 배양액의 supernatant 및 cell free extract의 ^β-galactosidase 의 ONPG 분해활성 을 조사하여 판단하였다.

2. ▶-galactosidase 생산체계 확립

효소생산원 및 발현 체계에 근거하여 효소 생산 체계를 확립하였다.

제 3 절 결과 및 고찰

1. pPICZa C 에 저온성 β-galactosidase 유전자의 전이

MC14-3(A1)^A-gal 을 PCR에 의해 복제한 후 YT&A 에 삽입하였고, 삽입여 부를 PCR로 확인하였다(Fig 1). MC14-3(A1)^A-gal이 삽입된 YT&A를 HindIII 로 분해하여 MC14-3(A1)^A-gal 을 포함하는 DNA단편을 분리하여 pRSET C 에 삽입하였다(Fig 2). pRSET C를 EcoRI으로 분해하여 분리, 정제한 MA14-3(A1)^A-gal 을 포함하는 DNA 단편을 pPICZa C 에 삽입하였다. pPICZ a C 에 유전자가 바른 방향으로 삽입되었는가 여부를 XhoI으로 분해 하여 생 성되는 DNA 단편의 크기로 확인하였다(Fig 3). 유전자가 바른 방향으로 삽입되 면 3593bp 와 829 bp의 DNA 단편이, 반대방향으로 삽입되면 4369 bp 와 53 bp 의 DNA 단편이 생산 된다. 3593bp 와 829 bp의 DNA 단편이 생성된 plasmid를 *Pichia pastoris* 에 전이하는데 사용하였다.

M: Mw marker

Y: MC14-3(A1)p-gal inserted in YT&A

Fig 1. confirmation of MC14-3(A1)p-gal inserted in YT&A by PCR

- M : Mw marker
- 1 : pRSET C
- 2 : pRSET C containing MC14-3(A1)p-gal

Fig 2. pRSET C containing DNA fragment including MC14–3(A1) β -gal transferred from YT&A

M : Mw marker

- $C \ : \ pPICZ a \ C$
- R: pPICZa C containg MC14-3(A1)p-gal oriented in right way

Fig 3. Analysis of right orientaion of DNA fragment including MC14-3(A1)^[] -gal into pPICZ^a C

2. Pichia pastoris에 저온성 р galactosidase 유전자의 전이 및 발현

MC14-3(A1)¹/_p-gal 이 삽입된 pPICZa C를 BstX I 으로 분해 한후 *Pichia* pastoris X-33에 전이하였으며, 전이 여부를 형성된 colony의 Mut+(그림3-4) 및 PCR에 의에 복제된 DNA단편의 크기(그림3-5)로 확인하였다. Lac-MA14-3(A1) 가 삽입된 pPICZa C 이 *Pichia pastoris* X-33의 chromosomal DNA에 integration 된 경우 *Pichia pastoris* X-33의 chromosomal DNA 의 3"AOX1 primer와 5'AOX1 primer를 사용하여 PCR하면 2.2 kb와 1417kb 의 DNA 단편이 생성된다. Mut⁺이면서 PCR결과 2.2 kb와 1417kb 의 DNA 단편을 생성하는 colony를 발현에 사용하였다.

MC14-3(A1)β-gal이 전이된 *Pichia pastoris* X-33을 BMMY broth에서 20℃ 혹은 30℃에서 발현을 시도 했으나 발현되지 않았다. *Pichia pastoris* X-33 가 중성 pH에서 활성이 있는 extracellular protease를 생산할 경우 발현된 효소를 분해하여 발현을 확인할 수 없기 때문에 extracellular protease를 생산을 억제하 는 casamino acid를 0.5, 2% 첨가하여 배양 했으나 발현을 확인 할 수 없었다. 그 원인을 규명하지는 않았다. 그러나 발현되어야 할 효소의 101번째(Asn), 103 번째(Thr), 117번째(Asn), 119번째(Thr) 아미노산의 배열로 인해 이 효소가 *Pichia pastoris* X-33에서 발현될 때 101번째 및 117번째 아미노산인 아스파라진 에 oligosaccharide가 결합될 가능성이 있으며, 이것이 활성을 저해 했을 가능성 도 있을 것으로 추측된다.

Fig 4. Mut⁺of *Pichia pastoris* X-33 transformed with pPICZ^a C having DNA fragment containing MC14-3(A1)gal

- M : Mw marker
- C : untransformed
- T : transformed

Fig 5. Analysis of integration of pPICZ^I C harboring DNA fragment including MC14-3(A1)gal into chromosomal DNA of *Pichia pastoris* X-33

3. β-galactosidase 생산체계

분리된 유전자는 모두 plasmid에 삽입되어 *E. coli*에 존재하면서 발현, 생산되 어 세포내에 남아있다. 그러므로 *E. coli* 를 배양한 후에 세포벽을 파괴하여 세포 파편을 분리 해야 한다. 이 유전자 들이 삽입된 pRSET 은 N 말단 부위에 polyhistidine tag를 가지고 있어 nickel charged sepharose resin을 사용하면 용 이하게 정제 할 수 있다. 효소 생산체계는 Fig 6와 같다.

Cultivation of transformed *E. coli*(37°C, 16hr) ↓ Harvesting cell(6000×g, 15min) ↓ Destruction of cell(sonification) ↓ Elimination of cell debris(12000×g, 15min) ↓ Purification(salting out, nickel charged sepharose resin)

Fig 6. Production process of *p*-galactosidase

제 4 편 요 약

[▶]-Galactosidase 유전자, MC14-3(A1)[▶]-gal 을 PCR에 의해 복제한 후 YT&A 에 삽입한 후 HindⅢ 로 분해하여 MC14-3(A1)[▶]-ga을 pRSET C 에 삽입하였다. pRSET C를 EcoR I 으로 분해하여 MA14-3(A1)[▶]-gal 을 포함하는 DNA 단편을 pPICZn C 에 삽입하여 *Pichia pastoris* 에 전이하는데 사용하였다. Lac-MA14-3(A1)가 삽입된 pPICZn C이 *Pichia pastoris* X-33의 chromosomal DNA에 integration 된 경우 *Pichia pastoris* X-33의 chromosomal DNA 의 3"AOX1 primer와 5'AOX1 primer를 사용하여 PCR로 확인하였다. MC14-3(A1)[▶] -gal이 전이된 *Pichia pastoris* X-33을 BMMY broth에서 20℃혹은 30℃에서 발 현을 시도 했으나 발현되지 않았다

제 9 장 재조합 유당분해효소에 의한 우유 유당 분해

제1편서론

β-galactosidase 유당분해효소의 β-1,4-glycosidic 결합분해력은 기질의 종류에 따라 다르다. 그러므로 합성기질인 ONPG의 분해력과 유당분해력에는 차이가 있 을 수 있다. 또한 우유에는 유당 외에 여러 가지 성분이 존재하므로 이들 성분이 유당분해효소의 유당분해력에 영향을 미치기 때문에 유당분해 효소들 간에 우유 의 유당분해력은 차이가 있을 수 있다. 우유의 유당을 유당분해효소로 분해하기 위해서는 일정한 반응시간이 필요한데 저온성 유당분해효소는 우유 저장 시 유 당이 분해 되고 살균 시 분해 되기 때문에 반응과정중의 미생물 성장의 우려가 없어 위생적인 품질을 확보할 수 있다. 본 연구에서는 분리한 3종의 우유유당분 해력을 저장온도인 4℃에서 조사하였다.

제 2 편 재료 및 방법

Na-phophate buffer(pH 6.8 ,0.01M) 유당용액(4.32%)과 10% skim milk를 사용하여 4℃에서 6시간, 12시간, 24시간, 48시간, 72시간 반응하여 유당분해력을 조사하였다. 원유의 유당농도가 4.32%이었기 때문에 완충용액의 유당농도를 4.32%로 하였다.

시료 10ml를 falcon tube(35ml 용량)에 첨가하고 β-galactosidase를 200 비첨 가, 혼합하고 water bath에서 진탕하면서 조사하였다. β-galactosidase 는 윤전 자가 전이된 *E. coli*를 배양 후 회수하여 Na-phosphate buffer(0.01M, pH 6.8)에 A₆₀₀=8.0 으로 현탁하고, sonification에 의해 세포벽을 파괴한 후, 원심분리(12,000 Xg, 20분, 4℃)에 의해 세포파편을 제거한 후에 사용하였다. 유당분해정도는 HPLC로 조사하였다. 시료 2ml에 HPLC water 4ml를 가하고 균질한 후 centriconYM-10 filter(Millipore, USA)에서 12,000rpm, 12분간 원심분리 여과한 여액을 분석용 시료로 사용하였다. Guard column polymer CH CA HP Column(300mm X 6.5mm, Merck, USA)을 사용하였고, mobile phase 는 DDI H2O이고 flow rate는 0.5ml/min 이며, refractive index detector를 사용하였다.

제 3 편 결과 및 고찰

MC14-3(A1)-β-gal의 β-galactosidase 는 4℃ 6시간 동안 반응 시 10% skim mlik의 유당은 11.6%가 분해하였으며 Na-phosphate 완충용액의 유당은 9.66%분 해하여 반응시간의 증가에 따라 유당분해능이 증가하였으며 반응 72시간에는 10% skim milk의 유당은 18.53%, Na-phosphate 완충용액의 유당은 16.38%분 해하여 유당분해가 다소 증가하였다(Fig 1).

MC14-3(A3)β-gal의 β-gaactosidase 는 4℃ 6시간 동안 반응 시 10% skim mlik의 유당은 13.09%가분해하였으며 Na-phosphate 완충용액의 유당은 13.67% 분해하여 반응시간의 증가에 따라 유당분해능이 증가하였으며 반응 72시간에는 10% kim milk의 유당은 18.56%, Na-phosphate 완충용액의 유당은 16.82%분해 하여 유당분해가 다소 증가하였다(Fig 2).

Fig 1. Hydrolysis of lactose in 10% skim milk and Na-phosphate buffer(0.01M pH 6.8) by MC14-3(A1)β-gal β-galactosidase at 4℃

Fig 2. Hydrolysis of lactose in 10% skim milk and Na-phosphate buffer(0.01M pH 6.8) by MC14-3(A1)β-gal β-galactosidase at 4°C

제 4 절 참고 문헌

1 Brenchley, J. E. 1996. Psychrotorphilic microorganisms and their cold-active enzymes . J. Ind. microbiol. 17:432-437.

2. Cavicchioli, R., Siddiqui, K. S., Andrews, D., and Sowerts, K. R. 2002. Low -temperature extremophiles and their applications. Curr. Opin. Biotechnol. 3:253–261.

3. Coombs, J. M. and J .E Brenchely. 1999. biochemical and phylogenetic analyses of a cold-active *p*-galactosidase from the lactic acid bacterium *Carnobacterium piscicola* BA. Appl. Environ.Microbiol.65(12): 5443–5450.

4. Cregg, J. M., T. S. Vedvick and W. C. Raschke. 1993. Recent advances in the expression of foreign genes in *Pichia pastoris*. Bio/Technology. 11:905–910.

5. Farrell, J. and A. Rose. 1967. Temperature effects on microorganisms. Ann. Rev. Microbiol. 21:101-120.

6. Felsentein, J. 1993. PHYLIP(phylogenetic inference pakage) version 3.5.1.

Department of Genetics, University of Washington, seattle, WA, USA

7. Gerday, C. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Biotech. 18:103-107.

8. Gounot, A. M. 1991, Bacterial life at low temperature: physiological aspects and biotechnological implications. A review. J. Appl. bacteriol. 71:386-397

9. Gutshall, K. R., D .E. Trimbur, J. J. Kasmir, and J. E. Brenchley. 1995. Analysis of a novel gene and *p*-galactosidase iso-enzyme from a psychrotrophiles *Arthrobacter* isolate. J. Bacteriol. 177:1981-1988.

10. Herbert, R. A 1986. The ecology and physiology of psychrophilic micro-organisms. Spec. Pub. Soc. Gen. Microbiol. 17:1-23.

11. Laemmli, U. K. 1970. Cleavage of structual proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685

 Loveland, J., K. Gutshall, J. Kasmie, P. Prema, and J.E. Brenchley. 1994.
 Characterization of psychrotrophic microorganism production β-galactosidase activities. Appl. Environ. Microbiol. 60(1):12-18

13. Mahsunah, A.H., M. A. Kholiq, and T. Groudia. 2000. Characterization of cold-active hydrolytic enzymes and their potential applications in biotechnology. ISSU. 119–112.14. McCammon, S. A., B. H. Innesm J. P. Bowman, P. D. Franzmann, S.J. Dobsons P. E. Holloway, J. H. Skerratt, P. D. nichol and L. M. Rankin. 1998. *Flavobacterium hibernum* sp. nov., a lactose-utilizing bacterium from a fresh water antartic. Int. J. Sys. Bacteriol. 48:1405–1412.

15. Russel, N. J. 2000. Cold adatation of microorganisms Phil. Trans. R. Soc. Lon. B326:595-611.

16. Sharp, R. J. and A .P. Munster. 1986. Alkalophilic bacteria. Bacteriol. Rev. 39:146-167.

17. Sheridan, P. P and J. E. Brenchley. 2000. Characterization of a salt tolerant family 42 p-galactosidase from a psychrophilic antartic *Planococcus* isolate.

18. Stokes, J. L. 1963. General biology and nomenclature of psychrophilic bacteria. In:Gibbons, N.E.(Ed.) Recent Progress in Microbiology, Vol. VIII. University of Toronto Press, Toronto, pp187–192.

19. Trimbue D. E., K. R. Gutshall, P. Prema, and J. E. Brenchley. 1994. Characterization of a psychrotrophic *Arthrobacter* gene and its cold active p-galactosidase

20. Zobell, C. E. 1946. Action of microorganisms on hydrocarbons. Bacteriology Review 10:1-49.

제 10 장 목표 달성도 및 연구개발결과의 활용계 획

제 1 편 목표 달성도

구 분	평가의 착안점, 척도 및 목표달성도			
	착 안 사 항	척도 (점수)	목표달성도	
1차년도 (2002년)	○ 유당분해우유의 제조 조건 결정	25	100	
	○ Nanofiltration 막의 선발	25	100	
	○ 호냉성 유당분해효소의 선발	50	100	
2차년도 (2003년)	○ 저감미 유당분해우유의 생산 방법 결정 ○ 호냉성 유당분해효소 유전자 cloning 및	50 50	100 100	
	구조 결정			
3차년도 (2004년)	 저감미 유당분해우유의 화학분석 및 관능검사 	25	100	
	○ 저감미 유당분해우유의 영양학적 평가	25	100	
	○ 유전자를 <i>Pichia pastoris</i> 에 전이 및 발현	30	100	
	○ 유당분해효소의 정제 및 생산 조건 확립	20	100	
최종평가	○ 저감미 유당분해우유의 개발 ○ 재조합 호냉성 유당분해효소의 생산	50 50	100 100	

제 2 절 관련분야에의 기여 및 활용계획

1. 저감미 유당분해우유의 우유의 개발

저감미 유당분해우유의 제조 방법을 특허출원하였으며 특허 등록이 되면 산업 화를 추진하고자 한다.

2. 호냉성 유당분해 효소 생산 새로운 균주의 분리

호냉성 P-galactosidase를 생성하는 6종의 *Hafnia alvei와 Serratia grimesii*, *Artherobacter psychrophilus, Rhanella aquaticus, Pseudoalteromonas* sp등을 각각 한 균주씩 분리하였다. 또한 국내 토양에서 *Enterobacter* 1 박테리아 균주 *와 Candida kefyr*의 1 효모 균주로부터 P-galactosidase를 순수분리하였다.

3. 유당분해효소 유전자 구조확인

확보한 10종중 2종의 р-galactosidase 유전자를 분리하여 구조를 확인 하므로 서 해당균주의 유전학적 특성을 규명하는데 기여하였다. M14-3(A1)-gal 과 M14-3(A3)-gal 의 р-galactosidase가 실용성이 있을 것으로 판단되며 이의 실 용화를 추진할 것임.

주 의
1. 이 보고서는 농림부에서 시행한 농림기술개발사업의 연 구보고서입니다.
 이 보고서 내용을 발표할 때에는 반드시 농림부에서 시행 한 농림기술개발사업의 연구결과임을 밝혀야 합니다.
 국가과학기술 기밀유지에 필요한 내용은 대외적으로 발 표 또는 공개하여서는 아니됩니다.